xref: /freebsd/sys/amd64/vmm/intel/vmx.c (revision c76c2a19ae3763d17aa6a60a5831ed24cbc16e83)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2011 NetApp, Inc.
5  * All rights reserved.
6  * Copyright (c) 2018 Joyent, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 #include "opt_bhyve_snapshot.h"
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/smp.h>
36 #include <sys/kernel.h>
37 #include <sys/malloc.h>
38 #include <sys/pcpu.h>
39 #include <sys/proc.h>
40 #include <sys/reg.h>
41 #include <sys/smr.h>
42 #include <sys/sysctl.h>
43 
44 #include <vm/vm.h>
45 #include <vm/vm_extern.h>
46 #include <vm/pmap.h>
47 
48 #include <machine/psl.h>
49 #include <machine/cpufunc.h>
50 #include <machine/md_var.h>
51 #include <machine/segments.h>
52 #include <machine/smp.h>
53 #include <machine/specialreg.h>
54 #include <machine/vmparam.h>
55 
56 #include <machine/vmm.h>
57 #include <machine/vmm_dev.h>
58 #include <machine/vmm_instruction_emul.h>
59 #include <machine/vmm_snapshot.h>
60 
61 #include <dev/vmm/vmm_ktr.h>
62 #include <dev/vmm/vmm_mem.h>
63 
64 #include "vmm_lapic.h"
65 #include "vmm_host.h"
66 #include "vmm_ioport.h"
67 #include "vmm_stat.h"
68 #include "vatpic.h"
69 #include "vlapic.h"
70 #include "vlapic_priv.h"
71 
72 #include "ept.h"
73 #include "vmx_cpufunc.h"
74 #include "vmx.h"
75 #include "vmx_msr.h"
76 #include "x86.h"
77 #include "vmx_controls.h"
78 #include "io/ppt.h"
79 
80 #define	PINBASED_CTLS_ONE_SETTING					\
81 	(PINBASED_EXTINT_EXITING	|				\
82 	 PINBASED_NMI_EXITING		|				\
83 	 PINBASED_VIRTUAL_NMI)
84 #define	PINBASED_CTLS_ZERO_SETTING	0
85 
86 #define PROCBASED_CTLS_WINDOW_SETTING					\
87 	(PROCBASED_INT_WINDOW_EXITING	|				\
88 	 PROCBASED_NMI_WINDOW_EXITING)
89 
90 #define	PROCBASED_CTLS_ONE_SETTING					\
91 	(PROCBASED_SECONDARY_CONTROLS	|				\
92 	 PROCBASED_MWAIT_EXITING	|				\
93 	 PROCBASED_MONITOR_EXITING	|				\
94 	 PROCBASED_IO_EXITING		|				\
95 	 PROCBASED_MSR_BITMAPS		|				\
96 	 PROCBASED_CTLS_WINDOW_SETTING	|				\
97 	 PROCBASED_CR8_LOAD_EXITING	|				\
98 	 PROCBASED_CR8_STORE_EXITING)
99 #define	PROCBASED_CTLS_ZERO_SETTING	\
100 	(PROCBASED_CR3_LOAD_EXITING |	\
101 	PROCBASED_CR3_STORE_EXITING |	\
102 	PROCBASED_IO_BITMAPS)
103 
104 #define	PROCBASED_CTLS2_ONE_SETTING	PROCBASED2_ENABLE_EPT
105 #define	PROCBASED_CTLS2_ZERO_SETTING	0
106 
107 #define	VM_EXIT_CTLS_ONE_SETTING					\
108 	(VM_EXIT_SAVE_DEBUG_CONTROLS		|			\
109 	VM_EXIT_HOST_LMA			|			\
110 	VM_EXIT_SAVE_EFER			|			\
111 	VM_EXIT_LOAD_EFER			|			\
112 	VM_EXIT_ACKNOWLEDGE_INTERRUPT)
113 
114 #define	VM_EXIT_CTLS_ZERO_SETTING	0
115 
116 #define	VM_ENTRY_CTLS_ONE_SETTING					\
117 	(VM_ENTRY_LOAD_DEBUG_CONTROLS		|			\
118 	VM_ENTRY_LOAD_EFER)
119 
120 #define	VM_ENTRY_CTLS_ZERO_SETTING					\
121 	(VM_ENTRY_INTO_SMM			|			\
122 	VM_ENTRY_DEACTIVATE_DUAL_MONITOR)
123 
124 #define	HANDLED		1
125 #define	UNHANDLED	0
126 
127 static MALLOC_DEFINE(M_VMX, "vmx", "vmx");
128 static MALLOC_DEFINE(M_VLAPIC, "vlapic", "vlapic");
129 
130 bool vmx_have_msr_tsc_aux;
131 
132 SYSCTL_DECL(_hw_vmm);
133 SYSCTL_NODE(_hw_vmm, OID_AUTO, vmx, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
134     NULL);
135 
136 int vmxon_enabled[MAXCPU];
137 static uint8_t *vmxon_region;
138 
139 static uint32_t pinbased_ctls, procbased_ctls, procbased_ctls2;
140 static uint32_t exit_ctls, entry_ctls;
141 
142 static uint64_t cr0_ones_mask, cr0_zeros_mask;
143 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_ones_mask, CTLFLAG_RD,
144 	     &cr0_ones_mask, 0, NULL);
145 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_zeros_mask, CTLFLAG_RD,
146 	     &cr0_zeros_mask, 0, NULL);
147 
148 static uint64_t cr4_ones_mask, cr4_zeros_mask;
149 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_ones_mask, CTLFLAG_RD,
150 	     &cr4_ones_mask, 0, NULL);
151 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_zeros_mask, CTLFLAG_RD,
152 	     &cr4_zeros_mask, 0, NULL);
153 
154 static int vmx_initialized;
155 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, initialized, CTLFLAG_RD,
156 	   &vmx_initialized, 0, "Intel VMX initialized");
157 
158 /*
159  * Optional capabilities
160  */
161 static SYSCTL_NODE(_hw_vmm_vmx, OID_AUTO, cap,
162     CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
163     NULL);
164 
165 static int cap_halt_exit;
166 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, halt_exit, CTLFLAG_RD, &cap_halt_exit, 0,
167     "HLT triggers a VM-exit");
168 
169 static int cap_pause_exit;
170 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, pause_exit, CTLFLAG_RD, &cap_pause_exit,
171     0, "PAUSE triggers a VM-exit");
172 
173 static int cap_wbinvd_exit;
174 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, wbinvd_exit, CTLFLAG_RD, &cap_wbinvd_exit,
175     0, "WBINVD triggers a VM-exit");
176 
177 static int cap_rdpid;
178 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, rdpid, CTLFLAG_RD, &cap_rdpid, 0,
179     "Guests are allowed to use RDPID");
180 
181 static int cap_rdtscp;
182 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, rdtscp, CTLFLAG_RD, &cap_rdtscp, 0,
183     "Guests are allowed to use RDTSCP");
184 
185 static int cap_unrestricted_guest;
186 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, unrestricted_guest, CTLFLAG_RD,
187     &cap_unrestricted_guest, 0, "Unrestricted guests");
188 
189 static int cap_monitor_trap;
190 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, monitor_trap, CTLFLAG_RD,
191     &cap_monitor_trap, 0, "Monitor trap flag");
192 
193 static int cap_invpcid;
194 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, invpcid, CTLFLAG_RD, &cap_invpcid,
195     0, "Guests are allowed to use INVPCID");
196 
197 static int tpr_shadowing;
198 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, tpr_shadowing,
199     CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
200     &tpr_shadowing, 0, "TPR shadowing support");
201 
202 static int virtual_interrupt_delivery;
203 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, virtual_interrupt_delivery,
204     CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
205     &virtual_interrupt_delivery, 0, "APICv virtual interrupt delivery support");
206 
207 static int posted_interrupts;
208 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, posted_interrupts,
209     CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
210     &posted_interrupts, 0, "APICv posted interrupt support");
211 
212 static int pirvec = -1;
213 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, posted_interrupt_vector, CTLFLAG_RD,
214     &pirvec, 0, "APICv posted interrupt vector");
215 
216 static struct unrhdr *vpid_unr;
217 static u_int vpid_alloc_failed;
218 SYSCTL_UINT(_hw_vmm_vmx, OID_AUTO, vpid_alloc_failed, CTLFLAG_RD,
219 	    &vpid_alloc_failed, 0, NULL);
220 
221 int guest_l1d_flush;
222 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, l1d_flush, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
223     &guest_l1d_flush, 0, NULL);
224 int guest_l1d_flush_sw;
225 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, l1d_flush_sw, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
226     &guest_l1d_flush_sw, 0, NULL);
227 
228 static struct msr_entry msr_load_list[1] __aligned(16);
229 
230 /*
231  * The definitions of SDT probes for VMX.
232  */
233 
234 SDT_PROBE_DEFINE3(vmm, vmx, exit, entry,
235     "struct vmx *", "int", "struct vm_exit *");
236 
237 SDT_PROBE_DEFINE4(vmm, vmx, exit, taskswitch,
238     "struct vmx *", "int", "struct vm_exit *", "struct vm_task_switch *");
239 
240 SDT_PROBE_DEFINE4(vmm, vmx, exit, craccess,
241     "struct vmx *", "int", "struct vm_exit *", "uint64_t");
242 
243 SDT_PROBE_DEFINE4(vmm, vmx, exit, rdmsr,
244     "struct vmx *", "int", "struct vm_exit *", "uint32_t");
245 
246 SDT_PROBE_DEFINE5(vmm, vmx, exit, wrmsr,
247     "struct vmx *", "int", "struct vm_exit *", "uint32_t", "uint64_t");
248 
249 SDT_PROBE_DEFINE3(vmm, vmx, exit, halt,
250     "struct vmx *", "int", "struct vm_exit *");
251 
252 SDT_PROBE_DEFINE3(vmm, vmx, exit, mtrap,
253     "struct vmx *", "int", "struct vm_exit *");
254 
255 SDT_PROBE_DEFINE3(vmm, vmx, exit, pause,
256     "struct vmx *", "int", "struct vm_exit *");
257 
258 SDT_PROBE_DEFINE3(vmm, vmx, exit, intrwindow,
259     "struct vmx *", "int", "struct vm_exit *");
260 
261 SDT_PROBE_DEFINE4(vmm, vmx, exit, interrupt,
262     "struct vmx *", "int", "struct vm_exit *", "uint32_t");
263 
264 SDT_PROBE_DEFINE3(vmm, vmx, exit, nmiwindow,
265     "struct vmx *", "int", "struct vm_exit *");
266 
267 SDT_PROBE_DEFINE3(vmm, vmx, exit, inout,
268     "struct vmx *", "int", "struct vm_exit *");
269 
270 SDT_PROBE_DEFINE3(vmm, vmx, exit, cpuid,
271     "struct vmx *", "int", "struct vm_exit *");
272 
273 SDT_PROBE_DEFINE5(vmm, vmx, exit, exception,
274     "struct vmx *", "int", "struct vm_exit *", "uint32_t", "int");
275 
276 SDT_PROBE_DEFINE5(vmm, vmx, exit, nestedfault,
277     "struct vmx *", "int", "struct vm_exit *", "uint64_t", "uint64_t");
278 
279 SDT_PROBE_DEFINE4(vmm, vmx, exit, mmiofault,
280     "struct vmx *", "int", "struct vm_exit *", "uint64_t");
281 
282 SDT_PROBE_DEFINE3(vmm, vmx, exit, eoi,
283     "struct vmx *", "int", "struct vm_exit *");
284 
285 SDT_PROBE_DEFINE3(vmm, vmx, exit, apicaccess,
286     "struct vmx *", "int", "struct vm_exit *");
287 
288 SDT_PROBE_DEFINE4(vmm, vmx, exit, apicwrite,
289     "struct vmx *", "int", "struct vm_exit *", "struct vlapic *");
290 
291 SDT_PROBE_DEFINE3(vmm, vmx, exit, xsetbv,
292     "struct vmx *", "int", "struct vm_exit *");
293 
294 SDT_PROBE_DEFINE3(vmm, vmx, exit, monitor,
295     "struct vmx *", "int", "struct vm_exit *");
296 
297 SDT_PROBE_DEFINE3(vmm, vmx, exit, mwait,
298     "struct vmx *", "int", "struct vm_exit *");
299 
300 SDT_PROBE_DEFINE3(vmm, vmx, exit, vminsn,
301     "struct vmx *", "int", "struct vm_exit *");
302 
303 SDT_PROBE_DEFINE4(vmm, vmx, exit, unknown,
304     "struct vmx *", "int", "struct vm_exit *", "uint32_t");
305 
306 SDT_PROBE_DEFINE4(vmm, vmx, exit, return,
307     "struct vmx *", "int", "struct vm_exit *", "int");
308 
309 /*
310  * Use the last page below 4GB as the APIC access address. This address is
311  * occupied by the boot firmware so it is guaranteed that it will not conflict
312  * with a page in system memory.
313  */
314 #define	APIC_ACCESS_ADDRESS	0xFFFFF000
315 
316 static int vmx_getdesc(void *vcpui, int reg, struct seg_desc *desc);
317 static int vmx_getreg(void *vcpui, int reg, uint64_t *retval);
318 static int vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val);
319 static void vmx_inject_pir(struct vlapic *vlapic);
320 #ifdef BHYVE_SNAPSHOT
321 static int vmx_restore_tsc(void *vcpui, uint64_t now);
322 #endif
323 
324 static inline bool
host_has_rdpid(void)325 host_has_rdpid(void)
326 {
327 	return ((cpu_stdext_feature2 & CPUID_STDEXT2_RDPID) != 0);
328 }
329 
330 static inline bool
host_has_rdtscp(void)331 host_has_rdtscp(void)
332 {
333 	return ((amd_feature & AMDID_RDTSCP) != 0);
334 }
335 
336 #ifdef KTR
337 static const char *
exit_reason_to_str(int reason)338 exit_reason_to_str(int reason)
339 {
340 	static char reasonbuf[32];
341 
342 	switch (reason) {
343 	case EXIT_REASON_EXCEPTION:
344 		return "exception";
345 	case EXIT_REASON_EXT_INTR:
346 		return "extint";
347 	case EXIT_REASON_TRIPLE_FAULT:
348 		return "triplefault";
349 	case EXIT_REASON_INIT:
350 		return "init";
351 	case EXIT_REASON_SIPI:
352 		return "sipi";
353 	case EXIT_REASON_IO_SMI:
354 		return "iosmi";
355 	case EXIT_REASON_SMI:
356 		return "smi";
357 	case EXIT_REASON_INTR_WINDOW:
358 		return "intrwindow";
359 	case EXIT_REASON_NMI_WINDOW:
360 		return "nmiwindow";
361 	case EXIT_REASON_TASK_SWITCH:
362 		return "taskswitch";
363 	case EXIT_REASON_CPUID:
364 		return "cpuid";
365 	case EXIT_REASON_GETSEC:
366 		return "getsec";
367 	case EXIT_REASON_HLT:
368 		return "hlt";
369 	case EXIT_REASON_INVD:
370 		return "invd";
371 	case EXIT_REASON_INVLPG:
372 		return "invlpg";
373 	case EXIT_REASON_RDPMC:
374 		return "rdpmc";
375 	case EXIT_REASON_RDTSC:
376 		return "rdtsc";
377 	case EXIT_REASON_RSM:
378 		return "rsm";
379 	case EXIT_REASON_VMCALL:
380 		return "vmcall";
381 	case EXIT_REASON_VMCLEAR:
382 		return "vmclear";
383 	case EXIT_REASON_VMLAUNCH:
384 		return "vmlaunch";
385 	case EXIT_REASON_VMPTRLD:
386 		return "vmptrld";
387 	case EXIT_REASON_VMPTRST:
388 		return "vmptrst";
389 	case EXIT_REASON_VMREAD:
390 		return "vmread";
391 	case EXIT_REASON_VMRESUME:
392 		return "vmresume";
393 	case EXIT_REASON_VMWRITE:
394 		return "vmwrite";
395 	case EXIT_REASON_VMXOFF:
396 		return "vmxoff";
397 	case EXIT_REASON_VMXON:
398 		return "vmxon";
399 	case EXIT_REASON_CR_ACCESS:
400 		return "craccess";
401 	case EXIT_REASON_DR_ACCESS:
402 		return "draccess";
403 	case EXIT_REASON_INOUT:
404 		return "inout";
405 	case EXIT_REASON_RDMSR:
406 		return "rdmsr";
407 	case EXIT_REASON_WRMSR:
408 		return "wrmsr";
409 	case EXIT_REASON_INVAL_VMCS:
410 		return "invalvmcs";
411 	case EXIT_REASON_INVAL_MSR:
412 		return "invalmsr";
413 	case EXIT_REASON_MWAIT:
414 		return "mwait";
415 	case EXIT_REASON_MTF:
416 		return "mtf";
417 	case EXIT_REASON_MONITOR:
418 		return "monitor";
419 	case EXIT_REASON_PAUSE:
420 		return "pause";
421 	case EXIT_REASON_MCE_DURING_ENTRY:
422 		return "mce-during-entry";
423 	case EXIT_REASON_TPR:
424 		return "tpr";
425 	case EXIT_REASON_APIC_ACCESS:
426 		return "apic-access";
427 	case EXIT_REASON_GDTR_IDTR:
428 		return "gdtridtr";
429 	case EXIT_REASON_LDTR_TR:
430 		return "ldtrtr";
431 	case EXIT_REASON_EPT_FAULT:
432 		return "eptfault";
433 	case EXIT_REASON_EPT_MISCONFIG:
434 		return "eptmisconfig";
435 	case EXIT_REASON_INVEPT:
436 		return "invept";
437 	case EXIT_REASON_RDTSCP:
438 		return "rdtscp";
439 	case EXIT_REASON_VMX_PREEMPT:
440 		return "vmxpreempt";
441 	case EXIT_REASON_INVVPID:
442 		return "invvpid";
443 	case EXIT_REASON_WBINVD:
444 		return "wbinvd";
445 	case EXIT_REASON_XSETBV:
446 		return "xsetbv";
447 	case EXIT_REASON_APIC_WRITE:
448 		return "apic-write";
449 	default:
450 		snprintf(reasonbuf, sizeof(reasonbuf), "%d", reason);
451 		return (reasonbuf);
452 	}
453 }
454 #endif	/* KTR */
455 
456 static int
vmx_allow_x2apic_msrs(struct vmx * vmx)457 vmx_allow_x2apic_msrs(struct vmx *vmx)
458 {
459 	int i, error;
460 
461 	error = 0;
462 
463 	/*
464 	 * Allow readonly access to the following x2APIC MSRs from the guest.
465 	 */
466 	error += guest_msr_ro(vmx, MSR_APIC_ID);
467 	error += guest_msr_ro(vmx, MSR_APIC_VERSION);
468 	error += guest_msr_ro(vmx, MSR_APIC_LDR);
469 	error += guest_msr_ro(vmx, MSR_APIC_SVR);
470 
471 	for (i = 0; i < 8; i++)
472 		error += guest_msr_ro(vmx, MSR_APIC_ISR0 + i);
473 
474 	for (i = 0; i < 8; i++)
475 		error += guest_msr_ro(vmx, MSR_APIC_TMR0 + i);
476 
477 	for (i = 0; i < 8; i++)
478 		error += guest_msr_ro(vmx, MSR_APIC_IRR0 + i);
479 
480 	error += guest_msr_ro(vmx, MSR_APIC_ESR);
481 	error += guest_msr_ro(vmx, MSR_APIC_LVT_TIMER);
482 	error += guest_msr_ro(vmx, MSR_APIC_LVT_THERMAL);
483 	error += guest_msr_ro(vmx, MSR_APIC_LVT_PCINT);
484 	error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT0);
485 	error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT1);
486 	error += guest_msr_ro(vmx, MSR_APIC_LVT_ERROR);
487 	error += guest_msr_ro(vmx, MSR_APIC_ICR_TIMER);
488 	error += guest_msr_ro(vmx, MSR_APIC_DCR_TIMER);
489 	error += guest_msr_ro(vmx, MSR_APIC_ICR);
490 
491 	/*
492 	 * Allow TPR, EOI and SELF_IPI MSRs to be read and written by the guest.
493 	 *
494 	 * These registers get special treatment described in the section
495 	 * "Virtualizing MSR-Based APIC Accesses".
496 	 */
497 	error += guest_msr_rw(vmx, MSR_APIC_TPR);
498 	error += guest_msr_rw(vmx, MSR_APIC_EOI);
499 	error += guest_msr_rw(vmx, MSR_APIC_SELF_IPI);
500 
501 	return (error);
502 }
503 
504 u_long
vmx_fix_cr0(u_long cr0)505 vmx_fix_cr0(u_long cr0)
506 {
507 
508 	return ((cr0 | cr0_ones_mask) & ~cr0_zeros_mask);
509 }
510 
511 u_long
vmx_fix_cr4(u_long cr4)512 vmx_fix_cr4(u_long cr4)
513 {
514 
515 	return ((cr4 | cr4_ones_mask) & ~cr4_zeros_mask);
516 }
517 
518 static void
vpid_free(int vpid)519 vpid_free(int vpid)
520 {
521 	if (vpid < 0 || vpid > 0xffff)
522 		panic("vpid_free: invalid vpid %d", vpid);
523 
524 	/*
525 	 * VPIDs [0,vm_maxcpu] are special and are not allocated from
526 	 * the unit number allocator.
527 	 */
528 
529 	if (vpid > vm_maxcpu)
530 		free_unr(vpid_unr, vpid);
531 }
532 
533 static uint16_t
vpid_alloc(int vcpuid)534 vpid_alloc(int vcpuid)
535 {
536 	int x;
537 
538 	/*
539 	 * If the "enable vpid" execution control is not enabled then the
540 	 * VPID is required to be 0 for all vcpus.
541 	 */
542 	if ((procbased_ctls2 & PROCBASED2_ENABLE_VPID) == 0)
543 		return (0);
544 
545 	/*
546 	 * Try to allocate a unique VPID for each from the unit number
547 	 * allocator.
548 	 */
549 	x = alloc_unr(vpid_unr);
550 
551 	if (x == -1) {
552 		atomic_add_int(&vpid_alloc_failed, 1);
553 
554 		/*
555 		 * If the unit number allocator does not have enough unique
556 		 * VPIDs then we need to allocate from the [1,vm_maxcpu] range.
557 		 *
558 		 * These VPIDs are not be unique across VMs but this does not
559 		 * affect correctness because the combined mappings are also
560 		 * tagged with the EP4TA which is unique for each VM.
561 		 *
562 		 * It is still sub-optimal because the invvpid will invalidate
563 		 * combined mappings for a particular VPID across all EP4TAs.
564 		 */
565 		return (vcpuid + 1);
566 	}
567 
568 	return (x);
569 }
570 
571 static void
vpid_init(void)572 vpid_init(void)
573 {
574 	/*
575 	 * VPID 0 is required when the "enable VPID" execution control is
576 	 * disabled.
577 	 *
578 	 * VPIDs [1,vm_maxcpu] are used as the "overflow namespace" when the
579 	 * unit number allocator does not have sufficient unique VPIDs to
580 	 * satisfy the allocation.
581 	 *
582 	 * The remaining VPIDs are managed by the unit number allocator.
583 	 */
584 	vpid_unr = new_unrhdr(vm_maxcpu + 1, 0xffff, NULL);
585 }
586 
587 static void
vmx_disable(void * arg __unused)588 vmx_disable(void *arg __unused)
589 {
590 	struct invvpid_desc invvpid_desc = { 0 };
591 	struct invept_desc invept_desc = { 0 };
592 
593 	if (vmxon_enabled[curcpu]) {
594 		/*
595 		 * See sections 25.3.3.3 and 25.3.3.4 in Intel Vol 3b.
596 		 *
597 		 * VMXON or VMXOFF are not required to invalidate any TLB
598 		 * caching structures. This prevents potential retention of
599 		 * cached information in the TLB between distinct VMX episodes.
600 		 */
601 		invvpid(INVVPID_TYPE_ALL_CONTEXTS, invvpid_desc);
602 		invept(INVEPT_TYPE_ALL_CONTEXTS, invept_desc);
603 		vmxoff();
604 	}
605 	load_cr4(rcr4() & ~CR4_VMXE);
606 }
607 
608 static int
vmx_modcleanup(void)609 vmx_modcleanup(void)
610 {
611 
612 	if (pirvec >= 0)
613 		lapic_ipi_free(pirvec);
614 
615 	if (vpid_unr != NULL) {
616 		delete_unrhdr(vpid_unr);
617 		vpid_unr = NULL;
618 	}
619 
620 	if (nmi_flush_l1d_sw == 1)
621 		nmi_flush_l1d_sw = 0;
622 
623 	smp_rendezvous(NULL, vmx_disable, NULL, NULL);
624 
625 	if (vmxon_region != NULL)
626 		kmem_free(vmxon_region, (mp_maxid + 1) * PAGE_SIZE);
627 
628 	return (0);
629 }
630 
631 static void
vmx_enable(void * arg __unused)632 vmx_enable(void *arg __unused)
633 {
634 	int error;
635 	uint64_t feature_control;
636 
637 	feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
638 	if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 0 ||
639 	    (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) {
640 		wrmsr(MSR_IA32_FEATURE_CONTROL,
641 		    feature_control | IA32_FEATURE_CONTROL_VMX_EN |
642 		    IA32_FEATURE_CONTROL_LOCK);
643 	}
644 
645 	load_cr4(rcr4() | CR4_VMXE);
646 
647 	*(uint32_t *)&vmxon_region[curcpu * PAGE_SIZE] = vmx_revision();
648 	error = vmxon(&vmxon_region[curcpu * PAGE_SIZE]);
649 	if (error == 0)
650 		vmxon_enabled[curcpu] = 1;
651 }
652 
653 static void
vmx_modsuspend(void)654 vmx_modsuspend(void)
655 {
656 
657 	if (vmxon_enabled[curcpu])
658 		vmx_disable(NULL);
659 }
660 
661 static void
vmx_modresume(void)662 vmx_modresume(void)
663 {
664 
665 	if (vmxon_enabled[curcpu])
666 		vmx_enable(NULL);
667 }
668 
669 static int
vmx_modinit(int ipinum)670 vmx_modinit(int ipinum)
671 {
672 	int error;
673 	uint64_t basic, fixed0, fixed1, feature_control;
674 	uint32_t tmp, procbased2_vid_bits;
675 
676 	/* CPUID.1:ECX[bit 5] must be 1 for processor to support VMX */
677 	if (!(cpu_feature2 & CPUID2_VMX)) {
678 		printf("vmx_modinit: processor does not support VMX "
679 		    "operation\n");
680 		return (ENXIO);
681 	}
682 
683 	/*
684 	 * Verify that MSR_IA32_FEATURE_CONTROL lock and VMXON enable bits
685 	 * are set (bits 0 and 2 respectively).
686 	 */
687 	feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
688 	if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 1 &&
689 	    (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) {
690 		printf("vmx_modinit: VMX operation disabled by BIOS\n");
691 		return (ENXIO);
692 	}
693 
694 	/*
695 	 * Verify capabilities MSR_VMX_BASIC:
696 	 * - bit 54 indicates support for INS/OUTS decoding
697 	 */
698 	basic = rdmsr(MSR_VMX_BASIC);
699 	if ((basic & (1UL << 54)) == 0) {
700 		printf("vmx_modinit: processor does not support desired basic "
701 		    "capabilities\n");
702 		return (EINVAL);
703 	}
704 
705 	/* Check support for primary processor-based VM-execution controls */
706 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
707 			       MSR_VMX_TRUE_PROCBASED_CTLS,
708 			       PROCBASED_CTLS_ONE_SETTING,
709 			       PROCBASED_CTLS_ZERO_SETTING, &procbased_ctls);
710 	if (error) {
711 		printf("vmx_modinit: processor does not support desired "
712 		    "primary processor-based controls\n");
713 		return (error);
714 	}
715 
716 	/* Clear the processor-based ctl bits that are set on demand */
717 	procbased_ctls &= ~PROCBASED_CTLS_WINDOW_SETTING;
718 
719 	/* Check support for secondary processor-based VM-execution controls */
720 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
721 			       MSR_VMX_PROCBASED_CTLS2,
722 			       PROCBASED_CTLS2_ONE_SETTING,
723 			       PROCBASED_CTLS2_ZERO_SETTING, &procbased_ctls2);
724 	if (error) {
725 		printf("vmx_modinit: processor does not support desired "
726 		    "secondary processor-based controls\n");
727 		return (error);
728 	}
729 
730 	/* Check support for VPID */
731 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
732 			       PROCBASED2_ENABLE_VPID, 0, &tmp);
733 	if (error == 0)
734 		procbased_ctls2 |= PROCBASED2_ENABLE_VPID;
735 
736 	/* Check support for pin-based VM-execution controls */
737 	error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
738 			       MSR_VMX_TRUE_PINBASED_CTLS,
739 			       PINBASED_CTLS_ONE_SETTING,
740 			       PINBASED_CTLS_ZERO_SETTING, &pinbased_ctls);
741 	if (error) {
742 		printf("vmx_modinit: processor does not support desired "
743 		    "pin-based controls\n");
744 		return (error);
745 	}
746 
747 	/* Check support for VM-exit controls */
748 	error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS,
749 			       VM_EXIT_CTLS_ONE_SETTING,
750 			       VM_EXIT_CTLS_ZERO_SETTING,
751 			       &exit_ctls);
752 	if (error) {
753 		printf("vmx_modinit: processor does not support desired "
754 		    "exit controls\n");
755 		return (error);
756 	}
757 
758 	/* Check support for VM-entry controls */
759 	error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS, MSR_VMX_TRUE_ENTRY_CTLS,
760 	    VM_ENTRY_CTLS_ONE_SETTING, VM_ENTRY_CTLS_ZERO_SETTING,
761 	    &entry_ctls);
762 	if (error) {
763 		printf("vmx_modinit: processor does not support desired "
764 		    "entry controls\n");
765 		return (error);
766 	}
767 
768 	/*
769 	 * Check support for optional features by testing them
770 	 * as individual bits
771 	 */
772 	cap_halt_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
773 					MSR_VMX_TRUE_PROCBASED_CTLS,
774 					PROCBASED_HLT_EXITING, 0,
775 					&tmp) == 0);
776 
777 	cap_monitor_trap = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
778 					MSR_VMX_PROCBASED_CTLS,
779 					PROCBASED_MTF, 0,
780 					&tmp) == 0);
781 
782 	cap_pause_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
783 					 MSR_VMX_TRUE_PROCBASED_CTLS,
784 					 PROCBASED_PAUSE_EXITING, 0,
785 					 &tmp) == 0);
786 
787 	cap_wbinvd_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
788 					MSR_VMX_PROCBASED_CTLS2,
789 					PROCBASED2_WBINVD_EXITING,
790 					0,
791 					&tmp) == 0);
792 
793 	/*
794 	 * Check support for RDPID and/or RDTSCP.
795 	 *
796 	 * Support a pass-through-based implementation of these via the
797 	 * "enable RDTSCP" VM-execution control and the "RDTSC exiting"
798 	 * VM-execution control.
799 	 *
800 	 * The "enable RDTSCP" VM-execution control applies to both RDPID
801 	 * and RDTSCP (see SDM volume 3, section 25.3, "Changes to
802 	 * Instruction Behavior in VMX Non-root operation"); this is why
803 	 * only this VM-execution control needs to be enabled in order to
804 	 * enable passing through whichever of RDPID and/or RDTSCP are
805 	 * supported by the host.
806 	 *
807 	 * The "RDTSC exiting" VM-execution control applies to both RDTSC
808 	 * and RDTSCP (again, per SDM volume 3, section 25.3), and is
809 	 * already set up for RDTSC and RDTSCP pass-through by the current
810 	 * implementation of RDTSC.
811 	 *
812 	 * Although RDPID and RDTSCP are optional capabilities, since there
813 	 * does not currently seem to be a use case for enabling/disabling
814 	 * these via libvmmapi, choose not to support this and, instead,
815 	 * just statically always enable or always disable this support
816 	 * across all vCPUs on all VMs. (Note that there may be some
817 	 * complications to providing this functionality, e.g., the MSR
818 	 * bitmap is currently per-VM rather than per-vCPU while the
819 	 * capability API wants to be able to control capabilities on a
820 	 * per-vCPU basis).
821 	 */
822 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
823 			       MSR_VMX_PROCBASED_CTLS2,
824 			       PROCBASED2_ENABLE_RDTSCP, 0, &tmp);
825 	cap_rdpid = error == 0 && host_has_rdpid();
826 	cap_rdtscp = error == 0 && host_has_rdtscp();
827 	if (cap_rdpid || cap_rdtscp) {
828 		procbased_ctls2 |= PROCBASED2_ENABLE_RDTSCP;
829 		vmx_have_msr_tsc_aux = true;
830 	}
831 
832 	cap_unrestricted_guest = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
833 					MSR_VMX_PROCBASED_CTLS2,
834 					PROCBASED2_UNRESTRICTED_GUEST, 0,
835 				        &tmp) == 0);
836 
837 	cap_invpcid = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
838 	    MSR_VMX_PROCBASED_CTLS2, PROCBASED2_ENABLE_INVPCID, 0,
839 	    &tmp) == 0);
840 
841 	/*
842 	 * Check support for TPR shadow.
843 	 */
844 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
845 	    MSR_VMX_TRUE_PROCBASED_CTLS, PROCBASED_USE_TPR_SHADOW, 0,
846 	    &tmp);
847 	if (error == 0) {
848 		tpr_shadowing = 1;
849 #ifndef BURN_BRIDGES
850 		TUNABLE_INT_FETCH("hw.vmm.vmx.use_tpr_shadowing",
851 		    &tpr_shadowing);
852 #endif
853 		TUNABLE_INT_FETCH("hw.vmm.vmx.cap.tpr_shadowing",
854 		    &tpr_shadowing);
855 	}
856 
857 	if (tpr_shadowing) {
858 		procbased_ctls |= PROCBASED_USE_TPR_SHADOW;
859 		procbased_ctls &= ~PROCBASED_CR8_LOAD_EXITING;
860 		procbased_ctls &= ~PROCBASED_CR8_STORE_EXITING;
861 	}
862 
863 	/*
864 	 * Check support for virtual interrupt delivery.
865 	 */
866 	procbased2_vid_bits = (PROCBASED2_VIRTUALIZE_APIC_ACCESSES |
867 	    PROCBASED2_VIRTUALIZE_X2APIC_MODE |
868 	    PROCBASED2_APIC_REGISTER_VIRTUALIZATION |
869 	    PROCBASED2_VIRTUAL_INTERRUPT_DELIVERY);
870 
871 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
872 	    procbased2_vid_bits, 0, &tmp);
873 	if (error == 0 && tpr_shadowing) {
874 		virtual_interrupt_delivery = 1;
875 #ifndef BURN_BRIDGES
876 		TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_vid",
877 		    &virtual_interrupt_delivery);
878 #endif
879 		TUNABLE_INT_FETCH("hw.vmm.vmx.cap.virtual_interrupt_delivery",
880 		    &virtual_interrupt_delivery);
881 	}
882 
883 	if (virtual_interrupt_delivery) {
884 		procbased_ctls |= PROCBASED_USE_TPR_SHADOW;
885 		procbased_ctls2 |= procbased2_vid_bits;
886 		procbased_ctls2 &= ~PROCBASED2_VIRTUALIZE_X2APIC_MODE;
887 
888 		/*
889 		 * Check for Posted Interrupts only if Virtual Interrupt
890 		 * Delivery is enabled.
891 		 */
892 		error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
893 		    MSR_VMX_TRUE_PINBASED_CTLS, PINBASED_POSTED_INTERRUPT, 0,
894 		    &tmp);
895 		if (error == 0) {
896 			pirvec = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) :
897 			    &IDTVEC(justreturn));
898 			if (pirvec < 0) {
899 				if (bootverbose) {
900 					printf("vmx_modinit: unable to "
901 					    "allocate posted interrupt "
902 					    "vector\n");
903 				}
904 			} else {
905 				posted_interrupts = 1;
906 #ifndef BURN_BRIDGES
907 				TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_pir",
908 				    &posted_interrupts);
909 #endif
910 				TUNABLE_INT_FETCH("hw.vmm.vmx.cap.posted_interrupts",
911 				    &posted_interrupts);
912 			}
913 		}
914 	}
915 
916 	if (posted_interrupts)
917 		    pinbased_ctls |= PINBASED_POSTED_INTERRUPT;
918 
919 	/* Initialize EPT */
920 	error = ept_init(ipinum);
921 	if (error) {
922 		printf("vmx_modinit: ept initialization failed (%d)\n", error);
923 		return (error);
924 	}
925 
926 	guest_l1d_flush = (cpu_ia32_arch_caps &
927 	    IA32_ARCH_CAP_SKIP_L1DFL_VMENTRY) == 0;
928 #ifndef BURN_BRIDGES
929 	TUNABLE_INT_FETCH("hw.vmm.l1d_flush", &guest_l1d_flush);
930 #endif
931 	TUNABLE_INT_FETCH("hw.vmm.vmx.l1d_flush", &guest_l1d_flush);
932 
933 	/*
934 	 * L1D cache flush is enabled.  Use IA32_FLUSH_CMD MSR when
935 	 * available.  Otherwise fall back to the software flush
936 	 * method which loads enough data from the kernel text to
937 	 * flush existing L1D content, both on VMX entry and on NMI
938 	 * return.
939 	 */
940 	if (guest_l1d_flush) {
941 		if ((cpu_stdext_feature3 & CPUID_STDEXT3_L1D_FLUSH) == 0) {
942 			guest_l1d_flush_sw = 1;
943 #ifndef BURN_BRIDGES
944 			TUNABLE_INT_FETCH("hw.vmm.l1d_flush_sw",
945 			    &guest_l1d_flush_sw);
946 #endif
947 			TUNABLE_INT_FETCH("hw.vmm.vmx.l1d_flush_sw",
948 			    &guest_l1d_flush_sw);
949 		}
950 		if (guest_l1d_flush_sw) {
951 			if (nmi_flush_l1d_sw <= 1)
952 				nmi_flush_l1d_sw = 1;
953 		} else {
954 			msr_load_list[0].index = MSR_IA32_FLUSH_CMD;
955 			msr_load_list[0].val = IA32_FLUSH_CMD_L1D;
956 		}
957 	}
958 
959 	/*
960 	 * Stash the cr0 and cr4 bits that must be fixed to 0 or 1
961 	 */
962 	fixed0 = rdmsr(MSR_VMX_CR0_FIXED0);
963 	fixed1 = rdmsr(MSR_VMX_CR0_FIXED1);
964 	cr0_ones_mask = fixed0 & fixed1;
965 	cr0_zeros_mask = ~fixed0 & ~fixed1;
966 
967 	/*
968 	 * CR0_PE and CR0_PG can be set to zero in VMX non-root operation
969 	 * if unrestricted guest execution is allowed.
970 	 */
971 	if (cap_unrestricted_guest)
972 		cr0_ones_mask &= ~(CR0_PG | CR0_PE);
973 
974 	/*
975 	 * Do not allow the guest to set CR0_NW or CR0_CD.
976 	 */
977 	cr0_zeros_mask |= (CR0_NW | CR0_CD);
978 
979 	fixed0 = rdmsr(MSR_VMX_CR4_FIXED0);
980 	fixed1 = rdmsr(MSR_VMX_CR4_FIXED1);
981 	cr4_ones_mask = fixed0 & fixed1;
982 	cr4_zeros_mask = ~fixed0 & ~fixed1;
983 
984 	vpid_init();
985 
986 	vmx_msr_init();
987 
988 	/* enable VMX operation */
989 	vmxon_region = kmem_malloc((mp_maxid + 1) * PAGE_SIZE,
990 	    M_WAITOK | M_ZERO);
991 	smp_rendezvous(NULL, vmx_enable, NULL, NULL);
992 
993 	vmx_initialized = 1;
994 
995 	return (0);
996 }
997 
998 static void
vmx_trigger_hostintr(int vector)999 vmx_trigger_hostintr(int vector)
1000 {
1001 	uintptr_t func;
1002 	struct gate_descriptor *gd;
1003 
1004 	gd = &idt[vector];
1005 
1006 	KASSERT(vector >= 32 && vector <= 255, ("vmx_trigger_hostintr: "
1007 	    "invalid vector %d", vector));
1008 	KASSERT(gd->gd_p == 1, ("gate descriptor for vector %d not present",
1009 	    vector));
1010 	KASSERT(gd->gd_type == SDT_SYSIGT, ("gate descriptor for vector %d "
1011 	    "has invalid type %d", vector, gd->gd_type));
1012 	KASSERT(gd->gd_dpl == SEL_KPL, ("gate descriptor for vector %d "
1013 	    "has invalid dpl %d", vector, gd->gd_dpl));
1014 	KASSERT(gd->gd_selector == GSEL(GCODE_SEL, SEL_KPL), ("gate descriptor "
1015 	    "for vector %d has invalid selector %d", vector, gd->gd_selector));
1016 	KASSERT(gd->gd_ist == 0, ("gate descriptor for vector %d has invalid "
1017 	    "IST %d", vector, gd->gd_ist));
1018 
1019 	func = ((long)gd->gd_hioffset << 16 | gd->gd_looffset);
1020 	vmx_call_isr(func);
1021 }
1022 
1023 static int
vmx_setup_cr_shadow(int which,struct vmcs * vmcs,uint32_t initial)1024 vmx_setup_cr_shadow(int which, struct vmcs *vmcs, uint32_t initial)
1025 {
1026 	int error, mask_ident, shadow_ident;
1027 	uint64_t mask_value;
1028 
1029 	if (which != 0 && which != 4)
1030 		panic("vmx_setup_cr_shadow: unknown cr%d", which);
1031 
1032 	if (which == 0) {
1033 		mask_ident = VMCS_CR0_MASK;
1034 		mask_value = cr0_ones_mask | cr0_zeros_mask;
1035 		shadow_ident = VMCS_CR0_SHADOW;
1036 	} else {
1037 		mask_ident = VMCS_CR4_MASK;
1038 		mask_value = cr4_ones_mask | cr4_zeros_mask;
1039 		shadow_ident = VMCS_CR4_SHADOW;
1040 	}
1041 
1042 	error = vmcs_setreg(vmcs, 0, VMCS_IDENT(mask_ident), mask_value);
1043 	if (error)
1044 		return (error);
1045 
1046 	error = vmcs_setreg(vmcs, 0, VMCS_IDENT(shadow_ident), initial);
1047 	if (error)
1048 		return (error);
1049 
1050 	return (0);
1051 }
1052 #define	vmx_setup_cr0_shadow(vmcs,init)	vmx_setup_cr_shadow(0, (vmcs), (init))
1053 #define	vmx_setup_cr4_shadow(vmcs,init)	vmx_setup_cr_shadow(4, (vmcs), (init))
1054 
1055 static void *
vmx_init(struct vm * vm,pmap_t pmap)1056 vmx_init(struct vm *vm, pmap_t pmap)
1057 {
1058 	int error __diagused;
1059 	struct vmx *vmx;
1060 
1061 	vmx = malloc(sizeof(struct vmx), M_VMX, M_WAITOK | M_ZERO);
1062 	vmx->vm = vm;
1063 
1064 	vmx->eptp = eptp(vtophys((vm_offset_t)pmap->pm_pmltop));
1065 
1066 	/*
1067 	 * Clean up EPTP-tagged guest physical and combined mappings
1068 	 *
1069 	 * VMX transitions are not required to invalidate any guest physical
1070 	 * mappings. So, it may be possible for stale guest physical mappings
1071 	 * to be present in the processor TLBs.
1072 	 *
1073 	 * Combined mappings for this EP4TA are also invalidated for all VPIDs.
1074 	 */
1075 	ept_invalidate_mappings(vmx->eptp);
1076 
1077 	vmx->msr_bitmap = malloc_aligned(PAGE_SIZE, PAGE_SIZE, M_VMX,
1078 	    M_WAITOK | M_ZERO);
1079 	msr_bitmap_initialize(vmx->msr_bitmap);
1080 
1081 	/*
1082 	 * It is safe to allow direct access to MSR_GSBASE and MSR_FSBASE.
1083 	 * The guest FSBASE and GSBASE are saved and restored during
1084 	 * vm-exit and vm-entry respectively. The host FSBASE and GSBASE are
1085 	 * always restored from the vmcs host state area on vm-exit.
1086 	 *
1087 	 * The SYSENTER_CS/ESP/EIP MSRs are identical to FS/GSBASE in
1088 	 * how they are saved/restored so can be directly accessed by the
1089 	 * guest.
1090 	 *
1091 	 * MSR_EFER is saved and restored in the guest VMCS area on a
1092 	 * VM exit and entry respectively. It is also restored from the
1093 	 * host VMCS area on a VM exit.
1094 	 *
1095 	 * The TSC MSR is exposed read-only. Writes are disallowed as
1096 	 * that will impact the host TSC.  If the guest does a write
1097 	 * the "use TSC offsetting" execution control is enabled and the
1098 	 * difference between the host TSC and the guest TSC is written
1099 	 * into the TSC offset in the VMCS.
1100 	 *
1101 	 * Guest TSC_AUX support is enabled if any of guest RDPID and/or
1102 	 * guest RDTSCP support are enabled (since, as per Table 2-2 in SDM
1103 	 * volume 4, TSC_AUX is supported if any of RDPID and/or RDTSCP are
1104 	 * supported). If guest TSC_AUX support is enabled, TSC_AUX is
1105 	 * exposed read-only so that the VMM can do one fewer MSR read per
1106 	 * exit than if this register were exposed read-write; the guest
1107 	 * restore value can be updated during guest writes (expected to be
1108 	 * rare) instead of during all exits (common).
1109 	 */
1110 	if (guest_msr_rw(vmx, MSR_GSBASE) ||
1111 	    guest_msr_rw(vmx, MSR_FSBASE) ||
1112 	    guest_msr_rw(vmx, MSR_SYSENTER_CS_MSR) ||
1113 	    guest_msr_rw(vmx, MSR_SYSENTER_ESP_MSR) ||
1114 	    guest_msr_rw(vmx, MSR_SYSENTER_EIP_MSR) ||
1115 	    guest_msr_rw(vmx, MSR_EFER) ||
1116 	    guest_msr_ro(vmx, MSR_TSC) ||
1117 	    ((cap_rdpid || cap_rdtscp) && guest_msr_ro(vmx, MSR_TSC_AUX)))
1118 		panic("vmx_init: error setting guest msr access");
1119 
1120 	if (virtual_interrupt_delivery) {
1121 		error = vm_map_mmio(vm, DEFAULT_APIC_BASE, PAGE_SIZE,
1122 		    APIC_ACCESS_ADDRESS);
1123 		/* XXX this should really return an error to the caller */
1124 		KASSERT(error == 0, ("vm_map_mmio(apicbase) error %d", error));
1125 	}
1126 
1127 	vmx->pmap = pmap;
1128 	return (vmx);
1129 }
1130 
1131 static void *
vmx_vcpu_init(void * vmi,struct vcpu * vcpu1,int vcpuid)1132 vmx_vcpu_init(void *vmi, struct vcpu *vcpu1, int vcpuid)
1133 {
1134 	struct vmx *vmx = vmi;
1135 	struct vmcs *vmcs;
1136 	struct vmx_vcpu *vcpu;
1137 	uint32_t exc_bitmap;
1138 	uint16_t vpid;
1139 	int error;
1140 
1141 	vpid = vpid_alloc(vcpuid);
1142 
1143 	vcpu = malloc(sizeof(*vcpu), M_VMX, M_WAITOK | M_ZERO);
1144 	vcpu->vmx = vmx;
1145 	vcpu->vcpu = vcpu1;
1146 	vcpu->vcpuid = vcpuid;
1147 	vcpu->vmcs = malloc_aligned(sizeof(*vmcs), PAGE_SIZE, M_VMX,
1148 	    M_WAITOK | M_ZERO);
1149 	vcpu->apic_page = malloc_aligned(PAGE_SIZE, PAGE_SIZE, M_VMX,
1150 	    M_WAITOK | M_ZERO);
1151 	vcpu->pir_desc = malloc_aligned(sizeof(*vcpu->pir_desc), 64, M_VMX,
1152 	    M_WAITOK | M_ZERO);
1153 
1154 	vmcs = vcpu->vmcs;
1155 	vmcs->identifier = vmx_revision();
1156 	error = vmclear(vmcs);
1157 	if (error != 0) {
1158 		panic("vmx_init: vmclear error %d on vcpu %d\n",
1159 		    error, vcpuid);
1160 	}
1161 
1162 	vmx_msr_guest_init(vmx, vcpu);
1163 
1164 	error = vmcs_init(vmcs);
1165 	KASSERT(error == 0, ("vmcs_init error %d", error));
1166 
1167 	VMPTRLD(vmcs);
1168 	error = 0;
1169 	error += vmwrite(VMCS_HOST_RSP, (u_long)&vcpu->ctx);
1170 	error += vmwrite(VMCS_EPTP, vmx->eptp);
1171 	error += vmwrite(VMCS_PIN_BASED_CTLS, pinbased_ctls);
1172 	error += vmwrite(VMCS_PRI_PROC_BASED_CTLS, procbased_ctls);
1173 	if (vcpu_trap_wbinvd(vcpu->vcpu)) {
1174 		KASSERT(cap_wbinvd_exit, ("WBINVD trap not available"));
1175 		procbased_ctls2 |= PROCBASED2_WBINVD_EXITING;
1176 	}
1177 	error += vmwrite(VMCS_SEC_PROC_BASED_CTLS, procbased_ctls2);
1178 	error += vmwrite(VMCS_EXIT_CTLS, exit_ctls);
1179 	error += vmwrite(VMCS_ENTRY_CTLS, entry_ctls);
1180 	error += vmwrite(VMCS_MSR_BITMAP, vtophys(vmx->msr_bitmap));
1181 	error += vmwrite(VMCS_VPID, vpid);
1182 
1183 	if (guest_l1d_flush && !guest_l1d_flush_sw) {
1184 		vmcs_write(VMCS_ENTRY_MSR_LOAD, pmap_kextract(
1185 			(vm_offset_t)&msr_load_list[0]));
1186 		vmcs_write(VMCS_ENTRY_MSR_LOAD_COUNT,
1187 		    nitems(msr_load_list));
1188 		vmcs_write(VMCS_EXIT_MSR_STORE, 0);
1189 		vmcs_write(VMCS_EXIT_MSR_STORE_COUNT, 0);
1190 	}
1191 
1192 	/* exception bitmap */
1193 	if (vcpu_trace_exceptions(vcpu->vcpu))
1194 		exc_bitmap = 0xffffffff;
1195 	else
1196 		exc_bitmap = 1 << IDT_MC;
1197 	error += vmwrite(VMCS_EXCEPTION_BITMAP, exc_bitmap);
1198 
1199 	vcpu->ctx.guest_dr6 = DBREG_DR6_RESERVED1;
1200 	error += vmwrite(VMCS_GUEST_DR7, DBREG_DR7_RESERVED1);
1201 
1202 	if (tpr_shadowing) {
1203 		error += vmwrite(VMCS_VIRTUAL_APIC, vtophys(vcpu->apic_page));
1204 	}
1205 
1206 	if (virtual_interrupt_delivery) {
1207 		error += vmwrite(VMCS_APIC_ACCESS, APIC_ACCESS_ADDRESS);
1208 		error += vmwrite(VMCS_EOI_EXIT0, 0);
1209 		error += vmwrite(VMCS_EOI_EXIT1, 0);
1210 		error += vmwrite(VMCS_EOI_EXIT2, 0);
1211 		error += vmwrite(VMCS_EOI_EXIT3, 0);
1212 	}
1213 	if (posted_interrupts) {
1214 		error += vmwrite(VMCS_PIR_VECTOR, pirvec);
1215 		error += vmwrite(VMCS_PIR_DESC, vtophys(vcpu->pir_desc));
1216 	}
1217 	VMCLEAR(vmcs);
1218 	KASSERT(error == 0, ("vmx_init: error customizing the vmcs"));
1219 
1220 	vcpu->cap.set = 0;
1221 	vcpu->cap.set |= cap_rdpid != 0 ? 1 << VM_CAP_RDPID : 0;
1222 	vcpu->cap.set |= cap_rdtscp != 0 ? 1 << VM_CAP_RDTSCP : 0;
1223 	vcpu->cap.proc_ctls = procbased_ctls;
1224 	vcpu->cap.proc_ctls2 = procbased_ctls2;
1225 	vcpu->cap.exc_bitmap = exc_bitmap;
1226 
1227 	vcpu->state.nextrip = ~0;
1228 	vcpu->state.lastcpu = NOCPU;
1229 	vcpu->state.vpid = vpid;
1230 
1231 	/*
1232 	 * Set up the CR0/4 shadows, and init the read shadow
1233 	 * to the power-on register value from the Intel Sys Arch.
1234 	 *  CR0 - 0x60000010
1235 	 *  CR4 - 0
1236 	 */
1237 	error = vmx_setup_cr0_shadow(vmcs, 0x60000010);
1238 	if (error != 0)
1239 		panic("vmx_setup_cr0_shadow %d", error);
1240 
1241 	error = vmx_setup_cr4_shadow(vmcs, 0);
1242 	if (error != 0)
1243 		panic("vmx_setup_cr4_shadow %d", error);
1244 
1245 	vcpu->ctx.pmap = vmx->pmap;
1246 
1247 	return (vcpu);
1248 }
1249 
1250 static int
vmx_handle_cpuid(struct vmx_vcpu * vcpu,struct vmxctx * vmxctx)1251 vmx_handle_cpuid(struct vmx_vcpu *vcpu, struct vmxctx *vmxctx)
1252 {
1253 	int handled;
1254 
1255 	handled = x86_emulate_cpuid(vcpu->vcpu, (uint64_t *)&vmxctx->guest_rax,
1256 	    (uint64_t *)&vmxctx->guest_rbx, (uint64_t *)&vmxctx->guest_rcx,
1257 	    (uint64_t *)&vmxctx->guest_rdx);
1258 	return (handled);
1259 }
1260 
1261 static __inline void
vmx_run_trace(struct vmx_vcpu * vcpu)1262 vmx_run_trace(struct vmx_vcpu *vcpu)
1263 {
1264 	VMX_CTR1(vcpu, "Resume execution at %#lx", vmcs_guest_rip());
1265 }
1266 
1267 static __inline void
vmx_exit_trace(struct vmx_vcpu * vcpu,uint64_t rip,uint32_t exit_reason,int handled)1268 vmx_exit_trace(struct vmx_vcpu *vcpu, uint64_t rip, uint32_t exit_reason,
1269     int handled)
1270 {
1271 	VMX_CTR3(vcpu, "%s %s vmexit at 0x%0lx",
1272 		 handled ? "handled" : "unhandled",
1273 		 exit_reason_to_str(exit_reason), rip);
1274 }
1275 
1276 static __inline void
vmx_astpending_trace(struct vmx_vcpu * vcpu,uint64_t rip)1277 vmx_astpending_trace(struct vmx_vcpu *vcpu, uint64_t rip)
1278 {
1279 	VMX_CTR1(vcpu, "astpending vmexit at 0x%0lx", rip);
1280 }
1281 
1282 static VMM_STAT_INTEL(VCPU_INVVPID_SAVED, "Number of vpid invalidations saved");
1283 static VMM_STAT_INTEL(VCPU_INVVPID_DONE, "Number of vpid invalidations done");
1284 
1285 /*
1286  * Invalidate guest mappings identified by its vpid from the TLB.
1287  */
1288 static __inline void
vmx_invvpid(struct vmx * vmx,struct vmx_vcpu * vcpu,pmap_t pmap,int running)1289 vmx_invvpid(struct vmx *vmx, struct vmx_vcpu *vcpu, pmap_t pmap, int running)
1290 {
1291 	struct vmxstate *vmxstate;
1292 	struct invvpid_desc invvpid_desc;
1293 
1294 	vmxstate = &vcpu->state;
1295 	if (vmxstate->vpid == 0)
1296 		return;
1297 
1298 	if (!running) {
1299 		/*
1300 		 * Set the 'lastcpu' to an invalid host cpu.
1301 		 *
1302 		 * This will invalidate TLB entries tagged with the vcpu's
1303 		 * vpid the next time it runs via vmx_set_pcpu_defaults().
1304 		 */
1305 		vmxstate->lastcpu = NOCPU;
1306 		return;
1307 	}
1308 
1309 	KASSERT(curthread->td_critnest > 0, ("%s: vcpu %d running outside "
1310 	    "critical section", __func__, vcpu->vcpuid));
1311 
1312 	/*
1313 	 * Invalidate all mappings tagged with 'vpid'
1314 	 *
1315 	 * We do this because this vcpu was executing on a different host
1316 	 * cpu when it last ran. We do not track whether it invalidated
1317 	 * mappings associated with its 'vpid' during that run. So we must
1318 	 * assume that the mappings associated with 'vpid' on 'curcpu' are
1319 	 * stale and invalidate them.
1320 	 *
1321 	 * Note that we incur this penalty only when the scheduler chooses to
1322 	 * move the thread associated with this vcpu between host cpus.
1323 	 *
1324 	 * Note also that this will invalidate mappings tagged with 'vpid'
1325 	 * for "all" EP4TAs.
1326 	 */
1327 	if (atomic_load_long(&pmap->pm_eptgen) == vmx->eptgen[curcpu]) {
1328 		invvpid_desc._res1 = 0;
1329 		invvpid_desc._res2 = 0;
1330 		invvpid_desc.vpid = vmxstate->vpid;
1331 		invvpid_desc.linear_addr = 0;
1332 		invvpid(INVVPID_TYPE_SINGLE_CONTEXT, invvpid_desc);
1333 		vmm_stat_incr(vcpu->vcpu, VCPU_INVVPID_DONE, 1);
1334 	} else {
1335 		/*
1336 		 * The invvpid can be skipped if an invept is going to
1337 		 * be performed before entering the guest. The invept
1338 		 * will invalidate combined mappings tagged with
1339 		 * 'vmx->eptp' for all vpids.
1340 		 */
1341 		vmm_stat_incr(vcpu->vcpu, VCPU_INVVPID_SAVED, 1);
1342 	}
1343 }
1344 
1345 static void
vmx_set_pcpu_defaults(struct vmx * vmx,struct vmx_vcpu * vcpu,pmap_t pmap)1346 vmx_set_pcpu_defaults(struct vmx *vmx, struct vmx_vcpu *vcpu, pmap_t pmap)
1347 {
1348 	struct vmxstate *vmxstate;
1349 
1350 	vmxstate = &vcpu->state;
1351 	if (vmxstate->lastcpu == curcpu)
1352 		return;
1353 
1354 	vmxstate->lastcpu = curcpu;
1355 
1356 	vmm_stat_incr(vcpu->vcpu, VCPU_MIGRATIONS, 1);
1357 
1358 	vmcs_write(VMCS_HOST_TR_BASE, vmm_get_host_trbase());
1359 	vmcs_write(VMCS_HOST_GDTR_BASE, vmm_get_host_gdtrbase());
1360 	vmcs_write(VMCS_HOST_GS_BASE, vmm_get_host_gsbase());
1361 	vmx_invvpid(vmx, vcpu, pmap, 1);
1362 }
1363 
1364 /*
1365  * We depend on 'procbased_ctls' to have the Interrupt Window Exiting bit set.
1366  */
1367 CTASSERT((PROCBASED_CTLS_ONE_SETTING & PROCBASED_INT_WINDOW_EXITING) != 0);
1368 
1369 static void __inline
vmx_set_int_window_exiting(struct vmx_vcpu * vcpu)1370 vmx_set_int_window_exiting(struct vmx_vcpu *vcpu)
1371 {
1372 
1373 	if ((vcpu->cap.proc_ctls & PROCBASED_INT_WINDOW_EXITING) == 0) {
1374 		vcpu->cap.proc_ctls |= PROCBASED_INT_WINDOW_EXITING;
1375 		vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vcpu->cap.proc_ctls);
1376 		VMX_CTR0(vcpu, "Enabling interrupt window exiting");
1377 	}
1378 }
1379 
1380 static void __inline
vmx_clear_int_window_exiting(struct vmx_vcpu * vcpu)1381 vmx_clear_int_window_exiting(struct vmx_vcpu *vcpu)
1382 {
1383 
1384 	KASSERT((vcpu->cap.proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0,
1385 	    ("intr_window_exiting not set: %#x", vcpu->cap.proc_ctls));
1386 	vcpu->cap.proc_ctls &= ~PROCBASED_INT_WINDOW_EXITING;
1387 	vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vcpu->cap.proc_ctls);
1388 	VMX_CTR0(vcpu, "Disabling interrupt window exiting");
1389 }
1390 
1391 static void __inline
vmx_set_nmi_window_exiting(struct vmx_vcpu * vcpu)1392 vmx_set_nmi_window_exiting(struct vmx_vcpu *vcpu)
1393 {
1394 
1395 	if ((vcpu->cap.proc_ctls & PROCBASED_NMI_WINDOW_EXITING) == 0) {
1396 		vcpu->cap.proc_ctls |= PROCBASED_NMI_WINDOW_EXITING;
1397 		vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vcpu->cap.proc_ctls);
1398 		VMX_CTR0(vcpu, "Enabling NMI window exiting");
1399 	}
1400 }
1401 
1402 static void __inline
vmx_clear_nmi_window_exiting(struct vmx_vcpu * vcpu)1403 vmx_clear_nmi_window_exiting(struct vmx_vcpu *vcpu)
1404 {
1405 
1406 	KASSERT((vcpu->cap.proc_ctls & PROCBASED_NMI_WINDOW_EXITING) != 0,
1407 	    ("nmi_window_exiting not set %#x", vcpu->cap.proc_ctls));
1408 	vcpu->cap.proc_ctls &= ~PROCBASED_NMI_WINDOW_EXITING;
1409 	vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vcpu->cap.proc_ctls);
1410 	VMX_CTR0(vcpu, "Disabling NMI window exiting");
1411 }
1412 
1413 int
vmx_set_tsc_offset(struct vmx_vcpu * vcpu,uint64_t offset)1414 vmx_set_tsc_offset(struct vmx_vcpu *vcpu, uint64_t offset)
1415 {
1416 	int error;
1417 
1418 	if ((vcpu->cap.proc_ctls & PROCBASED_TSC_OFFSET) == 0) {
1419 		vcpu->cap.proc_ctls |= PROCBASED_TSC_OFFSET;
1420 		vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vcpu->cap.proc_ctls);
1421 		VMX_CTR0(vcpu, "Enabling TSC offsetting");
1422 	}
1423 
1424 	error = vmwrite(VMCS_TSC_OFFSET, offset);
1425 #ifdef BHYVE_SNAPSHOT
1426 	if (error == 0)
1427 		vm_set_tsc_offset(vcpu->vcpu, offset);
1428 #endif
1429 	return (error);
1430 }
1431 
1432 #define	NMI_BLOCKING	(VMCS_INTERRUPTIBILITY_NMI_BLOCKING |		\
1433 			 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1434 #define	HWINTR_BLOCKING	(VMCS_INTERRUPTIBILITY_STI_BLOCKING |		\
1435 			 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1436 
1437 static void
vmx_inject_nmi(struct vmx_vcpu * vcpu)1438 vmx_inject_nmi(struct vmx_vcpu *vcpu)
1439 {
1440 	uint32_t gi __diagused, info;
1441 
1442 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1443 	KASSERT((gi & NMI_BLOCKING) == 0, ("vmx_inject_nmi: invalid guest "
1444 	    "interruptibility-state %#x", gi));
1445 
1446 	info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1447 	KASSERT((info & VMCS_INTR_VALID) == 0, ("vmx_inject_nmi: invalid "
1448 	    "VM-entry interruption information %#x", info));
1449 
1450 	/*
1451 	 * Inject the virtual NMI. The vector must be the NMI IDT entry
1452 	 * or the VMCS entry check will fail.
1453 	 */
1454 	info = IDT_NMI | VMCS_INTR_T_NMI | VMCS_INTR_VALID;
1455 	vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1456 
1457 	VMX_CTR0(vcpu, "Injecting vNMI");
1458 
1459 	/* Clear the request */
1460 	vm_nmi_clear(vcpu->vcpu);
1461 }
1462 
1463 static void
vmx_inject_interrupts(struct vmx_vcpu * vcpu,struct vlapic * vlapic,uint64_t guestrip)1464 vmx_inject_interrupts(struct vmx_vcpu *vcpu, struct vlapic *vlapic,
1465     uint64_t guestrip)
1466 {
1467 	int vector, need_nmi_exiting, extint_pending;
1468 	uint64_t rflags, entryinfo;
1469 	uint32_t gi, info;
1470 
1471 	if (vcpu->cap.set & (1 << VM_CAP_MASK_HWINTR)) {
1472 		return;
1473 	}
1474 
1475 	if (vcpu->state.nextrip != guestrip) {
1476 		gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1477 		if (gi & HWINTR_BLOCKING) {
1478 			VMX_CTR2(vcpu, "Guest interrupt blocking "
1479 			    "cleared due to rip change: %#lx/%#lx",
1480 			    vcpu->state.nextrip, guestrip);
1481 			gi &= ~HWINTR_BLOCKING;
1482 			vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1483 		}
1484 	}
1485 
1486 	if (vm_entry_intinfo(vcpu->vcpu, &entryinfo)) {
1487 		KASSERT((entryinfo & VMCS_INTR_VALID) != 0, ("%s: entry "
1488 		    "intinfo is not valid: %#lx", __func__, entryinfo));
1489 
1490 		info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1491 		KASSERT((info & VMCS_INTR_VALID) == 0, ("%s: cannot inject "
1492 		     "pending exception: %#lx/%#x", __func__, entryinfo, info));
1493 
1494 		info = entryinfo;
1495 		vector = info & 0xff;
1496 		if (vector == IDT_BP || vector == IDT_OF) {
1497 			/*
1498 			 * VT-x requires #BP and #OF to be injected as software
1499 			 * exceptions.
1500 			 */
1501 			info &= ~VMCS_INTR_T_MASK;
1502 			info |= VMCS_INTR_T_SWEXCEPTION;
1503 		}
1504 
1505 		if (info & VMCS_INTR_DEL_ERRCODE)
1506 			vmcs_write(VMCS_ENTRY_EXCEPTION_ERROR, entryinfo >> 32);
1507 
1508 		vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1509 	}
1510 
1511 	if (vm_nmi_pending(vcpu->vcpu)) {
1512 		/*
1513 		 * If there are no conditions blocking NMI injection then
1514 		 * inject it directly here otherwise enable "NMI window
1515 		 * exiting" to inject it as soon as we can.
1516 		 *
1517 		 * We also check for STI_BLOCKING because some implementations
1518 		 * don't allow NMI injection in this case. If we are running
1519 		 * on a processor that doesn't have this restriction it will
1520 		 * immediately exit and the NMI will be injected in the
1521 		 * "NMI window exiting" handler.
1522 		 */
1523 		need_nmi_exiting = 1;
1524 		gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1525 		if ((gi & (HWINTR_BLOCKING | NMI_BLOCKING)) == 0) {
1526 			info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1527 			if ((info & VMCS_INTR_VALID) == 0) {
1528 				vmx_inject_nmi(vcpu);
1529 				need_nmi_exiting = 0;
1530 			} else {
1531 				VMX_CTR1(vcpu, "Cannot inject NMI "
1532 				    "due to VM-entry intr info %#x", info);
1533 			}
1534 		} else {
1535 			VMX_CTR1(vcpu, "Cannot inject NMI due to "
1536 			    "Guest Interruptibility-state %#x", gi);
1537 		}
1538 
1539 		if (need_nmi_exiting)
1540 			vmx_set_nmi_window_exiting(vcpu);
1541 	}
1542 
1543 	extint_pending = vm_extint_pending(vcpu->vcpu);
1544 
1545 	if (!extint_pending && virtual_interrupt_delivery) {
1546 		vmx_inject_pir(vlapic);
1547 		return;
1548 	}
1549 
1550 	/*
1551 	 * If interrupt-window exiting is already in effect then don't bother
1552 	 * checking for pending interrupts. This is just an optimization and
1553 	 * not needed for correctness.
1554 	 */
1555 	if ((vcpu->cap.proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0) {
1556 		VMX_CTR0(vcpu, "Skip interrupt injection due to "
1557 		    "pending int_window_exiting");
1558 		return;
1559 	}
1560 
1561 	if (!extint_pending) {
1562 		/* Ask the local apic for a vector to inject */
1563 		if (!vlapic_pending_intr(vlapic, &vector))
1564 			return;
1565 
1566 		/*
1567 		 * From the Intel SDM, Volume 3, Section "Maskable
1568 		 * Hardware Interrupts":
1569 		 * - maskable interrupt vectors [16,255] can be delivered
1570 		 *   through the local APIC.
1571 		*/
1572 		KASSERT(vector >= 16 && vector <= 255,
1573 		    ("invalid vector %d from local APIC", vector));
1574 	} else {
1575 		/* Ask the legacy pic for a vector to inject */
1576 		vatpic_pending_intr(vcpu->vmx->vm, &vector);
1577 
1578 		/*
1579 		 * From the Intel SDM, Volume 3, Section "Maskable
1580 		 * Hardware Interrupts":
1581 		 * - maskable interrupt vectors [0,255] can be delivered
1582 		 *   through the INTR pin.
1583 		 */
1584 		KASSERT(vector >= 0 && vector <= 255,
1585 		    ("invalid vector %d from INTR", vector));
1586 	}
1587 
1588 	/* Check RFLAGS.IF and the interruptibility state of the guest */
1589 	rflags = vmcs_read(VMCS_GUEST_RFLAGS);
1590 	if ((rflags & PSL_I) == 0) {
1591 		VMX_CTR2(vcpu, "Cannot inject vector %d due to "
1592 		    "rflags %#lx", vector, rflags);
1593 		goto cantinject;
1594 	}
1595 
1596 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1597 	if (gi & HWINTR_BLOCKING) {
1598 		VMX_CTR2(vcpu, "Cannot inject vector %d due to "
1599 		    "Guest Interruptibility-state %#x", vector, gi);
1600 		goto cantinject;
1601 	}
1602 
1603 	info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1604 	if (info & VMCS_INTR_VALID) {
1605 		/*
1606 		 * This is expected and could happen for multiple reasons:
1607 		 * - A vectoring VM-entry was aborted due to astpending
1608 		 * - A VM-exit happened during event injection.
1609 		 * - An exception was injected above.
1610 		 * - An NMI was injected above or after "NMI window exiting"
1611 		 */
1612 		VMX_CTR2(vcpu, "Cannot inject vector %d due to "
1613 		    "VM-entry intr info %#x", vector, info);
1614 		goto cantinject;
1615 	}
1616 
1617 	/* Inject the interrupt */
1618 	info = VMCS_INTR_T_HWINTR | VMCS_INTR_VALID;
1619 	info |= vector;
1620 	vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1621 
1622 	if (!extint_pending) {
1623 		/* Update the Local APIC ISR */
1624 		vlapic_intr_accepted(vlapic, vector);
1625 	} else {
1626 		vm_extint_clear(vcpu->vcpu);
1627 		vatpic_intr_accepted(vcpu->vmx->vm, vector);
1628 
1629 		/*
1630 		 * After we accepted the current ExtINT the PIC may
1631 		 * have posted another one.  If that is the case, set
1632 		 * the Interrupt Window Exiting execution control so
1633 		 * we can inject that one too.
1634 		 *
1635 		 * Also, interrupt window exiting allows us to inject any
1636 		 * pending APIC vector that was preempted by the ExtINT
1637 		 * as soon as possible. This applies both for the software
1638 		 * emulated vlapic and the hardware assisted virtual APIC.
1639 		 */
1640 		vmx_set_int_window_exiting(vcpu);
1641 	}
1642 
1643 	VMX_CTR1(vcpu, "Injecting hwintr at vector %d", vector);
1644 
1645 	return;
1646 
1647 cantinject:
1648 	/*
1649 	 * Set the Interrupt Window Exiting execution control so we can inject
1650 	 * the interrupt as soon as blocking condition goes away.
1651 	 */
1652 	vmx_set_int_window_exiting(vcpu);
1653 }
1654 
1655 /*
1656  * If the Virtual NMIs execution control is '1' then the logical processor
1657  * tracks virtual-NMI blocking in the Guest Interruptibility-state field of
1658  * the VMCS. An IRET instruction in VMX non-root operation will remove any
1659  * virtual-NMI blocking.
1660  *
1661  * This unblocking occurs even if the IRET causes a fault. In this case the
1662  * hypervisor needs to restore virtual-NMI blocking before resuming the guest.
1663  */
1664 static void
vmx_restore_nmi_blocking(struct vmx_vcpu * vcpu)1665 vmx_restore_nmi_blocking(struct vmx_vcpu *vcpu)
1666 {
1667 	uint32_t gi;
1668 
1669 	VMX_CTR0(vcpu, "Restore Virtual-NMI blocking");
1670 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1671 	gi |= VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1672 	vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1673 }
1674 
1675 static void
vmx_clear_nmi_blocking(struct vmx_vcpu * vcpu)1676 vmx_clear_nmi_blocking(struct vmx_vcpu *vcpu)
1677 {
1678 	uint32_t gi;
1679 
1680 	VMX_CTR0(vcpu, "Clear Virtual-NMI blocking");
1681 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1682 	gi &= ~VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1683 	vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1684 }
1685 
1686 static void
vmx_assert_nmi_blocking(struct vmx_vcpu * vcpu)1687 vmx_assert_nmi_blocking(struct vmx_vcpu *vcpu)
1688 {
1689 	uint32_t gi __diagused;
1690 
1691 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1692 	KASSERT(gi & VMCS_INTERRUPTIBILITY_NMI_BLOCKING,
1693 	    ("NMI blocking is not in effect %#x", gi));
1694 }
1695 
1696 static int
vmx_emulate_xsetbv(struct vmx * vmx,struct vmx_vcpu * vcpu,struct vm_exit * vmexit)1697 vmx_emulate_xsetbv(struct vmx *vmx, struct vmx_vcpu *vcpu,
1698     struct vm_exit *vmexit)
1699 {
1700 	struct vmxctx *vmxctx;
1701 	uint64_t xcrval;
1702 	const struct xsave_limits *limits;
1703 
1704 	vmxctx = &vcpu->ctx;
1705 	limits = vmm_get_xsave_limits();
1706 
1707 	/*
1708 	 * Note that the processor raises a GP# fault on its own if
1709 	 * xsetbv is executed for CPL != 0, so we do not have to
1710 	 * emulate that fault here.
1711 	 */
1712 
1713 	/* Only xcr0 is supported. */
1714 	if (vmxctx->guest_rcx != 0) {
1715 		vm_inject_gp(vcpu->vcpu);
1716 		return (HANDLED);
1717 	}
1718 
1719 	/* We only handle xcr0 if both the host and guest have XSAVE enabled. */
1720 	if (!limits->xsave_enabled || !(vmcs_read(VMCS_GUEST_CR4) & CR4_XSAVE)) {
1721 		vm_inject_ud(vcpu->vcpu);
1722 		return (HANDLED);
1723 	}
1724 
1725 	xcrval = vmxctx->guest_rdx << 32 | (vmxctx->guest_rax & 0xffffffff);
1726 	if ((xcrval & ~limits->xcr0_allowed) != 0) {
1727 		vm_inject_gp(vcpu->vcpu);
1728 		return (HANDLED);
1729 	}
1730 
1731 	if (!(xcrval & XFEATURE_ENABLED_X87)) {
1732 		vm_inject_gp(vcpu->vcpu);
1733 		return (HANDLED);
1734 	}
1735 
1736 	/* AVX (YMM_Hi128) requires SSE. */
1737 	if (xcrval & XFEATURE_ENABLED_AVX &&
1738 	    (xcrval & XFEATURE_AVX) != XFEATURE_AVX) {
1739 		vm_inject_gp(vcpu->vcpu);
1740 		return (HANDLED);
1741 	}
1742 
1743 	/*
1744 	 * AVX512 requires base AVX (YMM_Hi128) as well as OpMask,
1745 	 * ZMM_Hi256, and Hi16_ZMM.
1746 	 */
1747 	if (xcrval & XFEATURE_AVX512 &&
1748 	    (xcrval & (XFEATURE_AVX512 | XFEATURE_AVX)) !=
1749 	    (XFEATURE_AVX512 | XFEATURE_AVX)) {
1750 		vm_inject_gp(vcpu->vcpu);
1751 		return (HANDLED);
1752 	}
1753 
1754 	/*
1755 	 * Intel MPX requires both bound register state flags to be
1756 	 * set.
1757 	 */
1758 	if (((xcrval & XFEATURE_ENABLED_BNDREGS) != 0) !=
1759 	    ((xcrval & XFEATURE_ENABLED_BNDCSR) != 0)) {
1760 		vm_inject_gp(vcpu->vcpu);
1761 		return (HANDLED);
1762 	}
1763 
1764 	/*
1765 	 * This runs "inside" vmrun() with the guest's FPU state, so
1766 	 * modifying xcr0 directly modifies the guest's xcr0, not the
1767 	 * host's.
1768 	 */
1769 	load_xcr(0, xcrval);
1770 	return (HANDLED);
1771 }
1772 
1773 static uint64_t
vmx_get_guest_reg(struct vmx_vcpu * vcpu,int ident)1774 vmx_get_guest_reg(struct vmx_vcpu *vcpu, int ident)
1775 {
1776 	const struct vmxctx *vmxctx;
1777 
1778 	vmxctx = &vcpu->ctx;
1779 
1780 	switch (ident) {
1781 	case 0:
1782 		return (vmxctx->guest_rax);
1783 	case 1:
1784 		return (vmxctx->guest_rcx);
1785 	case 2:
1786 		return (vmxctx->guest_rdx);
1787 	case 3:
1788 		return (vmxctx->guest_rbx);
1789 	case 4:
1790 		return (vmcs_read(VMCS_GUEST_RSP));
1791 	case 5:
1792 		return (vmxctx->guest_rbp);
1793 	case 6:
1794 		return (vmxctx->guest_rsi);
1795 	case 7:
1796 		return (vmxctx->guest_rdi);
1797 	case 8:
1798 		return (vmxctx->guest_r8);
1799 	case 9:
1800 		return (vmxctx->guest_r9);
1801 	case 10:
1802 		return (vmxctx->guest_r10);
1803 	case 11:
1804 		return (vmxctx->guest_r11);
1805 	case 12:
1806 		return (vmxctx->guest_r12);
1807 	case 13:
1808 		return (vmxctx->guest_r13);
1809 	case 14:
1810 		return (vmxctx->guest_r14);
1811 	case 15:
1812 		return (vmxctx->guest_r15);
1813 	default:
1814 		panic("invalid vmx register %d", ident);
1815 	}
1816 }
1817 
1818 static void
vmx_set_guest_reg(struct vmx_vcpu * vcpu,int ident,uint64_t regval)1819 vmx_set_guest_reg(struct vmx_vcpu *vcpu, int ident, uint64_t regval)
1820 {
1821 	struct vmxctx *vmxctx;
1822 
1823 	vmxctx = &vcpu->ctx;
1824 
1825 	switch (ident) {
1826 	case 0:
1827 		vmxctx->guest_rax = regval;
1828 		break;
1829 	case 1:
1830 		vmxctx->guest_rcx = regval;
1831 		break;
1832 	case 2:
1833 		vmxctx->guest_rdx = regval;
1834 		break;
1835 	case 3:
1836 		vmxctx->guest_rbx = regval;
1837 		break;
1838 	case 4:
1839 		vmcs_write(VMCS_GUEST_RSP, regval);
1840 		break;
1841 	case 5:
1842 		vmxctx->guest_rbp = regval;
1843 		break;
1844 	case 6:
1845 		vmxctx->guest_rsi = regval;
1846 		break;
1847 	case 7:
1848 		vmxctx->guest_rdi = regval;
1849 		break;
1850 	case 8:
1851 		vmxctx->guest_r8 = regval;
1852 		break;
1853 	case 9:
1854 		vmxctx->guest_r9 = regval;
1855 		break;
1856 	case 10:
1857 		vmxctx->guest_r10 = regval;
1858 		break;
1859 	case 11:
1860 		vmxctx->guest_r11 = regval;
1861 		break;
1862 	case 12:
1863 		vmxctx->guest_r12 = regval;
1864 		break;
1865 	case 13:
1866 		vmxctx->guest_r13 = regval;
1867 		break;
1868 	case 14:
1869 		vmxctx->guest_r14 = regval;
1870 		break;
1871 	case 15:
1872 		vmxctx->guest_r15 = regval;
1873 		break;
1874 	default:
1875 		panic("invalid vmx register %d", ident);
1876 	}
1877 }
1878 
1879 static int
vmx_emulate_cr0_access(struct vmx_vcpu * vcpu,uint64_t exitqual)1880 vmx_emulate_cr0_access(struct vmx_vcpu *vcpu, uint64_t exitqual)
1881 {
1882 	uint64_t crval, regval;
1883 
1884 	/* We only handle mov to %cr0 at this time */
1885 	if ((exitqual & 0xf0) != 0x00)
1886 		return (UNHANDLED);
1887 
1888 	regval = vmx_get_guest_reg(vcpu, (exitqual >> 8) & 0xf);
1889 
1890 	vmcs_write(VMCS_CR0_SHADOW, regval);
1891 
1892 	crval = regval | cr0_ones_mask;
1893 	crval &= ~cr0_zeros_mask;
1894 	vmcs_write(VMCS_GUEST_CR0, crval);
1895 
1896 	if (regval & CR0_PG) {
1897 		uint64_t efer, entry_ctls;
1898 
1899 		/*
1900 		 * If CR0.PG is 1 and EFER.LME is 1 then EFER.LMA and
1901 		 * the "IA-32e mode guest" bit in VM-entry control must be
1902 		 * equal.
1903 		 */
1904 		efer = vmcs_read(VMCS_GUEST_IA32_EFER);
1905 		if (efer & EFER_LME) {
1906 			efer |= EFER_LMA;
1907 			vmcs_write(VMCS_GUEST_IA32_EFER, efer);
1908 			entry_ctls = vmcs_read(VMCS_ENTRY_CTLS);
1909 			entry_ctls |= VM_ENTRY_GUEST_LMA;
1910 			vmcs_write(VMCS_ENTRY_CTLS, entry_ctls);
1911 		}
1912 	}
1913 
1914 	return (HANDLED);
1915 }
1916 
1917 static int
vmx_emulate_cr4_access(struct vmx_vcpu * vcpu,uint64_t exitqual)1918 vmx_emulate_cr4_access(struct vmx_vcpu *vcpu, uint64_t exitqual)
1919 {
1920 	uint64_t crval, regval;
1921 
1922 	/* We only handle mov to %cr4 at this time */
1923 	if ((exitqual & 0xf0) != 0x00)
1924 		return (UNHANDLED);
1925 
1926 	regval = vmx_get_guest_reg(vcpu, (exitqual >> 8) & 0xf);
1927 
1928 	vmcs_write(VMCS_CR4_SHADOW, regval);
1929 
1930 	crval = regval | cr4_ones_mask;
1931 	crval &= ~cr4_zeros_mask;
1932 	vmcs_write(VMCS_GUEST_CR4, crval);
1933 
1934 	return (HANDLED);
1935 }
1936 
1937 static int
vmx_emulate_cr8_access(struct vmx * vmx,struct vmx_vcpu * vcpu,uint64_t exitqual)1938 vmx_emulate_cr8_access(struct vmx *vmx, struct vmx_vcpu *vcpu,
1939     uint64_t exitqual)
1940 {
1941 	struct vlapic *vlapic;
1942 	uint64_t cr8;
1943 	int regnum;
1944 
1945 	/* We only handle mov %cr8 to/from a register at this time. */
1946 	if ((exitqual & 0xe0) != 0x00) {
1947 		return (UNHANDLED);
1948 	}
1949 
1950 	vlapic = vm_lapic(vcpu->vcpu);
1951 	regnum = (exitqual >> 8) & 0xf;
1952 	if (exitqual & 0x10) {
1953 		cr8 = vlapic_get_cr8(vlapic);
1954 		vmx_set_guest_reg(vcpu, regnum, cr8);
1955 	} else {
1956 		cr8 = vmx_get_guest_reg(vcpu, regnum);
1957 		vlapic_set_cr8(vlapic, cr8);
1958 	}
1959 
1960 	return (HANDLED);
1961 }
1962 
1963 /*
1964  * From section "Guest Register State" in the Intel SDM: CPL = SS.DPL
1965  */
1966 static int
vmx_cpl(void)1967 vmx_cpl(void)
1968 {
1969 	uint32_t ssar;
1970 
1971 	ssar = vmcs_read(VMCS_GUEST_SS_ACCESS_RIGHTS);
1972 	return ((ssar >> 5) & 0x3);
1973 }
1974 
1975 static enum vm_cpu_mode
vmx_cpu_mode(void)1976 vmx_cpu_mode(void)
1977 {
1978 	uint32_t csar;
1979 
1980 	if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LMA) {
1981 		csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
1982 		if (csar & 0x2000)
1983 			return (CPU_MODE_64BIT);	/* CS.L = 1 */
1984 		else
1985 			return (CPU_MODE_COMPATIBILITY);
1986 	} else if (vmcs_read(VMCS_GUEST_CR0) & CR0_PE) {
1987 		return (CPU_MODE_PROTECTED);
1988 	} else {
1989 		return (CPU_MODE_REAL);
1990 	}
1991 }
1992 
1993 static enum vm_paging_mode
vmx_paging_mode(void)1994 vmx_paging_mode(void)
1995 {
1996 	uint64_t cr4;
1997 
1998 	if (!(vmcs_read(VMCS_GUEST_CR0) & CR0_PG))
1999 		return (PAGING_MODE_FLAT);
2000 	cr4 = vmcs_read(VMCS_GUEST_CR4);
2001 	if (!(cr4 & CR4_PAE))
2002 		return (PAGING_MODE_32);
2003 	if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LME) {
2004 		if (!(cr4 & CR4_LA57))
2005 			return (PAGING_MODE_64);
2006 		return (PAGING_MODE_64_LA57);
2007 	} else
2008 		return (PAGING_MODE_PAE);
2009 }
2010 
2011 static uint64_t
inout_str_index(struct vmx_vcpu * vcpu,int in)2012 inout_str_index(struct vmx_vcpu *vcpu, int in)
2013 {
2014 	uint64_t val;
2015 	int error __diagused;
2016 	enum vm_reg_name reg;
2017 
2018 	reg = in ? VM_REG_GUEST_RDI : VM_REG_GUEST_RSI;
2019 	error = vmx_getreg(vcpu, reg, &val);
2020 	KASSERT(error == 0, ("%s: vmx_getreg error %d", __func__, error));
2021 	return (val);
2022 }
2023 
2024 static uint64_t
inout_str_count(struct vmx_vcpu * vcpu,int rep)2025 inout_str_count(struct vmx_vcpu *vcpu, int rep)
2026 {
2027 	uint64_t val;
2028 	int error __diagused;
2029 
2030 	if (rep) {
2031 		error = vmx_getreg(vcpu, VM_REG_GUEST_RCX, &val);
2032 		KASSERT(!error, ("%s: vmx_getreg error %d", __func__, error));
2033 	} else {
2034 		val = 1;
2035 	}
2036 	return (val);
2037 }
2038 
2039 static int
inout_str_addrsize(uint32_t inst_info)2040 inout_str_addrsize(uint32_t inst_info)
2041 {
2042 	uint32_t size;
2043 
2044 	size = (inst_info >> 7) & 0x7;
2045 	switch (size) {
2046 	case 0:
2047 		return (2);	/* 16 bit */
2048 	case 1:
2049 		return (4);	/* 32 bit */
2050 	case 2:
2051 		return (8);	/* 64 bit */
2052 	default:
2053 		panic("%s: invalid size encoding %d", __func__, size);
2054 	}
2055 }
2056 
2057 static void
inout_str_seginfo(struct vmx_vcpu * vcpu,uint32_t inst_info,int in,struct vm_inout_str * vis)2058 inout_str_seginfo(struct vmx_vcpu *vcpu, uint32_t inst_info, int in,
2059     struct vm_inout_str *vis)
2060 {
2061 	int error __diagused, s;
2062 
2063 	if (in) {
2064 		vis->seg_name = VM_REG_GUEST_ES;
2065 	} else {
2066 		s = (inst_info >> 15) & 0x7;
2067 		vis->seg_name = vm_segment_name(s);
2068 	}
2069 
2070 	error = vmx_getdesc(vcpu, vis->seg_name, &vis->seg_desc);
2071 	KASSERT(error == 0, ("%s: vmx_getdesc error %d", __func__, error));
2072 }
2073 
2074 static void
vmx_paging_info(struct vm_guest_paging * paging)2075 vmx_paging_info(struct vm_guest_paging *paging)
2076 {
2077 	paging->cr3 = vmcs_guest_cr3();
2078 	paging->cpl = vmx_cpl();
2079 	paging->cpu_mode = vmx_cpu_mode();
2080 	paging->paging_mode = vmx_paging_mode();
2081 }
2082 
2083 static void
vmexit_inst_emul(struct vm_exit * vmexit,uint64_t gpa,uint64_t gla)2084 vmexit_inst_emul(struct vm_exit *vmexit, uint64_t gpa, uint64_t gla)
2085 {
2086 	struct vm_guest_paging *paging;
2087 	uint32_t csar;
2088 
2089 	paging = &vmexit->u.inst_emul.paging;
2090 
2091 	vmexit->exitcode = VM_EXITCODE_INST_EMUL;
2092 	vmexit->inst_length = 0;
2093 	vmexit->u.inst_emul.gpa = gpa;
2094 	vmexit->u.inst_emul.gla = gla;
2095 	vmx_paging_info(paging);
2096 	switch (paging->cpu_mode) {
2097 	case CPU_MODE_REAL:
2098 		vmexit->u.inst_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE);
2099 		vmexit->u.inst_emul.cs_d = 0;
2100 		break;
2101 	case CPU_MODE_PROTECTED:
2102 	case CPU_MODE_COMPATIBILITY:
2103 		vmexit->u.inst_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE);
2104 		csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
2105 		vmexit->u.inst_emul.cs_d = SEG_DESC_DEF32(csar);
2106 		break;
2107 	default:
2108 		vmexit->u.inst_emul.cs_base = 0;
2109 		vmexit->u.inst_emul.cs_d = 0;
2110 		break;
2111 	}
2112 	vie_init(&vmexit->u.inst_emul.vie, NULL, 0);
2113 }
2114 
2115 static int
ept_fault_type(uint64_t ept_qual)2116 ept_fault_type(uint64_t ept_qual)
2117 {
2118 	int fault_type;
2119 
2120 	if (ept_qual & EPT_VIOLATION_DATA_WRITE)
2121 		fault_type = VM_PROT_WRITE;
2122 	else if (ept_qual & EPT_VIOLATION_INST_FETCH)
2123 		fault_type = VM_PROT_EXECUTE;
2124 	else
2125 		fault_type= VM_PROT_READ;
2126 
2127 	return (fault_type);
2128 }
2129 
2130 static bool
ept_emulation_fault(uint64_t ept_qual)2131 ept_emulation_fault(uint64_t ept_qual)
2132 {
2133 	int read, write;
2134 
2135 	/* EPT fault on an instruction fetch doesn't make sense here */
2136 	if (ept_qual & EPT_VIOLATION_INST_FETCH)
2137 		return (false);
2138 
2139 	/* EPT fault must be a read fault or a write fault */
2140 	read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
2141 	write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
2142 	if ((read | write) == 0)
2143 		return (false);
2144 
2145 	/*
2146 	 * The EPT violation must have been caused by accessing a
2147 	 * guest-physical address that is a translation of a guest-linear
2148 	 * address.
2149 	 */
2150 	if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
2151 	    (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
2152 		return (false);
2153 	}
2154 
2155 	return (true);
2156 }
2157 
2158 static __inline int
apic_access_virtualization(struct vmx_vcpu * vcpu)2159 apic_access_virtualization(struct vmx_vcpu *vcpu)
2160 {
2161 	uint32_t proc_ctls2;
2162 
2163 	proc_ctls2 = vcpu->cap.proc_ctls2;
2164 	return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) ? 1 : 0);
2165 }
2166 
2167 static __inline int
x2apic_virtualization(struct vmx_vcpu * vcpu)2168 x2apic_virtualization(struct vmx_vcpu *vcpu)
2169 {
2170 	uint32_t proc_ctls2;
2171 
2172 	proc_ctls2 = vcpu->cap.proc_ctls2;
2173 	return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_X2APIC_MODE) ? 1 : 0);
2174 }
2175 
2176 static int
vmx_handle_apic_write(struct vmx_vcpu * vcpu,struct vlapic * vlapic,uint64_t qual)2177 vmx_handle_apic_write(struct vmx_vcpu *vcpu, struct vlapic *vlapic,
2178     uint64_t qual)
2179 {
2180 	int error, handled, offset;
2181 	uint32_t *apic_regs, vector;
2182 	bool retu;
2183 
2184 	handled = HANDLED;
2185 	offset = APIC_WRITE_OFFSET(qual);
2186 
2187 	if (!apic_access_virtualization(vcpu)) {
2188 		/*
2189 		 * In general there should not be any APIC write VM-exits
2190 		 * unless APIC-access virtualization is enabled.
2191 		 *
2192 		 * However self-IPI virtualization can legitimately trigger
2193 		 * an APIC-write VM-exit so treat it specially.
2194 		 */
2195 		if (x2apic_virtualization(vcpu) &&
2196 		    offset == APIC_OFFSET_SELF_IPI) {
2197 			apic_regs = (uint32_t *)(vlapic->apic_page);
2198 			vector = apic_regs[APIC_OFFSET_SELF_IPI / 4];
2199 			vlapic_self_ipi_handler(vlapic, vector);
2200 			return (HANDLED);
2201 		} else
2202 			return (UNHANDLED);
2203 	}
2204 
2205 	switch (offset) {
2206 	case APIC_OFFSET_ID:
2207 		vlapic_id_write_handler(vlapic);
2208 		break;
2209 	case APIC_OFFSET_LDR:
2210 		vlapic_ldr_write_handler(vlapic);
2211 		break;
2212 	case APIC_OFFSET_DFR:
2213 		vlapic_dfr_write_handler(vlapic);
2214 		break;
2215 	case APIC_OFFSET_SVR:
2216 		vlapic_svr_write_handler(vlapic);
2217 		break;
2218 	case APIC_OFFSET_ESR:
2219 		vlapic_esr_write_handler(vlapic);
2220 		break;
2221 	case APIC_OFFSET_ICR_LOW:
2222 		retu = false;
2223 		error = vlapic_icrlo_write_handler(vlapic, &retu);
2224 		if (error != 0 || retu)
2225 			handled = UNHANDLED;
2226 		break;
2227 	case APIC_OFFSET_CMCI_LVT:
2228 	case APIC_OFFSET_TIMER_LVT ... APIC_OFFSET_ERROR_LVT:
2229 		vlapic_lvt_write_handler(vlapic, offset);
2230 		break;
2231 	case APIC_OFFSET_TIMER_ICR:
2232 		vlapic_icrtmr_write_handler(vlapic);
2233 		break;
2234 	case APIC_OFFSET_TIMER_DCR:
2235 		vlapic_dcr_write_handler(vlapic);
2236 		break;
2237 	default:
2238 		handled = UNHANDLED;
2239 		break;
2240 	}
2241 	return (handled);
2242 }
2243 
2244 static bool
apic_access_fault(struct vmx_vcpu * vcpu,uint64_t gpa)2245 apic_access_fault(struct vmx_vcpu *vcpu, uint64_t gpa)
2246 {
2247 
2248 	if (apic_access_virtualization(vcpu) &&
2249 	    (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE))
2250 		return (true);
2251 	else
2252 		return (false);
2253 }
2254 
2255 static int
vmx_handle_apic_access(struct vmx_vcpu * vcpu,struct vm_exit * vmexit)2256 vmx_handle_apic_access(struct vmx_vcpu *vcpu, struct vm_exit *vmexit)
2257 {
2258 	uint64_t qual;
2259 	int access_type, offset, allowed;
2260 
2261 	if (!apic_access_virtualization(vcpu))
2262 		return (UNHANDLED);
2263 
2264 	qual = vmexit->u.vmx.exit_qualification;
2265 	access_type = APIC_ACCESS_TYPE(qual);
2266 	offset = APIC_ACCESS_OFFSET(qual);
2267 
2268 	allowed = 0;
2269 	if (access_type == 0) {
2270 		/*
2271 		 * Read data access to the following registers is expected.
2272 		 */
2273 		switch (offset) {
2274 		case APIC_OFFSET_APR:
2275 		case APIC_OFFSET_PPR:
2276 		case APIC_OFFSET_RRR:
2277 		case APIC_OFFSET_CMCI_LVT:
2278 		case APIC_OFFSET_TIMER_CCR:
2279 			allowed = 1;
2280 			break;
2281 		default:
2282 			break;
2283 		}
2284 	} else if (access_type == 1) {
2285 		/*
2286 		 * Write data access to the following registers is expected.
2287 		 */
2288 		switch (offset) {
2289 		case APIC_OFFSET_VER:
2290 		case APIC_OFFSET_APR:
2291 		case APIC_OFFSET_PPR:
2292 		case APIC_OFFSET_RRR:
2293 		case APIC_OFFSET_ISR0 ... APIC_OFFSET_ISR7:
2294 		case APIC_OFFSET_TMR0 ... APIC_OFFSET_TMR7:
2295 		case APIC_OFFSET_IRR0 ... APIC_OFFSET_IRR7:
2296 		case APIC_OFFSET_CMCI_LVT:
2297 		case APIC_OFFSET_TIMER_CCR:
2298 			allowed = 1;
2299 			break;
2300 		default:
2301 			break;
2302 		}
2303 	}
2304 
2305 	if (allowed) {
2306 		vmexit_inst_emul(vmexit, DEFAULT_APIC_BASE + offset,
2307 		    VIE_INVALID_GLA);
2308 	}
2309 
2310 	/*
2311 	 * Regardless of whether the APIC-access is allowed this handler
2312 	 * always returns UNHANDLED:
2313 	 * - if the access is allowed then it is handled by emulating the
2314 	 *   instruction that caused the VM-exit (outside the critical section)
2315 	 * - if the access is not allowed then it will be converted to an
2316 	 *   exitcode of VM_EXITCODE_VMX and will be dealt with in userland.
2317 	 */
2318 	return (UNHANDLED);
2319 }
2320 
2321 static enum task_switch_reason
vmx_task_switch_reason(uint64_t qual)2322 vmx_task_switch_reason(uint64_t qual)
2323 {
2324 	int reason;
2325 
2326 	reason = (qual >> 30) & 0x3;
2327 	switch (reason) {
2328 	case 0:
2329 		return (TSR_CALL);
2330 	case 1:
2331 		return (TSR_IRET);
2332 	case 2:
2333 		return (TSR_JMP);
2334 	case 3:
2335 		return (TSR_IDT_GATE);
2336 	default:
2337 		panic("%s: invalid reason %d", __func__, reason);
2338 	}
2339 }
2340 
2341 static int
emulate_wrmsr(struct vmx_vcpu * vcpu,u_int num,uint64_t val,bool * retu)2342 emulate_wrmsr(struct vmx_vcpu *vcpu, u_int num, uint64_t val, bool *retu)
2343 {
2344 	int error;
2345 
2346 	if (lapic_msr(num))
2347 		error = lapic_wrmsr(vcpu->vcpu, num, val, retu);
2348 	else
2349 		error = vmx_wrmsr(vcpu, num, val, retu);
2350 
2351 	return (error);
2352 }
2353 
2354 static int
emulate_rdmsr(struct vmx_vcpu * vcpu,u_int num,bool * retu)2355 emulate_rdmsr(struct vmx_vcpu *vcpu, u_int num, bool *retu)
2356 {
2357 	struct vmxctx *vmxctx;
2358 	uint64_t result;
2359 	uint32_t eax, edx;
2360 	int error;
2361 
2362 	if (lapic_msr(num))
2363 		error = lapic_rdmsr(vcpu->vcpu, num, &result, retu);
2364 	else
2365 		error = vmx_rdmsr(vcpu, num, &result, retu);
2366 
2367 	if (error == 0) {
2368 		eax = result;
2369 		vmxctx = &vcpu->ctx;
2370 		error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RAX, eax);
2371 		KASSERT(error == 0, ("vmxctx_setreg(rax) error %d", error));
2372 
2373 		edx = result >> 32;
2374 		error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RDX, edx);
2375 		KASSERT(error == 0, ("vmxctx_setreg(rdx) error %d", error));
2376 	}
2377 
2378 	return (error);
2379 }
2380 
2381 static int
vmx_exit_process(struct vmx * vmx,struct vmx_vcpu * vcpu,struct vm_exit * vmexit)2382 vmx_exit_process(struct vmx *vmx, struct vmx_vcpu *vcpu, struct vm_exit *vmexit)
2383 {
2384 	int error, errcode, errcode_valid, handled, in;
2385 	struct vmxctx *vmxctx;
2386 	struct vlapic *vlapic;
2387 	struct vm_inout_str *vis;
2388 	struct vm_task_switch *ts;
2389 	uint32_t eax, ecx, edx, idtvec_info, idtvec_err, intr_info, inst_info;
2390 	uint32_t intr_type, intr_vec, reason;
2391 	uint64_t exitintinfo, qual, gpa;
2392 #ifdef KDTRACE_HOOKS
2393 	int vcpuid;
2394 #endif
2395 	bool retu;
2396 
2397 	CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_VIRTUAL_NMI) != 0);
2398 	CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_NMI_EXITING) != 0);
2399 
2400 	handled = UNHANDLED;
2401 	vmxctx = &vcpu->ctx;
2402 #ifdef KDTRACE_HOOKS
2403 	vcpuid = vcpu->vcpuid;
2404 #endif
2405 
2406 	qual = vmexit->u.vmx.exit_qualification;
2407 	reason = vmexit->u.vmx.exit_reason;
2408 	vmexit->exitcode = VM_EXITCODE_BOGUS;
2409 
2410 	vmm_stat_incr(vcpu->vcpu, VMEXIT_COUNT, 1);
2411 	SDT_PROBE3(vmm, vmx, exit, entry, vmx, vcpuid, vmexit);
2412 
2413 	/*
2414 	 * VM-entry failures during or after loading guest state.
2415 	 *
2416 	 * These VM-exits are uncommon but must be handled specially
2417 	 * as most VM-exit fields are not populated as usual.
2418 	 */
2419 	if (__predict_false(reason == EXIT_REASON_MCE_DURING_ENTRY)) {
2420 		VMX_CTR0(vcpu, "Handling MCE during VM-entry");
2421 		__asm __volatile("int $18");
2422 		return (1);
2423 	}
2424 
2425 	/*
2426 	 * VM exits that can be triggered during event delivery need to
2427 	 * be handled specially by re-injecting the event if the IDT
2428 	 * vectoring information field's valid bit is set.
2429 	 *
2430 	 * See "Information for VM Exits During Event Delivery" in Intel SDM
2431 	 * for details.
2432 	 */
2433 	idtvec_info = vmcs_idt_vectoring_info();
2434 	if (idtvec_info & VMCS_IDT_VEC_VALID) {
2435 		idtvec_info &= ~(1 << 12); /* clear undefined bit */
2436 		exitintinfo = idtvec_info;
2437 		if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
2438 			idtvec_err = vmcs_idt_vectoring_err();
2439 			exitintinfo |= (uint64_t)idtvec_err << 32;
2440 		}
2441 		error = vm_exit_intinfo(vcpu->vcpu, exitintinfo);
2442 		KASSERT(error == 0, ("%s: vm_set_intinfo error %d",
2443 		    __func__, error));
2444 
2445 		/*
2446 		 * If 'virtual NMIs' are being used and the VM-exit
2447 		 * happened while injecting an NMI during the previous
2448 		 * VM-entry, then clear "blocking by NMI" in the
2449 		 * Guest Interruptibility-State so the NMI can be
2450 		 * reinjected on the subsequent VM-entry.
2451 		 *
2452 		 * However, if the NMI was being delivered through a task
2453 		 * gate, then the new task must start execution with NMIs
2454 		 * blocked so don't clear NMI blocking in this case.
2455 		 */
2456 		intr_type = idtvec_info & VMCS_INTR_T_MASK;
2457 		if (intr_type == VMCS_INTR_T_NMI) {
2458 			if (reason != EXIT_REASON_TASK_SWITCH)
2459 				vmx_clear_nmi_blocking(vcpu);
2460 			else
2461 				vmx_assert_nmi_blocking(vcpu);
2462 		}
2463 
2464 		/*
2465 		 * Update VM-entry instruction length if the event being
2466 		 * delivered was a software interrupt or software exception.
2467 		 */
2468 		if (intr_type == VMCS_INTR_T_SWINTR ||
2469 		    intr_type == VMCS_INTR_T_PRIV_SWEXCEPTION ||
2470 		    intr_type == VMCS_INTR_T_SWEXCEPTION) {
2471 			vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
2472 		}
2473 	}
2474 
2475 	switch (reason) {
2476 	case EXIT_REASON_TASK_SWITCH:
2477 		ts = &vmexit->u.task_switch;
2478 		ts->tsssel = qual & 0xffff;
2479 		ts->reason = vmx_task_switch_reason(qual);
2480 		ts->ext = 0;
2481 		ts->errcode_valid = 0;
2482 		vmx_paging_info(&ts->paging);
2483 		/*
2484 		 * If the task switch was due to a CALL, JMP, IRET, software
2485 		 * interrupt (INT n) or software exception (INT3, INTO),
2486 		 * then the saved %rip references the instruction that caused
2487 		 * the task switch. The instruction length field in the VMCS
2488 		 * is valid in this case.
2489 		 *
2490 		 * In all other cases (e.g., NMI, hardware exception) the
2491 		 * saved %rip is one that would have been saved in the old TSS
2492 		 * had the task switch completed normally so the instruction
2493 		 * length field is not needed in this case and is explicitly
2494 		 * set to 0.
2495 		 */
2496 		if (ts->reason == TSR_IDT_GATE) {
2497 			KASSERT(idtvec_info & VMCS_IDT_VEC_VALID,
2498 			    ("invalid idtvec_info %#x for IDT task switch",
2499 			    idtvec_info));
2500 			intr_type = idtvec_info & VMCS_INTR_T_MASK;
2501 			if (intr_type != VMCS_INTR_T_SWINTR &&
2502 			    intr_type != VMCS_INTR_T_SWEXCEPTION &&
2503 			    intr_type != VMCS_INTR_T_PRIV_SWEXCEPTION) {
2504 				/* Task switch triggered by external event */
2505 				ts->ext = 1;
2506 				vmexit->inst_length = 0;
2507 				if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
2508 					ts->errcode_valid = 1;
2509 					ts->errcode = vmcs_idt_vectoring_err();
2510 				}
2511 			}
2512 		}
2513 		vmexit->exitcode = VM_EXITCODE_TASK_SWITCH;
2514 		SDT_PROBE4(vmm, vmx, exit, taskswitch, vmx, vcpuid, vmexit, ts);
2515 		VMX_CTR4(vcpu, "task switch reason %d, tss 0x%04x, "
2516 		    "%s errcode 0x%016lx", ts->reason, ts->tsssel,
2517 		    ts->ext ? "external" : "internal",
2518 		    ((uint64_t)ts->errcode << 32) | ts->errcode_valid);
2519 		break;
2520 	case EXIT_REASON_CR_ACCESS:
2521 		vmm_stat_incr(vcpu->vcpu, VMEXIT_CR_ACCESS, 1);
2522 		SDT_PROBE4(vmm, vmx, exit, craccess, vmx, vcpuid, vmexit, qual);
2523 		switch (qual & 0xf) {
2524 		case 0:
2525 			handled = vmx_emulate_cr0_access(vcpu, qual);
2526 			break;
2527 		case 4:
2528 			handled = vmx_emulate_cr4_access(vcpu, qual);
2529 			break;
2530 		case 8:
2531 			handled = vmx_emulate_cr8_access(vmx, vcpu, qual);
2532 			break;
2533 		}
2534 		break;
2535 	case EXIT_REASON_RDMSR:
2536 		vmm_stat_incr(vcpu->vcpu, VMEXIT_RDMSR, 1);
2537 		retu = false;
2538 		ecx = vmxctx->guest_rcx;
2539 		VMX_CTR1(vcpu, "rdmsr 0x%08x", ecx);
2540 		SDT_PROBE4(vmm, vmx, exit, rdmsr, vmx, vcpuid, vmexit, ecx);
2541 		error = emulate_rdmsr(vcpu, ecx, &retu);
2542 		if (error) {
2543 			vmexit->exitcode = VM_EXITCODE_RDMSR;
2544 			vmexit->u.msr.code = ecx;
2545 		} else if (!retu) {
2546 			handled = HANDLED;
2547 		} else {
2548 			/* Return to userspace with a valid exitcode */
2549 			KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
2550 			    ("emulate_rdmsr retu with bogus exitcode"));
2551 		}
2552 		break;
2553 	case EXIT_REASON_WRMSR:
2554 		vmm_stat_incr(vcpu->vcpu, VMEXIT_WRMSR, 1);
2555 		retu = false;
2556 		eax = vmxctx->guest_rax;
2557 		ecx = vmxctx->guest_rcx;
2558 		edx = vmxctx->guest_rdx;
2559 		VMX_CTR2(vcpu, "wrmsr 0x%08x value 0x%016lx",
2560 		    ecx, (uint64_t)edx << 32 | eax);
2561 		SDT_PROBE5(vmm, vmx, exit, wrmsr, vmx, vmexit, vcpuid, ecx,
2562 		    (uint64_t)edx << 32 | eax);
2563 		error = emulate_wrmsr(vcpu, ecx, (uint64_t)edx << 32 | eax,
2564 		    &retu);
2565 		if (error) {
2566 			vmexit->exitcode = VM_EXITCODE_WRMSR;
2567 			vmexit->u.msr.code = ecx;
2568 			vmexit->u.msr.wval = (uint64_t)edx << 32 | eax;
2569 		} else if (!retu) {
2570 			handled = HANDLED;
2571 		} else {
2572 			/* Return to userspace with a valid exitcode */
2573 			KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
2574 			    ("emulate_wrmsr retu with bogus exitcode"));
2575 		}
2576 		break;
2577 	case EXIT_REASON_HLT:
2578 		vmm_stat_incr(vcpu->vcpu, VMEXIT_HLT, 1);
2579 		SDT_PROBE3(vmm, vmx, exit, halt, vmx, vcpuid, vmexit);
2580 		vmexit->exitcode = VM_EXITCODE_HLT;
2581 		vmexit->u.hlt.rflags = vmcs_read(VMCS_GUEST_RFLAGS);
2582 		if (virtual_interrupt_delivery)
2583 			vmexit->u.hlt.intr_status =
2584 			    vmcs_read(VMCS_GUEST_INTR_STATUS);
2585 		else
2586 			vmexit->u.hlt.intr_status = 0;
2587 		break;
2588 	case EXIT_REASON_MTF:
2589 		vmm_stat_incr(vcpu->vcpu, VMEXIT_MTRAP, 1);
2590 		SDT_PROBE3(vmm, vmx, exit, mtrap, vmx, vcpuid, vmexit);
2591 		vmexit->exitcode = VM_EXITCODE_MTRAP;
2592 		vmexit->inst_length = 0;
2593 		break;
2594 	case EXIT_REASON_PAUSE:
2595 		vmm_stat_incr(vcpu->vcpu, VMEXIT_PAUSE, 1);
2596 		SDT_PROBE3(vmm, vmx, exit, pause, vmx, vcpuid, vmexit);
2597 		vmexit->exitcode = VM_EXITCODE_PAUSE;
2598 		break;
2599 	case EXIT_REASON_INTR_WINDOW:
2600 		vmm_stat_incr(vcpu->vcpu, VMEXIT_INTR_WINDOW, 1);
2601 		SDT_PROBE3(vmm, vmx, exit, intrwindow, vmx, vcpuid, vmexit);
2602 		vmx_clear_int_window_exiting(vcpu);
2603 		return (1);
2604 	case EXIT_REASON_EXT_INTR:
2605 		/*
2606 		 * External interrupts serve only to cause VM exits and allow
2607 		 * the host interrupt handler to run.
2608 		 *
2609 		 * If this external interrupt triggers a virtual interrupt
2610 		 * to a VM, then that state will be recorded by the
2611 		 * host interrupt handler in the VM's softc. We will inject
2612 		 * this virtual interrupt during the subsequent VM enter.
2613 		 */
2614 		intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2615 		SDT_PROBE4(vmm, vmx, exit, interrupt,
2616 		    vmx, vcpuid, vmexit, intr_info);
2617 
2618 		/*
2619 		 * XXX: Ignore this exit if VMCS_INTR_VALID is not set.
2620 		 * This appears to be a bug in VMware Fusion?
2621 		 */
2622 		if (!(intr_info & VMCS_INTR_VALID))
2623 			return (1);
2624 		KASSERT((intr_info & VMCS_INTR_VALID) != 0 &&
2625 		    (intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_HWINTR,
2626 		    ("VM exit interruption info invalid: %#x", intr_info));
2627 		vmx_trigger_hostintr(intr_info & 0xff);
2628 
2629 		/*
2630 		 * This is special. We want to treat this as an 'handled'
2631 		 * VM-exit but not increment the instruction pointer.
2632 		 */
2633 		vmm_stat_incr(vcpu->vcpu, VMEXIT_EXTINT, 1);
2634 		return (1);
2635 	case EXIT_REASON_NMI_WINDOW:
2636 		SDT_PROBE3(vmm, vmx, exit, nmiwindow, vmx, vcpuid, vmexit);
2637 		/* Exit to allow the pending virtual NMI to be injected */
2638 		if (vm_nmi_pending(vcpu->vcpu))
2639 			vmx_inject_nmi(vcpu);
2640 		vmx_clear_nmi_window_exiting(vcpu);
2641 		vmm_stat_incr(vcpu->vcpu, VMEXIT_NMI_WINDOW, 1);
2642 		return (1);
2643 	case EXIT_REASON_INOUT:
2644 		vmm_stat_incr(vcpu->vcpu, VMEXIT_INOUT, 1);
2645 		vmexit->exitcode = VM_EXITCODE_INOUT;
2646 		vmexit->u.inout.bytes = (qual & 0x7) + 1;
2647 		vmexit->u.inout.in = in = (qual & 0x8) ? 1 : 0;
2648 		vmexit->u.inout.string = (qual & 0x10) ? 1 : 0;
2649 		vmexit->u.inout.rep = (qual & 0x20) ? 1 : 0;
2650 		vmexit->u.inout.port = (uint16_t)(qual >> 16);
2651 		vmexit->u.inout.eax = (uint32_t)(vmxctx->guest_rax);
2652 		if (vmexit->u.inout.string) {
2653 			inst_info = vmcs_read(VMCS_EXIT_INSTRUCTION_INFO);
2654 			vmexit->exitcode = VM_EXITCODE_INOUT_STR;
2655 			vis = &vmexit->u.inout_str;
2656 			vmx_paging_info(&vis->paging);
2657 			vis->rflags = vmcs_read(VMCS_GUEST_RFLAGS);
2658 			vis->cr0 = vmcs_read(VMCS_GUEST_CR0);
2659 			vis->index = inout_str_index(vcpu, in);
2660 			vis->count = inout_str_count(vcpu, vis->inout.rep);
2661 			vis->addrsize = inout_str_addrsize(inst_info);
2662 			inout_str_seginfo(vcpu, inst_info, in, vis);
2663 		}
2664 		SDT_PROBE3(vmm, vmx, exit, inout, vmx, vcpuid, vmexit);
2665 		break;
2666 	case EXIT_REASON_CPUID:
2667 		vmm_stat_incr(vcpu->vcpu, VMEXIT_CPUID, 1);
2668 		SDT_PROBE3(vmm, vmx, exit, cpuid, vmx, vcpuid, vmexit);
2669 		handled = vmx_handle_cpuid(vcpu, vmxctx);
2670 		break;
2671 	case EXIT_REASON_EXCEPTION:
2672 		vmm_stat_incr(vcpu->vcpu, VMEXIT_EXCEPTION, 1);
2673 		intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2674 		KASSERT((intr_info & VMCS_INTR_VALID) != 0,
2675 		    ("VM exit interruption info invalid: %#x", intr_info));
2676 
2677 		intr_vec = intr_info & 0xff;
2678 		intr_type = intr_info & VMCS_INTR_T_MASK;
2679 
2680 		/*
2681 		 * If Virtual NMIs control is 1 and the VM-exit is due to a
2682 		 * fault encountered during the execution of IRET then we must
2683 		 * restore the state of "virtual-NMI blocking" before resuming
2684 		 * the guest.
2685 		 *
2686 		 * See "Resuming Guest Software after Handling an Exception".
2687 		 * See "Information for VM Exits Due to Vectored Events".
2688 		 */
2689 		if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
2690 		    (intr_vec != IDT_DF) &&
2691 		    (intr_info & EXIT_QUAL_NMIUDTI) != 0)
2692 			vmx_restore_nmi_blocking(vcpu);
2693 
2694 		/*
2695 		 * The NMI has already been handled in vmx_exit_handle_nmi().
2696 		 */
2697 		if (intr_type == VMCS_INTR_T_NMI)
2698 			return (1);
2699 
2700 		/*
2701 		 * Call the machine check handler by hand. Also don't reflect
2702 		 * the machine check back into the guest.
2703 		 */
2704 		if (intr_vec == IDT_MC) {
2705 			VMX_CTR0(vcpu, "Vectoring to MCE handler");
2706 			__asm __volatile("int $18");
2707 			return (1);
2708 		}
2709 
2710 		/*
2711 		 * If the hypervisor has requested user exits for
2712 		 * debug exceptions, bounce them out to userland.
2713 		 */
2714 		if (intr_type == VMCS_INTR_T_SWEXCEPTION && intr_vec == IDT_BP &&
2715 		    (vcpu->cap.set & (1 << VM_CAP_BPT_EXIT))) {
2716 			vmexit->exitcode = VM_EXITCODE_BPT;
2717 			vmexit->u.bpt.inst_length = vmexit->inst_length;
2718 			vmexit->inst_length = 0;
2719 			break;
2720 		}
2721 
2722 		if (intr_vec == IDT_PF) {
2723 			error = vmxctx_setreg(vmxctx, VM_REG_GUEST_CR2, qual);
2724 			KASSERT(error == 0, ("%s: vmxctx_setreg(cr2) error %d",
2725 			    __func__, error));
2726 		}
2727 
2728 		/*
2729 		 * Software exceptions exhibit trap-like behavior. This in
2730 		 * turn requires populating the VM-entry instruction length
2731 		 * so that the %rip in the trap frame is past the INT3/INTO
2732 		 * instruction.
2733 		 */
2734 		if (intr_type == VMCS_INTR_T_SWEXCEPTION)
2735 			vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
2736 
2737 		/* Reflect all other exceptions back into the guest */
2738 		errcode_valid = errcode = 0;
2739 		if (intr_info & VMCS_INTR_DEL_ERRCODE) {
2740 			errcode_valid = 1;
2741 			errcode = vmcs_read(VMCS_EXIT_INTR_ERRCODE);
2742 		}
2743 		VMX_CTR2(vcpu, "Reflecting exception %d/%#x into "
2744 		    "the guest", intr_vec, errcode);
2745 		SDT_PROBE5(vmm, vmx, exit, exception,
2746 		    vmx, vcpuid, vmexit, intr_vec, errcode);
2747 		error = vm_inject_exception(vcpu->vcpu, intr_vec,
2748 		    errcode_valid, errcode, 0);
2749 		KASSERT(error == 0, ("%s: vm_inject_exception error %d",
2750 		    __func__, error));
2751 		return (1);
2752 
2753 	case EXIT_REASON_EPT_FAULT:
2754 		/*
2755 		 * If 'gpa' lies within the address space allocated to
2756 		 * memory then this must be a nested page fault otherwise
2757 		 * this must be an instruction that accesses MMIO space.
2758 		 */
2759 		gpa = vmcs_gpa();
2760 		if (vm_mem_allocated(vcpu->vcpu, gpa) ||
2761 		    ppt_is_mmio(vmx->vm, gpa) || apic_access_fault(vcpu, gpa)) {
2762 			vmexit->exitcode = VM_EXITCODE_PAGING;
2763 			vmexit->inst_length = 0;
2764 			vmexit->u.paging.gpa = gpa;
2765 			vmexit->u.paging.fault_type = ept_fault_type(qual);
2766 			vmm_stat_incr(vcpu->vcpu, VMEXIT_NESTED_FAULT, 1);
2767 			SDT_PROBE5(vmm, vmx, exit, nestedfault,
2768 			    vmx, vcpuid, vmexit, gpa, qual);
2769 		} else if (ept_emulation_fault(qual)) {
2770 			vmexit_inst_emul(vmexit, gpa, vmcs_gla());
2771 			vmm_stat_incr(vcpu->vcpu, VMEXIT_INST_EMUL, 1);
2772 			SDT_PROBE4(vmm, vmx, exit, mmiofault,
2773 			    vmx, vcpuid, vmexit, gpa);
2774 		}
2775 		/*
2776 		 * If Virtual NMIs control is 1 and the VM-exit is due to an
2777 		 * EPT fault during the execution of IRET then we must restore
2778 		 * the state of "virtual-NMI blocking" before resuming.
2779 		 *
2780 		 * See description of "NMI unblocking due to IRET" in
2781 		 * "Exit Qualification for EPT Violations".
2782 		 */
2783 		if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
2784 		    (qual & EXIT_QUAL_NMIUDTI) != 0)
2785 			vmx_restore_nmi_blocking(vcpu);
2786 		break;
2787 	case EXIT_REASON_VIRTUALIZED_EOI:
2788 		vmexit->exitcode = VM_EXITCODE_IOAPIC_EOI;
2789 		vmexit->u.ioapic_eoi.vector = qual & 0xFF;
2790 		SDT_PROBE3(vmm, vmx, exit, eoi, vmx, vcpuid, vmexit);
2791 		vmexit->inst_length = 0;	/* trap-like */
2792 		break;
2793 	case EXIT_REASON_APIC_ACCESS:
2794 		SDT_PROBE3(vmm, vmx, exit, apicaccess, vmx, vcpuid, vmexit);
2795 		handled = vmx_handle_apic_access(vcpu, vmexit);
2796 		break;
2797 	case EXIT_REASON_APIC_WRITE:
2798 		/*
2799 		 * APIC-write VM exit is trap-like so the %rip is already
2800 		 * pointing to the next instruction.
2801 		 */
2802 		vmexit->inst_length = 0;
2803 		vlapic = vm_lapic(vcpu->vcpu);
2804 		SDT_PROBE4(vmm, vmx, exit, apicwrite,
2805 		    vmx, vcpuid, vmexit, vlapic);
2806 		handled = vmx_handle_apic_write(vcpu, vlapic, qual);
2807 		break;
2808 	case EXIT_REASON_XSETBV:
2809 		SDT_PROBE3(vmm, vmx, exit, xsetbv, vmx, vcpuid, vmexit);
2810 		handled = vmx_emulate_xsetbv(vmx, vcpu, vmexit);
2811 		break;
2812 	case EXIT_REASON_MONITOR:
2813 		SDT_PROBE3(vmm, vmx, exit, monitor, vmx, vcpuid, vmexit);
2814 		vmexit->exitcode = VM_EXITCODE_MONITOR;
2815 		break;
2816 	case EXIT_REASON_MWAIT:
2817 		SDT_PROBE3(vmm, vmx, exit, mwait, vmx, vcpuid, vmexit);
2818 		vmexit->exitcode = VM_EXITCODE_MWAIT;
2819 		break;
2820 	case EXIT_REASON_TPR:
2821 		vlapic = vm_lapic(vcpu->vcpu);
2822 		vlapic_sync_tpr(vlapic);
2823 		vmexit->inst_length = 0;
2824 		handled = HANDLED;
2825 		break;
2826 	case EXIT_REASON_VMCALL:
2827 	case EXIT_REASON_VMCLEAR:
2828 	case EXIT_REASON_VMLAUNCH:
2829 	case EXIT_REASON_VMPTRLD:
2830 	case EXIT_REASON_VMPTRST:
2831 	case EXIT_REASON_VMREAD:
2832 	case EXIT_REASON_VMRESUME:
2833 	case EXIT_REASON_VMWRITE:
2834 	case EXIT_REASON_VMXOFF:
2835 	case EXIT_REASON_VMXON:
2836 		SDT_PROBE3(vmm, vmx, exit, vminsn, vmx, vcpuid, vmexit);
2837 		vmexit->exitcode = VM_EXITCODE_VMINSN;
2838 		break;
2839 	case EXIT_REASON_INVD:
2840 	case EXIT_REASON_WBINVD:
2841 		/* ignore exit */
2842 		handled = HANDLED;
2843 		break;
2844 	default:
2845 		SDT_PROBE4(vmm, vmx, exit, unknown,
2846 		    vmx, vcpuid, vmexit, reason);
2847 		vmm_stat_incr(vcpu->vcpu, VMEXIT_UNKNOWN, 1);
2848 		break;
2849 	}
2850 
2851 	if (handled) {
2852 		/*
2853 		 * It is possible that control is returned to userland
2854 		 * even though we were able to handle the VM exit in the
2855 		 * kernel.
2856 		 *
2857 		 * In such a case we want to make sure that the userland
2858 		 * restarts guest execution at the instruction *after*
2859 		 * the one we just processed. Therefore we update the
2860 		 * guest rip in the VMCS and in 'vmexit'.
2861 		 */
2862 		vmexit->rip += vmexit->inst_length;
2863 		vmexit->inst_length = 0;
2864 		vmcs_write(VMCS_GUEST_RIP, vmexit->rip);
2865 	} else {
2866 		if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
2867 			/*
2868 			 * If this VM exit was not claimed by anybody then
2869 			 * treat it as a generic VMX exit.
2870 			 */
2871 			vmexit->exitcode = VM_EXITCODE_VMX;
2872 			vmexit->u.vmx.status = VM_SUCCESS;
2873 			vmexit->u.vmx.inst_type = 0;
2874 			vmexit->u.vmx.inst_error = 0;
2875 		} else {
2876 			/*
2877 			 * The exitcode and collateral have been populated.
2878 			 * The VM exit will be processed further in userland.
2879 			 */
2880 		}
2881 	}
2882 
2883 	SDT_PROBE4(vmm, vmx, exit, return,
2884 	    vmx, vcpuid, vmexit, handled);
2885 	return (handled);
2886 }
2887 
2888 static __inline void
vmx_exit_inst_error(struct vmxctx * vmxctx,int rc,struct vm_exit * vmexit)2889 vmx_exit_inst_error(struct vmxctx *vmxctx, int rc, struct vm_exit *vmexit)
2890 {
2891 
2892 	KASSERT(vmxctx->inst_fail_status != VM_SUCCESS,
2893 	    ("vmx_exit_inst_error: invalid inst_fail_status %d",
2894 	    vmxctx->inst_fail_status));
2895 
2896 	vmexit->inst_length = 0;
2897 	vmexit->exitcode = VM_EXITCODE_VMX;
2898 	vmexit->u.vmx.status = vmxctx->inst_fail_status;
2899 	vmexit->u.vmx.inst_error = vmcs_instruction_error();
2900 	vmexit->u.vmx.exit_reason = ~0;
2901 	vmexit->u.vmx.exit_qualification = ~0;
2902 
2903 	switch (rc) {
2904 	case VMX_VMRESUME_ERROR:
2905 	case VMX_VMLAUNCH_ERROR:
2906 		vmexit->u.vmx.inst_type = rc;
2907 		break;
2908 	default:
2909 		panic("vm_exit_inst_error: vmx_enter_guest returned %d", rc);
2910 	}
2911 }
2912 
2913 /*
2914  * If the NMI-exiting VM execution control is set to '1' then an NMI in
2915  * non-root operation causes a VM-exit. NMI blocking is in effect so it is
2916  * sufficient to simply vector to the NMI handler via a software interrupt.
2917  * However, this must be done before maskable interrupts are enabled
2918  * otherwise the "iret" issued by an interrupt handler will incorrectly
2919  * clear NMI blocking.
2920  */
2921 static __inline void
vmx_exit_handle_nmi(struct vmx_vcpu * vcpu,struct vm_exit * vmexit)2922 vmx_exit_handle_nmi(struct vmx_vcpu *vcpu, struct vm_exit *vmexit)
2923 {
2924 	uint32_t intr_info;
2925 
2926 	KASSERT((read_rflags() & PSL_I) == 0, ("interrupts enabled"));
2927 
2928 	if (vmexit->u.vmx.exit_reason != EXIT_REASON_EXCEPTION)
2929 		return;
2930 
2931 	intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2932 	KASSERT((intr_info & VMCS_INTR_VALID) != 0,
2933 	    ("VM exit interruption info invalid: %#x", intr_info));
2934 
2935 	if ((intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_NMI) {
2936 		KASSERT((intr_info & 0xff) == IDT_NMI, ("VM exit due "
2937 		    "to NMI has invalid vector: %#x", intr_info));
2938 		VMX_CTR0(vcpu, "Vectoring to NMI handler");
2939 		__asm __volatile("int $2");
2940 	}
2941 }
2942 
2943 static __inline void
vmx_dr_enter_guest(struct vmxctx * vmxctx)2944 vmx_dr_enter_guest(struct vmxctx *vmxctx)
2945 {
2946 	register_t rflags;
2947 
2948 	/* Save host control debug registers. */
2949 	vmxctx->host_dr7 = rdr7();
2950 	vmxctx->host_debugctl = rdmsr(MSR_DEBUGCTLMSR);
2951 
2952 	/*
2953 	 * Disable debugging in DR7 and DEBUGCTL to avoid triggering
2954 	 * exceptions in the host based on the guest DRx values.  The
2955 	 * guest DR7 and DEBUGCTL are saved/restored in the VMCS.
2956 	 */
2957 	load_dr7(0);
2958 	wrmsr(MSR_DEBUGCTLMSR, 0);
2959 
2960 	/*
2961 	 * Disable single stepping the kernel to avoid corrupting the
2962 	 * guest DR6.  A debugger might still be able to corrupt the
2963 	 * guest DR6 by setting a breakpoint after this point and then
2964 	 * single stepping.
2965 	 */
2966 	rflags = read_rflags();
2967 	vmxctx->host_tf = rflags & PSL_T;
2968 	write_rflags(rflags & ~PSL_T);
2969 
2970 	/* Save host debug registers. */
2971 	vmxctx->host_dr0 = rdr0();
2972 	vmxctx->host_dr1 = rdr1();
2973 	vmxctx->host_dr2 = rdr2();
2974 	vmxctx->host_dr3 = rdr3();
2975 	vmxctx->host_dr6 = rdr6();
2976 
2977 	/* Restore guest debug registers. */
2978 	load_dr0(vmxctx->guest_dr0);
2979 	load_dr1(vmxctx->guest_dr1);
2980 	load_dr2(vmxctx->guest_dr2);
2981 	load_dr3(vmxctx->guest_dr3);
2982 	load_dr6(vmxctx->guest_dr6);
2983 }
2984 
2985 static __inline void
vmx_dr_leave_guest(struct vmxctx * vmxctx)2986 vmx_dr_leave_guest(struct vmxctx *vmxctx)
2987 {
2988 
2989 	/* Save guest debug registers. */
2990 	vmxctx->guest_dr0 = rdr0();
2991 	vmxctx->guest_dr1 = rdr1();
2992 	vmxctx->guest_dr2 = rdr2();
2993 	vmxctx->guest_dr3 = rdr3();
2994 	vmxctx->guest_dr6 = rdr6();
2995 
2996 	/*
2997 	 * Restore host debug registers.  Restore DR7, DEBUGCTL, and
2998 	 * PSL_T last.
2999 	 */
3000 	load_dr0(vmxctx->host_dr0);
3001 	load_dr1(vmxctx->host_dr1);
3002 	load_dr2(vmxctx->host_dr2);
3003 	load_dr3(vmxctx->host_dr3);
3004 	load_dr6(vmxctx->host_dr6);
3005 	wrmsr(MSR_DEBUGCTLMSR, vmxctx->host_debugctl);
3006 	load_dr7(vmxctx->host_dr7);
3007 	write_rflags(read_rflags() | vmxctx->host_tf);
3008 }
3009 
3010 static __inline void
vmx_pmap_activate(struct vmx * vmx,pmap_t pmap)3011 vmx_pmap_activate(struct vmx *vmx, pmap_t pmap)
3012 {
3013 	long eptgen;
3014 	int cpu;
3015 
3016 	cpu = curcpu;
3017 
3018 	CPU_SET_ATOMIC(cpu, &pmap->pm_active);
3019 	smr_enter(pmap->pm_eptsmr);
3020 	eptgen = atomic_load_long(&pmap->pm_eptgen);
3021 	if (eptgen != vmx->eptgen[cpu]) {
3022 		vmx->eptgen[cpu] = eptgen;
3023 		invept(INVEPT_TYPE_SINGLE_CONTEXT,
3024 		    (struct invept_desc){ .eptp = vmx->eptp, ._res = 0 });
3025 	}
3026 }
3027 
3028 static __inline void
vmx_pmap_deactivate(struct vmx * vmx,pmap_t pmap)3029 vmx_pmap_deactivate(struct vmx *vmx, pmap_t pmap)
3030 {
3031 	smr_exit(pmap->pm_eptsmr);
3032 	CPU_CLR_ATOMIC(curcpu, &pmap->pm_active);
3033 }
3034 
3035 static int
vmx_run(void * vcpui,register_t rip,pmap_t pmap,struct vm_eventinfo * evinfo)3036 vmx_run(void *vcpui, register_t rip, pmap_t pmap, struct vm_eventinfo *evinfo)
3037 {
3038 	int rc, handled, launched;
3039 	struct vmx *vmx;
3040 	struct vmx_vcpu *vcpu;
3041 	struct vmxctx *vmxctx;
3042 	struct vmcs *vmcs;
3043 	struct vm_exit *vmexit;
3044 	struct vlapic *vlapic;
3045 	uint32_t exit_reason;
3046 	struct region_descriptor gdtr, idtr;
3047 	uint16_t ldt_sel;
3048 
3049 	vcpu = vcpui;
3050 	vmx = vcpu->vmx;
3051 	vmcs = vcpu->vmcs;
3052 	vmxctx = &vcpu->ctx;
3053 	vlapic = vm_lapic(vcpu->vcpu);
3054 	vmexit = vm_exitinfo(vcpu->vcpu);
3055 	launched = 0;
3056 
3057 	KASSERT(vmxctx->pmap == pmap,
3058 	    ("pmap %p different than ctx pmap %p", pmap, vmxctx->pmap));
3059 
3060 	vmx_msr_guest_enter(vcpu);
3061 
3062 	VMPTRLD(vmcs);
3063 
3064 	/*
3065 	 * XXX
3066 	 * We do this every time because we may setup the virtual machine
3067 	 * from a different process than the one that actually runs it.
3068 	 *
3069 	 * If the life of a virtual machine was spent entirely in the context
3070 	 * of a single process we could do this once in vmx_init().
3071 	 */
3072 	vmcs_write(VMCS_HOST_CR3, rcr3());
3073 
3074 	vmcs_write(VMCS_GUEST_RIP, rip);
3075 	vmx_set_pcpu_defaults(vmx, vcpu, pmap);
3076 	do {
3077 		KASSERT(vmcs_guest_rip() == rip, ("%s: vmcs guest rip mismatch "
3078 		    "%#lx/%#lx", __func__, vmcs_guest_rip(), rip));
3079 
3080 		handled = UNHANDLED;
3081 		/*
3082 		 * Interrupts are disabled from this point on until the
3083 		 * guest starts executing. This is done for the following
3084 		 * reasons:
3085 		 *
3086 		 * If an AST is asserted on this thread after the check below,
3087 		 * then the IPI_AST notification will not be lost, because it
3088 		 * will cause a VM exit due to external interrupt as soon as
3089 		 * the guest state is loaded.
3090 		 *
3091 		 * A posted interrupt after 'vmx_inject_interrupts()' will
3092 		 * not be "lost" because it will be held pending in the host
3093 		 * APIC because interrupts are disabled. The pending interrupt
3094 		 * will be recognized as soon as the guest state is loaded.
3095 		 *
3096 		 * The same reasoning applies to the IPI generated by
3097 		 * pmap_invalidate_ept().
3098 		 */
3099 		disable_intr();
3100 		vmx_inject_interrupts(vcpu, vlapic, rip);
3101 
3102 		/*
3103 		 * Check for vcpu suspension after injecting events because
3104 		 * vmx_inject_interrupts() can suspend the vcpu due to a
3105 		 * triple fault.
3106 		 */
3107 		if (vcpu_suspended(evinfo)) {
3108 			enable_intr();
3109 			vm_exit_suspended(vcpu->vcpu, rip);
3110 			break;
3111 		}
3112 
3113 		if (vcpu_rendezvous_pending(vcpu->vcpu, evinfo)) {
3114 			enable_intr();
3115 			vm_exit_rendezvous(vcpu->vcpu, rip);
3116 			break;
3117 		}
3118 
3119 		if (vcpu_reqidle(evinfo)) {
3120 			enable_intr();
3121 			vm_exit_reqidle(vcpu->vcpu, rip);
3122 			break;
3123 		}
3124 
3125 		if (vcpu_should_yield(vcpu->vcpu)) {
3126 			enable_intr();
3127 			vm_exit_astpending(vcpu->vcpu, rip);
3128 			vmx_astpending_trace(vcpu, rip);
3129 			handled = HANDLED;
3130 			break;
3131 		}
3132 
3133 		if (vcpu_debugged(vcpu->vcpu)) {
3134 			enable_intr();
3135 			vm_exit_debug(vcpu->vcpu, rip);
3136 			break;
3137 		}
3138 
3139 		/*
3140 		 * If TPR Shadowing is enabled, the TPR Threshold
3141 		 * must be updated right before entering the guest.
3142 		 */
3143 		if (tpr_shadowing && !virtual_interrupt_delivery) {
3144 			if ((vcpu->cap.proc_ctls & PROCBASED_USE_TPR_SHADOW) != 0) {
3145 				vmcs_write(VMCS_TPR_THRESHOLD, vlapic_get_cr8(vlapic));
3146 			}
3147 		}
3148 
3149 		/*
3150 		 * VM exits restore the base address but not the
3151 		 * limits of GDTR and IDTR.  The VMCS only stores the
3152 		 * base address, so VM exits set the limits to 0xffff.
3153 		 * Save and restore the full GDTR and IDTR to restore
3154 		 * the limits.
3155 		 *
3156 		 * The VMCS does not save the LDTR at all, and VM
3157 		 * exits clear LDTR as if a NULL selector were loaded.
3158 		 * The userspace hypervisor probably doesn't use a
3159 		 * LDT, but save and restore it to be safe.
3160 		 */
3161 		sgdt(&gdtr);
3162 		sidt(&idtr);
3163 		ldt_sel = sldt();
3164 
3165 		/*
3166 		 * The TSC_AUX MSR must be saved/restored while interrupts
3167 		 * are disabled so that it is not possible for the guest
3168 		 * TSC_AUX MSR value to be overwritten by the resume
3169 		 * portion of the IPI_SUSPEND codepath. This is why the
3170 		 * transition of this MSR is handled separately from those
3171 		 * handled by vmx_msr_guest_{enter,exit}(), which are ok to
3172 		 * be transitioned with preemption disabled but interrupts
3173 		 * enabled.
3174 		 *
3175 		 * These vmx_msr_guest_{enter,exit}_tsc_aux() calls can be
3176 		 * anywhere in this loop so long as they happen with
3177 		 * interrupts disabled. This location is chosen for
3178 		 * simplicity.
3179 		 */
3180 		vmx_msr_guest_enter_tsc_aux(vmx, vcpu);
3181 
3182 		vmx_dr_enter_guest(vmxctx);
3183 
3184 		/*
3185 		 * Mark the EPT as active on this host CPU and invalidate
3186 		 * EPTP-tagged TLB entries if required.
3187 		 */
3188 		vmx_pmap_activate(vmx, pmap);
3189 
3190 		vmx_run_trace(vcpu);
3191 		rc = vmx_enter_guest(vmxctx, vmx, launched);
3192 
3193 		vmx_pmap_deactivate(vmx, pmap);
3194 		vmx_dr_leave_guest(vmxctx);
3195 		vmx_msr_guest_exit_tsc_aux(vmx, vcpu);
3196 
3197 		bare_lgdt(&gdtr);
3198 		lidt(&idtr);
3199 		lldt(ldt_sel);
3200 
3201 		/* Collect some information for VM exit processing */
3202 		vmexit->rip = rip = vmcs_guest_rip();
3203 		vmexit->inst_length = vmexit_instruction_length();
3204 		vmexit->u.vmx.exit_reason = exit_reason = vmcs_exit_reason();
3205 		vmexit->u.vmx.exit_qualification = vmcs_exit_qualification();
3206 
3207 		/* Update 'nextrip' */
3208 		vcpu->state.nextrip = rip;
3209 
3210 		if (rc == VMX_GUEST_VMEXIT) {
3211 			vmx_exit_handle_nmi(vcpu, vmexit);
3212 			enable_intr();
3213 			handled = vmx_exit_process(vmx, vcpu, vmexit);
3214 		} else {
3215 			enable_intr();
3216 			vmx_exit_inst_error(vmxctx, rc, vmexit);
3217 		}
3218 		launched = 1;
3219 		vmx_exit_trace(vcpu, rip, exit_reason, handled);
3220 		rip = vmexit->rip;
3221 	} while (handled);
3222 
3223 	/*
3224 	 * If a VM exit has been handled then the exitcode must be BOGUS
3225 	 * If a VM exit is not handled then the exitcode must not be BOGUS
3226 	 */
3227 	if ((handled && vmexit->exitcode != VM_EXITCODE_BOGUS) ||
3228 	    (!handled && vmexit->exitcode == VM_EXITCODE_BOGUS)) {
3229 		panic("Mismatch between handled (%d) and exitcode (%d)",
3230 		      handled, vmexit->exitcode);
3231 	}
3232 
3233 	VMX_CTR1(vcpu, "returning from vmx_run: exitcode %d",
3234 	    vmexit->exitcode);
3235 
3236 	VMCLEAR(vmcs);
3237 	vmx_msr_guest_exit(vcpu);
3238 
3239 	return (0);
3240 }
3241 
3242 static void
vmx_vcpu_cleanup(void * vcpui)3243 vmx_vcpu_cleanup(void *vcpui)
3244 {
3245 	struct vmx_vcpu *vcpu = vcpui;
3246 
3247 	vpid_free(vcpu->state.vpid);
3248 	free(vcpu->pir_desc, M_VMX);
3249 	free(vcpu->apic_page, M_VMX);
3250 	free(vcpu->vmcs, M_VMX);
3251 	free(vcpu, M_VMX);
3252 }
3253 
3254 static void
vmx_cleanup(void * vmi)3255 vmx_cleanup(void *vmi)
3256 {
3257 	struct vmx *vmx = vmi;
3258 
3259 	if (virtual_interrupt_delivery)
3260 		vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
3261 
3262 	free(vmx->msr_bitmap, M_VMX);
3263 	free(vmx, M_VMX);
3264 
3265 	return;
3266 }
3267 
3268 static register_t *
vmxctx_regptr(struct vmxctx * vmxctx,int reg)3269 vmxctx_regptr(struct vmxctx *vmxctx, int reg)
3270 {
3271 
3272 	switch (reg) {
3273 	case VM_REG_GUEST_RAX:
3274 		return (&vmxctx->guest_rax);
3275 	case VM_REG_GUEST_RBX:
3276 		return (&vmxctx->guest_rbx);
3277 	case VM_REG_GUEST_RCX:
3278 		return (&vmxctx->guest_rcx);
3279 	case VM_REG_GUEST_RDX:
3280 		return (&vmxctx->guest_rdx);
3281 	case VM_REG_GUEST_RSI:
3282 		return (&vmxctx->guest_rsi);
3283 	case VM_REG_GUEST_RDI:
3284 		return (&vmxctx->guest_rdi);
3285 	case VM_REG_GUEST_RBP:
3286 		return (&vmxctx->guest_rbp);
3287 	case VM_REG_GUEST_R8:
3288 		return (&vmxctx->guest_r8);
3289 	case VM_REG_GUEST_R9:
3290 		return (&vmxctx->guest_r9);
3291 	case VM_REG_GUEST_R10:
3292 		return (&vmxctx->guest_r10);
3293 	case VM_REG_GUEST_R11:
3294 		return (&vmxctx->guest_r11);
3295 	case VM_REG_GUEST_R12:
3296 		return (&vmxctx->guest_r12);
3297 	case VM_REG_GUEST_R13:
3298 		return (&vmxctx->guest_r13);
3299 	case VM_REG_GUEST_R14:
3300 		return (&vmxctx->guest_r14);
3301 	case VM_REG_GUEST_R15:
3302 		return (&vmxctx->guest_r15);
3303 	case VM_REG_GUEST_CR2:
3304 		return (&vmxctx->guest_cr2);
3305 	case VM_REG_GUEST_DR0:
3306 		return (&vmxctx->guest_dr0);
3307 	case VM_REG_GUEST_DR1:
3308 		return (&vmxctx->guest_dr1);
3309 	case VM_REG_GUEST_DR2:
3310 		return (&vmxctx->guest_dr2);
3311 	case VM_REG_GUEST_DR3:
3312 		return (&vmxctx->guest_dr3);
3313 	case VM_REG_GUEST_DR6:
3314 		return (&vmxctx->guest_dr6);
3315 	default:
3316 		break;
3317 	}
3318 	return (NULL);
3319 }
3320 
3321 static int
vmxctx_getreg(struct vmxctx * vmxctx,int reg,uint64_t * retval)3322 vmxctx_getreg(struct vmxctx *vmxctx, int reg, uint64_t *retval)
3323 {
3324 	register_t *regp;
3325 
3326 	if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
3327 		*retval = *regp;
3328 		return (0);
3329 	} else
3330 		return (EINVAL);
3331 }
3332 
3333 static int
vmxctx_setreg(struct vmxctx * vmxctx,int reg,uint64_t val)3334 vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val)
3335 {
3336 	register_t *regp;
3337 
3338 	if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
3339 		*regp = val;
3340 		return (0);
3341 	} else
3342 		return (EINVAL);
3343 }
3344 
3345 static int
vmx_get_intr_shadow(struct vmx_vcpu * vcpu,int running,uint64_t * retval)3346 vmx_get_intr_shadow(struct vmx_vcpu *vcpu, int running, uint64_t *retval)
3347 {
3348 	uint64_t gi;
3349 	int error;
3350 
3351 	error = vmcs_getreg(vcpu->vmcs, running,
3352 	    VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY), &gi);
3353 	*retval = (gi & HWINTR_BLOCKING) ? 1 : 0;
3354 	return (error);
3355 }
3356 
3357 static int
vmx_modify_intr_shadow(struct vmx_vcpu * vcpu,int running,uint64_t val)3358 vmx_modify_intr_shadow(struct vmx_vcpu *vcpu, int running, uint64_t val)
3359 {
3360 	struct vmcs *vmcs;
3361 	uint64_t gi;
3362 	int error, ident;
3363 
3364 	/*
3365 	 * Forcing the vcpu into an interrupt shadow is not supported.
3366 	 */
3367 	if (val) {
3368 		error = EINVAL;
3369 		goto done;
3370 	}
3371 
3372 	vmcs = vcpu->vmcs;
3373 	ident = VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY);
3374 	error = vmcs_getreg(vmcs, running, ident, &gi);
3375 	if (error == 0) {
3376 		gi &= ~HWINTR_BLOCKING;
3377 		error = vmcs_setreg(vmcs, running, ident, gi);
3378 	}
3379 done:
3380 	VMX_CTR2(vcpu, "Setting intr_shadow to %#lx %s", val,
3381 	    error ? "failed" : "succeeded");
3382 	return (error);
3383 }
3384 
3385 static int
vmx_shadow_reg(int reg)3386 vmx_shadow_reg(int reg)
3387 {
3388 	int shreg;
3389 
3390 	shreg = -1;
3391 
3392 	switch (reg) {
3393 	case VM_REG_GUEST_CR0:
3394 		shreg = VMCS_CR0_SHADOW;
3395 		break;
3396 	case VM_REG_GUEST_CR4:
3397 		shreg = VMCS_CR4_SHADOW;
3398 		break;
3399 	default:
3400 		break;
3401 	}
3402 
3403 	return (shreg);
3404 }
3405 
3406 static int
vmx_getreg(void * vcpui,int reg,uint64_t * retval)3407 vmx_getreg(void *vcpui, int reg, uint64_t *retval)
3408 {
3409 	int running, hostcpu;
3410 	struct vmx_vcpu *vcpu = vcpui;
3411 	struct vmx *vmx = vcpu->vmx;
3412 
3413 	running = vcpu_is_running(vcpu->vcpu, &hostcpu);
3414 	if (running && hostcpu != curcpu)
3415 		panic("vmx_getreg: %s%d is running", vm_name(vmx->vm),
3416 		    vcpu->vcpuid);
3417 
3418 	switch (reg) {
3419 	case VM_REG_GUEST_INTR_SHADOW:
3420 		return (vmx_get_intr_shadow(vcpu, running, retval));
3421 	case VM_REG_GUEST_KGS_BASE:
3422 		*retval = vcpu->guest_msrs[IDX_MSR_KGSBASE];
3423 		return (0);
3424 	case VM_REG_GUEST_TPR:
3425 		*retval = vlapic_get_cr8(vm_lapic(vcpu->vcpu));
3426 		return (0);
3427 	}
3428 
3429 	if (vmxctx_getreg(&vcpu->ctx, reg, retval) == 0)
3430 		return (0);
3431 
3432 	return (vmcs_getreg(vcpu->vmcs, running, reg, retval));
3433 }
3434 
3435 static int
vmx_setreg(void * vcpui,int reg,uint64_t val)3436 vmx_setreg(void *vcpui, int reg, uint64_t val)
3437 {
3438 	int error, hostcpu, running, shadow;
3439 	uint64_t ctls;
3440 	pmap_t pmap;
3441 	struct vmx_vcpu *vcpu = vcpui;
3442 	struct vmx *vmx = vcpu->vmx;
3443 
3444 	running = vcpu_is_running(vcpu->vcpu, &hostcpu);
3445 	if (running && hostcpu != curcpu)
3446 		panic("vmx_setreg: %s%d is running", vm_name(vmx->vm),
3447 		    vcpu->vcpuid);
3448 
3449 	if (reg == VM_REG_GUEST_INTR_SHADOW)
3450 		return (vmx_modify_intr_shadow(vcpu, running, val));
3451 
3452 	if (vmxctx_setreg(&vcpu->ctx, reg, val) == 0)
3453 		return (0);
3454 
3455 	/* Do not permit user write access to VMCS fields by offset. */
3456 	if (reg < 0)
3457 		return (EINVAL);
3458 
3459 	error = vmcs_setreg(vcpu->vmcs, running, reg, val);
3460 
3461 	if (error == 0) {
3462 		/*
3463 		 * If the "load EFER" VM-entry control is 1 then the
3464 		 * value of EFER.LMA must be identical to "IA-32e mode guest"
3465 		 * bit in the VM-entry control.
3466 		 */
3467 		if ((entry_ctls & VM_ENTRY_LOAD_EFER) != 0 &&
3468 		    (reg == VM_REG_GUEST_EFER)) {
3469 			vmcs_getreg(vcpu->vmcs, running,
3470 				    VMCS_IDENT(VMCS_ENTRY_CTLS), &ctls);
3471 			if (val & EFER_LMA)
3472 				ctls |= VM_ENTRY_GUEST_LMA;
3473 			else
3474 				ctls &= ~VM_ENTRY_GUEST_LMA;
3475 			vmcs_setreg(vcpu->vmcs, running,
3476 				    VMCS_IDENT(VMCS_ENTRY_CTLS), ctls);
3477 		}
3478 
3479 		shadow = vmx_shadow_reg(reg);
3480 		if (shadow > 0) {
3481 			/*
3482 			 * Store the unmodified value in the shadow
3483 			 */
3484 			error = vmcs_setreg(vcpu->vmcs, running,
3485 				    VMCS_IDENT(shadow), val);
3486 		}
3487 
3488 		if (reg == VM_REG_GUEST_CR3) {
3489 			/*
3490 			 * Invalidate the guest vcpu's TLB mappings to emulate
3491 			 * the behavior of updating %cr3.
3492 			 *
3493 			 * XXX the processor retains global mappings when %cr3
3494 			 * is updated but vmx_invvpid() does not.
3495 			 */
3496 			pmap = vcpu->ctx.pmap;
3497 			vmx_invvpid(vmx, vcpu, pmap, running);
3498 		}
3499 	}
3500 
3501 	return (error);
3502 }
3503 
3504 static int
vmx_getdesc(void * vcpui,int reg,struct seg_desc * desc)3505 vmx_getdesc(void *vcpui, int reg, struct seg_desc *desc)
3506 {
3507 	int hostcpu, running;
3508 	struct vmx_vcpu *vcpu = vcpui;
3509 	struct vmx *vmx = vcpu->vmx;
3510 
3511 	running = vcpu_is_running(vcpu->vcpu, &hostcpu);
3512 	if (running && hostcpu != curcpu)
3513 		panic("vmx_getdesc: %s%d is running", vm_name(vmx->vm),
3514 		    vcpu->vcpuid);
3515 
3516 	return (vmcs_getdesc(vcpu->vmcs, running, reg, desc));
3517 }
3518 
3519 static int
vmx_setdesc(void * vcpui,int reg,struct seg_desc * desc)3520 vmx_setdesc(void *vcpui, int reg, struct seg_desc *desc)
3521 {
3522 	int hostcpu, running;
3523 	struct vmx_vcpu *vcpu = vcpui;
3524 	struct vmx *vmx = vcpu->vmx;
3525 
3526 	running = vcpu_is_running(vcpu->vcpu, &hostcpu);
3527 	if (running && hostcpu != curcpu)
3528 		panic("vmx_setdesc: %s%d is running", vm_name(vmx->vm),
3529 		    vcpu->vcpuid);
3530 
3531 	return (vmcs_setdesc(vcpu->vmcs, running, reg, desc));
3532 }
3533 
3534 static int
vmx_getcap(void * vcpui,int type,int * retval)3535 vmx_getcap(void *vcpui, int type, int *retval)
3536 {
3537 	struct vmx_vcpu *vcpu = vcpui;
3538 	int vcap;
3539 	int ret;
3540 
3541 	ret = ENOENT;
3542 
3543 	vcap = vcpu->cap.set;
3544 
3545 	switch (type) {
3546 	case VM_CAP_HALT_EXIT:
3547 		if (cap_halt_exit)
3548 			ret = 0;
3549 		break;
3550 	case VM_CAP_PAUSE_EXIT:
3551 		if (cap_pause_exit)
3552 			ret = 0;
3553 		break;
3554 	case VM_CAP_MTRAP_EXIT:
3555 		if (cap_monitor_trap)
3556 			ret = 0;
3557 		break;
3558 	case VM_CAP_RDPID:
3559 		if (cap_rdpid)
3560 			ret = 0;
3561 		break;
3562 	case VM_CAP_RDTSCP:
3563 		if (cap_rdtscp)
3564 			ret = 0;
3565 		break;
3566 	case VM_CAP_UNRESTRICTED_GUEST:
3567 		if (cap_unrestricted_guest)
3568 			ret = 0;
3569 		break;
3570 	case VM_CAP_ENABLE_INVPCID:
3571 		if (cap_invpcid)
3572 			ret = 0;
3573 		break;
3574 	case VM_CAP_BPT_EXIT:
3575 	case VM_CAP_IPI_EXIT:
3576 		ret = 0;
3577 		break;
3578 	default:
3579 		break;
3580 	}
3581 
3582 	if (ret == 0)
3583 		*retval = (vcap & (1 << type)) ? 1 : 0;
3584 
3585 	return (ret);
3586 }
3587 
3588 static int
vmx_setcap(void * vcpui,int type,int val)3589 vmx_setcap(void *vcpui, int type, int val)
3590 {
3591 	struct vmx_vcpu *vcpu = vcpui;
3592 	struct vmcs *vmcs = vcpu->vmcs;
3593 	struct vlapic *vlapic;
3594 	uint32_t baseval;
3595 	uint32_t *pptr;
3596 	int error;
3597 	int flag;
3598 	int reg;
3599 	int retval;
3600 
3601 	retval = ENOENT;
3602 	pptr = NULL;
3603 
3604 	switch (type) {
3605 	case VM_CAP_HALT_EXIT:
3606 		if (cap_halt_exit) {
3607 			retval = 0;
3608 			pptr = &vcpu->cap.proc_ctls;
3609 			baseval = *pptr;
3610 			flag = PROCBASED_HLT_EXITING;
3611 			reg = VMCS_PRI_PROC_BASED_CTLS;
3612 		}
3613 		break;
3614 	case VM_CAP_MTRAP_EXIT:
3615 		if (cap_monitor_trap) {
3616 			retval = 0;
3617 			pptr = &vcpu->cap.proc_ctls;
3618 			baseval = *pptr;
3619 			flag = PROCBASED_MTF;
3620 			reg = VMCS_PRI_PROC_BASED_CTLS;
3621 		}
3622 		break;
3623 	case VM_CAP_PAUSE_EXIT:
3624 		if (cap_pause_exit) {
3625 			retval = 0;
3626 			pptr = &vcpu->cap.proc_ctls;
3627 			baseval = *pptr;
3628 			flag = PROCBASED_PAUSE_EXITING;
3629 			reg = VMCS_PRI_PROC_BASED_CTLS;
3630 		}
3631 		break;
3632 	case VM_CAP_RDPID:
3633 	case VM_CAP_RDTSCP:
3634 		if (cap_rdpid || cap_rdtscp)
3635 			/*
3636 			 * Choose not to support enabling/disabling
3637 			 * RDPID/RDTSCP via libvmmapi since, as per the
3638 			 * discussion in vmx_modinit(), RDPID/RDTSCP are
3639 			 * either always enabled or always disabled.
3640 			 */
3641 			error = EOPNOTSUPP;
3642 		break;
3643 	case VM_CAP_UNRESTRICTED_GUEST:
3644 		if (cap_unrestricted_guest) {
3645 			retval = 0;
3646 			pptr = &vcpu->cap.proc_ctls2;
3647 			baseval = *pptr;
3648 			flag = PROCBASED2_UNRESTRICTED_GUEST;
3649 			reg = VMCS_SEC_PROC_BASED_CTLS;
3650 		}
3651 		break;
3652 	case VM_CAP_ENABLE_INVPCID:
3653 		if (cap_invpcid) {
3654 			retval = 0;
3655 			pptr = &vcpu->cap.proc_ctls2;
3656 			baseval = *pptr;
3657 			flag = PROCBASED2_ENABLE_INVPCID;
3658 			reg = VMCS_SEC_PROC_BASED_CTLS;
3659 		}
3660 		break;
3661 	case VM_CAP_BPT_EXIT:
3662 		retval = 0;
3663 
3664 		/* Don't change the bitmap if we are tracing all exceptions. */
3665 		if (vcpu->cap.exc_bitmap != 0xffffffff) {
3666 			pptr = &vcpu->cap.exc_bitmap;
3667 			baseval = *pptr;
3668 			flag = (1 << IDT_BP);
3669 			reg = VMCS_EXCEPTION_BITMAP;
3670 		}
3671 		break;
3672 	case VM_CAP_IPI_EXIT:
3673 		retval = 0;
3674 
3675 		vlapic = vm_lapic(vcpu->vcpu);
3676 		vlapic->ipi_exit = val;
3677 		break;
3678 	case VM_CAP_MASK_HWINTR:
3679 		retval = 0;
3680 		break;
3681 	default:
3682 		break;
3683 	}
3684 
3685 	if (retval)
3686 		return (retval);
3687 
3688 	if (pptr != NULL) {
3689 		if (val) {
3690 			baseval |= flag;
3691 		} else {
3692 			baseval &= ~flag;
3693 		}
3694 		VMPTRLD(vmcs);
3695 		error = vmwrite(reg, baseval);
3696 		VMCLEAR(vmcs);
3697 
3698 		if (error)
3699 			return (error);
3700 
3701 		/*
3702 		 * Update optional stored flags, and record
3703 		 * setting
3704 		 */
3705 		*pptr = baseval;
3706 	}
3707 
3708 	if (val) {
3709 		vcpu->cap.set |= (1 << type);
3710 	} else {
3711 		vcpu->cap.set &= ~(1 << type);
3712 	}
3713 
3714 	return (0);
3715 }
3716 
3717 static struct vmspace *
vmx_vmspace_alloc(vm_offset_t min,vm_offset_t max)3718 vmx_vmspace_alloc(vm_offset_t min, vm_offset_t max)
3719 {
3720 	return (ept_vmspace_alloc(min, max));
3721 }
3722 
3723 static void
vmx_vmspace_free(struct vmspace * vmspace)3724 vmx_vmspace_free(struct vmspace *vmspace)
3725 {
3726 	ept_vmspace_free(vmspace);
3727 }
3728 
3729 struct vlapic_vtx {
3730 	struct vlapic	vlapic;
3731 	struct pir_desc	*pir_desc;
3732 	struct vmx_vcpu	*vcpu;
3733 	u_int	pending_prio;
3734 };
3735 
3736 #define VPR_PRIO_BIT(vpr)	(1 << ((vpr) >> 4))
3737 
3738 #define	VMX_CTR_PIR(vlapic, pir_desc, notify, vector, level, msg)	\
3739 do {									\
3740 	VLAPIC_CTR2(vlapic, msg " assert %s-triggered vector %d",	\
3741 	    level ? "level" : "edge", vector);				\
3742 	VLAPIC_CTR1(vlapic, msg " pir0 0x%016lx", pir_desc->pir[0]);	\
3743 	VLAPIC_CTR1(vlapic, msg " pir1 0x%016lx", pir_desc->pir[1]);	\
3744 	VLAPIC_CTR1(vlapic, msg " pir2 0x%016lx", pir_desc->pir[2]);	\
3745 	VLAPIC_CTR1(vlapic, msg " pir3 0x%016lx", pir_desc->pir[3]);	\
3746 	VLAPIC_CTR1(vlapic, msg " notify: %s", notify ? "yes" : "no");	\
3747 } while (0)
3748 
3749 /*
3750  * vlapic->ops handlers that utilize the APICv hardware assist described in
3751  * Chapter 29 of the Intel SDM.
3752  */
3753 static int
vmx_set_intr_ready(struct vlapic * vlapic,int vector,bool level)3754 vmx_set_intr_ready(struct vlapic *vlapic, int vector, bool level)
3755 {
3756 	struct vlapic_vtx *vlapic_vtx;
3757 	struct pir_desc *pir_desc;
3758 	uint64_t mask;
3759 	int idx, notify = 0;
3760 
3761 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3762 	pir_desc = vlapic_vtx->pir_desc;
3763 
3764 	/*
3765 	 * Keep track of interrupt requests in the PIR descriptor. This is
3766 	 * because the virtual APIC page pointed to by the VMCS cannot be
3767 	 * modified if the vcpu is running.
3768 	 */
3769 	idx = vector / 64;
3770 	mask = 1UL << (vector % 64);
3771 	atomic_set_long(&pir_desc->pir[idx], mask);
3772 
3773 	/*
3774 	 * A notification is required whenever the 'pending' bit makes a
3775 	 * transition from 0->1.
3776 	 *
3777 	 * Even if the 'pending' bit is already asserted, notification about
3778 	 * the incoming interrupt may still be necessary.  For example, if a
3779 	 * vCPU is HLTed with a high PPR, a low priority interrupt would cause
3780 	 * the 0->1 'pending' transition with a notification, but the vCPU
3781 	 * would ignore the interrupt for the time being.  The same vCPU would
3782 	 * need to then be notified if a high-priority interrupt arrived which
3783 	 * satisfied the PPR.
3784 	 *
3785 	 * The priorities of interrupts injected while 'pending' is asserted
3786 	 * are tracked in a custom bitfield 'pending_prio'.  Should the
3787 	 * to-be-injected interrupt exceed the priorities already present, the
3788 	 * notification is sent.  The priorities recorded in 'pending_prio' are
3789 	 * cleared whenever the 'pending' bit makes another 0->1 transition.
3790 	 */
3791 	if (atomic_cmpset_long(&pir_desc->pending, 0, 1) != 0) {
3792 		notify = 1;
3793 		vlapic_vtx->pending_prio = 0;
3794 	} else {
3795 		const u_int old_prio = vlapic_vtx->pending_prio;
3796 		const u_int prio_bit = VPR_PRIO_BIT(vector & APIC_TPR_INT);
3797 
3798 		if ((old_prio & prio_bit) == 0 && prio_bit > old_prio) {
3799 			atomic_set_int(&vlapic_vtx->pending_prio, prio_bit);
3800 			notify = 1;
3801 		}
3802 	}
3803 
3804 	VMX_CTR_PIR(vlapic, pir_desc, notify, vector, level,
3805 	    "vmx_set_intr_ready");
3806 	return (notify);
3807 }
3808 
3809 static int
vmx_pending_intr(struct vlapic * vlapic,int * vecptr)3810 vmx_pending_intr(struct vlapic *vlapic, int *vecptr)
3811 {
3812 	struct vlapic_vtx *vlapic_vtx;
3813 	struct pir_desc *pir_desc;
3814 	struct LAPIC *lapic;
3815 	uint64_t pending, pirval;
3816 	uint8_t ppr, vpr, rvi;
3817 	struct vm_exit *vmexit;
3818 	int i;
3819 
3820 	/*
3821 	 * This function is only expected to be called from the 'HLT' exit
3822 	 * handler which does not care about the vector that is pending.
3823 	 */
3824 	KASSERT(vecptr == NULL, ("vmx_pending_intr: vecptr must be NULL"));
3825 
3826 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3827 	pir_desc = vlapic_vtx->pir_desc;
3828 	lapic = vlapic->apic_page;
3829 
3830 	/*
3831 	 * While a virtual interrupt may have already been
3832 	 * processed the actual delivery maybe pending the
3833 	 * interruptibility of the guest.  Recognize a pending
3834 	 * interrupt by reevaluating virtual interrupts
3835 	 * following Section 30.2.1 in the Intel SDM Volume 3.
3836 	 */
3837 	vmexit = vm_exitinfo(vlapic->vcpu);
3838 	KASSERT(vmexit->exitcode == VM_EXITCODE_HLT,
3839 	    ("vmx_pending_intr: exitcode not 'HLT'"));
3840 	rvi = vmexit->u.hlt.intr_status & APIC_TPR_INT;
3841 	ppr = lapic->ppr & APIC_TPR_INT;
3842 	if (rvi > ppr)
3843 		return (1);
3844 
3845 	pending = atomic_load_acq_long(&pir_desc->pending);
3846 	if (!pending)
3847 		return (0);
3848 
3849 	/*
3850 	 * If there is an interrupt pending then it will be recognized only
3851 	 * if its priority is greater than the processor priority.
3852 	 *
3853 	 * Special case: if the processor priority is zero then any pending
3854 	 * interrupt will be recognized.
3855 	 */
3856 	if (ppr == 0)
3857 		return (1);
3858 
3859 	VLAPIC_CTR1(vlapic, "HLT with non-zero PPR %d", lapic->ppr);
3860 
3861 	vpr = 0;
3862 	for (i = 3; i >= 0; i--) {
3863 		pirval = pir_desc->pir[i];
3864 		if (pirval != 0) {
3865 			vpr = (i * 64 + flsl(pirval) - 1) & APIC_TPR_INT;
3866 			break;
3867 		}
3868 	}
3869 
3870 	/*
3871 	 * If the highest-priority pending interrupt falls short of the
3872 	 * processor priority of this vCPU, ensure that 'pending_prio' does not
3873 	 * have any stale bits which would preclude a higher-priority interrupt
3874 	 * from incurring a notification later.
3875 	 */
3876 	if (vpr <= ppr) {
3877 		const u_int prio_bit = VPR_PRIO_BIT(vpr);
3878 		const u_int old = vlapic_vtx->pending_prio;
3879 
3880 		if (old > prio_bit && (old & prio_bit) == 0) {
3881 			vlapic_vtx->pending_prio = prio_bit;
3882 		}
3883 		return (0);
3884 	}
3885 	return (1);
3886 }
3887 
3888 static void
vmx_intr_accepted(struct vlapic * vlapic,int vector)3889 vmx_intr_accepted(struct vlapic *vlapic, int vector)
3890 {
3891 
3892 	panic("vmx_intr_accepted: not expected to be called");
3893 }
3894 
3895 static void
vmx_set_tmr(struct vlapic * vlapic,int vector,bool level)3896 vmx_set_tmr(struct vlapic *vlapic, int vector, bool level)
3897 {
3898 	struct vlapic_vtx *vlapic_vtx;
3899 	struct vmcs *vmcs;
3900 	uint64_t mask, val;
3901 
3902 	KASSERT(vector >= 0 && vector <= 255, ("invalid vector %d", vector));
3903 	KASSERT(!vcpu_is_running(vlapic->vcpu, NULL),
3904 	    ("vmx_set_tmr: vcpu cannot be running"));
3905 
3906 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3907 	vmcs = vlapic_vtx->vcpu->vmcs;
3908 	mask = 1UL << (vector % 64);
3909 
3910 	VMPTRLD(vmcs);
3911 	val = vmcs_read(VMCS_EOI_EXIT(vector));
3912 	if (level)
3913 		val |= mask;
3914 	else
3915 		val &= ~mask;
3916 	vmcs_write(VMCS_EOI_EXIT(vector), val);
3917 	VMCLEAR(vmcs);
3918 }
3919 
3920 static void
vmx_enable_x2apic_mode_ts(struct vlapic * vlapic)3921 vmx_enable_x2apic_mode_ts(struct vlapic *vlapic)
3922 {
3923 	struct vlapic_vtx *vlapic_vtx;
3924 	struct vmx_vcpu *vcpu;
3925 	struct vmcs *vmcs;
3926 	uint32_t proc_ctls;
3927 
3928 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3929 	vcpu = vlapic_vtx->vcpu;
3930 	vmcs = vcpu->vmcs;
3931 
3932 	proc_ctls = vcpu->cap.proc_ctls;
3933 	proc_ctls &= ~PROCBASED_USE_TPR_SHADOW;
3934 	proc_ctls |= PROCBASED_CR8_LOAD_EXITING;
3935 	proc_ctls |= PROCBASED_CR8_STORE_EXITING;
3936 	vcpu->cap.proc_ctls = proc_ctls;
3937 
3938 	VMPTRLD(vmcs);
3939 	vmcs_write(VMCS_PRI_PROC_BASED_CTLS, proc_ctls);
3940 	VMCLEAR(vmcs);
3941 }
3942 
3943 static void
vmx_enable_x2apic_mode_vid(struct vlapic * vlapic)3944 vmx_enable_x2apic_mode_vid(struct vlapic *vlapic)
3945 {
3946 	struct vlapic_vtx *vlapic_vtx;
3947 	struct vmx *vmx;
3948 	struct vmx_vcpu *vcpu;
3949 	struct vmcs *vmcs;
3950 	uint32_t proc_ctls2;
3951 	int error __diagused;
3952 
3953 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3954 	vcpu = vlapic_vtx->vcpu;
3955 	vmx = vcpu->vmx;
3956 	vmcs = vcpu->vmcs;
3957 
3958 	proc_ctls2 = vcpu->cap.proc_ctls2;
3959 	KASSERT((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) != 0,
3960 	    ("%s: invalid proc_ctls2 %#x", __func__, proc_ctls2));
3961 
3962 	proc_ctls2 &= ~PROCBASED2_VIRTUALIZE_APIC_ACCESSES;
3963 	proc_ctls2 |= PROCBASED2_VIRTUALIZE_X2APIC_MODE;
3964 	vcpu->cap.proc_ctls2 = proc_ctls2;
3965 
3966 	VMPTRLD(vmcs);
3967 	vmcs_write(VMCS_SEC_PROC_BASED_CTLS, proc_ctls2);
3968 	VMCLEAR(vmcs);
3969 
3970 	if (vlapic->vcpuid == 0) {
3971 		/*
3972 		 * The nested page table mappings are shared by all vcpus
3973 		 * so unmap the APIC access page just once.
3974 		 */
3975 		error = vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
3976 		KASSERT(error == 0, ("%s: vm_unmap_mmio error %d",
3977 		    __func__, error));
3978 
3979 		/*
3980 		 * The MSR bitmap is shared by all vcpus so modify it only
3981 		 * once in the context of vcpu 0.
3982 		 */
3983 		error = vmx_allow_x2apic_msrs(vmx);
3984 		KASSERT(error == 0, ("%s: vmx_allow_x2apic_msrs error %d",
3985 		    __func__, error));
3986 	}
3987 }
3988 
3989 static void
vmx_post_intr(struct vlapic * vlapic,int hostcpu)3990 vmx_post_intr(struct vlapic *vlapic, int hostcpu)
3991 {
3992 
3993 	ipi_cpu(hostcpu, pirvec);
3994 }
3995 
3996 /*
3997  * Transfer the pending interrupts in the PIR descriptor to the IRR
3998  * in the virtual APIC page.
3999  */
4000 static void
vmx_inject_pir(struct vlapic * vlapic)4001 vmx_inject_pir(struct vlapic *vlapic)
4002 {
4003 	struct vlapic_vtx *vlapic_vtx;
4004 	struct pir_desc *pir_desc;
4005 	struct LAPIC *lapic;
4006 	uint64_t val, pirval;
4007 	int rvi, pirbase = -1;
4008 	uint16_t intr_status_old, intr_status_new;
4009 
4010 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
4011 	pir_desc = vlapic_vtx->pir_desc;
4012 	if (atomic_cmpset_long(&pir_desc->pending, 1, 0) == 0) {
4013 		VLAPIC_CTR0(vlapic, "vmx_inject_pir: "
4014 		    "no posted interrupt pending");
4015 		return;
4016 	}
4017 
4018 	pirval = 0;
4019 	pirbase = -1;
4020 	lapic = vlapic->apic_page;
4021 
4022 	val = atomic_readandclear_long(&pir_desc->pir[0]);
4023 	if (val != 0) {
4024 		lapic->irr0 |= val;
4025 		lapic->irr1 |= val >> 32;
4026 		pirbase = 0;
4027 		pirval = val;
4028 	}
4029 
4030 	val = atomic_readandclear_long(&pir_desc->pir[1]);
4031 	if (val != 0) {
4032 		lapic->irr2 |= val;
4033 		lapic->irr3 |= val >> 32;
4034 		pirbase = 64;
4035 		pirval = val;
4036 	}
4037 
4038 	val = atomic_readandclear_long(&pir_desc->pir[2]);
4039 	if (val != 0) {
4040 		lapic->irr4 |= val;
4041 		lapic->irr5 |= val >> 32;
4042 		pirbase = 128;
4043 		pirval = val;
4044 	}
4045 
4046 	val = atomic_readandclear_long(&pir_desc->pir[3]);
4047 	if (val != 0) {
4048 		lapic->irr6 |= val;
4049 		lapic->irr7 |= val >> 32;
4050 		pirbase = 192;
4051 		pirval = val;
4052 	}
4053 
4054 	VLAPIC_CTR_IRR(vlapic, "vmx_inject_pir");
4055 
4056 	/*
4057 	 * Update RVI so the processor can evaluate pending virtual
4058 	 * interrupts on VM-entry.
4059 	 *
4060 	 * It is possible for pirval to be 0 here, even though the
4061 	 * pending bit has been set. The scenario is:
4062 	 * CPU-Y is sending a posted interrupt to CPU-X, which
4063 	 * is running a guest and processing posted interrupts in h/w.
4064 	 * CPU-X will eventually exit and the state seen in s/w is
4065 	 * the pending bit set, but no PIR bits set.
4066 	 *
4067 	 *      CPU-X                      CPU-Y
4068 	 *   (vm running)                (host running)
4069 	 *   rx posted interrupt
4070 	 *   CLEAR pending bit
4071 	 *				 SET PIR bit
4072 	 *   READ/CLEAR PIR bits
4073 	 *				 SET pending bit
4074 	 *   (vm exit)
4075 	 *   pending bit set, PIR 0
4076 	 */
4077 	if (pirval != 0) {
4078 		rvi = pirbase + flsl(pirval) - 1;
4079 		intr_status_old = vmcs_read(VMCS_GUEST_INTR_STATUS);
4080 		intr_status_new = (intr_status_old & 0xFF00) | rvi;
4081 		if (intr_status_new > intr_status_old) {
4082 			vmcs_write(VMCS_GUEST_INTR_STATUS, intr_status_new);
4083 			VLAPIC_CTR2(vlapic, "vmx_inject_pir: "
4084 			    "guest_intr_status changed from 0x%04x to 0x%04x",
4085 			    intr_status_old, intr_status_new);
4086 		}
4087 	}
4088 }
4089 
4090 static struct vlapic *
vmx_vlapic_init(void * vcpui)4091 vmx_vlapic_init(void *vcpui)
4092 {
4093 	struct vmx *vmx;
4094 	struct vmx_vcpu *vcpu;
4095 	struct vlapic *vlapic;
4096 	struct vlapic_vtx *vlapic_vtx;
4097 
4098 	vcpu = vcpui;
4099 	vmx = vcpu->vmx;
4100 
4101 	vlapic = malloc(sizeof(struct vlapic_vtx), M_VLAPIC, M_WAITOK | M_ZERO);
4102 	vlapic->vm = vmx->vm;
4103 	vlapic->vcpu = vcpu->vcpu;
4104 	vlapic->vcpuid = vcpu->vcpuid;
4105 	vlapic->apic_page = (struct LAPIC *)vcpu->apic_page;
4106 
4107 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
4108 	vlapic_vtx->pir_desc = vcpu->pir_desc;
4109 	vlapic_vtx->vcpu = vcpu;
4110 
4111 	if (tpr_shadowing) {
4112 		vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode_ts;
4113 	}
4114 
4115 	if (virtual_interrupt_delivery) {
4116 		vlapic->ops.set_intr_ready = vmx_set_intr_ready;
4117 		vlapic->ops.pending_intr = vmx_pending_intr;
4118 		vlapic->ops.intr_accepted = vmx_intr_accepted;
4119 		vlapic->ops.set_tmr = vmx_set_tmr;
4120 		vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode_vid;
4121 	}
4122 
4123 	if (posted_interrupts)
4124 		vlapic->ops.post_intr = vmx_post_intr;
4125 
4126 	vlapic_init(vlapic);
4127 
4128 	return (vlapic);
4129 }
4130 
4131 static void
vmx_vlapic_cleanup(struct vlapic * vlapic)4132 vmx_vlapic_cleanup(struct vlapic *vlapic)
4133 {
4134 
4135 	vlapic_cleanup(vlapic);
4136 	free(vlapic, M_VLAPIC);
4137 }
4138 
4139 #ifdef BHYVE_SNAPSHOT
4140 static int
vmx_vcpu_snapshot(void * vcpui,struct vm_snapshot_meta * meta)4141 vmx_vcpu_snapshot(void *vcpui, struct vm_snapshot_meta *meta)
4142 {
4143 	struct vmcs *vmcs;
4144 	struct vmx *vmx;
4145 	struct vmx_vcpu *vcpu;
4146 	struct vmxctx *vmxctx;
4147 	int err, run, hostcpu;
4148 
4149 	err = 0;
4150 	vcpu = vcpui;
4151 	vmx = vcpu->vmx;
4152 	vmcs = vcpu->vmcs;
4153 
4154 	run = vcpu_is_running(vcpu->vcpu, &hostcpu);
4155 	if (run && hostcpu != curcpu) {
4156 		printf("%s: %s%d is running", __func__, vm_name(vmx->vm),
4157 		    vcpu->vcpuid);
4158 		return (EINVAL);
4159 	}
4160 
4161 	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_CR0, meta);
4162 	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_CR3, meta);
4163 	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_CR4, meta);
4164 	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_DR7, meta);
4165 	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_RSP, meta);
4166 	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_RIP, meta);
4167 	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_RFLAGS, meta);
4168 
4169 	/* Guest segments */
4170 	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_ES, meta);
4171 	err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_ES, meta);
4172 
4173 	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_CS, meta);
4174 	err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_CS, meta);
4175 
4176 	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_SS, meta);
4177 	err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_SS, meta);
4178 
4179 	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_DS, meta);
4180 	err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_DS, meta);
4181 
4182 	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_FS, meta);
4183 	err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_FS, meta);
4184 
4185 	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_GS, meta);
4186 	err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_GS, meta);
4187 
4188 	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_TR, meta);
4189 	err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_TR, meta);
4190 
4191 	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_LDTR, meta);
4192 	err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_LDTR, meta);
4193 
4194 	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_EFER, meta);
4195 
4196 	err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_IDTR, meta);
4197 	err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_GDTR, meta);
4198 
4199 	/* Guest page tables */
4200 	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_PDPTE0, meta);
4201 	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_PDPTE1, meta);
4202 	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_PDPTE2, meta);
4203 	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_PDPTE3, meta);
4204 
4205 	/* Other guest state */
4206 	err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_IA32_SYSENTER_CS, meta);
4207 	err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_IA32_SYSENTER_ESP, meta);
4208 	err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_IA32_SYSENTER_EIP, meta);
4209 	err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_INTERRUPTIBILITY, meta);
4210 	err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_ACTIVITY, meta);
4211 	err += vmcs_snapshot_any(vmcs, run, VMCS_ENTRY_CTLS, meta);
4212 	err += vmcs_snapshot_any(vmcs, run, VMCS_EXIT_CTLS, meta);
4213 	if (err != 0)
4214 		goto done;
4215 
4216 	SNAPSHOT_BUF_OR_LEAVE(vcpu->guest_msrs,
4217 	    sizeof(vcpu->guest_msrs), meta, err, done);
4218 
4219 	SNAPSHOT_BUF_OR_LEAVE(vcpu->pir_desc,
4220 	    sizeof(*vcpu->pir_desc), meta, err, done);
4221 
4222 	SNAPSHOT_BUF_OR_LEAVE(&vcpu->mtrr,
4223 	    sizeof(vcpu->mtrr), meta, err, done);
4224 
4225 	vmxctx = &vcpu->ctx;
4226 	SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rdi, meta, err, done);
4227 	SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rsi, meta, err, done);
4228 	SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rdx, meta, err, done);
4229 	SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rcx, meta, err, done);
4230 	SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r8, meta, err, done);
4231 	SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r9, meta, err, done);
4232 	SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rax, meta, err, done);
4233 	SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rbx, meta, err, done);
4234 	SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rbp, meta, err, done);
4235 	SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r10, meta, err, done);
4236 	SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r11, meta, err, done);
4237 	SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r12, meta, err, done);
4238 	SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r13, meta, err, done);
4239 	SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r14, meta, err, done);
4240 	SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r15, meta, err, done);
4241 	SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_cr2, meta, err, done);
4242 	SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr0, meta, err, done);
4243 	SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr1, meta, err, done);
4244 	SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr2, meta, err, done);
4245 	SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr3, meta, err, done);
4246 	SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr6, meta, err, done);
4247 
4248 done:
4249 	return (err);
4250 }
4251 
4252 static int
vmx_restore_tsc(void * vcpui,uint64_t offset)4253 vmx_restore_tsc(void *vcpui, uint64_t offset)
4254 {
4255 	struct vmx_vcpu *vcpu = vcpui;
4256 	struct vmcs *vmcs;
4257 	struct vmx *vmx;
4258 	int error, running, hostcpu;
4259 
4260 	vmx = vcpu->vmx;
4261 	vmcs = vcpu->vmcs;
4262 
4263 	running = vcpu_is_running(vcpu->vcpu, &hostcpu);
4264 	if (running && hostcpu != curcpu) {
4265 		printf("%s: %s%d is running", __func__, vm_name(vmx->vm),
4266 		    vcpu->vcpuid);
4267 		return (EINVAL);
4268 	}
4269 
4270 	if (!running)
4271 		VMPTRLD(vmcs);
4272 
4273 	error = vmx_set_tsc_offset(vcpu, offset);
4274 
4275 	if (!running)
4276 		VMCLEAR(vmcs);
4277 	return (error);
4278 }
4279 #endif
4280 
4281 const struct vmm_ops vmm_ops_intel = {
4282 	.modinit	= vmx_modinit,
4283 	.modcleanup	= vmx_modcleanup,
4284 	.modsuspend	= vmx_modsuspend,
4285 	.modresume	= vmx_modresume,
4286 	.init		= vmx_init,
4287 	.run		= vmx_run,
4288 	.cleanup	= vmx_cleanup,
4289 	.vcpu_init	= vmx_vcpu_init,
4290 	.vcpu_cleanup	= vmx_vcpu_cleanup,
4291 	.getreg		= vmx_getreg,
4292 	.setreg		= vmx_setreg,
4293 	.getdesc	= vmx_getdesc,
4294 	.setdesc	= vmx_setdesc,
4295 	.getcap		= vmx_getcap,
4296 	.setcap		= vmx_setcap,
4297 	.vmspace_alloc	= vmx_vmspace_alloc,
4298 	.vmspace_free	= vmx_vmspace_free,
4299 	.vlapic_init	= vmx_vlapic_init,
4300 	.vlapic_cleanup	= vmx_vlapic_cleanup,
4301 #ifdef BHYVE_SNAPSHOT
4302 	.vcpu_snapshot	= vmx_vcpu_snapshot,
4303 	.restore_tsc	= vmx_restore_tsc,
4304 #endif
4305 };
4306