1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2019, Intel Corporation.
4 *
5 * Heterogeneous Memory Attributes Table (HMAT) representation
6 *
7 * This program parses and reports the platform's HMAT tables, and registers
8 * the applicable attributes with the node's interfaces.
9 */
10
11 #define pr_fmt(fmt) "acpi/hmat: " fmt
12
13 #include <linux/acpi.h>
14 #include <linux/bitops.h>
15 #include <linux/device.h>
16 #include <linux/init.h>
17 #include <linux/list.h>
18 #include <linux/mm.h>
19 #include <linux/platform_device.h>
20 #include <linux/list_sort.h>
21 #include <linux/memregion.h>
22 #include <linux/memory.h>
23 #include <linux/mutex.h>
24 #include <linux/node.h>
25 #include <linux/sysfs.h>
26 #include <linux/dax.h>
27 #include <linux/memory-tiers.h>
28
29 static u8 hmat_revision;
30 static int hmat_disable __initdata;
31
disable_hmat(void)32 void __init disable_hmat(void)
33 {
34 hmat_disable = 1;
35 }
36
37 static LIST_HEAD(targets);
38 static LIST_HEAD(initiators);
39 static LIST_HEAD(localities);
40
41 static DEFINE_MUTEX(target_lock);
42
43 /*
44 * The defined enum order is used to prioritize attributes to break ties when
45 * selecting the best performing node.
46 */
47 enum locality_types {
48 WRITE_LATENCY,
49 READ_LATENCY,
50 WRITE_BANDWIDTH,
51 READ_BANDWIDTH,
52 };
53
54 static struct memory_locality *localities_types[4];
55
56 struct target_cache {
57 struct list_head node;
58 struct node_cache_attrs cache_attrs;
59 };
60
61 enum {
62 NODE_ACCESS_CLASS_GENPORT_SINK_LOCAL = ACCESS_COORDINATE_MAX,
63 NODE_ACCESS_CLASS_GENPORT_SINK_CPU,
64 NODE_ACCESS_CLASS_MAX,
65 };
66
67 struct memory_target {
68 struct list_head node;
69 unsigned int memory_pxm;
70 unsigned int processor_pxm;
71 struct resource memregions;
72 struct access_coordinate coord[NODE_ACCESS_CLASS_MAX];
73 struct list_head caches;
74 struct node_cache_attrs cache_attrs;
75 u8 gen_port_device_handle[ACPI_SRAT_DEVICE_HANDLE_SIZE];
76 bool registered;
77 bool ext_updated; /* externally updated */
78 };
79
80 struct memory_initiator {
81 struct list_head node;
82 unsigned int processor_pxm;
83 bool has_cpu;
84 };
85
86 struct memory_locality {
87 struct list_head node;
88 struct acpi_hmat_locality *hmat_loc;
89 };
90
find_mem_initiator(unsigned int cpu_pxm)91 static struct memory_initiator *find_mem_initiator(unsigned int cpu_pxm)
92 {
93 struct memory_initiator *initiator;
94
95 list_for_each_entry(initiator, &initiators, node)
96 if (initiator->processor_pxm == cpu_pxm)
97 return initiator;
98 return NULL;
99 }
100
find_mem_target(unsigned int mem_pxm)101 static struct memory_target *find_mem_target(unsigned int mem_pxm)
102 {
103 struct memory_target *target;
104
105 list_for_each_entry(target, &targets, node)
106 if (target->memory_pxm == mem_pxm)
107 return target;
108 return NULL;
109 }
110
111 /**
112 * hmat_get_extended_linear_cache_size - Retrieve the extended linear cache size
113 * @backing_res: resource from the backing media
114 * @nid: node id for the memory region
115 * @cache_size: (Output) size of extended linear cache.
116 *
117 * Return: 0 on success. Errno on failure.
118 *
119 */
hmat_get_extended_linear_cache_size(struct resource * backing_res,int nid,resource_size_t * cache_size)120 int hmat_get_extended_linear_cache_size(struct resource *backing_res, int nid,
121 resource_size_t *cache_size)
122 {
123 unsigned int pxm = node_to_pxm(nid);
124 struct memory_target *target;
125 struct target_cache *tcache;
126 struct resource *res;
127
128 target = find_mem_target(pxm);
129 if (!target)
130 return -ENOENT;
131
132 list_for_each_entry(tcache, &target->caches, node) {
133 if (tcache->cache_attrs.address_mode !=
134 NODE_CACHE_ADDR_MODE_EXTENDED_LINEAR)
135 continue;
136
137 res = &target->memregions;
138 if (!resource_contains(res, backing_res))
139 continue;
140
141 *cache_size = tcache->cache_attrs.size;
142 return 0;
143 }
144
145 *cache_size = 0;
146 return 0;
147 }
148 EXPORT_SYMBOL_NS_GPL(hmat_get_extended_linear_cache_size, "CXL");
149
acpi_find_genport_target(u32 uid)150 static struct memory_target *acpi_find_genport_target(u32 uid)
151 {
152 struct memory_target *target;
153 u32 target_uid;
154 u8 *uid_ptr;
155
156 list_for_each_entry(target, &targets, node) {
157 uid_ptr = target->gen_port_device_handle + 8;
158 target_uid = *(u32 *)uid_ptr;
159 if (uid == target_uid)
160 return target;
161 }
162
163 return NULL;
164 }
165
166 /**
167 * acpi_get_genport_coordinates - Retrieve the access coordinates for a generic port
168 * @uid: ACPI unique id
169 * @coord: The access coordinates written back out for the generic port.
170 * Expect 2 levels array.
171 *
172 * Return: 0 on success. Errno on failure.
173 *
174 * Only supports device handles that are ACPI. Assume ACPI0016 HID for CXL.
175 */
acpi_get_genport_coordinates(u32 uid,struct access_coordinate * coord)176 int acpi_get_genport_coordinates(u32 uid,
177 struct access_coordinate *coord)
178 {
179 struct memory_target *target;
180
181 guard(mutex)(&target_lock);
182 target = acpi_find_genport_target(uid);
183 if (!target)
184 return -ENOENT;
185
186 coord[ACCESS_COORDINATE_LOCAL] =
187 target->coord[NODE_ACCESS_CLASS_GENPORT_SINK_LOCAL];
188 coord[ACCESS_COORDINATE_CPU] =
189 target->coord[NODE_ACCESS_CLASS_GENPORT_SINK_CPU];
190
191 return 0;
192 }
193 EXPORT_SYMBOL_NS_GPL(acpi_get_genport_coordinates, "CXL");
194
alloc_memory_initiator(unsigned int cpu_pxm)195 static __init void alloc_memory_initiator(unsigned int cpu_pxm)
196 {
197 struct memory_initiator *initiator;
198
199 if (pxm_to_node(cpu_pxm) == NUMA_NO_NODE)
200 return;
201
202 initiator = find_mem_initiator(cpu_pxm);
203 if (initiator)
204 return;
205
206 initiator = kzalloc(sizeof(*initiator), GFP_KERNEL);
207 if (!initiator)
208 return;
209
210 initiator->processor_pxm = cpu_pxm;
211 initiator->has_cpu = node_state(pxm_to_node(cpu_pxm), N_CPU);
212 list_add_tail(&initiator->node, &initiators);
213 }
214
alloc_target(unsigned int mem_pxm)215 static __init struct memory_target *alloc_target(unsigned int mem_pxm)
216 {
217 struct memory_target *target;
218
219 target = find_mem_target(mem_pxm);
220 if (!target) {
221 target = kzalloc(sizeof(*target), GFP_KERNEL);
222 if (!target)
223 return NULL;
224 target->memory_pxm = mem_pxm;
225 target->processor_pxm = PXM_INVAL;
226 target->memregions = (struct resource) {
227 .name = "ACPI mem",
228 .start = 0,
229 .end = -1,
230 .flags = IORESOURCE_MEM,
231 };
232 list_add_tail(&target->node, &targets);
233 INIT_LIST_HEAD(&target->caches);
234 }
235
236 return target;
237 }
238
alloc_memory_target(unsigned int mem_pxm,resource_size_t start,resource_size_t len)239 static __init void alloc_memory_target(unsigned int mem_pxm,
240 resource_size_t start,
241 resource_size_t len)
242 {
243 struct memory_target *target;
244
245 target = alloc_target(mem_pxm);
246 if (!target)
247 return;
248
249 /*
250 * There are potentially multiple ranges per PXM, so record each
251 * in the per-target memregions resource tree.
252 */
253 if (!__request_region(&target->memregions, start, len, "memory target",
254 IORESOURCE_MEM))
255 pr_warn("failed to reserve %#llx - %#llx in pxm: %d\n",
256 start, start + len, mem_pxm);
257 }
258
alloc_genport_target(unsigned int mem_pxm,u8 * handle)259 static __init void alloc_genport_target(unsigned int mem_pxm, u8 *handle)
260 {
261 struct memory_target *target;
262
263 target = alloc_target(mem_pxm);
264 if (!target)
265 return;
266
267 memcpy(target->gen_port_device_handle, handle,
268 ACPI_SRAT_DEVICE_HANDLE_SIZE);
269 }
270
hmat_data_type(u8 type)271 static __init const char *hmat_data_type(u8 type)
272 {
273 switch (type) {
274 case ACPI_HMAT_ACCESS_LATENCY:
275 return "Access Latency";
276 case ACPI_HMAT_READ_LATENCY:
277 return "Read Latency";
278 case ACPI_HMAT_WRITE_LATENCY:
279 return "Write Latency";
280 case ACPI_HMAT_ACCESS_BANDWIDTH:
281 return "Access Bandwidth";
282 case ACPI_HMAT_READ_BANDWIDTH:
283 return "Read Bandwidth";
284 case ACPI_HMAT_WRITE_BANDWIDTH:
285 return "Write Bandwidth";
286 default:
287 return "Reserved";
288 }
289 }
290
hmat_data_type_suffix(u8 type)291 static __init const char *hmat_data_type_suffix(u8 type)
292 {
293 switch (type) {
294 case ACPI_HMAT_ACCESS_LATENCY:
295 case ACPI_HMAT_READ_LATENCY:
296 case ACPI_HMAT_WRITE_LATENCY:
297 return " nsec";
298 case ACPI_HMAT_ACCESS_BANDWIDTH:
299 case ACPI_HMAT_READ_BANDWIDTH:
300 case ACPI_HMAT_WRITE_BANDWIDTH:
301 return " MB/s";
302 default:
303 return "";
304 }
305 }
306
hmat_normalize(u16 entry,u64 base,u8 type)307 static u32 hmat_normalize(u16 entry, u64 base, u8 type)
308 {
309 u32 value;
310
311 /*
312 * Check for invalid and overflow values
313 */
314 if (entry == 0xffff || !entry)
315 return 0;
316 else if (base > (UINT_MAX / (entry)))
317 return 0;
318
319 /*
320 * Divide by the base unit for version 1, convert latency from
321 * picosenonds to nanoseconds if revision 2.
322 */
323 value = entry * base;
324 if (hmat_revision == 1) {
325 if (value < 10)
326 return 0;
327 value = DIV_ROUND_UP(value, 10);
328 } else if (hmat_revision == 2) {
329 switch (type) {
330 case ACPI_HMAT_ACCESS_LATENCY:
331 case ACPI_HMAT_READ_LATENCY:
332 case ACPI_HMAT_WRITE_LATENCY:
333 value = DIV_ROUND_UP(value, 1000);
334 break;
335 default:
336 break;
337 }
338 }
339 return value;
340 }
341
hmat_update_target_access(struct memory_target * target,u8 type,u32 value,int access)342 static void hmat_update_target_access(struct memory_target *target,
343 u8 type, u32 value, int access)
344 {
345 switch (type) {
346 case ACPI_HMAT_ACCESS_LATENCY:
347 target->coord[access].read_latency = value;
348 target->coord[access].write_latency = value;
349 break;
350 case ACPI_HMAT_READ_LATENCY:
351 target->coord[access].read_latency = value;
352 break;
353 case ACPI_HMAT_WRITE_LATENCY:
354 target->coord[access].write_latency = value;
355 break;
356 case ACPI_HMAT_ACCESS_BANDWIDTH:
357 target->coord[access].read_bandwidth = value;
358 target->coord[access].write_bandwidth = value;
359 break;
360 case ACPI_HMAT_READ_BANDWIDTH:
361 target->coord[access].read_bandwidth = value;
362 break;
363 case ACPI_HMAT_WRITE_BANDWIDTH:
364 target->coord[access].write_bandwidth = value;
365 break;
366 default:
367 break;
368 }
369 }
370
hmat_update_target_coordinates(int nid,struct access_coordinate * coord,enum access_coordinate_class access)371 int hmat_update_target_coordinates(int nid, struct access_coordinate *coord,
372 enum access_coordinate_class access)
373 {
374 struct memory_target *target;
375 int pxm;
376
377 if (nid == NUMA_NO_NODE)
378 return -EINVAL;
379
380 pxm = node_to_pxm(nid);
381 guard(mutex)(&target_lock);
382 target = find_mem_target(pxm);
383 if (!target)
384 return -ENODEV;
385
386 hmat_update_target_access(target, ACPI_HMAT_READ_LATENCY,
387 coord->read_latency, access);
388 hmat_update_target_access(target, ACPI_HMAT_WRITE_LATENCY,
389 coord->write_latency, access);
390 hmat_update_target_access(target, ACPI_HMAT_READ_BANDWIDTH,
391 coord->read_bandwidth, access);
392 hmat_update_target_access(target, ACPI_HMAT_WRITE_BANDWIDTH,
393 coord->write_bandwidth, access);
394 target->ext_updated = true;
395
396 return 0;
397 }
398 EXPORT_SYMBOL_GPL(hmat_update_target_coordinates);
399
hmat_add_locality(struct acpi_hmat_locality * hmat_loc)400 static __init void hmat_add_locality(struct acpi_hmat_locality *hmat_loc)
401 {
402 struct memory_locality *loc;
403
404 loc = kzalloc(sizeof(*loc), GFP_KERNEL);
405 if (!loc) {
406 pr_notice_once("Failed to allocate HMAT locality\n");
407 return;
408 }
409
410 loc->hmat_loc = hmat_loc;
411 list_add_tail(&loc->node, &localities);
412
413 switch (hmat_loc->data_type) {
414 case ACPI_HMAT_ACCESS_LATENCY:
415 localities_types[READ_LATENCY] = loc;
416 localities_types[WRITE_LATENCY] = loc;
417 break;
418 case ACPI_HMAT_READ_LATENCY:
419 localities_types[READ_LATENCY] = loc;
420 break;
421 case ACPI_HMAT_WRITE_LATENCY:
422 localities_types[WRITE_LATENCY] = loc;
423 break;
424 case ACPI_HMAT_ACCESS_BANDWIDTH:
425 localities_types[READ_BANDWIDTH] = loc;
426 localities_types[WRITE_BANDWIDTH] = loc;
427 break;
428 case ACPI_HMAT_READ_BANDWIDTH:
429 localities_types[READ_BANDWIDTH] = loc;
430 break;
431 case ACPI_HMAT_WRITE_BANDWIDTH:
432 localities_types[WRITE_BANDWIDTH] = loc;
433 break;
434 default:
435 break;
436 }
437 }
438
hmat_update_target(unsigned int tgt_pxm,unsigned int init_pxm,u8 mem_hier,u8 type,u32 value)439 static __init void hmat_update_target(unsigned int tgt_pxm, unsigned int init_pxm,
440 u8 mem_hier, u8 type, u32 value)
441 {
442 struct memory_target *target = find_mem_target(tgt_pxm);
443
444 if (mem_hier != ACPI_HMAT_MEMORY)
445 return;
446
447 if (target && target->processor_pxm == init_pxm) {
448 hmat_update_target_access(target, type, value,
449 ACCESS_COORDINATE_LOCAL);
450 /* If the node has a CPU, update access ACCESS_COORDINATE_CPU */
451 if (node_state(pxm_to_node(init_pxm), N_CPU))
452 hmat_update_target_access(target, type, value,
453 ACCESS_COORDINATE_CPU);
454 }
455 }
456
hmat_parse_locality(union acpi_subtable_headers * header,const unsigned long end)457 static __init int hmat_parse_locality(union acpi_subtable_headers *header,
458 const unsigned long end)
459 {
460 struct acpi_hmat_locality *hmat_loc = (void *)header;
461 unsigned int init, targ, total_size, ipds, tpds;
462 u32 *inits, *targs, value;
463 u16 *entries;
464 u8 type, mem_hier;
465
466 if (hmat_loc->header.length < sizeof(*hmat_loc)) {
467 pr_notice("Unexpected locality header length: %u\n",
468 hmat_loc->header.length);
469 return -EINVAL;
470 }
471
472 type = hmat_loc->data_type;
473 mem_hier = hmat_loc->flags & ACPI_HMAT_MEMORY_HIERARCHY;
474 ipds = hmat_loc->number_of_initiator_Pds;
475 tpds = hmat_loc->number_of_target_Pds;
476 total_size = sizeof(*hmat_loc) + sizeof(*entries) * ipds * tpds +
477 sizeof(*inits) * ipds + sizeof(*targs) * tpds;
478 if (hmat_loc->header.length < total_size) {
479 pr_notice("Unexpected locality header length:%u, minimum required:%u\n",
480 hmat_loc->header.length, total_size);
481 return -EINVAL;
482 }
483
484 pr_debug("Locality: Flags:%02x Type:%s Initiator Domains:%u Target Domains:%u Base:%lld\n",
485 hmat_loc->flags, hmat_data_type(type), ipds, tpds,
486 hmat_loc->entry_base_unit);
487
488 inits = (u32 *)(hmat_loc + 1);
489 targs = inits + ipds;
490 entries = (u16 *)(targs + tpds);
491 for (init = 0; init < ipds; init++) {
492 alloc_memory_initiator(inits[init]);
493 for (targ = 0; targ < tpds; targ++) {
494 value = hmat_normalize(entries[init * tpds + targ],
495 hmat_loc->entry_base_unit,
496 type);
497 pr_debug(" Initiator-Target[%u-%u]:%u%s\n",
498 inits[init], targs[targ], value,
499 hmat_data_type_suffix(type));
500
501 hmat_update_target(targs[targ], inits[init],
502 mem_hier, type, value);
503 }
504 }
505
506 if (mem_hier == ACPI_HMAT_MEMORY)
507 hmat_add_locality(hmat_loc);
508
509 return 0;
510 }
511
hmat_parse_cache(union acpi_subtable_headers * header,const unsigned long end)512 static __init int hmat_parse_cache(union acpi_subtable_headers *header,
513 const unsigned long end)
514 {
515 struct acpi_hmat_cache *cache = (void *)header;
516 struct memory_target *target;
517 struct target_cache *tcache;
518 u32 attrs;
519
520 if (cache->header.length < sizeof(*cache)) {
521 pr_notice("Unexpected cache header length: %u\n",
522 cache->header.length);
523 return -EINVAL;
524 }
525
526 attrs = cache->cache_attributes;
527 pr_debug("Cache: Domain:%u Size:%llu Attrs:%08x SMBIOS Handles:%d\n",
528 cache->memory_PD, cache->cache_size, attrs,
529 cache->number_of_SMBIOShandles);
530
531 target = find_mem_target(cache->memory_PD);
532 if (!target)
533 return 0;
534
535 tcache = kzalloc(sizeof(*tcache), GFP_KERNEL);
536 if (!tcache) {
537 pr_notice_once("Failed to allocate HMAT cache info\n");
538 return 0;
539 }
540
541 tcache->cache_attrs.size = cache->cache_size;
542 tcache->cache_attrs.level = (attrs & ACPI_HMAT_CACHE_LEVEL) >> 4;
543 tcache->cache_attrs.line_size = (attrs & ACPI_HMAT_CACHE_LINE_SIZE) >> 16;
544
545 switch ((attrs & ACPI_HMAT_CACHE_ASSOCIATIVITY) >> 8) {
546 case ACPI_HMAT_CA_DIRECT_MAPPED:
547 tcache->cache_attrs.indexing = NODE_CACHE_DIRECT_MAP;
548 /* Extended Linear mode is only valid if cache is direct mapped */
549 if (cache->address_mode == ACPI_HMAT_CACHE_MODE_EXTENDED_LINEAR) {
550 tcache->cache_attrs.address_mode =
551 NODE_CACHE_ADDR_MODE_EXTENDED_LINEAR;
552 }
553 break;
554 case ACPI_HMAT_CA_COMPLEX_CACHE_INDEXING:
555 tcache->cache_attrs.indexing = NODE_CACHE_INDEXED;
556 break;
557 case ACPI_HMAT_CA_NONE:
558 default:
559 tcache->cache_attrs.indexing = NODE_CACHE_OTHER;
560 break;
561 }
562
563 switch ((attrs & ACPI_HMAT_WRITE_POLICY) >> 12) {
564 case ACPI_HMAT_CP_WB:
565 tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_BACK;
566 break;
567 case ACPI_HMAT_CP_WT:
568 tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_THROUGH;
569 break;
570 case ACPI_HMAT_CP_NONE:
571 default:
572 tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_OTHER;
573 break;
574 }
575 list_add_tail(&tcache->node, &target->caches);
576
577 return 0;
578 }
579
hmat_parse_proximity_domain(union acpi_subtable_headers * header,const unsigned long end)580 static int __init hmat_parse_proximity_domain(union acpi_subtable_headers *header,
581 const unsigned long end)
582 {
583 struct acpi_hmat_proximity_domain *p = (void *)header;
584 struct memory_target *target = NULL;
585
586 if (p->header.length != sizeof(*p)) {
587 pr_notice("Unexpected address range header length: %u\n",
588 p->header.length);
589 return -EINVAL;
590 }
591
592 if (hmat_revision == 1)
593 pr_debug("Memory (%#llx length %#llx) Flags:%04x Processor Domain:%u Memory Domain:%u\n",
594 p->reserved3, p->reserved4, p->flags, p->processor_PD,
595 p->memory_PD);
596 else
597 pr_info("Memory Flags:%04x Processor Domain:%u Memory Domain:%u\n",
598 p->flags, p->processor_PD, p->memory_PD);
599
600 if ((hmat_revision == 1 && p->flags & ACPI_HMAT_MEMORY_PD_VALID) ||
601 hmat_revision > 1) {
602 target = find_mem_target(p->memory_PD);
603 if (!target) {
604 pr_debug("Memory Domain missing from SRAT\n");
605 return -EINVAL;
606 }
607 }
608 if (target && p->flags & ACPI_HMAT_PROCESSOR_PD_VALID) {
609 int p_node = pxm_to_node(p->processor_PD);
610
611 if (p_node == NUMA_NO_NODE) {
612 pr_debug("Invalid Processor Domain\n");
613 return -EINVAL;
614 }
615 target->processor_pxm = p->processor_PD;
616 }
617
618 return 0;
619 }
620
hmat_parse_subtable(union acpi_subtable_headers * header,const unsigned long end)621 static int __init hmat_parse_subtable(union acpi_subtable_headers *header,
622 const unsigned long end)
623 {
624 struct acpi_hmat_structure *hdr = (void *)header;
625
626 if (!hdr)
627 return -EINVAL;
628
629 switch (hdr->type) {
630 case ACPI_HMAT_TYPE_PROXIMITY:
631 return hmat_parse_proximity_domain(header, end);
632 case ACPI_HMAT_TYPE_LOCALITY:
633 return hmat_parse_locality(header, end);
634 case ACPI_HMAT_TYPE_CACHE:
635 return hmat_parse_cache(header, end);
636 default:
637 return -EINVAL;
638 }
639 }
640
srat_parse_mem_affinity(union acpi_subtable_headers * header,const unsigned long end)641 static __init int srat_parse_mem_affinity(union acpi_subtable_headers *header,
642 const unsigned long end)
643 {
644 struct acpi_srat_mem_affinity *ma = (void *)header;
645
646 if (!ma)
647 return -EINVAL;
648 if (!(ma->flags & ACPI_SRAT_MEM_ENABLED))
649 return 0;
650 alloc_memory_target(ma->proximity_domain, ma->base_address, ma->length);
651 return 0;
652 }
653
srat_parse_genport_affinity(union acpi_subtable_headers * header,const unsigned long end)654 static __init int srat_parse_genport_affinity(union acpi_subtable_headers *header,
655 const unsigned long end)
656 {
657 struct acpi_srat_generic_affinity *ga = (void *)header;
658
659 if (!ga)
660 return -EINVAL;
661
662 if (!(ga->flags & ACPI_SRAT_GENERIC_AFFINITY_ENABLED))
663 return 0;
664
665 /* Skip PCI device_handle for now */
666 if (ga->device_handle_type != 0)
667 return 0;
668
669 alloc_genport_target(ga->proximity_domain,
670 (u8 *)ga->device_handle);
671
672 return 0;
673 }
674
hmat_initiator_perf(struct memory_target * target,struct memory_initiator * initiator,struct acpi_hmat_locality * hmat_loc)675 static u32 hmat_initiator_perf(struct memory_target *target,
676 struct memory_initiator *initiator,
677 struct acpi_hmat_locality *hmat_loc)
678 {
679 unsigned int ipds, tpds, i, idx = 0, tdx = 0;
680 u32 *inits, *targs;
681 u16 *entries;
682
683 ipds = hmat_loc->number_of_initiator_Pds;
684 tpds = hmat_loc->number_of_target_Pds;
685 inits = (u32 *)(hmat_loc + 1);
686 targs = inits + ipds;
687 entries = (u16 *)(targs + tpds);
688
689 for (i = 0; i < ipds; i++) {
690 if (inits[i] == initiator->processor_pxm) {
691 idx = i;
692 break;
693 }
694 }
695
696 if (i == ipds)
697 return 0;
698
699 for (i = 0; i < tpds; i++) {
700 if (targs[i] == target->memory_pxm) {
701 tdx = i;
702 break;
703 }
704 }
705 if (i == tpds)
706 return 0;
707
708 return hmat_normalize(entries[idx * tpds + tdx],
709 hmat_loc->entry_base_unit,
710 hmat_loc->data_type);
711 }
712
hmat_update_best(u8 type,u32 value,u32 * best)713 static bool hmat_update_best(u8 type, u32 value, u32 *best)
714 {
715 bool updated = false;
716
717 if (!value)
718 return false;
719
720 switch (type) {
721 case ACPI_HMAT_ACCESS_LATENCY:
722 case ACPI_HMAT_READ_LATENCY:
723 case ACPI_HMAT_WRITE_LATENCY:
724 if (!*best || *best > value) {
725 *best = value;
726 updated = true;
727 }
728 break;
729 case ACPI_HMAT_ACCESS_BANDWIDTH:
730 case ACPI_HMAT_READ_BANDWIDTH:
731 case ACPI_HMAT_WRITE_BANDWIDTH:
732 if (!*best || *best < value) {
733 *best = value;
734 updated = true;
735 }
736 break;
737 }
738
739 return updated;
740 }
741
initiator_cmp(void * priv,const struct list_head * a,const struct list_head * b)742 static int initiator_cmp(void *priv, const struct list_head *a,
743 const struct list_head *b)
744 {
745 struct memory_initiator *ia;
746 struct memory_initiator *ib;
747
748 ia = list_entry(a, struct memory_initiator, node);
749 ib = list_entry(b, struct memory_initiator, node);
750
751 return ia->processor_pxm - ib->processor_pxm;
752 }
753
initiators_to_nodemask(unsigned long * p_nodes)754 static int initiators_to_nodemask(unsigned long *p_nodes)
755 {
756 struct memory_initiator *initiator;
757
758 if (list_empty(&initiators))
759 return -ENXIO;
760
761 list_for_each_entry(initiator, &initiators, node)
762 set_bit(initiator->processor_pxm, p_nodes);
763
764 return 0;
765 }
766
hmat_update_target_attrs(struct memory_target * target,unsigned long * p_nodes,int access)767 static void hmat_update_target_attrs(struct memory_target *target,
768 unsigned long *p_nodes, int access)
769 {
770 struct memory_initiator *initiator;
771 unsigned int cpu_nid;
772 struct memory_locality *loc = NULL;
773 u32 best = 0;
774 int i;
775
776 /* Don't update if an external agent has changed the data. */
777 if (target->ext_updated)
778 return;
779
780 /* Don't update for generic port if there's no device handle */
781 if ((access == NODE_ACCESS_CLASS_GENPORT_SINK_LOCAL ||
782 access == NODE_ACCESS_CLASS_GENPORT_SINK_CPU) &&
783 !(*(u16 *)target->gen_port_device_handle))
784 return;
785
786 bitmap_zero(p_nodes, MAX_NUMNODES);
787 /*
788 * If the Address Range Structure provides a local processor pxm, set
789 * only that one. Otherwise, find the best performance attributes and
790 * collect all initiators that match.
791 */
792 if (target->processor_pxm != PXM_INVAL) {
793 cpu_nid = pxm_to_node(target->processor_pxm);
794 if (access == ACCESS_COORDINATE_LOCAL ||
795 node_state(cpu_nid, N_CPU)) {
796 set_bit(target->processor_pxm, p_nodes);
797 return;
798 }
799 }
800
801 if (list_empty(&localities))
802 return;
803
804 /*
805 * We need the initiator list sorted so we can use bitmap_clear for
806 * previously set initiators when we find a better memory accessor.
807 * We'll also use the sorting to prime the candidate nodes with known
808 * initiators.
809 */
810 list_sort(NULL, &initiators, initiator_cmp);
811 if (initiators_to_nodemask(p_nodes) < 0)
812 return;
813
814 for (i = WRITE_LATENCY; i <= READ_BANDWIDTH; i++) {
815 loc = localities_types[i];
816 if (!loc)
817 continue;
818
819 best = 0;
820 list_for_each_entry(initiator, &initiators, node) {
821 u32 value;
822
823 if ((access == ACCESS_COORDINATE_CPU ||
824 access == NODE_ACCESS_CLASS_GENPORT_SINK_CPU) &&
825 !initiator->has_cpu) {
826 clear_bit(initiator->processor_pxm, p_nodes);
827 continue;
828 }
829 if (!test_bit(initiator->processor_pxm, p_nodes))
830 continue;
831
832 value = hmat_initiator_perf(target, initiator, loc->hmat_loc);
833 if (hmat_update_best(loc->hmat_loc->data_type, value, &best))
834 bitmap_clear(p_nodes, 0, initiator->processor_pxm);
835 if (value != best)
836 clear_bit(initiator->processor_pxm, p_nodes);
837 }
838 if (best)
839 hmat_update_target_access(target, loc->hmat_loc->data_type, best, access);
840 }
841 }
842
__hmat_register_target_initiators(struct memory_target * target,unsigned long * p_nodes,int access)843 static void __hmat_register_target_initiators(struct memory_target *target,
844 unsigned long *p_nodes,
845 int access)
846 {
847 unsigned int mem_nid, cpu_nid;
848 int i;
849
850 mem_nid = pxm_to_node(target->memory_pxm);
851 hmat_update_target_attrs(target, p_nodes, access);
852 for_each_set_bit(i, p_nodes, MAX_NUMNODES) {
853 cpu_nid = pxm_to_node(i);
854 register_memory_node_under_compute_node(mem_nid, cpu_nid, access);
855 }
856 }
857
hmat_update_generic_target(struct memory_target * target)858 static void hmat_update_generic_target(struct memory_target *target)
859 {
860 static DECLARE_BITMAP(p_nodes, MAX_NUMNODES);
861
862 hmat_update_target_attrs(target, p_nodes,
863 NODE_ACCESS_CLASS_GENPORT_SINK_LOCAL);
864 hmat_update_target_attrs(target, p_nodes,
865 NODE_ACCESS_CLASS_GENPORT_SINK_CPU);
866 }
867
hmat_register_target_initiators(struct memory_target * target)868 static void hmat_register_target_initiators(struct memory_target *target)
869 {
870 static DECLARE_BITMAP(p_nodes, MAX_NUMNODES);
871
872 __hmat_register_target_initiators(target, p_nodes,
873 ACCESS_COORDINATE_LOCAL);
874 __hmat_register_target_initiators(target, p_nodes,
875 ACCESS_COORDINATE_CPU);
876 }
877
hmat_register_target_cache(struct memory_target * target)878 static void hmat_register_target_cache(struct memory_target *target)
879 {
880 unsigned mem_nid = pxm_to_node(target->memory_pxm);
881 struct target_cache *tcache;
882
883 list_for_each_entry(tcache, &target->caches, node)
884 node_add_cache(mem_nid, &tcache->cache_attrs);
885 }
886
hmat_register_target_perf(struct memory_target * target,int access)887 static void hmat_register_target_perf(struct memory_target *target, int access)
888 {
889 unsigned mem_nid = pxm_to_node(target->memory_pxm);
890 node_set_perf_attrs(mem_nid, &target->coord[access], access);
891 }
892
hmat_register_target_devices(struct memory_target * target)893 static void hmat_register_target_devices(struct memory_target *target)
894 {
895 struct resource *res;
896
897 /*
898 * Do not bother creating devices if no driver is available to
899 * consume them.
900 */
901 if (!IS_ENABLED(CONFIG_DEV_DAX_HMEM))
902 return;
903
904 for (res = target->memregions.child; res; res = res->sibling) {
905 int target_nid = pxm_to_node(target->memory_pxm);
906
907 hmem_register_resource(target_nid, res);
908 }
909 }
910
hmat_register_target(struct memory_target * target)911 static void hmat_register_target(struct memory_target *target)
912 {
913 int nid = pxm_to_node(target->memory_pxm);
914
915 /*
916 * Devices may belong to either an offline or online
917 * node, so unconditionally add them.
918 */
919 hmat_register_target_devices(target);
920
921 /*
922 * Register generic port perf numbers. The nid may not be
923 * initialized and is still NUMA_NO_NODE.
924 */
925 mutex_lock(&target_lock);
926 if (*(u16 *)target->gen_port_device_handle) {
927 hmat_update_generic_target(target);
928 target->registered = true;
929 }
930 mutex_unlock(&target_lock);
931
932 /*
933 * Skip offline nodes. This can happen when memory
934 * marked EFI_MEMORY_SP, "specific purpose", is applied
935 * to all the memory in a proximity domain leading to
936 * the node being marked offline / unplugged, or if
937 * memory-only "hotplug" node is offline.
938 */
939 if (nid == NUMA_NO_NODE || !node_online(nid))
940 return;
941
942 mutex_lock(&target_lock);
943 if (!target->registered) {
944 hmat_register_target_initiators(target);
945 hmat_register_target_cache(target);
946 hmat_register_target_perf(target, ACCESS_COORDINATE_LOCAL);
947 hmat_register_target_perf(target, ACCESS_COORDINATE_CPU);
948 target->registered = true;
949 }
950 mutex_unlock(&target_lock);
951 }
952
hmat_register_targets(void)953 static void hmat_register_targets(void)
954 {
955 struct memory_target *target;
956
957 list_for_each_entry(target, &targets, node)
958 hmat_register_target(target);
959 }
960
hmat_callback(struct notifier_block * self,unsigned long action,void * arg)961 static int hmat_callback(struct notifier_block *self,
962 unsigned long action, void *arg)
963 {
964 struct memory_target *target;
965 struct memory_notify *mnb = arg;
966 int pxm, nid = mnb->status_change_nid;
967
968 if (nid == NUMA_NO_NODE || action != MEM_ONLINE)
969 return NOTIFY_OK;
970
971 pxm = node_to_pxm(nid);
972 target = find_mem_target(pxm);
973 if (!target)
974 return NOTIFY_OK;
975
976 hmat_register_target(target);
977 return NOTIFY_OK;
978 }
979
hmat_set_default_dram_perf(void)980 static int __init hmat_set_default_dram_perf(void)
981 {
982 int rc;
983 int nid, pxm;
984 struct memory_target *target;
985 struct access_coordinate *attrs;
986
987 for_each_node_mask(nid, default_dram_nodes) {
988 pxm = node_to_pxm(nid);
989 target = find_mem_target(pxm);
990 if (!target)
991 continue;
992 attrs = &target->coord[ACCESS_COORDINATE_CPU];
993 rc = mt_set_default_dram_perf(nid, attrs, "ACPI HMAT");
994 if (rc)
995 return rc;
996 }
997
998 return 0;
999 }
1000
hmat_calculate_adistance(struct notifier_block * self,unsigned long nid,void * data)1001 static int hmat_calculate_adistance(struct notifier_block *self,
1002 unsigned long nid, void *data)
1003 {
1004 static DECLARE_BITMAP(p_nodes, MAX_NUMNODES);
1005 struct memory_target *target;
1006 struct access_coordinate *perf;
1007 int *adist = data;
1008 int pxm;
1009
1010 pxm = node_to_pxm(nid);
1011 target = find_mem_target(pxm);
1012 if (!target)
1013 return NOTIFY_OK;
1014
1015 mutex_lock(&target_lock);
1016 hmat_update_target_attrs(target, p_nodes, ACCESS_COORDINATE_CPU);
1017 mutex_unlock(&target_lock);
1018
1019 perf = &target->coord[ACCESS_COORDINATE_CPU];
1020
1021 if (mt_perf_to_adistance(perf, adist))
1022 return NOTIFY_OK;
1023
1024 return NOTIFY_STOP;
1025 }
1026
1027 static struct notifier_block hmat_adist_nb __meminitdata = {
1028 .notifier_call = hmat_calculate_adistance,
1029 .priority = 100,
1030 };
1031
hmat_free_structures(void)1032 static __init void hmat_free_structures(void)
1033 {
1034 struct memory_target *target, *tnext;
1035 struct memory_locality *loc, *lnext;
1036 struct memory_initiator *initiator, *inext;
1037 struct target_cache *tcache, *cnext;
1038
1039 list_for_each_entry_safe(target, tnext, &targets, node) {
1040 struct resource *res, *res_next;
1041
1042 list_for_each_entry_safe(tcache, cnext, &target->caches, node) {
1043 list_del(&tcache->node);
1044 kfree(tcache);
1045 }
1046
1047 list_del(&target->node);
1048 res = target->memregions.child;
1049 while (res) {
1050 res_next = res->sibling;
1051 __release_region(&target->memregions, res->start,
1052 resource_size(res));
1053 res = res_next;
1054 }
1055 kfree(target);
1056 }
1057
1058 list_for_each_entry_safe(initiator, inext, &initiators, node) {
1059 list_del(&initiator->node);
1060 kfree(initiator);
1061 }
1062
1063 list_for_each_entry_safe(loc, lnext, &localities, node) {
1064 list_del(&loc->node);
1065 kfree(loc);
1066 }
1067 }
1068
hmat_init(void)1069 static __init int hmat_init(void)
1070 {
1071 struct acpi_table_header *tbl;
1072 enum acpi_hmat_type i;
1073 acpi_status status;
1074
1075 if (srat_disabled() || hmat_disable)
1076 return 0;
1077
1078 status = acpi_get_table(ACPI_SIG_SRAT, 0, &tbl);
1079 if (ACPI_FAILURE(status))
1080 return 0;
1081
1082 if (acpi_table_parse_entries(ACPI_SIG_SRAT,
1083 sizeof(struct acpi_table_srat),
1084 ACPI_SRAT_TYPE_MEMORY_AFFINITY,
1085 srat_parse_mem_affinity, 0) < 0)
1086 goto out_put;
1087
1088 if (acpi_table_parse_entries(ACPI_SIG_SRAT,
1089 sizeof(struct acpi_table_srat),
1090 ACPI_SRAT_TYPE_GENERIC_PORT_AFFINITY,
1091 srat_parse_genport_affinity, 0) < 0)
1092 goto out_put;
1093
1094 acpi_put_table(tbl);
1095
1096 status = acpi_get_table(ACPI_SIG_HMAT, 0, &tbl);
1097 if (ACPI_FAILURE(status))
1098 goto out_put;
1099
1100 hmat_revision = tbl->revision;
1101 switch (hmat_revision) {
1102 case 1:
1103 case 2:
1104 break;
1105 default:
1106 pr_notice("Ignoring: Unknown revision:%d\n", hmat_revision);
1107 goto out_put;
1108 }
1109
1110 for (i = ACPI_HMAT_TYPE_PROXIMITY; i < ACPI_HMAT_TYPE_RESERVED; i++) {
1111 if (acpi_table_parse_entries(ACPI_SIG_HMAT,
1112 sizeof(struct acpi_table_hmat), i,
1113 hmat_parse_subtable, 0) < 0) {
1114 pr_notice("Ignoring: Invalid table");
1115 goto out_put;
1116 }
1117 }
1118 hmat_register_targets();
1119
1120 /* Keep the table and structures if the notifier may use them */
1121 if (hotplug_memory_notifier(hmat_callback, HMAT_CALLBACK_PRI))
1122 goto out_put;
1123
1124 if (!hmat_set_default_dram_perf())
1125 register_mt_adistance_algorithm(&hmat_adist_nb);
1126
1127 return 0;
1128 out_put:
1129 hmat_free_structures();
1130 acpi_put_table(tbl);
1131 return 0;
1132 }
1133 subsys_initcall(hmat_init);
1134