1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2020 Joyent, Inc.
25 * Copyright 2025 Oxide Computer Company
26 */
27 /*
28 * Copyright (c) 2010, Intel Corporation.
29 * All rights reserved.
30 */
31
32 #include <sys/types.h>
33 #include <sys/t_lock.h>
34 #include <sys/param.h>
35 #include <sys/segments.h>
36 #include <sys/sysmacros.h>
37 #include <sys/signal.h>
38 #include <sys/systm.h>
39 #include <sys/user.h>
40 #include <sys/mman.h>
41 #include <sys/vm.h>
42
43 #include <sys/disp.h>
44 #include <sys/class.h>
45
46 #include <sys/proc.h>
47 #include <sys/buf.h>
48 #include <sys/kmem.h>
49
50 #include <sys/reboot.h>
51 #include <sys/uadmin.h>
52 #include <sys/callb.h>
53
54 #include <sys/cred.h>
55 #include <sys/vnode.h>
56 #include <sys/file.h>
57
58 #include <sys/procfs.h>
59 #include <sys/acct.h>
60
61 #include <sys/vfs.h>
62 #include <sys/dnlc.h>
63 #include <sys/var.h>
64 #include <sys/cmn_err.h>
65 #include <sys/utsname.h>
66 #include <sys/debug.h>
67
68 #include <sys/dumphdr.h>
69 #include <sys/bootconf.h>
70 #include <sys/varargs.h>
71 #include <sys/promif.h>
72 #include <sys/modctl.h>
73
74 #include <sys/consdev.h>
75 #include <sys/frame.h>
76
77 #include <sys/sunddi.h>
78 #include <sys/ddidmareq.h>
79 #include <sys/psw.h>
80 #include <sys/regset.h>
81 #include <sys/privregs.h>
82 #include <sys/clock.h>
83 #include <sys/tss.h>
84 #include <sys/cpu.h>
85 #include <sys/stack.h>
86 #include <sys/trap.h>
87 #include <sys/pic.h>
88 #include <vm/hat.h>
89 #include <vm/anon.h>
90 #include <vm/as.h>
91 #include <vm/page.h>
92 #include <vm/seg.h>
93 #include <vm/seg_kmem.h>
94 #include <vm/seg_map.h>
95 #include <vm/seg_vn.h>
96 #include <vm/seg_kp.h>
97 #include <vm/hat_i86.h>
98 #include <sys/swap.h>
99 #include <sys/thread.h>
100 #include <sys/sysconf.h>
101 #include <sys/vm_machparam.h>
102 #include <sys/archsystm.h>
103 #include <sys/machsystm.h>
104 #include <sys/machlock.h>
105 #include <sys/x_call.h>
106 #include <sys/instance.h>
107
108 #include <sys/time.h>
109 #include <sys/smp_impldefs.h>
110 #include <sys/psm_types.h>
111 #include <sys/atomic.h>
112 #include <sys/panic.h>
113 #include <sys/cpuvar.h>
114 #include <sys/dtrace.h>
115 #include <sys/bl.h>
116 #include <sys/nvpair.h>
117 #include <sys/x86_archext.h>
118 #include <sys/pool_pset.h>
119 #include <sys/autoconf.h>
120 #include <sys/mem.h>
121 #include <sys/dumphdr.h>
122 #include <sys/compress.h>
123 #include <sys/cpu_module.h>
124 #if defined(__xpv)
125 #include <sys/hypervisor.h>
126 #include <sys/xpv_panic.h>
127 #endif
128
129 #include <sys/fastboot.h>
130 #include <sys/machelf.h>
131 #include <sys/kobj.h>
132 #include <sys/multiboot.h>
133
134 #ifdef TRAPTRACE
135 #include <sys/traptrace.h>
136 #endif /* TRAPTRACE */
137
138 #include <c2/audit.h>
139 #include <sys/clock_impl.h>
140
141 extern void audit_enterprom(int);
142 extern void audit_exitprom(int);
143
144 /*
145 * Tunable to enable apix PSM; if set to 0, pcplusmp PSM will be used.
146 */
147 int apix_enable = 1;
148
149 int apic_nvidia_io_max = 0; /* no. of NVIDIA i/o apics */
150
151 /*
152 * Occassionally the kernel knows better whether to power-off or reboot.
153 */
154 int force_shutdown_method = AD_UNKNOWN;
155
156 /*
157 * The panicbuf array is used to record messages and state:
158 */
159 char panicbuf[PANICBUFSIZE];
160
161 /*
162 * Flags to control Dynamic Reconfiguration features.
163 */
164 uint64_t plat_dr_options;
165
166 /*
167 * Maximum physical address for memory DR operations.
168 */
169 uint64_t plat_dr_physmax;
170
171 /*
172 * maxphys - used during physio
173 * klustsize - used for klustering by swapfs and specfs
174 */
175 int maxphys = 56 * 1024; /* XXX See vm_subr.c - max b_count in physio */
176 int klustsize = 56 * 1024;
177
178 caddr_t p0_va; /* Virtual address for accessing physical page 0 */
179
180 /*
181 * defined here, though unused on x86,
182 * to make kstat_fr.c happy.
183 */
184 int vac;
185
186 void debug_enter(char *);
187
188 extern void pm_cfb_check_and_powerup(void);
189 extern void pm_cfb_rele(void);
190
191 extern fastboot_info_t newkernel;
192
193 /*
194 * Instructions to enable or disable SMAP, respectively.
195 */
196 static const uint8_t clac_instr[3] = { 0x0f, 0x01, 0xca };
197 static const uint8_t stac_instr[3] = { 0x0f, 0x01, 0xcb };
198
199 /*
200 * Machine dependent code to reboot.
201 * "mdep" is interpreted as a character pointer; if non-null, it is a pointer
202 * to a string to be used as the argument string when rebooting.
203 *
204 * "invoke_cb" is a boolean. It is set to true when mdboot() can safely
205 * invoke CB_CL_MDBOOT callbacks before shutting the system down, i.e. when
206 * we are in a normal shutdown sequence (interrupts are not blocked, the
207 * system is not panic'ing or being suspended).
208 */
209 /*ARGSUSED*/
210 void
mdboot(int cmd,int fcn,char * mdep,boolean_t invoke_cb)211 mdboot(int cmd, int fcn, char *mdep, boolean_t invoke_cb)
212 {
213 processorid_t bootcpuid = 0;
214 static int is_first_quiesce = 1;
215 static int is_first_reset = 1;
216 int reset_status = 0;
217 static char fallback_str[] = "Falling back to regular reboot.\n";
218
219 if (fcn == AD_FASTREBOOT && !newkernel.fi_valid)
220 fcn = AD_BOOT;
221
222 if (!panicstr) {
223 kpreempt_disable();
224 if (fcn == AD_FASTREBOOT) {
225 mutex_enter(&cpu_lock);
226 if (CPU_ACTIVE(cpu_get(bootcpuid))) {
227 affinity_set(bootcpuid);
228 }
229 mutex_exit(&cpu_lock);
230 } else {
231 affinity_set(CPU_CURRENT);
232 }
233 }
234
235 if (force_shutdown_method != AD_UNKNOWN)
236 fcn = force_shutdown_method;
237
238 /*
239 * XXX - rconsvp is set to NULL to ensure that output messages
240 * are sent to the underlying "hardware" device using the
241 * monitor's printf routine since we are in the process of
242 * either rebooting or halting the machine.
243 */
244 rconsvp = NULL;
245
246 /*
247 * Print the reboot message now, before pausing other cpus.
248 * There is a race condition in the printing support that
249 * can deadlock multiprocessor machines.
250 */
251 if (!(fcn == AD_HALT || fcn == AD_POWEROFF))
252 prom_printf("rebooting...\n");
253
254 if (IN_XPV_PANIC())
255 reset();
256
257 /*
258 * We can't bring up the console from above lock level, so do it now
259 */
260 pm_cfb_check_and_powerup();
261
262 /* make sure there are no more changes to the device tree */
263 devtree_freeze();
264
265 if (invoke_cb)
266 (void) callb_execute_class(CB_CL_MDBOOT, 0);
267
268 /*
269 * Clear any unresolved UEs from memory.
270 */
271 page_retire_mdboot();
272
273 #if defined(__xpv)
274 /*
275 * XXPV Should probably think some more about how we deal
276 * with panicing before it's really safe to panic.
277 * On hypervisors, we reboot very quickly.. Perhaps panic
278 * should only attempt to recover by rebooting if,
279 * say, we were able to mount the root filesystem,
280 * or if we successfully launched init(8).
281 */
282 if (panicstr && proc_init == NULL)
283 (void) HYPERVISOR_shutdown(SHUTDOWN_poweroff);
284 #endif
285 /*
286 * stop other cpus and raise our priority. since there is only
287 * one active cpu after this, and our priority will be too high
288 * for us to be preempted, we're essentially single threaded
289 * from here on out.
290 */
291 (void) spl6();
292 if (!panicstr) {
293 mutex_enter(&cpu_lock);
294 pause_cpus(NULL, NULL);
295 mutex_exit(&cpu_lock);
296 }
297
298 /*
299 * If the system is panicking, the preloaded kernel is valid, and
300 * fastreboot_onpanic has been set, and the system has been up for
301 * longer than fastreboot_onpanic_uptime (default to 10 minutes),
302 * choose Fast Reboot.
303 */
304 if (fcn == AD_BOOT && panicstr && newkernel.fi_valid &&
305 fastreboot_onpanic &&
306 (panic_lbolt - lbolt_at_boot) > fastreboot_onpanic_uptime) {
307 fcn = AD_FASTREBOOT;
308 }
309
310 /*
311 * Try to quiesce devices.
312 */
313 if (is_first_quiesce) {
314 /*
315 * Clear is_first_quiesce before calling quiesce_devices()
316 * so that if quiesce_devices() causes panics, it will not
317 * be invoked again.
318 */
319 is_first_quiesce = 0;
320
321 quiesce_active = 1;
322 quiesce_devices(ddi_root_node(), &reset_status);
323 if (reset_status == -1) {
324 if (fcn == AD_FASTREBOOT && !force_fastreboot) {
325 prom_printf("Driver(s) not capable of fast "
326 "reboot.\n");
327 prom_printf(fallback_str);
328 fastreboot_capable = 0;
329 fcn = AD_BOOT;
330 } else if (fcn != AD_FASTREBOOT)
331 fastreboot_capable = 0;
332 }
333 quiesce_active = 0;
334 }
335
336 /*
337 * Try to reset devices. reset_leaves() should only be called
338 * a) when there are no other threads that could be accessing devices,
339 * and
340 * b) on a system that's not capable of fast reboot (fastreboot_capable
341 * being 0), or on a system where quiesce_devices() failed to
342 * complete (quiesce_active being 1).
343 */
344 if (is_first_reset && (!fastreboot_capable || quiesce_active)) {
345 /*
346 * Clear is_first_reset before calling reset_devices()
347 * so that if reset_devices() causes panics, it will not
348 * be invoked again.
349 */
350 is_first_reset = 0;
351 reset_leaves();
352 }
353
354 /* Verify newkernel checksum */
355 if (fastreboot_capable && fcn == AD_FASTREBOOT &&
356 fastboot_cksum_verify(&newkernel) != 0) {
357 fastreboot_capable = 0;
358 prom_printf("Fast reboot: checksum failed for the new "
359 "kernel.\n");
360 prom_printf(fallback_str);
361 }
362
363 (void) spl8();
364
365 if (fastreboot_capable && fcn == AD_FASTREBOOT) {
366 /*
367 * psm_shutdown is called within fast_reboot()
368 */
369 fast_reboot();
370 } else {
371 (*psm_shutdownf)(cmd, fcn);
372
373 if (fcn == AD_HALT || fcn == AD_POWEROFF)
374 halt((char *)NULL);
375 else
376 prom_reboot("");
377 }
378 /*NOTREACHED*/
379 }
380
381 /* mdpreboot - may be called prior to mdboot while root fs still mounted */
382 /*ARGSUSED*/
383 void
mdpreboot(int cmd,int fcn,char * mdep)384 mdpreboot(int cmd, int fcn, char *mdep)
385 {
386 if (fcn == AD_FASTREBOOT && !fastreboot_capable) {
387 fcn = AD_BOOT;
388 #ifdef __xpv
389 cmn_err(CE_WARN, "Fast reboot is not supported on xVM");
390 #else
391 cmn_err(CE_WARN,
392 "Fast reboot is not supported on this platform%s",
393 fastreboot_nosup_message());
394 #endif
395 }
396
397 if (fcn == AD_FASTREBOOT) {
398 fastboot_load_kernel(mdep);
399 if (!newkernel.fi_valid)
400 fcn = AD_BOOT;
401 }
402
403 (*psm_preshutdownf)(cmd, fcn);
404 }
405
406 static void
stop_other_cpus(void)407 stop_other_cpus(void)
408 {
409 ulong_t s = clear_int_flag(); /* fast way to keep CPU from changing */
410 cpuset_t xcset;
411
412 CPUSET_ALL_BUT(xcset, CPU->cpu_id);
413 xc_priority(0, 0, 0, CPUSET2BV(xcset), mach_cpu_halt);
414 restore_int_flag(s);
415 }
416
417 /*
418 * Machine dependent abort sequence handling
419 */
420 void
abort_sequence_enter(char * msg)421 abort_sequence_enter(char *msg)
422 {
423 if (abort_enable == 0) {
424 if (AU_ZONE_AUDITING(GET_KCTX_GZ))
425 audit_enterprom(0);
426 return;
427 }
428 if (AU_ZONE_AUDITING(GET_KCTX_GZ))
429 audit_enterprom(1);
430 debug_enter(msg);
431 if (AU_ZONE_AUDITING(GET_KCTX_GZ))
432 audit_exitprom(1);
433 }
434
435 /*
436 * Enter debugger. Called when the user types ctrl-alt-d or whenever
437 * code wants to enter the debugger and possibly resume later.
438 *
439 * msg: message to print, possibly NULL.
440 */
441 void
debug_enter(char * msg)442 debug_enter(char *msg)
443 {
444 if (dtrace_debugger_init != NULL)
445 (*dtrace_debugger_init)();
446
447 if (msg != NULL || (boothowto & RB_DEBUG))
448 prom_printf("\n");
449
450 if (msg != NULL)
451 prom_printf("%s\n", msg);
452
453 if (boothowto & RB_DEBUG)
454 kmdb_enter();
455
456 if (dtrace_debugger_fini != NULL)
457 (*dtrace_debugger_fini)();
458 }
459
460 void
reset(void)461 reset(void)
462 {
463 extern void acpi_reset_system();
464 #if !defined(__xpv)
465 ushort_t *bios_memchk;
466
467 /*
468 * Can't use psm_map_phys or acpi_reset_system before the hat is
469 * initialized.
470 */
471 if (khat_running) {
472 bios_memchk = (ushort_t *)psm_map_phys(0x472,
473 sizeof (ushort_t), PROT_READ | PROT_WRITE);
474 if (bios_memchk)
475 *bios_memchk = 0x1234; /* bios memory check disable */
476
477 if (options_dip != NULL &&
478 ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), 0,
479 "efi-systab")) {
480 if (bootops == NULL)
481 acpi_reset_system();
482 efi_reset();
483 }
484
485 /*
486 * The problem with using stubs is that we can call
487 * acpi_reset_system only after the kernel is up and running.
488 *
489 * We should create a global state to keep track of how far
490 * up the kernel is but for the time being we will depend on
491 * bootops. bootops cleared in startup_end().
492 */
493 if (bootops == NULL)
494 acpi_reset_system();
495 }
496
497 pc_reset();
498 #else
499 if (IN_XPV_PANIC()) {
500 if (khat_running && bootops == NULL) {
501 acpi_reset_system();
502 }
503
504 pc_reset();
505 }
506
507 (void) HYPERVISOR_shutdown(SHUTDOWN_reboot);
508 panic("HYPERVISOR_shutdown() failed");
509 #endif
510 /*NOTREACHED*/
511 }
512
513 /*
514 * Halt the machine and return to the monitor
515 */
516 void
halt(char * s)517 halt(char *s)
518 {
519 stop_other_cpus(); /* send stop signal to other CPUs */
520 if (s)
521 prom_printf("(%s) \n", s);
522 prom_exit_to_mon();
523 /*NOTREACHED*/
524 }
525
526 /*
527 * Initiate interrupt redistribution.
528 */
529 void
i_ddi_intr_redist_all_cpus()530 i_ddi_intr_redist_all_cpus()
531 {
532 }
533
534 /*
535 * XXX These probably ought to live somewhere else
536 * XXX They are called from mem.c
537 */
538
539 /*
540 * Convert page frame number to an OBMEM page frame number
541 * (i.e. put in the type bits -- zero for this implementation)
542 */
543 pfn_t
impl_obmem_pfnum(pfn_t pf)544 impl_obmem_pfnum(pfn_t pf)
545 {
546 return (pf);
547 }
548
549 #ifdef NM_DEBUG
550 int nmi_test = 0; /* checked in intentry.s during clock int */
551 int nmtest = -1;
nmfunc1(int arg,struct regs * rp)552 nmfunc1(int arg, struct regs *rp)
553 {
554 printf("nmi called with arg = %x, regs = %x\n", arg, rp);
555 nmtest += 50;
556 if (arg == nmtest) {
557 printf("ip = %x\n", rp->r_pc);
558 return (1);
559 }
560 return (0);
561 }
562
563 #endif
564
565 #include <sys/bootsvcs.h>
566
567 /* Hacked up initialization for initial kernel check out is HERE. */
568 /* The basic steps are: */
569 /* kernel bootfuncs definition/initialization for KADB */
570 /* kadb bootfuncs pointer initialization */
571 /* putchar/getchar (interrupts disabled) */
572
573 /* kadb bootfuncs pointer initialization */
574
575 int
sysp_getchar()576 sysp_getchar()
577 {
578 int i;
579 ulong_t s;
580
581 if (cons_polledio == NULL) {
582 /* Uh oh */
583 prom_printf("getchar called with no console\n");
584 for (;;)
585 /* LOOP FOREVER */;
586 }
587
588 s = clear_int_flag();
589 i = cons_polledio->cons_polledio_getchar(
590 cons_polledio->cons_polledio_argument);
591 restore_int_flag(s);
592 return (i);
593 }
594
595 void
sysp_putchar(int c)596 sysp_putchar(int c)
597 {
598 ulong_t s;
599
600 /*
601 * We have no alternative but to drop the output on the floor.
602 */
603 if (cons_polledio == NULL ||
604 cons_polledio->cons_polledio_putchar == NULL)
605 return;
606
607 s = clear_int_flag();
608 cons_polledio->cons_polledio_putchar(
609 cons_polledio->cons_polledio_argument, c);
610 restore_int_flag(s);
611 }
612
613 int
sysp_ischar()614 sysp_ischar()
615 {
616 int i;
617 ulong_t s;
618
619 if (cons_polledio == NULL ||
620 cons_polledio->cons_polledio_ischar == NULL)
621 return (0);
622
623 s = clear_int_flag();
624 i = cons_polledio->cons_polledio_ischar(
625 cons_polledio->cons_polledio_argument);
626 restore_int_flag(s);
627 return (i);
628 }
629
630 int
goany(void)631 goany(void)
632 {
633 prom_printf("Type any key to continue ");
634 (void) prom_getchar();
635 prom_printf("\n");
636 return (1);
637 }
638
639 static struct boot_syscalls kern_sysp = {
640 sysp_getchar, /* unchar (*getchar)(); 7 */
641 sysp_putchar, /* int (*putchar)(); 8 */
642 sysp_ischar, /* int (*ischar)(); 9 */
643 };
644
645 #if defined(__xpv)
646 int using_kern_polledio;
647 #endif
648
649 void
kadb_uses_kernel()650 kadb_uses_kernel()
651 {
652 /*
653 * This routine is now totally misnamed, since it does not in fact
654 * control kadb's I/O; it only controls the kernel's prom_* I/O.
655 */
656 sysp = &kern_sysp;
657 #if defined(__xpv)
658 using_kern_polledio = 1;
659 #endif
660 }
661
662 /*
663 * the interface to the outside world
664 */
665
666 /*
667 * poll_port -- wait for a register to achieve a
668 * specific state. Arguments are a mask of bits we care about,
669 * and two sub-masks. To return normally, all the bits in the
670 * first sub-mask must be ON, all the bits in the second sub-
671 * mask must be OFF. If about seconds pass without the register
672 * achieving the desired bit configuration, we return 1, else
673 * 0.
674 */
675 int
poll_port(ushort_t port,ushort_t mask,ushort_t onbits,ushort_t offbits)676 poll_port(ushort_t port, ushort_t mask, ushort_t onbits, ushort_t offbits)
677 {
678 int i;
679 ushort_t maskval;
680
681 for (i = 500000; i; i--) {
682 maskval = inb(port) & mask;
683 if (((maskval & onbits) == onbits) &&
684 ((maskval & offbits) == 0))
685 return (0);
686 drv_usecwait(10);
687 }
688 return (1);
689 }
690
691 /*
692 * set_idle_cpu is called from idle() when a CPU becomes idle.
693 */
694 /*LINTED: static unused */
695 static uint_t last_idle_cpu;
696
697 /*ARGSUSED*/
698 void
set_idle_cpu(int cpun)699 set_idle_cpu(int cpun)
700 {
701 last_idle_cpu = cpun;
702 (*psm_set_idle_cpuf)(cpun);
703 }
704
705 /*
706 * unset_idle_cpu is called from idle() when a CPU is no longer idle.
707 */
708 /*ARGSUSED*/
709 void
unset_idle_cpu(int cpun)710 unset_idle_cpu(int cpun)
711 {
712 (*psm_unset_idle_cpuf)(cpun);
713 }
714
715 /*
716 * This routine is almost correct now, but not quite. It still needs the
717 * equivalent concept of "hres_last_tick", just like on the sparc side.
718 * The idea is to take a snapshot of the hi-res timer while doing the
719 * hrestime_adj updates under hres_lock in locore, so that the small
720 * interval between interrupt assertion and interrupt processing is
721 * accounted for correctly. Once we have this, the code below should
722 * be modified to subtract off hres_last_tick rather than hrtime_base.
723 *
724 * I'd have done this myself, but I don't have source to all of the
725 * vendor-specific hi-res timer routines (grrr...). The generic hook I
726 * need is something like "gethrtime_unlocked()", which would be just like
727 * gethrtime() but would assume that you're already holding CLOCK_LOCK().
728 * This is what the GET_HRTIME() macro is for on sparc (although it also
729 * serves the function of making time available without a function call
730 * so you don't take a register window overflow while traps are disabled).
731 */
732 void
pc_gethrestime(timestruc_t * tp)733 pc_gethrestime(timestruc_t *tp)
734 {
735 int lock_prev;
736 timestruc_t now;
737 int nslt; /* nsec since last tick */
738 int adj; /* amount of adjustment to apply */
739
740 loop:
741 lock_prev = hres_lock;
742 now = hrestime;
743 nslt = (int)(gethrtime() - hres_last_tick);
744 if (nslt < 0) {
745 /*
746 * nslt < 0 means a tick came between sampling
747 * gethrtime() and hres_last_tick; restart the loop
748 */
749
750 goto loop;
751 }
752 now.tv_nsec += nslt;
753 if (hrestime_adj != 0) {
754 if (hrestime_adj > 0) {
755 adj = (nslt >> ADJ_SHIFT);
756 if (adj > hrestime_adj)
757 adj = (int)hrestime_adj;
758 } else {
759 adj = -(nslt >> ADJ_SHIFT);
760 if (adj < hrestime_adj)
761 adj = (int)hrestime_adj;
762 }
763 now.tv_nsec += adj;
764 }
765 while ((unsigned long)now.tv_nsec >= NANOSEC) {
766
767 /*
768 * We might have a large adjustment or have been in the
769 * debugger for a long time; take care of (at most) four
770 * of those missed seconds (tv_nsec is 32 bits, so
771 * anything >4s will be wrapping around). However,
772 * anything more than 2 seconds out of sync will trigger
773 * timedelta from clock() to go correct the time anyway,
774 * so do what we can, and let the big crowbar do the
775 * rest. A similar correction while loop exists inside
776 * hres_tick(); in all cases we'd like tv_nsec to
777 * satisfy 0 <= tv_nsec < NANOSEC to avoid confusing
778 * user processes, but if tv_sec's a little behind for a
779 * little while, that's OK; time still monotonically
780 * increases.
781 */
782
783 now.tv_nsec -= NANOSEC;
784 now.tv_sec++;
785 }
786 if ((hres_lock & ~1) != lock_prev)
787 goto loop;
788
789 *tp = now;
790 }
791
792 void
gethrestime_lasttick(timespec_t * tp)793 gethrestime_lasttick(timespec_t *tp)
794 {
795 int s;
796
797 s = hr_clock_lock();
798 *tp = hrestime;
799 hr_clock_unlock(s);
800 }
801
802 time_t
gethrestime_sec(void)803 gethrestime_sec(void)
804 {
805 timestruc_t now;
806
807 gethrestime(&now);
808 return (now.tv_sec);
809 }
810
811 /*
812 * Initialize a kernel thread's stack
813 */
814
815 caddr_t
thread_stk_init(caddr_t stk)816 thread_stk_init(caddr_t stk)
817 {
818 ASSERT(((uintptr_t)stk & (STACK_ALIGN - 1)) == 0);
819 return (stk - SA(MINFRAME));
820 }
821
822 /*
823 * Initialize lwp's kernel stack.
824 */
825
826 #ifdef TRAPTRACE
827 /*
828 * There's a tricky interdependency here between use of sysenter and
829 * TRAPTRACE which needs recording to avoid future confusion (this is
830 * about the third time I've re-figured this out ..)
831 *
832 * Here's how debugging lcall works with TRAPTRACE.
833 *
834 * 1 We're in userland with a breakpoint on the lcall instruction.
835 * 2 We execute the instruction - the instruction pushes the userland
836 * %ss, %esp, %efl, %cs, %eip on the stack and zips into the kernel
837 * via the call gate.
838 * 3 The hardware raises a debug trap in kernel mode, the hardware
839 * pushes %efl, %cs, %eip and gets to dbgtrap via the idt.
840 * 4 dbgtrap pushes the error code and trapno and calls cmntrap
841 * 5 cmntrap finishes building a trap frame
842 * 6 The TRACE_REGS macros in cmntrap copy a REGSIZE worth chunk
843 * off the stack into the traptrace buffer.
844 *
845 * This means that the traptrace buffer contains the wrong values in
846 * %esp and %ss, but everything else in there is correct.
847 *
848 * Here's how debugging sysenter works with TRAPTRACE.
849 *
850 * a We're in userland with a breakpoint on the sysenter instruction.
851 * b We execute the instruction - the instruction pushes -nothing-
852 * on the stack, but sets %cs, %eip, %ss, %esp to prearranged
853 * values to take us to sys_sysenter, at the top of the lwp's
854 * stack.
855 * c goto 3
856 *
857 * At this point, because we got into the kernel without the requisite
858 * five pushes on the stack, if we didn't make extra room, we'd
859 * end up with the TRACE_REGS macro fetching the saved %ss and %esp
860 * values from negative (unmapped) stack addresses -- which really bites.
861 * That's why we do the '-= 8' below.
862 *
863 * XXX Note that reading "up" lwp0's stack works because t0 is declared
864 * right next to t0stack in locore.s
865 */
866 #endif
867
868 caddr_t
lwp_stk_init(klwp_t * lwp,caddr_t stk)869 lwp_stk_init(klwp_t *lwp, caddr_t stk)
870 {
871 caddr_t oldstk;
872 struct pcb *pcb = &lwp->lwp_pcb;
873
874 oldstk = stk;
875 stk -= SA(sizeof (struct regs) + SA(MINFRAME));
876 #ifdef TRAPTRACE
877 stk -= 2 * sizeof (greg_t); /* space for phony %ss:%sp (see above) */
878 #endif
879 stk = (caddr_t)((uintptr_t)stk & ~(STACK_ALIGN - 1ul));
880 bzero(stk, oldstk - stk);
881 lwp->lwp_regs = (void *)(stk + SA(MINFRAME));
882
883 /*
884 * Arrange that the virtualized %fs and %gs GDT descriptors
885 * have a well-defined initial state (present, ring 3
886 * and of type data).
887 */
888 if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE)
889 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc;
890 else
891 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_u32desc;
892 lwp_installctx(lwp);
893 return (stk);
894 }
895
896 /*
897 * Use this opportunity to free any dynamically allocated fp storage.
898 */
899 void
lwp_stk_fini(klwp_t * lwp)900 lwp_stk_fini(klwp_t *lwp)
901 {
902 fp_lwp_cleanup(lwp);
903 }
904
905 void
lwp_fp_init(klwp_t * lwp)906 lwp_fp_init(klwp_t *lwp)
907 {
908 fp_lwp_init(lwp);
909 }
910
911 /*
912 * If we're not the panic CPU, we wait in panic_idle for reboot.
913 */
914 void
panic_idle(void)915 panic_idle(void)
916 {
917 splx(ipltospl(CLOCK_LEVEL));
918 (void) setjmp(&curthread->t_pcb);
919
920 dumpsys_helper();
921
922 #ifndef __xpv
923 for (;;)
924 i86_halt();
925 #else
926 for (;;)
927 ;
928 #endif
929 }
930
931 /*
932 * Stop the other CPUs by cross-calling them and forcing them to enter
933 * the panic_idle() loop above.
934 */
935 /*ARGSUSED*/
936 void
panic_stopcpus(cpu_t * cp,kthread_t * t,int spl)937 panic_stopcpus(cpu_t *cp, kthread_t *t, int spl)
938 {
939 processorid_t i;
940 cpuset_t xcset;
941
942 /*
943 * In the case of a Xen panic, the hypervisor has already stopped
944 * all of the CPUs.
945 */
946 if (!IN_XPV_PANIC()) {
947 (void) splzs();
948
949 CPUSET_ALL_BUT(xcset, cp->cpu_id);
950 xc_priority(0, 0, 0, CPUSET2BV(xcset), (xc_func_t)panic_idle);
951 }
952
953 for (i = 0; i < NCPU; i++) {
954 if (i != cp->cpu_id && cpu[i] != NULL &&
955 (cpu[i]->cpu_flags & CPU_EXISTS))
956 cpu[i]->cpu_flags |= CPU_QUIESCED;
957 }
958 }
959
960 /*
961 * Platform callback following each entry to panicsys().
962 */
963 /*ARGSUSED*/
964 void
panic_enter_hw(int spl)965 panic_enter_hw(int spl)
966 {
967 /* Nothing to do here */
968 }
969
970 /*
971 * Platform-specific code to execute after panicstr is set: we invoke
972 * the PSM entry point to indicate that a panic has occurred.
973 */
974 /*ARGSUSED*/
975 void
panic_quiesce_hw(panic_data_t * pdp)976 panic_quiesce_hw(panic_data_t *pdp)
977 {
978 psm_notifyf(PSM_PANIC_ENTER);
979
980 cmi_panic_callback();
981
982 #ifdef TRAPTRACE
983 /*
984 * Turn off TRAPTRACE
985 */
986 TRAPTRACE_FREEZE;
987 #endif /* TRAPTRACE */
988 }
989
990 /*
991 * Platform callback prior to writing crash dump.
992 */
993 /*ARGSUSED*/
994 void
panic_dump_hw(int spl)995 panic_dump_hw(int spl)
996 {
997 /* Nothing to do here */
998 }
999
1000 void *
plat_traceback(void * fpreg)1001 plat_traceback(void *fpreg)
1002 {
1003 #ifdef __xpv
1004 if (IN_XPV_PANIC())
1005 return (xpv_traceback(fpreg));
1006 #endif
1007 return (fpreg);
1008 }
1009
1010 /*ARGSUSED*/
1011 void
plat_tod_fault(enum tod_fault_type tod_bad)1012 plat_tod_fault(enum tod_fault_type tod_bad)
1013 {}
1014
1015 /*ARGSUSED*/
1016 int
blacklist(int cmd,const char * scheme,nvlist_t * fmri,const char * class)1017 blacklist(int cmd, const char *scheme, nvlist_t *fmri, const char *class)
1018 {
1019 return (ENOTSUP);
1020 }
1021
1022 /*
1023 * The underlying console output routines are protected by raising IPL in case
1024 * we are still calling into the early boot services. Once we start calling
1025 * the kernel console emulator, it will disable interrupts completely during
1026 * character rendering (see sysp_putchar, for example). Refer to the comments
1027 * and code in common/os/console.c for more information on these callbacks.
1028 */
1029 /*ARGSUSED*/
1030 int
console_enter(int busy)1031 console_enter(int busy)
1032 {
1033 return (splzs());
1034 }
1035
1036 /*ARGSUSED*/
1037 void
console_exit(int busy,int spl)1038 console_exit(int busy, int spl)
1039 {
1040 splx(spl);
1041 }
1042
1043 /*
1044 * Allocate a region of virtual address space, unmapped.
1045 * Stubbed out except on sparc, at least for now.
1046 */
1047 /*ARGSUSED*/
1048 void *
boot_virt_alloc(void * addr,size_t size)1049 boot_virt_alloc(void *addr, size_t size)
1050 {
1051 return (addr);
1052 }
1053
1054 void
tenmicrosec(void)1055 tenmicrosec(void)
1056 {
1057 extern int gethrtime_hires;
1058
1059 if (gethrtime_hires) {
1060 hrtime_t start, end;
1061 start = end = gethrtime();
1062 while ((end - start) < (10 * (NANOSEC / MICROSEC))) {
1063 SMT_PAUSE();
1064 end = gethrtime();
1065 }
1066 } else {
1067 #if defined(__xpv)
1068 hrtime_t newtime;
1069
1070 newtime = xpv_gethrtime() + 10000; /* now + 10 us */
1071 while (xpv_gethrtime() < newtime)
1072 SMT_PAUSE();
1073 #else /* __xpv */
1074 panic("TSC was not calibrated!");
1075 #endif /* __xpv */
1076 }
1077 }
1078
1079 /*
1080 * get_cpu_mstate() is passed an array of timestamps, NCMSTATES
1081 * long, and it fills in the array with the time spent on cpu in
1082 * each of the mstates, where time is returned in nsec.
1083 *
1084 * No guarantee is made that the returned values in times[] will
1085 * monotonically increase on sequential calls, although this will
1086 * be true in the long run. Any such guarantee must be handled by
1087 * the caller, if needed. This can happen if we fail to account
1088 * for elapsed time due to a generation counter conflict, yet we
1089 * did account for it on a prior call (see below).
1090 *
1091 * The complication is that the cpu in question may be updating
1092 * its microstate at the same time that we are reading it.
1093 * Because the microstate is only updated when the CPU's state
1094 * changes, the values in cpu_intracct[] can be indefinitely out
1095 * of date. To determine true current values, it is necessary to
1096 * compare the current time with cpu_mstate_start, and add the
1097 * difference to times[cpu_mstate].
1098 *
1099 * This can be a problem if those values are changing out from
1100 * under us. Because the code path in new_cpu_mstate() is
1101 * performance critical, we have not added a lock to it. Instead,
1102 * we have added a generation counter. Before beginning
1103 * modifications, the counter is set to 0. After modifications,
1104 * it is set to the old value plus one.
1105 *
1106 * get_cpu_mstate() will not consider the values of cpu_mstate
1107 * and cpu_mstate_start to be usable unless the value of
1108 * cpu_mstate_gen is both non-zero and unchanged, both before and
1109 * after reading the mstate information. Note that we must
1110 * protect against out-of-order loads around accesses to the
1111 * generation counter. Also, this is a best effort approach in
1112 * that we do not retry should the counter be found to have
1113 * changed.
1114 *
1115 * cpu_intracct[] is used to identify time spent in each CPU
1116 * mstate while handling interrupts. Such time should be reported
1117 * against system time, and so is subtracted out from its
1118 * corresponding cpu_acct[] time and added to
1119 * cpu_acct[CMS_SYSTEM].
1120 */
1121
1122 void
get_cpu_mstate(cpu_t * cpu,hrtime_t * times)1123 get_cpu_mstate(cpu_t *cpu, hrtime_t *times)
1124 {
1125 int i;
1126 hrtime_t now, start;
1127 uint16_t gen;
1128 uint16_t state;
1129 hrtime_t intracct[NCMSTATES];
1130
1131 /*
1132 * Load all volatile state under the protection of membar.
1133 * cpu_acct[cpu_mstate] must be loaded to avoid double counting
1134 * of (now - cpu_mstate_start) by a change in CPU mstate that
1135 * arrives after we make our last check of cpu_mstate_gen.
1136 */
1137
1138 now = gethrtime_unscaled();
1139 gen = cpu->cpu_mstate_gen;
1140
1141 membar_consumer(); /* guarantee load ordering */
1142 start = cpu->cpu_mstate_start;
1143 state = cpu->cpu_mstate;
1144 for (i = 0; i < NCMSTATES; i++) {
1145 intracct[i] = cpu->cpu_intracct[i];
1146 times[i] = cpu->cpu_acct[i];
1147 }
1148 membar_consumer(); /* guarantee load ordering */
1149
1150 if (gen != 0 && gen == cpu->cpu_mstate_gen && now > start)
1151 times[state] += now - start;
1152
1153 for (i = 0; i < NCMSTATES; i++) {
1154 if (i == CMS_SYSTEM)
1155 continue;
1156 times[i] -= intracct[i];
1157 if (times[i] < 0) {
1158 intracct[i] += times[i];
1159 times[i] = 0;
1160 }
1161 times[CMS_SYSTEM] += intracct[i];
1162 scalehrtime(×[i]);
1163 }
1164 scalehrtime(×[CMS_SYSTEM]);
1165 }
1166
1167 /*
1168 * This is a version of the rdmsr instruction that allows
1169 * an error code to be returned in the case of failure.
1170 */
1171 int
checked_rdmsr(uint_t msr,uint64_t * value)1172 checked_rdmsr(uint_t msr, uint64_t *value)
1173 {
1174 if (!is_x86_feature(x86_featureset, X86FSET_MSR))
1175 return (ENOTSUP);
1176 *value = rdmsr(msr);
1177 return (0);
1178 }
1179
1180 /*
1181 * This is a version of the wrmsr instruction that allows
1182 * an error code to be returned in the case of failure.
1183 */
1184 int
checked_wrmsr(uint_t msr,uint64_t value)1185 checked_wrmsr(uint_t msr, uint64_t value)
1186 {
1187 if (!is_x86_feature(x86_featureset, X86FSET_MSR))
1188 return (ENOTSUP);
1189 wrmsr(msr, value);
1190 return (0);
1191 }
1192
1193 void
wrmsr_and_test(uint_t msr,const uint64_t v)1194 wrmsr_and_test(uint_t msr, const uint64_t v)
1195 {
1196 wrmsr(msr, v);
1197
1198 #ifdef DEBUG
1199 uint64_t rv = rdmsr(msr);
1200
1201 if (rv != v) {
1202 cmn_err(CE_PANIC, "MSR 0x%x written with value 0x%lx "
1203 "has value 0x%lx\n", msr, v, rv);
1204 }
1205 #endif
1206 }
1207
1208 /*
1209 * The mem driver's usual method of using hat_devload() to establish a
1210 * temporary mapping will not work for foreign pages mapped into this
1211 * domain or for the special hypervisor-provided pages. For the foreign
1212 * pages, we often don't know which domain owns them, so we can't ask the
1213 * hypervisor to set up a new mapping. For the other pages, we don't have
1214 * a pfn, so we can't create a new PTE. For these special cases, we do a
1215 * direct uiomove() from the existing kernel virtual address.
1216 */
1217 /*ARGSUSED*/
1218 int
plat_mem_do_mmio(struct uio * uio,enum uio_rw rw)1219 plat_mem_do_mmio(struct uio *uio, enum uio_rw rw)
1220 {
1221 #if defined(__xpv)
1222 void *va = (void *)(uintptr_t)uio->uio_loffset;
1223 off_t pageoff = uio->uio_loffset & PAGEOFFSET;
1224 size_t nbytes = MIN((size_t)(PAGESIZE - pageoff),
1225 (size_t)uio->uio_iov->iov_len);
1226
1227 if ((rw == UIO_READ &&
1228 (va == HYPERVISOR_shared_info || va == xen_info)) ||
1229 (pfn_is_foreign(hat_getpfnum(kas.a_hat, va))))
1230 return (uiomove(va, nbytes, rw, uio));
1231 #endif
1232 return (ENOTSUP);
1233 }
1234
1235 pgcnt_t
num_phys_pages()1236 num_phys_pages()
1237 {
1238 pgcnt_t npages = 0;
1239 struct memlist *mp;
1240
1241 #if defined(__xpv)
1242 if (DOMAIN_IS_INITDOMAIN(xen_info))
1243 return (xpv_nr_phys_pages());
1244 #endif /* __xpv */
1245
1246 for (mp = phys_install; mp != NULL; mp = mp->ml_next)
1247 npages += mp->ml_size >> PAGESHIFT;
1248
1249 return (npages);
1250 }
1251
1252 /* cpu threshold for compressed dumps */
1253 #ifdef _LP64
1254 uint_t dump_plat_mincpu_default = DUMP_PLAT_X86_64_MINCPU;
1255 #else
1256 uint_t dump_plat_mincpu_default = DUMP_PLAT_X86_32_MINCPU;
1257 #endif
1258
1259 int
dump_plat_addr()1260 dump_plat_addr()
1261 {
1262 #ifdef __xpv
1263 pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN;
1264 mem_vtop_t mem_vtop;
1265 int cnt;
1266
1267 /*
1268 * On the hypervisor, we want to dump the page with shared_info on it.
1269 */
1270 if (!IN_XPV_PANIC()) {
1271 mem_vtop.m_as = &kas;
1272 mem_vtop.m_va = HYPERVISOR_shared_info;
1273 mem_vtop.m_pfn = pfn;
1274 dumpvp_write(&mem_vtop, sizeof (mem_vtop_t));
1275 cnt = 1;
1276 } else {
1277 cnt = dump_xpv_addr();
1278 }
1279 return (cnt);
1280 #else
1281 return (0);
1282 #endif
1283 }
1284
1285 void
dump_plat_pfn()1286 dump_plat_pfn()
1287 {
1288 #ifdef __xpv
1289 pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN;
1290
1291 if (!IN_XPV_PANIC())
1292 dumpvp_write(&pfn, sizeof (pfn));
1293 else
1294 dump_xpv_pfn();
1295 #endif
1296 }
1297
1298 /*ARGSUSED*/
1299 int
dump_plat_data(void * dump_cbuf)1300 dump_plat_data(void *dump_cbuf)
1301 {
1302 #ifdef __xpv
1303 uint32_t csize;
1304 int cnt;
1305
1306 if (!IN_XPV_PANIC()) {
1307 csize = (uint32_t)compress(HYPERVISOR_shared_info, dump_cbuf,
1308 PAGESIZE);
1309 dumpvp_write(&csize, sizeof (uint32_t));
1310 dumpvp_write(dump_cbuf, csize);
1311 cnt = 1;
1312 } else {
1313 cnt = dump_xpv_data(dump_cbuf);
1314 }
1315 return (cnt);
1316 #else
1317 return (0);
1318 #endif
1319 }
1320
1321 /*
1322 * Calculates a linear address, given the CS selector and PC values
1323 * by looking up the %cs selector process's LDT or the CPU's GDT.
1324 * proc->p_ldtlock must be held across this call.
1325 */
1326 int
linear_pc(struct regs * rp,proc_t * p,caddr_t * linearp)1327 linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp)
1328 {
1329 user_desc_t *descrp;
1330 caddr_t baseaddr;
1331 uint16_t idx = SELTOIDX(rp->r_cs);
1332
1333 ASSERT(rp->r_cs <= 0xFFFF);
1334 ASSERT(MUTEX_HELD(&p->p_ldtlock));
1335
1336 if (SELISLDT(rp->r_cs)) {
1337 /*
1338 * Currently 64 bit processes cannot have private LDTs.
1339 */
1340 ASSERT(p->p_model != DATAMODEL_LP64);
1341
1342 if (p->p_ldt == NULL)
1343 return (-1);
1344
1345 descrp = &p->p_ldt[idx];
1346 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp);
1347
1348 /*
1349 * Calculate the linear address (wraparound is not only ok,
1350 * it's expected behavior). The cast to uint32_t is because
1351 * LDT selectors are only allowed in 32-bit processes.
1352 */
1353 *linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr +
1354 rp->r_pc);
1355 } else {
1356 #ifdef DEBUG
1357 descrp = &CPU->cpu_gdt[idx];
1358 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp);
1359 /* GDT-based descriptors' base addresses should always be 0 */
1360 ASSERT(baseaddr == 0);
1361 #endif
1362 *linearp = (caddr_t)(uintptr_t)rp->r_pc;
1363 }
1364
1365 return (0);
1366 }
1367
1368 /*
1369 * The implementation of dtrace_linear_pc is similar to the that of
1370 * linear_pc, above, but here we acquire p_ldtlock before accessing
1371 * p_ldt. This implementation is used by the pid provider; we prefix
1372 * it with "dtrace_" to avoid inducing spurious tracing events.
1373 */
1374 int
dtrace_linear_pc(struct regs * rp,proc_t * p,caddr_t * linearp)1375 dtrace_linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp)
1376 {
1377 user_desc_t *descrp;
1378 caddr_t baseaddr;
1379 uint16_t idx = SELTOIDX(rp->r_cs);
1380
1381 ASSERT(rp->r_cs <= 0xFFFF);
1382
1383 if (SELISLDT(rp->r_cs)) {
1384 /*
1385 * Currently 64 bit processes cannot have private LDTs.
1386 */
1387 ASSERT(p->p_model != DATAMODEL_LP64);
1388
1389 mutex_enter(&p->p_ldtlock);
1390 if (p->p_ldt == NULL) {
1391 mutex_exit(&p->p_ldtlock);
1392 return (-1);
1393 }
1394 descrp = &p->p_ldt[idx];
1395 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp);
1396 mutex_exit(&p->p_ldtlock);
1397
1398 /*
1399 * Calculate the linear address (wraparound is not only ok,
1400 * it's expected behavior). The cast to uint32_t is because
1401 * LDT selectors are only allowed in 32-bit processes.
1402 */
1403 *linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr +
1404 rp->r_pc);
1405 } else {
1406 #ifdef DEBUG
1407 descrp = &CPU->cpu_gdt[idx];
1408 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp);
1409 /* GDT-based descriptors' base addresses should always be 0 */
1410 ASSERT(baseaddr == 0);
1411 #endif
1412 *linearp = (caddr_t)(uintptr_t)rp->r_pc;
1413 }
1414
1415 return (0);
1416 }
1417
1418 /*
1419 * We need to post a soft interrupt to reprogram the lbolt cyclic when
1420 * switching from event to cyclic driven lbolt. The following code adds
1421 * and posts the softint for x86.
1422 */
1423 static ddi_softint_hdl_impl_t lbolt_softint_hdl =
1424 {0, 0, NULL, NULL, 0, NULL, NULL, NULL};
1425
1426 void
lbolt_softint_add(void)1427 lbolt_softint_add(void)
1428 {
1429 (void) add_avsoftintr((void *)&lbolt_softint_hdl, LOCK_LEVEL,
1430 (avfunc)lbolt_ev_to_cyclic, "lbolt_ev_to_cyclic", NULL, NULL);
1431 }
1432
1433 void
lbolt_softint_post(void)1434 lbolt_softint_post(void)
1435 {
1436 (*setsoftint)(CBE_LOCK_PIL, lbolt_softint_hdl.ih_pending);
1437 }
1438
1439 boolean_t
plat_dr_check_capability(uint64_t features)1440 plat_dr_check_capability(uint64_t features)
1441 {
1442 return ((plat_dr_options & features) == features);
1443 }
1444
1445 boolean_t
plat_dr_support_cpu(void)1446 plat_dr_support_cpu(void)
1447 {
1448 return (plat_dr_options & PLAT_DR_FEATURE_CPU);
1449 }
1450
1451 boolean_t
plat_dr_support_memory(void)1452 plat_dr_support_memory(void)
1453 {
1454 return (plat_dr_options & PLAT_DR_FEATURE_MEMORY);
1455 }
1456
1457 void
plat_dr_enable_capability(uint64_t features)1458 plat_dr_enable_capability(uint64_t features)
1459 {
1460 atomic_or_64(&plat_dr_options, features);
1461 }
1462
1463 void
plat_dr_disable_capability(uint64_t features)1464 plat_dr_disable_capability(uint64_t features)
1465 {
1466 atomic_and_64(&plat_dr_options, ~features);
1467 }
1468
1469 /*
1470 * If SMAP is supported, look through hi_calls and inline
1471 * calls to smap_enable() to clac and smap_disable() to stac.
1472 */
1473 void
hotinline_smap(hotinline_desc_t * hid)1474 hotinline_smap(hotinline_desc_t *hid)
1475 {
1476 if (is_x86_feature(x86_featureset, X86FSET_SMAP) == B_FALSE)
1477 return;
1478
1479 if (strcmp(hid->hid_symname, "smap_enable") == 0) {
1480 bcopy(clac_instr, (void *)hid->hid_instr_offset,
1481 sizeof (clac_instr));
1482 } else if (strcmp(hid->hid_symname, "smap_disable") == 0) {
1483 bcopy(stac_instr, (void *)hid->hid_instr_offset,
1484 sizeof (stac_instr));
1485 }
1486 }
1487
1488 /*
1489 * Loop through hi_calls and hand off the inlining to
1490 * the appropriate calls.
1491 */
1492 void
do_hotinlines(struct module * mp)1493 do_hotinlines(struct module *mp)
1494 {
1495 for (hotinline_desc_t *hid = mp->hi_calls; hid != NULL;
1496 hid = hid->hid_next) {
1497 #if !defined(__xpv)
1498 hotinline_smap(hid);
1499 #endif /* __xpv */
1500 }
1501 }
1502