1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
6 *
7 * High-resolution kernel timers
8 *
9 * In contrast to the low-resolution timeout API, aka timer wheel,
10 * hrtimers provide finer resolution and accuracy depending on system
11 * configuration and capabilities.
12 *
13 * Started by: Thomas Gleixner and Ingo Molnar
14 *
15 * Credits:
16 * Based on the original timer wheel code
17 *
18 * Help, testing, suggestions, bugfixes, improvements were
19 * provided by:
20 *
21 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
22 * et. al.
23 */
24
25 #include <linux/cpu.h>
26 #include <linux/export.h>
27 #include <linux/percpu.h>
28 #include <linux/hrtimer.h>
29 #include <linux/notifier.h>
30 #include <linux/syscalls.h>
31 #include <linux/interrupt.h>
32 #include <linux/tick.h>
33 #include <linux/err.h>
34 #include <linux/debugobjects.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/sched/rt.h>
38 #include <linux/sched/deadline.h>
39 #include <linux/sched/nohz.h>
40 #include <linux/sched/debug.h>
41 #include <linux/sched/isolation.h>
42 #include <linux/timer.h>
43 #include <linux/freezer.h>
44 #include <linux/compat.h>
45
46 #include <linux/uaccess.h>
47
48 #include <trace/events/timer.h>
49
50 #include "tick-internal.h"
51
52 /*
53 * Masks for selecting the soft and hard context timers from
54 * cpu_base->active
55 */
56 #define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT)
57 #define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1)
58 #define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT)
59 #define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
60
61 static void retrigger_next_event(void *arg);
62
63 /*
64 * The timer bases:
65 *
66 * There are more clockids than hrtimer bases. Thus, we index
67 * into the timer bases by the hrtimer_base_type enum. When trying
68 * to reach a base using a clockid, hrtimer_clockid_to_base()
69 * is used to convert from clockid to the proper hrtimer_base_type.
70 */
71 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
72 {
73 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
74 .clock_base =
75 {
76 {
77 .index = HRTIMER_BASE_MONOTONIC,
78 .clockid = CLOCK_MONOTONIC,
79 .get_time = &ktime_get,
80 },
81 {
82 .index = HRTIMER_BASE_REALTIME,
83 .clockid = CLOCK_REALTIME,
84 .get_time = &ktime_get_real,
85 },
86 {
87 .index = HRTIMER_BASE_BOOTTIME,
88 .clockid = CLOCK_BOOTTIME,
89 .get_time = &ktime_get_boottime,
90 },
91 {
92 .index = HRTIMER_BASE_TAI,
93 .clockid = CLOCK_TAI,
94 .get_time = &ktime_get_clocktai,
95 },
96 {
97 .index = HRTIMER_BASE_MONOTONIC_SOFT,
98 .clockid = CLOCK_MONOTONIC,
99 .get_time = &ktime_get,
100 },
101 {
102 .index = HRTIMER_BASE_REALTIME_SOFT,
103 .clockid = CLOCK_REALTIME,
104 .get_time = &ktime_get_real,
105 },
106 {
107 .index = HRTIMER_BASE_BOOTTIME_SOFT,
108 .clockid = CLOCK_BOOTTIME,
109 .get_time = &ktime_get_boottime,
110 },
111 {
112 .index = HRTIMER_BASE_TAI_SOFT,
113 .clockid = CLOCK_TAI,
114 .get_time = &ktime_get_clocktai,
115 },
116 },
117 .csd = CSD_INIT(retrigger_next_event, NULL)
118 };
119
hrtimer_base_is_online(struct hrtimer_cpu_base * base)120 static inline bool hrtimer_base_is_online(struct hrtimer_cpu_base *base)
121 {
122 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
123 return true;
124 else
125 return likely(base->online);
126 }
127
128 /*
129 * Functions and macros which are different for UP/SMP systems are kept in a
130 * single place
131 */
132 #ifdef CONFIG_SMP
133
134 /*
135 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
136 * such that hrtimer_callback_running() can unconditionally dereference
137 * timer->base->cpu_base
138 */
139 static struct hrtimer_cpu_base migration_cpu_base = {
140 .clock_base = { {
141 .cpu_base = &migration_cpu_base,
142 .seq = SEQCNT_RAW_SPINLOCK_ZERO(migration_cpu_base.seq,
143 &migration_cpu_base.lock),
144 }, },
145 };
146
147 #define migration_base migration_cpu_base.clock_base[0]
148
149 /*
150 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
151 * means that all timers which are tied to this base via timer->base are
152 * locked, and the base itself is locked too.
153 *
154 * So __run_timers/migrate_timers can safely modify all timers which could
155 * be found on the lists/queues.
156 *
157 * When the timer's base is locked, and the timer removed from list, it is
158 * possible to set timer->base = &migration_base and drop the lock: the timer
159 * remains locked.
160 */
161 static
lock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)162 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
163 unsigned long *flags)
164 __acquires(&timer->base->lock)
165 {
166 struct hrtimer_clock_base *base;
167
168 for (;;) {
169 base = READ_ONCE(timer->base);
170 if (likely(base != &migration_base)) {
171 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
172 if (likely(base == timer->base))
173 return base;
174 /* The timer has migrated to another CPU: */
175 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
176 }
177 cpu_relax();
178 }
179 }
180
181 /*
182 * Check if the elected target is suitable considering its next
183 * event and the hotplug state of the current CPU.
184 *
185 * If the elected target is remote and its next event is after the timer
186 * to queue, then a remote reprogram is necessary. However there is no
187 * guarantee the IPI handling the operation would arrive in time to meet
188 * the high resolution deadline. In this case the local CPU becomes a
189 * preferred target, unless it is offline.
190 *
191 * High and low resolution modes are handled the same way for simplicity.
192 *
193 * Called with cpu_base->lock of target cpu held.
194 */
hrtimer_suitable_target(struct hrtimer * timer,struct hrtimer_clock_base * new_base,struct hrtimer_cpu_base * new_cpu_base,struct hrtimer_cpu_base * this_cpu_base)195 static bool hrtimer_suitable_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base,
196 struct hrtimer_cpu_base *new_cpu_base,
197 struct hrtimer_cpu_base *this_cpu_base)
198 {
199 ktime_t expires;
200
201 /*
202 * The local CPU clockevent can be reprogrammed. Also get_target_base()
203 * guarantees it is online.
204 */
205 if (new_cpu_base == this_cpu_base)
206 return true;
207
208 /*
209 * The offline local CPU can't be the default target if the
210 * next remote target event is after this timer. Keep the
211 * elected new base. An IPI will we issued to reprogram
212 * it as a last resort.
213 */
214 if (!hrtimer_base_is_online(this_cpu_base))
215 return true;
216
217 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
218
219 return expires >= new_base->cpu_base->expires_next;
220 }
221
get_target_base(struct hrtimer_cpu_base * base,int pinned)222 static inline struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base, int pinned)
223 {
224 if (!hrtimer_base_is_online(base)) {
225 int cpu = cpumask_any_and(cpu_online_mask, housekeeping_cpumask(HK_TYPE_TIMER));
226
227 return &per_cpu(hrtimer_bases, cpu);
228 }
229
230 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
231 if (static_branch_likely(&timers_migration_enabled) && !pinned)
232 return &per_cpu(hrtimer_bases, get_nohz_timer_target());
233 #endif
234 return base;
235 }
236
237 /*
238 * We switch the timer base to a power-optimized selected CPU target,
239 * if:
240 * - NO_HZ_COMMON is enabled
241 * - timer migration is enabled
242 * - the timer callback is not running
243 * - the timer is not the first expiring timer on the new target
244 *
245 * If one of the above requirements is not fulfilled we move the timer
246 * to the current CPU or leave it on the previously assigned CPU if
247 * the timer callback is currently running.
248 */
249 static inline struct hrtimer_clock_base *
switch_hrtimer_base(struct hrtimer * timer,struct hrtimer_clock_base * base,int pinned)250 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
251 int pinned)
252 {
253 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
254 struct hrtimer_clock_base *new_base;
255 int basenum = base->index;
256
257 this_cpu_base = this_cpu_ptr(&hrtimer_bases);
258 new_cpu_base = get_target_base(this_cpu_base, pinned);
259 again:
260 new_base = &new_cpu_base->clock_base[basenum];
261
262 if (base != new_base) {
263 /*
264 * We are trying to move timer to new_base.
265 * However we can't change timer's base while it is running,
266 * so we keep it on the same CPU. No hassle vs. reprogramming
267 * the event source in the high resolution case. The softirq
268 * code will take care of this when the timer function has
269 * completed. There is no conflict as we hold the lock until
270 * the timer is enqueued.
271 */
272 if (unlikely(hrtimer_callback_running(timer)))
273 return base;
274
275 /* See the comment in lock_hrtimer_base() */
276 WRITE_ONCE(timer->base, &migration_base);
277 raw_spin_unlock(&base->cpu_base->lock);
278 raw_spin_lock(&new_base->cpu_base->lock);
279
280 if (!hrtimer_suitable_target(timer, new_base, new_cpu_base,
281 this_cpu_base)) {
282 raw_spin_unlock(&new_base->cpu_base->lock);
283 raw_spin_lock(&base->cpu_base->lock);
284 new_cpu_base = this_cpu_base;
285 WRITE_ONCE(timer->base, base);
286 goto again;
287 }
288 WRITE_ONCE(timer->base, new_base);
289 } else {
290 if (!hrtimer_suitable_target(timer, new_base, new_cpu_base, this_cpu_base)) {
291 new_cpu_base = this_cpu_base;
292 goto again;
293 }
294 }
295 return new_base;
296 }
297
298 #else /* CONFIG_SMP */
299
300 static inline struct hrtimer_clock_base *
lock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)301 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
302 __acquires(&timer->base->cpu_base->lock)
303 {
304 struct hrtimer_clock_base *base = timer->base;
305
306 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
307
308 return base;
309 }
310
311 # define switch_hrtimer_base(t, b, p) (b)
312
313 #endif /* !CONFIG_SMP */
314
315 /*
316 * Functions for the union type storage format of ktime_t which are
317 * too large for inlining:
318 */
319 #if BITS_PER_LONG < 64
320 /*
321 * Divide a ktime value by a nanosecond value
322 */
__ktime_divns(const ktime_t kt,s64 div)323 s64 __ktime_divns(const ktime_t kt, s64 div)
324 {
325 int sft = 0;
326 s64 dclc;
327 u64 tmp;
328
329 dclc = ktime_to_ns(kt);
330 tmp = dclc < 0 ? -dclc : dclc;
331
332 /* Make sure the divisor is less than 2^32: */
333 while (div >> 32) {
334 sft++;
335 div >>= 1;
336 }
337 tmp >>= sft;
338 do_div(tmp, (u32) div);
339 return dclc < 0 ? -tmp : tmp;
340 }
341 EXPORT_SYMBOL_GPL(__ktime_divns);
342 #endif /* BITS_PER_LONG >= 64 */
343
344 /*
345 * Add two ktime values and do a safety check for overflow:
346 */
ktime_add_safe(const ktime_t lhs,const ktime_t rhs)347 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
348 {
349 ktime_t res = ktime_add_unsafe(lhs, rhs);
350
351 /*
352 * We use KTIME_SEC_MAX here, the maximum timeout which we can
353 * return to user space in a timespec:
354 */
355 if (res < 0 || res < lhs || res < rhs)
356 res = ktime_set(KTIME_SEC_MAX, 0);
357
358 return res;
359 }
360
361 EXPORT_SYMBOL_GPL(ktime_add_safe);
362
363 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
364
365 static const struct debug_obj_descr hrtimer_debug_descr;
366
hrtimer_debug_hint(void * addr)367 static void *hrtimer_debug_hint(void *addr)
368 {
369 return ACCESS_PRIVATE((struct hrtimer *)addr, function);
370 }
371
372 /*
373 * fixup_init is called when:
374 * - an active object is initialized
375 */
hrtimer_fixup_init(void * addr,enum debug_obj_state state)376 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
377 {
378 struct hrtimer *timer = addr;
379
380 switch (state) {
381 case ODEBUG_STATE_ACTIVE:
382 hrtimer_cancel(timer);
383 debug_object_init(timer, &hrtimer_debug_descr);
384 return true;
385 default:
386 return false;
387 }
388 }
389
390 /*
391 * fixup_activate is called when:
392 * - an active object is activated
393 * - an unknown non-static object is activated
394 */
hrtimer_fixup_activate(void * addr,enum debug_obj_state state)395 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
396 {
397 switch (state) {
398 case ODEBUG_STATE_ACTIVE:
399 WARN_ON(1);
400 fallthrough;
401 default:
402 return false;
403 }
404 }
405
406 /*
407 * fixup_free is called when:
408 * - an active object is freed
409 */
hrtimer_fixup_free(void * addr,enum debug_obj_state state)410 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
411 {
412 struct hrtimer *timer = addr;
413
414 switch (state) {
415 case ODEBUG_STATE_ACTIVE:
416 hrtimer_cancel(timer);
417 debug_object_free(timer, &hrtimer_debug_descr);
418 return true;
419 default:
420 return false;
421 }
422 }
423
424 static const struct debug_obj_descr hrtimer_debug_descr = {
425 .name = "hrtimer",
426 .debug_hint = hrtimer_debug_hint,
427 .fixup_init = hrtimer_fixup_init,
428 .fixup_activate = hrtimer_fixup_activate,
429 .fixup_free = hrtimer_fixup_free,
430 };
431
debug_hrtimer_init(struct hrtimer * timer)432 static inline void debug_hrtimer_init(struct hrtimer *timer)
433 {
434 debug_object_init(timer, &hrtimer_debug_descr);
435 }
436
debug_hrtimer_init_on_stack(struct hrtimer * timer)437 static inline void debug_hrtimer_init_on_stack(struct hrtimer *timer)
438 {
439 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
440 }
441
debug_hrtimer_activate(struct hrtimer * timer,enum hrtimer_mode mode)442 static inline void debug_hrtimer_activate(struct hrtimer *timer,
443 enum hrtimer_mode mode)
444 {
445 debug_object_activate(timer, &hrtimer_debug_descr);
446 }
447
debug_hrtimer_deactivate(struct hrtimer * timer)448 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
449 {
450 debug_object_deactivate(timer, &hrtimer_debug_descr);
451 }
452
destroy_hrtimer_on_stack(struct hrtimer * timer)453 void destroy_hrtimer_on_stack(struct hrtimer *timer)
454 {
455 debug_object_free(timer, &hrtimer_debug_descr);
456 }
457 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
458
459 #else
460
debug_hrtimer_init(struct hrtimer * timer)461 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
debug_hrtimer_init_on_stack(struct hrtimer * timer)462 static inline void debug_hrtimer_init_on_stack(struct hrtimer *timer) { }
debug_hrtimer_activate(struct hrtimer * timer,enum hrtimer_mode mode)463 static inline void debug_hrtimer_activate(struct hrtimer *timer,
464 enum hrtimer_mode mode) { }
debug_hrtimer_deactivate(struct hrtimer * timer)465 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
466 #endif
467
debug_setup(struct hrtimer * timer,clockid_t clockid,enum hrtimer_mode mode)468 static inline void debug_setup(struct hrtimer *timer, clockid_t clockid, enum hrtimer_mode mode)
469 {
470 debug_hrtimer_init(timer);
471 trace_hrtimer_setup(timer, clockid, mode);
472 }
473
debug_setup_on_stack(struct hrtimer * timer,clockid_t clockid,enum hrtimer_mode mode)474 static inline void debug_setup_on_stack(struct hrtimer *timer, clockid_t clockid,
475 enum hrtimer_mode mode)
476 {
477 debug_hrtimer_init_on_stack(timer);
478 trace_hrtimer_setup(timer, clockid, mode);
479 }
480
debug_activate(struct hrtimer * timer,enum hrtimer_mode mode)481 static inline void debug_activate(struct hrtimer *timer,
482 enum hrtimer_mode mode)
483 {
484 debug_hrtimer_activate(timer, mode);
485 trace_hrtimer_start(timer, mode);
486 }
487
debug_deactivate(struct hrtimer * timer)488 static inline void debug_deactivate(struct hrtimer *timer)
489 {
490 debug_hrtimer_deactivate(timer);
491 trace_hrtimer_cancel(timer);
492 }
493
494 static struct hrtimer_clock_base *
__next_base(struct hrtimer_cpu_base * cpu_base,unsigned int * active)495 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
496 {
497 unsigned int idx;
498
499 if (!*active)
500 return NULL;
501
502 idx = __ffs(*active);
503 *active &= ~(1U << idx);
504
505 return &cpu_base->clock_base[idx];
506 }
507
508 #define for_each_active_base(base, cpu_base, active) \
509 while ((base = __next_base((cpu_base), &(active))))
510
__hrtimer_next_event_base(struct hrtimer_cpu_base * cpu_base,const struct hrtimer * exclude,unsigned int active,ktime_t expires_next)511 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
512 const struct hrtimer *exclude,
513 unsigned int active,
514 ktime_t expires_next)
515 {
516 struct hrtimer_clock_base *base;
517 ktime_t expires;
518
519 for_each_active_base(base, cpu_base, active) {
520 struct timerqueue_node *next;
521 struct hrtimer *timer;
522
523 next = timerqueue_getnext(&base->active);
524 timer = container_of(next, struct hrtimer, node);
525 if (timer == exclude) {
526 /* Get to the next timer in the queue. */
527 next = timerqueue_iterate_next(next);
528 if (!next)
529 continue;
530
531 timer = container_of(next, struct hrtimer, node);
532 }
533 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
534 if (expires < expires_next) {
535 expires_next = expires;
536
537 /* Skip cpu_base update if a timer is being excluded. */
538 if (exclude)
539 continue;
540
541 if (timer->is_soft)
542 cpu_base->softirq_next_timer = timer;
543 else
544 cpu_base->next_timer = timer;
545 }
546 }
547 /*
548 * clock_was_set() might have changed base->offset of any of
549 * the clock bases so the result might be negative. Fix it up
550 * to prevent a false positive in clockevents_program_event().
551 */
552 if (expires_next < 0)
553 expires_next = 0;
554 return expires_next;
555 }
556
557 /*
558 * Recomputes cpu_base::*next_timer and returns the earliest expires_next
559 * but does not set cpu_base::*expires_next, that is done by
560 * hrtimer[_force]_reprogram and hrtimer_interrupt only. When updating
561 * cpu_base::*expires_next right away, reprogramming logic would no longer
562 * work.
563 *
564 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
565 * those timers will get run whenever the softirq gets handled, at the end of
566 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
567 *
568 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
569 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
570 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
571 *
572 * @active_mask must be one of:
573 * - HRTIMER_ACTIVE_ALL,
574 * - HRTIMER_ACTIVE_SOFT, or
575 * - HRTIMER_ACTIVE_HARD.
576 */
577 static ktime_t
__hrtimer_get_next_event(struct hrtimer_cpu_base * cpu_base,unsigned int active_mask)578 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
579 {
580 unsigned int active;
581 struct hrtimer *next_timer = NULL;
582 ktime_t expires_next = KTIME_MAX;
583
584 if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
585 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
586 cpu_base->softirq_next_timer = NULL;
587 expires_next = __hrtimer_next_event_base(cpu_base, NULL,
588 active, KTIME_MAX);
589
590 next_timer = cpu_base->softirq_next_timer;
591 }
592
593 if (active_mask & HRTIMER_ACTIVE_HARD) {
594 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
595 cpu_base->next_timer = next_timer;
596 expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
597 expires_next);
598 }
599
600 return expires_next;
601 }
602
hrtimer_update_next_event(struct hrtimer_cpu_base * cpu_base)603 static ktime_t hrtimer_update_next_event(struct hrtimer_cpu_base *cpu_base)
604 {
605 ktime_t expires_next, soft = KTIME_MAX;
606
607 /*
608 * If the soft interrupt has already been activated, ignore the
609 * soft bases. They will be handled in the already raised soft
610 * interrupt.
611 */
612 if (!cpu_base->softirq_activated) {
613 soft = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
614 /*
615 * Update the soft expiry time. clock_settime() might have
616 * affected it.
617 */
618 cpu_base->softirq_expires_next = soft;
619 }
620
621 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_HARD);
622 /*
623 * If a softirq timer is expiring first, update cpu_base->next_timer
624 * and program the hardware with the soft expiry time.
625 */
626 if (expires_next > soft) {
627 cpu_base->next_timer = cpu_base->softirq_next_timer;
628 expires_next = soft;
629 }
630
631 return expires_next;
632 }
633
hrtimer_update_base(struct hrtimer_cpu_base * base)634 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
635 {
636 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
637 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
638 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
639
640 ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
641 offs_real, offs_boot, offs_tai);
642
643 base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
644 base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
645 base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
646
647 return now;
648 }
649
650 /*
651 * Is the high resolution mode active ?
652 */
hrtimer_hres_active(struct hrtimer_cpu_base * cpu_base)653 static inline int hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
654 {
655 return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
656 cpu_base->hres_active : 0;
657 }
658
__hrtimer_reprogram(struct hrtimer_cpu_base * cpu_base,struct hrtimer * next_timer,ktime_t expires_next)659 static void __hrtimer_reprogram(struct hrtimer_cpu_base *cpu_base,
660 struct hrtimer *next_timer,
661 ktime_t expires_next)
662 {
663 cpu_base->expires_next = expires_next;
664
665 /*
666 * If hres is not active, hardware does not have to be
667 * reprogrammed yet.
668 *
669 * If a hang was detected in the last timer interrupt then we
670 * leave the hang delay active in the hardware. We want the
671 * system to make progress. That also prevents the following
672 * scenario:
673 * T1 expires 50ms from now
674 * T2 expires 5s from now
675 *
676 * T1 is removed, so this code is called and would reprogram
677 * the hardware to 5s from now. Any hrtimer_start after that
678 * will not reprogram the hardware due to hang_detected being
679 * set. So we'd effectively block all timers until the T2 event
680 * fires.
681 */
682 if (!hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
683 return;
684
685 tick_program_event(expires_next, 1);
686 }
687
688 /*
689 * Reprogram the event source with checking both queues for the
690 * next event
691 * Called with interrupts disabled and base->lock held
692 */
693 static void
hrtimer_force_reprogram(struct hrtimer_cpu_base * cpu_base,int skip_equal)694 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
695 {
696 ktime_t expires_next;
697
698 expires_next = hrtimer_update_next_event(cpu_base);
699
700 if (skip_equal && expires_next == cpu_base->expires_next)
701 return;
702
703 __hrtimer_reprogram(cpu_base, cpu_base->next_timer, expires_next);
704 }
705
706 /* High resolution timer related functions */
707 #ifdef CONFIG_HIGH_RES_TIMERS
708
709 /*
710 * High resolution timer enabled ?
711 */
712 static bool hrtimer_hres_enabled __read_mostly = true;
713 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
714 EXPORT_SYMBOL_GPL(hrtimer_resolution);
715
716 /*
717 * Enable / Disable high resolution mode
718 */
setup_hrtimer_hres(char * str)719 static int __init setup_hrtimer_hres(char *str)
720 {
721 return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
722 }
723
724 __setup("highres=", setup_hrtimer_hres);
725
726 /*
727 * hrtimer_high_res_enabled - query, if the highres mode is enabled
728 */
hrtimer_is_hres_enabled(void)729 static inline int hrtimer_is_hres_enabled(void)
730 {
731 return hrtimer_hres_enabled;
732 }
733
734 /*
735 * Switch to high resolution mode
736 */
hrtimer_switch_to_hres(void)737 static void hrtimer_switch_to_hres(void)
738 {
739 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
740
741 if (tick_init_highres()) {
742 pr_warn("Could not switch to high resolution mode on CPU %u\n",
743 base->cpu);
744 return;
745 }
746 base->hres_active = 1;
747 hrtimer_resolution = HIGH_RES_NSEC;
748
749 tick_setup_sched_timer(true);
750 /* "Retrigger" the interrupt to get things going */
751 retrigger_next_event(NULL);
752 }
753
754 #else
755
hrtimer_is_hres_enabled(void)756 static inline int hrtimer_is_hres_enabled(void) { return 0; }
hrtimer_switch_to_hres(void)757 static inline void hrtimer_switch_to_hres(void) { }
758
759 #endif /* CONFIG_HIGH_RES_TIMERS */
760 /*
761 * Retrigger next event is called after clock was set with interrupts
762 * disabled through an SMP function call or directly from low level
763 * resume code.
764 *
765 * This is only invoked when:
766 * - CONFIG_HIGH_RES_TIMERS is enabled.
767 * - CONFIG_NOHZ_COMMON is enabled
768 *
769 * For the other cases this function is empty and because the call sites
770 * are optimized out it vanishes as well, i.e. no need for lots of
771 * #ifdeffery.
772 */
retrigger_next_event(void * arg)773 static void retrigger_next_event(void *arg)
774 {
775 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
776
777 /*
778 * When high resolution mode or nohz is active, then the offsets of
779 * CLOCK_REALTIME/TAI/BOOTTIME have to be updated. Otherwise the
780 * next tick will take care of that.
781 *
782 * If high resolution mode is active then the next expiring timer
783 * must be reevaluated and the clock event device reprogrammed if
784 * necessary.
785 *
786 * In the NOHZ case the update of the offset and the reevaluation
787 * of the next expiring timer is enough. The return from the SMP
788 * function call will take care of the reprogramming in case the
789 * CPU was in a NOHZ idle sleep.
790 */
791 if (!hrtimer_hres_active(base) && !tick_nohz_active)
792 return;
793
794 raw_spin_lock(&base->lock);
795 hrtimer_update_base(base);
796 if (hrtimer_hres_active(base))
797 hrtimer_force_reprogram(base, 0);
798 else
799 hrtimer_update_next_event(base);
800 raw_spin_unlock(&base->lock);
801 }
802
803 /*
804 * When a timer is enqueued and expires earlier than the already enqueued
805 * timers, we have to check, whether it expires earlier than the timer for
806 * which the clock event device was armed.
807 *
808 * Called with interrupts disabled and base->cpu_base.lock held
809 */
hrtimer_reprogram(struct hrtimer * timer,bool reprogram)810 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
811 {
812 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
813 struct hrtimer_clock_base *base = timer->base;
814 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
815
816 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
817
818 /*
819 * CLOCK_REALTIME timer might be requested with an absolute
820 * expiry time which is less than base->offset. Set it to 0.
821 */
822 if (expires < 0)
823 expires = 0;
824
825 if (timer->is_soft) {
826 /*
827 * soft hrtimer could be started on a remote CPU. In this
828 * case softirq_expires_next needs to be updated on the
829 * remote CPU. The soft hrtimer will not expire before the
830 * first hard hrtimer on the remote CPU -
831 * hrtimer_check_target() prevents this case.
832 */
833 struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
834
835 if (timer_cpu_base->softirq_activated)
836 return;
837
838 if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
839 return;
840
841 timer_cpu_base->softirq_next_timer = timer;
842 timer_cpu_base->softirq_expires_next = expires;
843
844 if (!ktime_before(expires, timer_cpu_base->expires_next) ||
845 !reprogram)
846 return;
847 }
848
849 /*
850 * If the timer is not on the current cpu, we cannot reprogram
851 * the other cpus clock event device.
852 */
853 if (base->cpu_base != cpu_base)
854 return;
855
856 if (expires >= cpu_base->expires_next)
857 return;
858
859 /*
860 * If the hrtimer interrupt is running, then it will reevaluate the
861 * clock bases and reprogram the clock event device.
862 */
863 if (cpu_base->in_hrtirq)
864 return;
865
866 cpu_base->next_timer = timer;
867
868 __hrtimer_reprogram(cpu_base, timer, expires);
869 }
870
update_needs_ipi(struct hrtimer_cpu_base * cpu_base,unsigned int active)871 static bool update_needs_ipi(struct hrtimer_cpu_base *cpu_base,
872 unsigned int active)
873 {
874 struct hrtimer_clock_base *base;
875 unsigned int seq;
876 ktime_t expires;
877
878 /*
879 * Update the base offsets unconditionally so the following
880 * checks whether the SMP function call is required works.
881 *
882 * The update is safe even when the remote CPU is in the hrtimer
883 * interrupt or the hrtimer soft interrupt and expiring affected
884 * bases. Either it will see the update before handling a base or
885 * it will see it when it finishes the processing and reevaluates
886 * the next expiring timer.
887 */
888 seq = cpu_base->clock_was_set_seq;
889 hrtimer_update_base(cpu_base);
890
891 /*
892 * If the sequence did not change over the update then the
893 * remote CPU already handled it.
894 */
895 if (seq == cpu_base->clock_was_set_seq)
896 return false;
897
898 /*
899 * If the remote CPU is currently handling an hrtimer interrupt, it
900 * will reevaluate the first expiring timer of all clock bases
901 * before reprogramming. Nothing to do here.
902 */
903 if (cpu_base->in_hrtirq)
904 return false;
905
906 /*
907 * Walk the affected clock bases and check whether the first expiring
908 * timer in a clock base is moving ahead of the first expiring timer of
909 * @cpu_base. If so, the IPI must be invoked because per CPU clock
910 * event devices cannot be remotely reprogrammed.
911 */
912 active &= cpu_base->active_bases;
913
914 for_each_active_base(base, cpu_base, active) {
915 struct timerqueue_node *next;
916
917 next = timerqueue_getnext(&base->active);
918 expires = ktime_sub(next->expires, base->offset);
919 if (expires < cpu_base->expires_next)
920 return true;
921
922 /* Extra check for softirq clock bases */
923 if (base->clockid < HRTIMER_BASE_MONOTONIC_SOFT)
924 continue;
925 if (cpu_base->softirq_activated)
926 continue;
927 if (expires < cpu_base->softirq_expires_next)
928 return true;
929 }
930 return false;
931 }
932
933 /*
934 * Clock was set. This might affect CLOCK_REALTIME, CLOCK_TAI and
935 * CLOCK_BOOTTIME (for late sleep time injection).
936 *
937 * This requires to update the offsets for these clocks
938 * vs. CLOCK_MONOTONIC. When high resolution timers are enabled, then this
939 * also requires to eventually reprogram the per CPU clock event devices
940 * when the change moves an affected timer ahead of the first expiring
941 * timer on that CPU. Obviously remote per CPU clock event devices cannot
942 * be reprogrammed. The other reason why an IPI has to be sent is when the
943 * system is in !HIGH_RES and NOHZ mode. The NOHZ mode updates the offsets
944 * in the tick, which obviously might be stopped, so this has to bring out
945 * the remote CPU which might sleep in idle to get this sorted.
946 */
clock_was_set(unsigned int bases)947 void clock_was_set(unsigned int bases)
948 {
949 struct hrtimer_cpu_base *cpu_base = raw_cpu_ptr(&hrtimer_bases);
950 cpumask_var_t mask;
951 int cpu;
952
953 if (!hrtimer_hres_active(cpu_base) && !tick_nohz_active)
954 goto out_timerfd;
955
956 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
957 on_each_cpu(retrigger_next_event, NULL, 1);
958 goto out_timerfd;
959 }
960
961 /* Avoid interrupting CPUs if possible */
962 cpus_read_lock();
963 for_each_online_cpu(cpu) {
964 unsigned long flags;
965
966 cpu_base = &per_cpu(hrtimer_bases, cpu);
967 raw_spin_lock_irqsave(&cpu_base->lock, flags);
968
969 if (update_needs_ipi(cpu_base, bases))
970 cpumask_set_cpu(cpu, mask);
971
972 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
973 }
974
975 preempt_disable();
976 smp_call_function_many(mask, retrigger_next_event, NULL, 1);
977 preempt_enable();
978 cpus_read_unlock();
979 free_cpumask_var(mask);
980
981 out_timerfd:
982 timerfd_clock_was_set();
983 }
984
clock_was_set_work(struct work_struct * work)985 static void clock_was_set_work(struct work_struct *work)
986 {
987 clock_was_set(CLOCK_SET_WALL);
988 }
989
990 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
991
992 /*
993 * Called from timekeeping code to reprogram the hrtimer interrupt device
994 * on all cpus and to notify timerfd.
995 */
clock_was_set_delayed(void)996 void clock_was_set_delayed(void)
997 {
998 schedule_work(&hrtimer_work);
999 }
1000
1001 /*
1002 * Called during resume either directly from via timekeeping_resume()
1003 * or in the case of s2idle from tick_unfreeze() to ensure that the
1004 * hrtimers are up to date.
1005 */
hrtimers_resume_local(void)1006 void hrtimers_resume_local(void)
1007 {
1008 lockdep_assert_irqs_disabled();
1009 /* Retrigger on the local CPU */
1010 retrigger_next_event(NULL);
1011 }
1012
1013 /*
1014 * Counterpart to lock_hrtimer_base above:
1015 */
1016 static inline
unlock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)1017 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
1018 __releases(&timer->base->cpu_base->lock)
1019 {
1020 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
1021 }
1022
1023 /**
1024 * hrtimer_forward() - forward the timer expiry
1025 * @timer: hrtimer to forward
1026 * @now: forward past this time
1027 * @interval: the interval to forward
1028 *
1029 * Forward the timer expiry so it will expire in the future.
1030 *
1031 * .. note::
1032 * This only updates the timer expiry value and does not requeue the timer.
1033 *
1034 * There is also a variant of the function hrtimer_forward_now().
1035 *
1036 * Context: Can be safely called from the callback function of @timer. If called
1037 * from other contexts @timer must neither be enqueued nor running the
1038 * callback and the caller needs to take care of serialization.
1039 *
1040 * Return: The number of overruns are returned.
1041 */
hrtimer_forward(struct hrtimer * timer,ktime_t now,ktime_t interval)1042 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
1043 {
1044 u64 orun = 1;
1045 ktime_t delta;
1046
1047 delta = ktime_sub(now, hrtimer_get_expires(timer));
1048
1049 if (delta < 0)
1050 return 0;
1051
1052 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
1053 return 0;
1054
1055 if (interval < hrtimer_resolution)
1056 interval = hrtimer_resolution;
1057
1058 if (unlikely(delta >= interval)) {
1059 s64 incr = ktime_to_ns(interval);
1060
1061 orun = ktime_divns(delta, incr);
1062 hrtimer_add_expires_ns(timer, incr * orun);
1063 if (hrtimer_get_expires_tv64(timer) > now)
1064 return orun;
1065 /*
1066 * This (and the ktime_add() below) is the
1067 * correction for exact:
1068 */
1069 orun++;
1070 }
1071 hrtimer_add_expires(timer, interval);
1072
1073 return orun;
1074 }
1075 EXPORT_SYMBOL_GPL(hrtimer_forward);
1076
1077 /*
1078 * enqueue_hrtimer - internal function to (re)start a timer
1079 *
1080 * The timer is inserted in expiry order. Insertion into the
1081 * red black tree is O(log(n)). Must hold the base lock.
1082 *
1083 * Returns true when the new timer is the leftmost timer in the tree.
1084 */
enqueue_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,enum hrtimer_mode mode)1085 static bool enqueue_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base,
1086 enum hrtimer_mode mode)
1087 {
1088 debug_activate(timer, mode);
1089 WARN_ON_ONCE(!base->cpu_base->online);
1090
1091 base->cpu_base->active_bases |= 1 << base->index;
1092
1093 /* Pairs with the lockless read in hrtimer_is_queued() */
1094 WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED);
1095
1096 return timerqueue_add(&base->active, &timer->node);
1097 }
1098
1099 /*
1100 * __remove_hrtimer - internal function to remove a timer
1101 *
1102 * Caller must hold the base lock.
1103 *
1104 * High resolution timer mode reprograms the clock event device when the
1105 * timer is the one which expires next. The caller can disable this by setting
1106 * reprogram to zero. This is useful, when the context does a reprogramming
1107 * anyway (e.g. timer interrupt)
1108 */
__remove_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,u8 newstate,int reprogram)1109 static void __remove_hrtimer(struct hrtimer *timer,
1110 struct hrtimer_clock_base *base,
1111 u8 newstate, int reprogram)
1112 {
1113 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1114 u8 state = timer->state;
1115
1116 /* Pairs with the lockless read in hrtimer_is_queued() */
1117 WRITE_ONCE(timer->state, newstate);
1118 if (!(state & HRTIMER_STATE_ENQUEUED))
1119 return;
1120
1121 if (!timerqueue_del(&base->active, &timer->node))
1122 cpu_base->active_bases &= ~(1 << base->index);
1123
1124 /*
1125 * Note: If reprogram is false we do not update
1126 * cpu_base->next_timer. This happens when we remove the first
1127 * timer on a remote cpu. No harm as we never dereference
1128 * cpu_base->next_timer. So the worst thing what can happen is
1129 * an superfluous call to hrtimer_force_reprogram() on the
1130 * remote cpu later on if the same timer gets enqueued again.
1131 */
1132 if (reprogram && timer == cpu_base->next_timer)
1133 hrtimer_force_reprogram(cpu_base, 1);
1134 }
1135
1136 /*
1137 * remove hrtimer, called with base lock held
1138 */
1139 static inline int
remove_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,bool restart,bool keep_local)1140 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base,
1141 bool restart, bool keep_local)
1142 {
1143 u8 state = timer->state;
1144
1145 if (state & HRTIMER_STATE_ENQUEUED) {
1146 bool reprogram;
1147
1148 /*
1149 * Remove the timer and force reprogramming when high
1150 * resolution mode is active and the timer is on the current
1151 * CPU. If we remove a timer on another CPU, reprogramming is
1152 * skipped. The interrupt event on this CPU is fired and
1153 * reprogramming happens in the interrupt handler. This is a
1154 * rare case and less expensive than a smp call.
1155 */
1156 debug_deactivate(timer);
1157 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1158
1159 /*
1160 * If the timer is not restarted then reprogramming is
1161 * required if the timer is local. If it is local and about
1162 * to be restarted, avoid programming it twice (on removal
1163 * and a moment later when it's requeued).
1164 */
1165 if (!restart)
1166 state = HRTIMER_STATE_INACTIVE;
1167 else
1168 reprogram &= !keep_local;
1169
1170 __remove_hrtimer(timer, base, state, reprogram);
1171 return 1;
1172 }
1173 return 0;
1174 }
1175
hrtimer_update_lowres(struct hrtimer * timer,ktime_t tim,const enum hrtimer_mode mode)1176 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1177 const enum hrtimer_mode mode)
1178 {
1179 #ifdef CONFIG_TIME_LOW_RES
1180 /*
1181 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1182 * granular time values. For relative timers we add hrtimer_resolution
1183 * (i.e. one jiffy) to prevent short timeouts.
1184 */
1185 timer->is_rel = mode & HRTIMER_MODE_REL;
1186 if (timer->is_rel)
1187 tim = ktime_add_safe(tim, hrtimer_resolution);
1188 #endif
1189 return tim;
1190 }
1191
1192 static void
hrtimer_update_softirq_timer(struct hrtimer_cpu_base * cpu_base,bool reprogram)1193 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1194 {
1195 ktime_t expires;
1196
1197 /*
1198 * Find the next SOFT expiration.
1199 */
1200 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1201
1202 /*
1203 * reprogramming needs to be triggered, even if the next soft
1204 * hrtimer expires at the same time than the next hard
1205 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1206 */
1207 if (expires == KTIME_MAX)
1208 return;
1209
1210 /*
1211 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1212 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1213 */
1214 hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1215 }
1216
__hrtimer_start_range_ns(struct hrtimer * timer,ktime_t tim,u64 delta_ns,const enum hrtimer_mode mode,struct hrtimer_clock_base * base)1217 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1218 u64 delta_ns, const enum hrtimer_mode mode,
1219 struct hrtimer_clock_base *base)
1220 {
1221 struct hrtimer_cpu_base *this_cpu_base = this_cpu_ptr(&hrtimer_bases);
1222 struct hrtimer_clock_base *new_base;
1223 bool force_local, first;
1224
1225 /*
1226 * If the timer is on the local cpu base and is the first expiring
1227 * timer then this might end up reprogramming the hardware twice
1228 * (on removal and on enqueue). To avoid that by prevent the
1229 * reprogram on removal, keep the timer local to the current CPU
1230 * and enforce reprogramming after it is queued no matter whether
1231 * it is the new first expiring timer again or not.
1232 */
1233 force_local = base->cpu_base == this_cpu_base;
1234 force_local &= base->cpu_base->next_timer == timer;
1235
1236 /*
1237 * Don't force local queuing if this enqueue happens on a unplugged
1238 * CPU after hrtimer_cpu_dying() has been invoked.
1239 */
1240 force_local &= this_cpu_base->online;
1241
1242 /*
1243 * Remove an active timer from the queue. In case it is not queued
1244 * on the current CPU, make sure that remove_hrtimer() updates the
1245 * remote data correctly.
1246 *
1247 * If it's on the current CPU and the first expiring timer, then
1248 * skip reprogramming, keep the timer local and enforce
1249 * reprogramming later if it was the first expiring timer. This
1250 * avoids programming the underlying clock event twice (once at
1251 * removal and once after enqueue).
1252 */
1253 remove_hrtimer(timer, base, true, force_local);
1254
1255 if (mode & HRTIMER_MODE_REL)
1256 tim = ktime_add_safe(tim, base->get_time());
1257
1258 tim = hrtimer_update_lowres(timer, tim, mode);
1259
1260 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1261
1262 /* Switch the timer base, if necessary: */
1263 if (!force_local) {
1264 new_base = switch_hrtimer_base(timer, base,
1265 mode & HRTIMER_MODE_PINNED);
1266 } else {
1267 new_base = base;
1268 }
1269
1270 first = enqueue_hrtimer(timer, new_base, mode);
1271 if (!force_local) {
1272 /*
1273 * If the current CPU base is online, then the timer is
1274 * never queued on a remote CPU if it would be the first
1275 * expiring timer there.
1276 */
1277 if (hrtimer_base_is_online(this_cpu_base))
1278 return first;
1279
1280 /*
1281 * Timer was enqueued remote because the current base is
1282 * already offline. If the timer is the first to expire,
1283 * kick the remote CPU to reprogram the clock event.
1284 */
1285 if (first) {
1286 struct hrtimer_cpu_base *new_cpu_base = new_base->cpu_base;
1287
1288 smp_call_function_single_async(new_cpu_base->cpu, &new_cpu_base->csd);
1289 }
1290 return 0;
1291 }
1292
1293 /*
1294 * Timer was forced to stay on the current CPU to avoid
1295 * reprogramming on removal and enqueue. Force reprogram the
1296 * hardware by evaluating the new first expiring timer.
1297 */
1298 hrtimer_force_reprogram(new_base->cpu_base, 1);
1299 return 0;
1300 }
1301
1302 /**
1303 * hrtimer_start_range_ns - (re)start an hrtimer
1304 * @timer: the timer to be added
1305 * @tim: expiry time
1306 * @delta_ns: "slack" range for the timer
1307 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or
1308 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1309 * softirq based mode is considered for debug purpose only!
1310 */
hrtimer_start_range_ns(struct hrtimer * timer,ktime_t tim,u64 delta_ns,const enum hrtimer_mode mode)1311 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1312 u64 delta_ns, const enum hrtimer_mode mode)
1313 {
1314 struct hrtimer_clock_base *base;
1315 unsigned long flags;
1316
1317 /*
1318 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1319 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard
1320 * expiry mode because unmarked timers are moved to softirq expiry.
1321 */
1322 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1323 WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1324 else
1325 WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard);
1326
1327 base = lock_hrtimer_base(timer, &flags);
1328
1329 if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1330 hrtimer_reprogram(timer, true);
1331
1332 unlock_hrtimer_base(timer, &flags);
1333 }
1334 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1335
1336 /**
1337 * hrtimer_try_to_cancel - try to deactivate a timer
1338 * @timer: hrtimer to stop
1339 *
1340 * Returns:
1341 *
1342 * * 0 when the timer was not active
1343 * * 1 when the timer was active
1344 * * -1 when the timer is currently executing the callback function and
1345 * cannot be stopped
1346 */
hrtimer_try_to_cancel(struct hrtimer * timer)1347 int hrtimer_try_to_cancel(struct hrtimer *timer)
1348 {
1349 struct hrtimer_clock_base *base;
1350 unsigned long flags;
1351 int ret = -1;
1352
1353 /*
1354 * Check lockless first. If the timer is not active (neither
1355 * enqueued nor running the callback, nothing to do here. The
1356 * base lock does not serialize against a concurrent enqueue,
1357 * so we can avoid taking it.
1358 */
1359 if (!hrtimer_active(timer))
1360 return 0;
1361
1362 base = lock_hrtimer_base(timer, &flags);
1363
1364 if (!hrtimer_callback_running(timer))
1365 ret = remove_hrtimer(timer, base, false, false);
1366
1367 unlock_hrtimer_base(timer, &flags);
1368
1369 return ret;
1370
1371 }
1372 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1373
1374 #ifdef CONFIG_PREEMPT_RT
hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base * base)1375 static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base)
1376 {
1377 spin_lock_init(&base->softirq_expiry_lock);
1378 }
1379
hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base * base)1380 static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base)
1381 __acquires(&base->softirq_expiry_lock)
1382 {
1383 spin_lock(&base->softirq_expiry_lock);
1384 }
1385
hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base * base)1386 static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base)
1387 __releases(&base->softirq_expiry_lock)
1388 {
1389 spin_unlock(&base->softirq_expiry_lock);
1390 }
1391
1392 /*
1393 * The counterpart to hrtimer_cancel_wait_running().
1394 *
1395 * If there is a waiter for cpu_base->expiry_lock, then it was waiting for
1396 * the timer callback to finish. Drop expiry_lock and reacquire it. That
1397 * allows the waiter to acquire the lock and make progress.
1398 */
hrtimer_sync_wait_running(struct hrtimer_cpu_base * cpu_base,unsigned long flags)1399 static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base,
1400 unsigned long flags)
1401 {
1402 if (atomic_read(&cpu_base->timer_waiters)) {
1403 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1404 spin_unlock(&cpu_base->softirq_expiry_lock);
1405 spin_lock(&cpu_base->softirq_expiry_lock);
1406 raw_spin_lock_irq(&cpu_base->lock);
1407 }
1408 }
1409
1410 #ifdef CONFIG_SMP
is_migration_base(struct hrtimer_clock_base * base)1411 static __always_inline bool is_migration_base(struct hrtimer_clock_base *base)
1412 {
1413 return base == &migration_base;
1414 }
1415 #else
is_migration_base(struct hrtimer_clock_base * base)1416 static __always_inline bool is_migration_base(struct hrtimer_clock_base *base)
1417 {
1418 return false;
1419 }
1420 #endif
1421
1422 /*
1423 * This function is called on PREEMPT_RT kernels when the fast path
1424 * deletion of a timer failed because the timer callback function was
1425 * running.
1426 *
1427 * This prevents priority inversion: if the soft irq thread is preempted
1428 * in the middle of a timer callback, then calling hrtimer_cancel() can
1429 * lead to two issues:
1430 *
1431 * - If the caller is on a remote CPU then it has to spin wait for the timer
1432 * handler to complete. This can result in unbound priority inversion.
1433 *
1434 * - If the caller originates from the task which preempted the timer
1435 * handler on the same CPU, then spin waiting for the timer handler to
1436 * complete is never going to end.
1437 */
hrtimer_cancel_wait_running(const struct hrtimer * timer)1438 void hrtimer_cancel_wait_running(const struct hrtimer *timer)
1439 {
1440 /* Lockless read. Prevent the compiler from reloading it below */
1441 struct hrtimer_clock_base *base = READ_ONCE(timer->base);
1442
1443 /*
1444 * Just relax if the timer expires in hard interrupt context or if
1445 * it is currently on the migration base.
1446 */
1447 if (!timer->is_soft || is_migration_base(base)) {
1448 cpu_relax();
1449 return;
1450 }
1451
1452 /*
1453 * Mark the base as contended and grab the expiry lock, which is
1454 * held by the softirq across the timer callback. Drop the lock
1455 * immediately so the softirq can expire the next timer. In theory
1456 * the timer could already be running again, but that's more than
1457 * unlikely and just causes another wait loop.
1458 */
1459 atomic_inc(&base->cpu_base->timer_waiters);
1460 spin_lock_bh(&base->cpu_base->softirq_expiry_lock);
1461 atomic_dec(&base->cpu_base->timer_waiters);
1462 spin_unlock_bh(&base->cpu_base->softirq_expiry_lock);
1463 }
1464 #else
1465 static inline void
hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base * base)1466 hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { }
1467 static inline void
hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base * base)1468 hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { }
1469 static inline void
hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base * base)1470 hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { }
hrtimer_sync_wait_running(struct hrtimer_cpu_base * base,unsigned long flags)1471 static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base,
1472 unsigned long flags) { }
1473 #endif
1474
1475 /**
1476 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1477 * @timer: the timer to be cancelled
1478 *
1479 * Returns:
1480 * 0 when the timer was not active
1481 * 1 when the timer was active
1482 */
hrtimer_cancel(struct hrtimer * timer)1483 int hrtimer_cancel(struct hrtimer *timer)
1484 {
1485 int ret;
1486
1487 do {
1488 ret = hrtimer_try_to_cancel(timer);
1489
1490 if (ret < 0)
1491 hrtimer_cancel_wait_running(timer);
1492 } while (ret < 0);
1493 return ret;
1494 }
1495 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1496
1497 /**
1498 * __hrtimer_get_remaining - get remaining time for the timer
1499 * @timer: the timer to read
1500 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y
1501 */
__hrtimer_get_remaining(const struct hrtimer * timer,bool adjust)1502 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1503 {
1504 unsigned long flags;
1505 ktime_t rem;
1506
1507 lock_hrtimer_base(timer, &flags);
1508 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1509 rem = hrtimer_expires_remaining_adjusted(timer);
1510 else
1511 rem = hrtimer_expires_remaining(timer);
1512 unlock_hrtimer_base(timer, &flags);
1513
1514 return rem;
1515 }
1516 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1517
1518 #ifdef CONFIG_NO_HZ_COMMON
1519 /**
1520 * hrtimer_get_next_event - get the time until next expiry event
1521 *
1522 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1523 */
hrtimer_get_next_event(void)1524 u64 hrtimer_get_next_event(void)
1525 {
1526 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1527 u64 expires = KTIME_MAX;
1528 unsigned long flags;
1529
1530 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1531
1532 if (!hrtimer_hres_active(cpu_base))
1533 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1534
1535 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1536
1537 return expires;
1538 }
1539
1540 /**
1541 * hrtimer_next_event_without - time until next expiry event w/o one timer
1542 * @exclude: timer to exclude
1543 *
1544 * Returns the next expiry time over all timers except for the @exclude one or
1545 * KTIME_MAX if none of them is pending.
1546 */
hrtimer_next_event_without(const struct hrtimer * exclude)1547 u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1548 {
1549 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1550 u64 expires = KTIME_MAX;
1551 unsigned long flags;
1552
1553 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1554
1555 if (hrtimer_hres_active(cpu_base)) {
1556 unsigned int active;
1557
1558 if (!cpu_base->softirq_activated) {
1559 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1560 expires = __hrtimer_next_event_base(cpu_base, exclude,
1561 active, KTIME_MAX);
1562 }
1563 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1564 expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1565 expires);
1566 }
1567
1568 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1569
1570 return expires;
1571 }
1572 #endif
1573
hrtimer_clockid_to_base(clockid_t clock_id)1574 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1575 {
1576 switch (clock_id) {
1577 case CLOCK_REALTIME:
1578 return HRTIMER_BASE_REALTIME;
1579 case CLOCK_MONOTONIC:
1580 return HRTIMER_BASE_MONOTONIC;
1581 case CLOCK_BOOTTIME:
1582 return HRTIMER_BASE_BOOTTIME;
1583 case CLOCK_TAI:
1584 return HRTIMER_BASE_TAI;
1585 default:
1586 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1587 return HRTIMER_BASE_MONOTONIC;
1588 }
1589 }
1590
__hrtimer_setup(struct hrtimer * timer,enum hrtimer_restart (* function)(struct hrtimer *),clockid_t clock_id,enum hrtimer_mode mode)1591 static void __hrtimer_setup(struct hrtimer *timer,
1592 enum hrtimer_restart (*function)(struct hrtimer *),
1593 clockid_t clock_id, enum hrtimer_mode mode)
1594 {
1595 bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1596 struct hrtimer_cpu_base *cpu_base;
1597 int base;
1598
1599 /*
1600 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly
1601 * marked for hard interrupt expiry mode are moved into soft
1602 * interrupt context for latency reasons and because the callbacks
1603 * can invoke functions which might sleep on RT, e.g. spin_lock().
1604 */
1605 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD))
1606 softtimer = true;
1607
1608 memset(timer, 0, sizeof(struct hrtimer));
1609
1610 cpu_base = raw_cpu_ptr(&hrtimer_bases);
1611
1612 /*
1613 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1614 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1615 * ensure POSIX compliance.
1616 */
1617 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1618 clock_id = CLOCK_MONOTONIC;
1619
1620 base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1621 base += hrtimer_clockid_to_base(clock_id);
1622 timer->is_soft = softtimer;
1623 timer->is_hard = !!(mode & HRTIMER_MODE_HARD);
1624 timer->base = &cpu_base->clock_base[base];
1625 timerqueue_init(&timer->node);
1626
1627 if (WARN_ON_ONCE(!function))
1628 ACCESS_PRIVATE(timer, function) = hrtimer_dummy_timeout;
1629 else
1630 ACCESS_PRIVATE(timer, function) = function;
1631 }
1632
1633 /**
1634 * hrtimer_setup - initialize a timer to the given clock
1635 * @timer: the timer to be initialized
1636 * @function: the callback function
1637 * @clock_id: the clock to be used
1638 * @mode: The modes which are relevant for initialization:
1639 * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1640 * HRTIMER_MODE_REL_SOFT
1641 *
1642 * The PINNED variants of the above can be handed in,
1643 * but the PINNED bit is ignored as pinning happens
1644 * when the hrtimer is started
1645 */
hrtimer_setup(struct hrtimer * timer,enum hrtimer_restart (* function)(struct hrtimer *),clockid_t clock_id,enum hrtimer_mode mode)1646 void hrtimer_setup(struct hrtimer *timer, enum hrtimer_restart (*function)(struct hrtimer *),
1647 clockid_t clock_id, enum hrtimer_mode mode)
1648 {
1649 debug_setup(timer, clock_id, mode);
1650 __hrtimer_setup(timer, function, clock_id, mode);
1651 }
1652 EXPORT_SYMBOL_GPL(hrtimer_setup);
1653
1654 /**
1655 * hrtimer_setup_on_stack - initialize a timer on stack memory
1656 * @timer: The timer to be initialized
1657 * @function: the callback function
1658 * @clock_id: The clock to be used
1659 * @mode: The timer mode
1660 *
1661 * Similar to hrtimer_setup(), except that this one must be used if struct hrtimer is in stack
1662 * memory.
1663 */
hrtimer_setup_on_stack(struct hrtimer * timer,enum hrtimer_restart (* function)(struct hrtimer *),clockid_t clock_id,enum hrtimer_mode mode)1664 void hrtimer_setup_on_stack(struct hrtimer *timer,
1665 enum hrtimer_restart (*function)(struct hrtimer *),
1666 clockid_t clock_id, enum hrtimer_mode mode)
1667 {
1668 debug_setup_on_stack(timer, clock_id, mode);
1669 __hrtimer_setup(timer, function, clock_id, mode);
1670 }
1671 EXPORT_SYMBOL_GPL(hrtimer_setup_on_stack);
1672
1673 /*
1674 * A timer is active, when it is enqueued into the rbtree or the
1675 * callback function is running or it's in the state of being migrated
1676 * to another cpu.
1677 *
1678 * It is important for this function to not return a false negative.
1679 */
hrtimer_active(const struct hrtimer * timer)1680 bool hrtimer_active(const struct hrtimer *timer)
1681 {
1682 struct hrtimer_clock_base *base;
1683 unsigned int seq;
1684
1685 do {
1686 base = READ_ONCE(timer->base);
1687 seq = raw_read_seqcount_begin(&base->seq);
1688
1689 if (timer->state != HRTIMER_STATE_INACTIVE ||
1690 base->running == timer)
1691 return true;
1692
1693 } while (read_seqcount_retry(&base->seq, seq) ||
1694 base != READ_ONCE(timer->base));
1695
1696 return false;
1697 }
1698 EXPORT_SYMBOL_GPL(hrtimer_active);
1699
1700 /*
1701 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1702 * distinct sections:
1703 *
1704 * - queued: the timer is queued
1705 * - callback: the timer is being ran
1706 * - post: the timer is inactive or (re)queued
1707 *
1708 * On the read side we ensure we observe timer->state and cpu_base->running
1709 * from the same section, if anything changed while we looked at it, we retry.
1710 * This includes timer->base changing because sequence numbers alone are
1711 * insufficient for that.
1712 *
1713 * The sequence numbers are required because otherwise we could still observe
1714 * a false negative if the read side got smeared over multiple consecutive
1715 * __run_hrtimer() invocations.
1716 */
1717
__run_hrtimer(struct hrtimer_cpu_base * cpu_base,struct hrtimer_clock_base * base,struct hrtimer * timer,ktime_t * now,unsigned long flags)1718 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1719 struct hrtimer_clock_base *base,
1720 struct hrtimer *timer, ktime_t *now,
1721 unsigned long flags) __must_hold(&cpu_base->lock)
1722 {
1723 enum hrtimer_restart (*fn)(struct hrtimer *);
1724 bool expires_in_hardirq;
1725 int restart;
1726
1727 lockdep_assert_held(&cpu_base->lock);
1728
1729 debug_deactivate(timer);
1730 base->running = timer;
1731
1732 /*
1733 * Separate the ->running assignment from the ->state assignment.
1734 *
1735 * As with a regular write barrier, this ensures the read side in
1736 * hrtimer_active() cannot observe base->running == NULL &&
1737 * timer->state == INACTIVE.
1738 */
1739 raw_write_seqcount_barrier(&base->seq);
1740
1741 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1742 fn = ACCESS_PRIVATE(timer, function);
1743
1744 /*
1745 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1746 * timer is restarted with a period then it becomes an absolute
1747 * timer. If its not restarted it does not matter.
1748 */
1749 if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1750 timer->is_rel = false;
1751
1752 /*
1753 * The timer is marked as running in the CPU base, so it is
1754 * protected against migration to a different CPU even if the lock
1755 * is dropped.
1756 */
1757 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1758 trace_hrtimer_expire_entry(timer, now);
1759 expires_in_hardirq = lockdep_hrtimer_enter(timer);
1760
1761 restart = fn(timer);
1762
1763 lockdep_hrtimer_exit(expires_in_hardirq);
1764 trace_hrtimer_expire_exit(timer);
1765 raw_spin_lock_irq(&cpu_base->lock);
1766
1767 /*
1768 * Note: We clear the running state after enqueue_hrtimer and
1769 * we do not reprogram the event hardware. Happens either in
1770 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1771 *
1772 * Note: Because we dropped the cpu_base->lock above,
1773 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1774 * for us already.
1775 */
1776 if (restart != HRTIMER_NORESTART &&
1777 !(timer->state & HRTIMER_STATE_ENQUEUED))
1778 enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1779
1780 /*
1781 * Separate the ->running assignment from the ->state assignment.
1782 *
1783 * As with a regular write barrier, this ensures the read side in
1784 * hrtimer_active() cannot observe base->running.timer == NULL &&
1785 * timer->state == INACTIVE.
1786 */
1787 raw_write_seqcount_barrier(&base->seq);
1788
1789 WARN_ON_ONCE(base->running != timer);
1790 base->running = NULL;
1791 }
1792
__hrtimer_run_queues(struct hrtimer_cpu_base * cpu_base,ktime_t now,unsigned long flags,unsigned int active_mask)1793 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1794 unsigned long flags, unsigned int active_mask)
1795 {
1796 struct hrtimer_clock_base *base;
1797 unsigned int active = cpu_base->active_bases & active_mask;
1798
1799 for_each_active_base(base, cpu_base, active) {
1800 struct timerqueue_node *node;
1801 ktime_t basenow;
1802
1803 basenow = ktime_add(now, base->offset);
1804
1805 while ((node = timerqueue_getnext(&base->active))) {
1806 struct hrtimer *timer;
1807
1808 timer = container_of(node, struct hrtimer, node);
1809
1810 /*
1811 * The immediate goal for using the softexpires is
1812 * minimizing wakeups, not running timers at the
1813 * earliest interrupt after their soft expiration.
1814 * This allows us to avoid using a Priority Search
1815 * Tree, which can answer a stabbing query for
1816 * overlapping intervals and instead use the simple
1817 * BST we already have.
1818 * We don't add extra wakeups by delaying timers that
1819 * are right-of a not yet expired timer, because that
1820 * timer will have to trigger a wakeup anyway.
1821 */
1822 if (basenow < hrtimer_get_softexpires_tv64(timer))
1823 break;
1824
1825 __run_hrtimer(cpu_base, base, timer, &basenow, flags);
1826 if (active_mask == HRTIMER_ACTIVE_SOFT)
1827 hrtimer_sync_wait_running(cpu_base, flags);
1828 }
1829 }
1830 }
1831
hrtimer_run_softirq(void)1832 static __latent_entropy void hrtimer_run_softirq(void)
1833 {
1834 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1835 unsigned long flags;
1836 ktime_t now;
1837
1838 hrtimer_cpu_base_lock_expiry(cpu_base);
1839 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1840
1841 now = hrtimer_update_base(cpu_base);
1842 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1843
1844 cpu_base->softirq_activated = 0;
1845 hrtimer_update_softirq_timer(cpu_base, true);
1846
1847 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1848 hrtimer_cpu_base_unlock_expiry(cpu_base);
1849 }
1850
1851 #ifdef CONFIG_HIGH_RES_TIMERS
1852
1853 /*
1854 * High resolution timer interrupt
1855 * Called with interrupts disabled
1856 */
hrtimer_interrupt(struct clock_event_device * dev)1857 void hrtimer_interrupt(struct clock_event_device *dev)
1858 {
1859 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1860 ktime_t expires_next, now, entry_time, delta;
1861 unsigned long flags;
1862 int retries = 0;
1863
1864 BUG_ON(!cpu_base->hres_active);
1865 cpu_base->nr_events++;
1866 dev->next_event = KTIME_MAX;
1867
1868 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1869 entry_time = now = hrtimer_update_base(cpu_base);
1870 retry:
1871 cpu_base->in_hrtirq = 1;
1872 /*
1873 * We set expires_next to KTIME_MAX here with cpu_base->lock
1874 * held to prevent that a timer is enqueued in our queue via
1875 * the migration code. This does not affect enqueueing of
1876 * timers which run their callback and need to be requeued on
1877 * this CPU.
1878 */
1879 cpu_base->expires_next = KTIME_MAX;
1880
1881 if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1882 cpu_base->softirq_expires_next = KTIME_MAX;
1883 cpu_base->softirq_activated = 1;
1884 raise_timer_softirq(HRTIMER_SOFTIRQ);
1885 }
1886
1887 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1888
1889 /* Reevaluate the clock bases for the [soft] next expiry */
1890 expires_next = hrtimer_update_next_event(cpu_base);
1891 /*
1892 * Store the new expiry value so the migration code can verify
1893 * against it.
1894 */
1895 cpu_base->expires_next = expires_next;
1896 cpu_base->in_hrtirq = 0;
1897 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1898
1899 /* Reprogramming necessary ? */
1900 if (!tick_program_event(expires_next, 0)) {
1901 cpu_base->hang_detected = 0;
1902 return;
1903 }
1904
1905 /*
1906 * The next timer was already expired due to:
1907 * - tracing
1908 * - long lasting callbacks
1909 * - being scheduled away when running in a VM
1910 *
1911 * We need to prevent that we loop forever in the hrtimer
1912 * interrupt routine. We give it 3 attempts to avoid
1913 * overreacting on some spurious event.
1914 *
1915 * Acquire base lock for updating the offsets and retrieving
1916 * the current time.
1917 */
1918 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1919 now = hrtimer_update_base(cpu_base);
1920 cpu_base->nr_retries++;
1921 if (++retries < 3)
1922 goto retry;
1923 /*
1924 * Give the system a chance to do something else than looping
1925 * here. We stored the entry time, so we know exactly how long
1926 * we spent here. We schedule the next event this amount of
1927 * time away.
1928 */
1929 cpu_base->nr_hangs++;
1930 cpu_base->hang_detected = 1;
1931 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1932
1933 delta = ktime_sub(now, entry_time);
1934 if ((unsigned int)delta > cpu_base->max_hang_time)
1935 cpu_base->max_hang_time = (unsigned int) delta;
1936 /*
1937 * Limit it to a sensible value as we enforce a longer
1938 * delay. Give the CPU at least 100ms to catch up.
1939 */
1940 if (delta > 100 * NSEC_PER_MSEC)
1941 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1942 else
1943 expires_next = ktime_add(now, delta);
1944 tick_program_event(expires_next, 1);
1945 pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
1946 }
1947 #endif /* !CONFIG_HIGH_RES_TIMERS */
1948
1949 /*
1950 * Called from run_local_timers in hardirq context every jiffy
1951 */
hrtimer_run_queues(void)1952 void hrtimer_run_queues(void)
1953 {
1954 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1955 unsigned long flags;
1956 ktime_t now;
1957
1958 if (hrtimer_hres_active(cpu_base))
1959 return;
1960
1961 /*
1962 * This _is_ ugly: We have to check periodically, whether we
1963 * can switch to highres and / or nohz mode. The clocksource
1964 * switch happens with xtime_lock held. Notification from
1965 * there only sets the check bit in the tick_oneshot code,
1966 * otherwise we might deadlock vs. xtime_lock.
1967 */
1968 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1969 hrtimer_switch_to_hres();
1970 return;
1971 }
1972
1973 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1974 now = hrtimer_update_base(cpu_base);
1975
1976 if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1977 cpu_base->softirq_expires_next = KTIME_MAX;
1978 cpu_base->softirq_activated = 1;
1979 raise_timer_softirq(HRTIMER_SOFTIRQ);
1980 }
1981
1982 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1983 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1984 }
1985
1986 /*
1987 * Sleep related functions:
1988 */
hrtimer_wakeup(struct hrtimer * timer)1989 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1990 {
1991 struct hrtimer_sleeper *t =
1992 container_of(timer, struct hrtimer_sleeper, timer);
1993 struct task_struct *task = t->task;
1994
1995 t->task = NULL;
1996 if (task)
1997 wake_up_process(task);
1998
1999 return HRTIMER_NORESTART;
2000 }
2001
2002 /**
2003 * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer
2004 * @sl: sleeper to be started
2005 * @mode: timer mode abs/rel
2006 *
2007 * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers
2008 * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context)
2009 */
hrtimer_sleeper_start_expires(struct hrtimer_sleeper * sl,enum hrtimer_mode mode)2010 void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl,
2011 enum hrtimer_mode mode)
2012 {
2013 /*
2014 * Make the enqueue delivery mode check work on RT. If the sleeper
2015 * was initialized for hard interrupt delivery, force the mode bit.
2016 * This is a special case for hrtimer_sleepers because
2017 * __hrtimer_setup_sleeper() determines the delivery mode on RT so the
2018 * fiddling with this decision is avoided at the call sites.
2019 */
2020 if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard)
2021 mode |= HRTIMER_MODE_HARD;
2022
2023 hrtimer_start_expires(&sl->timer, mode);
2024 }
2025 EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires);
2026
__hrtimer_setup_sleeper(struct hrtimer_sleeper * sl,clockid_t clock_id,enum hrtimer_mode mode)2027 static void __hrtimer_setup_sleeper(struct hrtimer_sleeper *sl,
2028 clockid_t clock_id, enum hrtimer_mode mode)
2029 {
2030 /*
2031 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly
2032 * marked for hard interrupt expiry mode are moved into soft
2033 * interrupt context either for latency reasons or because the
2034 * hrtimer callback takes regular spinlocks or invokes other
2035 * functions which are not suitable for hard interrupt context on
2036 * PREEMPT_RT.
2037 *
2038 * The hrtimer_sleeper callback is RT compatible in hard interrupt
2039 * context, but there is a latency concern: Untrusted userspace can
2040 * spawn many threads which arm timers for the same expiry time on
2041 * the same CPU. That causes a latency spike due to the wakeup of
2042 * a gazillion threads.
2043 *
2044 * OTOH, privileged real-time user space applications rely on the
2045 * low latency of hard interrupt wakeups. If the current task is in
2046 * a real-time scheduling class, mark the mode for hard interrupt
2047 * expiry.
2048 */
2049 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
2050 if (rt_or_dl_task_policy(current) && !(mode & HRTIMER_MODE_SOFT))
2051 mode |= HRTIMER_MODE_HARD;
2052 }
2053
2054 __hrtimer_setup(&sl->timer, hrtimer_wakeup, clock_id, mode);
2055 sl->task = current;
2056 }
2057
2058 /**
2059 * hrtimer_setup_sleeper_on_stack - initialize a sleeper in stack memory
2060 * @sl: sleeper to be initialized
2061 * @clock_id: the clock to be used
2062 * @mode: timer mode abs/rel
2063 */
hrtimer_setup_sleeper_on_stack(struct hrtimer_sleeper * sl,clockid_t clock_id,enum hrtimer_mode mode)2064 void hrtimer_setup_sleeper_on_stack(struct hrtimer_sleeper *sl,
2065 clockid_t clock_id, enum hrtimer_mode mode)
2066 {
2067 debug_setup_on_stack(&sl->timer, clock_id, mode);
2068 __hrtimer_setup_sleeper(sl, clock_id, mode);
2069 }
2070 EXPORT_SYMBOL_GPL(hrtimer_setup_sleeper_on_stack);
2071
nanosleep_copyout(struct restart_block * restart,struct timespec64 * ts)2072 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
2073 {
2074 switch(restart->nanosleep.type) {
2075 #ifdef CONFIG_COMPAT_32BIT_TIME
2076 case TT_COMPAT:
2077 if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp))
2078 return -EFAULT;
2079 break;
2080 #endif
2081 case TT_NATIVE:
2082 if (put_timespec64(ts, restart->nanosleep.rmtp))
2083 return -EFAULT;
2084 break;
2085 default:
2086 BUG();
2087 }
2088 return -ERESTART_RESTARTBLOCK;
2089 }
2090
do_nanosleep(struct hrtimer_sleeper * t,enum hrtimer_mode mode)2091 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
2092 {
2093 struct restart_block *restart;
2094
2095 do {
2096 set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2097 hrtimer_sleeper_start_expires(t, mode);
2098
2099 if (likely(t->task))
2100 schedule();
2101
2102 hrtimer_cancel(&t->timer);
2103 mode = HRTIMER_MODE_ABS;
2104
2105 } while (t->task && !signal_pending(current));
2106
2107 __set_current_state(TASK_RUNNING);
2108
2109 if (!t->task)
2110 return 0;
2111
2112 restart = ¤t->restart_block;
2113 if (restart->nanosleep.type != TT_NONE) {
2114 ktime_t rem = hrtimer_expires_remaining(&t->timer);
2115 struct timespec64 rmt;
2116
2117 if (rem <= 0)
2118 return 0;
2119 rmt = ktime_to_timespec64(rem);
2120
2121 return nanosleep_copyout(restart, &rmt);
2122 }
2123 return -ERESTART_RESTARTBLOCK;
2124 }
2125
hrtimer_nanosleep_restart(struct restart_block * restart)2126 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
2127 {
2128 struct hrtimer_sleeper t;
2129 int ret;
2130
2131 hrtimer_setup_sleeper_on_stack(&t, restart->nanosleep.clockid, HRTIMER_MODE_ABS);
2132 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
2133 ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
2134 destroy_hrtimer_on_stack(&t.timer);
2135 return ret;
2136 }
2137
hrtimer_nanosleep(ktime_t rqtp,const enum hrtimer_mode mode,const clockid_t clockid)2138 long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode,
2139 const clockid_t clockid)
2140 {
2141 struct restart_block *restart;
2142 struct hrtimer_sleeper t;
2143 int ret = 0;
2144
2145 hrtimer_setup_sleeper_on_stack(&t, clockid, mode);
2146 hrtimer_set_expires_range_ns(&t.timer, rqtp, current->timer_slack_ns);
2147 ret = do_nanosleep(&t, mode);
2148 if (ret != -ERESTART_RESTARTBLOCK)
2149 goto out;
2150
2151 /* Absolute timers do not update the rmtp value and restart: */
2152 if (mode == HRTIMER_MODE_ABS) {
2153 ret = -ERESTARTNOHAND;
2154 goto out;
2155 }
2156
2157 restart = ¤t->restart_block;
2158 restart->nanosleep.clockid = t.timer.base->clockid;
2159 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
2160 set_restart_fn(restart, hrtimer_nanosleep_restart);
2161 out:
2162 destroy_hrtimer_on_stack(&t.timer);
2163 return ret;
2164 }
2165
2166 #ifdef CONFIG_64BIT
2167
SYSCALL_DEFINE2(nanosleep,struct __kernel_timespec __user *,rqtp,struct __kernel_timespec __user *,rmtp)2168 SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp,
2169 struct __kernel_timespec __user *, rmtp)
2170 {
2171 struct timespec64 tu;
2172
2173 if (get_timespec64(&tu, rqtp))
2174 return -EFAULT;
2175
2176 if (!timespec64_valid(&tu))
2177 return -EINVAL;
2178
2179 current->restart_block.fn = do_no_restart_syscall;
2180 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
2181 current->restart_block.nanosleep.rmtp = rmtp;
2182 return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
2183 CLOCK_MONOTONIC);
2184 }
2185
2186 #endif
2187
2188 #ifdef CONFIG_COMPAT_32BIT_TIME
2189
SYSCALL_DEFINE2(nanosleep_time32,struct old_timespec32 __user *,rqtp,struct old_timespec32 __user *,rmtp)2190 SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp,
2191 struct old_timespec32 __user *, rmtp)
2192 {
2193 struct timespec64 tu;
2194
2195 if (get_old_timespec32(&tu, rqtp))
2196 return -EFAULT;
2197
2198 if (!timespec64_valid(&tu))
2199 return -EINVAL;
2200
2201 current->restart_block.fn = do_no_restart_syscall;
2202 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
2203 current->restart_block.nanosleep.compat_rmtp = rmtp;
2204 return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
2205 CLOCK_MONOTONIC);
2206 }
2207 #endif
2208
2209 /*
2210 * Functions related to boot-time initialization:
2211 */
hrtimers_prepare_cpu(unsigned int cpu)2212 int hrtimers_prepare_cpu(unsigned int cpu)
2213 {
2214 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
2215 int i;
2216
2217 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2218 struct hrtimer_clock_base *clock_b = &cpu_base->clock_base[i];
2219
2220 clock_b->cpu_base = cpu_base;
2221 seqcount_raw_spinlock_init(&clock_b->seq, &cpu_base->lock);
2222 timerqueue_init_head(&clock_b->active);
2223 }
2224
2225 cpu_base->cpu = cpu;
2226 hrtimer_cpu_base_init_expiry_lock(cpu_base);
2227 return 0;
2228 }
2229
hrtimers_cpu_starting(unsigned int cpu)2230 int hrtimers_cpu_starting(unsigned int cpu)
2231 {
2232 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
2233
2234 /* Clear out any left over state from a CPU down operation */
2235 cpu_base->active_bases = 0;
2236 cpu_base->hres_active = 0;
2237 cpu_base->hang_detected = 0;
2238 cpu_base->next_timer = NULL;
2239 cpu_base->softirq_next_timer = NULL;
2240 cpu_base->expires_next = KTIME_MAX;
2241 cpu_base->softirq_expires_next = KTIME_MAX;
2242 cpu_base->online = 1;
2243 return 0;
2244 }
2245
2246 #ifdef CONFIG_HOTPLUG_CPU
2247
migrate_hrtimer_list(struct hrtimer_clock_base * old_base,struct hrtimer_clock_base * new_base)2248 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
2249 struct hrtimer_clock_base *new_base)
2250 {
2251 struct hrtimer *timer;
2252 struct timerqueue_node *node;
2253
2254 while ((node = timerqueue_getnext(&old_base->active))) {
2255 timer = container_of(node, struct hrtimer, node);
2256 BUG_ON(hrtimer_callback_running(timer));
2257 debug_deactivate(timer);
2258
2259 /*
2260 * Mark it as ENQUEUED not INACTIVE otherwise the
2261 * timer could be seen as !active and just vanish away
2262 * under us on another CPU
2263 */
2264 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
2265 timer->base = new_base;
2266 /*
2267 * Enqueue the timers on the new cpu. This does not
2268 * reprogram the event device in case the timer
2269 * expires before the earliest on this CPU, but we run
2270 * hrtimer_interrupt after we migrated everything to
2271 * sort out already expired timers and reprogram the
2272 * event device.
2273 */
2274 enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
2275 }
2276 }
2277
hrtimers_cpu_dying(unsigned int dying_cpu)2278 int hrtimers_cpu_dying(unsigned int dying_cpu)
2279 {
2280 int i, ncpu = cpumask_any_and(cpu_active_mask, housekeeping_cpumask(HK_TYPE_TIMER));
2281 struct hrtimer_cpu_base *old_base, *new_base;
2282
2283 old_base = this_cpu_ptr(&hrtimer_bases);
2284 new_base = &per_cpu(hrtimer_bases, ncpu);
2285
2286 /*
2287 * The caller is globally serialized and nobody else
2288 * takes two locks at once, deadlock is not possible.
2289 */
2290 raw_spin_lock(&old_base->lock);
2291 raw_spin_lock_nested(&new_base->lock, SINGLE_DEPTH_NESTING);
2292
2293 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2294 migrate_hrtimer_list(&old_base->clock_base[i],
2295 &new_base->clock_base[i]);
2296 }
2297
2298 /*
2299 * The migration might have changed the first expiring softirq
2300 * timer on this CPU. Update it.
2301 */
2302 __hrtimer_get_next_event(new_base, HRTIMER_ACTIVE_SOFT);
2303 /* Tell the other CPU to retrigger the next event */
2304 smp_call_function_single(ncpu, retrigger_next_event, NULL, 0);
2305
2306 raw_spin_unlock(&new_base->lock);
2307 old_base->online = 0;
2308 raw_spin_unlock(&old_base->lock);
2309
2310 return 0;
2311 }
2312
2313 #endif /* CONFIG_HOTPLUG_CPU */
2314
hrtimers_init(void)2315 void __init hrtimers_init(void)
2316 {
2317 hrtimers_prepare_cpu(smp_processor_id());
2318 hrtimers_cpu_starting(smp_processor_id());
2319 open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
2320 }
2321