1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
6 *
7 * High-resolution kernel timers
8 *
9 * In contrast to the low-resolution timeout API, aka timer wheel,
10 * hrtimers provide finer resolution and accuracy depending on system
11 * configuration and capabilities.
12 *
13 * Started by: Thomas Gleixner and Ingo Molnar
14 *
15 * Credits:
16 * Based on the original timer wheel code
17 *
18 * Help, testing, suggestions, bugfixes, improvements were
19 * provided by:
20 *
21 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
22 * et. al.
23 */
24
25 #include <linux/cpu.h>
26 #include <linux/export.h>
27 #include <linux/percpu.h>
28 #include <linux/hrtimer.h>
29 #include <linux/notifier.h>
30 #include <linux/syscalls.h>
31 #include <linux/interrupt.h>
32 #include <linux/tick.h>
33 #include <linux/err.h>
34 #include <linux/debugobjects.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/sched/rt.h>
38 #include <linux/sched/deadline.h>
39 #include <linux/sched/nohz.h>
40 #include <linux/sched/debug.h>
41 #include <linux/sched/isolation.h>
42 #include <linux/timer.h>
43 #include <linux/freezer.h>
44 #include <linux/compat.h>
45
46 #include <linux/uaccess.h>
47
48 #include <trace/events/timer.h>
49
50 #include "tick-internal.h"
51
52 /*
53 * Masks for selecting the soft and hard context timers from
54 * cpu_base->active
55 */
56 #define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT)
57 #define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1)
58 #define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT)
59 #define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
60
61 /*
62 * The timer bases:
63 *
64 * There are more clockids than hrtimer bases. Thus, we index
65 * into the timer bases by the hrtimer_base_type enum. When trying
66 * to reach a base using a clockid, hrtimer_clockid_to_base()
67 * is used to convert from clockid to the proper hrtimer_base_type.
68 */
69 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
70 {
71 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
72 .clock_base =
73 {
74 {
75 .index = HRTIMER_BASE_MONOTONIC,
76 .clockid = CLOCK_MONOTONIC,
77 .get_time = &ktime_get,
78 },
79 {
80 .index = HRTIMER_BASE_REALTIME,
81 .clockid = CLOCK_REALTIME,
82 .get_time = &ktime_get_real,
83 },
84 {
85 .index = HRTIMER_BASE_BOOTTIME,
86 .clockid = CLOCK_BOOTTIME,
87 .get_time = &ktime_get_boottime,
88 },
89 {
90 .index = HRTIMER_BASE_TAI,
91 .clockid = CLOCK_TAI,
92 .get_time = &ktime_get_clocktai,
93 },
94 {
95 .index = HRTIMER_BASE_MONOTONIC_SOFT,
96 .clockid = CLOCK_MONOTONIC,
97 .get_time = &ktime_get,
98 },
99 {
100 .index = HRTIMER_BASE_REALTIME_SOFT,
101 .clockid = CLOCK_REALTIME,
102 .get_time = &ktime_get_real,
103 },
104 {
105 .index = HRTIMER_BASE_BOOTTIME_SOFT,
106 .clockid = CLOCK_BOOTTIME,
107 .get_time = &ktime_get_boottime,
108 },
109 {
110 .index = HRTIMER_BASE_TAI_SOFT,
111 .clockid = CLOCK_TAI,
112 .get_time = &ktime_get_clocktai,
113 },
114 }
115 };
116
117 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
118 /* Make sure we catch unsupported clockids */
119 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES,
120
121 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
122 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
123 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
124 [CLOCK_TAI] = HRTIMER_BASE_TAI,
125 };
126
127 /*
128 * Functions and macros which are different for UP/SMP systems are kept in a
129 * single place
130 */
131 #ifdef CONFIG_SMP
132
133 /*
134 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
135 * such that hrtimer_callback_running() can unconditionally dereference
136 * timer->base->cpu_base
137 */
138 static struct hrtimer_cpu_base migration_cpu_base = {
139 .clock_base = { {
140 .cpu_base = &migration_cpu_base,
141 .seq = SEQCNT_RAW_SPINLOCK_ZERO(migration_cpu_base.seq,
142 &migration_cpu_base.lock),
143 }, },
144 };
145
146 #define migration_base migration_cpu_base.clock_base[0]
147
is_migration_base(struct hrtimer_clock_base * base)148 static inline bool is_migration_base(struct hrtimer_clock_base *base)
149 {
150 return base == &migration_base;
151 }
152
153 /*
154 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
155 * means that all timers which are tied to this base via timer->base are
156 * locked, and the base itself is locked too.
157 *
158 * So __run_timers/migrate_timers can safely modify all timers which could
159 * be found on the lists/queues.
160 *
161 * When the timer's base is locked, and the timer removed from list, it is
162 * possible to set timer->base = &migration_base and drop the lock: the timer
163 * remains locked.
164 */
165 static
lock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)166 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
167 unsigned long *flags)
168 __acquires(&timer->base->lock)
169 {
170 struct hrtimer_clock_base *base;
171
172 for (;;) {
173 base = READ_ONCE(timer->base);
174 if (likely(base != &migration_base)) {
175 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
176 if (likely(base == timer->base))
177 return base;
178 /* The timer has migrated to another CPU: */
179 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
180 }
181 cpu_relax();
182 }
183 }
184
185 /*
186 * We do not migrate the timer when it is expiring before the next
187 * event on the target cpu. When high resolution is enabled, we cannot
188 * reprogram the target cpu hardware and we would cause it to fire
189 * late. To keep it simple, we handle the high resolution enabled and
190 * disabled case similar.
191 *
192 * Called with cpu_base->lock of target cpu held.
193 */
194 static int
hrtimer_check_target(struct hrtimer * timer,struct hrtimer_clock_base * new_base)195 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
196 {
197 ktime_t expires;
198
199 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
200 return expires < new_base->cpu_base->expires_next;
201 }
202
203 static inline
get_target_base(struct hrtimer_cpu_base * base,int pinned)204 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
205 int pinned)
206 {
207 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
208 if (static_branch_likely(&timers_migration_enabled) && !pinned)
209 return &per_cpu(hrtimer_bases, get_nohz_timer_target());
210 #endif
211 return base;
212 }
213
214 /*
215 * We switch the timer base to a power-optimized selected CPU target,
216 * if:
217 * - NO_HZ_COMMON is enabled
218 * - timer migration is enabled
219 * - the timer callback is not running
220 * - the timer is not the first expiring timer on the new target
221 *
222 * If one of the above requirements is not fulfilled we move the timer
223 * to the current CPU or leave it on the previously assigned CPU if
224 * the timer callback is currently running.
225 */
226 static inline struct hrtimer_clock_base *
switch_hrtimer_base(struct hrtimer * timer,struct hrtimer_clock_base * base,int pinned)227 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
228 int pinned)
229 {
230 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
231 struct hrtimer_clock_base *new_base;
232 int basenum = base->index;
233
234 this_cpu_base = this_cpu_ptr(&hrtimer_bases);
235 new_cpu_base = get_target_base(this_cpu_base, pinned);
236 again:
237 new_base = &new_cpu_base->clock_base[basenum];
238
239 if (base != new_base) {
240 /*
241 * We are trying to move timer to new_base.
242 * However we can't change timer's base while it is running,
243 * so we keep it on the same CPU. No hassle vs. reprogramming
244 * the event source in the high resolution case. The softirq
245 * code will take care of this when the timer function has
246 * completed. There is no conflict as we hold the lock until
247 * the timer is enqueued.
248 */
249 if (unlikely(hrtimer_callback_running(timer)))
250 return base;
251
252 /* See the comment in lock_hrtimer_base() */
253 WRITE_ONCE(timer->base, &migration_base);
254 raw_spin_unlock(&base->cpu_base->lock);
255 raw_spin_lock(&new_base->cpu_base->lock);
256
257 if (new_cpu_base != this_cpu_base &&
258 hrtimer_check_target(timer, new_base)) {
259 raw_spin_unlock(&new_base->cpu_base->lock);
260 raw_spin_lock(&base->cpu_base->lock);
261 new_cpu_base = this_cpu_base;
262 WRITE_ONCE(timer->base, base);
263 goto again;
264 }
265 WRITE_ONCE(timer->base, new_base);
266 } else {
267 if (new_cpu_base != this_cpu_base &&
268 hrtimer_check_target(timer, new_base)) {
269 new_cpu_base = this_cpu_base;
270 goto again;
271 }
272 }
273 return new_base;
274 }
275
276 #else /* CONFIG_SMP */
277
is_migration_base(struct hrtimer_clock_base * base)278 static inline bool is_migration_base(struct hrtimer_clock_base *base)
279 {
280 return false;
281 }
282
283 static inline struct hrtimer_clock_base *
lock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)284 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
285 __acquires(&timer->base->cpu_base->lock)
286 {
287 struct hrtimer_clock_base *base = timer->base;
288
289 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
290
291 return base;
292 }
293
294 # define switch_hrtimer_base(t, b, p) (b)
295
296 #endif /* !CONFIG_SMP */
297
298 /*
299 * Functions for the union type storage format of ktime_t which are
300 * too large for inlining:
301 */
302 #if BITS_PER_LONG < 64
303 /*
304 * Divide a ktime value by a nanosecond value
305 */
__ktime_divns(const ktime_t kt,s64 div)306 s64 __ktime_divns(const ktime_t kt, s64 div)
307 {
308 int sft = 0;
309 s64 dclc;
310 u64 tmp;
311
312 dclc = ktime_to_ns(kt);
313 tmp = dclc < 0 ? -dclc : dclc;
314
315 /* Make sure the divisor is less than 2^32: */
316 while (div >> 32) {
317 sft++;
318 div >>= 1;
319 }
320 tmp >>= sft;
321 do_div(tmp, (u32) div);
322 return dclc < 0 ? -tmp : tmp;
323 }
324 EXPORT_SYMBOL_GPL(__ktime_divns);
325 #endif /* BITS_PER_LONG >= 64 */
326
327 /*
328 * Add two ktime values and do a safety check for overflow:
329 */
ktime_add_safe(const ktime_t lhs,const ktime_t rhs)330 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
331 {
332 ktime_t res = ktime_add_unsafe(lhs, rhs);
333
334 /*
335 * We use KTIME_SEC_MAX here, the maximum timeout which we can
336 * return to user space in a timespec:
337 */
338 if (res < 0 || res < lhs || res < rhs)
339 res = ktime_set(KTIME_SEC_MAX, 0);
340
341 return res;
342 }
343
344 EXPORT_SYMBOL_GPL(ktime_add_safe);
345
346 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
347
348 static const struct debug_obj_descr hrtimer_debug_descr;
349
hrtimer_debug_hint(void * addr)350 static void *hrtimer_debug_hint(void *addr)
351 {
352 return ((struct hrtimer *) addr)->function;
353 }
354
355 /*
356 * fixup_init is called when:
357 * - an active object is initialized
358 */
hrtimer_fixup_init(void * addr,enum debug_obj_state state)359 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
360 {
361 struct hrtimer *timer = addr;
362
363 switch (state) {
364 case ODEBUG_STATE_ACTIVE:
365 hrtimer_cancel(timer);
366 debug_object_init(timer, &hrtimer_debug_descr);
367 return true;
368 default:
369 return false;
370 }
371 }
372
373 /*
374 * fixup_activate is called when:
375 * - an active object is activated
376 * - an unknown non-static object is activated
377 */
hrtimer_fixup_activate(void * addr,enum debug_obj_state state)378 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
379 {
380 switch (state) {
381 case ODEBUG_STATE_ACTIVE:
382 WARN_ON(1);
383 fallthrough;
384 default:
385 return false;
386 }
387 }
388
389 /*
390 * fixup_free is called when:
391 * - an active object is freed
392 */
hrtimer_fixup_free(void * addr,enum debug_obj_state state)393 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
394 {
395 struct hrtimer *timer = addr;
396
397 switch (state) {
398 case ODEBUG_STATE_ACTIVE:
399 hrtimer_cancel(timer);
400 debug_object_free(timer, &hrtimer_debug_descr);
401 return true;
402 default:
403 return false;
404 }
405 }
406
407 static const struct debug_obj_descr hrtimer_debug_descr = {
408 .name = "hrtimer",
409 .debug_hint = hrtimer_debug_hint,
410 .fixup_init = hrtimer_fixup_init,
411 .fixup_activate = hrtimer_fixup_activate,
412 .fixup_free = hrtimer_fixup_free,
413 };
414
debug_hrtimer_init(struct hrtimer * timer)415 static inline void debug_hrtimer_init(struct hrtimer *timer)
416 {
417 debug_object_init(timer, &hrtimer_debug_descr);
418 }
419
debug_hrtimer_activate(struct hrtimer * timer,enum hrtimer_mode mode)420 static inline void debug_hrtimer_activate(struct hrtimer *timer,
421 enum hrtimer_mode mode)
422 {
423 debug_object_activate(timer, &hrtimer_debug_descr);
424 }
425
debug_hrtimer_deactivate(struct hrtimer * timer)426 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
427 {
428 debug_object_deactivate(timer, &hrtimer_debug_descr);
429 }
430
431 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
432 enum hrtimer_mode mode);
433
hrtimer_init_on_stack(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)434 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
435 enum hrtimer_mode mode)
436 {
437 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
438 __hrtimer_init(timer, clock_id, mode);
439 }
440 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
441
442 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
443 clockid_t clock_id, enum hrtimer_mode mode);
444
hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper * sl,clockid_t clock_id,enum hrtimer_mode mode)445 void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl,
446 clockid_t clock_id, enum hrtimer_mode mode)
447 {
448 debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr);
449 __hrtimer_init_sleeper(sl, clock_id, mode);
450 }
451 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack);
452
destroy_hrtimer_on_stack(struct hrtimer * timer)453 void destroy_hrtimer_on_stack(struct hrtimer *timer)
454 {
455 debug_object_free(timer, &hrtimer_debug_descr);
456 }
457 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
458
459 #else
460
debug_hrtimer_init(struct hrtimer * timer)461 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
debug_hrtimer_activate(struct hrtimer * timer,enum hrtimer_mode mode)462 static inline void debug_hrtimer_activate(struct hrtimer *timer,
463 enum hrtimer_mode mode) { }
debug_hrtimer_deactivate(struct hrtimer * timer)464 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
465 #endif
466
467 static inline void
debug_init(struct hrtimer * timer,clockid_t clockid,enum hrtimer_mode mode)468 debug_init(struct hrtimer *timer, clockid_t clockid,
469 enum hrtimer_mode mode)
470 {
471 debug_hrtimer_init(timer);
472 trace_hrtimer_init(timer, clockid, mode);
473 }
474
debug_activate(struct hrtimer * timer,enum hrtimer_mode mode)475 static inline void debug_activate(struct hrtimer *timer,
476 enum hrtimer_mode mode)
477 {
478 debug_hrtimer_activate(timer, mode);
479 trace_hrtimer_start(timer, mode);
480 }
481
debug_deactivate(struct hrtimer * timer)482 static inline void debug_deactivate(struct hrtimer *timer)
483 {
484 debug_hrtimer_deactivate(timer);
485 trace_hrtimer_cancel(timer);
486 }
487
488 static struct hrtimer_clock_base *
__next_base(struct hrtimer_cpu_base * cpu_base,unsigned int * active)489 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
490 {
491 unsigned int idx;
492
493 if (!*active)
494 return NULL;
495
496 idx = __ffs(*active);
497 *active &= ~(1U << idx);
498
499 return &cpu_base->clock_base[idx];
500 }
501
502 #define for_each_active_base(base, cpu_base, active) \
503 while ((base = __next_base((cpu_base), &(active))))
504
__hrtimer_next_event_base(struct hrtimer_cpu_base * cpu_base,const struct hrtimer * exclude,unsigned int active,ktime_t expires_next)505 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
506 const struct hrtimer *exclude,
507 unsigned int active,
508 ktime_t expires_next)
509 {
510 struct hrtimer_clock_base *base;
511 ktime_t expires;
512
513 for_each_active_base(base, cpu_base, active) {
514 struct timerqueue_node *next;
515 struct hrtimer *timer;
516
517 next = timerqueue_getnext(&base->active);
518 timer = container_of(next, struct hrtimer, node);
519 if (timer == exclude) {
520 /* Get to the next timer in the queue. */
521 next = timerqueue_iterate_next(next);
522 if (!next)
523 continue;
524
525 timer = container_of(next, struct hrtimer, node);
526 }
527 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
528 if (expires < expires_next) {
529 expires_next = expires;
530
531 /* Skip cpu_base update if a timer is being excluded. */
532 if (exclude)
533 continue;
534
535 if (timer->is_soft)
536 cpu_base->softirq_next_timer = timer;
537 else
538 cpu_base->next_timer = timer;
539 }
540 }
541 /*
542 * clock_was_set() might have changed base->offset of any of
543 * the clock bases so the result might be negative. Fix it up
544 * to prevent a false positive in clockevents_program_event().
545 */
546 if (expires_next < 0)
547 expires_next = 0;
548 return expires_next;
549 }
550
551 /*
552 * Recomputes cpu_base::*next_timer and returns the earliest expires_next
553 * but does not set cpu_base::*expires_next, that is done by
554 * hrtimer[_force]_reprogram and hrtimer_interrupt only. When updating
555 * cpu_base::*expires_next right away, reprogramming logic would no longer
556 * work.
557 *
558 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
559 * those timers will get run whenever the softirq gets handled, at the end of
560 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
561 *
562 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
563 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
564 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
565 *
566 * @active_mask must be one of:
567 * - HRTIMER_ACTIVE_ALL,
568 * - HRTIMER_ACTIVE_SOFT, or
569 * - HRTIMER_ACTIVE_HARD.
570 */
571 static ktime_t
__hrtimer_get_next_event(struct hrtimer_cpu_base * cpu_base,unsigned int active_mask)572 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
573 {
574 unsigned int active;
575 struct hrtimer *next_timer = NULL;
576 ktime_t expires_next = KTIME_MAX;
577
578 if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
579 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
580 cpu_base->softirq_next_timer = NULL;
581 expires_next = __hrtimer_next_event_base(cpu_base, NULL,
582 active, KTIME_MAX);
583
584 next_timer = cpu_base->softirq_next_timer;
585 }
586
587 if (active_mask & HRTIMER_ACTIVE_HARD) {
588 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
589 cpu_base->next_timer = next_timer;
590 expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
591 expires_next);
592 }
593
594 return expires_next;
595 }
596
hrtimer_update_next_event(struct hrtimer_cpu_base * cpu_base)597 static ktime_t hrtimer_update_next_event(struct hrtimer_cpu_base *cpu_base)
598 {
599 ktime_t expires_next, soft = KTIME_MAX;
600
601 /*
602 * If the soft interrupt has already been activated, ignore the
603 * soft bases. They will be handled in the already raised soft
604 * interrupt.
605 */
606 if (!cpu_base->softirq_activated) {
607 soft = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
608 /*
609 * Update the soft expiry time. clock_settime() might have
610 * affected it.
611 */
612 cpu_base->softirq_expires_next = soft;
613 }
614
615 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_HARD);
616 /*
617 * If a softirq timer is expiring first, update cpu_base->next_timer
618 * and program the hardware with the soft expiry time.
619 */
620 if (expires_next > soft) {
621 cpu_base->next_timer = cpu_base->softirq_next_timer;
622 expires_next = soft;
623 }
624
625 return expires_next;
626 }
627
hrtimer_update_base(struct hrtimer_cpu_base * base)628 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
629 {
630 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
631 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
632 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
633
634 ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
635 offs_real, offs_boot, offs_tai);
636
637 base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
638 base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
639 base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
640
641 return now;
642 }
643
644 /*
645 * Is the high resolution mode active ?
646 */
hrtimer_hres_active(struct hrtimer_cpu_base * cpu_base)647 static inline int hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
648 {
649 return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
650 cpu_base->hres_active : 0;
651 }
652
__hrtimer_reprogram(struct hrtimer_cpu_base * cpu_base,struct hrtimer * next_timer,ktime_t expires_next)653 static void __hrtimer_reprogram(struct hrtimer_cpu_base *cpu_base,
654 struct hrtimer *next_timer,
655 ktime_t expires_next)
656 {
657 cpu_base->expires_next = expires_next;
658
659 /*
660 * If hres is not active, hardware does not have to be
661 * reprogrammed yet.
662 *
663 * If a hang was detected in the last timer interrupt then we
664 * leave the hang delay active in the hardware. We want the
665 * system to make progress. That also prevents the following
666 * scenario:
667 * T1 expires 50ms from now
668 * T2 expires 5s from now
669 *
670 * T1 is removed, so this code is called and would reprogram
671 * the hardware to 5s from now. Any hrtimer_start after that
672 * will not reprogram the hardware due to hang_detected being
673 * set. So we'd effectively block all timers until the T2 event
674 * fires.
675 */
676 if (!hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
677 return;
678
679 tick_program_event(expires_next, 1);
680 }
681
682 /*
683 * Reprogram the event source with checking both queues for the
684 * next event
685 * Called with interrupts disabled and base->lock held
686 */
687 static void
hrtimer_force_reprogram(struct hrtimer_cpu_base * cpu_base,int skip_equal)688 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
689 {
690 ktime_t expires_next;
691
692 expires_next = hrtimer_update_next_event(cpu_base);
693
694 if (skip_equal && expires_next == cpu_base->expires_next)
695 return;
696
697 __hrtimer_reprogram(cpu_base, cpu_base->next_timer, expires_next);
698 }
699
700 /* High resolution timer related functions */
701 #ifdef CONFIG_HIGH_RES_TIMERS
702
703 /*
704 * High resolution timer enabled ?
705 */
706 static bool hrtimer_hres_enabled __read_mostly = true;
707 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
708 EXPORT_SYMBOL_GPL(hrtimer_resolution);
709
710 /*
711 * Enable / Disable high resolution mode
712 */
setup_hrtimer_hres(char * str)713 static int __init setup_hrtimer_hres(char *str)
714 {
715 return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
716 }
717
718 __setup("highres=", setup_hrtimer_hres);
719
720 /*
721 * hrtimer_high_res_enabled - query, if the highres mode is enabled
722 */
hrtimer_is_hres_enabled(void)723 static inline int hrtimer_is_hres_enabled(void)
724 {
725 return hrtimer_hres_enabled;
726 }
727
728 static void retrigger_next_event(void *arg);
729
730 /*
731 * Switch to high resolution mode
732 */
hrtimer_switch_to_hres(void)733 static void hrtimer_switch_to_hres(void)
734 {
735 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
736
737 if (tick_init_highres()) {
738 pr_warn("Could not switch to high resolution mode on CPU %u\n",
739 base->cpu);
740 return;
741 }
742 base->hres_active = 1;
743 hrtimer_resolution = HIGH_RES_NSEC;
744
745 tick_setup_sched_timer(true);
746 /* "Retrigger" the interrupt to get things going */
747 retrigger_next_event(NULL);
748 }
749
750 #else
751
hrtimer_is_hres_enabled(void)752 static inline int hrtimer_is_hres_enabled(void) { return 0; }
hrtimer_switch_to_hres(void)753 static inline void hrtimer_switch_to_hres(void) { }
754
755 #endif /* CONFIG_HIGH_RES_TIMERS */
756 /*
757 * Retrigger next event is called after clock was set with interrupts
758 * disabled through an SMP function call or directly from low level
759 * resume code.
760 *
761 * This is only invoked when:
762 * - CONFIG_HIGH_RES_TIMERS is enabled.
763 * - CONFIG_NOHZ_COMMON is enabled
764 *
765 * For the other cases this function is empty and because the call sites
766 * are optimized out it vanishes as well, i.e. no need for lots of
767 * #ifdeffery.
768 */
retrigger_next_event(void * arg)769 static void retrigger_next_event(void *arg)
770 {
771 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
772
773 /*
774 * When high resolution mode or nohz is active, then the offsets of
775 * CLOCK_REALTIME/TAI/BOOTTIME have to be updated. Otherwise the
776 * next tick will take care of that.
777 *
778 * If high resolution mode is active then the next expiring timer
779 * must be reevaluated and the clock event device reprogrammed if
780 * necessary.
781 *
782 * In the NOHZ case the update of the offset and the reevaluation
783 * of the next expiring timer is enough. The return from the SMP
784 * function call will take care of the reprogramming in case the
785 * CPU was in a NOHZ idle sleep.
786 */
787 if (!hrtimer_hres_active(base) && !tick_nohz_active)
788 return;
789
790 raw_spin_lock(&base->lock);
791 hrtimer_update_base(base);
792 if (hrtimer_hres_active(base))
793 hrtimer_force_reprogram(base, 0);
794 else
795 hrtimer_update_next_event(base);
796 raw_spin_unlock(&base->lock);
797 }
798
799 /*
800 * When a timer is enqueued and expires earlier than the already enqueued
801 * timers, we have to check, whether it expires earlier than the timer for
802 * which the clock event device was armed.
803 *
804 * Called with interrupts disabled and base->cpu_base.lock held
805 */
hrtimer_reprogram(struct hrtimer * timer,bool reprogram)806 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
807 {
808 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
809 struct hrtimer_clock_base *base = timer->base;
810 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
811
812 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
813
814 /*
815 * CLOCK_REALTIME timer might be requested with an absolute
816 * expiry time which is less than base->offset. Set it to 0.
817 */
818 if (expires < 0)
819 expires = 0;
820
821 if (timer->is_soft) {
822 /*
823 * soft hrtimer could be started on a remote CPU. In this
824 * case softirq_expires_next needs to be updated on the
825 * remote CPU. The soft hrtimer will not expire before the
826 * first hard hrtimer on the remote CPU -
827 * hrtimer_check_target() prevents this case.
828 */
829 struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
830
831 if (timer_cpu_base->softirq_activated)
832 return;
833
834 if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
835 return;
836
837 timer_cpu_base->softirq_next_timer = timer;
838 timer_cpu_base->softirq_expires_next = expires;
839
840 if (!ktime_before(expires, timer_cpu_base->expires_next) ||
841 !reprogram)
842 return;
843 }
844
845 /*
846 * If the timer is not on the current cpu, we cannot reprogram
847 * the other cpus clock event device.
848 */
849 if (base->cpu_base != cpu_base)
850 return;
851
852 if (expires >= cpu_base->expires_next)
853 return;
854
855 /*
856 * If the hrtimer interrupt is running, then it will reevaluate the
857 * clock bases and reprogram the clock event device.
858 */
859 if (cpu_base->in_hrtirq)
860 return;
861
862 cpu_base->next_timer = timer;
863
864 __hrtimer_reprogram(cpu_base, timer, expires);
865 }
866
update_needs_ipi(struct hrtimer_cpu_base * cpu_base,unsigned int active)867 static bool update_needs_ipi(struct hrtimer_cpu_base *cpu_base,
868 unsigned int active)
869 {
870 struct hrtimer_clock_base *base;
871 unsigned int seq;
872 ktime_t expires;
873
874 /*
875 * Update the base offsets unconditionally so the following
876 * checks whether the SMP function call is required works.
877 *
878 * The update is safe even when the remote CPU is in the hrtimer
879 * interrupt or the hrtimer soft interrupt and expiring affected
880 * bases. Either it will see the update before handling a base or
881 * it will see it when it finishes the processing and reevaluates
882 * the next expiring timer.
883 */
884 seq = cpu_base->clock_was_set_seq;
885 hrtimer_update_base(cpu_base);
886
887 /*
888 * If the sequence did not change over the update then the
889 * remote CPU already handled it.
890 */
891 if (seq == cpu_base->clock_was_set_seq)
892 return false;
893
894 /*
895 * If the remote CPU is currently handling an hrtimer interrupt, it
896 * will reevaluate the first expiring timer of all clock bases
897 * before reprogramming. Nothing to do here.
898 */
899 if (cpu_base->in_hrtirq)
900 return false;
901
902 /*
903 * Walk the affected clock bases and check whether the first expiring
904 * timer in a clock base is moving ahead of the first expiring timer of
905 * @cpu_base. If so, the IPI must be invoked because per CPU clock
906 * event devices cannot be remotely reprogrammed.
907 */
908 active &= cpu_base->active_bases;
909
910 for_each_active_base(base, cpu_base, active) {
911 struct timerqueue_node *next;
912
913 next = timerqueue_getnext(&base->active);
914 expires = ktime_sub(next->expires, base->offset);
915 if (expires < cpu_base->expires_next)
916 return true;
917
918 /* Extra check for softirq clock bases */
919 if (base->clockid < HRTIMER_BASE_MONOTONIC_SOFT)
920 continue;
921 if (cpu_base->softirq_activated)
922 continue;
923 if (expires < cpu_base->softirq_expires_next)
924 return true;
925 }
926 return false;
927 }
928
929 /*
930 * Clock was set. This might affect CLOCK_REALTIME, CLOCK_TAI and
931 * CLOCK_BOOTTIME (for late sleep time injection).
932 *
933 * This requires to update the offsets for these clocks
934 * vs. CLOCK_MONOTONIC. When high resolution timers are enabled, then this
935 * also requires to eventually reprogram the per CPU clock event devices
936 * when the change moves an affected timer ahead of the first expiring
937 * timer on that CPU. Obviously remote per CPU clock event devices cannot
938 * be reprogrammed. The other reason why an IPI has to be sent is when the
939 * system is in !HIGH_RES and NOHZ mode. The NOHZ mode updates the offsets
940 * in the tick, which obviously might be stopped, so this has to bring out
941 * the remote CPU which might sleep in idle to get this sorted.
942 */
clock_was_set(unsigned int bases)943 void clock_was_set(unsigned int bases)
944 {
945 struct hrtimer_cpu_base *cpu_base = raw_cpu_ptr(&hrtimer_bases);
946 cpumask_var_t mask;
947 int cpu;
948
949 if (!hrtimer_hres_active(cpu_base) && !tick_nohz_active)
950 goto out_timerfd;
951
952 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
953 on_each_cpu(retrigger_next_event, NULL, 1);
954 goto out_timerfd;
955 }
956
957 /* Avoid interrupting CPUs if possible */
958 cpus_read_lock();
959 for_each_online_cpu(cpu) {
960 unsigned long flags;
961
962 cpu_base = &per_cpu(hrtimer_bases, cpu);
963 raw_spin_lock_irqsave(&cpu_base->lock, flags);
964
965 if (update_needs_ipi(cpu_base, bases))
966 cpumask_set_cpu(cpu, mask);
967
968 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
969 }
970
971 preempt_disable();
972 smp_call_function_many(mask, retrigger_next_event, NULL, 1);
973 preempt_enable();
974 cpus_read_unlock();
975 free_cpumask_var(mask);
976
977 out_timerfd:
978 timerfd_clock_was_set();
979 }
980
clock_was_set_work(struct work_struct * work)981 static void clock_was_set_work(struct work_struct *work)
982 {
983 clock_was_set(CLOCK_SET_WALL);
984 }
985
986 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
987
988 /*
989 * Called from timekeeping code to reprogram the hrtimer interrupt device
990 * on all cpus and to notify timerfd.
991 */
clock_was_set_delayed(void)992 void clock_was_set_delayed(void)
993 {
994 schedule_work(&hrtimer_work);
995 }
996
997 /*
998 * Called during resume either directly from via timekeeping_resume()
999 * or in the case of s2idle from tick_unfreeze() to ensure that the
1000 * hrtimers are up to date.
1001 */
hrtimers_resume_local(void)1002 void hrtimers_resume_local(void)
1003 {
1004 lockdep_assert_irqs_disabled();
1005 /* Retrigger on the local CPU */
1006 retrigger_next_event(NULL);
1007 }
1008
1009 /*
1010 * Counterpart to lock_hrtimer_base above:
1011 */
1012 static inline
unlock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)1013 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
1014 __releases(&timer->base->cpu_base->lock)
1015 {
1016 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
1017 }
1018
1019 /**
1020 * hrtimer_forward() - forward the timer expiry
1021 * @timer: hrtimer to forward
1022 * @now: forward past this time
1023 * @interval: the interval to forward
1024 *
1025 * Forward the timer expiry so it will expire in the future.
1026 *
1027 * .. note::
1028 * This only updates the timer expiry value and does not requeue the timer.
1029 *
1030 * There is also a variant of the function hrtimer_forward_now().
1031 *
1032 * Context: Can be safely called from the callback function of @timer. If called
1033 * from other contexts @timer must neither be enqueued nor running the
1034 * callback and the caller needs to take care of serialization.
1035 *
1036 * Return: The number of overruns are returned.
1037 */
hrtimer_forward(struct hrtimer * timer,ktime_t now,ktime_t interval)1038 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
1039 {
1040 u64 orun = 1;
1041 ktime_t delta;
1042
1043 delta = ktime_sub(now, hrtimer_get_expires(timer));
1044
1045 if (delta < 0)
1046 return 0;
1047
1048 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
1049 return 0;
1050
1051 if (interval < hrtimer_resolution)
1052 interval = hrtimer_resolution;
1053
1054 if (unlikely(delta >= interval)) {
1055 s64 incr = ktime_to_ns(interval);
1056
1057 orun = ktime_divns(delta, incr);
1058 hrtimer_add_expires_ns(timer, incr * orun);
1059 if (hrtimer_get_expires_tv64(timer) > now)
1060 return orun;
1061 /*
1062 * This (and the ktime_add() below) is the
1063 * correction for exact:
1064 */
1065 orun++;
1066 }
1067 hrtimer_add_expires(timer, interval);
1068
1069 return orun;
1070 }
1071 EXPORT_SYMBOL_GPL(hrtimer_forward);
1072
1073 /*
1074 * enqueue_hrtimer - internal function to (re)start a timer
1075 *
1076 * The timer is inserted in expiry order. Insertion into the
1077 * red black tree is O(log(n)). Must hold the base lock.
1078 *
1079 * Returns 1 when the new timer is the leftmost timer in the tree.
1080 */
enqueue_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,enum hrtimer_mode mode)1081 static int enqueue_hrtimer(struct hrtimer *timer,
1082 struct hrtimer_clock_base *base,
1083 enum hrtimer_mode mode)
1084 {
1085 debug_activate(timer, mode);
1086 WARN_ON_ONCE(!base->cpu_base->online);
1087
1088 base->cpu_base->active_bases |= 1 << base->index;
1089
1090 /* Pairs with the lockless read in hrtimer_is_queued() */
1091 WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED);
1092
1093 return timerqueue_add(&base->active, &timer->node);
1094 }
1095
1096 /*
1097 * __remove_hrtimer - internal function to remove a timer
1098 *
1099 * Caller must hold the base lock.
1100 *
1101 * High resolution timer mode reprograms the clock event device when the
1102 * timer is the one which expires next. The caller can disable this by setting
1103 * reprogram to zero. This is useful, when the context does a reprogramming
1104 * anyway (e.g. timer interrupt)
1105 */
__remove_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,u8 newstate,int reprogram)1106 static void __remove_hrtimer(struct hrtimer *timer,
1107 struct hrtimer_clock_base *base,
1108 u8 newstate, int reprogram)
1109 {
1110 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1111 u8 state = timer->state;
1112
1113 /* Pairs with the lockless read in hrtimer_is_queued() */
1114 WRITE_ONCE(timer->state, newstate);
1115 if (!(state & HRTIMER_STATE_ENQUEUED))
1116 return;
1117
1118 if (!timerqueue_del(&base->active, &timer->node))
1119 cpu_base->active_bases &= ~(1 << base->index);
1120
1121 /*
1122 * Note: If reprogram is false we do not update
1123 * cpu_base->next_timer. This happens when we remove the first
1124 * timer on a remote cpu. No harm as we never dereference
1125 * cpu_base->next_timer. So the worst thing what can happen is
1126 * an superfluous call to hrtimer_force_reprogram() on the
1127 * remote cpu later on if the same timer gets enqueued again.
1128 */
1129 if (reprogram && timer == cpu_base->next_timer)
1130 hrtimer_force_reprogram(cpu_base, 1);
1131 }
1132
1133 /*
1134 * remove hrtimer, called with base lock held
1135 */
1136 static inline int
remove_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,bool restart,bool keep_local)1137 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base,
1138 bool restart, bool keep_local)
1139 {
1140 u8 state = timer->state;
1141
1142 if (state & HRTIMER_STATE_ENQUEUED) {
1143 bool reprogram;
1144
1145 /*
1146 * Remove the timer and force reprogramming when high
1147 * resolution mode is active and the timer is on the current
1148 * CPU. If we remove a timer on another CPU, reprogramming is
1149 * skipped. The interrupt event on this CPU is fired and
1150 * reprogramming happens in the interrupt handler. This is a
1151 * rare case and less expensive than a smp call.
1152 */
1153 debug_deactivate(timer);
1154 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1155
1156 /*
1157 * If the timer is not restarted then reprogramming is
1158 * required if the timer is local. If it is local and about
1159 * to be restarted, avoid programming it twice (on removal
1160 * and a moment later when it's requeued).
1161 */
1162 if (!restart)
1163 state = HRTIMER_STATE_INACTIVE;
1164 else
1165 reprogram &= !keep_local;
1166
1167 __remove_hrtimer(timer, base, state, reprogram);
1168 return 1;
1169 }
1170 return 0;
1171 }
1172
hrtimer_update_lowres(struct hrtimer * timer,ktime_t tim,const enum hrtimer_mode mode)1173 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1174 const enum hrtimer_mode mode)
1175 {
1176 #ifdef CONFIG_TIME_LOW_RES
1177 /*
1178 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1179 * granular time values. For relative timers we add hrtimer_resolution
1180 * (i.e. one jiffy) to prevent short timeouts.
1181 */
1182 timer->is_rel = mode & HRTIMER_MODE_REL;
1183 if (timer->is_rel)
1184 tim = ktime_add_safe(tim, hrtimer_resolution);
1185 #endif
1186 return tim;
1187 }
1188
1189 static void
hrtimer_update_softirq_timer(struct hrtimer_cpu_base * cpu_base,bool reprogram)1190 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1191 {
1192 ktime_t expires;
1193
1194 /*
1195 * Find the next SOFT expiration.
1196 */
1197 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1198
1199 /*
1200 * reprogramming needs to be triggered, even if the next soft
1201 * hrtimer expires at the same time than the next hard
1202 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1203 */
1204 if (expires == KTIME_MAX)
1205 return;
1206
1207 /*
1208 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1209 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1210 */
1211 hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1212 }
1213
__hrtimer_start_range_ns(struct hrtimer * timer,ktime_t tim,u64 delta_ns,const enum hrtimer_mode mode,struct hrtimer_clock_base * base)1214 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1215 u64 delta_ns, const enum hrtimer_mode mode,
1216 struct hrtimer_clock_base *base)
1217 {
1218 struct hrtimer_clock_base *new_base;
1219 bool force_local, first;
1220
1221 /*
1222 * If the timer is on the local cpu base and is the first expiring
1223 * timer then this might end up reprogramming the hardware twice
1224 * (on removal and on enqueue). To avoid that by prevent the
1225 * reprogram on removal, keep the timer local to the current CPU
1226 * and enforce reprogramming after it is queued no matter whether
1227 * it is the new first expiring timer again or not.
1228 */
1229 force_local = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1230 force_local &= base->cpu_base->next_timer == timer;
1231
1232 /*
1233 * Remove an active timer from the queue. In case it is not queued
1234 * on the current CPU, make sure that remove_hrtimer() updates the
1235 * remote data correctly.
1236 *
1237 * If it's on the current CPU and the first expiring timer, then
1238 * skip reprogramming, keep the timer local and enforce
1239 * reprogramming later if it was the first expiring timer. This
1240 * avoids programming the underlying clock event twice (once at
1241 * removal and once after enqueue).
1242 */
1243 remove_hrtimer(timer, base, true, force_local);
1244
1245 if (mode & HRTIMER_MODE_REL)
1246 tim = ktime_add_safe(tim, base->get_time());
1247
1248 tim = hrtimer_update_lowres(timer, tim, mode);
1249
1250 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1251
1252 /* Switch the timer base, if necessary: */
1253 if (!force_local) {
1254 new_base = switch_hrtimer_base(timer, base,
1255 mode & HRTIMER_MODE_PINNED);
1256 } else {
1257 new_base = base;
1258 }
1259
1260 first = enqueue_hrtimer(timer, new_base, mode);
1261 if (!force_local)
1262 return first;
1263
1264 /*
1265 * Timer was forced to stay on the current CPU to avoid
1266 * reprogramming on removal and enqueue. Force reprogram the
1267 * hardware by evaluating the new first expiring timer.
1268 */
1269 hrtimer_force_reprogram(new_base->cpu_base, 1);
1270 return 0;
1271 }
1272
1273 /**
1274 * hrtimer_start_range_ns - (re)start an hrtimer
1275 * @timer: the timer to be added
1276 * @tim: expiry time
1277 * @delta_ns: "slack" range for the timer
1278 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or
1279 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1280 * softirq based mode is considered for debug purpose only!
1281 */
hrtimer_start_range_ns(struct hrtimer * timer,ktime_t tim,u64 delta_ns,const enum hrtimer_mode mode)1282 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1283 u64 delta_ns, const enum hrtimer_mode mode)
1284 {
1285 struct hrtimer_clock_base *base;
1286 unsigned long flags;
1287
1288 if (WARN_ON_ONCE(!timer->function))
1289 return;
1290 /*
1291 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1292 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard
1293 * expiry mode because unmarked timers are moved to softirq expiry.
1294 */
1295 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1296 WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1297 else
1298 WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard);
1299
1300 base = lock_hrtimer_base(timer, &flags);
1301
1302 if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1303 hrtimer_reprogram(timer, true);
1304
1305 unlock_hrtimer_base(timer, &flags);
1306 }
1307 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1308
1309 /**
1310 * hrtimer_try_to_cancel - try to deactivate a timer
1311 * @timer: hrtimer to stop
1312 *
1313 * Returns:
1314 *
1315 * * 0 when the timer was not active
1316 * * 1 when the timer was active
1317 * * -1 when the timer is currently executing the callback function and
1318 * cannot be stopped
1319 */
hrtimer_try_to_cancel(struct hrtimer * timer)1320 int hrtimer_try_to_cancel(struct hrtimer *timer)
1321 {
1322 struct hrtimer_clock_base *base;
1323 unsigned long flags;
1324 int ret = -1;
1325
1326 /*
1327 * Check lockless first. If the timer is not active (neither
1328 * enqueued nor running the callback, nothing to do here. The
1329 * base lock does not serialize against a concurrent enqueue,
1330 * so we can avoid taking it.
1331 */
1332 if (!hrtimer_active(timer))
1333 return 0;
1334
1335 base = lock_hrtimer_base(timer, &flags);
1336
1337 if (!hrtimer_callback_running(timer))
1338 ret = remove_hrtimer(timer, base, false, false);
1339
1340 unlock_hrtimer_base(timer, &flags);
1341
1342 return ret;
1343
1344 }
1345 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1346
1347 #ifdef CONFIG_PREEMPT_RT
hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base * base)1348 static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base)
1349 {
1350 spin_lock_init(&base->softirq_expiry_lock);
1351 }
1352
hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base * base)1353 static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base)
1354 __acquires(&base->softirq_expiry_lock)
1355 {
1356 spin_lock(&base->softirq_expiry_lock);
1357 }
1358
hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base * base)1359 static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base)
1360 __releases(&base->softirq_expiry_lock)
1361 {
1362 spin_unlock(&base->softirq_expiry_lock);
1363 }
1364
1365 /*
1366 * The counterpart to hrtimer_cancel_wait_running().
1367 *
1368 * If there is a waiter for cpu_base->expiry_lock, then it was waiting for
1369 * the timer callback to finish. Drop expiry_lock and reacquire it. That
1370 * allows the waiter to acquire the lock and make progress.
1371 */
hrtimer_sync_wait_running(struct hrtimer_cpu_base * cpu_base,unsigned long flags)1372 static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base,
1373 unsigned long flags)
1374 {
1375 if (atomic_read(&cpu_base->timer_waiters)) {
1376 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1377 spin_unlock(&cpu_base->softirq_expiry_lock);
1378 spin_lock(&cpu_base->softirq_expiry_lock);
1379 raw_spin_lock_irq(&cpu_base->lock);
1380 }
1381 }
1382
1383 /*
1384 * This function is called on PREEMPT_RT kernels when the fast path
1385 * deletion of a timer failed because the timer callback function was
1386 * running.
1387 *
1388 * This prevents priority inversion: if the soft irq thread is preempted
1389 * in the middle of a timer callback, then calling del_timer_sync() can
1390 * lead to two issues:
1391 *
1392 * - If the caller is on a remote CPU then it has to spin wait for the timer
1393 * handler to complete. This can result in unbound priority inversion.
1394 *
1395 * - If the caller originates from the task which preempted the timer
1396 * handler on the same CPU, then spin waiting for the timer handler to
1397 * complete is never going to end.
1398 */
hrtimer_cancel_wait_running(const struct hrtimer * timer)1399 void hrtimer_cancel_wait_running(const struct hrtimer *timer)
1400 {
1401 /* Lockless read. Prevent the compiler from reloading it below */
1402 struct hrtimer_clock_base *base = READ_ONCE(timer->base);
1403
1404 /*
1405 * Just relax if the timer expires in hard interrupt context or if
1406 * it is currently on the migration base.
1407 */
1408 if (!timer->is_soft || is_migration_base(base)) {
1409 cpu_relax();
1410 return;
1411 }
1412
1413 /*
1414 * Mark the base as contended and grab the expiry lock, which is
1415 * held by the softirq across the timer callback. Drop the lock
1416 * immediately so the softirq can expire the next timer. In theory
1417 * the timer could already be running again, but that's more than
1418 * unlikely and just causes another wait loop.
1419 */
1420 atomic_inc(&base->cpu_base->timer_waiters);
1421 spin_lock_bh(&base->cpu_base->softirq_expiry_lock);
1422 atomic_dec(&base->cpu_base->timer_waiters);
1423 spin_unlock_bh(&base->cpu_base->softirq_expiry_lock);
1424 }
1425 #else
1426 static inline void
hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base * base)1427 hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { }
1428 static inline void
hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base * base)1429 hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { }
1430 static inline void
hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base * base)1431 hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { }
hrtimer_sync_wait_running(struct hrtimer_cpu_base * base,unsigned long flags)1432 static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base,
1433 unsigned long flags) { }
1434 #endif
1435
1436 /**
1437 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1438 * @timer: the timer to be cancelled
1439 *
1440 * Returns:
1441 * 0 when the timer was not active
1442 * 1 when the timer was active
1443 */
hrtimer_cancel(struct hrtimer * timer)1444 int hrtimer_cancel(struct hrtimer *timer)
1445 {
1446 int ret;
1447
1448 do {
1449 ret = hrtimer_try_to_cancel(timer);
1450
1451 if (ret < 0)
1452 hrtimer_cancel_wait_running(timer);
1453 } while (ret < 0);
1454 return ret;
1455 }
1456 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1457
1458 /**
1459 * __hrtimer_get_remaining - get remaining time for the timer
1460 * @timer: the timer to read
1461 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y
1462 */
__hrtimer_get_remaining(const struct hrtimer * timer,bool adjust)1463 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1464 {
1465 unsigned long flags;
1466 ktime_t rem;
1467
1468 lock_hrtimer_base(timer, &flags);
1469 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1470 rem = hrtimer_expires_remaining_adjusted(timer);
1471 else
1472 rem = hrtimer_expires_remaining(timer);
1473 unlock_hrtimer_base(timer, &flags);
1474
1475 return rem;
1476 }
1477 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1478
1479 #ifdef CONFIG_NO_HZ_COMMON
1480 /**
1481 * hrtimer_get_next_event - get the time until next expiry event
1482 *
1483 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1484 */
hrtimer_get_next_event(void)1485 u64 hrtimer_get_next_event(void)
1486 {
1487 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1488 u64 expires = KTIME_MAX;
1489 unsigned long flags;
1490
1491 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1492
1493 if (!hrtimer_hres_active(cpu_base))
1494 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1495
1496 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1497
1498 return expires;
1499 }
1500
1501 /**
1502 * hrtimer_next_event_without - time until next expiry event w/o one timer
1503 * @exclude: timer to exclude
1504 *
1505 * Returns the next expiry time over all timers except for the @exclude one or
1506 * KTIME_MAX if none of them is pending.
1507 */
hrtimer_next_event_without(const struct hrtimer * exclude)1508 u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1509 {
1510 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1511 u64 expires = KTIME_MAX;
1512 unsigned long flags;
1513
1514 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1515
1516 if (hrtimer_hres_active(cpu_base)) {
1517 unsigned int active;
1518
1519 if (!cpu_base->softirq_activated) {
1520 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1521 expires = __hrtimer_next_event_base(cpu_base, exclude,
1522 active, KTIME_MAX);
1523 }
1524 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1525 expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1526 expires);
1527 }
1528
1529 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1530
1531 return expires;
1532 }
1533 #endif
1534
hrtimer_clockid_to_base(clockid_t clock_id)1535 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1536 {
1537 if (likely(clock_id < MAX_CLOCKS)) {
1538 int base = hrtimer_clock_to_base_table[clock_id];
1539
1540 if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1541 return base;
1542 }
1543 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1544 return HRTIMER_BASE_MONOTONIC;
1545 }
1546
__hrtimer_init(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)1547 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1548 enum hrtimer_mode mode)
1549 {
1550 bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1551 struct hrtimer_cpu_base *cpu_base;
1552 int base;
1553
1554 /*
1555 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly
1556 * marked for hard interrupt expiry mode are moved into soft
1557 * interrupt context for latency reasons and because the callbacks
1558 * can invoke functions which might sleep on RT, e.g. spin_lock().
1559 */
1560 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD))
1561 softtimer = true;
1562
1563 memset(timer, 0, sizeof(struct hrtimer));
1564
1565 cpu_base = raw_cpu_ptr(&hrtimer_bases);
1566
1567 /*
1568 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1569 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1570 * ensure POSIX compliance.
1571 */
1572 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1573 clock_id = CLOCK_MONOTONIC;
1574
1575 base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1576 base += hrtimer_clockid_to_base(clock_id);
1577 timer->is_soft = softtimer;
1578 timer->is_hard = !!(mode & HRTIMER_MODE_HARD);
1579 timer->base = &cpu_base->clock_base[base];
1580 timerqueue_init(&timer->node);
1581 }
1582
1583 /**
1584 * hrtimer_init - initialize a timer to the given clock
1585 * @timer: the timer to be initialized
1586 * @clock_id: the clock to be used
1587 * @mode: The modes which are relevant for initialization:
1588 * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1589 * HRTIMER_MODE_REL_SOFT
1590 *
1591 * The PINNED variants of the above can be handed in,
1592 * but the PINNED bit is ignored as pinning happens
1593 * when the hrtimer is started
1594 */
hrtimer_init(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)1595 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1596 enum hrtimer_mode mode)
1597 {
1598 debug_init(timer, clock_id, mode);
1599 __hrtimer_init(timer, clock_id, mode);
1600 }
1601 EXPORT_SYMBOL_GPL(hrtimer_init);
1602
1603 /*
1604 * A timer is active, when it is enqueued into the rbtree or the
1605 * callback function is running or it's in the state of being migrated
1606 * to another cpu.
1607 *
1608 * It is important for this function to not return a false negative.
1609 */
hrtimer_active(const struct hrtimer * timer)1610 bool hrtimer_active(const struct hrtimer *timer)
1611 {
1612 struct hrtimer_clock_base *base;
1613 unsigned int seq;
1614
1615 do {
1616 base = READ_ONCE(timer->base);
1617 seq = raw_read_seqcount_begin(&base->seq);
1618
1619 if (timer->state != HRTIMER_STATE_INACTIVE ||
1620 base->running == timer)
1621 return true;
1622
1623 } while (read_seqcount_retry(&base->seq, seq) ||
1624 base != READ_ONCE(timer->base));
1625
1626 return false;
1627 }
1628 EXPORT_SYMBOL_GPL(hrtimer_active);
1629
1630 /*
1631 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1632 * distinct sections:
1633 *
1634 * - queued: the timer is queued
1635 * - callback: the timer is being ran
1636 * - post: the timer is inactive or (re)queued
1637 *
1638 * On the read side we ensure we observe timer->state and cpu_base->running
1639 * from the same section, if anything changed while we looked at it, we retry.
1640 * This includes timer->base changing because sequence numbers alone are
1641 * insufficient for that.
1642 *
1643 * The sequence numbers are required because otherwise we could still observe
1644 * a false negative if the read side got smeared over multiple consecutive
1645 * __run_hrtimer() invocations.
1646 */
1647
__run_hrtimer(struct hrtimer_cpu_base * cpu_base,struct hrtimer_clock_base * base,struct hrtimer * timer,ktime_t * now,unsigned long flags)1648 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1649 struct hrtimer_clock_base *base,
1650 struct hrtimer *timer, ktime_t *now,
1651 unsigned long flags) __must_hold(&cpu_base->lock)
1652 {
1653 enum hrtimer_restart (*fn)(struct hrtimer *);
1654 bool expires_in_hardirq;
1655 int restart;
1656
1657 lockdep_assert_held(&cpu_base->lock);
1658
1659 debug_deactivate(timer);
1660 base->running = timer;
1661
1662 /*
1663 * Separate the ->running assignment from the ->state assignment.
1664 *
1665 * As with a regular write barrier, this ensures the read side in
1666 * hrtimer_active() cannot observe base->running == NULL &&
1667 * timer->state == INACTIVE.
1668 */
1669 raw_write_seqcount_barrier(&base->seq);
1670
1671 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1672 fn = timer->function;
1673
1674 /*
1675 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1676 * timer is restarted with a period then it becomes an absolute
1677 * timer. If its not restarted it does not matter.
1678 */
1679 if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1680 timer->is_rel = false;
1681
1682 /*
1683 * The timer is marked as running in the CPU base, so it is
1684 * protected against migration to a different CPU even if the lock
1685 * is dropped.
1686 */
1687 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1688 trace_hrtimer_expire_entry(timer, now);
1689 expires_in_hardirq = lockdep_hrtimer_enter(timer);
1690
1691 restart = fn(timer);
1692
1693 lockdep_hrtimer_exit(expires_in_hardirq);
1694 trace_hrtimer_expire_exit(timer);
1695 raw_spin_lock_irq(&cpu_base->lock);
1696
1697 /*
1698 * Note: We clear the running state after enqueue_hrtimer and
1699 * we do not reprogram the event hardware. Happens either in
1700 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1701 *
1702 * Note: Because we dropped the cpu_base->lock above,
1703 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1704 * for us already.
1705 */
1706 if (restart != HRTIMER_NORESTART &&
1707 !(timer->state & HRTIMER_STATE_ENQUEUED))
1708 enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1709
1710 /*
1711 * Separate the ->running assignment from the ->state assignment.
1712 *
1713 * As with a regular write barrier, this ensures the read side in
1714 * hrtimer_active() cannot observe base->running.timer == NULL &&
1715 * timer->state == INACTIVE.
1716 */
1717 raw_write_seqcount_barrier(&base->seq);
1718
1719 WARN_ON_ONCE(base->running != timer);
1720 base->running = NULL;
1721 }
1722
__hrtimer_run_queues(struct hrtimer_cpu_base * cpu_base,ktime_t now,unsigned long flags,unsigned int active_mask)1723 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1724 unsigned long flags, unsigned int active_mask)
1725 {
1726 struct hrtimer_clock_base *base;
1727 unsigned int active = cpu_base->active_bases & active_mask;
1728
1729 for_each_active_base(base, cpu_base, active) {
1730 struct timerqueue_node *node;
1731 ktime_t basenow;
1732
1733 basenow = ktime_add(now, base->offset);
1734
1735 while ((node = timerqueue_getnext(&base->active))) {
1736 struct hrtimer *timer;
1737
1738 timer = container_of(node, struct hrtimer, node);
1739
1740 /*
1741 * The immediate goal for using the softexpires is
1742 * minimizing wakeups, not running timers at the
1743 * earliest interrupt after their soft expiration.
1744 * This allows us to avoid using a Priority Search
1745 * Tree, which can answer a stabbing query for
1746 * overlapping intervals and instead use the simple
1747 * BST we already have.
1748 * We don't add extra wakeups by delaying timers that
1749 * are right-of a not yet expired timer, because that
1750 * timer will have to trigger a wakeup anyway.
1751 */
1752 if (basenow < hrtimer_get_softexpires_tv64(timer))
1753 break;
1754
1755 __run_hrtimer(cpu_base, base, timer, &basenow, flags);
1756 if (active_mask == HRTIMER_ACTIVE_SOFT)
1757 hrtimer_sync_wait_running(cpu_base, flags);
1758 }
1759 }
1760 }
1761
hrtimer_run_softirq(void)1762 static __latent_entropy void hrtimer_run_softirq(void)
1763 {
1764 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1765 unsigned long flags;
1766 ktime_t now;
1767
1768 hrtimer_cpu_base_lock_expiry(cpu_base);
1769 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1770
1771 now = hrtimer_update_base(cpu_base);
1772 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1773
1774 cpu_base->softirq_activated = 0;
1775 hrtimer_update_softirq_timer(cpu_base, true);
1776
1777 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1778 hrtimer_cpu_base_unlock_expiry(cpu_base);
1779 }
1780
1781 #ifdef CONFIG_HIGH_RES_TIMERS
1782
1783 /*
1784 * High resolution timer interrupt
1785 * Called with interrupts disabled
1786 */
hrtimer_interrupt(struct clock_event_device * dev)1787 void hrtimer_interrupt(struct clock_event_device *dev)
1788 {
1789 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1790 ktime_t expires_next, now, entry_time, delta;
1791 unsigned long flags;
1792 int retries = 0;
1793
1794 BUG_ON(!cpu_base->hres_active);
1795 cpu_base->nr_events++;
1796 dev->next_event = KTIME_MAX;
1797
1798 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1799 entry_time = now = hrtimer_update_base(cpu_base);
1800 retry:
1801 cpu_base->in_hrtirq = 1;
1802 /*
1803 * We set expires_next to KTIME_MAX here with cpu_base->lock
1804 * held to prevent that a timer is enqueued in our queue via
1805 * the migration code. This does not affect enqueueing of
1806 * timers which run their callback and need to be requeued on
1807 * this CPU.
1808 */
1809 cpu_base->expires_next = KTIME_MAX;
1810
1811 if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1812 cpu_base->softirq_expires_next = KTIME_MAX;
1813 cpu_base->softirq_activated = 1;
1814 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1815 }
1816
1817 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1818
1819 /* Reevaluate the clock bases for the [soft] next expiry */
1820 expires_next = hrtimer_update_next_event(cpu_base);
1821 /*
1822 * Store the new expiry value so the migration code can verify
1823 * against it.
1824 */
1825 cpu_base->expires_next = expires_next;
1826 cpu_base->in_hrtirq = 0;
1827 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1828
1829 /* Reprogramming necessary ? */
1830 if (!tick_program_event(expires_next, 0)) {
1831 cpu_base->hang_detected = 0;
1832 return;
1833 }
1834
1835 /*
1836 * The next timer was already expired due to:
1837 * - tracing
1838 * - long lasting callbacks
1839 * - being scheduled away when running in a VM
1840 *
1841 * We need to prevent that we loop forever in the hrtimer
1842 * interrupt routine. We give it 3 attempts to avoid
1843 * overreacting on some spurious event.
1844 *
1845 * Acquire base lock for updating the offsets and retrieving
1846 * the current time.
1847 */
1848 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1849 now = hrtimer_update_base(cpu_base);
1850 cpu_base->nr_retries++;
1851 if (++retries < 3)
1852 goto retry;
1853 /*
1854 * Give the system a chance to do something else than looping
1855 * here. We stored the entry time, so we know exactly how long
1856 * we spent here. We schedule the next event this amount of
1857 * time away.
1858 */
1859 cpu_base->nr_hangs++;
1860 cpu_base->hang_detected = 1;
1861 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1862
1863 delta = ktime_sub(now, entry_time);
1864 if ((unsigned int)delta > cpu_base->max_hang_time)
1865 cpu_base->max_hang_time = (unsigned int) delta;
1866 /*
1867 * Limit it to a sensible value as we enforce a longer
1868 * delay. Give the CPU at least 100ms to catch up.
1869 */
1870 if (delta > 100 * NSEC_PER_MSEC)
1871 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1872 else
1873 expires_next = ktime_add(now, delta);
1874 tick_program_event(expires_next, 1);
1875 pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
1876 }
1877 #endif /* !CONFIG_HIGH_RES_TIMERS */
1878
1879 /*
1880 * Called from run_local_timers in hardirq context every jiffy
1881 */
hrtimer_run_queues(void)1882 void hrtimer_run_queues(void)
1883 {
1884 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1885 unsigned long flags;
1886 ktime_t now;
1887
1888 if (hrtimer_hres_active(cpu_base))
1889 return;
1890
1891 /*
1892 * This _is_ ugly: We have to check periodically, whether we
1893 * can switch to highres and / or nohz mode. The clocksource
1894 * switch happens with xtime_lock held. Notification from
1895 * there only sets the check bit in the tick_oneshot code,
1896 * otherwise we might deadlock vs. xtime_lock.
1897 */
1898 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1899 hrtimer_switch_to_hres();
1900 return;
1901 }
1902
1903 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1904 now = hrtimer_update_base(cpu_base);
1905
1906 if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1907 cpu_base->softirq_expires_next = KTIME_MAX;
1908 cpu_base->softirq_activated = 1;
1909 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1910 }
1911
1912 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1913 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1914 }
1915
1916 /*
1917 * Sleep related functions:
1918 */
hrtimer_wakeup(struct hrtimer * timer)1919 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1920 {
1921 struct hrtimer_sleeper *t =
1922 container_of(timer, struct hrtimer_sleeper, timer);
1923 struct task_struct *task = t->task;
1924
1925 t->task = NULL;
1926 if (task)
1927 wake_up_process(task);
1928
1929 return HRTIMER_NORESTART;
1930 }
1931
1932 /**
1933 * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer
1934 * @sl: sleeper to be started
1935 * @mode: timer mode abs/rel
1936 *
1937 * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers
1938 * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context)
1939 */
hrtimer_sleeper_start_expires(struct hrtimer_sleeper * sl,enum hrtimer_mode mode)1940 void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl,
1941 enum hrtimer_mode mode)
1942 {
1943 /*
1944 * Make the enqueue delivery mode check work on RT. If the sleeper
1945 * was initialized for hard interrupt delivery, force the mode bit.
1946 * This is a special case for hrtimer_sleepers because
1947 * hrtimer_init_sleeper() determines the delivery mode on RT so the
1948 * fiddling with this decision is avoided at the call sites.
1949 */
1950 if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard)
1951 mode |= HRTIMER_MODE_HARD;
1952
1953 hrtimer_start_expires(&sl->timer, mode);
1954 }
1955 EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires);
1956
__hrtimer_init_sleeper(struct hrtimer_sleeper * sl,clockid_t clock_id,enum hrtimer_mode mode)1957 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
1958 clockid_t clock_id, enum hrtimer_mode mode)
1959 {
1960 /*
1961 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly
1962 * marked for hard interrupt expiry mode are moved into soft
1963 * interrupt context either for latency reasons or because the
1964 * hrtimer callback takes regular spinlocks or invokes other
1965 * functions which are not suitable for hard interrupt context on
1966 * PREEMPT_RT.
1967 *
1968 * The hrtimer_sleeper callback is RT compatible in hard interrupt
1969 * context, but there is a latency concern: Untrusted userspace can
1970 * spawn many threads which arm timers for the same expiry time on
1971 * the same CPU. That causes a latency spike due to the wakeup of
1972 * a gazillion threads.
1973 *
1974 * OTOH, privileged real-time user space applications rely on the
1975 * low latency of hard interrupt wakeups. If the current task is in
1976 * a real-time scheduling class, mark the mode for hard interrupt
1977 * expiry.
1978 */
1979 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
1980 if (rt_or_dl_task_policy(current) && !(mode & HRTIMER_MODE_SOFT))
1981 mode |= HRTIMER_MODE_HARD;
1982 }
1983
1984 __hrtimer_init(&sl->timer, clock_id, mode);
1985 sl->timer.function = hrtimer_wakeup;
1986 sl->task = current;
1987 }
1988
1989 /**
1990 * hrtimer_init_sleeper - initialize sleeper to the given clock
1991 * @sl: sleeper to be initialized
1992 * @clock_id: the clock to be used
1993 * @mode: timer mode abs/rel
1994 */
hrtimer_init_sleeper(struct hrtimer_sleeper * sl,clockid_t clock_id,enum hrtimer_mode mode)1995 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id,
1996 enum hrtimer_mode mode)
1997 {
1998 debug_init(&sl->timer, clock_id, mode);
1999 __hrtimer_init_sleeper(sl, clock_id, mode);
2000
2001 }
2002 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
2003
nanosleep_copyout(struct restart_block * restart,struct timespec64 * ts)2004 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
2005 {
2006 switch(restart->nanosleep.type) {
2007 #ifdef CONFIG_COMPAT_32BIT_TIME
2008 case TT_COMPAT:
2009 if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp))
2010 return -EFAULT;
2011 break;
2012 #endif
2013 case TT_NATIVE:
2014 if (put_timespec64(ts, restart->nanosleep.rmtp))
2015 return -EFAULT;
2016 break;
2017 default:
2018 BUG();
2019 }
2020 return -ERESTART_RESTARTBLOCK;
2021 }
2022
do_nanosleep(struct hrtimer_sleeper * t,enum hrtimer_mode mode)2023 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
2024 {
2025 struct restart_block *restart;
2026
2027 do {
2028 set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2029 hrtimer_sleeper_start_expires(t, mode);
2030
2031 if (likely(t->task))
2032 schedule();
2033
2034 hrtimer_cancel(&t->timer);
2035 mode = HRTIMER_MODE_ABS;
2036
2037 } while (t->task && !signal_pending(current));
2038
2039 __set_current_state(TASK_RUNNING);
2040
2041 if (!t->task)
2042 return 0;
2043
2044 restart = ¤t->restart_block;
2045 if (restart->nanosleep.type != TT_NONE) {
2046 ktime_t rem = hrtimer_expires_remaining(&t->timer);
2047 struct timespec64 rmt;
2048
2049 if (rem <= 0)
2050 return 0;
2051 rmt = ktime_to_timespec64(rem);
2052
2053 return nanosleep_copyout(restart, &rmt);
2054 }
2055 return -ERESTART_RESTARTBLOCK;
2056 }
2057
hrtimer_nanosleep_restart(struct restart_block * restart)2058 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
2059 {
2060 struct hrtimer_sleeper t;
2061 int ret;
2062
2063 hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid,
2064 HRTIMER_MODE_ABS);
2065 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
2066 ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
2067 destroy_hrtimer_on_stack(&t.timer);
2068 return ret;
2069 }
2070
hrtimer_nanosleep(ktime_t rqtp,const enum hrtimer_mode mode,const clockid_t clockid)2071 long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode,
2072 const clockid_t clockid)
2073 {
2074 struct restart_block *restart;
2075 struct hrtimer_sleeper t;
2076 int ret = 0;
2077
2078 hrtimer_init_sleeper_on_stack(&t, clockid, mode);
2079 hrtimer_set_expires_range_ns(&t.timer, rqtp, current->timer_slack_ns);
2080 ret = do_nanosleep(&t, mode);
2081 if (ret != -ERESTART_RESTARTBLOCK)
2082 goto out;
2083
2084 /* Absolute timers do not update the rmtp value and restart: */
2085 if (mode == HRTIMER_MODE_ABS) {
2086 ret = -ERESTARTNOHAND;
2087 goto out;
2088 }
2089
2090 restart = ¤t->restart_block;
2091 restart->nanosleep.clockid = t.timer.base->clockid;
2092 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
2093 set_restart_fn(restart, hrtimer_nanosleep_restart);
2094 out:
2095 destroy_hrtimer_on_stack(&t.timer);
2096 return ret;
2097 }
2098
2099 #ifdef CONFIG_64BIT
2100
SYSCALL_DEFINE2(nanosleep,struct __kernel_timespec __user *,rqtp,struct __kernel_timespec __user *,rmtp)2101 SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp,
2102 struct __kernel_timespec __user *, rmtp)
2103 {
2104 struct timespec64 tu;
2105
2106 if (get_timespec64(&tu, rqtp))
2107 return -EFAULT;
2108
2109 if (!timespec64_valid(&tu))
2110 return -EINVAL;
2111
2112 current->restart_block.fn = do_no_restart_syscall;
2113 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
2114 current->restart_block.nanosleep.rmtp = rmtp;
2115 return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
2116 CLOCK_MONOTONIC);
2117 }
2118
2119 #endif
2120
2121 #ifdef CONFIG_COMPAT_32BIT_TIME
2122
SYSCALL_DEFINE2(nanosleep_time32,struct old_timespec32 __user *,rqtp,struct old_timespec32 __user *,rmtp)2123 SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp,
2124 struct old_timespec32 __user *, rmtp)
2125 {
2126 struct timespec64 tu;
2127
2128 if (get_old_timespec32(&tu, rqtp))
2129 return -EFAULT;
2130
2131 if (!timespec64_valid(&tu))
2132 return -EINVAL;
2133
2134 current->restart_block.fn = do_no_restart_syscall;
2135 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
2136 current->restart_block.nanosleep.compat_rmtp = rmtp;
2137 return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
2138 CLOCK_MONOTONIC);
2139 }
2140 #endif
2141
2142 /*
2143 * Functions related to boot-time initialization:
2144 */
hrtimers_prepare_cpu(unsigned int cpu)2145 int hrtimers_prepare_cpu(unsigned int cpu)
2146 {
2147 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
2148 int i;
2149
2150 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2151 struct hrtimer_clock_base *clock_b = &cpu_base->clock_base[i];
2152
2153 clock_b->cpu_base = cpu_base;
2154 seqcount_raw_spinlock_init(&clock_b->seq, &cpu_base->lock);
2155 timerqueue_init_head(&clock_b->active);
2156 }
2157
2158 cpu_base->cpu = cpu;
2159 cpu_base->active_bases = 0;
2160 cpu_base->hres_active = 0;
2161 cpu_base->hang_detected = 0;
2162 cpu_base->next_timer = NULL;
2163 cpu_base->softirq_next_timer = NULL;
2164 cpu_base->expires_next = KTIME_MAX;
2165 cpu_base->softirq_expires_next = KTIME_MAX;
2166 cpu_base->online = 1;
2167 hrtimer_cpu_base_init_expiry_lock(cpu_base);
2168 return 0;
2169 }
2170
2171 #ifdef CONFIG_HOTPLUG_CPU
2172
migrate_hrtimer_list(struct hrtimer_clock_base * old_base,struct hrtimer_clock_base * new_base)2173 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
2174 struct hrtimer_clock_base *new_base)
2175 {
2176 struct hrtimer *timer;
2177 struct timerqueue_node *node;
2178
2179 while ((node = timerqueue_getnext(&old_base->active))) {
2180 timer = container_of(node, struct hrtimer, node);
2181 BUG_ON(hrtimer_callback_running(timer));
2182 debug_deactivate(timer);
2183
2184 /*
2185 * Mark it as ENQUEUED not INACTIVE otherwise the
2186 * timer could be seen as !active and just vanish away
2187 * under us on another CPU
2188 */
2189 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
2190 timer->base = new_base;
2191 /*
2192 * Enqueue the timers on the new cpu. This does not
2193 * reprogram the event device in case the timer
2194 * expires before the earliest on this CPU, but we run
2195 * hrtimer_interrupt after we migrated everything to
2196 * sort out already expired timers and reprogram the
2197 * event device.
2198 */
2199 enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
2200 }
2201 }
2202
hrtimers_cpu_dying(unsigned int dying_cpu)2203 int hrtimers_cpu_dying(unsigned int dying_cpu)
2204 {
2205 int i, ncpu = cpumask_any_and(cpu_active_mask, housekeeping_cpumask(HK_TYPE_TIMER));
2206 struct hrtimer_cpu_base *old_base, *new_base;
2207
2208 old_base = this_cpu_ptr(&hrtimer_bases);
2209 new_base = &per_cpu(hrtimer_bases, ncpu);
2210
2211 /*
2212 * The caller is globally serialized and nobody else
2213 * takes two locks at once, deadlock is not possible.
2214 */
2215 raw_spin_lock(&old_base->lock);
2216 raw_spin_lock_nested(&new_base->lock, SINGLE_DEPTH_NESTING);
2217
2218 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2219 migrate_hrtimer_list(&old_base->clock_base[i],
2220 &new_base->clock_base[i]);
2221 }
2222
2223 /*
2224 * The migration might have changed the first expiring softirq
2225 * timer on this CPU. Update it.
2226 */
2227 __hrtimer_get_next_event(new_base, HRTIMER_ACTIVE_SOFT);
2228 /* Tell the other CPU to retrigger the next event */
2229 smp_call_function_single(ncpu, retrigger_next_event, NULL, 0);
2230
2231 raw_spin_unlock(&new_base->lock);
2232 old_base->online = 0;
2233 raw_spin_unlock(&old_base->lock);
2234
2235 return 0;
2236 }
2237
2238 #endif /* CONFIG_HOTPLUG_CPU */
2239
hrtimers_init(void)2240 void __init hrtimers_init(void)
2241 {
2242 hrtimers_prepare_cpu(smp_processor_id());
2243 open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
2244 }
2245
2246 /**
2247 * schedule_hrtimeout_range_clock - sleep until timeout
2248 * @expires: timeout value (ktime_t)
2249 * @delta: slack in expires timeout (ktime_t)
2250 * @mode: timer mode
2251 * @clock_id: timer clock to be used
2252 */
2253 int __sched
schedule_hrtimeout_range_clock(ktime_t * expires,u64 delta,const enum hrtimer_mode mode,clockid_t clock_id)2254 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
2255 const enum hrtimer_mode mode, clockid_t clock_id)
2256 {
2257 struct hrtimer_sleeper t;
2258
2259 /*
2260 * Optimize when a zero timeout value is given. It does not
2261 * matter whether this is an absolute or a relative time.
2262 */
2263 if (expires && *expires == 0) {
2264 __set_current_state(TASK_RUNNING);
2265 return 0;
2266 }
2267
2268 /*
2269 * A NULL parameter means "infinite"
2270 */
2271 if (!expires) {
2272 schedule();
2273 return -EINTR;
2274 }
2275
2276 hrtimer_init_sleeper_on_stack(&t, clock_id, mode);
2277 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
2278 hrtimer_sleeper_start_expires(&t, mode);
2279
2280 if (likely(t.task))
2281 schedule();
2282
2283 hrtimer_cancel(&t.timer);
2284 destroy_hrtimer_on_stack(&t.timer);
2285
2286 __set_current_state(TASK_RUNNING);
2287
2288 return !t.task ? 0 : -EINTR;
2289 }
2290 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range_clock);
2291
2292 /**
2293 * schedule_hrtimeout_range - sleep until timeout
2294 * @expires: timeout value (ktime_t)
2295 * @delta: slack in expires timeout (ktime_t)
2296 * @mode: timer mode
2297 *
2298 * Make the current task sleep until the given expiry time has
2299 * elapsed. The routine will return immediately unless
2300 * the current task state has been set (see set_current_state()).
2301 *
2302 * The @delta argument gives the kernel the freedom to schedule the
2303 * actual wakeup to a time that is both power and performance friendly
2304 * for regular (non RT/DL) tasks.
2305 * The kernel give the normal best effort behavior for "@expires+@delta",
2306 * but may decide to fire the timer earlier, but no earlier than @expires.
2307 *
2308 * You can set the task state as follows -
2309 *
2310 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2311 * pass before the routine returns unless the current task is explicitly
2312 * woken up, (e.g. by wake_up_process()).
2313 *
2314 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2315 * delivered to the current task or the current task is explicitly woken
2316 * up.
2317 *
2318 * The current task state is guaranteed to be TASK_RUNNING when this
2319 * routine returns.
2320 *
2321 * Returns 0 when the timer has expired. If the task was woken before the
2322 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2323 * by an explicit wakeup, it returns -EINTR.
2324 */
schedule_hrtimeout_range(ktime_t * expires,u64 delta,const enum hrtimer_mode mode)2325 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
2326 const enum hrtimer_mode mode)
2327 {
2328 return schedule_hrtimeout_range_clock(expires, delta, mode,
2329 CLOCK_MONOTONIC);
2330 }
2331 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
2332
2333 /**
2334 * schedule_hrtimeout - sleep until timeout
2335 * @expires: timeout value (ktime_t)
2336 * @mode: timer mode
2337 *
2338 * Make the current task sleep until the given expiry time has
2339 * elapsed. The routine will return immediately unless
2340 * the current task state has been set (see set_current_state()).
2341 *
2342 * You can set the task state as follows -
2343 *
2344 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2345 * pass before the routine returns unless the current task is explicitly
2346 * woken up, (e.g. by wake_up_process()).
2347 *
2348 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2349 * delivered to the current task or the current task is explicitly woken
2350 * up.
2351 *
2352 * The current task state is guaranteed to be TASK_RUNNING when this
2353 * routine returns.
2354 *
2355 * Returns 0 when the timer has expired. If the task was woken before the
2356 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2357 * by an explicit wakeup, it returns -EINTR.
2358 */
schedule_hrtimeout(ktime_t * expires,const enum hrtimer_mode mode)2359 int __sched schedule_hrtimeout(ktime_t *expires,
2360 const enum hrtimer_mode mode)
2361 {
2362 return schedule_hrtimeout_range(expires, 0, mode);
2363 }
2364 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
2365