1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2001 Atsushi Onoe
5 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 /*
31 * IEEE 802.11 generic handler
32 */
33 #include "opt_wlan.h"
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/socket.h>
40 #include <sys/sbuf.h>
41
42 #include <machine/stdarg.h>
43
44 #include <net/if.h>
45 #include <net/if_var.h>
46 #include <net/if_dl.h>
47 #include <net/if_media.h>
48 #include <net/if_private.h>
49 #include <net/if_types.h>
50 #include <net/ethernet.h>
51
52 #include <net80211/ieee80211_var.h>
53 #include <net80211/ieee80211_regdomain.h>
54 #ifdef IEEE80211_SUPPORT_SUPERG
55 #include <net80211/ieee80211_superg.h>
56 #endif
57 #include <net80211/ieee80211_ratectl.h>
58 #include <net80211/ieee80211_vht.h>
59
60 #include <net/bpf.h>
61
62 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
63 [IEEE80211_MODE_AUTO] = "auto",
64 [IEEE80211_MODE_11A] = "11a",
65 [IEEE80211_MODE_11B] = "11b",
66 [IEEE80211_MODE_11G] = "11g",
67 [IEEE80211_MODE_FH] = "FH",
68 [IEEE80211_MODE_TURBO_A] = "turboA",
69 [IEEE80211_MODE_TURBO_G] = "turboG",
70 [IEEE80211_MODE_STURBO_A] = "sturboA",
71 [IEEE80211_MODE_HALF] = "half",
72 [IEEE80211_MODE_QUARTER] = "quarter",
73 [IEEE80211_MODE_11NA] = "11na",
74 [IEEE80211_MODE_11NG] = "11ng",
75 [IEEE80211_MODE_VHT_2GHZ] = "11acg",
76 [IEEE80211_MODE_VHT_5GHZ] = "11ac",
77 };
78 /* map ieee80211_opmode to the corresponding capability bit */
79 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
80 [IEEE80211_M_IBSS] = IEEE80211_C_IBSS,
81 [IEEE80211_M_WDS] = IEEE80211_C_WDS,
82 [IEEE80211_M_STA] = IEEE80211_C_STA,
83 [IEEE80211_M_AHDEMO] = IEEE80211_C_AHDEMO,
84 [IEEE80211_M_HOSTAP] = IEEE80211_C_HOSTAP,
85 [IEEE80211_M_MONITOR] = IEEE80211_C_MONITOR,
86 #ifdef IEEE80211_SUPPORT_MESH
87 [IEEE80211_M_MBSS] = IEEE80211_C_MBSS,
88 #endif
89 };
90
91 const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
92 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
93
94 static void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
95 static void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag);
96 static void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
97 static void ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag);
98 static int ieee80211_media_setup(struct ieee80211com *ic,
99 struct ifmedia *media, int caps, int addsta,
100 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
101 static int media_status(enum ieee80211_opmode,
102 const struct ieee80211_channel *);
103 static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter);
104
105 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
106
107 /*
108 * Default supported rates for 802.11 operation (in IEEE .5Mb units).
109 */
110 #define B(r) ((r) | IEEE80211_RATE_BASIC)
111 static const struct ieee80211_rateset ieee80211_rateset_11a =
112 { 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
113 static const struct ieee80211_rateset ieee80211_rateset_half =
114 { 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
115 static const struct ieee80211_rateset ieee80211_rateset_quarter =
116 { 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
117 static const struct ieee80211_rateset ieee80211_rateset_11b =
118 { 4, { B(2), B(4), B(11), B(22) } };
119 /* NB: OFDM rates are handled specially based on mode */
120 static const struct ieee80211_rateset ieee80211_rateset_11g =
121 { 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
122 #undef B
123
124 static int set_vht_extchan(struct ieee80211_channel *c);
125
126 /*
127 * Fill in 802.11 available channel set, mark
128 * all available channels as active, and pick
129 * a default channel if not already specified.
130 */
131 void
ieee80211_chan_init(struct ieee80211com * ic)132 ieee80211_chan_init(struct ieee80211com *ic)
133 {
134 #define DEFAULTRATES(m, def) do { \
135 if (ic->ic_sup_rates[m].rs_nrates == 0) \
136 ic->ic_sup_rates[m] = def; \
137 } while (0)
138 struct ieee80211_channel *c;
139 int i;
140
141 KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
142 ("invalid number of channels specified: %u", ic->ic_nchans));
143 memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
144 memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
145 setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
146 for (i = 0; i < ic->ic_nchans; i++) {
147 c = &ic->ic_channels[i];
148 KASSERT(c->ic_flags != 0, ("channel with no flags"));
149 /*
150 * Help drivers that work only with frequencies by filling
151 * in IEEE channel #'s if not already calculated. Note this
152 * mimics similar work done in ieee80211_setregdomain when
153 * changing regulatory state.
154 */
155 if (c->ic_ieee == 0)
156 c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
157
158 /*
159 * Setup the HT40/VHT40 upper/lower bits.
160 * The VHT80/... math is done elsewhere.
161 */
162 if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
163 c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
164 (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
165 c->ic_flags);
166
167 /* Update VHT math */
168 /*
169 * XXX VHT again, note that this assumes VHT80/... channels
170 * are legit already.
171 */
172 set_vht_extchan(c);
173
174 /* default max tx power to max regulatory */
175 if (c->ic_maxpower == 0)
176 c->ic_maxpower = 2*c->ic_maxregpower;
177 setbit(ic->ic_chan_avail, c->ic_ieee);
178 /*
179 * Identify mode capabilities.
180 */
181 if (IEEE80211_IS_CHAN_A(c))
182 setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
183 if (IEEE80211_IS_CHAN_B(c))
184 setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
185 if (IEEE80211_IS_CHAN_ANYG(c))
186 setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
187 if (IEEE80211_IS_CHAN_FHSS(c))
188 setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
189 if (IEEE80211_IS_CHAN_108A(c))
190 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
191 if (IEEE80211_IS_CHAN_108G(c))
192 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
193 if (IEEE80211_IS_CHAN_ST(c))
194 setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
195 if (IEEE80211_IS_CHAN_HALF(c))
196 setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
197 if (IEEE80211_IS_CHAN_QUARTER(c))
198 setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
199 if (IEEE80211_IS_CHAN_HTA(c))
200 setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
201 if (IEEE80211_IS_CHAN_HTG(c))
202 setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
203 if (IEEE80211_IS_CHAN_VHTA(c))
204 setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ);
205 if (IEEE80211_IS_CHAN_VHTG(c))
206 setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_2GHZ);
207 }
208 /* initialize candidate channels to all available */
209 memcpy(ic->ic_chan_active, ic->ic_chan_avail,
210 sizeof(ic->ic_chan_avail));
211
212 /* sort channel table to allow lookup optimizations */
213 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
214
215 /* invalidate any previous state */
216 ic->ic_bsschan = IEEE80211_CHAN_ANYC;
217 ic->ic_prevchan = NULL;
218 ic->ic_csa_newchan = NULL;
219 /* arbitrarily pick the first channel */
220 ic->ic_curchan = &ic->ic_channels[0];
221 ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);
222
223 /* fillin well-known rate sets if driver has not specified */
224 DEFAULTRATES(IEEE80211_MODE_11B, ieee80211_rateset_11b);
225 DEFAULTRATES(IEEE80211_MODE_11G, ieee80211_rateset_11g);
226 DEFAULTRATES(IEEE80211_MODE_11A, ieee80211_rateset_11a);
227 DEFAULTRATES(IEEE80211_MODE_TURBO_A, ieee80211_rateset_11a);
228 DEFAULTRATES(IEEE80211_MODE_TURBO_G, ieee80211_rateset_11g);
229 DEFAULTRATES(IEEE80211_MODE_STURBO_A, ieee80211_rateset_11a);
230 DEFAULTRATES(IEEE80211_MODE_HALF, ieee80211_rateset_half);
231 DEFAULTRATES(IEEE80211_MODE_QUARTER, ieee80211_rateset_quarter);
232 DEFAULTRATES(IEEE80211_MODE_11NA, ieee80211_rateset_11a);
233 DEFAULTRATES(IEEE80211_MODE_11NG, ieee80211_rateset_11g);
234 DEFAULTRATES(IEEE80211_MODE_VHT_2GHZ, ieee80211_rateset_11g);
235 DEFAULTRATES(IEEE80211_MODE_VHT_5GHZ, ieee80211_rateset_11a);
236
237 /*
238 * Setup required information to fill the mcsset field, if driver did
239 * not. Assume a 2T2R setup for historic reasons.
240 */
241 if (ic->ic_rxstream == 0)
242 ic->ic_rxstream = 2;
243 if (ic->ic_txstream == 0)
244 ic->ic_txstream = 2;
245
246 ieee80211_init_suphtrates(ic);
247
248 /*
249 * Set auto mode to reset active channel state and any desired channel.
250 */
251 (void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
252 #undef DEFAULTRATES
253 }
254
255 static void
null_update_mcast(struct ieee80211com * ic)256 null_update_mcast(struct ieee80211com *ic)
257 {
258
259 ic_printf(ic, "need multicast update callback\n");
260 }
261
262 static void
null_update_promisc(struct ieee80211com * ic)263 null_update_promisc(struct ieee80211com *ic)
264 {
265
266 ic_printf(ic, "need promiscuous mode update callback\n");
267 }
268
269 static void
null_update_chw(struct ieee80211com * ic)270 null_update_chw(struct ieee80211com *ic)
271 {
272
273 ic_printf(ic, "%s: need callback\n", __func__);
274 }
275
276 int
ic_printf(struct ieee80211com * ic,const char * fmt,...)277 ic_printf(struct ieee80211com *ic, const char * fmt, ...)
278 {
279 va_list ap;
280 int retval;
281
282 retval = printf("%s: ", ic->ic_name);
283 va_start(ap, fmt);
284 retval += vprintf(fmt, ap);
285 va_end(ap);
286 return (retval);
287 }
288
289 static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head);
290 static struct mtx ic_list_mtx;
291 MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF);
292
293 static int
sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS)294 sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS)
295 {
296 struct ieee80211com *ic;
297 struct sbuf sb;
298 char *sp;
299 int error;
300
301 error = sysctl_wire_old_buffer(req, 0);
302 if (error)
303 return (error);
304 sbuf_new_for_sysctl(&sb, NULL, 8, req);
305 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
306 sp = "";
307 mtx_lock(&ic_list_mtx);
308 LIST_FOREACH(ic, &ic_head, ic_next) {
309 sbuf_printf(&sb, "%s%s", sp, ic->ic_name);
310 sp = " ";
311 }
312 mtx_unlock(&ic_list_mtx);
313 error = sbuf_finish(&sb);
314 sbuf_delete(&sb);
315 return (error);
316 }
317
318 SYSCTL_PROC(_net_wlan, OID_AUTO, devices,
319 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
320 sysctl_ieee80211coms, "A", "names of available 802.11 devices");
321
322 /*
323 * Attach/setup the common net80211 state. Called by
324 * the driver on attach to prior to creating any vap's.
325 */
326 void
ieee80211_ifattach(struct ieee80211com * ic)327 ieee80211_ifattach(struct ieee80211com *ic)
328 {
329
330 IEEE80211_LOCK_INIT(ic, ic->ic_name);
331 IEEE80211_TX_LOCK_INIT(ic, ic->ic_name);
332 TAILQ_INIT(&ic->ic_vaps);
333
334 /* Create a taskqueue for all state changes */
335 ic->ic_tq = taskqueue_create("ic_taskq",
336 IEEE80211_M_WAITOK | IEEE80211_M_ZERO,
337 taskqueue_thread_enqueue, &ic->ic_tq);
338 taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq",
339 ic->ic_name);
340 ic->ic_ierrors = counter_u64_alloc(IEEE80211_M_WAITOK);
341 ic->ic_oerrors = counter_u64_alloc(IEEE80211_M_WAITOK);
342 /*
343 * Fill in 802.11 available channel set, mark all
344 * available channels as active, and pick a default
345 * channel if not already specified.
346 */
347 ieee80211_chan_init(ic);
348
349 ic->ic_update_mcast = null_update_mcast;
350 ic->ic_update_promisc = null_update_promisc;
351 ic->ic_update_chw = null_update_chw;
352
353 ic->ic_hash_key = arc4random();
354 ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
355 ic->ic_lintval = ic->ic_bintval;
356 ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
357
358 ieee80211_crypto_attach(ic);
359 ieee80211_node_attach(ic);
360 ieee80211_power_attach(ic);
361 ieee80211_proto_attach(ic);
362 #ifdef IEEE80211_SUPPORT_SUPERG
363 ieee80211_superg_attach(ic);
364 #endif
365 ieee80211_ht_attach(ic);
366 ieee80211_vht_attach(ic);
367 ieee80211_scan_attach(ic);
368 ieee80211_regdomain_attach(ic);
369 ieee80211_dfs_attach(ic);
370
371 ieee80211_sysctl_attach(ic);
372
373 mtx_lock(&ic_list_mtx);
374 LIST_INSERT_HEAD(&ic_head, ic, ic_next);
375 mtx_unlock(&ic_list_mtx);
376 }
377
378 /*
379 * Detach net80211 state on device detach. Tear down
380 * all vap's and reclaim all common state prior to the
381 * device state going away. Note we may call back into
382 * driver; it must be prepared for this.
383 */
384 void
ieee80211_ifdetach(struct ieee80211com * ic)385 ieee80211_ifdetach(struct ieee80211com *ic)
386 {
387 struct ieee80211vap *vap;
388
389 /*
390 * We use this as an indicator that ifattach never had a chance to be
391 * called, e.g. early driver attach failed and ifdetach was called
392 * during subsequent detach. Never fear, for we have nothing to do
393 * here.
394 */
395 if (ic->ic_tq == NULL)
396 return;
397
398 mtx_lock(&ic_list_mtx);
399 LIST_REMOVE(ic, ic_next);
400 mtx_unlock(&ic_list_mtx);
401
402 taskqueue_drain(taskqueue_thread, &ic->ic_restart_task);
403
404 /*
405 * The VAP is responsible for setting and clearing
406 * the VIMAGE context.
407 */
408 while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) {
409 ieee80211_com_vdetach(vap);
410 ieee80211_vap_destroy(vap);
411 }
412 ieee80211_waitfor_parent(ic);
413
414 ieee80211_sysctl_detach(ic);
415 ieee80211_dfs_detach(ic);
416 ieee80211_regdomain_detach(ic);
417 ieee80211_scan_detach(ic);
418 #ifdef IEEE80211_SUPPORT_SUPERG
419 ieee80211_superg_detach(ic);
420 #endif
421 ieee80211_vht_detach(ic);
422 ieee80211_ht_detach(ic);
423 /* NB: must be called before ieee80211_node_detach */
424 ieee80211_proto_detach(ic);
425 ieee80211_crypto_detach(ic);
426 ieee80211_power_detach(ic);
427 ieee80211_node_detach(ic);
428
429 counter_u64_free(ic->ic_ierrors);
430 counter_u64_free(ic->ic_oerrors);
431
432 taskqueue_free(ic->ic_tq);
433 IEEE80211_TX_LOCK_DESTROY(ic);
434 IEEE80211_LOCK_DESTROY(ic);
435 }
436
437 /*
438 * Called by drivers during attach to set the supported
439 * cipher set for software encryption.
440 */
441 void
ieee80211_set_software_ciphers(struct ieee80211com * ic,uint32_t cipher_suite)442 ieee80211_set_software_ciphers(struct ieee80211com *ic,
443 uint32_t cipher_suite)
444 {
445 ieee80211_crypto_set_supported_software_ciphers(ic, cipher_suite);
446 }
447
448 /*
449 * Called by drivers during attach to set the supported
450 * cipher set for hardware encryption.
451 */
452 void
ieee80211_set_hardware_ciphers(struct ieee80211com * ic,uint32_t cipher_suite)453 ieee80211_set_hardware_ciphers(struct ieee80211com *ic,
454 uint32_t cipher_suite)
455 {
456 ieee80211_crypto_set_supported_hardware_ciphers(ic, cipher_suite);
457 }
458
459 /*
460 * Called by drivers during attach to set the supported
461 * key management suites by the driver/hardware.
462 */
463 void
ieee80211_set_driver_keymgmt_suites(struct ieee80211com * ic,uint32_t keymgmt_set)464 ieee80211_set_driver_keymgmt_suites(struct ieee80211com *ic,
465 uint32_t keymgmt_set)
466 {
467 ieee80211_crypto_set_supported_driver_keymgmt(ic,
468 keymgmt_set);
469 }
470
471 struct ieee80211com *
ieee80211_find_com(const char * name)472 ieee80211_find_com(const char *name)
473 {
474 struct ieee80211com *ic;
475
476 mtx_lock(&ic_list_mtx);
477 LIST_FOREACH(ic, &ic_head, ic_next)
478 if (strcmp(ic->ic_name, name) == 0)
479 break;
480 mtx_unlock(&ic_list_mtx);
481
482 return (ic);
483 }
484
485 void
ieee80211_iterate_coms(ieee80211_com_iter_func * f,void * arg)486 ieee80211_iterate_coms(ieee80211_com_iter_func *f, void *arg)
487 {
488 struct ieee80211com *ic;
489
490 mtx_lock(&ic_list_mtx);
491 LIST_FOREACH(ic, &ic_head, ic_next)
492 (*f)(arg, ic);
493 mtx_unlock(&ic_list_mtx);
494 }
495
496 /*
497 * Default reset method for use with the ioctl support. This
498 * method is invoked after any state change in the 802.11
499 * layer that should be propagated to the hardware but not
500 * require re-initialization of the 802.11 state machine (e.g
501 * rescanning for an ap). We always return ENETRESET which
502 * should cause the driver to re-initialize the device. Drivers
503 * can override this method to implement more optimized support.
504 */
505 static int
default_reset(struct ieee80211vap * vap,u_long cmd)506 default_reset(struct ieee80211vap *vap, u_long cmd)
507 {
508 return ENETRESET;
509 }
510
511 /*
512 * Default for updating the VAP default TX key index.
513 *
514 * Drivers that support TX offload as well as hardware encryption offload
515 * may need to be informed of key index changes separate from the key
516 * update.
517 */
518 static void
default_update_deftxkey(struct ieee80211vap * vap,ieee80211_keyix kid)519 default_update_deftxkey(struct ieee80211vap *vap, ieee80211_keyix kid)
520 {
521
522 /* XXX assert validity */
523 /* XXX assert we're in a key update block */
524 vap->iv_def_txkey = kid;
525 }
526
527 /*
528 * Add underlying device errors to vap errors.
529 */
530 static uint64_t
ieee80211_get_counter(struct ifnet * ifp,ift_counter cnt)531 ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt)
532 {
533 struct ieee80211vap *vap = ifp->if_softc;
534 struct ieee80211com *ic = vap->iv_ic;
535 uint64_t rv;
536
537 rv = if_get_counter_default(ifp, cnt);
538 switch (cnt) {
539 case IFCOUNTER_OERRORS:
540 rv += counter_u64_fetch(ic->ic_oerrors);
541 break;
542 case IFCOUNTER_IERRORS:
543 rv += counter_u64_fetch(ic->ic_ierrors);
544 break;
545 default:
546 break;
547 }
548
549 return (rv);
550 }
551
552 /*
553 * Prepare a vap for use. Drivers use this call to
554 * setup net80211 state in new vap's prior attaching
555 * them with ieee80211_vap_attach (below).
556 */
557 int
ieee80211_vap_setup(struct ieee80211com * ic,struct ieee80211vap * vap,const char name[IFNAMSIZ],int unit,enum ieee80211_opmode opmode,int flags,const uint8_t bssid[IEEE80211_ADDR_LEN])558 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
559 const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode,
560 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN])
561 {
562 struct ifnet *ifp;
563
564 ifp = if_alloc(IFT_ETHER);
565 if_initname(ifp, name, unit);
566 ifp->if_softc = vap; /* back pointer */
567 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
568 ifp->if_transmit = ieee80211_vap_transmit;
569 ifp->if_qflush = ieee80211_vap_qflush;
570 ifp->if_ioctl = ieee80211_ioctl;
571 ifp->if_init = ieee80211_init;
572 ifp->if_get_counter = ieee80211_get_counter;
573
574 vap->iv_ifp = ifp;
575 vap->iv_ic = ic;
576 vap->iv_flags = ic->ic_flags; /* propagate common flags */
577 vap->iv_flags_ext = ic->ic_flags_ext;
578 vap->iv_flags_ven = ic->ic_flags_ven;
579 vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
580
581 /* 11n capabilities - XXX methodize */
582 vap->iv_htcaps = ic->ic_htcaps;
583 vap->iv_htextcaps = ic->ic_htextcaps;
584
585 /* 11ac capabilities - XXX methodize */
586 vap->iv_vht_cap.vht_cap_info = ic->ic_vht_cap.vht_cap_info;
587 vap->iv_vhtextcaps = ic->ic_vhtextcaps;
588
589 vap->iv_opmode = opmode;
590 vap->iv_caps |= ieee80211_opcap[opmode];
591 IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr);
592 switch (opmode) {
593 case IEEE80211_M_WDS:
594 /*
595 * WDS links must specify the bssid of the far end.
596 * For legacy operation this is a static relationship.
597 * For non-legacy operation the station must associate
598 * and be authorized to pass traffic. Plumbing the
599 * vap to the proper node happens when the vap
600 * transitions to RUN state.
601 */
602 IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
603 vap->iv_flags |= IEEE80211_F_DESBSSID;
604 if (flags & IEEE80211_CLONE_WDSLEGACY)
605 vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
606 break;
607 #ifdef IEEE80211_SUPPORT_TDMA
608 case IEEE80211_M_AHDEMO:
609 if (flags & IEEE80211_CLONE_TDMA) {
610 /* NB: checked before clone operation allowed */
611 KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
612 ("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
613 /*
614 * Propagate TDMA capability to mark vap; this
615 * cannot be removed and is used to distinguish
616 * regular ahdemo operation from ahdemo+tdma.
617 */
618 vap->iv_caps |= IEEE80211_C_TDMA;
619 }
620 break;
621 #endif
622 default:
623 break;
624 }
625 /* auto-enable s/w beacon miss support */
626 if (flags & IEEE80211_CLONE_NOBEACONS)
627 vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
628 /* auto-generated or user supplied MAC address */
629 if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR))
630 vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC;
631 /*
632 * Enable various functionality by default if we're
633 * capable; the driver can override us if it knows better.
634 */
635 if (vap->iv_caps & IEEE80211_C_WME)
636 vap->iv_flags |= IEEE80211_F_WME;
637 if (vap->iv_caps & IEEE80211_C_BURST)
638 vap->iv_flags |= IEEE80211_F_BURST;
639 /* NB: bg scanning only makes sense for station mode right now */
640 if (vap->iv_opmode == IEEE80211_M_STA &&
641 (vap->iv_caps & IEEE80211_C_BGSCAN))
642 vap->iv_flags |= IEEE80211_F_BGSCAN;
643 vap->iv_flags |= IEEE80211_F_DOTH; /* XXX no cap, just ena */
644 /* NB: DFS support only makes sense for ap mode right now */
645 if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
646 (vap->iv_caps & IEEE80211_C_DFS))
647 vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
648 /* NB: only flip on U-APSD for hostap/sta for now */
649 if ((vap->iv_opmode == IEEE80211_M_STA)
650 || (vap->iv_opmode == IEEE80211_M_HOSTAP)) {
651 if (vap->iv_caps & IEEE80211_C_UAPSD)
652 vap->iv_flags_ext |= IEEE80211_FEXT_UAPSD;
653 }
654
655 vap->iv_des_chan = IEEE80211_CHAN_ANYC; /* any channel is ok */
656 vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
657 vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
658 /*
659 * Install a default reset method for the ioctl support;
660 * the driver can override this.
661 */
662 vap->iv_reset = default_reset;
663
664 /*
665 * Install a default crypto key update method, the driver
666 * can override this.
667 */
668 vap->iv_update_deftxkey = default_update_deftxkey;
669
670 ieee80211_sysctl_vattach(vap);
671 ieee80211_crypto_vattach(vap);
672 ieee80211_node_vattach(vap);
673 ieee80211_power_vattach(vap);
674 ieee80211_proto_vattach(vap);
675 #ifdef IEEE80211_SUPPORT_SUPERG
676 ieee80211_superg_vattach(vap);
677 #endif
678 ieee80211_ht_vattach(vap);
679 ieee80211_vht_vattach(vap);
680 ieee80211_scan_vattach(vap);
681 ieee80211_regdomain_vattach(vap);
682 ieee80211_radiotap_vattach(vap);
683 ieee80211_vap_reset_erp(vap);
684 ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE);
685
686 return 0;
687 }
688
689 /*
690 * Activate a vap. State should have been prepared with a
691 * call to ieee80211_vap_setup and by the driver. On return
692 * from this call the vap is ready for use.
693 */
694 int
ieee80211_vap_attach(struct ieee80211vap * vap,ifm_change_cb_t media_change,ifm_stat_cb_t media_stat,const uint8_t macaddr[IEEE80211_ADDR_LEN])695 ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change,
696 ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN])
697 {
698 struct ifnet *ifp = vap->iv_ifp;
699 struct ieee80211com *ic = vap->iv_ic;
700 struct ifmediareq imr;
701 int maxrate;
702
703 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
704 "%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
705 __func__, ieee80211_opmode_name[vap->iv_opmode],
706 ic->ic_name, vap->iv_flags, vap->iv_flags_ext);
707
708 /*
709 * Do late attach work that cannot happen until after
710 * the driver has had a chance to override defaults.
711 */
712 ieee80211_node_latevattach(vap);
713 ieee80211_power_latevattach(vap);
714
715 maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
716 vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
717 ieee80211_media_status(ifp, &imr);
718 /* NB: strip explicit mode; we're actually in autoselect */
719 ifmedia_set(&vap->iv_media,
720 imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
721 if (maxrate)
722 ifp->if_baudrate = IF_Mbps(maxrate);
723
724 ether_ifattach(ifp, macaddr);
725 IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
726 /* hook output method setup by ether_ifattach */
727 vap->iv_output = ifp->if_output;
728 ifp->if_output = ieee80211_output;
729 /* NB: if_mtu set by ether_ifattach to ETHERMTU */
730
731 IEEE80211_LOCK(ic);
732 TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
733 ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
734 #ifdef IEEE80211_SUPPORT_SUPERG
735 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
736 #endif
737 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
738 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
739 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
740 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
741
742 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
743 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
744 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
745 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
746 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
747 IEEE80211_UNLOCK(ic);
748
749 return 1;
750 }
751
752 /*
753 * Tear down vap state and reclaim the ifnet.
754 * The driver is assumed to have prepared for
755 * this; e.g. by turning off interrupts for the
756 * underlying device.
757 */
758 void
ieee80211_vap_detach(struct ieee80211vap * vap)759 ieee80211_vap_detach(struct ieee80211vap *vap)
760 {
761 struct ieee80211com *ic = vap->iv_ic;
762 struct ifnet *ifp = vap->iv_ifp;
763 int i;
764
765 CURVNET_SET(ifp->if_vnet);
766
767 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
768 __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name);
769
770 /* NB: bpfdetach is called by ether_ifdetach and claims all taps */
771 ether_ifdetach(ifp);
772
773 ieee80211_stop(vap);
774
775 /*
776 * Flush any deferred vap tasks.
777 */
778 for (i = 0; i < NET80211_IV_NSTATE_NUM; i++)
779 ieee80211_draintask(ic, &vap->iv_nstate_task[i]);
780 ieee80211_draintask(ic, &vap->iv_swbmiss_task);
781 ieee80211_draintask(ic, &vap->iv_wme_task);
782 ieee80211_draintask(ic, &ic->ic_parent_task);
783
784 /* XXX band-aid until ifnet handles this for us */
785 taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
786
787 IEEE80211_LOCK(ic);
788 KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running"));
789 TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
790 ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
791 #ifdef IEEE80211_SUPPORT_SUPERG
792 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
793 #endif
794 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
795 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
796 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
797 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
798
799 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
800 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
801 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
802 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
803 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
804
805 /* NB: this handles the bpfdetach done below */
806 ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF);
807 if (vap->iv_ifflags & IFF_PROMISC)
808 ieee80211_promisc(vap, false);
809 if (vap->iv_ifflags & IFF_ALLMULTI)
810 ieee80211_allmulti(vap, false);
811 IEEE80211_UNLOCK(ic);
812
813 ifmedia_removeall(&vap->iv_media);
814
815 ieee80211_radiotap_vdetach(vap);
816 ieee80211_regdomain_vdetach(vap);
817 ieee80211_scan_vdetach(vap);
818 #ifdef IEEE80211_SUPPORT_SUPERG
819 ieee80211_superg_vdetach(vap);
820 #endif
821 ieee80211_vht_vdetach(vap);
822 ieee80211_ht_vdetach(vap);
823 /* NB: must be before ieee80211_node_vdetach */
824 ieee80211_proto_vdetach(vap);
825 ieee80211_crypto_vdetach(vap);
826 ieee80211_power_vdetach(vap);
827 ieee80211_node_vdetach(vap);
828 ieee80211_sysctl_vdetach(vap);
829
830 if_free(ifp);
831
832 CURVNET_RESTORE();
833 }
834
835 /*
836 * Count number of vaps in promisc, and issue promisc on
837 * parent respectively.
838 */
839 void
ieee80211_promisc(struct ieee80211vap * vap,bool on)840 ieee80211_promisc(struct ieee80211vap *vap, bool on)
841 {
842 struct ieee80211com *ic = vap->iv_ic;
843
844 IEEE80211_LOCK_ASSERT(ic);
845
846 if (on) {
847 if (++ic->ic_promisc == 1)
848 ieee80211_runtask(ic, &ic->ic_promisc_task);
849 } else {
850 KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc",
851 __func__, ic));
852 if (--ic->ic_promisc == 0)
853 ieee80211_runtask(ic, &ic->ic_promisc_task);
854 }
855 }
856
857 /*
858 * Count number of vaps in allmulti, and issue allmulti on
859 * parent respectively.
860 */
861 void
ieee80211_allmulti(struct ieee80211vap * vap,bool on)862 ieee80211_allmulti(struct ieee80211vap *vap, bool on)
863 {
864 struct ieee80211com *ic = vap->iv_ic;
865
866 IEEE80211_LOCK_ASSERT(ic);
867
868 if (on) {
869 if (++ic->ic_allmulti == 1)
870 ieee80211_runtask(ic, &ic->ic_mcast_task);
871 } else {
872 KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti",
873 __func__, ic));
874 if (--ic->ic_allmulti == 0)
875 ieee80211_runtask(ic, &ic->ic_mcast_task);
876 }
877 }
878
879 /*
880 * Synchronize flag bit state in the com structure
881 * according to the state of all vap's. This is used,
882 * for example, to handle state changes via ioctls.
883 */
884 static void
ieee80211_syncflag_locked(struct ieee80211com * ic,int flag)885 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
886 {
887 struct ieee80211vap *vap;
888 int bit;
889
890 IEEE80211_LOCK_ASSERT(ic);
891
892 bit = 0;
893 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
894 if (vap->iv_flags & flag) {
895 bit = 1;
896 break;
897 }
898 if (bit)
899 ic->ic_flags |= flag;
900 else
901 ic->ic_flags &= ~flag;
902 }
903
904 void
ieee80211_syncflag(struct ieee80211vap * vap,int flag)905 ieee80211_syncflag(struct ieee80211vap *vap, int flag)
906 {
907 struct ieee80211com *ic = vap->iv_ic;
908
909 IEEE80211_LOCK(ic);
910 if (flag < 0) {
911 flag = -flag;
912 vap->iv_flags &= ~flag;
913 } else
914 vap->iv_flags |= flag;
915 ieee80211_syncflag_locked(ic, flag);
916 IEEE80211_UNLOCK(ic);
917 }
918
919 /*
920 * Synchronize flags_ht bit state in the com structure
921 * according to the state of all vap's. This is used,
922 * for example, to handle state changes via ioctls.
923 */
924 static void
ieee80211_syncflag_ht_locked(struct ieee80211com * ic,int flag)925 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag)
926 {
927 struct ieee80211vap *vap;
928 int bit;
929
930 IEEE80211_LOCK_ASSERT(ic);
931
932 bit = 0;
933 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
934 if (vap->iv_flags_ht & flag) {
935 bit = 1;
936 break;
937 }
938 if (bit)
939 ic->ic_flags_ht |= flag;
940 else
941 ic->ic_flags_ht &= ~flag;
942 }
943
944 void
ieee80211_syncflag_ht(struct ieee80211vap * vap,int flag)945 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag)
946 {
947 struct ieee80211com *ic = vap->iv_ic;
948
949 IEEE80211_LOCK(ic);
950 if (flag < 0) {
951 flag = -flag;
952 vap->iv_flags_ht &= ~flag;
953 } else
954 vap->iv_flags_ht |= flag;
955 ieee80211_syncflag_ht_locked(ic, flag);
956 IEEE80211_UNLOCK(ic);
957 }
958
959 /*
960 * Synchronize flags_vht bit state in the com structure
961 * according to the state of all vap's. This is used,
962 * for example, to handle state changes via ioctls.
963 */
964 static void
ieee80211_syncflag_vht_locked(struct ieee80211com * ic,int flag)965 ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag)
966 {
967 struct ieee80211vap *vap;
968 int bit;
969
970 IEEE80211_LOCK_ASSERT(ic);
971
972 bit = 0;
973 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
974 if (vap->iv_vht_flags & flag) {
975 bit = 1;
976 break;
977 }
978 if (bit)
979 ic->ic_vht_flags |= flag;
980 else
981 ic->ic_vht_flags &= ~flag;
982 }
983
984 void
ieee80211_syncflag_vht(struct ieee80211vap * vap,int flag)985 ieee80211_syncflag_vht(struct ieee80211vap *vap, int flag)
986 {
987 struct ieee80211com *ic = vap->iv_ic;
988
989 IEEE80211_LOCK(ic);
990 if (flag < 0) {
991 flag = -flag;
992 vap->iv_vht_flags &= ~flag;
993 } else
994 vap->iv_vht_flags |= flag;
995 ieee80211_syncflag_vht_locked(ic, flag);
996 IEEE80211_UNLOCK(ic);
997 }
998
999 /*
1000 * Synchronize flags_ext bit state in the com structure
1001 * according to the state of all vap's. This is used,
1002 * for example, to handle state changes via ioctls.
1003 */
1004 static void
ieee80211_syncflag_ext_locked(struct ieee80211com * ic,int flag)1005 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
1006 {
1007 struct ieee80211vap *vap;
1008 int bit;
1009
1010 IEEE80211_LOCK_ASSERT(ic);
1011
1012 bit = 0;
1013 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1014 if (vap->iv_flags_ext & flag) {
1015 bit = 1;
1016 break;
1017 }
1018 if (bit)
1019 ic->ic_flags_ext |= flag;
1020 else
1021 ic->ic_flags_ext &= ~flag;
1022 }
1023
1024 void
ieee80211_syncflag_ext(struct ieee80211vap * vap,int flag)1025 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
1026 {
1027 struct ieee80211com *ic = vap->iv_ic;
1028
1029 IEEE80211_LOCK(ic);
1030 if (flag < 0) {
1031 flag = -flag;
1032 vap->iv_flags_ext &= ~flag;
1033 } else
1034 vap->iv_flags_ext |= flag;
1035 ieee80211_syncflag_ext_locked(ic, flag);
1036 IEEE80211_UNLOCK(ic);
1037 }
1038
1039 static __inline int
mapgsm(u_int freq,u_int flags)1040 mapgsm(u_int freq, u_int flags)
1041 {
1042 freq *= 10;
1043 if (flags & IEEE80211_CHAN_QUARTER)
1044 freq += 5;
1045 else if (flags & IEEE80211_CHAN_HALF)
1046 freq += 10;
1047 else
1048 freq += 20;
1049 /* NB: there is no 907/20 wide but leave room */
1050 return (freq - 906*10) / 5;
1051 }
1052
1053 static __inline int
mappsb(u_int freq,u_int flags)1054 mappsb(u_int freq, u_int flags)
1055 {
1056 return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
1057 }
1058
1059 /*
1060 * Convert MHz frequency to IEEE channel number.
1061 */
1062 int
ieee80211_mhz2ieee(u_int freq,u_int flags)1063 ieee80211_mhz2ieee(u_int freq, u_int flags)
1064 {
1065 #define IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
1066 if (flags & IEEE80211_CHAN_GSM)
1067 return mapgsm(freq, flags);
1068 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */
1069 if (freq == 2484)
1070 return 14;
1071 if (freq < 2484)
1072 return ((int) freq - 2407) / 5;
1073 else
1074 return 15 + ((freq - 2512) / 20);
1075 } else if (flags & IEEE80211_CHAN_5GHZ) { /* 5Ghz band */
1076 if (freq <= 5000) {
1077 /* XXX check regdomain? */
1078 if (IS_FREQ_IN_PSB(freq))
1079 return mappsb(freq, flags);
1080 return (freq - 4000) / 5;
1081 } else
1082 return (freq - 5000) / 5;
1083 } else { /* either, guess */
1084 if (freq == 2484)
1085 return 14;
1086 if (freq < 2484) {
1087 if (907 <= freq && freq <= 922)
1088 return mapgsm(freq, flags);
1089 return ((int) freq - 2407) / 5;
1090 }
1091 if (freq < 5000) {
1092 if (IS_FREQ_IN_PSB(freq))
1093 return mappsb(freq, flags);
1094 else if (freq > 4900)
1095 return (freq - 4000) / 5;
1096 else
1097 return 15 + ((freq - 2512) / 20);
1098 }
1099 return (freq - 5000) / 5;
1100 }
1101 #undef IS_FREQ_IN_PSB
1102 }
1103
1104 /*
1105 * Convert channel to IEEE channel number.
1106 */
1107 int
ieee80211_chan2ieee(struct ieee80211com * ic,const struct ieee80211_channel * c)1108 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
1109 {
1110 if (c == NULL) {
1111 ic_printf(ic, "invalid channel (NULL)\n");
1112 return 0; /* XXX */
1113 }
1114 return (c == IEEE80211_CHAN_ANYC ? IEEE80211_CHAN_ANY : c->ic_ieee);
1115 }
1116
1117 /*
1118 * Convert IEEE channel number to MHz frequency.
1119 */
1120 u_int
ieee80211_ieee2mhz(u_int chan,u_int flags)1121 ieee80211_ieee2mhz(u_int chan, u_int flags)
1122 {
1123 if (flags & IEEE80211_CHAN_GSM)
1124 return 907 + 5 * (chan / 10);
1125 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */
1126 if (chan == 14)
1127 return 2484;
1128 if (chan < 14)
1129 return 2407 + chan*5;
1130 else
1131 return 2512 + ((chan-15)*20);
1132 } else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
1133 if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
1134 chan -= 37;
1135 return 4940 + chan*5 + (chan % 5 ? 2 : 0);
1136 }
1137 return 5000 + (chan*5);
1138 } else { /* either, guess */
1139 /* XXX can't distinguish PSB+GSM channels */
1140 if (chan == 14)
1141 return 2484;
1142 if (chan < 14) /* 0-13 */
1143 return 2407 + chan*5;
1144 if (chan < 27) /* 15-26 */
1145 return 2512 + ((chan-15)*20);
1146 return 5000 + (chan*5);
1147 }
1148 }
1149
1150 static __inline void
set_extchan(struct ieee80211_channel * c)1151 set_extchan(struct ieee80211_channel *c)
1152 {
1153
1154 /*
1155 * IEEE Std 802.11-2012, page 1738, subclause 20.3.15.4:
1156 * "the secondary channel number shall be 'N + [1,-1] * 4'
1157 */
1158 if (c->ic_flags & IEEE80211_CHAN_HT40U)
1159 c->ic_extieee = c->ic_ieee + 4;
1160 else if (c->ic_flags & IEEE80211_CHAN_HT40D)
1161 c->ic_extieee = c->ic_ieee - 4;
1162 else
1163 c->ic_extieee = 0;
1164 }
1165
1166 /*
1167 * Populate the freq1/freq2 fields as appropriate for VHT channels.
1168 *
1169 * This for now uses a hard-coded list of 80MHz wide channels.
1170 *
1171 * For HT20/HT40, freq1 just is the centre frequency of the 40MHz
1172 * wide channel we've already decided upon.
1173 *
1174 * For VHT80 and VHT160, there are only a small number of fixed
1175 * 80/160MHz wide channels, so we just use those.
1176 *
1177 * This is all likely very very wrong - both the regulatory code
1178 * and this code needs to ensure that all four channels are
1179 * available and valid before the VHT80 (and eight for VHT160) channel
1180 * is created.
1181 */
1182
1183 struct vht_chan_range {
1184 uint16_t freq_start;
1185 uint16_t freq_end;
1186 };
1187
1188 struct vht_chan_range vht80_chan_ranges[] = {
1189 { 5170, 5250 },
1190 { 5250, 5330 },
1191 { 5490, 5570 },
1192 { 5570, 5650 },
1193 { 5650, 5730 },
1194 { 5735, 5815 },
1195 { 0, 0 }
1196 };
1197
1198 struct vht_chan_range vht160_chan_ranges[] = {
1199 { 5170, 5330 },
1200 { 5490, 5650 },
1201 { 0, 0 }
1202 };
1203
1204 static int
set_vht_extchan(struct ieee80211_channel * c)1205 set_vht_extchan(struct ieee80211_channel *c)
1206 {
1207 int i;
1208
1209 if (! IEEE80211_IS_CHAN_VHT(c))
1210 return (0);
1211
1212 if (IEEE80211_IS_CHAN_VHT80P80(c)) {
1213 printf("%s: TODO VHT80+80 channel (ieee=%d, flags=0x%08x)\n",
1214 __func__, c->ic_ieee, c->ic_flags);
1215 }
1216
1217 if (IEEE80211_IS_CHAN_VHT160(c)) {
1218 for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) {
1219 if (c->ic_freq >= vht160_chan_ranges[i].freq_start &&
1220 c->ic_freq < vht160_chan_ranges[i].freq_end) {
1221 int midpoint;
1222
1223 midpoint = vht160_chan_ranges[i].freq_start + 80;
1224 c->ic_vht_ch_freq1 =
1225 ieee80211_mhz2ieee(midpoint, c->ic_flags);
1226 c->ic_vht_ch_freq2 = 0;
1227 #if 0
1228 printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n",
1229 __func__, c->ic_ieee, c->ic_freq, midpoint,
1230 c->ic_vht_ch_freq1, c->ic_vht_ch_freq2);
1231 #endif
1232 return (1);
1233 }
1234 }
1235 return (0);
1236 }
1237
1238 if (IEEE80211_IS_CHAN_VHT80(c)) {
1239 for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
1240 if (c->ic_freq >= vht80_chan_ranges[i].freq_start &&
1241 c->ic_freq < vht80_chan_ranges[i].freq_end) {
1242 int midpoint;
1243
1244 midpoint = vht80_chan_ranges[i].freq_start + 40;
1245 c->ic_vht_ch_freq1 =
1246 ieee80211_mhz2ieee(midpoint, c->ic_flags);
1247 c->ic_vht_ch_freq2 = 0;
1248 #if 0
1249 printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n",
1250 __func__, c->ic_ieee, c->ic_freq, midpoint,
1251 c->ic_vht_ch_freq1, c->ic_vht_ch_freq2);
1252 #endif
1253 return (1);
1254 }
1255 }
1256 return (0);
1257 }
1258
1259 if (IEEE80211_IS_CHAN_VHT40(c)) {
1260 if (IEEE80211_IS_CHAN_HT40U(c))
1261 c->ic_vht_ch_freq1 = c->ic_ieee + 2;
1262 else if (IEEE80211_IS_CHAN_HT40D(c))
1263 c->ic_vht_ch_freq1 = c->ic_ieee - 2;
1264 else
1265 return (0);
1266 return (1);
1267 }
1268
1269 if (IEEE80211_IS_CHAN_VHT20(c)) {
1270 c->ic_vht_ch_freq1 = c->ic_ieee;
1271 return (1);
1272 }
1273
1274 printf("%s: unknown VHT channel type (ieee=%d, flags=0x%08x)\n",
1275 __func__, c->ic_ieee, c->ic_flags);
1276
1277 return (0);
1278 }
1279
1280 /*
1281 * Return whether the current channel could possibly be a part of
1282 * a VHT80/VHT160 channel.
1283 *
1284 * This doesn't check that the whole range is in the allowed list
1285 * according to regulatory.
1286 */
1287 static bool
is_vht160_valid_freq(uint16_t freq)1288 is_vht160_valid_freq(uint16_t freq)
1289 {
1290 int i;
1291
1292 for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) {
1293 if (freq >= vht160_chan_ranges[i].freq_start &&
1294 freq < vht160_chan_ranges[i].freq_end)
1295 return (true);
1296 }
1297 return (false);
1298 }
1299
1300 static int
is_vht80_valid_freq(uint16_t freq)1301 is_vht80_valid_freq(uint16_t freq)
1302 {
1303 int i;
1304 for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
1305 if (freq >= vht80_chan_ranges[i].freq_start &&
1306 freq < vht80_chan_ranges[i].freq_end)
1307 return (1);
1308 }
1309 return (0);
1310 }
1311
1312 static int
addchan(struct ieee80211_channel chans[],int maxchans,int * nchans,uint8_t ieee,uint16_t freq,int8_t maxregpower,uint32_t flags)1313 addchan(struct ieee80211_channel chans[], int maxchans, int *nchans,
1314 uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t flags)
1315 {
1316 struct ieee80211_channel *c;
1317
1318 if (*nchans >= maxchans)
1319 return (ENOBUFS);
1320
1321 #if 0
1322 printf("%s: %d of %d: ieee=%d, freq=%d, flags=0x%08x\n",
1323 __func__, *nchans, maxchans, ieee, freq, flags);
1324 #endif
1325
1326 c = &chans[(*nchans)++];
1327 c->ic_ieee = ieee;
1328 c->ic_freq = freq != 0 ? freq : ieee80211_ieee2mhz(ieee, flags);
1329 c->ic_maxregpower = maxregpower;
1330 c->ic_maxpower = 2 * maxregpower;
1331 c->ic_flags = flags;
1332 c->ic_vht_ch_freq1 = 0;
1333 c->ic_vht_ch_freq2 = 0;
1334 set_extchan(c);
1335 set_vht_extchan(c);
1336
1337 return (0);
1338 }
1339
1340 static int
copychan_prev(struct ieee80211_channel chans[],int maxchans,int * nchans,uint32_t flags)1341 copychan_prev(struct ieee80211_channel chans[], int maxchans, int *nchans,
1342 uint32_t flags)
1343 {
1344 struct ieee80211_channel *c;
1345
1346 KASSERT(*nchans > 0, ("channel list is empty\n"));
1347
1348 if (*nchans >= maxchans)
1349 return (ENOBUFS);
1350
1351 #if 0
1352 printf("%s: %d of %d: flags=0x%08x\n",
1353 __func__, *nchans, maxchans, flags);
1354 #endif
1355
1356 c = &chans[(*nchans)++];
1357 c[0] = c[-1];
1358 c->ic_flags = flags;
1359 c->ic_vht_ch_freq1 = 0;
1360 c->ic_vht_ch_freq2 = 0;
1361 set_extchan(c);
1362 set_vht_extchan(c);
1363
1364 return (0);
1365 }
1366
1367 /*
1368 * XXX VHT-2GHz
1369 */
1370 static void
getflags_2ghz(const uint8_t bands[],uint32_t flags[],int cbw_flags)1371 getflags_2ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags)
1372 {
1373 int nmodes;
1374
1375 nmodes = 0;
1376 if (isset(bands, IEEE80211_MODE_11B))
1377 flags[nmodes++] = IEEE80211_CHAN_B;
1378 if (isset(bands, IEEE80211_MODE_11G))
1379 flags[nmodes++] = IEEE80211_CHAN_G;
1380 if (isset(bands, IEEE80211_MODE_11NG))
1381 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT20;
1382 if (cbw_flags & NET80211_CBW_FLAG_HT40) {
1383 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U;
1384 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D;
1385 }
1386 flags[nmodes] = 0;
1387 }
1388
1389 static void
getflags_5ghz(const uint8_t bands[],uint32_t flags[],int cbw_flags)1390 getflags_5ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags)
1391 {
1392 int nmodes;
1393
1394 /*
1395 * The addchan_list() function seems to expect the flags array to
1396 * be in channel width order, so the VHT bits are interspersed
1397 * as appropriate to maintain said order.
1398 *
1399 * It also assumes HT40U is before HT40D.
1400 */
1401 nmodes = 0;
1402
1403 /* 20MHz */
1404 if (isset(bands, IEEE80211_MODE_11A))
1405 flags[nmodes++] = IEEE80211_CHAN_A;
1406 if (isset(bands, IEEE80211_MODE_11NA))
1407 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20;
1408 if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1409 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20 |
1410 IEEE80211_CHAN_VHT20;
1411 }
1412
1413 /* 40MHz */
1414 if (cbw_flags & NET80211_CBW_FLAG_HT40)
1415 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U;
1416 if ((cbw_flags & NET80211_CBW_FLAG_HT40) &&
1417 isset(bands, IEEE80211_MODE_VHT_5GHZ))
1418 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1419 IEEE80211_CHAN_VHT40U;
1420 if (cbw_flags & NET80211_CBW_FLAG_HT40)
1421 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D;
1422 if ((cbw_flags & NET80211_CBW_FLAG_HT40) &&
1423 isset(bands, IEEE80211_MODE_VHT_5GHZ))
1424 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1425 IEEE80211_CHAN_VHT40D;
1426
1427 /* 80MHz */
1428 if ((cbw_flags & NET80211_CBW_FLAG_VHT80) &&
1429 isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1430 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1431 IEEE80211_CHAN_VHT80;
1432 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1433 IEEE80211_CHAN_VHT80;
1434 }
1435
1436 /* VHT160 */
1437 if ((cbw_flags & NET80211_CBW_FLAG_VHT160) &&
1438 isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1439 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1440 IEEE80211_CHAN_VHT160;
1441 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1442 IEEE80211_CHAN_VHT160;
1443 }
1444
1445 /* VHT80+80 */
1446 if ((cbw_flags & NET80211_CBW_FLAG_VHT80P80) &&
1447 isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1448 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1449 IEEE80211_CHAN_VHT80P80;
1450 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1451 IEEE80211_CHAN_VHT80P80;
1452 }
1453
1454 flags[nmodes] = 0;
1455 }
1456
1457 static void
getflags(const uint8_t bands[],uint32_t flags[],int cbw_flags)1458 getflags(const uint8_t bands[], uint32_t flags[], int cbw_flags)
1459 {
1460
1461 flags[0] = 0;
1462 if (isset(bands, IEEE80211_MODE_11A) ||
1463 isset(bands, IEEE80211_MODE_11NA) ||
1464 isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1465 if (isset(bands, IEEE80211_MODE_11B) ||
1466 isset(bands, IEEE80211_MODE_11G) ||
1467 isset(bands, IEEE80211_MODE_11NG) ||
1468 isset(bands, IEEE80211_MODE_VHT_2GHZ))
1469 return;
1470
1471 getflags_5ghz(bands, flags, cbw_flags);
1472 } else
1473 getflags_2ghz(bands, flags, cbw_flags);
1474 }
1475
1476 /*
1477 * Add one 20 MHz channel into specified channel list.
1478 * You MUST NOT mix bands when calling this. It will not add 5ghz
1479 * channels if you have any B/G/N band bit set.
1480 * The _cbw() variant does also support HT40/VHT80/160/80+80.
1481 */
1482 int
ieee80211_add_channel_cbw(struct ieee80211_channel chans[],int maxchans,int * nchans,uint8_t ieee,uint16_t freq,int8_t maxregpower,uint32_t chan_flags,const uint8_t bands[],int cbw_flags)1483 ieee80211_add_channel_cbw(struct ieee80211_channel chans[], int maxchans,
1484 int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower,
1485 uint32_t chan_flags, const uint8_t bands[], int cbw_flags)
1486 {
1487 uint32_t flags[IEEE80211_MODE_MAX];
1488 int i, error;
1489
1490 getflags(bands, flags, cbw_flags);
1491 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1492
1493 error = addchan(chans, maxchans, nchans, ieee, freq, maxregpower,
1494 flags[0] | chan_flags);
1495 for (i = 1; flags[i] != 0 && error == 0; i++) {
1496 error = copychan_prev(chans, maxchans, nchans,
1497 flags[i] | chan_flags);
1498 }
1499
1500 return (error);
1501 }
1502
1503 int
ieee80211_add_channel(struct ieee80211_channel chans[],int maxchans,int * nchans,uint8_t ieee,uint16_t freq,int8_t maxregpower,uint32_t chan_flags,const uint8_t bands[])1504 ieee80211_add_channel(struct ieee80211_channel chans[], int maxchans,
1505 int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower,
1506 uint32_t chan_flags, const uint8_t bands[])
1507 {
1508
1509 return (ieee80211_add_channel_cbw(chans, maxchans, nchans, ieee, freq,
1510 maxregpower, chan_flags, bands, 0));
1511 }
1512
1513 static struct ieee80211_channel *
findchannel(struct ieee80211_channel chans[],int nchans,uint16_t freq,uint32_t flags)1514 findchannel(struct ieee80211_channel chans[], int nchans, uint16_t freq,
1515 uint32_t flags)
1516 {
1517 struct ieee80211_channel *c;
1518 int i;
1519
1520 flags &= IEEE80211_CHAN_ALLTURBO;
1521 /* brute force search */
1522 for (i = 0; i < nchans; i++) {
1523 c = &chans[i];
1524 if (c->ic_freq == freq &&
1525 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1526 return c;
1527 }
1528 return NULL;
1529 }
1530
1531 /*
1532 * Add 40 MHz channel pair into specified channel list.
1533 */
1534 /* XXX VHT */
1535 int
ieee80211_add_channel_ht40(struct ieee80211_channel chans[],int maxchans,int * nchans,uint8_t ieee,int8_t maxregpower,uint32_t flags)1536 ieee80211_add_channel_ht40(struct ieee80211_channel chans[], int maxchans,
1537 int *nchans, uint8_t ieee, int8_t maxregpower, uint32_t flags)
1538 {
1539 struct ieee80211_channel *cent, *extc;
1540 uint16_t freq;
1541 int error;
1542
1543 freq = ieee80211_ieee2mhz(ieee, flags);
1544
1545 /*
1546 * Each entry defines an HT40 channel pair; find the
1547 * center channel, then the extension channel above.
1548 */
1549 flags |= IEEE80211_CHAN_HT20;
1550 cent = findchannel(chans, *nchans, freq, flags);
1551 if (cent == NULL)
1552 return (EINVAL);
1553
1554 extc = findchannel(chans, *nchans, freq + 20, flags);
1555 if (extc == NULL)
1556 return (ENOENT);
1557
1558 flags &= ~IEEE80211_CHAN_HT;
1559 error = addchan(chans, maxchans, nchans, cent->ic_ieee, cent->ic_freq,
1560 maxregpower, flags | IEEE80211_CHAN_HT40U);
1561 if (error != 0)
1562 return (error);
1563
1564 error = addchan(chans, maxchans, nchans, extc->ic_ieee, extc->ic_freq,
1565 maxregpower, flags | IEEE80211_CHAN_HT40D);
1566
1567 return (error);
1568 }
1569
1570 /*
1571 * Fetch the center frequency for the primary channel.
1572 */
1573 uint32_t
ieee80211_get_channel_center_freq(const struct ieee80211_channel * c)1574 ieee80211_get_channel_center_freq(const struct ieee80211_channel *c)
1575 {
1576
1577 return (c->ic_freq);
1578 }
1579
1580 /*
1581 * Fetch the center frequency for the primary BAND channel.
1582 *
1583 * For 5, 10, 20MHz channels it'll be the normally configured channel
1584 * frequency.
1585 *
1586 * For 40MHz, 80MHz, 160MHz channels it will be the centre of the
1587 * wide channel, not the centre of the primary channel (that's ic_freq).
1588 *
1589 * For 80+80MHz channels this will be the centre of the primary
1590 * 80MHz channel; the secondary 80MHz channel will be center_freq2().
1591 */
1592 uint32_t
ieee80211_get_channel_center_freq1(const struct ieee80211_channel * c)1593 ieee80211_get_channel_center_freq1(const struct ieee80211_channel *c)
1594 {
1595
1596 /*
1597 * VHT - use the pre-calculated centre frequency
1598 * of the given channel.
1599 */
1600 if (IEEE80211_IS_CHAN_VHT(c))
1601 return (ieee80211_ieee2mhz(c->ic_vht_ch_freq1, c->ic_flags));
1602
1603 if (IEEE80211_IS_CHAN_HT40U(c)) {
1604 return (c->ic_freq + 10);
1605 }
1606 if (IEEE80211_IS_CHAN_HT40D(c)) {
1607 return (c->ic_freq - 10);
1608 }
1609
1610 return (c->ic_freq);
1611 }
1612
1613 /*
1614 * For now, no 80+80 support; it will likely always return 0.
1615 */
1616 uint32_t
ieee80211_get_channel_center_freq2(const struct ieee80211_channel * c)1617 ieee80211_get_channel_center_freq2(const struct ieee80211_channel *c)
1618 {
1619
1620 if (IEEE80211_IS_CHAN_VHT(c) && (c->ic_vht_ch_freq2 != 0))
1621 return (ieee80211_ieee2mhz(c->ic_vht_ch_freq2, c->ic_flags));
1622
1623 return (0);
1624 }
1625
1626 /*
1627 * Adds channels into specified channel list (ieee[] array must be sorted).
1628 * Channels are already sorted.
1629 */
1630 static int
add_chanlist(struct ieee80211_channel chans[],int maxchans,int * nchans,const uint8_t ieee[],int nieee,uint32_t flags[])1631 add_chanlist(struct ieee80211_channel chans[], int maxchans, int *nchans,
1632 const uint8_t ieee[], int nieee, uint32_t flags[])
1633 {
1634 uint16_t freq;
1635 int i, j, error;
1636 int is_vht;
1637
1638 for (i = 0; i < nieee; i++) {
1639 freq = ieee80211_ieee2mhz(ieee[i], flags[0]);
1640 for (j = 0; flags[j] != 0; j++) {
1641 /*
1642 * Notes:
1643 * + HT40 and VHT40 channels occur together, so
1644 * we need to be careful that we actually allow that.
1645 * + VHT80, VHT160 will coexist with HT40/VHT40, so
1646 * make sure it's not skipped because of the overlap
1647 * check used for (V)HT40.
1648 */
1649 is_vht = !! (flags[j] & IEEE80211_CHAN_VHT);
1650
1651 /* XXX TODO FIXME VHT80P80. */
1652
1653 /* Test for VHT160 analogue to the VHT80 below. */
1654 if (is_vht && flags[j] & IEEE80211_CHAN_VHT160)
1655 if (! is_vht160_valid_freq(freq))
1656 continue;
1657
1658 /*
1659 * Test for VHT80.
1660 * XXX This is all very broken right now.
1661 * What we /should/ do is:
1662 *
1663 * + check that the frequency is in the list of
1664 * allowed VHT80 ranges; and
1665 * + the other 3 channels in the list are actually
1666 * also available.
1667 */
1668 if (is_vht && flags[j] & IEEE80211_CHAN_VHT80)
1669 if (! is_vht80_valid_freq(freq))
1670 continue;
1671
1672 /*
1673 * Test for (V)HT40.
1674 *
1675 * This is also a fall through from VHT80; as we only
1676 * allow a VHT80 channel if the VHT40 combination is
1677 * also valid. If the VHT40 form is not valid then
1678 * we certainly can't do VHT80..
1679 */
1680 if (flags[j] & IEEE80211_CHAN_HT40D)
1681 /*
1682 * Can't have a "lower" channel if we are the
1683 * first channel.
1684 *
1685 * Can't have a "lower" channel if it's below/
1686 * within 20MHz of the first channel.
1687 *
1688 * Can't have a "lower" channel if the channel
1689 * below it is not 20MHz away.
1690 */
1691 if (i == 0 || ieee[i] < ieee[0] + 4 ||
1692 freq - 20 !=
1693 ieee80211_ieee2mhz(ieee[i] - 4, flags[j]))
1694 continue;
1695 if (flags[j] & IEEE80211_CHAN_HT40U)
1696 /*
1697 * Can't have an "upper" channel if we are
1698 * the last channel.
1699 *
1700 * Can't have an "upper" channel be above the
1701 * last channel in the list.
1702 *
1703 * Can't have an "upper" channel if the next
1704 * channel according to the math isn't 20MHz
1705 * away. (Likely for channel 13/14.)
1706 */
1707 if (i == nieee - 1 ||
1708 ieee[i] + 4 > ieee[nieee - 1] ||
1709 freq + 20 !=
1710 ieee80211_ieee2mhz(ieee[i] + 4, flags[j]))
1711 continue;
1712
1713 if (j == 0) {
1714 error = addchan(chans, maxchans, nchans,
1715 ieee[i], freq, 0, flags[j]);
1716 } else {
1717 error = copychan_prev(chans, maxchans, nchans,
1718 flags[j]);
1719 }
1720 if (error != 0)
1721 return (error);
1722 }
1723 }
1724
1725 return (0);
1726 }
1727
1728 int
ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[],int maxchans,int * nchans,const uint8_t ieee[],int nieee,const uint8_t bands[],int cbw_flags)1729 ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[], int maxchans,
1730 int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1731 int cbw_flags)
1732 {
1733 uint32_t flags[IEEE80211_MODE_MAX];
1734
1735 /* XXX no VHT for now */
1736 getflags_2ghz(bands, flags, cbw_flags);
1737 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1738
1739 return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1740 }
1741
1742 int
ieee80211_add_channels_default_2ghz(struct ieee80211_channel chans[],int maxchans,int * nchans,const uint8_t bands[],int cbw_flags)1743 ieee80211_add_channels_default_2ghz(struct ieee80211_channel chans[],
1744 int maxchans, int *nchans, const uint8_t bands[], int cbw_flags)
1745 {
1746 const uint8_t default_chan_list[] =
1747 { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 };
1748
1749 return (ieee80211_add_channel_list_2ghz(chans, maxchans, nchans,
1750 default_chan_list, nitems(default_chan_list), bands, cbw_flags));
1751 }
1752
1753 int
ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[],int maxchans,int * nchans,const uint8_t ieee[],int nieee,const uint8_t bands[],int cbw_flags)1754 ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[], int maxchans,
1755 int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1756 int cbw_flags)
1757 {
1758 /*
1759 * XXX-BZ with HT and VHT there is no 1:1 mapping anymore. Review all
1760 * uses of IEEE80211_MODE_MAX and add a new #define name for array size.
1761 */
1762 uint32_t flags[2 * IEEE80211_MODE_MAX];
1763
1764 getflags_5ghz(bands, flags, cbw_flags);
1765 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1766
1767 return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1768 }
1769
1770 /*
1771 * Locate a channel given a frequency+flags. We cache
1772 * the previous lookup to optimize switching between two
1773 * channels--as happens with dynamic turbo.
1774 */
1775 struct ieee80211_channel *
ieee80211_find_channel(struct ieee80211com * ic,int freq,int flags)1776 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
1777 {
1778 struct ieee80211_channel *c;
1779
1780 flags &= IEEE80211_CHAN_ALLTURBO;
1781 c = ic->ic_prevchan;
1782 if (c != NULL && c->ic_freq == freq &&
1783 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1784 return c;
1785 /* brute force search */
1786 return (findchannel(ic->ic_channels, ic->ic_nchans, freq, flags));
1787 }
1788
1789 /*
1790 * Locate a channel given a channel number+flags. We cache
1791 * the previous lookup to optimize switching between two
1792 * channels--as happens with dynamic turbo.
1793 */
1794 struct ieee80211_channel *
ieee80211_find_channel_byieee(struct ieee80211com * ic,int ieee,int flags)1795 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
1796 {
1797 struct ieee80211_channel *c;
1798 int i;
1799
1800 flags &= IEEE80211_CHAN_ALLTURBO;
1801 c = ic->ic_prevchan;
1802 if (c != NULL && c->ic_ieee == ieee &&
1803 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1804 return c;
1805 /* brute force search */
1806 for (i = 0; i < ic->ic_nchans; i++) {
1807 c = &ic->ic_channels[i];
1808 if (c->ic_ieee == ieee &&
1809 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1810 return c;
1811 }
1812 return NULL;
1813 }
1814
1815 /*
1816 * Lookup a channel suitable for the given rx status.
1817 *
1818 * This is used to find a channel for a frame (eg beacon, probe
1819 * response) based purely on the received PHY information.
1820 *
1821 * For now it tries to do it based on R_FREQ / R_IEEE.
1822 * This is enough for 11bg and 11a (and thus 11ng/11na)
1823 * but it will not be enough for GSM, PSB channels and the
1824 * like. It also doesn't know about legacy-turbog and
1825 * legacy-turbo modes, which some offload NICs actually
1826 * support in weird ways.
1827 *
1828 * Takes the ic and rxstatus; returns the channel or NULL
1829 * if not found.
1830 *
1831 * XXX TODO: Add support for that when the need arises.
1832 */
1833 struct ieee80211_channel *
ieee80211_lookup_channel_rxstatus(struct ieee80211vap * vap,const struct ieee80211_rx_stats * rxs)1834 ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap,
1835 const struct ieee80211_rx_stats *rxs)
1836 {
1837 struct ieee80211com *ic = vap->iv_ic;
1838 uint32_t flags;
1839 struct ieee80211_channel *c;
1840
1841 if (rxs == NULL)
1842 return (NULL);
1843
1844 /*
1845 * Strictly speaking we only use freq for now,
1846 * however later on we may wish to just store
1847 * the ieee for verification.
1848 */
1849 if ((rxs->r_flags & IEEE80211_R_FREQ) == 0)
1850 return (NULL);
1851 if ((rxs->r_flags & IEEE80211_R_IEEE) == 0)
1852 return (NULL);
1853 if ((rxs->r_flags & IEEE80211_R_BAND) == 0)
1854 return (NULL);
1855
1856 /*
1857 * If the rx status contains a valid ieee/freq, then
1858 * ensure we populate the correct channel information
1859 * in rxchan before passing it up to the scan infrastructure.
1860 * Offload NICs will pass up beacons from all channels
1861 * during background scans.
1862 */
1863
1864 /* Determine a band */
1865 switch (rxs->c_band) {
1866 case IEEE80211_CHAN_2GHZ:
1867 flags = IEEE80211_CHAN_G;
1868 break;
1869 case IEEE80211_CHAN_5GHZ:
1870 flags = IEEE80211_CHAN_A;
1871 break;
1872 default:
1873 if (rxs->c_freq < 3000) {
1874 flags = IEEE80211_CHAN_G;
1875 } else {
1876 flags = IEEE80211_CHAN_A;
1877 }
1878 break;
1879 }
1880
1881 /* Channel lookup */
1882 c = ieee80211_find_channel(ic, rxs->c_freq, flags);
1883
1884 IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT,
1885 "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n",
1886 __func__, (int) rxs->c_freq, (int) rxs->c_ieee, flags, c);
1887
1888 return (c);
1889 }
1890
1891 static void
addmedia(struct ifmedia * media,int caps,int addsta,int mode,int mword)1892 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
1893 {
1894 #define ADD(_ic, _s, _o) \
1895 ifmedia_add(media, \
1896 IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
1897 static const u_int mopts[IEEE80211_MODE_MAX] = {
1898 [IEEE80211_MODE_AUTO] = IFM_AUTO,
1899 [IEEE80211_MODE_11A] = IFM_IEEE80211_11A,
1900 [IEEE80211_MODE_11B] = IFM_IEEE80211_11B,
1901 [IEEE80211_MODE_11G] = IFM_IEEE80211_11G,
1902 [IEEE80211_MODE_FH] = IFM_IEEE80211_FH,
1903 [IEEE80211_MODE_TURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1904 [IEEE80211_MODE_TURBO_G] = IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
1905 [IEEE80211_MODE_STURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1906 [IEEE80211_MODE_HALF] = IFM_IEEE80211_11A, /* XXX */
1907 [IEEE80211_MODE_QUARTER] = IFM_IEEE80211_11A, /* XXX */
1908 [IEEE80211_MODE_11NA] = IFM_IEEE80211_11NA,
1909 [IEEE80211_MODE_11NG] = IFM_IEEE80211_11NG,
1910 [IEEE80211_MODE_VHT_2GHZ] = IFM_IEEE80211_VHT2G,
1911 [IEEE80211_MODE_VHT_5GHZ] = IFM_IEEE80211_VHT5G,
1912 };
1913 u_int mopt;
1914
1915 mopt = mopts[mode];
1916 if (addsta)
1917 ADD(ic, mword, mopt); /* STA mode has no cap */
1918 if (caps & IEEE80211_C_IBSS)
1919 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
1920 if (caps & IEEE80211_C_HOSTAP)
1921 ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
1922 if (caps & IEEE80211_C_AHDEMO)
1923 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
1924 if (caps & IEEE80211_C_MONITOR)
1925 ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
1926 if (caps & IEEE80211_C_WDS)
1927 ADD(media, mword, mopt | IFM_IEEE80211_WDS);
1928 if (caps & IEEE80211_C_MBSS)
1929 ADD(media, mword, mopt | IFM_IEEE80211_MBSS);
1930 #undef ADD
1931 }
1932
1933 /*
1934 * Setup the media data structures according to the channel and
1935 * rate tables.
1936 */
1937 static int
ieee80211_media_setup(struct ieee80211com * ic,struct ifmedia * media,int caps,int addsta,ifm_change_cb_t media_change,ifm_stat_cb_t media_stat)1938 ieee80211_media_setup(struct ieee80211com *ic,
1939 struct ifmedia *media, int caps, int addsta,
1940 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
1941 {
1942 int i, j, rate, maxrate, mword, r;
1943 enum ieee80211_phymode mode;
1944 const struct ieee80211_rateset *rs;
1945 struct ieee80211_rateset allrates;
1946
1947 /*
1948 * Fill in media characteristics.
1949 */
1950 ifmedia_init(media, 0, media_change, media_stat);
1951 maxrate = 0;
1952 /*
1953 * Add media for legacy operating modes.
1954 */
1955 memset(&allrates, 0, sizeof(allrates));
1956 for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
1957 if (isclr(ic->ic_modecaps, mode))
1958 continue;
1959 addmedia(media, caps, addsta, mode, IFM_AUTO);
1960 if (mode == IEEE80211_MODE_AUTO)
1961 continue;
1962 rs = &ic->ic_sup_rates[mode];
1963 for (i = 0; i < rs->rs_nrates; i++) {
1964 rate = rs->rs_rates[i];
1965 mword = ieee80211_rate2media(ic, rate, mode);
1966 if (mword == 0)
1967 continue;
1968 addmedia(media, caps, addsta, mode, mword);
1969 /*
1970 * Add legacy rate to the collection of all rates.
1971 */
1972 r = rate & IEEE80211_RATE_VAL;
1973 for (j = 0; j < allrates.rs_nrates; j++)
1974 if (allrates.rs_rates[j] == r)
1975 break;
1976 if (j == allrates.rs_nrates) {
1977 /* unique, add to the set */
1978 allrates.rs_rates[j] = r;
1979 allrates.rs_nrates++;
1980 }
1981 rate = (rate & IEEE80211_RATE_VAL) / 2;
1982 if (rate > maxrate)
1983 maxrate = rate;
1984 }
1985 }
1986 for (i = 0; i < allrates.rs_nrates; i++) {
1987 mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
1988 IEEE80211_MODE_AUTO);
1989 if (mword == 0)
1990 continue;
1991 /* NB: remove media options from mword */
1992 addmedia(media, caps, addsta,
1993 IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
1994 }
1995 /*
1996 * Add HT/11n media. Note that we do not have enough
1997 * bits in the media subtype to express the MCS so we
1998 * use a "placeholder" media subtype and any fixed MCS
1999 * must be specified with a different mechanism.
2000 */
2001 for (; mode <= IEEE80211_MODE_11NG; mode++) {
2002 if (isclr(ic->ic_modecaps, mode))
2003 continue;
2004 addmedia(media, caps, addsta, mode, IFM_AUTO);
2005 addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
2006 }
2007 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
2008 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
2009 addmedia(media, caps, addsta,
2010 IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
2011 i = ic->ic_txstream * 8 - 1;
2012 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
2013 (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40))
2014 rate = ieee80211_htrates[i].ht40_rate_400ns;
2015 else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40))
2016 rate = ieee80211_htrates[i].ht40_rate_800ns;
2017 else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20))
2018 rate = ieee80211_htrates[i].ht20_rate_400ns;
2019 else
2020 rate = ieee80211_htrates[i].ht20_rate_800ns;
2021 if (rate > maxrate)
2022 maxrate = rate;
2023 }
2024
2025 /*
2026 * Add VHT media.
2027 * XXX-BZ skip "VHT_2GHZ" for now.
2028 */
2029 for (mode = IEEE80211_MODE_VHT_5GHZ; mode <= IEEE80211_MODE_VHT_5GHZ;
2030 mode++) {
2031 if (isclr(ic->ic_modecaps, mode))
2032 continue;
2033 addmedia(media, caps, addsta, mode, IFM_AUTO);
2034 addmedia(media, caps, addsta, mode, IFM_IEEE80211_VHT);
2035 }
2036 if (isset(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ)) {
2037 addmedia(media, caps, addsta,
2038 IEEE80211_MODE_AUTO, IFM_IEEE80211_VHT);
2039
2040 /* XXX TODO: VHT maxrate */
2041 }
2042
2043 return maxrate;
2044 }
2045
2046 /* XXX inline or eliminate? */
2047 const struct ieee80211_rateset *
ieee80211_get_suprates(struct ieee80211com * ic,const struct ieee80211_channel * c)2048 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
2049 {
2050 /* XXX does this work for 11ng basic rates? */
2051 return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
2052 }
2053
2054 /* XXX inline or eliminate? */
2055 const struct ieee80211_htrateset *
ieee80211_get_suphtrates(struct ieee80211com * ic,const struct ieee80211_channel * c)2056 ieee80211_get_suphtrates(struct ieee80211com *ic,
2057 const struct ieee80211_channel *c)
2058 {
2059 return &ic->ic_sup_htrates;
2060 }
2061
2062 void
ieee80211_announce(struct ieee80211com * ic)2063 ieee80211_announce(struct ieee80211com *ic)
2064 {
2065 int i, rate, mword;
2066 enum ieee80211_phymode mode;
2067 const struct ieee80211_rateset *rs;
2068
2069 /* NB: skip AUTO since it has no rates */
2070 for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
2071 if (isclr(ic->ic_modecaps, mode))
2072 continue;
2073 ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]);
2074 rs = &ic->ic_sup_rates[mode];
2075 for (i = 0; i < rs->rs_nrates; i++) {
2076 mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode);
2077 if (mword == 0)
2078 continue;
2079 rate = ieee80211_media2rate(mword);
2080 printf("%s%d%sMbps", (i != 0 ? " " : ""),
2081 rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
2082 }
2083 printf("\n");
2084 }
2085 ieee80211_ht_announce(ic);
2086 ieee80211_vht_announce(ic);
2087 }
2088
2089 void
ieee80211_announce_channels(struct ieee80211com * ic)2090 ieee80211_announce_channels(struct ieee80211com *ic)
2091 {
2092 const struct ieee80211_channel *c;
2093 char type;
2094 int i, cw;
2095
2096 printf("Chan Freq CW RegPwr MinPwr MaxPwr\n");
2097 for (i = 0; i < ic->ic_nchans; i++) {
2098 c = &ic->ic_channels[i];
2099 if (IEEE80211_IS_CHAN_ST(c))
2100 type = 'S';
2101 else if (IEEE80211_IS_CHAN_108A(c))
2102 type = 'T';
2103 else if (IEEE80211_IS_CHAN_108G(c))
2104 type = 'G';
2105 else if (IEEE80211_IS_CHAN_HT(c))
2106 type = 'n';
2107 else if (IEEE80211_IS_CHAN_A(c))
2108 type = 'a';
2109 else if (IEEE80211_IS_CHAN_ANYG(c))
2110 type = 'g';
2111 else if (IEEE80211_IS_CHAN_B(c))
2112 type = 'b';
2113 else
2114 type = 'f';
2115 if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
2116 cw = 40;
2117 else if (IEEE80211_IS_CHAN_HALF(c))
2118 cw = 10;
2119 else if (IEEE80211_IS_CHAN_QUARTER(c))
2120 cw = 5;
2121 else
2122 cw = 20;
2123 printf("%4d %4d%c %2d%c %6d %4d.%d %4d.%d\n"
2124 , c->ic_ieee, c->ic_freq, type
2125 , cw
2126 , IEEE80211_IS_CHAN_HT40U(c) ? '+' :
2127 IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
2128 , c->ic_maxregpower
2129 , c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
2130 , c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
2131 );
2132 }
2133 }
2134
2135 static int
media2mode(const struct ifmedia_entry * ime,uint32_t flags,uint16_t * mode)2136 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
2137 {
2138 switch (IFM_MODE(ime->ifm_media)) {
2139 case IFM_IEEE80211_11A:
2140 *mode = IEEE80211_MODE_11A;
2141 break;
2142 case IFM_IEEE80211_11B:
2143 *mode = IEEE80211_MODE_11B;
2144 break;
2145 case IFM_IEEE80211_11G:
2146 *mode = IEEE80211_MODE_11G;
2147 break;
2148 case IFM_IEEE80211_FH:
2149 *mode = IEEE80211_MODE_FH;
2150 break;
2151 case IFM_IEEE80211_11NA:
2152 *mode = IEEE80211_MODE_11NA;
2153 break;
2154 case IFM_IEEE80211_11NG:
2155 *mode = IEEE80211_MODE_11NG;
2156 break;
2157 case IFM_IEEE80211_VHT2G:
2158 *mode = IEEE80211_MODE_VHT_2GHZ;
2159 break;
2160 case IFM_IEEE80211_VHT5G:
2161 *mode = IEEE80211_MODE_VHT_5GHZ;
2162 break;
2163 case IFM_AUTO:
2164 *mode = IEEE80211_MODE_AUTO;
2165 break;
2166 default:
2167 return 0;
2168 }
2169 /*
2170 * Turbo mode is an ``option''.
2171 * XXX does not apply to AUTO
2172 */
2173 if (ime->ifm_media & IFM_IEEE80211_TURBO) {
2174 if (*mode == IEEE80211_MODE_11A) {
2175 if (flags & IEEE80211_F_TURBOP)
2176 *mode = IEEE80211_MODE_TURBO_A;
2177 else
2178 *mode = IEEE80211_MODE_STURBO_A;
2179 } else if (*mode == IEEE80211_MODE_11G)
2180 *mode = IEEE80211_MODE_TURBO_G;
2181 else
2182 return 0;
2183 }
2184 /* XXX HT40 +/- */
2185 return 1;
2186 }
2187
2188 /*
2189 * Handle a media change request on the vap interface.
2190 */
2191 int
ieee80211_media_change(struct ifnet * ifp)2192 ieee80211_media_change(struct ifnet *ifp)
2193 {
2194 struct ieee80211vap *vap = ifp->if_softc;
2195 struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
2196 uint16_t newmode;
2197
2198 if (!media2mode(ime, vap->iv_flags, &newmode))
2199 return EINVAL;
2200 if (vap->iv_des_mode != newmode) {
2201 vap->iv_des_mode = newmode;
2202 /* XXX kick state machine if up+running */
2203 }
2204 return 0;
2205 }
2206
2207 /*
2208 * Common code to calculate the media status word
2209 * from the operating mode and channel state.
2210 */
2211 static int
media_status(enum ieee80211_opmode opmode,const struct ieee80211_channel * chan)2212 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
2213 {
2214 int status;
2215
2216 status = IFM_IEEE80211;
2217 switch (opmode) {
2218 case IEEE80211_M_STA:
2219 break;
2220 case IEEE80211_M_IBSS:
2221 status |= IFM_IEEE80211_ADHOC;
2222 break;
2223 case IEEE80211_M_HOSTAP:
2224 status |= IFM_IEEE80211_HOSTAP;
2225 break;
2226 case IEEE80211_M_MONITOR:
2227 status |= IFM_IEEE80211_MONITOR;
2228 break;
2229 case IEEE80211_M_AHDEMO:
2230 status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
2231 break;
2232 case IEEE80211_M_WDS:
2233 status |= IFM_IEEE80211_WDS;
2234 break;
2235 case IEEE80211_M_MBSS:
2236 status |= IFM_IEEE80211_MBSS;
2237 break;
2238 }
2239 if (IEEE80211_IS_CHAN_VHT_5GHZ(chan)) {
2240 status |= IFM_IEEE80211_VHT5G;
2241 } else if (IEEE80211_IS_CHAN_VHT_2GHZ(chan)) {
2242 status |= IFM_IEEE80211_VHT2G;
2243 } else if (IEEE80211_IS_CHAN_HTA(chan)) {
2244 status |= IFM_IEEE80211_11NA;
2245 } else if (IEEE80211_IS_CHAN_HTG(chan)) {
2246 status |= IFM_IEEE80211_11NG;
2247 } else if (IEEE80211_IS_CHAN_A(chan)) {
2248 status |= IFM_IEEE80211_11A;
2249 } else if (IEEE80211_IS_CHAN_B(chan)) {
2250 status |= IFM_IEEE80211_11B;
2251 } else if (IEEE80211_IS_CHAN_ANYG(chan)) {
2252 status |= IFM_IEEE80211_11G;
2253 } else if (IEEE80211_IS_CHAN_FHSS(chan)) {
2254 status |= IFM_IEEE80211_FH;
2255 }
2256 /* XXX else complain? */
2257
2258 if (IEEE80211_IS_CHAN_TURBO(chan))
2259 status |= IFM_IEEE80211_TURBO;
2260 #if 0
2261 if (IEEE80211_IS_CHAN_HT20(chan))
2262 status |= IFM_IEEE80211_HT20;
2263 if (IEEE80211_IS_CHAN_HT40(chan))
2264 status |= IFM_IEEE80211_HT40;
2265 #endif
2266 return status;
2267 }
2268
2269 void
ieee80211_media_status(struct ifnet * ifp,struct ifmediareq * imr)2270 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
2271 {
2272 struct ieee80211vap *vap = ifp->if_softc;
2273 struct ieee80211com *ic = vap->iv_ic;
2274 enum ieee80211_phymode mode;
2275
2276 imr->ifm_status = IFM_AVALID;
2277 /*
2278 * NB: use the current channel's mode to lock down a xmit
2279 * rate only when running; otherwise we may have a mismatch
2280 * in which case the rate will not be convertible.
2281 */
2282 if (vap->iv_state == IEEE80211_S_RUN ||
2283 vap->iv_state == IEEE80211_S_SLEEP) {
2284 imr->ifm_status |= IFM_ACTIVE;
2285 mode = ieee80211_chan2mode(ic->ic_curchan);
2286 } else
2287 mode = IEEE80211_MODE_AUTO;
2288 imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
2289 /*
2290 * Calculate a current rate if possible.
2291 */
2292 if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
2293 /*
2294 * A fixed rate is set, report that.
2295 */
2296 imr->ifm_active |= ieee80211_rate2media(ic,
2297 vap->iv_txparms[mode].ucastrate, mode);
2298 } else if (vap->iv_opmode == IEEE80211_M_STA) {
2299 /*
2300 * In station mode report the current transmit rate.
2301 */
2302 imr->ifm_active |= ieee80211_rate2media(ic,
2303 vap->iv_bss->ni_txrate, mode);
2304 } else
2305 imr->ifm_active |= IFM_AUTO;
2306 if (imr->ifm_status & IFM_ACTIVE)
2307 imr->ifm_current = imr->ifm_active;
2308 }
2309
2310 /*
2311 * Set the current phy mode and recalculate the active channel
2312 * set based on the available channels for this mode. Also
2313 * select a new default/current channel if the current one is
2314 * inappropriate for this mode.
2315 */
2316 int
ieee80211_setmode(struct ieee80211com * ic,enum ieee80211_phymode mode)2317 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
2318 {
2319 /*
2320 * Adjust basic rates in 11b/11g supported rate set.
2321 * Note that if operating on a hal/quarter rate channel
2322 * this is a noop as those rates sets are different
2323 * and used instead.
2324 */
2325 if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
2326 ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
2327
2328 ic->ic_curmode = mode;
2329 ieee80211_reset_erp(ic); /* reset global ERP state */
2330
2331 return 0;
2332 }
2333
2334 /*
2335 * Return the phy mode for with the specified channel.
2336 */
2337 enum ieee80211_phymode
ieee80211_chan2mode(const struct ieee80211_channel * chan)2338 ieee80211_chan2mode(const struct ieee80211_channel *chan)
2339 {
2340
2341 if (IEEE80211_IS_CHAN_VHT_2GHZ(chan))
2342 return IEEE80211_MODE_VHT_2GHZ;
2343 else if (IEEE80211_IS_CHAN_VHT_5GHZ(chan))
2344 return IEEE80211_MODE_VHT_5GHZ;
2345 else if (IEEE80211_IS_CHAN_HTA(chan))
2346 return IEEE80211_MODE_11NA;
2347 else if (IEEE80211_IS_CHAN_HTG(chan))
2348 return IEEE80211_MODE_11NG;
2349 else if (IEEE80211_IS_CHAN_108G(chan))
2350 return IEEE80211_MODE_TURBO_G;
2351 else if (IEEE80211_IS_CHAN_ST(chan))
2352 return IEEE80211_MODE_STURBO_A;
2353 else if (IEEE80211_IS_CHAN_TURBO(chan))
2354 return IEEE80211_MODE_TURBO_A;
2355 else if (IEEE80211_IS_CHAN_HALF(chan))
2356 return IEEE80211_MODE_HALF;
2357 else if (IEEE80211_IS_CHAN_QUARTER(chan))
2358 return IEEE80211_MODE_QUARTER;
2359 else if (IEEE80211_IS_CHAN_A(chan))
2360 return IEEE80211_MODE_11A;
2361 else if (IEEE80211_IS_CHAN_ANYG(chan))
2362 return IEEE80211_MODE_11G;
2363 else if (IEEE80211_IS_CHAN_B(chan))
2364 return IEEE80211_MODE_11B;
2365 else if (IEEE80211_IS_CHAN_FHSS(chan))
2366 return IEEE80211_MODE_FH;
2367
2368 /* NB: should not get here */
2369 printf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
2370 __func__, chan->ic_freq, chan->ic_flags);
2371 return IEEE80211_MODE_11B;
2372 }
2373
2374 struct ratemedia {
2375 u_int match; /* rate + mode */
2376 u_int media; /* if_media rate */
2377 };
2378
2379 static int
findmedia(const struct ratemedia rates[],int n,u_int match)2380 findmedia(const struct ratemedia rates[], int n, u_int match)
2381 {
2382 int i;
2383
2384 for (i = 0; i < n; i++)
2385 if (rates[i].match == match)
2386 return rates[i].media;
2387 return IFM_AUTO;
2388 }
2389
2390 /*
2391 * Convert IEEE80211 rate value to ifmedia subtype.
2392 * Rate is either a legacy rate in units of 0.5Mbps
2393 * or an MCS index.
2394 */
2395 int
ieee80211_rate2media(struct ieee80211com * ic,int rate,enum ieee80211_phymode mode)2396 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
2397 {
2398 static const struct ratemedia rates[] = {
2399 { 2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
2400 { 4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
2401 { 2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
2402 { 4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
2403 { 11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
2404 { 22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
2405 { 44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
2406 { 12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
2407 { 18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
2408 { 24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
2409 { 36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
2410 { 48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
2411 { 72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
2412 { 96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
2413 { 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
2414 { 2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
2415 { 4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
2416 { 11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
2417 { 22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
2418 { 12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
2419 { 18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
2420 { 24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
2421 { 36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
2422 { 48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
2423 { 72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
2424 { 96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
2425 { 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
2426 { 6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
2427 { 9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
2428 { 54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
2429 /* NB: OFDM72 doesn't really exist so we don't handle it */
2430 };
2431 static const struct ratemedia htrates[] = {
2432 { 0, IFM_IEEE80211_MCS },
2433 { 1, IFM_IEEE80211_MCS },
2434 { 2, IFM_IEEE80211_MCS },
2435 { 3, IFM_IEEE80211_MCS },
2436 { 4, IFM_IEEE80211_MCS },
2437 { 5, IFM_IEEE80211_MCS },
2438 { 6, IFM_IEEE80211_MCS },
2439 { 7, IFM_IEEE80211_MCS },
2440 { 8, IFM_IEEE80211_MCS },
2441 { 9, IFM_IEEE80211_MCS },
2442 { 10, IFM_IEEE80211_MCS },
2443 { 11, IFM_IEEE80211_MCS },
2444 { 12, IFM_IEEE80211_MCS },
2445 { 13, IFM_IEEE80211_MCS },
2446 { 14, IFM_IEEE80211_MCS },
2447 { 15, IFM_IEEE80211_MCS },
2448 { 16, IFM_IEEE80211_MCS },
2449 { 17, IFM_IEEE80211_MCS },
2450 { 18, IFM_IEEE80211_MCS },
2451 { 19, IFM_IEEE80211_MCS },
2452 { 20, IFM_IEEE80211_MCS },
2453 { 21, IFM_IEEE80211_MCS },
2454 { 22, IFM_IEEE80211_MCS },
2455 { 23, IFM_IEEE80211_MCS },
2456 { 24, IFM_IEEE80211_MCS },
2457 { 25, IFM_IEEE80211_MCS },
2458 { 26, IFM_IEEE80211_MCS },
2459 { 27, IFM_IEEE80211_MCS },
2460 { 28, IFM_IEEE80211_MCS },
2461 { 29, IFM_IEEE80211_MCS },
2462 { 30, IFM_IEEE80211_MCS },
2463 { 31, IFM_IEEE80211_MCS },
2464 { 32, IFM_IEEE80211_MCS },
2465 { 33, IFM_IEEE80211_MCS },
2466 { 34, IFM_IEEE80211_MCS },
2467 { 35, IFM_IEEE80211_MCS },
2468 { 36, IFM_IEEE80211_MCS },
2469 { 37, IFM_IEEE80211_MCS },
2470 { 38, IFM_IEEE80211_MCS },
2471 { 39, IFM_IEEE80211_MCS },
2472 { 40, IFM_IEEE80211_MCS },
2473 { 41, IFM_IEEE80211_MCS },
2474 { 42, IFM_IEEE80211_MCS },
2475 { 43, IFM_IEEE80211_MCS },
2476 { 44, IFM_IEEE80211_MCS },
2477 { 45, IFM_IEEE80211_MCS },
2478 { 46, IFM_IEEE80211_MCS },
2479 { 47, IFM_IEEE80211_MCS },
2480 { 48, IFM_IEEE80211_MCS },
2481 { 49, IFM_IEEE80211_MCS },
2482 { 50, IFM_IEEE80211_MCS },
2483 { 51, IFM_IEEE80211_MCS },
2484 { 52, IFM_IEEE80211_MCS },
2485 { 53, IFM_IEEE80211_MCS },
2486 { 54, IFM_IEEE80211_MCS },
2487 { 55, IFM_IEEE80211_MCS },
2488 { 56, IFM_IEEE80211_MCS },
2489 { 57, IFM_IEEE80211_MCS },
2490 { 58, IFM_IEEE80211_MCS },
2491 { 59, IFM_IEEE80211_MCS },
2492 { 60, IFM_IEEE80211_MCS },
2493 { 61, IFM_IEEE80211_MCS },
2494 { 62, IFM_IEEE80211_MCS },
2495 { 63, IFM_IEEE80211_MCS },
2496 { 64, IFM_IEEE80211_MCS },
2497 { 65, IFM_IEEE80211_MCS },
2498 { 66, IFM_IEEE80211_MCS },
2499 { 67, IFM_IEEE80211_MCS },
2500 { 68, IFM_IEEE80211_MCS },
2501 { 69, IFM_IEEE80211_MCS },
2502 { 70, IFM_IEEE80211_MCS },
2503 { 71, IFM_IEEE80211_MCS },
2504 { 72, IFM_IEEE80211_MCS },
2505 { 73, IFM_IEEE80211_MCS },
2506 { 74, IFM_IEEE80211_MCS },
2507 { 75, IFM_IEEE80211_MCS },
2508 { 76, IFM_IEEE80211_MCS },
2509 };
2510 static const struct ratemedia vhtrates[] = {
2511 { 0, IFM_IEEE80211_VHT },
2512 { 1, IFM_IEEE80211_VHT },
2513 { 2, IFM_IEEE80211_VHT },
2514 { 3, IFM_IEEE80211_VHT },
2515 { 4, IFM_IEEE80211_VHT },
2516 { 5, IFM_IEEE80211_VHT },
2517 { 6, IFM_IEEE80211_VHT },
2518 { 7, IFM_IEEE80211_VHT },
2519 { 8, IFM_IEEE80211_VHT }, /* Optional. */
2520 { 9, IFM_IEEE80211_VHT }, /* Optional. */
2521 #if 0
2522 /* Some QCA and BRCM seem to support this; offspec. */
2523 { 10, IFM_IEEE80211_VHT },
2524 { 11, IFM_IEEE80211_VHT },
2525 #endif
2526 };
2527 int m;
2528
2529 /*
2530 * Check 11ac/11n rates first for match as an MCS.
2531 */
2532 if (mode == IEEE80211_MODE_VHT_5GHZ) {
2533 if (rate & IFM_IEEE80211_VHT) {
2534 rate &= ~IFM_IEEE80211_VHT;
2535 m = findmedia(vhtrates, nitems(vhtrates), rate);
2536 if (m != IFM_AUTO)
2537 return (m | IFM_IEEE80211_VHT);
2538 }
2539 } else if (mode == IEEE80211_MODE_11NA) {
2540 if (rate & IEEE80211_RATE_MCS) {
2541 rate &= ~IEEE80211_RATE_MCS;
2542 m = findmedia(htrates, nitems(htrates), rate);
2543 if (m != IFM_AUTO)
2544 return m | IFM_IEEE80211_11NA;
2545 }
2546 } else if (mode == IEEE80211_MODE_11NG) {
2547 /* NB: 12 is ambiguous, it will be treated as an MCS */
2548 if (rate & IEEE80211_RATE_MCS) {
2549 rate &= ~IEEE80211_RATE_MCS;
2550 m = findmedia(htrates, nitems(htrates), rate);
2551 if (m != IFM_AUTO)
2552 return m | IFM_IEEE80211_11NG;
2553 }
2554 }
2555 rate &= IEEE80211_RATE_VAL;
2556 switch (mode) {
2557 case IEEE80211_MODE_11A:
2558 case IEEE80211_MODE_HALF: /* XXX good 'nuf */
2559 case IEEE80211_MODE_QUARTER:
2560 case IEEE80211_MODE_11NA:
2561 case IEEE80211_MODE_TURBO_A:
2562 case IEEE80211_MODE_STURBO_A:
2563 return findmedia(rates, nitems(rates),
2564 rate | IFM_IEEE80211_11A);
2565 case IEEE80211_MODE_11B:
2566 return findmedia(rates, nitems(rates),
2567 rate | IFM_IEEE80211_11B);
2568 case IEEE80211_MODE_FH:
2569 return findmedia(rates, nitems(rates),
2570 rate | IFM_IEEE80211_FH);
2571 case IEEE80211_MODE_AUTO:
2572 /* NB: ic may be NULL for some drivers */
2573 if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
2574 return findmedia(rates, nitems(rates),
2575 rate | IFM_IEEE80211_FH);
2576 /* NB: hack, 11g matches both 11b+11a rates */
2577 /* fall thru... */
2578 case IEEE80211_MODE_11G:
2579 case IEEE80211_MODE_11NG:
2580 case IEEE80211_MODE_TURBO_G:
2581 return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G);
2582 case IEEE80211_MODE_VHT_2GHZ:
2583 case IEEE80211_MODE_VHT_5GHZ:
2584 /* XXX TODO: need to figure out mapping for VHT rates */
2585 return IFM_AUTO;
2586 }
2587 return IFM_AUTO;
2588 }
2589
2590 int
ieee80211_media2rate(int mword)2591 ieee80211_media2rate(int mword)
2592 {
2593 static const int ieeerates[] = {
2594 -1, /* IFM_AUTO */
2595 0, /* IFM_MANUAL */
2596 0, /* IFM_NONE */
2597 2, /* IFM_IEEE80211_FH1 */
2598 4, /* IFM_IEEE80211_FH2 */
2599 2, /* IFM_IEEE80211_DS1 */
2600 4, /* IFM_IEEE80211_DS2 */
2601 11, /* IFM_IEEE80211_DS5 */
2602 22, /* IFM_IEEE80211_DS11 */
2603 44, /* IFM_IEEE80211_DS22 */
2604 12, /* IFM_IEEE80211_OFDM6 */
2605 18, /* IFM_IEEE80211_OFDM9 */
2606 24, /* IFM_IEEE80211_OFDM12 */
2607 36, /* IFM_IEEE80211_OFDM18 */
2608 48, /* IFM_IEEE80211_OFDM24 */
2609 72, /* IFM_IEEE80211_OFDM36 */
2610 96, /* IFM_IEEE80211_OFDM48 */
2611 108, /* IFM_IEEE80211_OFDM54 */
2612 144, /* IFM_IEEE80211_OFDM72 */
2613 0, /* IFM_IEEE80211_DS354k */
2614 0, /* IFM_IEEE80211_DS512k */
2615 6, /* IFM_IEEE80211_OFDM3 */
2616 9, /* IFM_IEEE80211_OFDM4 */
2617 54, /* IFM_IEEE80211_OFDM27 */
2618 -1, /* IFM_IEEE80211_MCS */
2619 -1, /* IFM_IEEE80211_VHT */
2620 };
2621 return IFM_SUBTYPE(mword) < nitems(ieeerates) ?
2622 ieeerates[IFM_SUBTYPE(mword)] : 0;
2623 }
2624
2625 /*
2626 * The following hash function is adapted from "Hash Functions" by Bob Jenkins
2627 * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
2628 */
2629 #define mix(a, b, c) \
2630 do { \
2631 a -= b; a -= c; a ^= (c >> 13); \
2632 b -= c; b -= a; b ^= (a << 8); \
2633 c -= a; c -= b; c ^= (b >> 13); \
2634 a -= b; a -= c; a ^= (c >> 12); \
2635 b -= c; b -= a; b ^= (a << 16); \
2636 c -= a; c -= b; c ^= (b >> 5); \
2637 a -= b; a -= c; a ^= (c >> 3); \
2638 b -= c; b -= a; b ^= (a << 10); \
2639 c -= a; c -= b; c ^= (b >> 15); \
2640 } while (/*CONSTCOND*/0)
2641
2642 uint32_t
ieee80211_mac_hash(const struct ieee80211com * ic,const uint8_t addr[IEEE80211_ADDR_LEN])2643 ieee80211_mac_hash(const struct ieee80211com *ic,
2644 const uint8_t addr[IEEE80211_ADDR_LEN])
2645 {
2646 uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key;
2647
2648 b += addr[5] << 8;
2649 b += addr[4];
2650 a += addr[3] << 24;
2651 a += addr[2] << 16;
2652 a += addr[1] << 8;
2653 a += addr[0];
2654
2655 mix(a, b, c);
2656
2657 return c;
2658 }
2659 #undef mix
2660
2661 char
ieee80211_channel_type_char(const struct ieee80211_channel * c)2662 ieee80211_channel_type_char(const struct ieee80211_channel *c)
2663 {
2664 if (IEEE80211_IS_CHAN_ST(c))
2665 return 'S';
2666 if (IEEE80211_IS_CHAN_108A(c))
2667 return 'T';
2668 if (IEEE80211_IS_CHAN_108G(c))
2669 return 'G';
2670 if (IEEE80211_IS_CHAN_VHT(c))
2671 return 'v';
2672 if (IEEE80211_IS_CHAN_HT(c))
2673 return 'n';
2674 if (IEEE80211_IS_CHAN_A(c))
2675 return 'a';
2676 if (IEEE80211_IS_CHAN_ANYG(c))
2677 return 'g';
2678 if (IEEE80211_IS_CHAN_B(c))
2679 return 'b';
2680 return 'f';
2681 }
2682
2683 /*
2684 * Determine whether the given key in the given VAP is a global key.
2685 * (key index 0..3, shared between all stations on a VAP.)
2686 *
2687 * This is either a WEP key or a GROUP key.
2688 *
2689 * Note this will NOT return true if it is a IGTK key.
2690 */
2691 bool
ieee80211_is_key_global(const struct ieee80211vap * vap,const struct ieee80211_key * key)2692 ieee80211_is_key_global(const struct ieee80211vap *vap,
2693 const struct ieee80211_key *key)
2694 {
2695 return (&vap->iv_nw_keys[0] <= key &&
2696 key < &vap->iv_nw_keys[IEEE80211_WEP_NKID]);
2697 }
2698
2699 /*
2700 * Determine whether the given key in the given VAP is a unicast key.
2701 */
2702 bool
ieee80211_is_key_unicast(const struct ieee80211vap * vap,const struct ieee80211_key * key)2703 ieee80211_is_key_unicast(const struct ieee80211vap *vap,
2704 const struct ieee80211_key *key)
2705 {
2706 /*
2707 * This is a short-cut for now; eventually we will need
2708 * to support multiple unicast keys, IGTK, etc) so we
2709 * will absolutely need to fix the key flags.
2710 */
2711 return (!ieee80211_is_key_global(vap, key));
2712 }
2713