xref: /linux/include/linux/hugetlb.h (revision f73a058be5d70dd81a43f16b2bbff4b1576a7af8)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_HUGETLB_H
3 #define _LINUX_HUGETLB_H
4 
5 #include <linux/mm.h>
6 #include <linux/mm_types.h>
7 #include <linux/mmdebug.h>
8 #include <linux/fs.h>
9 #include <linux/hugetlb_inline.h>
10 #include <linux/cgroup.h>
11 #include <linux/page_ref.h>
12 #include <linux/list.h>
13 #include <linux/kref.h>
14 #include <linux/pgtable.h>
15 #include <linux/gfp.h>
16 #include <linux/userfaultfd_k.h>
17 
18 struct ctl_table;
19 struct user_struct;
20 struct mmu_gather;
21 struct node;
22 
23 #ifndef CONFIG_ARCH_HAS_HUGEPD
24 typedef struct { unsigned long pd; } hugepd_t;
25 #define is_hugepd(hugepd) (0)
26 #define __hugepd(x) ((hugepd_t) { (x) })
27 #endif
28 
29 void free_huge_folio(struct folio *folio);
30 
31 #ifdef CONFIG_HUGETLB_PAGE
32 
33 #include <linux/pagemap.h>
34 #include <linux/shm.h>
35 #include <asm/tlbflush.h>
36 
37 /*
38  * For HugeTLB page, there are more metadata to save in the struct page. But
39  * the head struct page cannot meet our needs, so we have to abuse other tail
40  * struct page to store the metadata.
41  */
42 #define __NR_USED_SUBPAGE 3
43 
44 struct hugepage_subpool {
45 	spinlock_t lock;
46 	long count;
47 	long max_hpages;	/* Maximum huge pages or -1 if no maximum. */
48 	long used_hpages;	/* Used count against maximum, includes */
49 				/* both allocated and reserved pages. */
50 	struct hstate *hstate;
51 	long min_hpages;	/* Minimum huge pages or -1 if no minimum. */
52 	long rsv_hpages;	/* Pages reserved against global pool to */
53 				/* satisfy minimum size. */
54 };
55 
56 struct resv_map {
57 	struct kref refs;
58 	spinlock_t lock;
59 	struct list_head regions;
60 	long adds_in_progress;
61 	struct list_head region_cache;
62 	long region_cache_count;
63 	struct rw_semaphore rw_sema;
64 #ifdef CONFIG_CGROUP_HUGETLB
65 	/*
66 	 * On private mappings, the counter to uncharge reservations is stored
67 	 * here. If these fields are 0, then either the mapping is shared, or
68 	 * cgroup accounting is disabled for this resv_map.
69 	 */
70 	struct page_counter *reservation_counter;
71 	unsigned long pages_per_hpage;
72 	struct cgroup_subsys_state *css;
73 #endif
74 };
75 
76 /*
77  * Region tracking -- allows tracking of reservations and instantiated pages
78  *                    across the pages in a mapping.
79  *
80  * The region data structures are embedded into a resv_map and protected
81  * by a resv_map's lock.  The set of regions within the resv_map represent
82  * reservations for huge pages, or huge pages that have already been
83  * instantiated within the map.  The from and to elements are huge page
84  * indices into the associated mapping.  from indicates the starting index
85  * of the region.  to represents the first index past the end of  the region.
86  *
87  * For example, a file region structure with from == 0 and to == 4 represents
88  * four huge pages in a mapping.  It is important to note that the to element
89  * represents the first element past the end of the region. This is used in
90  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
91  *
92  * Interval notation of the form [from, to) will be used to indicate that
93  * the endpoint from is inclusive and to is exclusive.
94  */
95 struct file_region {
96 	struct list_head link;
97 	long from;
98 	long to;
99 #ifdef CONFIG_CGROUP_HUGETLB
100 	/*
101 	 * On shared mappings, each reserved region appears as a struct
102 	 * file_region in resv_map. These fields hold the info needed to
103 	 * uncharge each reservation.
104 	 */
105 	struct page_counter *reservation_counter;
106 	struct cgroup_subsys_state *css;
107 #endif
108 };
109 
110 struct hugetlb_vma_lock {
111 	struct kref refs;
112 	struct rw_semaphore rw_sema;
113 	struct vm_area_struct *vma;
114 };
115 
116 extern struct resv_map *resv_map_alloc(void);
117 void resv_map_release(struct kref *ref);
118 
119 extern spinlock_t hugetlb_lock;
120 extern int hugetlb_max_hstate __read_mostly;
121 #define for_each_hstate(h) \
122 	for ((h) = hstates; (h) < &hstates[hugetlb_max_hstate]; (h)++)
123 
124 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
125 						long min_hpages);
126 void hugepage_put_subpool(struct hugepage_subpool *spool);
127 
128 void hugetlb_dup_vma_private(struct vm_area_struct *vma);
129 void clear_vma_resv_huge_pages(struct vm_area_struct *vma);
130 int move_hugetlb_page_tables(struct vm_area_struct *vma,
131 			     struct vm_area_struct *new_vma,
132 			     unsigned long old_addr, unsigned long new_addr,
133 			     unsigned long len);
134 int copy_hugetlb_page_range(struct mm_struct *, struct mm_struct *,
135 			    struct vm_area_struct *, struct vm_area_struct *);
136 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
137 				      unsigned long address, unsigned int flags,
138 				      unsigned int *page_mask);
139 void unmap_hugepage_range(struct vm_area_struct *,
140 			  unsigned long, unsigned long, struct page *,
141 			  zap_flags_t);
142 void __unmap_hugepage_range(struct mmu_gather *tlb,
143 			  struct vm_area_struct *vma,
144 			  unsigned long start, unsigned long end,
145 			  struct page *ref_page, zap_flags_t zap_flags);
146 void hugetlb_report_meminfo(struct seq_file *);
147 int hugetlb_report_node_meminfo(char *buf, int len, int nid);
148 void hugetlb_show_meminfo_node(int nid);
149 unsigned long hugetlb_total_pages(void);
150 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
151 			unsigned long address, unsigned int flags);
152 #ifdef CONFIG_USERFAULTFD
153 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
154 			     struct vm_area_struct *dst_vma,
155 			     unsigned long dst_addr,
156 			     unsigned long src_addr,
157 			     uffd_flags_t flags,
158 			     struct folio **foliop);
159 #endif /* CONFIG_USERFAULTFD */
160 bool hugetlb_reserve_pages(struct inode *inode, long from, long to,
161 						struct vm_area_struct *vma,
162 						vm_flags_t vm_flags);
163 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
164 						long freed);
165 bool isolate_hugetlb(struct folio *folio, struct list_head *list);
166 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison);
167 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
168 				bool *migratable_cleared);
169 void folio_putback_active_hugetlb(struct folio *folio);
170 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason);
171 void hugetlb_fix_reserve_counts(struct inode *inode);
172 extern struct mutex *hugetlb_fault_mutex_table;
173 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx);
174 
175 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
176 		      unsigned long addr, pud_t *pud);
177 bool hugetlbfs_pagecache_present(struct hstate *h,
178 				 struct vm_area_struct *vma,
179 				 unsigned long address);
180 
181 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio);
182 
183 extern int sysctl_hugetlb_shm_group;
184 extern struct list_head huge_boot_pages[MAX_NUMNODES];
185 
186 /* arch callbacks */
187 
188 #ifndef CONFIG_HIGHPTE
189 /*
190  * pte_offset_huge() and pte_alloc_huge() are helpers for those architectures
191  * which may go down to the lowest PTE level in their huge_pte_offset() and
192  * huge_pte_alloc(): to avoid reliance on pte_offset_map() without pte_unmap().
193  */
194 static inline pte_t *pte_offset_huge(pmd_t *pmd, unsigned long address)
195 {
196 	return pte_offset_kernel(pmd, address);
197 }
198 static inline pte_t *pte_alloc_huge(struct mm_struct *mm, pmd_t *pmd,
199 				    unsigned long address)
200 {
201 	return pte_alloc(mm, pmd) ? NULL : pte_offset_huge(pmd, address);
202 }
203 #endif
204 
205 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
206 			unsigned long addr, unsigned long sz);
207 /*
208  * huge_pte_offset(): Walk the hugetlb pgtable until the last level PTE.
209  * Returns the pte_t* if found, or NULL if the address is not mapped.
210  *
211  * IMPORTANT: we should normally not directly call this function, instead
212  * this is only a common interface to implement arch-specific
213  * walker. Please use hugetlb_walk() instead, because that will attempt to
214  * verify the locking for you.
215  *
216  * Since this function will walk all the pgtable pages (including not only
217  * high-level pgtable page, but also PUD entry that can be unshared
218  * concurrently for VM_SHARED), the caller of this function should be
219  * responsible of its thread safety.  One can follow this rule:
220  *
221  *  (1) For private mappings: pmd unsharing is not possible, so holding the
222  *      mmap_lock for either read or write is sufficient. Most callers
223  *      already hold the mmap_lock, so normally, no special action is
224  *      required.
225  *
226  *  (2) For shared mappings: pmd unsharing is possible (so the PUD-ranged
227  *      pgtable page can go away from under us!  It can be done by a pmd
228  *      unshare with a follow up munmap() on the other process), then we
229  *      need either:
230  *
231  *     (2.1) hugetlb vma lock read or write held, to make sure pmd unshare
232  *           won't happen upon the range (it also makes sure the pte_t we
233  *           read is the right and stable one), or,
234  *
235  *     (2.2) hugetlb mapping i_mmap_rwsem lock held read or write, to make
236  *           sure even if unshare happened the racy unmap() will wait until
237  *           i_mmap_rwsem is released.
238  *
239  * Option (2.1) is the safest, which guarantees pte stability from pmd
240  * sharing pov, until the vma lock released.  Option (2.2) doesn't protect
241  * a concurrent pmd unshare, but it makes sure the pgtable page is safe to
242  * access.
243  */
244 pte_t *huge_pte_offset(struct mm_struct *mm,
245 		       unsigned long addr, unsigned long sz);
246 unsigned long hugetlb_mask_last_page(struct hstate *h);
247 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
248 				unsigned long addr, pte_t *ptep);
249 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
250 				unsigned long *start, unsigned long *end);
251 
252 extern void __hugetlb_zap_begin(struct vm_area_struct *vma,
253 				unsigned long *begin, unsigned long *end);
254 extern void __hugetlb_zap_end(struct vm_area_struct *vma,
255 			      struct zap_details *details);
256 
257 static inline void hugetlb_zap_begin(struct vm_area_struct *vma,
258 				     unsigned long *start, unsigned long *end)
259 {
260 	if (is_vm_hugetlb_page(vma))
261 		__hugetlb_zap_begin(vma, start, end);
262 }
263 
264 static inline void hugetlb_zap_end(struct vm_area_struct *vma,
265 				   struct zap_details *details)
266 {
267 	if (is_vm_hugetlb_page(vma))
268 		__hugetlb_zap_end(vma, details);
269 }
270 
271 void hugetlb_vma_lock_read(struct vm_area_struct *vma);
272 void hugetlb_vma_unlock_read(struct vm_area_struct *vma);
273 void hugetlb_vma_lock_write(struct vm_area_struct *vma);
274 void hugetlb_vma_unlock_write(struct vm_area_struct *vma);
275 int hugetlb_vma_trylock_write(struct vm_area_struct *vma);
276 void hugetlb_vma_assert_locked(struct vm_area_struct *vma);
277 void hugetlb_vma_lock_release(struct kref *kref);
278 long hugetlb_change_protection(struct vm_area_struct *vma,
279 		unsigned long address, unsigned long end, pgprot_t newprot,
280 		unsigned long cp_flags);
281 bool is_hugetlb_entry_migration(pte_t pte);
282 bool is_hugetlb_entry_hwpoisoned(pte_t pte);
283 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma);
284 
285 #else /* !CONFIG_HUGETLB_PAGE */
286 
287 static inline void hugetlb_dup_vma_private(struct vm_area_struct *vma)
288 {
289 }
290 
291 static inline void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
292 {
293 }
294 
295 static inline unsigned long hugetlb_total_pages(void)
296 {
297 	return 0;
298 }
299 
300 static inline struct address_space *hugetlb_folio_mapping_lock_write(
301 							struct folio *folio)
302 {
303 	return NULL;
304 }
305 
306 static inline int huge_pmd_unshare(struct mm_struct *mm,
307 					struct vm_area_struct *vma,
308 					unsigned long addr, pte_t *ptep)
309 {
310 	return 0;
311 }
312 
313 static inline void adjust_range_if_pmd_sharing_possible(
314 				struct vm_area_struct *vma,
315 				unsigned long *start, unsigned long *end)
316 {
317 }
318 
319 static inline void hugetlb_zap_begin(
320 				struct vm_area_struct *vma,
321 				unsigned long *start, unsigned long *end)
322 {
323 }
324 
325 static inline void hugetlb_zap_end(
326 				struct vm_area_struct *vma,
327 				struct zap_details *details)
328 {
329 }
330 
331 static inline int copy_hugetlb_page_range(struct mm_struct *dst,
332 					  struct mm_struct *src,
333 					  struct vm_area_struct *dst_vma,
334 					  struct vm_area_struct *src_vma)
335 {
336 	BUG();
337 	return 0;
338 }
339 
340 static inline int move_hugetlb_page_tables(struct vm_area_struct *vma,
341 					   struct vm_area_struct *new_vma,
342 					   unsigned long old_addr,
343 					   unsigned long new_addr,
344 					   unsigned long len)
345 {
346 	BUG();
347 	return 0;
348 }
349 
350 static inline void hugetlb_report_meminfo(struct seq_file *m)
351 {
352 }
353 
354 static inline int hugetlb_report_node_meminfo(char *buf, int len, int nid)
355 {
356 	return 0;
357 }
358 
359 static inline void hugetlb_show_meminfo_node(int nid)
360 {
361 }
362 
363 static inline int prepare_hugepage_range(struct file *file,
364 				unsigned long addr, unsigned long len)
365 {
366 	return -EINVAL;
367 }
368 
369 static inline void hugetlb_vma_lock_read(struct vm_area_struct *vma)
370 {
371 }
372 
373 static inline void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
374 {
375 }
376 
377 static inline void hugetlb_vma_lock_write(struct vm_area_struct *vma)
378 {
379 }
380 
381 static inline void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
382 {
383 }
384 
385 static inline int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
386 {
387 	return 1;
388 }
389 
390 static inline void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
391 {
392 }
393 
394 static inline int is_hugepage_only_range(struct mm_struct *mm,
395 					unsigned long addr, unsigned long len)
396 {
397 	return 0;
398 }
399 
400 static inline void hugetlb_free_pgd_range(struct mmu_gather *tlb,
401 				unsigned long addr, unsigned long end,
402 				unsigned long floor, unsigned long ceiling)
403 {
404 	BUG();
405 }
406 
407 #ifdef CONFIG_USERFAULTFD
408 static inline int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
409 					   struct vm_area_struct *dst_vma,
410 					   unsigned long dst_addr,
411 					   unsigned long src_addr,
412 					   uffd_flags_t flags,
413 					   struct folio **foliop)
414 {
415 	BUG();
416 	return 0;
417 }
418 #endif /* CONFIG_USERFAULTFD */
419 
420 static inline pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr,
421 					unsigned long sz)
422 {
423 	return NULL;
424 }
425 
426 static inline bool isolate_hugetlb(struct folio *folio, struct list_head *list)
427 {
428 	return false;
429 }
430 
431 static inline int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
432 {
433 	return 0;
434 }
435 
436 static inline int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
437 					bool *migratable_cleared)
438 {
439 	return 0;
440 }
441 
442 static inline void folio_putback_active_hugetlb(struct folio *folio)
443 {
444 }
445 
446 static inline void move_hugetlb_state(struct folio *old_folio,
447 					struct folio *new_folio, int reason)
448 {
449 }
450 
451 static inline long hugetlb_change_protection(
452 			struct vm_area_struct *vma, unsigned long address,
453 			unsigned long end, pgprot_t newprot,
454 			unsigned long cp_flags)
455 {
456 	return 0;
457 }
458 
459 static inline void __unmap_hugepage_range(struct mmu_gather *tlb,
460 			struct vm_area_struct *vma, unsigned long start,
461 			unsigned long end, struct page *ref_page,
462 			zap_flags_t zap_flags)
463 {
464 	BUG();
465 }
466 
467 static inline vm_fault_t hugetlb_fault(struct mm_struct *mm,
468 			struct vm_area_struct *vma, unsigned long address,
469 			unsigned int flags)
470 {
471 	BUG();
472 	return 0;
473 }
474 
475 static inline void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) { }
476 
477 #endif /* !CONFIG_HUGETLB_PAGE */
478 
479 #ifndef pgd_write
480 static inline int pgd_write(pgd_t pgd)
481 {
482 	BUG();
483 	return 0;
484 }
485 #endif
486 
487 #define HUGETLB_ANON_FILE "anon_hugepage"
488 
489 enum {
490 	/*
491 	 * The file will be used as an shm file so shmfs accounting rules
492 	 * apply
493 	 */
494 	HUGETLB_SHMFS_INODE     = 1,
495 	/*
496 	 * The file is being created on the internal vfs mount and shmfs
497 	 * accounting rules do not apply
498 	 */
499 	HUGETLB_ANONHUGE_INODE  = 2,
500 };
501 
502 #ifdef CONFIG_HUGETLBFS
503 struct hugetlbfs_sb_info {
504 	long	max_inodes;   /* inodes allowed */
505 	long	free_inodes;  /* inodes free */
506 	spinlock_t	stat_lock;
507 	struct hstate *hstate;
508 	struct hugepage_subpool *spool;
509 	kuid_t	uid;
510 	kgid_t	gid;
511 	umode_t mode;
512 };
513 
514 static inline struct hugetlbfs_sb_info *HUGETLBFS_SB(struct super_block *sb)
515 {
516 	return sb->s_fs_info;
517 }
518 
519 struct hugetlbfs_inode_info {
520 	struct inode vfs_inode;
521 	unsigned int seals;
522 };
523 
524 static inline struct hugetlbfs_inode_info *HUGETLBFS_I(struct inode *inode)
525 {
526 	return container_of(inode, struct hugetlbfs_inode_info, vfs_inode);
527 }
528 
529 extern const struct vm_operations_struct hugetlb_vm_ops;
530 struct file *hugetlb_file_setup(const char *name, size_t size, vm_flags_t acct,
531 				int creat_flags, int page_size_log);
532 
533 static inline bool is_file_hugepages(const struct file *file)
534 {
535 	return file->f_op->fop_flags & FOP_HUGE_PAGES;
536 }
537 
538 static inline struct hstate *hstate_inode(struct inode *i)
539 {
540 	return HUGETLBFS_SB(i->i_sb)->hstate;
541 }
542 #else /* !CONFIG_HUGETLBFS */
543 
544 #define is_file_hugepages(file)			false
545 static inline struct file *
546 hugetlb_file_setup(const char *name, size_t size, vm_flags_t acctflag,
547 		int creat_flags, int page_size_log)
548 {
549 	return ERR_PTR(-ENOSYS);
550 }
551 
552 static inline struct hstate *hstate_inode(struct inode *i)
553 {
554 	return NULL;
555 }
556 #endif /* !CONFIG_HUGETLBFS */
557 
558 #ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
559 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
560 					unsigned long len, unsigned long pgoff,
561 					unsigned long flags);
562 #endif /* HAVE_ARCH_HUGETLB_UNMAPPED_AREA */
563 
564 unsigned long
565 generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
566 				  unsigned long len, unsigned long pgoff,
567 				  unsigned long flags);
568 
569 /*
570  * huegtlb page specific state flags.  These flags are located in page.private
571  * of the hugetlb head page.  Functions created via the below macros should be
572  * used to manipulate these flags.
573  *
574  * HPG_restore_reserve - Set when a hugetlb page consumes a reservation at
575  *	allocation time.  Cleared when page is fully instantiated.  Free
576  *	routine checks flag to restore a reservation on error paths.
577  *	Synchronization:  Examined or modified by code that knows it has
578  *	the only reference to page.  i.e. After allocation but before use
579  *	or when the page is being freed.
580  * HPG_migratable  - Set after a newly allocated page is added to the page
581  *	cache and/or page tables.  Indicates the page is a candidate for
582  *	migration.
583  *	Synchronization:  Initially set after new page allocation with no
584  *	locking.  When examined and modified during migration processing
585  *	(isolate, migrate, putback) the hugetlb_lock is held.
586  * HPG_temporary - Set on a page that is temporarily allocated from the buddy
587  *	allocator.  Typically used for migration target pages when no pages
588  *	are available in the pool.  The hugetlb free page path will
589  *	immediately free pages with this flag set to the buddy allocator.
590  *	Synchronization: Can be set after huge page allocation from buddy when
591  *	code knows it has only reference.  All other examinations and
592  *	modifications require hugetlb_lock.
593  * HPG_freed - Set when page is on the free lists.
594  *	Synchronization: hugetlb_lock held for examination and modification.
595  * HPG_vmemmap_optimized - Set when the vmemmap pages of the page are freed.
596  * HPG_raw_hwp_unreliable - Set when the hugetlb page has a hwpoison sub-page
597  *     that is not tracked by raw_hwp_page list.
598  */
599 enum hugetlb_page_flags {
600 	HPG_restore_reserve = 0,
601 	HPG_migratable,
602 	HPG_temporary,
603 	HPG_freed,
604 	HPG_vmemmap_optimized,
605 	HPG_raw_hwp_unreliable,
606 	__NR_HPAGEFLAGS,
607 };
608 
609 /*
610  * Macros to create test, set and clear function definitions for
611  * hugetlb specific page flags.
612  */
613 #ifdef CONFIG_HUGETLB_PAGE
614 #define TESTHPAGEFLAG(uname, flname)				\
615 static __always_inline						\
616 bool folio_test_hugetlb_##flname(struct folio *folio)		\
617 	{	void *private = &folio->private;		\
618 		return test_bit(HPG_##flname, private);		\
619 	}							\
620 static inline int HPage##uname(struct page *page)		\
621 	{ return test_bit(HPG_##flname, &(page->private)); }
622 
623 #define SETHPAGEFLAG(uname, flname)				\
624 static __always_inline						\
625 void folio_set_hugetlb_##flname(struct folio *folio)		\
626 	{	void *private = &folio->private;		\
627 		set_bit(HPG_##flname, private);			\
628 	}							\
629 static inline void SetHPage##uname(struct page *page)		\
630 	{ set_bit(HPG_##flname, &(page->private)); }
631 
632 #define CLEARHPAGEFLAG(uname, flname)				\
633 static __always_inline						\
634 void folio_clear_hugetlb_##flname(struct folio *folio)		\
635 	{	void *private = &folio->private;		\
636 		clear_bit(HPG_##flname, private);		\
637 	}							\
638 static inline void ClearHPage##uname(struct page *page)		\
639 	{ clear_bit(HPG_##flname, &(page->private)); }
640 #else
641 #define TESTHPAGEFLAG(uname, flname)				\
642 static inline bool						\
643 folio_test_hugetlb_##flname(struct folio *folio)		\
644 	{ return 0; }						\
645 static inline int HPage##uname(struct page *page)		\
646 	{ return 0; }
647 
648 #define SETHPAGEFLAG(uname, flname)				\
649 static inline void						\
650 folio_set_hugetlb_##flname(struct folio *folio) 		\
651 	{ }							\
652 static inline void SetHPage##uname(struct page *page)		\
653 	{ }
654 
655 #define CLEARHPAGEFLAG(uname, flname)				\
656 static inline void						\
657 folio_clear_hugetlb_##flname(struct folio *folio)		\
658 	{ }							\
659 static inline void ClearHPage##uname(struct page *page)		\
660 	{ }
661 #endif
662 
663 #define HPAGEFLAG(uname, flname)				\
664 	TESTHPAGEFLAG(uname, flname)				\
665 	SETHPAGEFLAG(uname, flname)				\
666 	CLEARHPAGEFLAG(uname, flname)				\
667 
668 /*
669  * Create functions associated with hugetlb page flags
670  */
671 HPAGEFLAG(RestoreReserve, restore_reserve)
672 HPAGEFLAG(Migratable, migratable)
673 HPAGEFLAG(Temporary, temporary)
674 HPAGEFLAG(Freed, freed)
675 HPAGEFLAG(VmemmapOptimized, vmemmap_optimized)
676 HPAGEFLAG(RawHwpUnreliable, raw_hwp_unreliable)
677 
678 #ifdef CONFIG_HUGETLB_PAGE
679 
680 #define HSTATE_NAME_LEN 32
681 /* Defines one hugetlb page size */
682 struct hstate {
683 	struct mutex resize_lock;
684 	int next_nid_to_alloc;
685 	int next_nid_to_free;
686 	unsigned int order;
687 	unsigned int demote_order;
688 	unsigned long mask;
689 	unsigned long max_huge_pages;
690 	unsigned long nr_huge_pages;
691 	unsigned long free_huge_pages;
692 	unsigned long resv_huge_pages;
693 	unsigned long surplus_huge_pages;
694 	unsigned long nr_overcommit_huge_pages;
695 	struct list_head hugepage_activelist;
696 	struct list_head hugepage_freelists[MAX_NUMNODES];
697 	unsigned int max_huge_pages_node[MAX_NUMNODES];
698 	unsigned int nr_huge_pages_node[MAX_NUMNODES];
699 	unsigned int free_huge_pages_node[MAX_NUMNODES];
700 	unsigned int surplus_huge_pages_node[MAX_NUMNODES];
701 #ifdef CONFIG_CGROUP_HUGETLB
702 	/* cgroup control files */
703 	struct cftype cgroup_files_dfl[8];
704 	struct cftype cgroup_files_legacy[10];
705 #endif
706 	char name[HSTATE_NAME_LEN];
707 };
708 
709 struct huge_bootmem_page {
710 	struct list_head list;
711 	struct hstate *hstate;
712 };
713 
714 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list);
715 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
716 				unsigned long addr, int avoid_reserve);
717 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
718 				nodemask_t *nmask, gfp_t gfp_mask,
719 				bool allow_alloc_fallback);
720 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
721 			pgoff_t idx);
722 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
723 				unsigned long address, struct folio *folio);
724 
725 /* arch callback */
726 int __init __alloc_bootmem_huge_page(struct hstate *h, int nid);
727 int __init alloc_bootmem_huge_page(struct hstate *h, int nid);
728 bool __init hugetlb_node_alloc_supported(void);
729 
730 void __init hugetlb_add_hstate(unsigned order);
731 bool __init arch_hugetlb_valid_size(unsigned long size);
732 struct hstate *size_to_hstate(unsigned long size);
733 
734 #ifndef HUGE_MAX_HSTATE
735 #define HUGE_MAX_HSTATE 1
736 #endif
737 
738 extern struct hstate hstates[HUGE_MAX_HSTATE];
739 extern unsigned int default_hstate_idx;
740 
741 #define default_hstate (hstates[default_hstate_idx])
742 
743 static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio)
744 {
745 	return folio->_hugetlb_subpool;
746 }
747 
748 static inline void hugetlb_set_folio_subpool(struct folio *folio,
749 					struct hugepage_subpool *subpool)
750 {
751 	folio->_hugetlb_subpool = subpool;
752 }
753 
754 static inline struct hstate *hstate_file(struct file *f)
755 {
756 	return hstate_inode(file_inode(f));
757 }
758 
759 static inline struct hstate *hstate_sizelog(int page_size_log)
760 {
761 	if (!page_size_log)
762 		return &default_hstate;
763 
764 	if (page_size_log < BITS_PER_LONG)
765 		return size_to_hstate(1UL << page_size_log);
766 
767 	return NULL;
768 }
769 
770 static inline struct hstate *hstate_vma(struct vm_area_struct *vma)
771 {
772 	return hstate_file(vma->vm_file);
773 }
774 
775 static inline unsigned long huge_page_size(const struct hstate *h)
776 {
777 	return (unsigned long)PAGE_SIZE << h->order;
778 }
779 
780 extern unsigned long vma_kernel_pagesize(struct vm_area_struct *vma);
781 
782 extern unsigned long vma_mmu_pagesize(struct vm_area_struct *vma);
783 
784 static inline unsigned long huge_page_mask(struct hstate *h)
785 {
786 	return h->mask;
787 }
788 
789 static inline unsigned int huge_page_order(struct hstate *h)
790 {
791 	return h->order;
792 }
793 
794 static inline unsigned huge_page_shift(struct hstate *h)
795 {
796 	return h->order + PAGE_SHIFT;
797 }
798 
799 static inline bool hstate_is_gigantic(struct hstate *h)
800 {
801 	return huge_page_order(h) > MAX_PAGE_ORDER;
802 }
803 
804 static inline unsigned int pages_per_huge_page(const struct hstate *h)
805 {
806 	return 1 << h->order;
807 }
808 
809 static inline unsigned int blocks_per_huge_page(struct hstate *h)
810 {
811 	return huge_page_size(h) / 512;
812 }
813 
814 static inline struct folio *filemap_lock_hugetlb_folio(struct hstate *h,
815 				struct address_space *mapping, pgoff_t idx)
816 {
817 	return filemap_lock_folio(mapping, idx << huge_page_order(h));
818 }
819 
820 #include <asm/hugetlb.h>
821 
822 #ifndef is_hugepage_only_range
823 static inline int is_hugepage_only_range(struct mm_struct *mm,
824 					unsigned long addr, unsigned long len)
825 {
826 	return 0;
827 }
828 #define is_hugepage_only_range is_hugepage_only_range
829 #endif
830 
831 #ifndef arch_clear_hugetlb_flags
832 static inline void arch_clear_hugetlb_flags(struct folio *folio) { }
833 #define arch_clear_hugetlb_flags arch_clear_hugetlb_flags
834 #endif
835 
836 #ifndef arch_make_huge_pte
837 static inline pte_t arch_make_huge_pte(pte_t entry, unsigned int shift,
838 				       vm_flags_t flags)
839 {
840 	return pte_mkhuge(entry);
841 }
842 #endif
843 
844 static inline struct hstate *folio_hstate(struct folio *folio)
845 {
846 	VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio);
847 	return size_to_hstate(folio_size(folio));
848 }
849 
850 static inline unsigned hstate_index_to_shift(unsigned index)
851 {
852 	return hstates[index].order + PAGE_SHIFT;
853 }
854 
855 static inline int hstate_index(struct hstate *h)
856 {
857 	return h - hstates;
858 }
859 
860 int dissolve_free_hugetlb_folio(struct folio *folio);
861 int dissolve_free_hugetlb_folios(unsigned long start_pfn,
862 				    unsigned long end_pfn);
863 
864 #ifdef CONFIG_MEMORY_FAILURE
865 extern void folio_clear_hugetlb_hwpoison(struct folio *folio);
866 #else
867 static inline void folio_clear_hugetlb_hwpoison(struct folio *folio)
868 {
869 }
870 #endif
871 
872 #ifdef CONFIG_ARCH_ENABLE_HUGEPAGE_MIGRATION
873 #ifndef arch_hugetlb_migration_supported
874 static inline bool arch_hugetlb_migration_supported(struct hstate *h)
875 {
876 	if ((huge_page_shift(h) == PMD_SHIFT) ||
877 		(huge_page_shift(h) == PUD_SHIFT) ||
878 			(huge_page_shift(h) == PGDIR_SHIFT))
879 		return true;
880 	else
881 		return false;
882 }
883 #endif
884 #else
885 static inline bool arch_hugetlb_migration_supported(struct hstate *h)
886 {
887 	return false;
888 }
889 #endif
890 
891 static inline bool hugepage_migration_supported(struct hstate *h)
892 {
893 	return arch_hugetlb_migration_supported(h);
894 }
895 
896 /*
897  * Movability check is different as compared to migration check.
898  * It determines whether or not a huge page should be placed on
899  * movable zone or not. Movability of any huge page should be
900  * required only if huge page size is supported for migration.
901  * There won't be any reason for the huge page to be movable if
902  * it is not migratable to start with. Also the size of the huge
903  * page should be large enough to be placed under a movable zone
904  * and still feasible enough to be migratable. Just the presence
905  * in movable zone does not make the migration feasible.
906  *
907  * So even though large huge page sizes like the gigantic ones
908  * are migratable they should not be movable because its not
909  * feasible to migrate them from movable zone.
910  */
911 static inline bool hugepage_movable_supported(struct hstate *h)
912 {
913 	if (!hugepage_migration_supported(h))
914 		return false;
915 
916 	if (hstate_is_gigantic(h))
917 		return false;
918 	return true;
919 }
920 
921 /* Movability of hugepages depends on migration support. */
922 static inline gfp_t htlb_alloc_mask(struct hstate *h)
923 {
924 	if (hugepage_movable_supported(h))
925 		return GFP_HIGHUSER_MOVABLE;
926 	else
927 		return GFP_HIGHUSER;
928 }
929 
930 static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask)
931 {
932 	gfp_t modified_mask = htlb_alloc_mask(h);
933 
934 	/* Some callers might want to enforce node */
935 	modified_mask |= (gfp_mask & __GFP_THISNODE);
936 
937 	modified_mask |= (gfp_mask & __GFP_NOWARN);
938 
939 	return modified_mask;
940 }
941 
942 static inline bool htlb_allow_alloc_fallback(int reason)
943 {
944 	bool allowed_fallback = false;
945 
946 	/*
947 	 * Note: the memory offline, memory failure and migration syscalls will
948 	 * be allowed to fallback to other nodes due to lack of a better chioce,
949 	 * that might break the per-node hugetlb pool. While other cases will
950 	 * set the __GFP_THISNODE to avoid breaking the per-node hugetlb pool.
951 	 */
952 	switch (reason) {
953 	case MR_MEMORY_HOTPLUG:
954 	case MR_MEMORY_FAILURE:
955 	case MR_SYSCALL:
956 	case MR_MEMPOLICY_MBIND:
957 		allowed_fallback = true;
958 		break;
959 	default:
960 		break;
961 	}
962 
963 	return allowed_fallback;
964 }
965 
966 static inline spinlock_t *huge_pte_lockptr(struct hstate *h,
967 					   struct mm_struct *mm, pte_t *pte)
968 {
969 	if (huge_page_size(h) == PMD_SIZE)
970 		return pmd_lockptr(mm, (pmd_t *) pte);
971 	VM_BUG_ON(huge_page_size(h) == PAGE_SIZE);
972 	return &mm->page_table_lock;
973 }
974 
975 #ifndef hugepages_supported
976 /*
977  * Some platform decide whether they support huge pages at boot
978  * time. Some of them, such as powerpc, set HPAGE_SHIFT to 0
979  * when there is no such support
980  */
981 #define hugepages_supported() (HPAGE_SHIFT != 0)
982 #endif
983 
984 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm);
985 
986 static inline void hugetlb_count_init(struct mm_struct *mm)
987 {
988 	atomic_long_set(&mm->hugetlb_usage, 0);
989 }
990 
991 static inline void hugetlb_count_add(long l, struct mm_struct *mm)
992 {
993 	atomic_long_add(l, &mm->hugetlb_usage);
994 }
995 
996 static inline void hugetlb_count_sub(long l, struct mm_struct *mm)
997 {
998 	atomic_long_sub(l, &mm->hugetlb_usage);
999 }
1000 
1001 #ifndef huge_ptep_modify_prot_start
1002 #define huge_ptep_modify_prot_start huge_ptep_modify_prot_start
1003 static inline pte_t huge_ptep_modify_prot_start(struct vm_area_struct *vma,
1004 						unsigned long addr, pte_t *ptep)
1005 {
1006 	return huge_ptep_get_and_clear(vma->vm_mm, addr, ptep);
1007 }
1008 #endif
1009 
1010 #ifndef huge_ptep_modify_prot_commit
1011 #define huge_ptep_modify_prot_commit huge_ptep_modify_prot_commit
1012 static inline void huge_ptep_modify_prot_commit(struct vm_area_struct *vma,
1013 						unsigned long addr, pte_t *ptep,
1014 						pte_t old_pte, pte_t pte)
1015 {
1016 	unsigned long psize = huge_page_size(hstate_vma(vma));
1017 
1018 	set_huge_pte_at(vma->vm_mm, addr, ptep, pte, psize);
1019 }
1020 #endif
1021 
1022 #ifdef CONFIG_NUMA
1023 void hugetlb_register_node(struct node *node);
1024 void hugetlb_unregister_node(struct node *node);
1025 #endif
1026 
1027 /*
1028  * Check if a given raw @page in a hugepage is HWPOISON.
1029  */
1030 bool is_raw_hwpoison_page_in_hugepage(struct page *page);
1031 
1032 #else	/* CONFIG_HUGETLB_PAGE */
1033 struct hstate {};
1034 
1035 static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio)
1036 {
1037 	return NULL;
1038 }
1039 
1040 static inline struct folio *filemap_lock_hugetlb_folio(struct hstate *h,
1041 				struct address_space *mapping, pgoff_t idx)
1042 {
1043 	return NULL;
1044 }
1045 
1046 static inline int isolate_or_dissolve_huge_page(struct page *page,
1047 						struct list_head *list)
1048 {
1049 	return -ENOMEM;
1050 }
1051 
1052 static inline struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
1053 					   unsigned long addr,
1054 					   int avoid_reserve)
1055 {
1056 	return NULL;
1057 }
1058 
1059 static inline struct folio *
1060 alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
1061 			nodemask_t *nmask, gfp_t gfp_mask,
1062 			bool allow_alloc_fallback)
1063 {
1064 	return NULL;
1065 }
1066 
1067 static inline int __alloc_bootmem_huge_page(struct hstate *h)
1068 {
1069 	return 0;
1070 }
1071 
1072 static inline struct hstate *hstate_file(struct file *f)
1073 {
1074 	return NULL;
1075 }
1076 
1077 static inline struct hstate *hstate_sizelog(int page_size_log)
1078 {
1079 	return NULL;
1080 }
1081 
1082 static inline struct hstate *hstate_vma(struct vm_area_struct *vma)
1083 {
1084 	return NULL;
1085 }
1086 
1087 static inline struct hstate *folio_hstate(struct folio *folio)
1088 {
1089 	return NULL;
1090 }
1091 
1092 static inline struct hstate *size_to_hstate(unsigned long size)
1093 {
1094 	return NULL;
1095 }
1096 
1097 static inline unsigned long huge_page_size(struct hstate *h)
1098 {
1099 	return PAGE_SIZE;
1100 }
1101 
1102 static inline unsigned long huge_page_mask(struct hstate *h)
1103 {
1104 	return PAGE_MASK;
1105 }
1106 
1107 static inline unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1108 {
1109 	return PAGE_SIZE;
1110 }
1111 
1112 static inline unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1113 {
1114 	return PAGE_SIZE;
1115 }
1116 
1117 static inline unsigned int huge_page_order(struct hstate *h)
1118 {
1119 	return 0;
1120 }
1121 
1122 static inline unsigned int huge_page_shift(struct hstate *h)
1123 {
1124 	return PAGE_SHIFT;
1125 }
1126 
1127 static inline bool hstate_is_gigantic(struct hstate *h)
1128 {
1129 	return false;
1130 }
1131 
1132 static inline unsigned int pages_per_huge_page(struct hstate *h)
1133 {
1134 	return 1;
1135 }
1136 
1137 static inline unsigned hstate_index_to_shift(unsigned index)
1138 {
1139 	return 0;
1140 }
1141 
1142 static inline int hstate_index(struct hstate *h)
1143 {
1144 	return 0;
1145 }
1146 
1147 static inline int dissolve_free_hugetlb_folio(struct folio *folio)
1148 {
1149 	return 0;
1150 }
1151 
1152 static inline int dissolve_free_hugetlb_folios(unsigned long start_pfn,
1153 					   unsigned long end_pfn)
1154 {
1155 	return 0;
1156 }
1157 
1158 static inline bool hugepage_migration_supported(struct hstate *h)
1159 {
1160 	return false;
1161 }
1162 
1163 static inline bool hugepage_movable_supported(struct hstate *h)
1164 {
1165 	return false;
1166 }
1167 
1168 static inline gfp_t htlb_alloc_mask(struct hstate *h)
1169 {
1170 	return 0;
1171 }
1172 
1173 static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask)
1174 {
1175 	return 0;
1176 }
1177 
1178 static inline bool htlb_allow_alloc_fallback(int reason)
1179 {
1180 	return false;
1181 }
1182 
1183 static inline spinlock_t *huge_pte_lockptr(struct hstate *h,
1184 					   struct mm_struct *mm, pte_t *pte)
1185 {
1186 	return &mm->page_table_lock;
1187 }
1188 
1189 static inline void hugetlb_count_init(struct mm_struct *mm)
1190 {
1191 }
1192 
1193 static inline void hugetlb_report_usage(struct seq_file *f, struct mm_struct *m)
1194 {
1195 }
1196 
1197 static inline void hugetlb_count_sub(long l, struct mm_struct *mm)
1198 {
1199 }
1200 
1201 static inline pte_t huge_ptep_clear_flush(struct vm_area_struct *vma,
1202 					  unsigned long addr, pte_t *ptep)
1203 {
1204 #ifdef CONFIG_MMU
1205 	return ptep_get(ptep);
1206 #else
1207 	return *ptep;
1208 #endif
1209 }
1210 
1211 static inline void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
1212 				   pte_t *ptep, pte_t pte, unsigned long sz)
1213 {
1214 }
1215 
1216 static inline void hugetlb_register_node(struct node *node)
1217 {
1218 }
1219 
1220 static inline void hugetlb_unregister_node(struct node *node)
1221 {
1222 }
1223 
1224 static inline bool hugetlbfs_pagecache_present(
1225     struct hstate *h, struct vm_area_struct *vma, unsigned long address)
1226 {
1227 	return false;
1228 }
1229 #endif	/* CONFIG_HUGETLB_PAGE */
1230 
1231 static inline spinlock_t *huge_pte_lock(struct hstate *h,
1232 					struct mm_struct *mm, pte_t *pte)
1233 {
1234 	spinlock_t *ptl;
1235 
1236 	ptl = huge_pte_lockptr(h, mm, pte);
1237 	spin_lock(ptl);
1238 	return ptl;
1239 }
1240 
1241 #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
1242 extern void __init hugetlb_cma_reserve(int order);
1243 #else
1244 static inline __init void hugetlb_cma_reserve(int order)
1245 {
1246 }
1247 #endif
1248 
1249 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
1250 static inline bool hugetlb_pmd_shared(pte_t *pte)
1251 {
1252 	return page_count(virt_to_page(pte)) > 1;
1253 }
1254 #else
1255 static inline bool hugetlb_pmd_shared(pte_t *pte)
1256 {
1257 	return false;
1258 }
1259 #endif
1260 
1261 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr);
1262 
1263 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
1264 /*
1265  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
1266  * implement this.
1267  */
1268 #define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1269 #endif
1270 
1271 static inline bool __vma_shareable_lock(struct vm_area_struct *vma)
1272 {
1273 	return (vma->vm_flags & VM_MAYSHARE) && vma->vm_private_data;
1274 }
1275 
1276 bool __vma_private_lock(struct vm_area_struct *vma);
1277 
1278 /*
1279  * Safe version of huge_pte_offset() to check the locks.  See comments
1280  * above huge_pte_offset().
1281  */
1282 static inline pte_t *
1283 hugetlb_walk(struct vm_area_struct *vma, unsigned long addr, unsigned long sz)
1284 {
1285 #if defined(CONFIG_HUGETLB_PAGE) && \
1286 	defined(CONFIG_ARCH_WANT_HUGE_PMD_SHARE) && defined(CONFIG_LOCKDEP)
1287 	struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1288 
1289 	/*
1290 	 * If pmd sharing possible, locking needed to safely walk the
1291 	 * hugetlb pgtables.  More information can be found at the comment
1292 	 * above huge_pte_offset() in the same file.
1293 	 *
1294 	 * NOTE: lockdep_is_held() is only defined with CONFIG_LOCKDEP.
1295 	 */
1296 	if (__vma_shareable_lock(vma))
1297 		WARN_ON_ONCE(!lockdep_is_held(&vma_lock->rw_sema) &&
1298 			     !lockdep_is_held(
1299 				 &vma->vm_file->f_mapping->i_mmap_rwsem));
1300 #endif
1301 	return huge_pte_offset(vma->vm_mm, addr, sz);
1302 }
1303 
1304 #endif /* _LINUX_HUGETLB_H */
1305