1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright (c) 2019, Klara Inc.
28 * Copyright (c) 2019, Allan Jude
29 * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek
30 */
31
32 #include <sys/zfs_context.h>
33 #include <sys/arc.h>
34 #include <sys/dmu.h>
35 #include <sys/dmu_send.h>
36 #include <sys/dmu_impl.h>
37 #include <sys/dbuf.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/dsl_dir.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/spa.h>
43 #include <sys/zio.h>
44 #include <sys/dmu_zfetch.h>
45 #include <sys/sa.h>
46 #include <sys/sa_impl.h>
47 #include <sys/zfeature.h>
48 #include <sys/blkptr.h>
49 #include <sys/range_tree.h>
50 #include <sys/trace_zfs.h>
51 #include <sys/callb.h>
52 #include <sys/abd.h>
53 #include <sys/brt.h>
54 #include <sys/vdev.h>
55 #include <cityhash.h>
56 #include <sys/spa_impl.h>
57 #include <sys/wmsum.h>
58 #include <sys/vdev_impl.h>
59
60 static kstat_t *dbuf_ksp;
61
62 typedef struct dbuf_stats {
63 /*
64 * Various statistics about the size of the dbuf cache.
65 */
66 kstat_named_t cache_count;
67 kstat_named_t cache_size_bytes;
68 kstat_named_t cache_size_bytes_max;
69 /*
70 * Statistics regarding the bounds on the dbuf cache size.
71 */
72 kstat_named_t cache_target_bytes;
73 kstat_named_t cache_lowater_bytes;
74 kstat_named_t cache_hiwater_bytes;
75 /*
76 * Total number of dbuf cache evictions that have occurred.
77 */
78 kstat_named_t cache_total_evicts;
79 /*
80 * The distribution of dbuf levels in the dbuf cache and
81 * the total size of all dbufs at each level.
82 */
83 kstat_named_t cache_levels[DN_MAX_LEVELS];
84 kstat_named_t cache_levels_bytes[DN_MAX_LEVELS];
85 /*
86 * Statistics about the dbuf hash table.
87 */
88 kstat_named_t hash_hits;
89 kstat_named_t hash_misses;
90 kstat_named_t hash_collisions;
91 kstat_named_t hash_elements;
92 kstat_named_t hash_elements_max;
93 /*
94 * Number of sublists containing more than one dbuf in the dbuf
95 * hash table. Keep track of the longest hash chain.
96 */
97 kstat_named_t hash_chains;
98 kstat_named_t hash_chain_max;
99 /*
100 * Number of times a dbuf_create() discovers that a dbuf was
101 * already created and in the dbuf hash table.
102 */
103 kstat_named_t hash_insert_race;
104 /*
105 * Number of entries in the hash table dbuf and mutex arrays.
106 */
107 kstat_named_t hash_table_count;
108 kstat_named_t hash_mutex_count;
109 /*
110 * Statistics about the size of the metadata dbuf cache.
111 */
112 kstat_named_t metadata_cache_count;
113 kstat_named_t metadata_cache_size_bytes;
114 kstat_named_t metadata_cache_size_bytes_max;
115 /*
116 * For diagnostic purposes, this is incremented whenever we can't add
117 * something to the metadata cache because it's full, and instead put
118 * the data in the regular dbuf cache.
119 */
120 kstat_named_t metadata_cache_overflow;
121 } dbuf_stats_t;
122
123 dbuf_stats_t dbuf_stats = {
124 { "cache_count", KSTAT_DATA_UINT64 },
125 { "cache_size_bytes", KSTAT_DATA_UINT64 },
126 { "cache_size_bytes_max", KSTAT_DATA_UINT64 },
127 { "cache_target_bytes", KSTAT_DATA_UINT64 },
128 { "cache_lowater_bytes", KSTAT_DATA_UINT64 },
129 { "cache_hiwater_bytes", KSTAT_DATA_UINT64 },
130 { "cache_total_evicts", KSTAT_DATA_UINT64 },
131 { { "cache_levels_N", KSTAT_DATA_UINT64 } },
132 { { "cache_levels_bytes_N", KSTAT_DATA_UINT64 } },
133 { "hash_hits", KSTAT_DATA_UINT64 },
134 { "hash_misses", KSTAT_DATA_UINT64 },
135 { "hash_collisions", KSTAT_DATA_UINT64 },
136 { "hash_elements", KSTAT_DATA_UINT64 },
137 { "hash_elements_max", KSTAT_DATA_UINT64 },
138 { "hash_chains", KSTAT_DATA_UINT64 },
139 { "hash_chain_max", KSTAT_DATA_UINT64 },
140 { "hash_insert_race", KSTAT_DATA_UINT64 },
141 { "hash_table_count", KSTAT_DATA_UINT64 },
142 { "hash_mutex_count", KSTAT_DATA_UINT64 },
143 { "metadata_cache_count", KSTAT_DATA_UINT64 },
144 { "metadata_cache_size_bytes", KSTAT_DATA_UINT64 },
145 { "metadata_cache_size_bytes_max", KSTAT_DATA_UINT64 },
146 { "metadata_cache_overflow", KSTAT_DATA_UINT64 }
147 };
148
149 struct {
150 wmsum_t cache_count;
151 wmsum_t cache_total_evicts;
152 wmsum_t cache_levels[DN_MAX_LEVELS];
153 wmsum_t cache_levels_bytes[DN_MAX_LEVELS];
154 wmsum_t hash_hits;
155 wmsum_t hash_misses;
156 wmsum_t hash_collisions;
157 wmsum_t hash_chains;
158 wmsum_t hash_insert_race;
159 wmsum_t metadata_cache_count;
160 wmsum_t metadata_cache_overflow;
161 } dbuf_sums;
162
163 #define DBUF_STAT_INCR(stat, val) \
164 wmsum_add(&dbuf_sums.stat, val)
165 #define DBUF_STAT_DECR(stat, val) \
166 DBUF_STAT_INCR(stat, -(val))
167 #define DBUF_STAT_BUMP(stat) \
168 DBUF_STAT_INCR(stat, 1)
169 #define DBUF_STAT_BUMPDOWN(stat) \
170 DBUF_STAT_INCR(stat, -1)
171 #define DBUF_STAT_MAX(stat, v) { \
172 uint64_t _m; \
173 while ((v) > (_m = dbuf_stats.stat.value.ui64) && \
174 (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\
175 continue; \
176 }
177
178 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
179 static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr);
180
181 /*
182 * Global data structures and functions for the dbuf cache.
183 */
184 static kmem_cache_t *dbuf_kmem_cache;
185 kmem_cache_t *dbuf_dirty_kmem_cache;
186 static taskq_t *dbu_evict_taskq;
187
188 static kthread_t *dbuf_cache_evict_thread;
189 static kmutex_t dbuf_evict_lock;
190 static kcondvar_t dbuf_evict_cv;
191 static boolean_t dbuf_evict_thread_exit;
192
193 /*
194 * There are two dbuf caches; each dbuf can only be in one of them at a time.
195 *
196 * 1. Cache of metadata dbufs, to help make read-heavy administrative commands
197 * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs
198 * that represent the metadata that describes filesystems/snapshots/
199 * bookmarks/properties/etc. We only evict from this cache when we export a
200 * pool, to short-circuit as much I/O as possible for all administrative
201 * commands that need the metadata. There is no eviction policy for this
202 * cache, because we try to only include types in it which would occupy a
203 * very small amount of space per object but create a large impact on the
204 * performance of these commands. Instead, after it reaches a maximum size
205 * (which should only happen on very small memory systems with a very large
206 * number of filesystem objects), we stop taking new dbufs into the
207 * metadata cache, instead putting them in the normal dbuf cache.
208 *
209 * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
210 * are not currently held but have been recently released. These dbufs
211 * are not eligible for arc eviction until they are aged out of the cache.
212 * Dbufs that are aged out of the cache will be immediately destroyed and
213 * become eligible for arc eviction.
214 *
215 * Dbufs are added to these caches once the last hold is released. If a dbuf is
216 * later accessed and still exists in the dbuf cache, then it will be removed
217 * from the cache and later re-added to the head of the cache.
218 *
219 * If a given dbuf meets the requirements for the metadata cache, it will go
220 * there, otherwise it will be considered for the generic LRU dbuf cache. The
221 * caches and the refcounts tracking their sizes are stored in an array indexed
222 * by those caches' matching enum values (from dbuf_cached_state_t).
223 */
224 typedef struct dbuf_cache {
225 multilist_t cache;
226 zfs_refcount_t size ____cacheline_aligned;
227 } dbuf_cache_t;
228 dbuf_cache_t dbuf_caches[DB_CACHE_MAX];
229
230 /* Size limits for the caches */
231 static uint64_t dbuf_cache_max_bytes = UINT64_MAX;
232 static uint64_t dbuf_metadata_cache_max_bytes = UINT64_MAX;
233
234 /* Set the default sizes of the caches to log2 fraction of arc size */
235 static uint_t dbuf_cache_shift = 5;
236 static uint_t dbuf_metadata_cache_shift = 6;
237
238 /* Set the dbuf hash mutex count as log2 shift (dynamic by default) */
239 static uint_t dbuf_mutex_cache_shift = 0;
240
241 static unsigned long dbuf_cache_target_bytes(void);
242 static unsigned long dbuf_metadata_cache_target_bytes(void);
243
244 /*
245 * The LRU dbuf cache uses a three-stage eviction policy:
246 * - A low water marker designates when the dbuf eviction thread
247 * should stop evicting from the dbuf cache.
248 * - When we reach the maximum size (aka mid water mark), we
249 * signal the eviction thread to run.
250 * - The high water mark indicates when the eviction thread
251 * is unable to keep up with the incoming load and eviction must
252 * happen in the context of the calling thread.
253 *
254 * The dbuf cache:
255 * (max size)
256 * low water mid water hi water
257 * +----------------------------------------+----------+----------+
258 * | | | |
259 * | | | |
260 * | | | |
261 * | | | |
262 * +----------------------------------------+----------+----------+
263 * stop signal evict
264 * evicting eviction directly
265 * thread
266 *
267 * The high and low water marks indicate the operating range for the eviction
268 * thread. The low water mark is, by default, 90% of the total size of the
269 * cache and the high water mark is at 110% (both of these percentages can be
270 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
271 * respectively). The eviction thread will try to ensure that the cache remains
272 * within this range by waking up every second and checking if the cache is
273 * above the low water mark. The thread can also be woken up by callers adding
274 * elements into the cache if the cache is larger than the mid water (i.e max
275 * cache size). Once the eviction thread is woken up and eviction is required,
276 * it will continue evicting buffers until it's able to reduce the cache size
277 * to the low water mark. If the cache size continues to grow and hits the high
278 * water mark, then callers adding elements to the cache will begin to evict
279 * directly from the cache until the cache is no longer above the high water
280 * mark.
281 */
282
283 /*
284 * The percentage above and below the maximum cache size.
285 */
286 static uint_t dbuf_cache_hiwater_pct = 10;
287 static uint_t dbuf_cache_lowater_pct = 10;
288
289 static int
dbuf_cons(void * vdb,void * unused,int kmflag)290 dbuf_cons(void *vdb, void *unused, int kmflag)
291 {
292 (void) unused, (void) kmflag;
293 dmu_buf_impl_t *db = vdb;
294 memset(db, 0, sizeof (dmu_buf_impl_t));
295
296 mutex_init(&db->db_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
297 rw_init(&db->db_rwlock, NULL, RW_NOLOCKDEP, NULL);
298 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
299 multilist_link_init(&db->db_cache_link);
300 zfs_refcount_create(&db->db_holds);
301
302 return (0);
303 }
304
305 static void
dbuf_dest(void * vdb,void * unused)306 dbuf_dest(void *vdb, void *unused)
307 {
308 (void) unused;
309 dmu_buf_impl_t *db = vdb;
310 mutex_destroy(&db->db_mtx);
311 rw_destroy(&db->db_rwlock);
312 cv_destroy(&db->db_changed);
313 ASSERT(!multilist_link_active(&db->db_cache_link));
314 zfs_refcount_destroy(&db->db_holds);
315 }
316
317 /*
318 * dbuf hash table routines
319 */
320 static dbuf_hash_table_t dbuf_hash_table;
321
322 /*
323 * We use Cityhash for this. It's fast, and has good hash properties without
324 * requiring any large static buffers.
325 */
326 static uint64_t
dbuf_hash(void * os,uint64_t obj,uint8_t lvl,uint64_t blkid)327 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
328 {
329 return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid));
330 }
331
332 #define DTRACE_SET_STATE(db, why) \
333 DTRACE_PROBE2(dbuf__state_change, dmu_buf_impl_t *, db, \
334 const char *, why)
335
336 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \
337 ((dbuf)->db.db_object == (obj) && \
338 (dbuf)->db_objset == (os) && \
339 (dbuf)->db_level == (level) && \
340 (dbuf)->db_blkid == (blkid))
341
342 dmu_buf_impl_t *
dbuf_find(objset_t * os,uint64_t obj,uint8_t level,uint64_t blkid,uint64_t * hash_out)343 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid,
344 uint64_t *hash_out)
345 {
346 dbuf_hash_table_t *h = &dbuf_hash_table;
347 uint64_t hv;
348 uint64_t idx;
349 dmu_buf_impl_t *db;
350
351 hv = dbuf_hash(os, obj, level, blkid);
352 idx = hv & h->hash_table_mask;
353
354 mutex_enter(DBUF_HASH_MUTEX(h, idx));
355 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
356 if (DBUF_EQUAL(db, os, obj, level, blkid)) {
357 mutex_enter(&db->db_mtx);
358 if (db->db_state != DB_EVICTING) {
359 mutex_exit(DBUF_HASH_MUTEX(h, idx));
360 return (db);
361 }
362 mutex_exit(&db->db_mtx);
363 }
364 }
365 mutex_exit(DBUF_HASH_MUTEX(h, idx));
366 if (hash_out != NULL)
367 *hash_out = hv;
368 return (NULL);
369 }
370
371 static dmu_buf_impl_t *
dbuf_find_bonus(objset_t * os,uint64_t object)372 dbuf_find_bonus(objset_t *os, uint64_t object)
373 {
374 dnode_t *dn;
375 dmu_buf_impl_t *db = NULL;
376
377 if (dnode_hold(os, object, FTAG, &dn) == 0) {
378 rw_enter(&dn->dn_struct_rwlock, RW_READER);
379 if (dn->dn_bonus != NULL) {
380 db = dn->dn_bonus;
381 mutex_enter(&db->db_mtx);
382 }
383 rw_exit(&dn->dn_struct_rwlock);
384 dnode_rele(dn, FTAG);
385 }
386 return (db);
387 }
388
389 /*
390 * Insert an entry into the hash table. If there is already an element
391 * equal to elem in the hash table, then the already existing element
392 * will be returned and the new element will not be inserted.
393 * Otherwise returns NULL.
394 */
395 static dmu_buf_impl_t *
dbuf_hash_insert(dmu_buf_impl_t * db)396 dbuf_hash_insert(dmu_buf_impl_t *db)
397 {
398 dbuf_hash_table_t *h = &dbuf_hash_table;
399 objset_t *os = db->db_objset;
400 uint64_t obj = db->db.db_object;
401 int level = db->db_level;
402 uint64_t blkid, idx;
403 dmu_buf_impl_t *dbf;
404 uint32_t i;
405
406 blkid = db->db_blkid;
407 ASSERT3U(dbuf_hash(os, obj, level, blkid), ==, db->db_hash);
408 idx = db->db_hash & h->hash_table_mask;
409
410 mutex_enter(DBUF_HASH_MUTEX(h, idx));
411 for (dbf = h->hash_table[idx], i = 0; dbf != NULL;
412 dbf = dbf->db_hash_next, i++) {
413 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
414 mutex_enter(&dbf->db_mtx);
415 if (dbf->db_state != DB_EVICTING) {
416 mutex_exit(DBUF_HASH_MUTEX(h, idx));
417 return (dbf);
418 }
419 mutex_exit(&dbf->db_mtx);
420 }
421 }
422
423 if (i > 0) {
424 DBUF_STAT_BUMP(hash_collisions);
425 if (i == 1)
426 DBUF_STAT_BUMP(hash_chains);
427
428 DBUF_STAT_MAX(hash_chain_max, i);
429 }
430
431 mutex_enter(&db->db_mtx);
432 db->db_hash_next = h->hash_table[idx];
433 h->hash_table[idx] = db;
434 mutex_exit(DBUF_HASH_MUTEX(h, idx));
435 uint64_t he = atomic_inc_64_nv(&dbuf_stats.hash_elements.value.ui64);
436 DBUF_STAT_MAX(hash_elements_max, he);
437
438 return (NULL);
439 }
440
441 /*
442 * This returns whether this dbuf should be stored in the metadata cache, which
443 * is based on whether it's from one of the dnode types that store data related
444 * to traversing dataset hierarchies.
445 */
446 static boolean_t
dbuf_include_in_metadata_cache(dmu_buf_impl_t * db)447 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db)
448 {
449 DB_DNODE_ENTER(db);
450 dmu_object_type_t type = DB_DNODE(db)->dn_type;
451 DB_DNODE_EXIT(db);
452
453 /* Check if this dbuf is one of the types we care about */
454 if (DMU_OT_IS_METADATA_CACHED(type)) {
455 /* If we hit this, then we set something up wrong in dmu_ot */
456 ASSERT(DMU_OT_IS_METADATA(type));
457
458 /*
459 * Sanity check for small-memory systems: don't allocate too
460 * much memory for this purpose.
461 */
462 if (zfs_refcount_count(
463 &dbuf_caches[DB_DBUF_METADATA_CACHE].size) >
464 dbuf_metadata_cache_target_bytes()) {
465 DBUF_STAT_BUMP(metadata_cache_overflow);
466 return (B_FALSE);
467 }
468
469 return (B_TRUE);
470 }
471
472 return (B_FALSE);
473 }
474
475 /*
476 * Remove an entry from the hash table. It must be in the EVICTING state.
477 */
478 static void
dbuf_hash_remove(dmu_buf_impl_t * db)479 dbuf_hash_remove(dmu_buf_impl_t *db)
480 {
481 dbuf_hash_table_t *h = &dbuf_hash_table;
482 uint64_t idx;
483 dmu_buf_impl_t *dbf, **dbp;
484
485 ASSERT3U(dbuf_hash(db->db_objset, db->db.db_object, db->db_level,
486 db->db_blkid), ==, db->db_hash);
487 idx = db->db_hash & h->hash_table_mask;
488
489 /*
490 * We mustn't hold db_mtx to maintain lock ordering:
491 * DBUF_HASH_MUTEX > db_mtx.
492 */
493 ASSERT(zfs_refcount_is_zero(&db->db_holds));
494 ASSERT(db->db_state == DB_EVICTING);
495 ASSERT(!MUTEX_HELD(&db->db_mtx));
496
497 mutex_enter(DBUF_HASH_MUTEX(h, idx));
498 dbp = &h->hash_table[idx];
499 while ((dbf = *dbp) != db) {
500 dbp = &dbf->db_hash_next;
501 ASSERT(dbf != NULL);
502 }
503 *dbp = db->db_hash_next;
504 db->db_hash_next = NULL;
505 if (h->hash_table[idx] &&
506 h->hash_table[idx]->db_hash_next == NULL)
507 DBUF_STAT_BUMPDOWN(hash_chains);
508 mutex_exit(DBUF_HASH_MUTEX(h, idx));
509 atomic_dec_64(&dbuf_stats.hash_elements.value.ui64);
510 }
511
512 typedef enum {
513 DBVU_EVICTING,
514 DBVU_NOT_EVICTING
515 } dbvu_verify_type_t;
516
517 static void
dbuf_verify_user(dmu_buf_impl_t * db,dbvu_verify_type_t verify_type)518 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
519 {
520 #ifdef ZFS_DEBUG
521 int64_t holds;
522
523 if (db->db_user == NULL)
524 return;
525
526 /* Only data blocks support the attachment of user data. */
527 ASSERT(db->db_level == 0);
528
529 /* Clients must resolve a dbuf before attaching user data. */
530 ASSERT(db->db.db_data != NULL);
531 ASSERT3U(db->db_state, ==, DB_CACHED);
532
533 holds = zfs_refcount_count(&db->db_holds);
534 if (verify_type == DBVU_EVICTING) {
535 /*
536 * Immediate eviction occurs when holds == dirtycnt.
537 * For normal eviction buffers, holds is zero on
538 * eviction, except when dbuf_fix_old_data() calls
539 * dbuf_clear_data(). However, the hold count can grow
540 * during eviction even though db_mtx is held (see
541 * dmu_bonus_hold() for an example), so we can only
542 * test the generic invariant that holds >= dirtycnt.
543 */
544 ASSERT3U(holds, >=, db->db_dirtycnt);
545 } else {
546 if (db->db_user_immediate_evict == TRUE)
547 ASSERT3U(holds, >=, db->db_dirtycnt);
548 else
549 ASSERT3U(holds, >, 0);
550 }
551 #endif
552 }
553
554 static void
dbuf_evict_user(dmu_buf_impl_t * db)555 dbuf_evict_user(dmu_buf_impl_t *db)
556 {
557 dmu_buf_user_t *dbu = db->db_user;
558
559 ASSERT(MUTEX_HELD(&db->db_mtx));
560
561 if (dbu == NULL)
562 return;
563
564 dbuf_verify_user(db, DBVU_EVICTING);
565 db->db_user = NULL;
566
567 #ifdef ZFS_DEBUG
568 if (dbu->dbu_clear_on_evict_dbufp != NULL)
569 *dbu->dbu_clear_on_evict_dbufp = NULL;
570 #endif
571
572 if (db->db_caching_status != DB_NO_CACHE) {
573 /*
574 * This is a cached dbuf, so the size of the user data is
575 * included in its cached amount. We adjust it here because the
576 * user data has already been detached from the dbuf, and the
577 * sync functions are not supposed to touch it (the dbuf might
578 * not exist anymore by the time the sync functions run.
579 */
580 uint64_t size = dbu->dbu_size;
581 (void) zfs_refcount_remove_many(
582 &dbuf_caches[db->db_caching_status].size, size, dbu);
583 if (db->db_caching_status == DB_DBUF_CACHE)
584 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size);
585 }
586
587 /*
588 * There are two eviction callbacks - one that we call synchronously
589 * and one that we invoke via a taskq. The async one is useful for
590 * avoiding lock order reversals and limiting stack depth.
591 *
592 * Note that if we have a sync callback but no async callback,
593 * it's likely that the sync callback will free the structure
594 * containing the dbu. In that case we need to take care to not
595 * dereference dbu after calling the sync evict func.
596 */
597 boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
598
599 if (dbu->dbu_evict_func_sync != NULL)
600 dbu->dbu_evict_func_sync(dbu);
601
602 if (has_async) {
603 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
604 dbu, 0, &dbu->dbu_tqent);
605 }
606 }
607
608 boolean_t
dbuf_is_metadata(dmu_buf_impl_t * db)609 dbuf_is_metadata(dmu_buf_impl_t *db)
610 {
611 /*
612 * Consider indirect blocks and spill blocks to be meta data.
613 */
614 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) {
615 return (B_TRUE);
616 } else {
617 boolean_t is_metadata;
618
619 DB_DNODE_ENTER(db);
620 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
621 DB_DNODE_EXIT(db);
622
623 return (is_metadata);
624 }
625 }
626
627 /*
628 * We want to exclude buffers that are on a special allocation class from
629 * L2ARC.
630 */
631 boolean_t
dbuf_is_l2cacheable(dmu_buf_impl_t * db,blkptr_t * bp)632 dbuf_is_l2cacheable(dmu_buf_impl_t *db, blkptr_t *bp)
633 {
634 if (db->db_objset->os_secondary_cache == ZFS_CACHE_ALL ||
635 (db->db_objset->os_secondary_cache ==
636 ZFS_CACHE_METADATA && dbuf_is_metadata(db))) {
637 if (l2arc_exclude_special == 0)
638 return (B_TRUE);
639
640 /*
641 * bp must be checked in the event it was passed from
642 * dbuf_read_impl() as the result of a the BP being set from
643 * a Direct I/O write in dbuf_read(). See comments in
644 * dbuf_read().
645 */
646 blkptr_t *db_bp = bp == NULL ? db->db_blkptr : bp;
647
648 if (db_bp == NULL || BP_IS_HOLE(db_bp))
649 return (B_FALSE);
650 uint64_t vdev = DVA_GET_VDEV(db_bp->blk_dva);
651 vdev_t *rvd = db->db_objset->os_spa->spa_root_vdev;
652 vdev_t *vd = NULL;
653
654 if (vdev < rvd->vdev_children)
655 vd = rvd->vdev_child[vdev];
656
657 if (vd == NULL)
658 return (B_TRUE);
659
660 if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL &&
661 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP)
662 return (B_TRUE);
663 }
664 return (B_FALSE);
665 }
666
667 static inline boolean_t
dnode_level_is_l2cacheable(blkptr_t * bp,dnode_t * dn,int64_t level)668 dnode_level_is_l2cacheable(blkptr_t *bp, dnode_t *dn, int64_t level)
669 {
670 if (dn->dn_objset->os_secondary_cache == ZFS_CACHE_ALL ||
671 (dn->dn_objset->os_secondary_cache == ZFS_CACHE_METADATA &&
672 (level > 0 ||
673 DMU_OT_IS_METADATA(dn->dn_handle->dnh_dnode->dn_type)))) {
674 if (l2arc_exclude_special == 0)
675 return (B_TRUE);
676
677 if (bp == NULL || BP_IS_HOLE(bp))
678 return (B_FALSE);
679 uint64_t vdev = DVA_GET_VDEV(bp->blk_dva);
680 vdev_t *rvd = dn->dn_objset->os_spa->spa_root_vdev;
681 vdev_t *vd = NULL;
682
683 if (vdev < rvd->vdev_children)
684 vd = rvd->vdev_child[vdev];
685
686 if (vd == NULL)
687 return (B_TRUE);
688
689 if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL &&
690 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP)
691 return (B_TRUE);
692 }
693 return (B_FALSE);
694 }
695
696
697 /*
698 * This function *must* return indices evenly distributed between all
699 * sublists of the multilist. This is needed due to how the dbuf eviction
700 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
701 * distributed between all sublists and uses this assumption when
702 * deciding which sublist to evict from and how much to evict from it.
703 */
704 static unsigned int
dbuf_cache_multilist_index_func(multilist_t * ml,void * obj)705 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
706 {
707 dmu_buf_impl_t *db = obj;
708
709 /*
710 * The assumption here, is the hash value for a given
711 * dmu_buf_impl_t will remain constant throughout it's lifetime
712 * (i.e. it's objset, object, level and blkid fields don't change).
713 * Thus, we don't need to store the dbuf's sublist index
714 * on insertion, as this index can be recalculated on removal.
715 *
716 * Also, the low order bits of the hash value are thought to be
717 * distributed evenly. Otherwise, in the case that the multilist
718 * has a power of two number of sublists, each sublists' usage
719 * would not be evenly distributed. In this context full 64bit
720 * division would be a waste of time, so limit it to 32 bits.
721 */
722 return ((unsigned int)dbuf_hash(db->db_objset, db->db.db_object,
723 db->db_level, db->db_blkid) %
724 multilist_get_num_sublists(ml));
725 }
726
727 /*
728 * The target size of the dbuf cache can grow with the ARC target,
729 * unless limited by the tunable dbuf_cache_max_bytes.
730 */
731 static inline unsigned long
dbuf_cache_target_bytes(void)732 dbuf_cache_target_bytes(void)
733 {
734 return (MIN(dbuf_cache_max_bytes,
735 arc_target_bytes() >> dbuf_cache_shift));
736 }
737
738 /*
739 * The target size of the dbuf metadata cache can grow with the ARC target,
740 * unless limited by the tunable dbuf_metadata_cache_max_bytes.
741 */
742 static inline unsigned long
dbuf_metadata_cache_target_bytes(void)743 dbuf_metadata_cache_target_bytes(void)
744 {
745 return (MIN(dbuf_metadata_cache_max_bytes,
746 arc_target_bytes() >> dbuf_metadata_cache_shift));
747 }
748
749 static inline uint64_t
dbuf_cache_hiwater_bytes(void)750 dbuf_cache_hiwater_bytes(void)
751 {
752 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
753 return (dbuf_cache_target +
754 (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100);
755 }
756
757 static inline uint64_t
dbuf_cache_lowater_bytes(void)758 dbuf_cache_lowater_bytes(void)
759 {
760 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
761 return (dbuf_cache_target -
762 (dbuf_cache_target * dbuf_cache_lowater_pct) / 100);
763 }
764
765 static inline boolean_t
dbuf_cache_above_lowater(void)766 dbuf_cache_above_lowater(void)
767 {
768 return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
769 dbuf_cache_lowater_bytes());
770 }
771
772 /*
773 * Evict the oldest eligible dbuf from the dbuf cache.
774 */
775 static void
dbuf_evict_one(void)776 dbuf_evict_one(void)
777 {
778 int idx = multilist_get_random_index(&dbuf_caches[DB_DBUF_CACHE].cache);
779 multilist_sublist_t *mls = multilist_sublist_lock_idx(
780 &dbuf_caches[DB_DBUF_CACHE].cache, idx);
781
782 ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
783
784 dmu_buf_impl_t *db = multilist_sublist_tail(mls);
785 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
786 db = multilist_sublist_prev(mls, db);
787 }
788
789 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
790 multilist_sublist_t *, mls);
791
792 if (db != NULL) {
793 multilist_sublist_remove(mls, db);
794 multilist_sublist_unlock(mls);
795 uint64_t size = db->db.db_size;
796 uint64_t usize = dmu_buf_user_size(&db->db);
797 (void) zfs_refcount_remove_many(
798 &dbuf_caches[DB_DBUF_CACHE].size, size, db);
799 (void) zfs_refcount_remove_many(
800 &dbuf_caches[DB_DBUF_CACHE].size, usize, db->db_user);
801 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
802 DBUF_STAT_BUMPDOWN(cache_count);
803 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size + usize);
804 ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE);
805 db->db_caching_status = DB_NO_CACHE;
806 dbuf_destroy(db);
807 DBUF_STAT_BUMP(cache_total_evicts);
808 } else {
809 multilist_sublist_unlock(mls);
810 }
811 }
812
813 /*
814 * The dbuf evict thread is responsible for aging out dbufs from the
815 * cache. Once the cache has reached it's maximum size, dbufs are removed
816 * and destroyed. The eviction thread will continue running until the size
817 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
818 * out of the cache it is destroyed and becomes eligible for arc eviction.
819 */
820 static __attribute__((noreturn)) void
dbuf_evict_thread(void * unused)821 dbuf_evict_thread(void *unused)
822 {
823 (void) unused;
824 callb_cpr_t cpr;
825
826 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
827
828 mutex_enter(&dbuf_evict_lock);
829 while (!dbuf_evict_thread_exit) {
830 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
831 CALLB_CPR_SAFE_BEGIN(&cpr);
832 (void) cv_timedwait_idle_hires(&dbuf_evict_cv,
833 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
834 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
835 }
836 mutex_exit(&dbuf_evict_lock);
837
838 /*
839 * Keep evicting as long as we're above the low water mark
840 * for the cache. We do this without holding the locks to
841 * minimize lock contention.
842 */
843 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
844 dbuf_evict_one();
845 }
846
847 mutex_enter(&dbuf_evict_lock);
848 }
849
850 dbuf_evict_thread_exit = B_FALSE;
851 cv_broadcast(&dbuf_evict_cv);
852 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */
853 thread_exit();
854 }
855
856 /*
857 * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
858 * If the dbuf cache is at its high water mark, then evict a dbuf from the
859 * dbuf cache using the caller's context.
860 */
861 static void
dbuf_evict_notify(uint64_t size)862 dbuf_evict_notify(uint64_t size)
863 {
864 /*
865 * We check if we should evict without holding the dbuf_evict_lock,
866 * because it's OK to occasionally make the wrong decision here,
867 * and grabbing the lock results in massive lock contention.
868 */
869 if (size > dbuf_cache_target_bytes()) {
870 if (size > dbuf_cache_hiwater_bytes())
871 dbuf_evict_one();
872 cv_signal(&dbuf_evict_cv);
873 }
874 }
875
876 static int
dbuf_kstat_update(kstat_t * ksp,int rw)877 dbuf_kstat_update(kstat_t *ksp, int rw)
878 {
879 dbuf_stats_t *ds = ksp->ks_data;
880 dbuf_hash_table_t *h = &dbuf_hash_table;
881
882 if (rw == KSTAT_WRITE)
883 return (SET_ERROR(EACCES));
884
885 ds->cache_count.value.ui64 =
886 wmsum_value(&dbuf_sums.cache_count);
887 ds->cache_size_bytes.value.ui64 =
888 zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size);
889 ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes();
890 ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes();
891 ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes();
892 ds->cache_total_evicts.value.ui64 =
893 wmsum_value(&dbuf_sums.cache_total_evicts);
894 for (int i = 0; i < DN_MAX_LEVELS; i++) {
895 ds->cache_levels[i].value.ui64 =
896 wmsum_value(&dbuf_sums.cache_levels[i]);
897 ds->cache_levels_bytes[i].value.ui64 =
898 wmsum_value(&dbuf_sums.cache_levels_bytes[i]);
899 }
900 ds->hash_hits.value.ui64 =
901 wmsum_value(&dbuf_sums.hash_hits);
902 ds->hash_misses.value.ui64 =
903 wmsum_value(&dbuf_sums.hash_misses);
904 ds->hash_collisions.value.ui64 =
905 wmsum_value(&dbuf_sums.hash_collisions);
906 ds->hash_chains.value.ui64 =
907 wmsum_value(&dbuf_sums.hash_chains);
908 ds->hash_insert_race.value.ui64 =
909 wmsum_value(&dbuf_sums.hash_insert_race);
910 ds->hash_table_count.value.ui64 = h->hash_table_mask + 1;
911 ds->hash_mutex_count.value.ui64 = h->hash_mutex_mask + 1;
912 ds->metadata_cache_count.value.ui64 =
913 wmsum_value(&dbuf_sums.metadata_cache_count);
914 ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count(
915 &dbuf_caches[DB_DBUF_METADATA_CACHE].size);
916 ds->metadata_cache_overflow.value.ui64 =
917 wmsum_value(&dbuf_sums.metadata_cache_overflow);
918 return (0);
919 }
920
921 void
dbuf_init(void)922 dbuf_init(void)
923 {
924 uint64_t hmsize, hsize = 1ULL << 16;
925 dbuf_hash_table_t *h = &dbuf_hash_table;
926
927 /*
928 * The hash table is big enough to fill one eighth of physical memory
929 * with an average block size of zfs_arc_average_blocksize (default 8K).
930 * By default, the table will take up
931 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
932 */
933 while (hsize * zfs_arc_average_blocksize < arc_all_memory() / 8)
934 hsize <<= 1;
935
936 h->hash_table = NULL;
937 while (h->hash_table == NULL) {
938 h->hash_table_mask = hsize - 1;
939
940 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP);
941 if (h->hash_table == NULL)
942 hsize >>= 1;
943
944 ASSERT3U(hsize, >=, 1ULL << 10);
945 }
946
947 /*
948 * The hash table buckets are protected by an array of mutexes where
949 * each mutex is reponsible for protecting 128 buckets. A minimum
950 * array size of 8192 is targeted to avoid contention.
951 */
952 if (dbuf_mutex_cache_shift == 0)
953 hmsize = MAX(hsize >> 7, 1ULL << 13);
954 else
955 hmsize = 1ULL << MIN(dbuf_mutex_cache_shift, 24);
956
957 h->hash_mutexes = NULL;
958 while (h->hash_mutexes == NULL) {
959 h->hash_mutex_mask = hmsize - 1;
960
961 h->hash_mutexes = vmem_zalloc(hmsize * sizeof (kmutex_t),
962 KM_SLEEP);
963 if (h->hash_mutexes == NULL)
964 hmsize >>= 1;
965 }
966
967 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
968 sizeof (dmu_buf_impl_t),
969 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
970 dbuf_dirty_kmem_cache = kmem_cache_create("dbuf_dirty_record_t",
971 sizeof (dbuf_dirty_record_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
972
973 for (int i = 0; i < hmsize; i++)
974 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_NOLOCKDEP, NULL);
975
976 dbuf_stats_init(h);
977
978 /*
979 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
980 * configuration is not required.
981 */
982 dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0);
983
984 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
985 multilist_create(&dbuf_caches[dcs].cache,
986 sizeof (dmu_buf_impl_t),
987 offsetof(dmu_buf_impl_t, db_cache_link),
988 dbuf_cache_multilist_index_func);
989 zfs_refcount_create(&dbuf_caches[dcs].size);
990 }
991
992 dbuf_evict_thread_exit = B_FALSE;
993 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
994 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
995 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
996 NULL, 0, &p0, TS_RUN, minclsyspri);
997
998 wmsum_init(&dbuf_sums.cache_count, 0);
999 wmsum_init(&dbuf_sums.cache_total_evicts, 0);
1000 for (int i = 0; i < DN_MAX_LEVELS; i++) {
1001 wmsum_init(&dbuf_sums.cache_levels[i], 0);
1002 wmsum_init(&dbuf_sums.cache_levels_bytes[i], 0);
1003 }
1004 wmsum_init(&dbuf_sums.hash_hits, 0);
1005 wmsum_init(&dbuf_sums.hash_misses, 0);
1006 wmsum_init(&dbuf_sums.hash_collisions, 0);
1007 wmsum_init(&dbuf_sums.hash_chains, 0);
1008 wmsum_init(&dbuf_sums.hash_insert_race, 0);
1009 wmsum_init(&dbuf_sums.metadata_cache_count, 0);
1010 wmsum_init(&dbuf_sums.metadata_cache_overflow, 0);
1011
1012 dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc",
1013 KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t),
1014 KSTAT_FLAG_VIRTUAL);
1015 if (dbuf_ksp != NULL) {
1016 for (int i = 0; i < DN_MAX_LEVELS; i++) {
1017 snprintf(dbuf_stats.cache_levels[i].name,
1018 KSTAT_STRLEN, "cache_level_%d", i);
1019 dbuf_stats.cache_levels[i].data_type =
1020 KSTAT_DATA_UINT64;
1021 snprintf(dbuf_stats.cache_levels_bytes[i].name,
1022 KSTAT_STRLEN, "cache_level_%d_bytes", i);
1023 dbuf_stats.cache_levels_bytes[i].data_type =
1024 KSTAT_DATA_UINT64;
1025 }
1026 dbuf_ksp->ks_data = &dbuf_stats;
1027 dbuf_ksp->ks_update = dbuf_kstat_update;
1028 kstat_install(dbuf_ksp);
1029 }
1030 }
1031
1032 void
dbuf_fini(void)1033 dbuf_fini(void)
1034 {
1035 dbuf_hash_table_t *h = &dbuf_hash_table;
1036
1037 dbuf_stats_destroy();
1038
1039 for (int i = 0; i < (h->hash_mutex_mask + 1); i++)
1040 mutex_destroy(&h->hash_mutexes[i]);
1041
1042 vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
1043 vmem_free(h->hash_mutexes, (h->hash_mutex_mask + 1) *
1044 sizeof (kmutex_t));
1045
1046 kmem_cache_destroy(dbuf_kmem_cache);
1047 kmem_cache_destroy(dbuf_dirty_kmem_cache);
1048 taskq_destroy(dbu_evict_taskq);
1049
1050 mutex_enter(&dbuf_evict_lock);
1051 dbuf_evict_thread_exit = B_TRUE;
1052 while (dbuf_evict_thread_exit) {
1053 cv_signal(&dbuf_evict_cv);
1054 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
1055 }
1056 mutex_exit(&dbuf_evict_lock);
1057
1058 mutex_destroy(&dbuf_evict_lock);
1059 cv_destroy(&dbuf_evict_cv);
1060
1061 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
1062 zfs_refcount_destroy(&dbuf_caches[dcs].size);
1063 multilist_destroy(&dbuf_caches[dcs].cache);
1064 }
1065
1066 if (dbuf_ksp != NULL) {
1067 kstat_delete(dbuf_ksp);
1068 dbuf_ksp = NULL;
1069 }
1070
1071 wmsum_fini(&dbuf_sums.cache_count);
1072 wmsum_fini(&dbuf_sums.cache_total_evicts);
1073 for (int i = 0; i < DN_MAX_LEVELS; i++) {
1074 wmsum_fini(&dbuf_sums.cache_levels[i]);
1075 wmsum_fini(&dbuf_sums.cache_levels_bytes[i]);
1076 }
1077 wmsum_fini(&dbuf_sums.hash_hits);
1078 wmsum_fini(&dbuf_sums.hash_misses);
1079 wmsum_fini(&dbuf_sums.hash_collisions);
1080 wmsum_fini(&dbuf_sums.hash_chains);
1081 wmsum_fini(&dbuf_sums.hash_insert_race);
1082 wmsum_fini(&dbuf_sums.metadata_cache_count);
1083 wmsum_fini(&dbuf_sums.metadata_cache_overflow);
1084 }
1085
1086 /*
1087 * Other stuff.
1088 */
1089
1090 #ifdef ZFS_DEBUG
1091 static void
dbuf_verify(dmu_buf_impl_t * db)1092 dbuf_verify(dmu_buf_impl_t *db)
1093 {
1094 dnode_t *dn;
1095 dbuf_dirty_record_t *dr;
1096 uint32_t txg_prev;
1097
1098 ASSERT(MUTEX_HELD(&db->db_mtx));
1099
1100 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
1101 return;
1102
1103 ASSERT(db->db_objset != NULL);
1104 DB_DNODE_ENTER(db);
1105 dn = DB_DNODE(db);
1106 if (dn == NULL) {
1107 ASSERT(db->db_parent == NULL);
1108 ASSERT(db->db_blkptr == NULL);
1109 } else {
1110 ASSERT3U(db->db.db_object, ==, dn->dn_object);
1111 ASSERT3P(db->db_objset, ==, dn->dn_objset);
1112 ASSERT3U(db->db_level, <, dn->dn_nlevels);
1113 ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
1114 db->db_blkid == DMU_SPILL_BLKID ||
1115 !avl_is_empty(&dn->dn_dbufs));
1116 }
1117 if (db->db_blkid == DMU_BONUS_BLKID) {
1118 ASSERT(dn != NULL);
1119 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
1120 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
1121 } else if (db->db_blkid == DMU_SPILL_BLKID) {
1122 ASSERT(dn != NULL);
1123 ASSERT0(db->db.db_offset);
1124 } else {
1125 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
1126 }
1127
1128 if ((dr = list_head(&db->db_dirty_records)) != NULL) {
1129 ASSERT(dr->dr_dbuf == db);
1130 txg_prev = dr->dr_txg;
1131 for (dr = list_next(&db->db_dirty_records, dr); dr != NULL;
1132 dr = list_next(&db->db_dirty_records, dr)) {
1133 ASSERT(dr->dr_dbuf == db);
1134 ASSERT(txg_prev > dr->dr_txg);
1135 txg_prev = dr->dr_txg;
1136 }
1137 }
1138
1139 /*
1140 * We can't assert that db_size matches dn_datablksz because it
1141 * can be momentarily different when another thread is doing
1142 * dnode_set_blksz().
1143 */
1144 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
1145 dr = db->db_data_pending;
1146 /*
1147 * It should only be modified in syncing context, so
1148 * make sure we only have one copy of the data.
1149 */
1150 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
1151 }
1152
1153 /* verify db->db_blkptr */
1154 if (db->db_blkptr) {
1155 if (db->db_parent == dn->dn_dbuf) {
1156 /* db is pointed to by the dnode */
1157 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
1158 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
1159 ASSERT(db->db_parent == NULL);
1160 else
1161 ASSERT(db->db_parent != NULL);
1162 if (db->db_blkid != DMU_SPILL_BLKID)
1163 ASSERT3P(db->db_blkptr, ==,
1164 &dn->dn_phys->dn_blkptr[db->db_blkid]);
1165 } else {
1166 /* db is pointed to by an indirect block */
1167 int epb __maybe_unused = db->db_parent->db.db_size >>
1168 SPA_BLKPTRSHIFT;
1169 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
1170 ASSERT3U(db->db_parent->db.db_object, ==,
1171 db->db.db_object);
1172 /*
1173 * dnode_grow_indblksz() can make this fail if we don't
1174 * have the parent's rwlock. XXX indblksz no longer
1175 * grows. safe to do this now?
1176 */
1177 if (RW_LOCK_HELD(&db->db_parent->db_rwlock)) {
1178 ASSERT3P(db->db_blkptr, ==,
1179 ((blkptr_t *)db->db_parent->db.db_data +
1180 db->db_blkid % epb));
1181 }
1182 }
1183 }
1184 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
1185 (db->db_buf == NULL || db->db_buf->b_data) &&
1186 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
1187 db->db_state != DB_FILL && (dn == NULL || !dn->dn_free_txg)) {
1188 /*
1189 * If the blkptr isn't set but they have nonzero data,
1190 * it had better be dirty, otherwise we'll lose that
1191 * data when we evict this buffer.
1192 *
1193 * There is an exception to this rule for indirect blocks; in
1194 * this case, if the indirect block is a hole, we fill in a few
1195 * fields on each of the child blocks (importantly, birth time)
1196 * to prevent hole birth times from being lost when you
1197 * partially fill in a hole.
1198 */
1199 if (db->db_dirtycnt == 0) {
1200 if (db->db_level == 0) {
1201 uint64_t *buf = db->db.db_data;
1202 int i;
1203
1204 for (i = 0; i < db->db.db_size >> 3; i++) {
1205 ASSERT(buf[i] == 0);
1206 }
1207 } else {
1208 blkptr_t *bps = db->db.db_data;
1209 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
1210 db->db.db_size);
1211 /*
1212 * We want to verify that all the blkptrs in the
1213 * indirect block are holes, but we may have
1214 * automatically set up a few fields for them.
1215 * We iterate through each blkptr and verify
1216 * they only have those fields set.
1217 */
1218 for (int i = 0;
1219 i < db->db.db_size / sizeof (blkptr_t);
1220 i++) {
1221 blkptr_t *bp = &bps[i];
1222 ASSERT(ZIO_CHECKSUM_IS_ZERO(
1223 &bp->blk_cksum));
1224 ASSERT(
1225 DVA_IS_EMPTY(&bp->blk_dva[0]) &&
1226 DVA_IS_EMPTY(&bp->blk_dva[1]) &&
1227 DVA_IS_EMPTY(&bp->blk_dva[2]));
1228 ASSERT0(bp->blk_fill);
1229 ASSERT0(bp->blk_pad[0]);
1230 ASSERT0(bp->blk_pad[1]);
1231 ASSERT(!BP_IS_EMBEDDED(bp));
1232 ASSERT(BP_IS_HOLE(bp));
1233 ASSERT0(BP_GET_PHYSICAL_BIRTH(bp));
1234 }
1235 }
1236 }
1237 }
1238 DB_DNODE_EXIT(db);
1239 }
1240 #endif
1241
1242 static void
dbuf_clear_data(dmu_buf_impl_t * db)1243 dbuf_clear_data(dmu_buf_impl_t *db)
1244 {
1245 ASSERT(MUTEX_HELD(&db->db_mtx));
1246 dbuf_evict_user(db);
1247 ASSERT3P(db->db_buf, ==, NULL);
1248 db->db.db_data = NULL;
1249 if (db->db_state != DB_NOFILL) {
1250 db->db_state = DB_UNCACHED;
1251 DTRACE_SET_STATE(db, "clear data");
1252 }
1253 }
1254
1255 static void
dbuf_set_data(dmu_buf_impl_t * db,arc_buf_t * buf)1256 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
1257 {
1258 ASSERT(MUTEX_HELD(&db->db_mtx));
1259 ASSERT(buf != NULL);
1260
1261 db->db_buf = buf;
1262 ASSERT(buf->b_data != NULL);
1263 db->db.db_data = buf->b_data;
1264 }
1265
1266 static arc_buf_t *
dbuf_alloc_arcbuf(dmu_buf_impl_t * db)1267 dbuf_alloc_arcbuf(dmu_buf_impl_t *db)
1268 {
1269 spa_t *spa = db->db_objset->os_spa;
1270
1271 return (arc_alloc_buf(spa, db, DBUF_GET_BUFC_TYPE(db), db->db.db_size));
1272 }
1273
1274 /*
1275 * Loan out an arc_buf for read. Return the loaned arc_buf.
1276 */
1277 arc_buf_t *
dbuf_loan_arcbuf(dmu_buf_impl_t * db)1278 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
1279 {
1280 arc_buf_t *abuf;
1281
1282 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1283 mutex_enter(&db->db_mtx);
1284 if (arc_released(db->db_buf) || zfs_refcount_count(&db->db_holds) > 1) {
1285 int blksz = db->db.db_size;
1286 spa_t *spa = db->db_objset->os_spa;
1287
1288 mutex_exit(&db->db_mtx);
1289 abuf = arc_loan_buf(spa, B_FALSE, blksz);
1290 memcpy(abuf->b_data, db->db.db_data, blksz);
1291 } else {
1292 abuf = db->db_buf;
1293 arc_loan_inuse_buf(abuf, db);
1294 db->db_buf = NULL;
1295 dbuf_clear_data(db);
1296 mutex_exit(&db->db_mtx);
1297 }
1298 return (abuf);
1299 }
1300
1301 /*
1302 * Calculate which level n block references the data at the level 0 offset
1303 * provided.
1304 */
1305 uint64_t
dbuf_whichblock(const dnode_t * dn,const int64_t level,const uint64_t offset)1306 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset)
1307 {
1308 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
1309 /*
1310 * The level n blkid is equal to the level 0 blkid divided by
1311 * the number of level 0s in a level n block.
1312 *
1313 * The level 0 blkid is offset >> datablkshift =
1314 * offset / 2^datablkshift.
1315 *
1316 * The number of level 0s in a level n is the number of block
1317 * pointers in an indirect block, raised to the power of level.
1318 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
1319 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
1320 *
1321 * Thus, the level n blkid is: offset /
1322 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT))))
1323 * = offset / 2^(datablkshift + level *
1324 * (indblkshift - SPA_BLKPTRSHIFT))
1325 * = offset >> (datablkshift + level *
1326 * (indblkshift - SPA_BLKPTRSHIFT))
1327 */
1328
1329 const unsigned exp = dn->dn_datablkshift +
1330 level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT);
1331
1332 if (exp >= 8 * sizeof (offset)) {
1333 /* This only happens on the highest indirection level */
1334 ASSERT3U(level, ==, dn->dn_nlevels - 1);
1335 return (0);
1336 }
1337
1338 ASSERT3U(exp, <, 8 * sizeof (offset));
1339
1340 return (offset >> exp);
1341 } else {
1342 ASSERT3U(offset, <, dn->dn_datablksz);
1343 return (0);
1344 }
1345 }
1346
1347 /*
1348 * This function is used to lock the parent of the provided dbuf. This should be
1349 * used when modifying or reading db_blkptr.
1350 */
1351 db_lock_type_t
dmu_buf_lock_parent(dmu_buf_impl_t * db,krw_t rw,const void * tag)1352 dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, const void *tag)
1353 {
1354 enum db_lock_type ret = DLT_NONE;
1355 if (db->db_parent != NULL) {
1356 rw_enter(&db->db_parent->db_rwlock, rw);
1357 ret = DLT_PARENT;
1358 } else if (dmu_objset_ds(db->db_objset) != NULL) {
1359 rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw,
1360 tag);
1361 ret = DLT_OBJSET;
1362 }
1363 /*
1364 * We only return a DLT_NONE lock when it's the top-most indirect block
1365 * of the meta-dnode of the MOS.
1366 */
1367 return (ret);
1368 }
1369
1370 /*
1371 * We need to pass the lock type in because it's possible that the block will
1372 * move from being the topmost indirect block in a dnode (and thus, have no
1373 * parent) to not the top-most via an indirection increase. This would cause a
1374 * panic if we didn't pass the lock type in.
1375 */
1376 void
dmu_buf_unlock_parent(dmu_buf_impl_t * db,db_lock_type_t type,const void * tag)1377 dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, const void *tag)
1378 {
1379 if (type == DLT_PARENT)
1380 rw_exit(&db->db_parent->db_rwlock);
1381 else if (type == DLT_OBJSET)
1382 rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag);
1383 }
1384
1385 static void
dbuf_read_done(zio_t * zio,const zbookmark_phys_t * zb,const blkptr_t * bp,arc_buf_t * buf,void * vdb)1386 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1387 arc_buf_t *buf, void *vdb)
1388 {
1389 (void) zb, (void) bp;
1390 dmu_buf_impl_t *db = vdb;
1391
1392 mutex_enter(&db->db_mtx);
1393 ASSERT3U(db->db_state, ==, DB_READ);
1394
1395 /*
1396 * All reads are synchronous, so we must have a hold on the dbuf
1397 */
1398 ASSERT(zfs_refcount_count(&db->db_holds) > 0);
1399 ASSERT(db->db_buf == NULL);
1400 ASSERT(db->db.db_data == NULL);
1401 if (buf == NULL) {
1402 /* i/o error */
1403 ASSERT(zio == NULL || zio->io_error != 0);
1404 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1405 ASSERT3P(db->db_buf, ==, NULL);
1406 db->db_state = DB_UNCACHED;
1407 DTRACE_SET_STATE(db, "i/o error");
1408 } else if (db->db_level == 0 && db->db_freed_in_flight) {
1409 /* freed in flight */
1410 ASSERT(zio == NULL || zio->io_error == 0);
1411 arc_release(buf, db);
1412 memset(buf->b_data, 0, db->db.db_size);
1413 arc_buf_freeze(buf);
1414 db->db_freed_in_flight = FALSE;
1415 dbuf_set_data(db, buf);
1416 db->db_state = DB_CACHED;
1417 DTRACE_SET_STATE(db, "freed in flight");
1418 } else {
1419 /* success */
1420 ASSERT(zio == NULL || zio->io_error == 0);
1421 dbuf_set_data(db, buf);
1422 db->db_state = DB_CACHED;
1423 DTRACE_SET_STATE(db, "successful read");
1424 }
1425 cv_broadcast(&db->db_changed);
1426 dbuf_rele_and_unlock(db, NULL, B_FALSE);
1427 }
1428
1429 /*
1430 * Shortcut for performing reads on bonus dbufs. Returns
1431 * an error if we fail to verify the dnode associated with
1432 * a decrypted block. Otherwise success.
1433 */
1434 static int
dbuf_read_bonus(dmu_buf_impl_t * db,dnode_t * dn)1435 dbuf_read_bonus(dmu_buf_impl_t *db, dnode_t *dn)
1436 {
1437 int bonuslen, max_bonuslen;
1438
1439 bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
1440 max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1441 ASSERT(MUTEX_HELD(&db->db_mtx));
1442 ASSERT(DB_DNODE_HELD(db));
1443 ASSERT3U(bonuslen, <=, db->db.db_size);
1444 db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP);
1445 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS);
1446 if (bonuslen < max_bonuslen)
1447 memset(db->db.db_data, 0, max_bonuslen);
1448 if (bonuslen)
1449 memcpy(db->db.db_data, DN_BONUS(dn->dn_phys), bonuslen);
1450 db->db_state = DB_CACHED;
1451 DTRACE_SET_STATE(db, "bonus buffer filled");
1452 return (0);
1453 }
1454
1455 static void
dbuf_handle_indirect_hole(dmu_buf_impl_t * db,dnode_t * dn,blkptr_t * dbbp)1456 dbuf_handle_indirect_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *dbbp)
1457 {
1458 blkptr_t *bps = db->db.db_data;
1459 uint32_t indbs = 1ULL << dn->dn_indblkshift;
1460 int n_bps = indbs >> SPA_BLKPTRSHIFT;
1461
1462 for (int i = 0; i < n_bps; i++) {
1463 blkptr_t *bp = &bps[i];
1464
1465 ASSERT3U(BP_GET_LSIZE(dbbp), ==, indbs);
1466 BP_SET_LSIZE(bp, BP_GET_LEVEL(dbbp) == 1 ?
1467 dn->dn_datablksz : BP_GET_LSIZE(dbbp));
1468 BP_SET_TYPE(bp, BP_GET_TYPE(dbbp));
1469 BP_SET_LEVEL(bp, BP_GET_LEVEL(dbbp) - 1);
1470 BP_SET_BIRTH(bp, BP_GET_LOGICAL_BIRTH(dbbp), 0);
1471 }
1472 }
1473
1474 /*
1475 * Handle reads on dbufs that are holes, if necessary. This function
1476 * requires that the dbuf's mutex is held. Returns success (0) if action
1477 * was taken, ENOENT if no action was taken.
1478 */
1479 static int
dbuf_read_hole(dmu_buf_impl_t * db,dnode_t * dn,blkptr_t * bp)1480 dbuf_read_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *bp)
1481 {
1482 ASSERT(MUTEX_HELD(&db->db_mtx));
1483
1484 int is_hole = bp == NULL || BP_IS_HOLE(bp);
1485 /*
1486 * For level 0 blocks only, if the above check fails:
1487 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
1488 * processes the delete record and clears the bp while we are waiting
1489 * for the dn_mtx (resulting in a "no" from block_freed).
1490 */
1491 if (!is_hole && db->db_level == 0)
1492 is_hole = dnode_block_freed(dn, db->db_blkid) || BP_IS_HOLE(bp);
1493
1494 if (is_hole) {
1495 dbuf_set_data(db, dbuf_alloc_arcbuf(db));
1496 memset(db->db.db_data, 0, db->db.db_size);
1497
1498 if (bp != NULL && db->db_level > 0 && BP_IS_HOLE(bp) &&
1499 BP_GET_LOGICAL_BIRTH(bp) != 0) {
1500 dbuf_handle_indirect_hole(db, dn, bp);
1501 }
1502 db->db_state = DB_CACHED;
1503 DTRACE_SET_STATE(db, "hole read satisfied");
1504 return (0);
1505 }
1506 return (ENOENT);
1507 }
1508
1509 /*
1510 * This function ensures that, when doing a decrypting read of a block,
1511 * we make sure we have decrypted the dnode associated with it. We must do
1512 * this so that we ensure we are fully authenticating the checksum-of-MACs
1513 * tree from the root of the objset down to this block. Indirect blocks are
1514 * always verified against their secure checksum-of-MACs assuming that the
1515 * dnode containing them is correct. Now that we are doing a decrypting read,
1516 * we can be sure that the key is loaded and verify that assumption. This is
1517 * especially important considering that we always read encrypted dnode
1518 * blocks as raw data (without verifying their MACs) to start, and
1519 * decrypt / authenticate them when we need to read an encrypted bonus buffer.
1520 */
1521 static int
dbuf_read_verify_dnode_crypt(dmu_buf_impl_t * db,dnode_t * dn,uint32_t flags)1522 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, dnode_t *dn, uint32_t flags)
1523 {
1524 objset_t *os = db->db_objset;
1525 dmu_buf_impl_t *dndb;
1526 arc_buf_t *dnbuf;
1527 zbookmark_phys_t zb;
1528 int err;
1529
1530 if ((flags & DB_RF_NO_DECRYPT) != 0 ||
1531 !os->os_encrypted || os->os_raw_receive ||
1532 (dndb = dn->dn_dbuf) == NULL)
1533 return (0);
1534
1535 dnbuf = dndb->db_buf;
1536 if (!arc_is_encrypted(dnbuf))
1537 return (0);
1538
1539 mutex_enter(&dndb->db_mtx);
1540
1541 /*
1542 * Since dnode buffer is modified by sync process, there can be only
1543 * one copy of it. It means we can not modify (decrypt) it while it
1544 * is being written. I don't see how this may happen now, since
1545 * encrypted dnode writes by receive should be completed before any
1546 * plain-text reads due to txg wait, but better be safe than sorry.
1547 */
1548 while (1) {
1549 if (!arc_is_encrypted(dnbuf)) {
1550 mutex_exit(&dndb->db_mtx);
1551 return (0);
1552 }
1553 dbuf_dirty_record_t *dr = dndb->db_data_pending;
1554 if (dr == NULL || dr->dt.dl.dr_data != dnbuf)
1555 break;
1556 cv_wait(&dndb->db_changed, &dndb->db_mtx);
1557 };
1558
1559 SET_BOOKMARK(&zb, dmu_objset_id(os),
1560 DMU_META_DNODE_OBJECT, 0, dndb->db_blkid);
1561 err = arc_untransform(dnbuf, os->os_spa, &zb, B_TRUE);
1562
1563 /*
1564 * An error code of EACCES tells us that the key is still not
1565 * available. This is ok if we are only reading authenticated
1566 * (and therefore non-encrypted) blocks.
1567 */
1568 if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID &&
1569 !DMU_OT_IS_ENCRYPTED(dn->dn_type)) ||
1570 (db->db_blkid == DMU_BONUS_BLKID &&
1571 !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))))
1572 err = 0;
1573
1574 mutex_exit(&dndb->db_mtx);
1575
1576 return (err);
1577 }
1578
1579 /*
1580 * Drops db_mtx and the parent lock specified by dblt and tag before
1581 * returning.
1582 */
1583 static int
dbuf_read_impl(dmu_buf_impl_t * db,dnode_t * dn,zio_t * zio,uint32_t flags,db_lock_type_t dblt,blkptr_t * bp,const void * tag)1584 dbuf_read_impl(dmu_buf_impl_t *db, dnode_t *dn, zio_t *zio, uint32_t flags,
1585 db_lock_type_t dblt, blkptr_t *bp, const void *tag)
1586 {
1587 zbookmark_phys_t zb;
1588 uint32_t aflags = ARC_FLAG_NOWAIT;
1589 int err, zio_flags;
1590
1591 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1592 ASSERT(MUTEX_HELD(&db->db_mtx));
1593 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
1594 ASSERT(db->db_buf == NULL);
1595 ASSERT(db->db_parent == NULL ||
1596 RW_LOCK_HELD(&db->db_parent->db_rwlock));
1597
1598 if (db->db_blkid == DMU_BONUS_BLKID) {
1599 err = dbuf_read_bonus(db, dn);
1600 goto early_unlock;
1601 }
1602
1603 err = dbuf_read_hole(db, dn, bp);
1604 if (err == 0)
1605 goto early_unlock;
1606
1607 ASSERT(bp != NULL);
1608
1609 /*
1610 * Any attempt to read a redacted block should result in an error. This
1611 * will never happen under normal conditions, but can be useful for
1612 * debugging purposes.
1613 */
1614 if (BP_IS_REDACTED(bp)) {
1615 ASSERT(dsl_dataset_feature_is_active(
1616 db->db_objset->os_dsl_dataset,
1617 SPA_FEATURE_REDACTED_DATASETS));
1618 err = SET_ERROR(EIO);
1619 goto early_unlock;
1620 }
1621
1622 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1623 db->db.db_object, db->db_level, db->db_blkid);
1624
1625 /*
1626 * All bps of an encrypted os should have the encryption bit set.
1627 * If this is not true it indicates tampering and we report an error.
1628 */
1629 if (db->db_objset->os_encrypted && !BP_USES_CRYPT(bp)) {
1630 spa_log_error(db->db_objset->os_spa, &zb,
1631 BP_GET_LOGICAL_BIRTH(bp));
1632 err = SET_ERROR(EIO);
1633 goto early_unlock;
1634 }
1635
1636 db->db_state = DB_READ;
1637 DTRACE_SET_STATE(db, "read issued");
1638 mutex_exit(&db->db_mtx);
1639
1640 if (!DBUF_IS_CACHEABLE(db))
1641 aflags |= ARC_FLAG_UNCACHED;
1642 else if (dbuf_is_l2cacheable(db, bp))
1643 aflags |= ARC_FLAG_L2CACHE;
1644
1645 dbuf_add_ref(db, NULL);
1646
1647 zio_flags = (flags & DB_RF_CANFAIL) ?
1648 ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED;
1649
1650 if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(bp))
1651 zio_flags |= ZIO_FLAG_RAW;
1652
1653 /*
1654 * The zio layer will copy the provided blkptr later, but we need to
1655 * do this now so that we can release the parent's rwlock. We have to
1656 * do that now so that if dbuf_read_done is called synchronously (on
1657 * an l1 cache hit) we don't acquire the db_mtx while holding the
1658 * parent's rwlock, which would be a lock ordering violation.
1659 */
1660 blkptr_t copy = *bp;
1661 dmu_buf_unlock_parent(db, dblt, tag);
1662 return (arc_read(zio, db->db_objset->os_spa, ©,
1663 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags,
1664 &aflags, &zb));
1665
1666 early_unlock:
1667 mutex_exit(&db->db_mtx);
1668 dmu_buf_unlock_parent(db, dblt, tag);
1669 return (err);
1670 }
1671
1672 /*
1673 * This is our just-in-time copy function. It makes a copy of buffers that
1674 * have been modified in a previous transaction group before we access them in
1675 * the current active group.
1676 *
1677 * This function is used in three places: when we are dirtying a buffer for the
1678 * first time in a txg, when we are freeing a range in a dnode that includes
1679 * this buffer, and when we are accessing a buffer which was received compressed
1680 * and later referenced in a WRITE_BYREF record.
1681 *
1682 * Note that when we are called from dbuf_free_range() we do not put a hold on
1683 * the buffer, we just traverse the active dbuf list for the dnode.
1684 */
1685 static void
dbuf_fix_old_data(dmu_buf_impl_t * db,uint64_t txg)1686 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1687 {
1688 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
1689
1690 ASSERT(MUTEX_HELD(&db->db_mtx));
1691 ASSERT(db->db.db_data != NULL);
1692 ASSERT(db->db_level == 0);
1693 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1694
1695 if (dr == NULL ||
1696 (dr->dt.dl.dr_data !=
1697 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1698 return;
1699
1700 /*
1701 * If the last dirty record for this dbuf has not yet synced
1702 * and its referencing the dbuf data, either:
1703 * reset the reference to point to a new copy,
1704 * or (if there a no active holders)
1705 * just null out the current db_data pointer.
1706 */
1707 ASSERT3U(dr->dr_txg, >=, txg - 2);
1708 if (db->db_blkid == DMU_BONUS_BLKID) {
1709 dnode_t *dn = DB_DNODE(db);
1710 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1711 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP);
1712 arc_space_consume(bonuslen, ARC_SPACE_BONUS);
1713 memcpy(dr->dt.dl.dr_data, db->db.db_data, bonuslen);
1714 } else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) {
1715 dnode_t *dn = DB_DNODE(db);
1716 int size = arc_buf_size(db->db_buf);
1717 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1718 spa_t *spa = db->db_objset->os_spa;
1719 enum zio_compress compress_type =
1720 arc_get_compression(db->db_buf);
1721 uint8_t complevel = arc_get_complevel(db->db_buf);
1722
1723 if (arc_is_encrypted(db->db_buf)) {
1724 boolean_t byteorder;
1725 uint8_t salt[ZIO_DATA_SALT_LEN];
1726 uint8_t iv[ZIO_DATA_IV_LEN];
1727 uint8_t mac[ZIO_DATA_MAC_LEN];
1728
1729 arc_get_raw_params(db->db_buf, &byteorder, salt,
1730 iv, mac);
1731 dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db,
1732 dmu_objset_id(dn->dn_objset), byteorder, salt, iv,
1733 mac, dn->dn_type, size, arc_buf_lsize(db->db_buf),
1734 compress_type, complevel);
1735 } else if (compress_type != ZIO_COMPRESS_OFF) {
1736 ASSERT3U(type, ==, ARC_BUFC_DATA);
1737 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1738 size, arc_buf_lsize(db->db_buf), compress_type,
1739 complevel);
1740 } else {
1741 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
1742 }
1743 memcpy(dr->dt.dl.dr_data->b_data, db->db.db_data, size);
1744 } else {
1745 db->db_buf = NULL;
1746 dbuf_clear_data(db);
1747 }
1748 }
1749
1750 int
dbuf_read(dmu_buf_impl_t * db,zio_t * pio,uint32_t flags)1751 dbuf_read(dmu_buf_impl_t *db, zio_t *pio, uint32_t flags)
1752 {
1753 dnode_t *dn;
1754 boolean_t miss = B_TRUE, need_wait = B_FALSE, prefetch;
1755 int err;
1756
1757 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1758
1759 DB_DNODE_ENTER(db);
1760 dn = DB_DNODE(db);
1761
1762 /*
1763 * Ensure that this block's dnode has been decrypted if the caller
1764 * has requested decrypted data.
1765 */
1766 err = dbuf_read_verify_dnode_crypt(db, dn, flags);
1767 if (err != 0)
1768 goto done;
1769
1770 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1771 (flags & DB_RF_NOPREFETCH) == 0;
1772
1773 mutex_enter(&db->db_mtx);
1774 if (flags & DB_RF_PARTIAL_FIRST)
1775 db->db_partial_read = B_TRUE;
1776 else if (!(flags & DB_RF_PARTIAL_MORE))
1777 db->db_partial_read = B_FALSE;
1778 miss = (db->db_state != DB_CACHED);
1779
1780 if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1781 /*
1782 * Another reader came in while the dbuf was in flight between
1783 * UNCACHED and CACHED. Either a writer will finish filling
1784 * the buffer, sending the dbuf to CACHED, or the first reader's
1785 * request will reach the read_done callback and send the dbuf
1786 * to CACHED. Otherwise, a failure occurred and the dbuf will
1787 * be sent to UNCACHED.
1788 */
1789 if (flags & DB_RF_NEVERWAIT) {
1790 mutex_exit(&db->db_mtx);
1791 DB_DNODE_EXIT(db);
1792 goto done;
1793 }
1794 do {
1795 ASSERT(db->db_state == DB_READ ||
1796 (flags & DB_RF_HAVESTRUCT) == 0);
1797 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, db,
1798 zio_t *, pio);
1799 cv_wait(&db->db_changed, &db->db_mtx);
1800 } while (db->db_state == DB_READ || db->db_state == DB_FILL);
1801 if (db->db_state == DB_UNCACHED) {
1802 err = SET_ERROR(EIO);
1803 mutex_exit(&db->db_mtx);
1804 DB_DNODE_EXIT(db);
1805 goto done;
1806 }
1807 }
1808
1809 if (db->db_state == DB_CACHED) {
1810 /*
1811 * If the arc buf is compressed or encrypted and the caller
1812 * requested uncompressed data, we need to untransform it
1813 * before returning. We also call arc_untransform() on any
1814 * unauthenticated blocks, which will verify their MAC if
1815 * the key is now available.
1816 */
1817 if ((flags & DB_RF_NO_DECRYPT) == 0 && db->db_buf != NULL &&
1818 (arc_is_encrypted(db->db_buf) ||
1819 arc_is_unauthenticated(db->db_buf) ||
1820 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
1821 spa_t *spa = dn->dn_objset->os_spa;
1822 zbookmark_phys_t zb;
1823
1824 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1825 db->db.db_object, db->db_level, db->db_blkid);
1826 dbuf_fix_old_data(db, spa_syncing_txg(spa));
1827 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE);
1828 dbuf_set_data(db, db->db_buf);
1829 }
1830 mutex_exit(&db->db_mtx);
1831 } else {
1832 ASSERT(db->db_state == DB_UNCACHED ||
1833 db->db_state == DB_NOFILL);
1834 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
1835 blkptr_t *bp;
1836
1837 /*
1838 * If a block clone or Direct I/O write has occurred we will
1839 * get the dirty records overridden BP so we get the most
1840 * recent data.
1841 */
1842 err = dmu_buf_get_bp_from_dbuf(db, &bp);
1843
1844 if (!err) {
1845 if (pio == NULL && (db->db_state == DB_NOFILL ||
1846 (bp != NULL && !BP_IS_HOLE(bp)))) {
1847 spa_t *spa = dn->dn_objset->os_spa;
1848 pio =
1849 zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1850 need_wait = B_TRUE;
1851 }
1852
1853 err =
1854 dbuf_read_impl(db, dn, pio, flags, dblt, bp, FTAG);
1855 } else {
1856 mutex_exit(&db->db_mtx);
1857 dmu_buf_unlock_parent(db, dblt, FTAG);
1858 }
1859 /* dbuf_read_impl drops db_mtx and parent's rwlock. */
1860 miss = (db->db_state != DB_CACHED);
1861 }
1862
1863 if (err == 0 && prefetch) {
1864 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, miss,
1865 flags & DB_RF_HAVESTRUCT);
1866 }
1867 DB_DNODE_EXIT(db);
1868
1869 /*
1870 * If we created a zio we must execute it to avoid leaking it, even if
1871 * it isn't attached to any work due to an error in dbuf_read_impl().
1872 */
1873 if (need_wait) {
1874 if (err == 0)
1875 err = zio_wait(pio);
1876 else
1877 (void) zio_wait(pio);
1878 pio = NULL;
1879 }
1880
1881 done:
1882 if (miss)
1883 DBUF_STAT_BUMP(hash_misses);
1884 else
1885 DBUF_STAT_BUMP(hash_hits);
1886 if (pio && err != 0) {
1887 zio_t *zio = zio_null(pio, pio->io_spa, NULL, NULL, NULL,
1888 ZIO_FLAG_CANFAIL);
1889 zio->io_error = err;
1890 zio_nowait(zio);
1891 }
1892
1893 return (err);
1894 }
1895
1896 static void
dbuf_noread(dmu_buf_impl_t * db)1897 dbuf_noread(dmu_buf_impl_t *db)
1898 {
1899 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1900 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1901 mutex_enter(&db->db_mtx);
1902 while (db->db_state == DB_READ || db->db_state == DB_FILL)
1903 cv_wait(&db->db_changed, &db->db_mtx);
1904 if (db->db_state == DB_UNCACHED) {
1905 ASSERT(db->db_buf == NULL);
1906 ASSERT(db->db.db_data == NULL);
1907 dbuf_set_data(db, dbuf_alloc_arcbuf(db));
1908 db->db_state = DB_FILL;
1909 DTRACE_SET_STATE(db, "assigning filled buffer");
1910 } else if (db->db_state == DB_NOFILL) {
1911 dbuf_clear_data(db);
1912 } else {
1913 ASSERT3U(db->db_state, ==, DB_CACHED);
1914 }
1915 mutex_exit(&db->db_mtx);
1916 }
1917
1918 void
dbuf_unoverride(dbuf_dirty_record_t * dr)1919 dbuf_unoverride(dbuf_dirty_record_t *dr)
1920 {
1921 dmu_buf_impl_t *db = dr->dr_dbuf;
1922 blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1923 uint64_t txg = dr->dr_txg;
1924
1925 ASSERT(MUTEX_HELD(&db->db_mtx));
1926
1927 /*
1928 * This assert is valid because dmu_sync() expects to be called by
1929 * a zilog's get_data while holding a range lock. This call only
1930 * comes from dbuf_dirty() callers who must also hold a range lock.
1931 */
1932 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1933 ASSERT(db->db_level == 0);
1934
1935 if (db->db_blkid == DMU_BONUS_BLKID ||
1936 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1937 return;
1938
1939 ASSERT(db->db_data_pending != dr);
1940
1941 /* free this block */
1942 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1943 zio_free(db->db_objset->os_spa, txg, bp);
1944
1945 if (dr->dt.dl.dr_brtwrite || dr->dt.dl.dr_diowrite) {
1946 ASSERT0P(dr->dt.dl.dr_data);
1947 dr->dt.dl.dr_data = db->db_buf;
1948 }
1949 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1950 dr->dt.dl.dr_nopwrite = B_FALSE;
1951 dr->dt.dl.dr_brtwrite = B_FALSE;
1952 dr->dt.dl.dr_diowrite = B_FALSE;
1953 dr->dt.dl.dr_has_raw_params = B_FALSE;
1954
1955 /*
1956 * In the event that Direct I/O was used, we do not
1957 * need to release the buffer from the ARC.
1958 *
1959 * Release the already-written buffer, so we leave it in
1960 * a consistent dirty state. Note that all callers are
1961 * modifying the buffer, so they will immediately do
1962 * another (redundant) arc_release(). Therefore, leave
1963 * the buf thawed to save the effort of freezing &
1964 * immediately re-thawing it.
1965 */
1966 if (dr->dt.dl.dr_data)
1967 arc_release(dr->dt.dl.dr_data, db);
1968 }
1969
1970 /*
1971 * Evict (if its unreferenced) or clear (if its referenced) any level-0
1972 * data blocks in the free range, so that any future readers will find
1973 * empty blocks.
1974 */
1975 void
dbuf_free_range(dnode_t * dn,uint64_t start_blkid,uint64_t end_blkid,dmu_tx_t * tx)1976 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1977 dmu_tx_t *tx)
1978 {
1979 dmu_buf_impl_t *db_search;
1980 dmu_buf_impl_t *db, *db_next;
1981 uint64_t txg = tx->tx_txg;
1982 avl_index_t where;
1983 dbuf_dirty_record_t *dr;
1984
1985 if (end_blkid > dn->dn_maxblkid &&
1986 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1987 end_blkid = dn->dn_maxblkid;
1988 dprintf_dnode(dn, "start=%llu end=%llu\n", (u_longlong_t)start_blkid,
1989 (u_longlong_t)end_blkid);
1990
1991 db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
1992 db_search->db_level = 0;
1993 db_search->db_blkid = start_blkid;
1994 db_search->db_state = DB_SEARCH;
1995
1996 mutex_enter(&dn->dn_dbufs_mtx);
1997 db = avl_find(&dn->dn_dbufs, db_search, &where);
1998 ASSERT3P(db, ==, NULL);
1999
2000 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
2001
2002 for (; db != NULL; db = db_next) {
2003 db_next = AVL_NEXT(&dn->dn_dbufs, db);
2004 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2005
2006 if (db->db_level != 0 || db->db_blkid > end_blkid) {
2007 break;
2008 }
2009 ASSERT3U(db->db_blkid, >=, start_blkid);
2010
2011 /* found a level 0 buffer in the range */
2012 mutex_enter(&db->db_mtx);
2013 if (dbuf_undirty(db, tx)) {
2014 /* mutex has been dropped and dbuf destroyed */
2015 continue;
2016 }
2017
2018 if (db->db_state == DB_UNCACHED ||
2019 db->db_state == DB_NOFILL ||
2020 db->db_state == DB_EVICTING) {
2021 ASSERT(db->db.db_data == NULL);
2022 mutex_exit(&db->db_mtx);
2023 continue;
2024 }
2025 if (db->db_state == DB_READ || db->db_state == DB_FILL) {
2026 /* will be handled in dbuf_read_done or dbuf_rele */
2027 db->db_freed_in_flight = TRUE;
2028 mutex_exit(&db->db_mtx);
2029 continue;
2030 }
2031 if (zfs_refcount_count(&db->db_holds) == 0) {
2032 ASSERT(db->db_buf);
2033 dbuf_destroy(db);
2034 continue;
2035 }
2036 /* The dbuf is referenced */
2037
2038 dr = list_head(&db->db_dirty_records);
2039 if (dr != NULL) {
2040 if (dr->dr_txg == txg) {
2041 /*
2042 * This buffer is "in-use", re-adjust the file
2043 * size to reflect that this buffer may
2044 * contain new data when we sync.
2045 */
2046 if (db->db_blkid != DMU_SPILL_BLKID &&
2047 db->db_blkid > dn->dn_maxblkid)
2048 dn->dn_maxblkid = db->db_blkid;
2049 dbuf_unoverride(dr);
2050 } else {
2051 /*
2052 * This dbuf is not dirty in the open context.
2053 * Either uncache it (if its not referenced in
2054 * the open context) or reset its contents to
2055 * empty.
2056 */
2057 dbuf_fix_old_data(db, txg);
2058 }
2059 }
2060 /* clear the contents if its cached */
2061 if (db->db_state == DB_CACHED) {
2062 ASSERT(db->db.db_data != NULL);
2063 arc_release(db->db_buf, db);
2064 rw_enter(&db->db_rwlock, RW_WRITER);
2065 memset(db->db.db_data, 0, db->db.db_size);
2066 rw_exit(&db->db_rwlock);
2067 arc_buf_freeze(db->db_buf);
2068 }
2069
2070 mutex_exit(&db->db_mtx);
2071 }
2072
2073 mutex_exit(&dn->dn_dbufs_mtx);
2074 kmem_free(db_search, sizeof (dmu_buf_impl_t));
2075 }
2076
2077 void
dbuf_new_size(dmu_buf_impl_t * db,int size,dmu_tx_t * tx)2078 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
2079 {
2080 arc_buf_t *buf, *old_buf;
2081 dbuf_dirty_record_t *dr;
2082 int osize = db->db.db_size;
2083 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2084 dnode_t *dn;
2085
2086 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2087
2088 DB_DNODE_ENTER(db);
2089 dn = DB_DNODE(db);
2090
2091 /*
2092 * XXX we should be doing a dbuf_read, checking the return
2093 * value and returning that up to our callers
2094 */
2095 dmu_buf_will_dirty(&db->db, tx);
2096
2097 VERIFY3P(db->db_buf, !=, NULL);
2098
2099 /* create the data buffer for the new block */
2100 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
2101
2102 /* copy old block data to the new block */
2103 old_buf = db->db_buf;
2104 memcpy(buf->b_data, old_buf->b_data, MIN(osize, size));
2105 /* zero the remainder */
2106 if (size > osize)
2107 memset((uint8_t *)buf->b_data + osize, 0, size - osize);
2108
2109 mutex_enter(&db->db_mtx);
2110 dbuf_set_data(db, buf);
2111 arc_buf_destroy(old_buf, db);
2112 db->db.db_size = size;
2113
2114 dr = list_head(&db->db_dirty_records);
2115 /* dirty record added by dmu_buf_will_dirty() */
2116 VERIFY(dr != NULL);
2117 if (db->db_level == 0)
2118 dr->dt.dl.dr_data = buf;
2119 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2120 ASSERT3U(dr->dr_accounted, ==, osize);
2121 dr->dr_accounted = size;
2122 mutex_exit(&db->db_mtx);
2123
2124 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
2125 DB_DNODE_EXIT(db);
2126 }
2127
2128 void
dbuf_release_bp(dmu_buf_impl_t * db)2129 dbuf_release_bp(dmu_buf_impl_t *db)
2130 {
2131 objset_t *os __maybe_unused = db->db_objset;
2132
2133 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
2134 ASSERT(arc_released(os->os_phys_buf) ||
2135 list_link_active(&os->os_dsl_dataset->ds_synced_link));
2136 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
2137
2138 (void) arc_release(db->db_buf, db);
2139 }
2140
2141 /*
2142 * We already have a dirty record for this TXG, and we are being
2143 * dirtied again.
2144 */
2145 static void
dbuf_redirty(dbuf_dirty_record_t * dr)2146 dbuf_redirty(dbuf_dirty_record_t *dr)
2147 {
2148 dmu_buf_impl_t *db = dr->dr_dbuf;
2149
2150 ASSERT(MUTEX_HELD(&db->db_mtx));
2151
2152 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
2153 /*
2154 * If this buffer has already been written out,
2155 * we now need to reset its state.
2156 */
2157 dbuf_unoverride(dr);
2158 if (db->db.db_object != DMU_META_DNODE_OBJECT &&
2159 db->db_state != DB_NOFILL) {
2160 /* Already released on initial dirty, so just thaw. */
2161 ASSERT(arc_released(db->db_buf));
2162 arc_buf_thaw(db->db_buf);
2163 }
2164 }
2165 }
2166
2167 dbuf_dirty_record_t *
dbuf_dirty_lightweight(dnode_t * dn,uint64_t blkid,dmu_tx_t * tx)2168 dbuf_dirty_lightweight(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx)
2169 {
2170 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2171 IMPLY(dn->dn_objset->os_raw_receive, dn->dn_maxblkid >= blkid);
2172 dnode_new_blkid(dn, blkid, tx, B_TRUE, B_FALSE);
2173 ASSERT(dn->dn_maxblkid >= blkid);
2174
2175 dbuf_dirty_record_t *dr = kmem_zalloc(sizeof (*dr), KM_SLEEP);
2176 list_link_init(&dr->dr_dirty_node);
2177 list_link_init(&dr->dr_dbuf_node);
2178 dr->dr_dnode = dn;
2179 dr->dr_txg = tx->tx_txg;
2180 dr->dt.dll.dr_blkid = blkid;
2181 dr->dr_accounted = dn->dn_datablksz;
2182
2183 /*
2184 * There should not be any dbuf for the block that we're dirtying.
2185 * Otherwise the buffer contents could be inconsistent between the
2186 * dbuf and the lightweight dirty record.
2187 */
2188 ASSERT3P(NULL, ==, dbuf_find(dn->dn_objset, dn->dn_object, 0, blkid,
2189 NULL));
2190
2191 mutex_enter(&dn->dn_mtx);
2192 int txgoff = tx->tx_txg & TXG_MASK;
2193 if (dn->dn_free_ranges[txgoff] != NULL) {
2194 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, 1);
2195 }
2196
2197 if (dn->dn_nlevels == 1) {
2198 ASSERT3U(blkid, <, dn->dn_nblkptr);
2199 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2200 mutex_exit(&dn->dn_mtx);
2201 rw_exit(&dn->dn_struct_rwlock);
2202 dnode_setdirty(dn, tx);
2203 } else {
2204 mutex_exit(&dn->dn_mtx);
2205
2206 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2207 dmu_buf_impl_t *parent_db = dbuf_hold_level(dn,
2208 1, blkid >> epbs, FTAG);
2209 rw_exit(&dn->dn_struct_rwlock);
2210 if (parent_db == NULL) {
2211 kmem_free(dr, sizeof (*dr));
2212 return (NULL);
2213 }
2214 int err = dbuf_read(parent_db, NULL,
2215 (DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2216 if (err != 0) {
2217 dbuf_rele(parent_db, FTAG);
2218 kmem_free(dr, sizeof (*dr));
2219 return (NULL);
2220 }
2221
2222 dbuf_dirty_record_t *parent_dr = dbuf_dirty(parent_db, tx);
2223 dbuf_rele(parent_db, FTAG);
2224 mutex_enter(&parent_dr->dt.di.dr_mtx);
2225 ASSERT3U(parent_dr->dr_txg, ==, tx->tx_txg);
2226 list_insert_tail(&parent_dr->dt.di.dr_children, dr);
2227 mutex_exit(&parent_dr->dt.di.dr_mtx);
2228 dr->dr_parent = parent_dr;
2229 }
2230
2231 dmu_objset_willuse_space(dn->dn_objset, dr->dr_accounted, tx);
2232
2233 return (dr);
2234 }
2235
2236 dbuf_dirty_record_t *
dbuf_dirty(dmu_buf_impl_t * db,dmu_tx_t * tx)2237 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2238 {
2239 dnode_t *dn;
2240 objset_t *os;
2241 dbuf_dirty_record_t *dr, *dr_next, *dr_head;
2242 int txgoff = tx->tx_txg & TXG_MASK;
2243 boolean_t drop_struct_rwlock = B_FALSE;
2244
2245 ASSERT(tx->tx_txg != 0);
2246 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2247 DMU_TX_DIRTY_BUF(tx, db);
2248
2249 DB_DNODE_ENTER(db);
2250 dn = DB_DNODE(db);
2251 /*
2252 * Shouldn't dirty a regular buffer in syncing context. Private
2253 * objects may be dirtied in syncing context, but only if they
2254 * were already pre-dirtied in open context.
2255 */
2256 #ifdef ZFS_DEBUG
2257 if (dn->dn_objset->os_dsl_dataset != NULL) {
2258 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
2259 RW_READER, FTAG);
2260 }
2261 ASSERT(!dmu_tx_is_syncing(tx) ||
2262 BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
2263 DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
2264 dn->dn_objset->os_dsl_dataset == NULL);
2265 if (dn->dn_objset->os_dsl_dataset != NULL)
2266 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
2267 #endif
2268 /*
2269 * We make this assert for private objects as well, but after we
2270 * check if we're already dirty. They are allowed to re-dirty
2271 * in syncing context.
2272 */
2273 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2274 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
2275 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
2276
2277 mutex_enter(&db->db_mtx);
2278 /*
2279 * XXX make this true for indirects too? The problem is that
2280 * transactions created with dmu_tx_create_assigned() from
2281 * syncing context don't bother holding ahead.
2282 */
2283 ASSERT(db->db_level != 0 ||
2284 db->db_state == DB_CACHED || db->db_state == DB_FILL ||
2285 db->db_state == DB_NOFILL);
2286
2287 mutex_enter(&dn->dn_mtx);
2288 dnode_set_dirtyctx(dn, tx, db);
2289 if (tx->tx_txg > dn->dn_dirty_txg)
2290 dn->dn_dirty_txg = tx->tx_txg;
2291 mutex_exit(&dn->dn_mtx);
2292
2293 if (db->db_blkid == DMU_SPILL_BLKID)
2294 dn->dn_have_spill = B_TRUE;
2295
2296 /*
2297 * If this buffer is already dirty, we're done.
2298 */
2299 dr_head = list_head(&db->db_dirty_records);
2300 ASSERT(dr_head == NULL || dr_head->dr_txg <= tx->tx_txg ||
2301 db->db.db_object == DMU_META_DNODE_OBJECT);
2302 dr_next = dbuf_find_dirty_lte(db, tx->tx_txg);
2303 if (dr_next && dr_next->dr_txg == tx->tx_txg) {
2304 DB_DNODE_EXIT(db);
2305
2306 dbuf_redirty(dr_next);
2307 mutex_exit(&db->db_mtx);
2308 return (dr_next);
2309 }
2310
2311 /*
2312 * Only valid if not already dirty.
2313 */
2314 ASSERT(dn->dn_object == 0 ||
2315 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
2316 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
2317
2318 ASSERT3U(dn->dn_nlevels, >, db->db_level);
2319
2320 /*
2321 * We should only be dirtying in syncing context if it's the
2322 * mos or we're initializing the os or it's a special object.
2323 * However, we are allowed to dirty in syncing context provided
2324 * we already dirtied it in open context. Hence we must make
2325 * this assertion only if we're not already dirty.
2326 */
2327 os = dn->dn_objset;
2328 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
2329 #ifdef ZFS_DEBUG
2330 if (dn->dn_objset->os_dsl_dataset != NULL)
2331 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
2332 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
2333 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
2334 if (dn->dn_objset->os_dsl_dataset != NULL)
2335 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
2336 #endif
2337 ASSERT(db->db.db_size != 0);
2338
2339 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2340
2341 if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) {
2342 dmu_objset_willuse_space(os, db->db.db_size, tx);
2343 }
2344
2345 /*
2346 * If this buffer is dirty in an old transaction group we need
2347 * to make a copy of it so that the changes we make in this
2348 * transaction group won't leak out when we sync the older txg.
2349 */
2350 dr = kmem_cache_alloc(dbuf_dirty_kmem_cache, KM_SLEEP);
2351 memset(dr, 0, sizeof (*dr));
2352 list_link_init(&dr->dr_dirty_node);
2353 list_link_init(&dr->dr_dbuf_node);
2354 dr->dr_dnode = dn;
2355 if (db->db_level == 0) {
2356 void *data_old = db->db_buf;
2357
2358 if (db->db_state != DB_NOFILL) {
2359 if (db->db_blkid == DMU_BONUS_BLKID) {
2360 dbuf_fix_old_data(db, tx->tx_txg);
2361 data_old = db->db.db_data;
2362 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
2363 /*
2364 * Release the data buffer from the cache so
2365 * that we can modify it without impacting
2366 * possible other users of this cached data
2367 * block. Note that indirect blocks and
2368 * private objects are not released until the
2369 * syncing state (since they are only modified
2370 * then).
2371 */
2372 arc_release(db->db_buf, db);
2373 dbuf_fix_old_data(db, tx->tx_txg);
2374 data_old = db->db_buf;
2375 }
2376 ASSERT(data_old != NULL);
2377 }
2378 dr->dt.dl.dr_data = data_old;
2379 } else {
2380 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
2381 list_create(&dr->dt.di.dr_children,
2382 sizeof (dbuf_dirty_record_t),
2383 offsetof(dbuf_dirty_record_t, dr_dirty_node));
2384 }
2385 if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) {
2386 dr->dr_accounted = db->db.db_size;
2387 }
2388 dr->dr_dbuf = db;
2389 dr->dr_txg = tx->tx_txg;
2390 list_insert_before(&db->db_dirty_records, dr_next, dr);
2391
2392 /*
2393 * We could have been freed_in_flight between the dbuf_noread
2394 * and dbuf_dirty. We win, as though the dbuf_noread() had
2395 * happened after the free.
2396 */
2397 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2398 db->db_blkid != DMU_SPILL_BLKID) {
2399 mutex_enter(&dn->dn_mtx);
2400 if (dn->dn_free_ranges[txgoff] != NULL) {
2401 range_tree_clear(dn->dn_free_ranges[txgoff],
2402 db->db_blkid, 1);
2403 }
2404 mutex_exit(&dn->dn_mtx);
2405 db->db_freed_in_flight = FALSE;
2406 }
2407
2408 /*
2409 * This buffer is now part of this txg
2410 */
2411 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
2412 db->db_dirtycnt += 1;
2413 ASSERT3U(db->db_dirtycnt, <=, 3);
2414
2415 mutex_exit(&db->db_mtx);
2416
2417 if (db->db_blkid == DMU_BONUS_BLKID ||
2418 db->db_blkid == DMU_SPILL_BLKID) {
2419 mutex_enter(&dn->dn_mtx);
2420 ASSERT(!list_link_active(&dr->dr_dirty_node));
2421 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2422 mutex_exit(&dn->dn_mtx);
2423 dnode_setdirty(dn, tx);
2424 DB_DNODE_EXIT(db);
2425 return (dr);
2426 }
2427
2428 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
2429 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2430 drop_struct_rwlock = B_TRUE;
2431 }
2432
2433 /*
2434 * If we are overwriting a dedup BP, then unless it is snapshotted,
2435 * when we get to syncing context we will need to decrement its
2436 * refcount in the DDT. Prefetch the relevant DDT block so that
2437 * syncing context won't have to wait for the i/o.
2438 */
2439 if (db->db_blkptr != NULL) {
2440 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
2441 ddt_prefetch(os->os_spa, db->db_blkptr);
2442 dmu_buf_unlock_parent(db, dblt, FTAG);
2443 }
2444
2445 /*
2446 * We need to hold the dn_struct_rwlock to make this assertion,
2447 * because it protects dn_phys / dn_next_nlevels from changing.
2448 */
2449 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
2450 dn->dn_phys->dn_nlevels > db->db_level ||
2451 dn->dn_next_nlevels[txgoff] > db->db_level ||
2452 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
2453 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
2454
2455
2456 if (db->db_level == 0) {
2457 ASSERT(!db->db_objset->os_raw_receive ||
2458 dn->dn_maxblkid >= db->db_blkid);
2459 dnode_new_blkid(dn, db->db_blkid, tx,
2460 drop_struct_rwlock, B_FALSE);
2461 ASSERT(dn->dn_maxblkid >= db->db_blkid);
2462 }
2463
2464 if (db->db_level+1 < dn->dn_nlevels) {
2465 dmu_buf_impl_t *parent = db->db_parent;
2466 dbuf_dirty_record_t *di;
2467 int parent_held = FALSE;
2468
2469 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
2470 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2471 parent = dbuf_hold_level(dn, db->db_level + 1,
2472 db->db_blkid >> epbs, FTAG);
2473 ASSERT(parent != NULL);
2474 parent_held = TRUE;
2475 }
2476 if (drop_struct_rwlock)
2477 rw_exit(&dn->dn_struct_rwlock);
2478 ASSERT3U(db->db_level + 1, ==, parent->db_level);
2479 di = dbuf_dirty(parent, tx);
2480 if (parent_held)
2481 dbuf_rele(parent, FTAG);
2482
2483 mutex_enter(&db->db_mtx);
2484 /*
2485 * Since we've dropped the mutex, it's possible that
2486 * dbuf_undirty() might have changed this out from under us.
2487 */
2488 if (list_head(&db->db_dirty_records) == dr ||
2489 dn->dn_object == DMU_META_DNODE_OBJECT) {
2490 mutex_enter(&di->dt.di.dr_mtx);
2491 ASSERT3U(di->dr_txg, ==, tx->tx_txg);
2492 ASSERT(!list_link_active(&dr->dr_dirty_node));
2493 list_insert_tail(&di->dt.di.dr_children, dr);
2494 mutex_exit(&di->dt.di.dr_mtx);
2495 dr->dr_parent = di;
2496 }
2497 mutex_exit(&db->db_mtx);
2498 } else {
2499 ASSERT(db->db_level + 1 == dn->dn_nlevels);
2500 ASSERT(db->db_blkid < dn->dn_nblkptr);
2501 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
2502 mutex_enter(&dn->dn_mtx);
2503 ASSERT(!list_link_active(&dr->dr_dirty_node));
2504 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2505 mutex_exit(&dn->dn_mtx);
2506 if (drop_struct_rwlock)
2507 rw_exit(&dn->dn_struct_rwlock);
2508 }
2509
2510 dnode_setdirty(dn, tx);
2511 DB_DNODE_EXIT(db);
2512 return (dr);
2513 }
2514
2515 static void
dbuf_undirty_bonus(dbuf_dirty_record_t * dr)2516 dbuf_undirty_bonus(dbuf_dirty_record_t *dr)
2517 {
2518 dmu_buf_impl_t *db = dr->dr_dbuf;
2519
2520 if (dr->dt.dl.dr_data != db->db.db_data) {
2521 struct dnode *dn = dr->dr_dnode;
2522 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
2523
2524 kmem_free(dr->dt.dl.dr_data, max_bonuslen);
2525 arc_space_return(max_bonuslen, ARC_SPACE_BONUS);
2526 }
2527 db->db_data_pending = NULL;
2528 ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
2529 list_remove(&db->db_dirty_records, dr);
2530 if (dr->dr_dbuf->db_level != 0) {
2531 mutex_destroy(&dr->dt.di.dr_mtx);
2532 list_destroy(&dr->dt.di.dr_children);
2533 }
2534 kmem_cache_free(dbuf_dirty_kmem_cache, dr);
2535 ASSERT3U(db->db_dirtycnt, >, 0);
2536 db->db_dirtycnt -= 1;
2537 }
2538
2539 /*
2540 * Undirty a buffer in the transaction group referenced by the given
2541 * transaction. Return whether this evicted the dbuf.
2542 */
2543 boolean_t
dbuf_undirty(dmu_buf_impl_t * db,dmu_tx_t * tx)2544 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2545 {
2546 uint64_t txg = tx->tx_txg;
2547 boolean_t brtwrite;
2548 boolean_t diowrite;
2549
2550 ASSERT(txg != 0);
2551
2552 /*
2553 * Due to our use of dn_nlevels below, this can only be called
2554 * in open context, unless we are operating on the MOS.
2555 * From syncing context, dn_nlevels may be different from the
2556 * dn_nlevels used when dbuf was dirtied.
2557 */
2558 ASSERT(db->db_objset ==
2559 dmu_objset_pool(db->db_objset)->dp_meta_objset ||
2560 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
2561 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2562 ASSERT0(db->db_level);
2563 ASSERT(MUTEX_HELD(&db->db_mtx));
2564
2565 /*
2566 * If this buffer is not dirty, we're done.
2567 */
2568 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, txg);
2569 if (dr == NULL)
2570 return (B_FALSE);
2571 ASSERT(dr->dr_dbuf == db);
2572
2573 brtwrite = dr->dt.dl.dr_brtwrite;
2574 diowrite = dr->dt.dl.dr_diowrite;
2575 if (brtwrite) {
2576 ASSERT3B(diowrite, ==, B_FALSE);
2577 /*
2578 * We are freeing a block that we cloned in the same
2579 * transaction group.
2580 */
2581 brt_pending_remove(dmu_objset_spa(db->db_objset),
2582 &dr->dt.dl.dr_overridden_by, tx);
2583 }
2584
2585 dnode_t *dn = dr->dr_dnode;
2586
2587 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2588
2589 ASSERT(db->db.db_size != 0);
2590
2591 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
2592 dr->dr_accounted, txg);
2593
2594 list_remove(&db->db_dirty_records, dr);
2595
2596 /*
2597 * Note that there are three places in dbuf_dirty()
2598 * where this dirty record may be put on a list.
2599 * Make sure to do a list_remove corresponding to
2600 * every one of those list_insert calls.
2601 */
2602 if (dr->dr_parent) {
2603 mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
2604 list_remove(&dr->dr_parent->dt.di.dr_children, dr);
2605 mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
2606 } else if (db->db_blkid == DMU_SPILL_BLKID ||
2607 db->db_level + 1 == dn->dn_nlevels) {
2608 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
2609 mutex_enter(&dn->dn_mtx);
2610 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
2611 mutex_exit(&dn->dn_mtx);
2612 }
2613
2614 if (db->db_state != DB_NOFILL && !brtwrite) {
2615 dbuf_unoverride(dr);
2616
2617 if (dr->dt.dl.dr_data != db->db_buf) {
2618 ASSERT(db->db_buf != NULL);
2619 ASSERT(dr->dt.dl.dr_data != NULL);
2620 arc_buf_destroy(dr->dt.dl.dr_data, db);
2621 }
2622 }
2623
2624 kmem_cache_free(dbuf_dirty_kmem_cache, dr);
2625
2626 ASSERT(db->db_dirtycnt > 0);
2627 db->db_dirtycnt -= 1;
2628
2629 if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
2630 ASSERT(db->db_state == DB_NOFILL || brtwrite || diowrite ||
2631 arc_released(db->db_buf));
2632 dbuf_destroy(db);
2633 return (B_TRUE);
2634 }
2635
2636 return (B_FALSE);
2637 }
2638
2639 static void
dmu_buf_will_dirty_impl(dmu_buf_t * db_fake,int flags,dmu_tx_t * tx)2640 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx)
2641 {
2642 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2643 boolean_t undirty = B_FALSE;
2644
2645 ASSERT(tx->tx_txg != 0);
2646 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2647
2648 /*
2649 * Quick check for dirtiness to improve performance for some workloads
2650 * (e.g. file deletion with indirect blocks cached).
2651 */
2652 mutex_enter(&db->db_mtx);
2653 if (db->db_state == DB_CACHED || db->db_state == DB_NOFILL) {
2654 /*
2655 * It's possible that the dbuf is already dirty but not cached,
2656 * because there are some calls to dbuf_dirty() that don't
2657 * go through dmu_buf_will_dirty().
2658 */
2659 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2660 if (dr != NULL) {
2661 if (db->db_level == 0 &&
2662 dr->dt.dl.dr_brtwrite) {
2663 /*
2664 * Block cloning: If we are dirtying a cloned
2665 * level 0 block, we cannot simply redirty it,
2666 * because this dr has no associated data.
2667 * We will go through a full undirtying below,
2668 * before dirtying it again.
2669 */
2670 undirty = B_TRUE;
2671 } else {
2672 /* This dbuf is already dirty and cached. */
2673 dbuf_redirty(dr);
2674 mutex_exit(&db->db_mtx);
2675 return;
2676 }
2677 }
2678 }
2679 mutex_exit(&db->db_mtx);
2680
2681 DB_DNODE_ENTER(db);
2682 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
2683 flags |= DB_RF_HAVESTRUCT;
2684 DB_DNODE_EXIT(db);
2685
2686 /*
2687 * Block cloning: Do the dbuf_read() before undirtying the dbuf, as we
2688 * want to make sure dbuf_read() will read the pending cloned block and
2689 * not the uderlying block that is being replaced. dbuf_undirty() will
2690 * do brt_pending_remove() before removing the dirty record.
2691 */
2692 (void) dbuf_read(db, NULL, flags);
2693 if (undirty) {
2694 mutex_enter(&db->db_mtx);
2695 VERIFY(!dbuf_undirty(db, tx));
2696 mutex_exit(&db->db_mtx);
2697 }
2698 (void) dbuf_dirty(db, tx);
2699 }
2700
2701 void
dmu_buf_will_dirty(dmu_buf_t * db_fake,dmu_tx_t * tx)2702 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2703 {
2704 dmu_buf_will_dirty_impl(db_fake,
2705 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx);
2706 }
2707
2708 boolean_t
dmu_buf_is_dirty(dmu_buf_t * db_fake,dmu_tx_t * tx)2709 dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2710 {
2711 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2712 dbuf_dirty_record_t *dr;
2713
2714 mutex_enter(&db->db_mtx);
2715 dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2716 mutex_exit(&db->db_mtx);
2717 return (dr != NULL);
2718 }
2719
2720 /*
2721 * Normally the db_blkptr points to the most recent on-disk content for the
2722 * dbuf (and anything newer will be cached in the dbuf). However, a pending
2723 * block clone or not yet synced Direct I/O write will have a dirty record BP
2724 * pointing to the most recent data.
2725 */
2726 int
dmu_buf_get_bp_from_dbuf(dmu_buf_impl_t * db,blkptr_t ** bp)2727 dmu_buf_get_bp_from_dbuf(dmu_buf_impl_t *db, blkptr_t **bp)
2728 {
2729 ASSERT(MUTEX_HELD(&db->db_mtx));
2730 int error = 0;
2731
2732 if (db->db_level != 0) {
2733 *bp = db->db_blkptr;
2734 return (0);
2735 }
2736
2737 *bp = db->db_blkptr;
2738 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
2739 if (dr && db->db_state == DB_NOFILL) {
2740 /* Block clone */
2741 if (!dr->dt.dl.dr_brtwrite)
2742 error = EIO;
2743 else
2744 *bp = &dr->dt.dl.dr_overridden_by;
2745 } else if (dr && db->db_state == DB_UNCACHED) {
2746 /* Direct I/O write */
2747 if (dr->dt.dl.dr_diowrite)
2748 *bp = &dr->dt.dl.dr_overridden_by;
2749 }
2750
2751 return (error);
2752 }
2753
2754 /*
2755 * Direct I/O reads can read directly from the ARC, but the data has
2756 * to be untransformed in order to copy it over into user pages.
2757 */
2758 int
dmu_buf_untransform_direct(dmu_buf_impl_t * db,spa_t * spa)2759 dmu_buf_untransform_direct(dmu_buf_impl_t *db, spa_t *spa)
2760 {
2761 int err = 0;
2762 DB_DNODE_ENTER(db);
2763 dnode_t *dn = DB_DNODE(db);
2764
2765 ASSERT3S(db->db_state, ==, DB_CACHED);
2766 ASSERT(MUTEX_HELD(&db->db_mtx));
2767
2768 /*
2769 * Ensure that this block's dnode has been decrypted if
2770 * the caller has requested decrypted data.
2771 */
2772 err = dbuf_read_verify_dnode_crypt(db, dn, 0);
2773
2774 /*
2775 * If the arc buf is compressed or encrypted and the caller
2776 * requested uncompressed data, we need to untransform it
2777 * before returning. We also call arc_untransform() on any
2778 * unauthenticated blocks, which will verify their MAC if
2779 * the key is now available.
2780 */
2781 if (err == 0 && db->db_buf != NULL &&
2782 (arc_is_encrypted(db->db_buf) ||
2783 arc_is_unauthenticated(db->db_buf) ||
2784 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
2785 zbookmark_phys_t zb;
2786
2787 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
2788 db->db.db_object, db->db_level, db->db_blkid);
2789 dbuf_fix_old_data(db, spa_syncing_txg(spa));
2790 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE);
2791 dbuf_set_data(db, db->db_buf);
2792 }
2793 DB_DNODE_EXIT(db);
2794 DBUF_STAT_BUMP(hash_hits);
2795
2796 return (err);
2797 }
2798
2799 void
dmu_buf_will_clone_or_dio(dmu_buf_t * db_fake,dmu_tx_t * tx)2800 dmu_buf_will_clone_or_dio(dmu_buf_t *db_fake, dmu_tx_t *tx)
2801 {
2802 /*
2803 * Block clones and Direct I/O writes always happen in open-context.
2804 */
2805 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2806 ASSERT0(db->db_level);
2807 ASSERT(!dmu_tx_is_syncing(tx));
2808 ASSERT0(db->db_level);
2809 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2810 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
2811
2812 mutex_enter(&db->db_mtx);
2813 DBUF_VERIFY(db);
2814
2815 /*
2816 * We are going to clone or issue a Direct I/O write on this block, so
2817 * undirty modifications done to this block so far in this txg. This
2818 * includes writes and clones into this block.
2819 *
2820 * If there dirty record associated with this txg from a previous Direct
2821 * I/O write then space accounting cleanup takes place. It is important
2822 * to go ahead free up the space accounting through dbuf_undirty() ->
2823 * dbuf_unoverride() -> zio_free(). Space accountiung for determining
2824 * if a write can occur in zfs_write() happens through dmu_tx_assign().
2825 * This can cause an issue with Direct I/O writes in the case of
2826 * overwriting the same block, because all DVA allocations are being
2827 * done in open-context. Constantly allowing Direct I/O overwrites to
2828 * the same block can exhaust the pools available space leading to
2829 * ENOSPC errors at the DVA allocation part of the ZIO pipeline, which
2830 * will eventually suspend the pool. By cleaning up sapce acccounting
2831 * now, the ENOSPC error can be avoided.
2832 *
2833 * Since we are undirtying the record in open-context, we must have a
2834 * hold on the db, so it should never be evicted after calling
2835 * dbuf_undirty().
2836 */
2837 VERIFY3B(dbuf_undirty(db, tx), ==, B_FALSE);
2838 ASSERT0P(dbuf_find_dirty_eq(db, tx->tx_txg));
2839
2840 if (db->db_buf != NULL) {
2841 /*
2842 * If there is an associated ARC buffer with this dbuf we can
2843 * only destroy it if the previous dirty record does not
2844 * reference it.
2845 */
2846 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
2847 if (dr == NULL || dr->dt.dl.dr_data != db->db_buf)
2848 arc_buf_destroy(db->db_buf, db);
2849
2850 /*
2851 * Setting the dbuf's data pointers to NULL will force all
2852 * future reads down to the devices to get the most up to date
2853 * version of the data after a Direct I/O write has completed.
2854 */
2855 db->db_buf = NULL;
2856 dbuf_clear_data(db);
2857 }
2858
2859 ASSERT3P(db->db_buf, ==, NULL);
2860 ASSERT3P(db->db.db_data, ==, NULL);
2861
2862 db->db_state = DB_NOFILL;
2863 DTRACE_SET_STATE(db,
2864 "allocating NOFILL buffer for clone or direct I/O write");
2865
2866 DBUF_VERIFY(db);
2867 mutex_exit(&db->db_mtx);
2868
2869 dbuf_noread(db);
2870 (void) dbuf_dirty(db, tx);
2871 }
2872
2873 void
dmu_buf_will_not_fill(dmu_buf_t * db_fake,dmu_tx_t * tx)2874 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2875 {
2876 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2877
2878 mutex_enter(&db->db_mtx);
2879 db->db_state = DB_NOFILL;
2880 DTRACE_SET_STATE(db, "allocating NOFILL buffer");
2881 mutex_exit(&db->db_mtx);
2882
2883 dbuf_noread(db);
2884 (void) dbuf_dirty(db, tx);
2885 }
2886
2887 void
dmu_buf_will_fill(dmu_buf_t * db_fake,dmu_tx_t * tx,boolean_t canfail)2888 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx, boolean_t canfail)
2889 {
2890 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2891
2892 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2893 ASSERT(tx->tx_txg != 0);
2894 ASSERT(db->db_level == 0);
2895 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2896
2897 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
2898 dmu_tx_private_ok(tx));
2899
2900 mutex_enter(&db->db_mtx);
2901 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2902 if (db->db_state == DB_NOFILL ||
2903 (db->db_state == DB_UNCACHED && dr && dr->dt.dl.dr_diowrite)) {
2904 /*
2905 * If the fill can fail we should have a way to return back to
2906 * the cloned or Direct I/O write data.
2907 */
2908 if (canfail && dr) {
2909 mutex_exit(&db->db_mtx);
2910 dmu_buf_will_dirty(db_fake, tx);
2911 return;
2912 }
2913 /*
2914 * Block cloning: We will be completely overwriting a block
2915 * cloned in this transaction group, so let's undirty the
2916 * pending clone and mark the block as uncached. This will be
2917 * as if the clone was never done.
2918 */
2919 if (dr && dr->dt.dl.dr_brtwrite) {
2920 VERIFY(!dbuf_undirty(db, tx));
2921 db->db_state = DB_UNCACHED;
2922 }
2923 }
2924 mutex_exit(&db->db_mtx);
2925
2926 dbuf_noread(db);
2927 (void) dbuf_dirty(db, tx);
2928 }
2929
2930 /*
2931 * This function is effectively the same as dmu_buf_will_dirty(), but
2932 * indicates the caller expects raw encrypted data in the db, and provides
2933 * the crypt params (byteorder, salt, iv, mac) which should be stored in the
2934 * blkptr_t when this dbuf is written. This is only used for blocks of
2935 * dnodes, during raw receive.
2936 */
2937 void
dmu_buf_set_crypt_params(dmu_buf_t * db_fake,boolean_t byteorder,const uint8_t * salt,const uint8_t * iv,const uint8_t * mac,dmu_tx_t * tx)2938 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder,
2939 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx)
2940 {
2941 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2942 dbuf_dirty_record_t *dr;
2943
2944 /*
2945 * dr_has_raw_params is only processed for blocks of dnodes
2946 * (see dbuf_sync_dnode_leaf_crypt()).
2947 */
2948 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
2949 ASSERT0(db->db_level);
2950 ASSERT(db->db_objset->os_raw_receive);
2951
2952 dmu_buf_will_dirty_impl(db_fake,
2953 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx);
2954
2955 dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2956
2957 ASSERT3P(dr, !=, NULL);
2958 ASSERT3U(dr->dt.dl.dr_override_state, ==, DR_NOT_OVERRIDDEN);
2959
2960 dr->dt.dl.dr_has_raw_params = B_TRUE;
2961 dr->dt.dl.dr_byteorder = byteorder;
2962 memcpy(dr->dt.dl.dr_salt, salt, ZIO_DATA_SALT_LEN);
2963 memcpy(dr->dt.dl.dr_iv, iv, ZIO_DATA_IV_LEN);
2964 memcpy(dr->dt.dl.dr_mac, mac, ZIO_DATA_MAC_LEN);
2965 }
2966
2967 static void
dbuf_override_impl(dmu_buf_impl_t * db,const blkptr_t * bp,dmu_tx_t * tx)2968 dbuf_override_impl(dmu_buf_impl_t *db, const blkptr_t *bp, dmu_tx_t *tx)
2969 {
2970 struct dirty_leaf *dl;
2971 dbuf_dirty_record_t *dr;
2972
2973 ASSERT3U(db->db.db_object, !=, DMU_META_DNODE_OBJECT);
2974 ASSERT0(db->db_level);
2975
2976 dr = list_head(&db->db_dirty_records);
2977 ASSERT3P(dr, !=, NULL);
2978 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2979 dl = &dr->dt.dl;
2980 ASSERT0(dl->dr_has_raw_params);
2981 dl->dr_overridden_by = *bp;
2982 dl->dr_override_state = DR_OVERRIDDEN;
2983 BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by, dr->dr_txg);
2984 }
2985
2986 boolean_t
dmu_buf_fill_done(dmu_buf_t * dbuf,dmu_tx_t * tx,boolean_t failed)2987 dmu_buf_fill_done(dmu_buf_t *dbuf, dmu_tx_t *tx, boolean_t failed)
2988 {
2989 (void) tx;
2990 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2991 mutex_enter(&db->db_mtx);
2992 DBUF_VERIFY(db);
2993
2994 if (db->db_state == DB_FILL) {
2995 if (db->db_level == 0 && db->db_freed_in_flight) {
2996 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2997 /* we were freed while filling */
2998 /* XXX dbuf_undirty? */
2999 memset(db->db.db_data, 0, db->db.db_size);
3000 db->db_freed_in_flight = FALSE;
3001 db->db_state = DB_CACHED;
3002 DTRACE_SET_STATE(db,
3003 "fill done handling freed in flight");
3004 failed = B_FALSE;
3005 } else if (failed) {
3006 VERIFY(!dbuf_undirty(db, tx));
3007 arc_buf_destroy(db->db_buf, db);
3008 db->db_buf = NULL;
3009 dbuf_clear_data(db);
3010 DTRACE_SET_STATE(db, "fill failed");
3011 } else {
3012 db->db_state = DB_CACHED;
3013 DTRACE_SET_STATE(db, "fill done");
3014 }
3015 cv_broadcast(&db->db_changed);
3016 } else {
3017 db->db_state = DB_CACHED;
3018 failed = B_FALSE;
3019 }
3020 mutex_exit(&db->db_mtx);
3021 return (failed);
3022 }
3023
3024 void
dmu_buf_write_embedded(dmu_buf_t * dbuf,void * data,bp_embedded_type_t etype,enum zio_compress comp,int uncompressed_size,int compressed_size,int byteorder,dmu_tx_t * tx)3025 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
3026 bp_embedded_type_t etype, enum zio_compress comp,
3027 int uncompressed_size, int compressed_size, int byteorder,
3028 dmu_tx_t *tx)
3029 {
3030 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
3031 struct dirty_leaf *dl;
3032 dmu_object_type_t type;
3033 dbuf_dirty_record_t *dr;
3034
3035 if (etype == BP_EMBEDDED_TYPE_DATA) {
3036 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
3037 SPA_FEATURE_EMBEDDED_DATA));
3038 }
3039
3040 DB_DNODE_ENTER(db);
3041 type = DB_DNODE(db)->dn_type;
3042 DB_DNODE_EXIT(db);
3043
3044 ASSERT0(db->db_level);
3045 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3046
3047 dmu_buf_will_not_fill(dbuf, tx);
3048
3049 dr = list_head(&db->db_dirty_records);
3050 ASSERT3P(dr, !=, NULL);
3051 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
3052 dl = &dr->dt.dl;
3053 ASSERT0(dl->dr_has_raw_params);
3054 encode_embedded_bp_compressed(&dl->dr_overridden_by,
3055 data, comp, uncompressed_size, compressed_size);
3056 BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
3057 BP_SET_TYPE(&dl->dr_overridden_by, type);
3058 BP_SET_LEVEL(&dl->dr_overridden_by, 0);
3059 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
3060
3061 dl->dr_override_state = DR_OVERRIDDEN;
3062 BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by, dr->dr_txg);
3063 }
3064
3065 void
dmu_buf_redact(dmu_buf_t * dbuf,dmu_tx_t * tx)3066 dmu_buf_redact(dmu_buf_t *dbuf, dmu_tx_t *tx)
3067 {
3068 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
3069 dmu_object_type_t type;
3070 ASSERT(dsl_dataset_feature_is_active(db->db_objset->os_dsl_dataset,
3071 SPA_FEATURE_REDACTED_DATASETS));
3072
3073 DB_DNODE_ENTER(db);
3074 type = DB_DNODE(db)->dn_type;
3075 DB_DNODE_EXIT(db);
3076
3077 ASSERT0(db->db_level);
3078 dmu_buf_will_not_fill(dbuf, tx);
3079
3080 blkptr_t bp = { { { {0} } } };
3081 BP_SET_TYPE(&bp, type);
3082 BP_SET_LEVEL(&bp, 0);
3083 BP_SET_BIRTH(&bp, tx->tx_txg, 0);
3084 BP_SET_REDACTED(&bp);
3085 BPE_SET_LSIZE(&bp, dbuf->db_size);
3086
3087 dbuf_override_impl(db, &bp, tx);
3088 }
3089
3090 /*
3091 * Directly assign a provided arc buf to a given dbuf if it's not referenced
3092 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
3093 */
3094 void
dbuf_assign_arcbuf(dmu_buf_impl_t * db,arc_buf_t * buf,dmu_tx_t * tx)3095 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
3096 {
3097 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
3098 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3099 ASSERT(db->db_level == 0);
3100 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
3101 ASSERT(buf != NULL);
3102 ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size);
3103 ASSERT(tx->tx_txg != 0);
3104
3105 arc_return_buf(buf, db);
3106 ASSERT(arc_released(buf));
3107
3108 mutex_enter(&db->db_mtx);
3109
3110 while (db->db_state == DB_READ || db->db_state == DB_FILL)
3111 cv_wait(&db->db_changed, &db->db_mtx);
3112
3113 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED ||
3114 db->db_state == DB_NOFILL);
3115
3116 if (db->db_state == DB_CACHED &&
3117 zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
3118 /*
3119 * In practice, we will never have a case where we have an
3120 * encrypted arc buffer while additional holds exist on the
3121 * dbuf. We don't handle this here so we simply assert that
3122 * fact instead.
3123 */
3124 ASSERT(!arc_is_encrypted(buf));
3125 mutex_exit(&db->db_mtx);
3126 (void) dbuf_dirty(db, tx);
3127 memcpy(db->db.db_data, buf->b_data, db->db.db_size);
3128 arc_buf_destroy(buf, db);
3129 return;
3130 }
3131
3132 if (db->db_state == DB_CACHED) {
3133 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
3134
3135 ASSERT(db->db_buf != NULL);
3136 if (dr != NULL && dr->dr_txg == tx->tx_txg) {
3137 ASSERT(dr->dt.dl.dr_data == db->db_buf);
3138
3139 if (!arc_released(db->db_buf)) {
3140 ASSERT(dr->dt.dl.dr_override_state ==
3141 DR_OVERRIDDEN);
3142 arc_release(db->db_buf, db);
3143 }
3144 dr->dt.dl.dr_data = buf;
3145 arc_buf_destroy(db->db_buf, db);
3146 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
3147 arc_release(db->db_buf, db);
3148 arc_buf_destroy(db->db_buf, db);
3149 }
3150 db->db_buf = NULL;
3151 } else if (db->db_state == DB_NOFILL) {
3152 /*
3153 * We will be completely replacing the cloned block. In case
3154 * it was cloned in this transaction group, let's undirty the
3155 * pending clone and mark the block as uncached. This will be
3156 * as if the clone was never done.
3157 */
3158 VERIFY(!dbuf_undirty(db, tx));
3159 db->db_state = DB_UNCACHED;
3160 }
3161 ASSERT(db->db_buf == NULL);
3162 dbuf_set_data(db, buf);
3163 db->db_state = DB_FILL;
3164 DTRACE_SET_STATE(db, "filling assigned arcbuf");
3165 mutex_exit(&db->db_mtx);
3166 (void) dbuf_dirty(db, tx);
3167 dmu_buf_fill_done(&db->db, tx, B_FALSE);
3168 }
3169
3170 void
dbuf_destroy(dmu_buf_impl_t * db)3171 dbuf_destroy(dmu_buf_impl_t *db)
3172 {
3173 dnode_t *dn;
3174 dmu_buf_impl_t *parent = db->db_parent;
3175 dmu_buf_impl_t *dndb;
3176
3177 ASSERT(MUTEX_HELD(&db->db_mtx));
3178 ASSERT(zfs_refcount_is_zero(&db->db_holds));
3179
3180 if (db->db_buf != NULL) {
3181 arc_buf_destroy(db->db_buf, db);
3182 db->db_buf = NULL;
3183 }
3184
3185 if (db->db_blkid == DMU_BONUS_BLKID) {
3186 int slots = DB_DNODE(db)->dn_num_slots;
3187 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
3188 if (db->db.db_data != NULL) {
3189 kmem_free(db->db.db_data, bonuslen);
3190 arc_space_return(bonuslen, ARC_SPACE_BONUS);
3191 db->db_state = DB_UNCACHED;
3192 DTRACE_SET_STATE(db, "buffer cleared");
3193 }
3194 }
3195
3196 dbuf_clear_data(db);
3197
3198 if (multilist_link_active(&db->db_cache_link)) {
3199 ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
3200 db->db_caching_status == DB_DBUF_METADATA_CACHE);
3201
3202 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db);
3203
3204 ASSERT0(dmu_buf_user_size(&db->db));
3205 (void) zfs_refcount_remove_many(
3206 &dbuf_caches[db->db_caching_status].size,
3207 db->db.db_size, db);
3208
3209 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
3210 DBUF_STAT_BUMPDOWN(metadata_cache_count);
3211 } else {
3212 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
3213 DBUF_STAT_BUMPDOWN(cache_count);
3214 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
3215 db->db.db_size);
3216 }
3217 db->db_caching_status = DB_NO_CACHE;
3218 }
3219
3220 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
3221 ASSERT(db->db_data_pending == NULL);
3222 ASSERT(list_is_empty(&db->db_dirty_records));
3223
3224 db->db_state = DB_EVICTING;
3225 DTRACE_SET_STATE(db, "buffer eviction started");
3226 db->db_blkptr = NULL;
3227
3228 /*
3229 * Now that db_state is DB_EVICTING, nobody else can find this via
3230 * the hash table. We can now drop db_mtx, which allows us to
3231 * acquire the dn_dbufs_mtx.
3232 */
3233 mutex_exit(&db->db_mtx);
3234
3235 DB_DNODE_ENTER(db);
3236 dn = DB_DNODE(db);
3237 dndb = dn->dn_dbuf;
3238 if (db->db_blkid != DMU_BONUS_BLKID) {
3239 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
3240 if (needlock)
3241 mutex_enter_nested(&dn->dn_dbufs_mtx,
3242 NESTED_SINGLE);
3243 avl_remove(&dn->dn_dbufs, db);
3244 membar_producer();
3245 DB_DNODE_EXIT(db);
3246 if (needlock)
3247 mutex_exit(&dn->dn_dbufs_mtx);
3248 /*
3249 * Decrementing the dbuf count means that the hold corresponding
3250 * to the removed dbuf is no longer discounted in dnode_move(),
3251 * so the dnode cannot be moved until after we release the hold.
3252 * The membar_producer() ensures visibility of the decremented
3253 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
3254 * release any lock.
3255 */
3256 mutex_enter(&dn->dn_mtx);
3257 dnode_rele_and_unlock(dn, db, B_TRUE);
3258 #ifdef USE_DNODE_HANDLE
3259 db->db_dnode_handle = NULL;
3260 #else
3261 db->db_dnode = NULL;
3262 #endif
3263
3264 dbuf_hash_remove(db);
3265 } else {
3266 DB_DNODE_EXIT(db);
3267 }
3268
3269 ASSERT(zfs_refcount_is_zero(&db->db_holds));
3270
3271 db->db_parent = NULL;
3272
3273 ASSERT(db->db_buf == NULL);
3274 ASSERT(db->db.db_data == NULL);
3275 ASSERT(db->db_hash_next == NULL);
3276 ASSERT(db->db_blkptr == NULL);
3277 ASSERT(db->db_data_pending == NULL);
3278 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
3279 ASSERT(!multilist_link_active(&db->db_cache_link));
3280
3281 /*
3282 * If this dbuf is referenced from an indirect dbuf,
3283 * decrement the ref count on the indirect dbuf.
3284 */
3285 if (parent && parent != dndb) {
3286 mutex_enter(&parent->db_mtx);
3287 dbuf_rele_and_unlock(parent, db, B_TRUE);
3288 }
3289
3290 kmem_cache_free(dbuf_kmem_cache, db);
3291 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3292 }
3293
3294 /*
3295 * Note: While bpp will always be updated if the function returns success,
3296 * parentp will not be updated if the dnode does not have dn_dbuf filled in;
3297 * this happens when the dnode is the meta-dnode, or {user|group|project}used
3298 * object.
3299 */
3300 __attribute__((always_inline))
3301 static inline int
dbuf_findbp(dnode_t * dn,int level,uint64_t blkid,int fail_sparse,dmu_buf_impl_t ** parentp,blkptr_t ** bpp)3302 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
3303 dmu_buf_impl_t **parentp, blkptr_t **bpp)
3304 {
3305 *parentp = NULL;
3306 *bpp = NULL;
3307
3308 ASSERT(blkid != DMU_BONUS_BLKID);
3309
3310 if (blkid == DMU_SPILL_BLKID) {
3311 mutex_enter(&dn->dn_mtx);
3312 if (dn->dn_have_spill &&
3313 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
3314 *bpp = DN_SPILL_BLKPTR(dn->dn_phys);
3315 else
3316 *bpp = NULL;
3317 dbuf_add_ref(dn->dn_dbuf, NULL);
3318 *parentp = dn->dn_dbuf;
3319 mutex_exit(&dn->dn_mtx);
3320 return (0);
3321 }
3322
3323 int nlevels =
3324 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
3325 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
3326
3327 ASSERT3U(level * epbs, <, 64);
3328 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3329 /*
3330 * This assertion shouldn't trip as long as the max indirect block size
3331 * is less than 1M. The reason for this is that up to that point,
3332 * the number of levels required to address an entire object with blocks
3333 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In
3334 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
3335 * (i.e. we can address the entire object), objects will all use at most
3336 * N-1 levels and the assertion won't overflow. However, once epbs is
3337 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be
3338 * enough to address an entire object, so objects will have 5 levels,
3339 * but then this assertion will overflow.
3340 *
3341 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
3342 * need to redo this logic to handle overflows.
3343 */
3344 ASSERT(level >= nlevels ||
3345 ((nlevels - level - 1) * epbs) +
3346 highbit64(dn->dn_phys->dn_nblkptr) <= 64);
3347 if (level >= nlevels ||
3348 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
3349 ((nlevels - level - 1) * epbs)) ||
3350 (fail_sparse &&
3351 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
3352 /* the buffer has no parent yet */
3353 return (SET_ERROR(ENOENT));
3354 } else if (level < nlevels-1) {
3355 /* this block is referenced from an indirect block */
3356 int err;
3357
3358 err = dbuf_hold_impl(dn, level + 1,
3359 blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
3360
3361 if (err)
3362 return (err);
3363 err = dbuf_read(*parentp, NULL,
3364 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
3365 if (err) {
3366 dbuf_rele(*parentp, NULL);
3367 *parentp = NULL;
3368 return (err);
3369 }
3370 rw_enter(&(*parentp)->db_rwlock, RW_READER);
3371 *bpp = ((blkptr_t *)(*parentp)->db.db_data) +
3372 (blkid & ((1ULL << epbs) - 1));
3373 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))
3374 ASSERT(BP_IS_HOLE(*bpp));
3375 rw_exit(&(*parentp)->db_rwlock);
3376 return (0);
3377 } else {
3378 /* the block is referenced from the dnode */
3379 ASSERT3U(level, ==, nlevels-1);
3380 ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
3381 blkid < dn->dn_phys->dn_nblkptr);
3382 if (dn->dn_dbuf) {
3383 dbuf_add_ref(dn->dn_dbuf, NULL);
3384 *parentp = dn->dn_dbuf;
3385 }
3386 *bpp = &dn->dn_phys->dn_blkptr[blkid];
3387 return (0);
3388 }
3389 }
3390
3391 static dmu_buf_impl_t *
dbuf_create(dnode_t * dn,uint8_t level,uint64_t blkid,dmu_buf_impl_t * parent,blkptr_t * blkptr,uint64_t hash)3392 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
3393 dmu_buf_impl_t *parent, blkptr_t *blkptr, uint64_t hash)
3394 {
3395 objset_t *os = dn->dn_objset;
3396 dmu_buf_impl_t *db, *odb;
3397
3398 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3399 ASSERT(dn->dn_type != DMU_OT_NONE);
3400
3401 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
3402
3403 list_create(&db->db_dirty_records, sizeof (dbuf_dirty_record_t),
3404 offsetof(dbuf_dirty_record_t, dr_dbuf_node));
3405
3406 db->db_objset = os;
3407 db->db.db_object = dn->dn_object;
3408 db->db_level = level;
3409 db->db_blkid = blkid;
3410 db->db_dirtycnt = 0;
3411 #ifdef USE_DNODE_HANDLE
3412 db->db_dnode_handle = dn->dn_handle;
3413 #else
3414 db->db_dnode = dn;
3415 #endif
3416 db->db_parent = parent;
3417 db->db_blkptr = blkptr;
3418 db->db_hash = hash;
3419
3420 db->db_user = NULL;
3421 db->db_user_immediate_evict = FALSE;
3422 db->db_freed_in_flight = FALSE;
3423 db->db_pending_evict = FALSE;
3424
3425 if (blkid == DMU_BONUS_BLKID) {
3426 ASSERT3P(parent, ==, dn->dn_dbuf);
3427 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
3428 (dn->dn_nblkptr-1) * sizeof (blkptr_t);
3429 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
3430 db->db.db_offset = DMU_BONUS_BLKID;
3431 db->db_state = DB_UNCACHED;
3432 DTRACE_SET_STATE(db, "bonus buffer created");
3433 db->db_caching_status = DB_NO_CACHE;
3434 /* the bonus dbuf is not placed in the hash table */
3435 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3436 return (db);
3437 } else if (blkid == DMU_SPILL_BLKID) {
3438 db->db.db_size = (blkptr != NULL) ?
3439 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
3440 db->db.db_offset = 0;
3441 } else {
3442 int blocksize =
3443 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
3444 db->db.db_size = blocksize;
3445 db->db.db_offset = db->db_blkid * blocksize;
3446 }
3447
3448 /*
3449 * Hold the dn_dbufs_mtx while we get the new dbuf
3450 * in the hash table *and* added to the dbufs list.
3451 * This prevents a possible deadlock with someone
3452 * trying to look up this dbuf before it's added to the
3453 * dn_dbufs list.
3454 */
3455 mutex_enter(&dn->dn_dbufs_mtx);
3456 db->db_state = DB_EVICTING; /* not worth logging this state change */
3457 if ((odb = dbuf_hash_insert(db)) != NULL) {
3458 /* someone else inserted it first */
3459 mutex_exit(&dn->dn_dbufs_mtx);
3460 kmem_cache_free(dbuf_kmem_cache, db);
3461 DBUF_STAT_BUMP(hash_insert_race);
3462 return (odb);
3463 }
3464 avl_add(&dn->dn_dbufs, db);
3465
3466 db->db_state = DB_UNCACHED;
3467 DTRACE_SET_STATE(db, "regular buffer created");
3468 db->db_caching_status = DB_NO_CACHE;
3469 mutex_exit(&dn->dn_dbufs_mtx);
3470 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3471
3472 if (parent && parent != dn->dn_dbuf)
3473 dbuf_add_ref(parent, db);
3474
3475 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
3476 zfs_refcount_count(&dn->dn_holds) > 0);
3477 (void) zfs_refcount_add(&dn->dn_holds, db);
3478
3479 dprintf_dbuf(db, "db=%p\n", db);
3480
3481 return (db);
3482 }
3483
3484 /*
3485 * This function returns a block pointer and information about the object,
3486 * given a dnode and a block. This is a publicly accessible version of
3487 * dbuf_findbp that only returns some information, rather than the
3488 * dbuf. Note that the dnode passed in must be held, and the dn_struct_rwlock
3489 * should be locked as (at least) a reader.
3490 */
3491 int
dbuf_dnode_findbp(dnode_t * dn,uint64_t level,uint64_t blkid,blkptr_t * bp,uint16_t * datablkszsec,uint8_t * indblkshift)3492 dbuf_dnode_findbp(dnode_t *dn, uint64_t level, uint64_t blkid,
3493 blkptr_t *bp, uint16_t *datablkszsec, uint8_t *indblkshift)
3494 {
3495 dmu_buf_impl_t *dbp = NULL;
3496 blkptr_t *bp2;
3497 int err = 0;
3498 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3499
3500 err = dbuf_findbp(dn, level, blkid, B_FALSE, &dbp, &bp2);
3501 if (err == 0) {
3502 ASSERT3P(bp2, !=, NULL);
3503 *bp = *bp2;
3504 if (dbp != NULL)
3505 dbuf_rele(dbp, NULL);
3506 if (datablkszsec != NULL)
3507 *datablkszsec = dn->dn_phys->dn_datablkszsec;
3508 if (indblkshift != NULL)
3509 *indblkshift = dn->dn_phys->dn_indblkshift;
3510 }
3511
3512 return (err);
3513 }
3514
3515 typedef struct dbuf_prefetch_arg {
3516 spa_t *dpa_spa; /* The spa to issue the prefetch in. */
3517 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
3518 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
3519 int dpa_curlevel; /* The current level that we're reading */
3520 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
3521 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
3522 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
3523 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
3524 dbuf_prefetch_fn dpa_cb; /* prefetch completion callback */
3525 void *dpa_arg; /* prefetch completion arg */
3526 } dbuf_prefetch_arg_t;
3527
3528 static void
dbuf_prefetch_fini(dbuf_prefetch_arg_t * dpa,boolean_t io_done)3529 dbuf_prefetch_fini(dbuf_prefetch_arg_t *dpa, boolean_t io_done)
3530 {
3531 if (dpa->dpa_cb != NULL) {
3532 dpa->dpa_cb(dpa->dpa_arg, dpa->dpa_zb.zb_level,
3533 dpa->dpa_zb.zb_blkid, io_done);
3534 }
3535 kmem_free(dpa, sizeof (*dpa));
3536 }
3537
3538 static void
dbuf_issue_final_prefetch_done(zio_t * zio,const zbookmark_phys_t * zb,const blkptr_t * iobp,arc_buf_t * abuf,void * private)3539 dbuf_issue_final_prefetch_done(zio_t *zio, const zbookmark_phys_t *zb,
3540 const blkptr_t *iobp, arc_buf_t *abuf, void *private)
3541 {
3542 (void) zio, (void) zb, (void) iobp;
3543 dbuf_prefetch_arg_t *dpa = private;
3544
3545 if (abuf != NULL)
3546 arc_buf_destroy(abuf, private);
3547
3548 dbuf_prefetch_fini(dpa, B_TRUE);
3549 }
3550
3551 /*
3552 * Actually issue the prefetch read for the block given.
3553 */
3554 static void
dbuf_issue_final_prefetch(dbuf_prefetch_arg_t * dpa,blkptr_t * bp)3555 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
3556 {
3557 ASSERT(!BP_IS_REDACTED(bp) ||
3558 dsl_dataset_feature_is_active(
3559 dpa->dpa_dnode->dn_objset->os_dsl_dataset,
3560 SPA_FEATURE_REDACTED_DATASETS));
3561
3562 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
3563 return (dbuf_prefetch_fini(dpa, B_FALSE));
3564
3565 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
3566 arc_flags_t aflags =
3567 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH |
3568 ARC_FLAG_NO_BUF;
3569
3570 /* dnodes are always read as raw and then converted later */
3571 if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) &&
3572 dpa->dpa_curlevel == 0)
3573 zio_flags |= ZIO_FLAG_RAW;
3574
3575 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
3576 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
3577 ASSERT(dpa->dpa_zio != NULL);
3578 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp,
3579 dbuf_issue_final_prefetch_done, dpa,
3580 dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb);
3581 }
3582
3583 /*
3584 * Called when an indirect block above our prefetch target is read in. This
3585 * will either read in the next indirect block down the tree or issue the actual
3586 * prefetch if the next block down is our target.
3587 */
3588 static void
dbuf_prefetch_indirect_done(zio_t * zio,const zbookmark_phys_t * zb,const blkptr_t * iobp,arc_buf_t * abuf,void * private)3589 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb,
3590 const blkptr_t *iobp, arc_buf_t *abuf, void *private)
3591 {
3592 (void) zb, (void) iobp;
3593 dbuf_prefetch_arg_t *dpa = private;
3594
3595 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
3596 ASSERT3S(dpa->dpa_curlevel, >, 0);
3597
3598 if (abuf == NULL) {
3599 ASSERT(zio == NULL || zio->io_error != 0);
3600 dbuf_prefetch_fini(dpa, B_TRUE);
3601 return;
3602 }
3603 ASSERT(zio == NULL || zio->io_error == 0);
3604
3605 /*
3606 * The dpa_dnode is only valid if we are called with a NULL
3607 * zio. This indicates that the arc_read() returned without
3608 * first calling zio_read() to issue a physical read. Once
3609 * a physical read is made the dpa_dnode must be invalidated
3610 * as the locks guarding it may have been dropped. If the
3611 * dpa_dnode is still valid, then we want to add it to the dbuf
3612 * cache. To do so, we must hold the dbuf associated with the block
3613 * we just prefetched, read its contents so that we associate it
3614 * with an arc_buf_t, and then release it.
3615 */
3616 if (zio != NULL) {
3617 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
3618 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) {
3619 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
3620 } else {
3621 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
3622 }
3623 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
3624
3625 dpa->dpa_dnode = NULL;
3626 } else if (dpa->dpa_dnode != NULL) {
3627 uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
3628 (dpa->dpa_epbs * (dpa->dpa_curlevel -
3629 dpa->dpa_zb.zb_level));
3630 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
3631 dpa->dpa_curlevel, curblkid, FTAG);
3632 if (db == NULL) {
3633 arc_buf_destroy(abuf, private);
3634 dbuf_prefetch_fini(dpa, B_TRUE);
3635 return;
3636 }
3637 (void) dbuf_read(db, NULL,
3638 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
3639 dbuf_rele(db, FTAG);
3640 }
3641
3642 dpa->dpa_curlevel--;
3643 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
3644 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
3645 blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
3646 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
3647
3648 ASSERT(!BP_IS_REDACTED(bp) || (dpa->dpa_dnode &&
3649 dsl_dataset_feature_is_active(
3650 dpa->dpa_dnode->dn_objset->os_dsl_dataset,
3651 SPA_FEATURE_REDACTED_DATASETS)));
3652 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) {
3653 arc_buf_destroy(abuf, private);
3654 dbuf_prefetch_fini(dpa, B_TRUE);
3655 return;
3656 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
3657 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
3658 dbuf_issue_final_prefetch(dpa, bp);
3659 } else {
3660 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3661 zbookmark_phys_t zb;
3662
3663 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3664 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE)
3665 iter_aflags |= ARC_FLAG_L2CACHE;
3666
3667 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
3668
3669 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
3670 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
3671
3672 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
3673 bp, dbuf_prefetch_indirect_done, dpa,
3674 ZIO_PRIORITY_SYNC_READ,
3675 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3676 &iter_aflags, &zb);
3677 }
3678
3679 arc_buf_destroy(abuf, private);
3680 }
3681
3682 /*
3683 * Issue prefetch reads for the given block on the given level. If the indirect
3684 * blocks above that block are not in memory, we will read them in
3685 * asynchronously. As a result, this call never blocks waiting for a read to
3686 * complete. Note that the prefetch might fail if the dataset is encrypted and
3687 * the encryption key is unmapped before the IO completes.
3688 */
3689 int
dbuf_prefetch_impl(dnode_t * dn,int64_t level,uint64_t blkid,zio_priority_t prio,arc_flags_t aflags,dbuf_prefetch_fn cb,void * arg)3690 dbuf_prefetch_impl(dnode_t *dn, int64_t level, uint64_t blkid,
3691 zio_priority_t prio, arc_flags_t aflags, dbuf_prefetch_fn cb,
3692 void *arg)
3693 {
3694 blkptr_t bp;
3695 int epbs, nlevels, curlevel;
3696 uint64_t curblkid;
3697
3698 ASSERT(blkid != DMU_BONUS_BLKID);
3699 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3700
3701 if (blkid > dn->dn_maxblkid)
3702 goto no_issue;
3703
3704 if (level == 0 && dnode_block_freed(dn, blkid))
3705 goto no_issue;
3706
3707 /*
3708 * This dnode hasn't been written to disk yet, so there's nothing to
3709 * prefetch.
3710 */
3711 nlevels = dn->dn_phys->dn_nlevels;
3712 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
3713 goto no_issue;
3714
3715 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3716 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
3717 goto no_issue;
3718
3719 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
3720 level, blkid, NULL);
3721 if (db != NULL) {
3722 mutex_exit(&db->db_mtx);
3723 /*
3724 * This dbuf already exists. It is either CACHED, or
3725 * (we assume) about to be read or filled.
3726 */
3727 goto no_issue;
3728 }
3729
3730 /*
3731 * Find the closest ancestor (indirect block) of the target block
3732 * that is present in the cache. In this indirect block, we will
3733 * find the bp that is at curlevel, curblkid.
3734 */
3735 curlevel = level;
3736 curblkid = blkid;
3737 while (curlevel < nlevels - 1) {
3738 int parent_level = curlevel + 1;
3739 uint64_t parent_blkid = curblkid >> epbs;
3740 dmu_buf_impl_t *db;
3741
3742 if (dbuf_hold_impl(dn, parent_level, parent_blkid,
3743 FALSE, TRUE, FTAG, &db) == 0) {
3744 blkptr_t *bpp = db->db_buf->b_data;
3745 bp = bpp[P2PHASE(curblkid, 1 << epbs)];
3746 dbuf_rele(db, FTAG);
3747 break;
3748 }
3749
3750 curlevel = parent_level;
3751 curblkid = parent_blkid;
3752 }
3753
3754 if (curlevel == nlevels - 1) {
3755 /* No cached indirect blocks found. */
3756 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
3757 bp = dn->dn_phys->dn_blkptr[curblkid];
3758 }
3759 ASSERT(!BP_IS_REDACTED(&bp) ||
3760 dsl_dataset_feature_is_active(dn->dn_objset->os_dsl_dataset,
3761 SPA_FEATURE_REDACTED_DATASETS));
3762 if (BP_IS_HOLE(&bp) || BP_IS_REDACTED(&bp))
3763 goto no_issue;
3764
3765 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
3766
3767 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
3768 ZIO_FLAG_CANFAIL);
3769
3770 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
3771 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
3772 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3773 dn->dn_object, level, blkid);
3774 dpa->dpa_curlevel = curlevel;
3775 dpa->dpa_prio = prio;
3776 dpa->dpa_aflags = aflags;
3777 dpa->dpa_spa = dn->dn_objset->os_spa;
3778 dpa->dpa_dnode = dn;
3779 dpa->dpa_epbs = epbs;
3780 dpa->dpa_zio = pio;
3781 dpa->dpa_cb = cb;
3782 dpa->dpa_arg = arg;
3783
3784 if (!DNODE_LEVEL_IS_CACHEABLE(dn, level))
3785 dpa->dpa_aflags |= ARC_FLAG_UNCACHED;
3786 else if (dnode_level_is_l2cacheable(&bp, dn, level))
3787 dpa->dpa_aflags |= ARC_FLAG_L2CACHE;
3788
3789 /*
3790 * If we have the indirect just above us, no need to do the asynchronous
3791 * prefetch chain; we'll just run the last step ourselves. If we're at
3792 * a higher level, though, we want to issue the prefetches for all the
3793 * indirect blocks asynchronously, so we can go on with whatever we were
3794 * doing.
3795 */
3796 if (curlevel == level) {
3797 ASSERT3U(curblkid, ==, blkid);
3798 dbuf_issue_final_prefetch(dpa, &bp);
3799 } else {
3800 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3801 zbookmark_phys_t zb;
3802
3803 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3804 if (dnode_level_is_l2cacheable(&bp, dn, level))
3805 iter_aflags |= ARC_FLAG_L2CACHE;
3806
3807 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3808 dn->dn_object, curlevel, curblkid);
3809 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
3810 &bp, dbuf_prefetch_indirect_done, dpa,
3811 ZIO_PRIORITY_SYNC_READ,
3812 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3813 &iter_aflags, &zb);
3814 }
3815 /*
3816 * We use pio here instead of dpa_zio since it's possible that
3817 * dpa may have already been freed.
3818 */
3819 zio_nowait(pio);
3820 return (1);
3821 no_issue:
3822 if (cb != NULL)
3823 cb(arg, level, blkid, B_FALSE);
3824 return (0);
3825 }
3826
3827 int
dbuf_prefetch(dnode_t * dn,int64_t level,uint64_t blkid,zio_priority_t prio,arc_flags_t aflags)3828 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
3829 arc_flags_t aflags)
3830 {
3831
3832 return (dbuf_prefetch_impl(dn, level, blkid, prio, aflags, NULL, NULL));
3833 }
3834
3835 /*
3836 * Helper function for dbuf_hold_impl() to copy a buffer. Handles
3837 * the case of encrypted, compressed and uncompressed buffers by
3838 * allocating the new buffer, respectively, with arc_alloc_raw_buf(),
3839 * arc_alloc_compressed_buf() or arc_alloc_buf().*
3840 *
3841 * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl().
3842 */
3843 noinline static void
dbuf_hold_copy(dnode_t * dn,dmu_buf_impl_t * db)3844 dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db)
3845 {
3846 dbuf_dirty_record_t *dr = db->db_data_pending;
3847 arc_buf_t *data = dr->dt.dl.dr_data;
3848 enum zio_compress compress_type = arc_get_compression(data);
3849 uint8_t complevel = arc_get_complevel(data);
3850
3851 if (arc_is_encrypted(data)) {
3852 boolean_t byteorder;
3853 uint8_t salt[ZIO_DATA_SALT_LEN];
3854 uint8_t iv[ZIO_DATA_IV_LEN];
3855 uint8_t mac[ZIO_DATA_MAC_LEN];
3856
3857 arc_get_raw_params(data, &byteorder, salt, iv, mac);
3858 dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db,
3859 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac,
3860 dn->dn_type, arc_buf_size(data), arc_buf_lsize(data),
3861 compress_type, complevel));
3862 } else if (compress_type != ZIO_COMPRESS_OFF) {
3863 dbuf_set_data(db, arc_alloc_compressed_buf(
3864 dn->dn_objset->os_spa, db, arc_buf_size(data),
3865 arc_buf_lsize(data), compress_type, complevel));
3866 } else {
3867 dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db,
3868 DBUF_GET_BUFC_TYPE(db), db->db.db_size));
3869 }
3870
3871 rw_enter(&db->db_rwlock, RW_WRITER);
3872 memcpy(db->db.db_data, data->b_data, arc_buf_size(data));
3873 rw_exit(&db->db_rwlock);
3874 }
3875
3876 /*
3877 * Returns with db_holds incremented, and db_mtx not held.
3878 * Note: dn_struct_rwlock must be held.
3879 */
3880 int
dbuf_hold_impl(dnode_t * dn,uint8_t level,uint64_t blkid,boolean_t fail_sparse,boolean_t fail_uncached,const void * tag,dmu_buf_impl_t ** dbp)3881 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
3882 boolean_t fail_sparse, boolean_t fail_uncached,
3883 const void *tag, dmu_buf_impl_t **dbp)
3884 {
3885 dmu_buf_impl_t *db, *parent = NULL;
3886 uint64_t hv;
3887
3888 /* If the pool has been created, verify the tx_sync_lock is not held */
3889 spa_t *spa = dn->dn_objset->os_spa;
3890 dsl_pool_t *dp = spa->spa_dsl_pool;
3891 if (dp != NULL) {
3892 ASSERT(!MUTEX_HELD(&dp->dp_tx.tx_sync_lock));
3893 }
3894
3895 ASSERT(blkid != DMU_BONUS_BLKID);
3896 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3897 ASSERT3U(dn->dn_nlevels, >, level);
3898
3899 *dbp = NULL;
3900
3901 /* dbuf_find() returns with db_mtx held */
3902 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid, &hv);
3903
3904 if (db == NULL) {
3905 blkptr_t *bp = NULL;
3906 int err;
3907
3908 if (fail_uncached)
3909 return (SET_ERROR(ENOENT));
3910
3911 ASSERT3P(parent, ==, NULL);
3912 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
3913 if (fail_sparse) {
3914 if (err == 0 && bp && BP_IS_HOLE(bp))
3915 err = SET_ERROR(ENOENT);
3916 if (err) {
3917 if (parent)
3918 dbuf_rele(parent, NULL);
3919 return (err);
3920 }
3921 }
3922 if (err && err != ENOENT)
3923 return (err);
3924 db = dbuf_create(dn, level, blkid, parent, bp, hv);
3925 }
3926
3927 if (fail_uncached && db->db_state != DB_CACHED) {
3928 mutex_exit(&db->db_mtx);
3929 return (SET_ERROR(ENOENT));
3930 }
3931
3932 if (db->db_buf != NULL) {
3933 arc_buf_access(db->db_buf);
3934 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
3935 }
3936
3937 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
3938
3939 /*
3940 * If this buffer is currently syncing out, and we are
3941 * still referencing it from db_data, we need to make a copy
3942 * of it in case we decide we want to dirty it again in this txg.
3943 */
3944 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
3945 dn->dn_object != DMU_META_DNODE_OBJECT &&
3946 db->db_state == DB_CACHED && db->db_data_pending) {
3947 dbuf_dirty_record_t *dr = db->db_data_pending;
3948 if (dr->dt.dl.dr_data == db->db_buf) {
3949 ASSERT3P(db->db_buf, !=, NULL);
3950 dbuf_hold_copy(dn, db);
3951 }
3952 }
3953
3954 if (multilist_link_active(&db->db_cache_link)) {
3955 ASSERT(zfs_refcount_is_zero(&db->db_holds));
3956 ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
3957 db->db_caching_status == DB_DBUF_METADATA_CACHE);
3958
3959 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db);
3960
3961 uint64_t size = db->db.db_size;
3962 uint64_t usize = dmu_buf_user_size(&db->db);
3963 (void) zfs_refcount_remove_many(
3964 &dbuf_caches[db->db_caching_status].size, size, db);
3965 (void) zfs_refcount_remove_many(
3966 &dbuf_caches[db->db_caching_status].size, usize,
3967 db->db_user);
3968
3969 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
3970 DBUF_STAT_BUMPDOWN(metadata_cache_count);
3971 } else {
3972 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
3973 DBUF_STAT_BUMPDOWN(cache_count);
3974 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
3975 size + usize);
3976 }
3977 db->db_caching_status = DB_NO_CACHE;
3978 }
3979 (void) zfs_refcount_add(&db->db_holds, tag);
3980 DBUF_VERIFY(db);
3981 mutex_exit(&db->db_mtx);
3982
3983 /* NOTE: we can't rele the parent until after we drop the db_mtx */
3984 if (parent)
3985 dbuf_rele(parent, NULL);
3986
3987 ASSERT3P(DB_DNODE(db), ==, dn);
3988 ASSERT3U(db->db_blkid, ==, blkid);
3989 ASSERT3U(db->db_level, ==, level);
3990 *dbp = db;
3991
3992 return (0);
3993 }
3994
3995 dmu_buf_impl_t *
dbuf_hold(dnode_t * dn,uint64_t blkid,const void * tag)3996 dbuf_hold(dnode_t *dn, uint64_t blkid, const void *tag)
3997 {
3998 return (dbuf_hold_level(dn, 0, blkid, tag));
3999 }
4000
4001 dmu_buf_impl_t *
dbuf_hold_level(dnode_t * dn,int level,uint64_t blkid,const void * tag)4002 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, const void *tag)
4003 {
4004 dmu_buf_impl_t *db;
4005 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
4006 return (err ? NULL : db);
4007 }
4008
4009 void
dbuf_create_bonus(dnode_t * dn)4010 dbuf_create_bonus(dnode_t *dn)
4011 {
4012 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
4013
4014 ASSERT(dn->dn_bonus == NULL);
4015 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL,
4016 dbuf_hash(dn->dn_objset, dn->dn_object, 0, DMU_BONUS_BLKID));
4017 }
4018
4019 int
dbuf_spill_set_blksz(dmu_buf_t * db_fake,uint64_t blksz,dmu_tx_t * tx)4020 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
4021 {
4022 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4023
4024 if (db->db_blkid != DMU_SPILL_BLKID)
4025 return (SET_ERROR(ENOTSUP));
4026 if (blksz == 0)
4027 blksz = SPA_MINBLOCKSIZE;
4028 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
4029 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
4030
4031 dbuf_new_size(db, blksz, tx);
4032
4033 return (0);
4034 }
4035
4036 void
dbuf_rm_spill(dnode_t * dn,dmu_tx_t * tx)4037 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
4038 {
4039 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
4040 }
4041
4042 #pragma weak dmu_buf_add_ref = dbuf_add_ref
4043 void
dbuf_add_ref(dmu_buf_impl_t * db,const void * tag)4044 dbuf_add_ref(dmu_buf_impl_t *db, const void *tag)
4045 {
4046 int64_t holds = zfs_refcount_add(&db->db_holds, tag);
4047 VERIFY3S(holds, >, 1);
4048 }
4049
4050 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
4051 boolean_t
dbuf_try_add_ref(dmu_buf_t * db_fake,objset_t * os,uint64_t obj,uint64_t blkid,const void * tag)4052 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
4053 const void *tag)
4054 {
4055 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4056 dmu_buf_impl_t *found_db;
4057 boolean_t result = B_FALSE;
4058
4059 if (blkid == DMU_BONUS_BLKID)
4060 found_db = dbuf_find_bonus(os, obj);
4061 else
4062 found_db = dbuf_find(os, obj, 0, blkid, NULL);
4063
4064 if (found_db != NULL) {
4065 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
4066 (void) zfs_refcount_add(&db->db_holds, tag);
4067 result = B_TRUE;
4068 }
4069 mutex_exit(&found_db->db_mtx);
4070 }
4071 return (result);
4072 }
4073
4074 /*
4075 * If you call dbuf_rele() you had better not be referencing the dnode handle
4076 * unless you have some other direct or indirect hold on the dnode. (An indirect
4077 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
4078 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
4079 * dnode's parent dbuf evicting its dnode handles.
4080 */
4081 void
dbuf_rele(dmu_buf_impl_t * db,const void * tag)4082 dbuf_rele(dmu_buf_impl_t *db, const void *tag)
4083 {
4084 mutex_enter(&db->db_mtx);
4085 dbuf_rele_and_unlock(db, tag, B_FALSE);
4086 }
4087
4088 void
dmu_buf_rele(dmu_buf_t * db,const void * tag)4089 dmu_buf_rele(dmu_buf_t *db, const void *tag)
4090 {
4091 dbuf_rele((dmu_buf_impl_t *)db, tag);
4092 }
4093
4094 /*
4095 * dbuf_rele() for an already-locked dbuf. This is necessary to allow
4096 * db_dirtycnt and db_holds to be updated atomically. The 'evicting'
4097 * argument should be set if we are already in the dbuf-evicting code
4098 * path, in which case we don't want to recursively evict. This allows us to
4099 * avoid deeply nested stacks that would have a call flow similar to this:
4100 *
4101 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
4102 * ^ |
4103 * | |
4104 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+
4105 *
4106 */
4107 void
dbuf_rele_and_unlock(dmu_buf_impl_t * db,const void * tag,boolean_t evicting)4108 dbuf_rele_and_unlock(dmu_buf_impl_t *db, const void *tag, boolean_t evicting)
4109 {
4110 int64_t holds;
4111 uint64_t size;
4112
4113 ASSERT(MUTEX_HELD(&db->db_mtx));
4114 DBUF_VERIFY(db);
4115
4116 /*
4117 * Remove the reference to the dbuf before removing its hold on the
4118 * dnode so we can guarantee in dnode_move() that a referenced bonus
4119 * buffer has a corresponding dnode hold.
4120 */
4121 holds = zfs_refcount_remove(&db->db_holds, tag);
4122 ASSERT(holds >= 0);
4123
4124 /*
4125 * We can't freeze indirects if there is a possibility that they
4126 * may be modified in the current syncing context.
4127 */
4128 if (db->db_buf != NULL &&
4129 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
4130 arc_buf_freeze(db->db_buf);
4131 }
4132
4133 if (holds == db->db_dirtycnt &&
4134 db->db_level == 0 && db->db_user_immediate_evict)
4135 dbuf_evict_user(db);
4136
4137 if (holds == 0) {
4138 if (db->db_blkid == DMU_BONUS_BLKID) {
4139 dnode_t *dn;
4140 boolean_t evict_dbuf = db->db_pending_evict;
4141
4142 /*
4143 * If the dnode moves here, we cannot cross this
4144 * barrier until the move completes.
4145 */
4146 DB_DNODE_ENTER(db);
4147
4148 dn = DB_DNODE(db);
4149 atomic_dec_32(&dn->dn_dbufs_count);
4150
4151 /*
4152 * Decrementing the dbuf count means that the bonus
4153 * buffer's dnode hold is no longer discounted in
4154 * dnode_move(). The dnode cannot move until after
4155 * the dnode_rele() below.
4156 */
4157 DB_DNODE_EXIT(db);
4158
4159 /*
4160 * Do not reference db after its lock is dropped.
4161 * Another thread may evict it.
4162 */
4163 mutex_exit(&db->db_mtx);
4164
4165 if (evict_dbuf)
4166 dnode_evict_bonus(dn);
4167
4168 dnode_rele(dn, db);
4169 } else if (db->db_buf == NULL) {
4170 /*
4171 * This is a special case: we never associated this
4172 * dbuf with any data allocated from the ARC.
4173 */
4174 ASSERT(db->db_state == DB_UNCACHED ||
4175 db->db_state == DB_NOFILL);
4176 dbuf_destroy(db);
4177 } else if (arc_released(db->db_buf)) {
4178 /*
4179 * This dbuf has anonymous data associated with it.
4180 */
4181 dbuf_destroy(db);
4182 } else if (!(DBUF_IS_CACHEABLE(db) || db->db_partial_read) ||
4183 db->db_pending_evict) {
4184 dbuf_destroy(db);
4185 } else if (!multilist_link_active(&db->db_cache_link)) {
4186 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
4187
4188 dbuf_cached_state_t dcs =
4189 dbuf_include_in_metadata_cache(db) ?
4190 DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE;
4191 db->db_caching_status = dcs;
4192
4193 multilist_insert(&dbuf_caches[dcs].cache, db);
4194 uint64_t db_size = db->db.db_size;
4195 uint64_t dbu_size = dmu_buf_user_size(&db->db);
4196 (void) zfs_refcount_add_many(
4197 &dbuf_caches[dcs].size, db_size, db);
4198 size = zfs_refcount_add_many(
4199 &dbuf_caches[dcs].size, dbu_size, db->db_user);
4200 uint8_t db_level = db->db_level;
4201 mutex_exit(&db->db_mtx);
4202
4203 if (dcs == DB_DBUF_METADATA_CACHE) {
4204 DBUF_STAT_BUMP(metadata_cache_count);
4205 DBUF_STAT_MAX(metadata_cache_size_bytes_max,
4206 size);
4207 } else {
4208 DBUF_STAT_BUMP(cache_count);
4209 DBUF_STAT_MAX(cache_size_bytes_max, size);
4210 DBUF_STAT_BUMP(cache_levels[db_level]);
4211 DBUF_STAT_INCR(cache_levels_bytes[db_level],
4212 db_size + dbu_size);
4213 }
4214
4215 if (dcs == DB_DBUF_CACHE && !evicting)
4216 dbuf_evict_notify(size);
4217 }
4218 } else {
4219 mutex_exit(&db->db_mtx);
4220 }
4221 }
4222
4223 #pragma weak dmu_buf_refcount = dbuf_refcount
4224 uint64_t
dbuf_refcount(dmu_buf_impl_t * db)4225 dbuf_refcount(dmu_buf_impl_t *db)
4226 {
4227 return (zfs_refcount_count(&db->db_holds));
4228 }
4229
4230 uint64_t
dmu_buf_user_refcount(dmu_buf_t * db_fake)4231 dmu_buf_user_refcount(dmu_buf_t *db_fake)
4232 {
4233 uint64_t holds;
4234 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4235
4236 mutex_enter(&db->db_mtx);
4237 ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt);
4238 holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt;
4239 mutex_exit(&db->db_mtx);
4240
4241 return (holds);
4242 }
4243
4244 void *
dmu_buf_replace_user(dmu_buf_t * db_fake,dmu_buf_user_t * old_user,dmu_buf_user_t * new_user)4245 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
4246 dmu_buf_user_t *new_user)
4247 {
4248 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4249
4250 mutex_enter(&db->db_mtx);
4251 dbuf_verify_user(db, DBVU_NOT_EVICTING);
4252 if (db->db_user == old_user)
4253 db->db_user = new_user;
4254 else
4255 old_user = db->db_user;
4256 dbuf_verify_user(db, DBVU_NOT_EVICTING);
4257 mutex_exit(&db->db_mtx);
4258
4259 return (old_user);
4260 }
4261
4262 void *
dmu_buf_set_user(dmu_buf_t * db_fake,dmu_buf_user_t * user)4263 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
4264 {
4265 return (dmu_buf_replace_user(db_fake, NULL, user));
4266 }
4267
4268 void *
dmu_buf_set_user_ie(dmu_buf_t * db_fake,dmu_buf_user_t * user)4269 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
4270 {
4271 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4272
4273 db->db_user_immediate_evict = TRUE;
4274 return (dmu_buf_set_user(db_fake, user));
4275 }
4276
4277 void *
dmu_buf_remove_user(dmu_buf_t * db_fake,dmu_buf_user_t * user)4278 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
4279 {
4280 return (dmu_buf_replace_user(db_fake, user, NULL));
4281 }
4282
4283 void *
dmu_buf_get_user(dmu_buf_t * db_fake)4284 dmu_buf_get_user(dmu_buf_t *db_fake)
4285 {
4286 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4287
4288 dbuf_verify_user(db, DBVU_NOT_EVICTING);
4289 return (db->db_user);
4290 }
4291
4292 uint64_t
dmu_buf_user_size(dmu_buf_t * db_fake)4293 dmu_buf_user_size(dmu_buf_t *db_fake)
4294 {
4295 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4296 if (db->db_user == NULL)
4297 return (0);
4298 return (atomic_load_64(&db->db_user->dbu_size));
4299 }
4300
4301 void
dmu_buf_add_user_size(dmu_buf_t * db_fake,uint64_t nadd)4302 dmu_buf_add_user_size(dmu_buf_t *db_fake, uint64_t nadd)
4303 {
4304 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4305 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
4306 ASSERT3P(db->db_user, !=, NULL);
4307 ASSERT3U(atomic_load_64(&db->db_user->dbu_size), <, UINT64_MAX - nadd);
4308 atomic_add_64(&db->db_user->dbu_size, nadd);
4309 }
4310
4311 void
dmu_buf_sub_user_size(dmu_buf_t * db_fake,uint64_t nsub)4312 dmu_buf_sub_user_size(dmu_buf_t *db_fake, uint64_t nsub)
4313 {
4314 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4315 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
4316 ASSERT3P(db->db_user, !=, NULL);
4317 ASSERT3U(atomic_load_64(&db->db_user->dbu_size), >=, nsub);
4318 atomic_sub_64(&db->db_user->dbu_size, nsub);
4319 }
4320
4321 void
dmu_buf_user_evict_wait(void)4322 dmu_buf_user_evict_wait(void)
4323 {
4324 taskq_wait(dbu_evict_taskq);
4325 }
4326
4327 blkptr_t *
dmu_buf_get_blkptr(dmu_buf_t * db)4328 dmu_buf_get_blkptr(dmu_buf_t *db)
4329 {
4330 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
4331 return (dbi->db_blkptr);
4332 }
4333
4334 objset_t *
dmu_buf_get_objset(dmu_buf_t * db)4335 dmu_buf_get_objset(dmu_buf_t *db)
4336 {
4337 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
4338 return (dbi->db_objset);
4339 }
4340
4341 static void
dbuf_check_blkptr(dnode_t * dn,dmu_buf_impl_t * db)4342 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
4343 {
4344 /* ASSERT(dmu_tx_is_syncing(tx) */
4345 ASSERT(MUTEX_HELD(&db->db_mtx));
4346
4347 if (db->db_blkptr != NULL)
4348 return;
4349
4350 if (db->db_blkid == DMU_SPILL_BLKID) {
4351 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys);
4352 BP_ZERO(db->db_blkptr);
4353 return;
4354 }
4355 if (db->db_level == dn->dn_phys->dn_nlevels-1) {
4356 /*
4357 * This buffer was allocated at a time when there was
4358 * no available blkptrs from the dnode, or it was
4359 * inappropriate to hook it in (i.e., nlevels mismatch).
4360 */
4361 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
4362 ASSERT(db->db_parent == NULL);
4363 db->db_parent = dn->dn_dbuf;
4364 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
4365 DBUF_VERIFY(db);
4366 } else {
4367 dmu_buf_impl_t *parent = db->db_parent;
4368 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
4369
4370 ASSERT(dn->dn_phys->dn_nlevels > 1);
4371 if (parent == NULL) {
4372 mutex_exit(&db->db_mtx);
4373 rw_enter(&dn->dn_struct_rwlock, RW_READER);
4374 parent = dbuf_hold_level(dn, db->db_level + 1,
4375 db->db_blkid >> epbs, db);
4376 rw_exit(&dn->dn_struct_rwlock);
4377 mutex_enter(&db->db_mtx);
4378 db->db_parent = parent;
4379 }
4380 db->db_blkptr = (blkptr_t *)parent->db.db_data +
4381 (db->db_blkid & ((1ULL << epbs) - 1));
4382 DBUF_VERIFY(db);
4383 }
4384 }
4385
4386 static void
dbuf_sync_bonus(dbuf_dirty_record_t * dr,dmu_tx_t * tx)4387 dbuf_sync_bonus(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4388 {
4389 dmu_buf_impl_t *db = dr->dr_dbuf;
4390 void *data = dr->dt.dl.dr_data;
4391
4392 ASSERT0(db->db_level);
4393 ASSERT(MUTEX_HELD(&db->db_mtx));
4394 ASSERT(db->db_blkid == DMU_BONUS_BLKID);
4395 ASSERT(data != NULL);
4396
4397 dnode_t *dn = dr->dr_dnode;
4398 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=,
4399 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1));
4400 memcpy(DN_BONUS(dn->dn_phys), data, DN_MAX_BONUS_LEN(dn->dn_phys));
4401
4402 dbuf_sync_leaf_verify_bonus_dnode(dr);
4403
4404 dbuf_undirty_bonus(dr);
4405 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
4406 }
4407
4408 /*
4409 * When syncing out a blocks of dnodes, adjust the block to deal with
4410 * encryption. Normally, we make sure the block is decrypted before writing
4411 * it. If we have crypt params, then we are writing a raw (encrypted) block,
4412 * from a raw receive. In this case, set the ARC buf's crypt params so
4413 * that the BP will be filled with the correct byteorder, salt, iv, and mac.
4414 */
4415 static void
dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t * dr)4416 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr)
4417 {
4418 int err;
4419 dmu_buf_impl_t *db = dr->dr_dbuf;
4420
4421 ASSERT(MUTEX_HELD(&db->db_mtx));
4422 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
4423 ASSERT3U(db->db_level, ==, 0);
4424
4425 if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) {
4426 zbookmark_phys_t zb;
4427
4428 /*
4429 * Unfortunately, there is currently no mechanism for
4430 * syncing context to handle decryption errors. An error
4431 * here is only possible if an attacker maliciously
4432 * changed a dnode block and updated the associated
4433 * checksums going up the block tree.
4434 */
4435 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
4436 db->db.db_object, db->db_level, db->db_blkid);
4437 err = arc_untransform(db->db_buf, db->db_objset->os_spa,
4438 &zb, B_TRUE);
4439 if (err)
4440 panic("Invalid dnode block MAC");
4441 } else if (dr->dt.dl.dr_has_raw_params) {
4442 (void) arc_release(dr->dt.dl.dr_data, db);
4443 arc_convert_to_raw(dr->dt.dl.dr_data,
4444 dmu_objset_id(db->db_objset),
4445 dr->dt.dl.dr_byteorder, DMU_OT_DNODE,
4446 dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac);
4447 }
4448 }
4449
4450 /*
4451 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it
4452 * is critical the we not allow the compiler to inline this function in to
4453 * dbuf_sync_list() thereby drastically bloating the stack usage.
4454 */
4455 noinline static void
dbuf_sync_indirect(dbuf_dirty_record_t * dr,dmu_tx_t * tx)4456 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4457 {
4458 dmu_buf_impl_t *db = dr->dr_dbuf;
4459 dnode_t *dn = dr->dr_dnode;
4460
4461 ASSERT(dmu_tx_is_syncing(tx));
4462
4463 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
4464
4465 mutex_enter(&db->db_mtx);
4466
4467 ASSERT(db->db_level > 0);
4468 DBUF_VERIFY(db);
4469
4470 /* Read the block if it hasn't been read yet. */
4471 if (db->db_buf == NULL) {
4472 mutex_exit(&db->db_mtx);
4473 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
4474 mutex_enter(&db->db_mtx);
4475 }
4476 ASSERT3U(db->db_state, ==, DB_CACHED);
4477 ASSERT(db->db_buf != NULL);
4478
4479 /* Indirect block size must match what the dnode thinks it is. */
4480 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
4481 dbuf_check_blkptr(dn, db);
4482
4483 /* Provide the pending dirty record to child dbufs */
4484 db->db_data_pending = dr;
4485
4486 mutex_exit(&db->db_mtx);
4487
4488 dbuf_write(dr, db->db_buf, tx);
4489
4490 zio_t *zio = dr->dr_zio;
4491 mutex_enter(&dr->dt.di.dr_mtx);
4492 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
4493 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
4494 mutex_exit(&dr->dt.di.dr_mtx);
4495 zio_nowait(zio);
4496 }
4497
4498 /*
4499 * Verify that the size of the data in our bonus buffer does not exceed
4500 * its recorded size.
4501 *
4502 * The purpose of this verification is to catch any cases in development
4503 * where the size of a phys structure (i.e space_map_phys_t) grows and,
4504 * due to incorrect feature management, older pools expect to read more
4505 * data even though they didn't actually write it to begin with.
4506 *
4507 * For a example, this would catch an error in the feature logic where we
4508 * open an older pool and we expect to write the space map histogram of
4509 * a space map with size SPACE_MAP_SIZE_V0.
4510 */
4511 static void
dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t * dr)4512 dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr)
4513 {
4514 #ifdef ZFS_DEBUG
4515 dnode_t *dn = dr->dr_dnode;
4516
4517 /*
4518 * Encrypted bonus buffers can have data past their bonuslen.
4519 * Skip the verification of these blocks.
4520 */
4521 if (DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))
4522 return;
4523
4524 uint16_t bonuslen = dn->dn_phys->dn_bonuslen;
4525 uint16_t maxbonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
4526 ASSERT3U(bonuslen, <=, maxbonuslen);
4527
4528 arc_buf_t *datap = dr->dt.dl.dr_data;
4529 char *datap_end = ((char *)datap) + bonuslen;
4530 char *datap_max = ((char *)datap) + maxbonuslen;
4531
4532 /* ensure that everything is zero after our data */
4533 for (; datap_end < datap_max; datap_end++)
4534 ASSERT(*datap_end == 0);
4535 #endif
4536 }
4537
4538 static blkptr_t *
dbuf_lightweight_bp(dbuf_dirty_record_t * dr)4539 dbuf_lightweight_bp(dbuf_dirty_record_t *dr)
4540 {
4541 /* This must be a lightweight dirty record. */
4542 ASSERT3P(dr->dr_dbuf, ==, NULL);
4543 dnode_t *dn = dr->dr_dnode;
4544
4545 if (dn->dn_phys->dn_nlevels == 1) {
4546 VERIFY3U(dr->dt.dll.dr_blkid, <, dn->dn_phys->dn_nblkptr);
4547 return (&dn->dn_phys->dn_blkptr[dr->dt.dll.dr_blkid]);
4548 } else {
4549 dmu_buf_impl_t *parent_db = dr->dr_parent->dr_dbuf;
4550 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
4551 VERIFY3U(parent_db->db_level, ==, 1);
4552 VERIFY3P(DB_DNODE(parent_db), ==, dn);
4553 VERIFY3U(dr->dt.dll.dr_blkid >> epbs, ==, parent_db->db_blkid);
4554 blkptr_t *bp = parent_db->db.db_data;
4555 return (&bp[dr->dt.dll.dr_blkid & ((1 << epbs) - 1)]);
4556 }
4557 }
4558
4559 static void
dbuf_lightweight_ready(zio_t * zio)4560 dbuf_lightweight_ready(zio_t *zio)
4561 {
4562 dbuf_dirty_record_t *dr = zio->io_private;
4563 blkptr_t *bp = zio->io_bp;
4564
4565 if (zio->io_error != 0)
4566 return;
4567
4568 dnode_t *dn = dr->dr_dnode;
4569
4570 blkptr_t *bp_orig = dbuf_lightweight_bp(dr);
4571 spa_t *spa = dmu_objset_spa(dn->dn_objset);
4572 int64_t delta = bp_get_dsize_sync(spa, bp) -
4573 bp_get_dsize_sync(spa, bp_orig);
4574 dnode_diduse_space(dn, delta);
4575
4576 uint64_t blkid = dr->dt.dll.dr_blkid;
4577 mutex_enter(&dn->dn_mtx);
4578 if (blkid > dn->dn_phys->dn_maxblkid) {
4579 ASSERT0(dn->dn_objset->os_raw_receive);
4580 dn->dn_phys->dn_maxblkid = blkid;
4581 }
4582 mutex_exit(&dn->dn_mtx);
4583
4584 if (!BP_IS_EMBEDDED(bp)) {
4585 uint64_t fill = BP_IS_HOLE(bp) ? 0 : 1;
4586 BP_SET_FILL(bp, fill);
4587 }
4588
4589 dmu_buf_impl_t *parent_db;
4590 EQUIV(dr->dr_parent == NULL, dn->dn_phys->dn_nlevels == 1);
4591 if (dr->dr_parent == NULL) {
4592 parent_db = dn->dn_dbuf;
4593 } else {
4594 parent_db = dr->dr_parent->dr_dbuf;
4595 }
4596 rw_enter(&parent_db->db_rwlock, RW_WRITER);
4597 *bp_orig = *bp;
4598 rw_exit(&parent_db->db_rwlock);
4599 }
4600
4601 static void
dbuf_lightweight_done(zio_t * zio)4602 dbuf_lightweight_done(zio_t *zio)
4603 {
4604 dbuf_dirty_record_t *dr = zio->io_private;
4605
4606 VERIFY0(zio->io_error);
4607
4608 objset_t *os = dr->dr_dnode->dn_objset;
4609 dmu_tx_t *tx = os->os_synctx;
4610
4611 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
4612 ASSERT(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4613 } else {
4614 dsl_dataset_t *ds = os->os_dsl_dataset;
4615 (void) dsl_dataset_block_kill(ds, &zio->io_bp_orig, tx, B_TRUE);
4616 dsl_dataset_block_born(ds, zio->io_bp, tx);
4617 }
4618
4619 dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted,
4620 zio->io_txg);
4621
4622 abd_free(dr->dt.dll.dr_abd);
4623 kmem_free(dr, sizeof (*dr));
4624 }
4625
4626 noinline static void
dbuf_sync_lightweight(dbuf_dirty_record_t * dr,dmu_tx_t * tx)4627 dbuf_sync_lightweight(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4628 {
4629 dnode_t *dn = dr->dr_dnode;
4630 zio_t *pio;
4631 if (dn->dn_phys->dn_nlevels == 1) {
4632 pio = dn->dn_zio;
4633 } else {
4634 pio = dr->dr_parent->dr_zio;
4635 }
4636
4637 zbookmark_phys_t zb = {
4638 .zb_objset = dmu_objset_id(dn->dn_objset),
4639 .zb_object = dn->dn_object,
4640 .zb_level = 0,
4641 .zb_blkid = dr->dt.dll.dr_blkid,
4642 };
4643
4644 /*
4645 * See comment in dbuf_write(). This is so that zio->io_bp_orig
4646 * will have the old BP in dbuf_lightweight_done().
4647 */
4648 dr->dr_bp_copy = *dbuf_lightweight_bp(dr);
4649
4650 dr->dr_zio = zio_write(pio, dmu_objset_spa(dn->dn_objset),
4651 dmu_tx_get_txg(tx), &dr->dr_bp_copy, dr->dt.dll.dr_abd,
4652 dn->dn_datablksz, abd_get_size(dr->dt.dll.dr_abd),
4653 &dr->dt.dll.dr_props, dbuf_lightweight_ready, NULL,
4654 dbuf_lightweight_done, dr, ZIO_PRIORITY_ASYNC_WRITE,
4655 ZIO_FLAG_MUSTSUCCEED | dr->dt.dll.dr_flags, &zb);
4656
4657 zio_nowait(dr->dr_zio);
4658 }
4659
4660 /*
4661 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is
4662 * critical the we not allow the compiler to inline this function in to
4663 * dbuf_sync_list() thereby drastically bloating the stack usage.
4664 */
4665 noinline static void
dbuf_sync_leaf(dbuf_dirty_record_t * dr,dmu_tx_t * tx)4666 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4667 {
4668 arc_buf_t **datap = &dr->dt.dl.dr_data;
4669 dmu_buf_impl_t *db = dr->dr_dbuf;
4670 dnode_t *dn = dr->dr_dnode;
4671 objset_t *os;
4672 uint64_t txg = tx->tx_txg;
4673
4674 ASSERT(dmu_tx_is_syncing(tx));
4675
4676 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
4677
4678 mutex_enter(&db->db_mtx);
4679 /*
4680 * To be synced, we must be dirtied. But we might have been freed
4681 * after the dirty.
4682 */
4683 if (db->db_state == DB_UNCACHED) {
4684 /* This buffer has been freed since it was dirtied */
4685 ASSERT3P(db->db.db_data, ==, NULL);
4686 } else if (db->db_state == DB_FILL) {
4687 /* This buffer was freed and is now being re-filled */
4688 ASSERT(db->db.db_data != dr->dt.dl.dr_data);
4689 } else if (db->db_state == DB_READ) {
4690 /*
4691 * This buffer was either cloned or had a Direct I/O write
4692 * occur and has an in-flgiht read on the BP. It is safe to
4693 * issue the write here, because the read has already been
4694 * issued and the contents won't change.
4695 *
4696 * We can verify the case of both the clone and Direct I/O
4697 * write by making sure the first dirty record for the dbuf
4698 * has no ARC buffer associated with it.
4699 */
4700 dbuf_dirty_record_t *dr_head =
4701 list_head(&db->db_dirty_records);
4702 ASSERT3P(db->db_buf, ==, NULL);
4703 ASSERT3P(db->db.db_data, ==, NULL);
4704 ASSERT3P(dr_head->dt.dl.dr_data, ==, NULL);
4705 ASSERT3U(dr_head->dt.dl.dr_override_state, ==, DR_OVERRIDDEN);
4706 } else {
4707 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
4708 }
4709 DBUF_VERIFY(db);
4710
4711 if (db->db_blkid == DMU_SPILL_BLKID) {
4712 mutex_enter(&dn->dn_mtx);
4713 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
4714 /*
4715 * In the previous transaction group, the bonus buffer
4716 * was entirely used to store the attributes for the
4717 * dnode which overrode the dn_spill field. However,
4718 * when adding more attributes to the file a spill
4719 * block was required to hold the extra attributes.
4720 *
4721 * Make sure to clear the garbage left in the dn_spill
4722 * field from the previous attributes in the bonus
4723 * buffer. Otherwise, after writing out the spill
4724 * block to the new allocated dva, it will free
4725 * the old block pointed to by the invalid dn_spill.
4726 */
4727 db->db_blkptr = NULL;
4728 }
4729 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
4730 mutex_exit(&dn->dn_mtx);
4731 }
4732
4733 /*
4734 * If this is a bonus buffer, simply copy the bonus data into the
4735 * dnode. It will be written out when the dnode is synced (and it
4736 * will be synced, since it must have been dirty for dbuf_sync to
4737 * be called).
4738 */
4739 if (db->db_blkid == DMU_BONUS_BLKID) {
4740 ASSERT(dr->dr_dbuf == db);
4741 dbuf_sync_bonus(dr, tx);
4742 return;
4743 }
4744
4745 os = dn->dn_objset;
4746
4747 /*
4748 * This function may have dropped the db_mtx lock allowing a dmu_sync
4749 * operation to sneak in. As a result, we need to ensure that we
4750 * don't check the dr_override_state until we have returned from
4751 * dbuf_check_blkptr.
4752 */
4753 dbuf_check_blkptr(dn, db);
4754
4755 /*
4756 * If this buffer is in the middle of an immediate write, wait for the
4757 * synchronous IO to complete.
4758 *
4759 * This is also valid even with Direct I/O writes setting a dirty
4760 * records override state into DR_IN_DMU_SYNC, because all
4761 * Direct I/O writes happen in open-context.
4762 */
4763 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
4764 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
4765 cv_wait(&db->db_changed, &db->db_mtx);
4766 }
4767
4768 /*
4769 * If this is a dnode block, ensure it is appropriately encrypted
4770 * or decrypted, depending on what we are writing to it this txg.
4771 */
4772 if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT)
4773 dbuf_prepare_encrypted_dnode_leaf(dr);
4774
4775 if (*datap != NULL && *datap == db->db_buf &&
4776 dn->dn_object != DMU_META_DNODE_OBJECT &&
4777 zfs_refcount_count(&db->db_holds) > 1 &&
4778 dr->dt.dl.dr_override_state != DR_OVERRIDDEN) {
4779 /*
4780 * If this buffer is currently "in use" (i.e., there
4781 * are active holds and db_data still references it),
4782 * then make a copy before we start the write so that
4783 * any modifications from the open txg will not leak
4784 * into this write.
4785 *
4786 * NOTE: this copy does not need to be made for
4787 * objects only modified in the syncing context (e.g.
4788 * DNONE_DNODE blocks).
4789 */
4790 int psize = arc_buf_size(*datap);
4791 int lsize = arc_buf_lsize(*datap);
4792 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
4793 enum zio_compress compress_type = arc_get_compression(*datap);
4794 uint8_t complevel = arc_get_complevel(*datap);
4795
4796 if (arc_is_encrypted(*datap)) {
4797 boolean_t byteorder;
4798 uint8_t salt[ZIO_DATA_SALT_LEN];
4799 uint8_t iv[ZIO_DATA_IV_LEN];
4800 uint8_t mac[ZIO_DATA_MAC_LEN];
4801
4802 arc_get_raw_params(*datap, &byteorder, salt, iv, mac);
4803 *datap = arc_alloc_raw_buf(os->os_spa, db,
4804 dmu_objset_id(os), byteorder, salt, iv, mac,
4805 dn->dn_type, psize, lsize, compress_type,
4806 complevel);
4807 } else if (compress_type != ZIO_COMPRESS_OFF) {
4808 ASSERT3U(type, ==, ARC_BUFC_DATA);
4809 *datap = arc_alloc_compressed_buf(os->os_spa, db,
4810 psize, lsize, compress_type, complevel);
4811 } else {
4812 *datap = arc_alloc_buf(os->os_spa, db, type, psize);
4813 }
4814 memcpy((*datap)->b_data, db->db.db_data, psize);
4815 }
4816 db->db_data_pending = dr;
4817
4818 mutex_exit(&db->db_mtx);
4819
4820 dbuf_write(dr, *datap, tx);
4821
4822 ASSERT(!list_link_active(&dr->dr_dirty_node));
4823 if (dn->dn_object == DMU_META_DNODE_OBJECT) {
4824 list_insert_tail(&dn->dn_dirty_records[txg & TXG_MASK], dr);
4825 } else {
4826 zio_nowait(dr->dr_zio);
4827 }
4828 }
4829
4830 /*
4831 * Syncs out a range of dirty records for indirect or leaf dbufs. May be
4832 * called recursively from dbuf_sync_indirect().
4833 */
4834 void
dbuf_sync_list(list_t * list,int level,dmu_tx_t * tx)4835 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
4836 {
4837 dbuf_dirty_record_t *dr;
4838
4839 while ((dr = list_head(list))) {
4840 if (dr->dr_zio != NULL) {
4841 /*
4842 * If we find an already initialized zio then we
4843 * are processing the meta-dnode, and we have finished.
4844 * The dbufs for all dnodes are put back on the list
4845 * during processing, so that we can zio_wait()
4846 * these IOs after initiating all child IOs.
4847 */
4848 ASSERT3U(dr->dr_dbuf->db.db_object, ==,
4849 DMU_META_DNODE_OBJECT);
4850 break;
4851 }
4852 list_remove(list, dr);
4853 if (dr->dr_dbuf == NULL) {
4854 dbuf_sync_lightweight(dr, tx);
4855 } else {
4856 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
4857 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
4858 VERIFY3U(dr->dr_dbuf->db_level, ==, level);
4859 }
4860 if (dr->dr_dbuf->db_level > 0)
4861 dbuf_sync_indirect(dr, tx);
4862 else
4863 dbuf_sync_leaf(dr, tx);
4864 }
4865 }
4866 }
4867
4868 static void
dbuf_write_ready(zio_t * zio,arc_buf_t * buf,void * vdb)4869 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
4870 {
4871 (void) buf;
4872 dmu_buf_impl_t *db = vdb;
4873 dnode_t *dn;
4874 blkptr_t *bp = zio->io_bp;
4875 blkptr_t *bp_orig = &zio->io_bp_orig;
4876 spa_t *spa = zio->io_spa;
4877 int64_t delta;
4878 uint64_t fill = 0;
4879 int i;
4880
4881 ASSERT3P(db->db_blkptr, !=, NULL);
4882 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
4883
4884 DB_DNODE_ENTER(db);
4885 dn = DB_DNODE(db);
4886 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
4887 dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
4888 zio->io_prev_space_delta = delta;
4889
4890 if (BP_GET_LOGICAL_BIRTH(bp) != 0) {
4891 ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
4892 BP_GET_TYPE(bp) == dn->dn_type) ||
4893 (db->db_blkid == DMU_SPILL_BLKID &&
4894 BP_GET_TYPE(bp) == dn->dn_bonustype) ||
4895 BP_IS_EMBEDDED(bp));
4896 ASSERT(BP_GET_LEVEL(bp) == db->db_level);
4897 }
4898
4899 mutex_enter(&db->db_mtx);
4900
4901 #ifdef ZFS_DEBUG
4902 if (db->db_blkid == DMU_SPILL_BLKID) {
4903 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
4904 ASSERT(!(BP_IS_HOLE(bp)) &&
4905 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
4906 }
4907 #endif
4908
4909 if (db->db_level == 0) {
4910 mutex_enter(&dn->dn_mtx);
4911 if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
4912 db->db_blkid != DMU_SPILL_BLKID) {
4913 ASSERT0(db->db_objset->os_raw_receive);
4914 dn->dn_phys->dn_maxblkid = db->db_blkid;
4915 }
4916 mutex_exit(&dn->dn_mtx);
4917
4918 if (dn->dn_type == DMU_OT_DNODE) {
4919 i = 0;
4920 while (i < db->db.db_size) {
4921 dnode_phys_t *dnp =
4922 (void *)(((char *)db->db.db_data) + i);
4923
4924 i += DNODE_MIN_SIZE;
4925 if (dnp->dn_type != DMU_OT_NONE) {
4926 fill++;
4927 for (int j = 0; j < dnp->dn_nblkptr;
4928 j++) {
4929 (void) zfs_blkptr_verify(spa,
4930 &dnp->dn_blkptr[j],
4931 BLK_CONFIG_SKIP,
4932 BLK_VERIFY_HALT);
4933 }
4934 if (dnp->dn_flags &
4935 DNODE_FLAG_SPILL_BLKPTR) {
4936 (void) zfs_blkptr_verify(spa,
4937 DN_SPILL_BLKPTR(dnp),
4938 BLK_CONFIG_SKIP,
4939 BLK_VERIFY_HALT);
4940 }
4941 i += dnp->dn_extra_slots *
4942 DNODE_MIN_SIZE;
4943 }
4944 }
4945 } else {
4946 if (BP_IS_HOLE(bp)) {
4947 fill = 0;
4948 } else {
4949 fill = 1;
4950 }
4951 }
4952 } else {
4953 blkptr_t *ibp = db->db.db_data;
4954 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
4955 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
4956 if (BP_IS_HOLE(ibp))
4957 continue;
4958 (void) zfs_blkptr_verify(spa, ibp,
4959 BLK_CONFIG_SKIP, BLK_VERIFY_HALT);
4960 fill += BP_GET_FILL(ibp);
4961 }
4962 }
4963 DB_DNODE_EXIT(db);
4964
4965 if (!BP_IS_EMBEDDED(bp))
4966 BP_SET_FILL(bp, fill);
4967
4968 mutex_exit(&db->db_mtx);
4969
4970 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG);
4971 *db->db_blkptr = *bp;
4972 dmu_buf_unlock_parent(db, dblt, FTAG);
4973 }
4974
4975 /*
4976 * This function gets called just prior to running through the compression
4977 * stage of the zio pipeline. If we're an indirect block comprised of only
4978 * holes, then we want this indirect to be compressed away to a hole. In
4979 * order to do that we must zero out any information about the holes that
4980 * this indirect points to prior to before we try to compress it.
4981 */
4982 static void
dbuf_write_children_ready(zio_t * zio,arc_buf_t * buf,void * vdb)4983 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
4984 {
4985 (void) zio, (void) buf;
4986 dmu_buf_impl_t *db = vdb;
4987 blkptr_t *bp;
4988 unsigned int epbs, i;
4989
4990 ASSERT3U(db->db_level, >, 0);
4991 DB_DNODE_ENTER(db);
4992 epbs = DB_DNODE(db)->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
4993 DB_DNODE_EXIT(db);
4994 ASSERT3U(epbs, <, 31);
4995
4996 /* Determine if all our children are holes */
4997 for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) {
4998 if (!BP_IS_HOLE(bp))
4999 break;
5000 }
5001
5002 /*
5003 * If all the children are holes, then zero them all out so that
5004 * we may get compressed away.
5005 */
5006 if (i == 1ULL << epbs) {
5007 /*
5008 * We only found holes. Grab the rwlock to prevent
5009 * anybody from reading the blocks we're about to
5010 * zero out.
5011 */
5012 rw_enter(&db->db_rwlock, RW_WRITER);
5013 memset(db->db.db_data, 0, db->db.db_size);
5014 rw_exit(&db->db_rwlock);
5015 }
5016 }
5017
5018 static void
dbuf_write_done(zio_t * zio,arc_buf_t * buf,void * vdb)5019 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
5020 {
5021 (void) buf;
5022 dmu_buf_impl_t *db = vdb;
5023 blkptr_t *bp_orig = &zio->io_bp_orig;
5024 blkptr_t *bp = db->db_blkptr;
5025 objset_t *os = db->db_objset;
5026 dmu_tx_t *tx = os->os_synctx;
5027
5028 ASSERT0(zio->io_error);
5029 ASSERT(db->db_blkptr == bp);
5030
5031 /*
5032 * For nopwrites and rewrites we ensure that the bp matches our
5033 * original and bypass all the accounting.
5034 */
5035 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
5036 ASSERT(BP_EQUAL(bp, bp_orig));
5037 } else {
5038 dsl_dataset_t *ds = os->os_dsl_dataset;
5039 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
5040 dsl_dataset_block_born(ds, bp, tx);
5041 }
5042
5043 mutex_enter(&db->db_mtx);
5044
5045 DBUF_VERIFY(db);
5046
5047 dbuf_dirty_record_t *dr = db->db_data_pending;
5048 dnode_t *dn = dr->dr_dnode;
5049 ASSERT(!list_link_active(&dr->dr_dirty_node));
5050 ASSERT(dr->dr_dbuf == db);
5051 ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
5052 list_remove(&db->db_dirty_records, dr);
5053
5054 #ifdef ZFS_DEBUG
5055 if (db->db_blkid == DMU_SPILL_BLKID) {
5056 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
5057 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
5058 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
5059 }
5060 #endif
5061
5062 if (db->db_level == 0) {
5063 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
5064 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
5065
5066 /* no dr_data if this is a NO_FILL or Direct I/O */
5067 if (dr->dt.dl.dr_data != NULL &&
5068 dr->dt.dl.dr_data != db->db_buf) {
5069 ASSERT3B(dr->dt.dl.dr_brtwrite, ==, B_FALSE);
5070 ASSERT3B(dr->dt.dl.dr_diowrite, ==, B_FALSE);
5071 arc_buf_destroy(dr->dt.dl.dr_data, db);
5072 }
5073 } else {
5074 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
5075 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
5076 if (!BP_IS_HOLE(db->db_blkptr)) {
5077 int epbs __maybe_unused = dn->dn_phys->dn_indblkshift -
5078 SPA_BLKPTRSHIFT;
5079 ASSERT3U(db->db_blkid, <=,
5080 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
5081 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
5082 db->db.db_size);
5083 }
5084 mutex_destroy(&dr->dt.di.dr_mtx);
5085 list_destroy(&dr->dt.di.dr_children);
5086 }
5087
5088 cv_broadcast(&db->db_changed);
5089 ASSERT(db->db_dirtycnt > 0);
5090 db->db_dirtycnt -= 1;
5091 db->db_data_pending = NULL;
5092 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
5093
5094 dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted,
5095 zio->io_txg);
5096
5097 kmem_cache_free(dbuf_dirty_kmem_cache, dr);
5098 }
5099
5100 static void
dbuf_write_nofill_ready(zio_t * zio)5101 dbuf_write_nofill_ready(zio_t *zio)
5102 {
5103 dbuf_write_ready(zio, NULL, zio->io_private);
5104 }
5105
5106 static void
dbuf_write_nofill_done(zio_t * zio)5107 dbuf_write_nofill_done(zio_t *zio)
5108 {
5109 dbuf_write_done(zio, NULL, zio->io_private);
5110 }
5111
5112 static void
dbuf_write_override_ready(zio_t * zio)5113 dbuf_write_override_ready(zio_t *zio)
5114 {
5115 dbuf_dirty_record_t *dr = zio->io_private;
5116 dmu_buf_impl_t *db = dr->dr_dbuf;
5117
5118 dbuf_write_ready(zio, NULL, db);
5119 }
5120
5121 static void
dbuf_write_override_done(zio_t * zio)5122 dbuf_write_override_done(zio_t *zio)
5123 {
5124 dbuf_dirty_record_t *dr = zio->io_private;
5125 dmu_buf_impl_t *db = dr->dr_dbuf;
5126 blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
5127
5128 mutex_enter(&db->db_mtx);
5129 if (!BP_EQUAL(zio->io_bp, obp)) {
5130 if (!BP_IS_HOLE(obp))
5131 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
5132 arc_release(dr->dt.dl.dr_data, db);
5133 }
5134 mutex_exit(&db->db_mtx);
5135
5136 dbuf_write_done(zio, NULL, db);
5137
5138 if (zio->io_abd != NULL)
5139 abd_free(zio->io_abd);
5140 }
5141
5142 typedef struct dbuf_remap_impl_callback_arg {
5143 objset_t *drica_os;
5144 uint64_t drica_blk_birth;
5145 dmu_tx_t *drica_tx;
5146 } dbuf_remap_impl_callback_arg_t;
5147
5148 static void
dbuf_remap_impl_callback(uint64_t vdev,uint64_t offset,uint64_t size,void * arg)5149 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size,
5150 void *arg)
5151 {
5152 dbuf_remap_impl_callback_arg_t *drica = arg;
5153 objset_t *os = drica->drica_os;
5154 spa_t *spa = dmu_objset_spa(os);
5155 dmu_tx_t *tx = drica->drica_tx;
5156
5157 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
5158
5159 if (os == spa_meta_objset(spa)) {
5160 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx);
5161 } else {
5162 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset,
5163 size, drica->drica_blk_birth, tx);
5164 }
5165 }
5166
5167 static void
dbuf_remap_impl(dnode_t * dn,blkptr_t * bp,krwlock_t * rw,dmu_tx_t * tx)5168 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx)
5169 {
5170 blkptr_t bp_copy = *bp;
5171 spa_t *spa = dmu_objset_spa(dn->dn_objset);
5172 dbuf_remap_impl_callback_arg_t drica;
5173
5174 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
5175
5176 drica.drica_os = dn->dn_objset;
5177 drica.drica_blk_birth = BP_GET_LOGICAL_BIRTH(bp);
5178 drica.drica_tx = tx;
5179 if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback,
5180 &drica)) {
5181 /*
5182 * If the blkptr being remapped is tracked by a livelist,
5183 * then we need to make sure the livelist reflects the update.
5184 * First, cancel out the old blkptr by appending a 'FREE'
5185 * entry. Next, add an 'ALLOC' to track the new version. This
5186 * way we avoid trying to free an inaccurate blkptr at delete.
5187 * Note that embedded blkptrs are not tracked in livelists.
5188 */
5189 if (dn->dn_objset != spa_meta_objset(spa)) {
5190 dsl_dataset_t *ds = dmu_objset_ds(dn->dn_objset);
5191 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) &&
5192 BP_GET_LOGICAL_BIRTH(bp) >
5193 ds->ds_dir->dd_origin_txg) {
5194 ASSERT(!BP_IS_EMBEDDED(bp));
5195 ASSERT(dsl_dir_is_clone(ds->ds_dir));
5196 ASSERT(spa_feature_is_enabled(spa,
5197 SPA_FEATURE_LIVELIST));
5198 bplist_append(&ds->ds_dir->dd_pending_frees,
5199 bp);
5200 bplist_append(&ds->ds_dir->dd_pending_allocs,
5201 &bp_copy);
5202 }
5203 }
5204
5205 /*
5206 * The db_rwlock prevents dbuf_read_impl() from
5207 * dereferencing the BP while we are changing it. To
5208 * avoid lock contention, only grab it when we are actually
5209 * changing the BP.
5210 */
5211 if (rw != NULL)
5212 rw_enter(rw, RW_WRITER);
5213 *bp = bp_copy;
5214 if (rw != NULL)
5215 rw_exit(rw);
5216 }
5217 }
5218
5219 /*
5220 * Remap any existing BP's to concrete vdevs, if possible.
5221 */
5222 static void
dbuf_remap(dnode_t * dn,dmu_buf_impl_t * db,dmu_tx_t * tx)5223 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx)
5224 {
5225 spa_t *spa = dmu_objset_spa(db->db_objset);
5226 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
5227
5228 if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL))
5229 return;
5230
5231 if (db->db_level > 0) {
5232 blkptr_t *bp = db->db.db_data;
5233 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
5234 dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx);
5235 }
5236 } else if (db->db.db_object == DMU_META_DNODE_OBJECT) {
5237 dnode_phys_t *dnp = db->db.db_data;
5238 ASSERT3U(dn->dn_type, ==, DMU_OT_DNODE);
5239 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT;
5240 i += dnp[i].dn_extra_slots + 1) {
5241 for (int j = 0; j < dnp[i].dn_nblkptr; j++) {
5242 krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL :
5243 &dn->dn_dbuf->db_rwlock);
5244 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock,
5245 tx);
5246 }
5247 }
5248 }
5249 }
5250
5251
5252 /*
5253 * Populate dr->dr_zio with a zio to commit a dirty buffer to disk.
5254 * Caller is responsible for issuing the zio_[no]wait(dr->dr_zio).
5255 */
5256 static void
dbuf_write(dbuf_dirty_record_t * dr,arc_buf_t * data,dmu_tx_t * tx)5257 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
5258 {
5259 dmu_buf_impl_t *db = dr->dr_dbuf;
5260 dnode_t *dn = dr->dr_dnode;
5261 objset_t *os;
5262 dmu_buf_impl_t *parent = db->db_parent;
5263 uint64_t txg = tx->tx_txg;
5264 zbookmark_phys_t zb;
5265 zio_prop_t zp;
5266 zio_t *pio; /* parent I/O */
5267 int wp_flag = 0;
5268
5269 ASSERT(dmu_tx_is_syncing(tx));
5270
5271 os = dn->dn_objset;
5272
5273 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
5274 /*
5275 * Private object buffers are released here rather than in
5276 * dbuf_dirty() since they are only modified in the syncing
5277 * context and we don't want the overhead of making multiple
5278 * copies of the data.
5279 */
5280 if (BP_IS_HOLE(db->db_blkptr))
5281 arc_buf_thaw(data);
5282 else
5283 dbuf_release_bp(db);
5284 dbuf_remap(dn, db, tx);
5285 }
5286
5287 if (parent != dn->dn_dbuf) {
5288 /* Our parent is an indirect block. */
5289 /* We have a dirty parent that has been scheduled for write. */
5290 ASSERT(parent && parent->db_data_pending);
5291 /* Our parent's buffer is one level closer to the dnode. */
5292 ASSERT(db->db_level == parent->db_level-1);
5293 /*
5294 * We're about to modify our parent's db_data by modifying
5295 * our block pointer, so the parent must be released.
5296 */
5297 ASSERT(arc_released(parent->db_buf));
5298 pio = parent->db_data_pending->dr_zio;
5299 } else {
5300 /* Our parent is the dnode itself. */
5301 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
5302 db->db_blkid != DMU_SPILL_BLKID) ||
5303 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
5304 if (db->db_blkid != DMU_SPILL_BLKID)
5305 ASSERT3P(db->db_blkptr, ==,
5306 &dn->dn_phys->dn_blkptr[db->db_blkid]);
5307 pio = dn->dn_zio;
5308 }
5309
5310 ASSERT(db->db_level == 0 || data == db->db_buf);
5311 ASSERT3U(BP_GET_LOGICAL_BIRTH(db->db_blkptr), <=, txg);
5312 ASSERT(pio);
5313
5314 SET_BOOKMARK(&zb, os->os_dsl_dataset ?
5315 os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
5316 db->db.db_object, db->db_level, db->db_blkid);
5317
5318 if (db->db_blkid == DMU_SPILL_BLKID)
5319 wp_flag = WP_SPILL;
5320 wp_flag |= (data == NULL) ? WP_NOFILL : 0;
5321
5322 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
5323
5324 /*
5325 * We copy the blkptr now (rather than when we instantiate the dirty
5326 * record), because its value can change between open context and
5327 * syncing context. We do not need to hold dn_struct_rwlock to read
5328 * db_blkptr because we are in syncing context.
5329 */
5330 dr->dr_bp_copy = *db->db_blkptr;
5331
5332 if (db->db_level == 0 &&
5333 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
5334 /*
5335 * The BP for this block has been provided by open context
5336 * (by dmu_sync(), dmu_write_direct(),
5337 * or dmu_buf_write_embedded()).
5338 */
5339 abd_t *contents = (data != NULL) ?
5340 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;
5341
5342 dr->dr_zio = zio_write(pio, os->os_spa, txg, &dr->dr_bp_copy,
5343 contents, db->db.db_size, db->db.db_size, &zp,
5344 dbuf_write_override_ready, NULL,
5345 dbuf_write_override_done,
5346 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
5347 mutex_enter(&db->db_mtx);
5348 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
5349 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
5350 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite,
5351 dr->dt.dl.dr_brtwrite);
5352 mutex_exit(&db->db_mtx);
5353 } else if (data == NULL) {
5354 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
5355 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
5356 dr->dr_zio = zio_write(pio, os->os_spa, txg,
5357 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
5358 dbuf_write_nofill_ready, NULL,
5359 dbuf_write_nofill_done, db,
5360 ZIO_PRIORITY_ASYNC_WRITE,
5361 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
5362 } else {
5363 ASSERT(arc_released(data));
5364
5365 /*
5366 * For indirect blocks, we want to setup the children
5367 * ready callback so that we can properly handle an indirect
5368 * block that only contains holes.
5369 */
5370 arc_write_done_func_t *children_ready_cb = NULL;
5371 if (db->db_level != 0)
5372 children_ready_cb = dbuf_write_children_ready;
5373
5374 dr->dr_zio = arc_write(pio, os->os_spa, txg,
5375 &dr->dr_bp_copy, data, !DBUF_IS_CACHEABLE(db),
5376 dbuf_is_l2cacheable(db, NULL), &zp, dbuf_write_ready,
5377 children_ready_cb, dbuf_write_done, db,
5378 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
5379 }
5380 }
5381
5382 EXPORT_SYMBOL(dbuf_find);
5383 EXPORT_SYMBOL(dbuf_is_metadata);
5384 EXPORT_SYMBOL(dbuf_destroy);
5385 EXPORT_SYMBOL(dbuf_loan_arcbuf);
5386 EXPORT_SYMBOL(dbuf_whichblock);
5387 EXPORT_SYMBOL(dbuf_read);
5388 EXPORT_SYMBOL(dbuf_unoverride);
5389 EXPORT_SYMBOL(dbuf_free_range);
5390 EXPORT_SYMBOL(dbuf_new_size);
5391 EXPORT_SYMBOL(dbuf_release_bp);
5392 EXPORT_SYMBOL(dbuf_dirty);
5393 EXPORT_SYMBOL(dmu_buf_set_crypt_params);
5394 EXPORT_SYMBOL(dmu_buf_will_dirty);
5395 EXPORT_SYMBOL(dmu_buf_is_dirty);
5396 EXPORT_SYMBOL(dmu_buf_will_clone_or_dio);
5397 EXPORT_SYMBOL(dmu_buf_will_not_fill);
5398 EXPORT_SYMBOL(dmu_buf_will_fill);
5399 EXPORT_SYMBOL(dmu_buf_fill_done);
5400 EXPORT_SYMBOL(dmu_buf_rele);
5401 EXPORT_SYMBOL(dbuf_assign_arcbuf);
5402 EXPORT_SYMBOL(dbuf_prefetch);
5403 EXPORT_SYMBOL(dbuf_hold_impl);
5404 EXPORT_SYMBOL(dbuf_hold);
5405 EXPORT_SYMBOL(dbuf_hold_level);
5406 EXPORT_SYMBOL(dbuf_create_bonus);
5407 EXPORT_SYMBOL(dbuf_spill_set_blksz);
5408 EXPORT_SYMBOL(dbuf_rm_spill);
5409 EXPORT_SYMBOL(dbuf_add_ref);
5410 EXPORT_SYMBOL(dbuf_rele);
5411 EXPORT_SYMBOL(dbuf_rele_and_unlock);
5412 EXPORT_SYMBOL(dbuf_refcount);
5413 EXPORT_SYMBOL(dbuf_sync_list);
5414 EXPORT_SYMBOL(dmu_buf_set_user);
5415 EXPORT_SYMBOL(dmu_buf_set_user_ie);
5416 EXPORT_SYMBOL(dmu_buf_get_user);
5417 EXPORT_SYMBOL(dmu_buf_get_blkptr);
5418
5419 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, max_bytes, U64, ZMOD_RW,
5420 "Maximum size in bytes of the dbuf cache.");
5421
5422 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, hiwater_pct, UINT, ZMOD_RW,
5423 "Percentage over dbuf_cache_max_bytes for direct dbuf eviction.");
5424
5425 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, lowater_pct, UINT, ZMOD_RW,
5426 "Percentage below dbuf_cache_max_bytes when dbuf eviction stops.");
5427
5428 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_max_bytes, U64, ZMOD_RW,
5429 "Maximum size in bytes of dbuf metadata cache.");
5430
5431 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, cache_shift, UINT, ZMOD_RW,
5432 "Set size of dbuf cache to log2 fraction of arc size.");
5433
5434 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_shift, UINT, ZMOD_RW,
5435 "Set size of dbuf metadata cache to log2 fraction of arc size.");
5436
5437 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, mutex_cache_shift, UINT, ZMOD_RD,
5438 "Set size of dbuf cache mutex array as log2 shift.");
5439