1 // SPDX-License-Identifier: GPL-2.0
2
3 /*
4 * Copyright 2016-2022 HabanaLabs, Ltd.
5 * All Rights Reserved.
6 */
7
8 #include <uapi/drm/habanalabs_accel.h>
9 #include "habanalabs.h"
10 #include "../include/hw_ip/mmu/mmu_general.h"
11
12 #include <linux/uaccess.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pci-p2pdma.h>
16
17 MODULE_IMPORT_NS("DMA_BUF");
18
19 #define HL_MMU_DEBUG 0
20
21 /* use small pages for supporting non-pow2 (32M/40M/48M) DRAM phys page sizes */
22 #define DRAM_POOL_PAGE_SIZE SZ_8M
23
24 #define MEM_HANDLE_INVALID ULONG_MAX
25
26 static int allocate_timestamps_buffers(struct hl_fpriv *hpriv,
27 struct hl_mem_in *args, u64 *handle);
28
set_alloc_page_size(struct hl_device * hdev,struct hl_mem_in * args,u32 * page_size)29 static int set_alloc_page_size(struct hl_device *hdev, struct hl_mem_in *args, u32 *page_size)
30 {
31 struct asic_fixed_properties *prop = &hdev->asic_prop;
32 u64 psize;
33
34 /*
35 * for ASIC that supports setting the allocation page size by user we will address
36 * user's choice only if it is not 0 (as 0 means taking the default page size)
37 */
38 if (prop->supports_user_set_page_size && args->alloc.page_size) {
39 psize = args->alloc.page_size;
40
41 if (!is_power_of_2(psize)) {
42 dev_err(hdev->dev, "user page size (%#llx) is not power of 2\n", psize);
43 return -EINVAL;
44 }
45 } else {
46 psize = prop->device_mem_alloc_default_page_size;
47 }
48
49 *page_size = psize;
50
51 return 0;
52 }
53
54 /*
55 * The va ranges in context object contain a list with the available chunks of
56 * device virtual memory.
57 * There is one range for host allocations and one for DRAM allocations.
58 *
59 * On initialization each range contains one chunk of all of its available
60 * virtual range which is a half of the total device virtual range.
61 *
62 * On each mapping of physical pages, a suitable virtual range chunk (with a
63 * minimum size) is selected from the list. If the chunk size equals the
64 * requested size, the chunk is returned. Otherwise, the chunk is split into
65 * two chunks - one to return as result and a remainder to stay in the list.
66 *
67 * On each Unmapping of a virtual address, the relevant virtual chunk is
68 * returned to the list. The chunk is added to the list and if its edges match
69 * the edges of the adjacent chunks (means a contiguous chunk can be created),
70 * the chunks are merged.
71 *
72 * On finish, the list is checked to have only one chunk of all the relevant
73 * virtual range (which is a half of the device total virtual range).
74 * If not (means not all mappings were unmapped), a warning is printed.
75 */
76
77 /*
78 * alloc_device_memory() - allocate device memory.
79 * @ctx: pointer to the context structure.
80 * @args: host parameters containing the requested size.
81 * @ret_handle: result handle.
82 *
83 * This function does the following:
84 * - Allocate the requested size rounded up to 'dram_page_size' pages.
85 * - Return unique handle for later map/unmap/free.
86 */
alloc_device_memory(struct hl_ctx * ctx,struct hl_mem_in * args,u32 * ret_handle)87 static int alloc_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args,
88 u32 *ret_handle)
89 {
90 struct hl_device *hdev = ctx->hdev;
91 struct hl_vm *vm = &hdev->vm;
92 struct hl_vm_phys_pg_pack *phys_pg_pack;
93 u64 paddr = 0, total_size, num_pgs, i;
94 u32 num_curr_pgs, page_size;
95 bool contiguous;
96 int handle, rc;
97
98 num_curr_pgs = 0;
99
100 rc = set_alloc_page_size(hdev, args, &page_size);
101 if (rc)
102 return rc;
103
104 num_pgs = DIV_ROUND_UP_ULL(args->alloc.mem_size, page_size);
105 total_size = num_pgs * page_size;
106
107 if (!total_size) {
108 dev_err(hdev->dev, "Cannot allocate 0 bytes\n");
109 return -EINVAL;
110 }
111
112 contiguous = args->flags & HL_MEM_CONTIGUOUS;
113
114 if (contiguous) {
115 if (is_power_of_2(page_size))
116 paddr = (uintptr_t) gen_pool_dma_alloc_align(vm->dram_pg_pool,
117 total_size, NULL, page_size);
118 else
119 paddr = gen_pool_alloc(vm->dram_pg_pool, total_size);
120 if (!paddr) {
121 dev_err(hdev->dev,
122 "Cannot allocate %llu contiguous pages with total size of %llu\n",
123 num_pgs, total_size);
124 return -ENOMEM;
125 }
126 }
127
128 phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL);
129 if (!phys_pg_pack) {
130 rc = -ENOMEM;
131 goto pages_pack_err;
132 }
133
134 phys_pg_pack->vm_type = VM_TYPE_PHYS_PACK;
135 phys_pg_pack->asid = ctx->asid;
136 phys_pg_pack->npages = num_pgs;
137 phys_pg_pack->page_size = page_size;
138 phys_pg_pack->total_size = total_size;
139 phys_pg_pack->flags = args->flags;
140 phys_pg_pack->contiguous = contiguous;
141
142 phys_pg_pack->pages = kvmalloc_array(num_pgs, sizeof(u64), GFP_KERNEL);
143 if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) {
144 rc = -ENOMEM;
145 goto pages_arr_err;
146 }
147
148 if (phys_pg_pack->contiguous) {
149 for (i = 0 ; i < num_pgs ; i++)
150 phys_pg_pack->pages[i] = paddr + i * page_size;
151 } else {
152 for (i = 0 ; i < num_pgs ; i++) {
153 if (is_power_of_2(page_size))
154 phys_pg_pack->pages[i] =
155 (uintptr_t)gen_pool_dma_alloc_align(vm->dram_pg_pool,
156 page_size, NULL,
157 page_size);
158 else
159 phys_pg_pack->pages[i] = gen_pool_alloc(vm->dram_pg_pool,
160 page_size);
161
162 if (!phys_pg_pack->pages[i]) {
163 dev_err(hdev->dev,
164 "Cannot allocate device memory (out of memory)\n");
165 rc = -ENOMEM;
166 goto page_err;
167 }
168
169 num_curr_pgs++;
170 }
171 }
172
173 spin_lock(&vm->idr_lock);
174 handle = idr_alloc(&vm->phys_pg_pack_handles, phys_pg_pack, 1, 0,
175 GFP_ATOMIC);
176 spin_unlock(&vm->idr_lock);
177
178 if (handle < 0) {
179 dev_err(hdev->dev, "Failed to get handle for page\n");
180 rc = -EFAULT;
181 goto idr_err;
182 }
183
184 for (i = 0 ; i < num_pgs ; i++)
185 kref_get(&vm->dram_pg_pool_refcount);
186
187 phys_pg_pack->handle = handle;
188
189 atomic64_add(phys_pg_pack->total_size, &ctx->dram_phys_mem);
190 atomic64_add(phys_pg_pack->total_size, &hdev->dram_used_mem);
191
192 *ret_handle = handle;
193
194 return 0;
195
196 idr_err:
197 page_err:
198 if (!phys_pg_pack->contiguous)
199 for (i = 0 ; i < num_curr_pgs ; i++)
200 gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[i],
201 page_size);
202
203 kvfree(phys_pg_pack->pages);
204 pages_arr_err:
205 kfree(phys_pg_pack);
206 pages_pack_err:
207 if (contiguous)
208 gen_pool_free(vm->dram_pg_pool, paddr, total_size);
209
210 return rc;
211 }
212
213 /**
214 * dma_map_host_va() - DMA mapping of the given host virtual address.
215 * @hdev: habanalabs device structure.
216 * @addr: the host virtual address of the memory area.
217 * @size: the size of the memory area.
218 * @p_userptr: pointer to result userptr structure.
219 *
220 * This function does the following:
221 * - Allocate userptr structure.
222 * - Pin the given host memory using the userptr structure.
223 * - Perform DMA mapping to have the DMA addresses of the pages.
224 */
dma_map_host_va(struct hl_device * hdev,u64 addr,u64 size,struct hl_userptr ** p_userptr)225 static int dma_map_host_va(struct hl_device *hdev, u64 addr, u64 size,
226 struct hl_userptr **p_userptr)
227 {
228 struct hl_userptr *userptr;
229 int rc;
230
231 userptr = kzalloc(sizeof(*userptr), GFP_KERNEL);
232 if (!userptr) {
233 rc = -ENOMEM;
234 goto userptr_err;
235 }
236
237 rc = hl_pin_host_memory(hdev, addr, size, userptr);
238 if (rc)
239 goto pin_err;
240
241 userptr->dma_mapped = true;
242 userptr->dir = DMA_BIDIRECTIONAL;
243 userptr->vm_type = VM_TYPE_USERPTR;
244
245 *p_userptr = userptr;
246
247 rc = hl_dma_map_sgtable(hdev, userptr->sgt, DMA_BIDIRECTIONAL);
248 if (rc) {
249 dev_err(hdev->dev, "failed to map sgt with DMA region\n");
250 goto dma_map_err;
251 }
252
253 return 0;
254
255 dma_map_err:
256 hl_unpin_host_memory(hdev, userptr);
257 pin_err:
258 kfree(userptr);
259 userptr_err:
260
261 return rc;
262 }
263
264 /**
265 * dma_unmap_host_va() - DMA unmapping of the given host virtual address.
266 * @hdev: habanalabs device structure.
267 * @userptr: userptr to free.
268 *
269 * This function does the following:
270 * - Unpins the physical pages.
271 * - Frees the userptr structure.
272 */
dma_unmap_host_va(struct hl_device * hdev,struct hl_userptr * userptr)273 static void dma_unmap_host_va(struct hl_device *hdev,
274 struct hl_userptr *userptr)
275 {
276 hl_unpin_host_memory(hdev, userptr);
277 kfree(userptr);
278 }
279
280 /**
281 * dram_pg_pool_do_release() - free DRAM pages pool
282 * @ref: pointer to reference object.
283 *
284 * This function does the following:
285 * - Frees the idr structure of physical pages handles.
286 * - Frees the generic pool of DRAM physical pages.
287 */
dram_pg_pool_do_release(struct kref * ref)288 static void dram_pg_pool_do_release(struct kref *ref)
289 {
290 struct hl_vm *vm = container_of(ref, struct hl_vm,
291 dram_pg_pool_refcount);
292
293 /*
294 * free the idr here as only here we know for sure that there are no
295 * allocated physical pages and hence there are no handles in use
296 */
297 idr_destroy(&vm->phys_pg_pack_handles);
298 gen_pool_destroy(vm->dram_pg_pool);
299 }
300
301 /**
302 * free_phys_pg_pack() - free physical page pack.
303 * @hdev: habanalabs device structure.
304 * @phys_pg_pack: physical page pack to free.
305 *
306 * This function does the following:
307 * - For DRAM memory only
308 * - iterate over the pack, free each physical block structure by
309 * returning it to the general pool.
310 * - Free the hl_vm_phys_pg_pack structure.
311 */
free_phys_pg_pack(struct hl_device * hdev,struct hl_vm_phys_pg_pack * phys_pg_pack)312 static void free_phys_pg_pack(struct hl_device *hdev,
313 struct hl_vm_phys_pg_pack *phys_pg_pack)
314 {
315 struct hl_vm *vm = &hdev->vm;
316 u64 i;
317
318 if (phys_pg_pack->created_from_userptr)
319 goto end;
320
321 if (phys_pg_pack->contiguous) {
322 gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[0],
323 phys_pg_pack->total_size);
324
325 for (i = 0; i < phys_pg_pack->npages ; i++)
326 kref_put(&vm->dram_pg_pool_refcount,
327 dram_pg_pool_do_release);
328 } else {
329 for (i = 0 ; i < phys_pg_pack->npages ; i++) {
330 gen_pool_free(vm->dram_pg_pool,
331 phys_pg_pack->pages[i],
332 phys_pg_pack->page_size);
333 kref_put(&vm->dram_pg_pool_refcount,
334 dram_pg_pool_do_release);
335 }
336 }
337
338 end:
339 kvfree(phys_pg_pack->pages);
340 kfree(phys_pg_pack);
341
342 return;
343 }
344
345 /**
346 * free_device_memory() - free device memory.
347 * @ctx: pointer to the context structure.
348 * @args: host parameters containing the requested size.
349 *
350 * This function does the following:
351 * - Free the device memory related to the given handle.
352 */
free_device_memory(struct hl_ctx * ctx,struct hl_mem_in * args)353 static int free_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args)
354 {
355 struct hl_device *hdev = ctx->hdev;
356 struct hl_vm *vm = &hdev->vm;
357 struct hl_vm_phys_pg_pack *phys_pg_pack;
358 u32 handle = args->free.handle;
359
360 spin_lock(&vm->idr_lock);
361 phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
362 if (!phys_pg_pack) {
363 spin_unlock(&vm->idr_lock);
364 dev_err(hdev->dev, "free device memory failed, no match for handle %u\n", handle);
365 return -EINVAL;
366 }
367
368 if (atomic_read(&phys_pg_pack->mapping_cnt) > 0) {
369 spin_unlock(&vm->idr_lock);
370 dev_err(hdev->dev, "handle %u is mapped, cannot free\n", handle);
371 return -EINVAL;
372 }
373
374 /* must remove from idr before the freeing of the physical pages as the refcount of the pool
375 * is also the trigger of the idr destroy
376 */
377 idr_remove(&vm->phys_pg_pack_handles, handle);
378 spin_unlock(&vm->idr_lock);
379
380 atomic64_sub(phys_pg_pack->total_size, &ctx->dram_phys_mem);
381 atomic64_sub(phys_pg_pack->total_size, &hdev->dram_used_mem);
382
383 free_phys_pg_pack(hdev, phys_pg_pack);
384
385 return 0;
386 }
387
388 /**
389 * clear_va_list_locked() - free virtual addresses list.
390 * @hdev: habanalabs device structure.
391 * @va_list: list of virtual addresses to free.
392 *
393 * This function does the following:
394 * - Iterate over the list and free each virtual addresses block.
395 *
396 * This function should be called only when va_list lock is taken.
397 */
clear_va_list_locked(struct hl_device * hdev,struct list_head * va_list)398 static void clear_va_list_locked(struct hl_device *hdev,
399 struct list_head *va_list)
400 {
401 struct hl_vm_va_block *va_block, *tmp;
402
403 list_for_each_entry_safe(va_block, tmp, va_list, node) {
404 list_del(&va_block->node);
405 kfree(va_block);
406 }
407 }
408
409 /**
410 * print_va_list_locked() - print virtual addresses list.
411 * @hdev: habanalabs device structure.
412 * @va_list: list of virtual addresses to print.
413 *
414 * This function does the following:
415 * - Iterate over the list and print each virtual addresses block.
416 *
417 * This function should be called only when va_list lock is taken.
418 */
print_va_list_locked(struct hl_device * hdev,struct list_head * va_list)419 static void print_va_list_locked(struct hl_device *hdev,
420 struct list_head *va_list)
421 {
422 #if HL_MMU_DEBUG
423 struct hl_vm_va_block *va_block;
424
425 dev_dbg(hdev->dev, "print va list:\n");
426
427 list_for_each_entry(va_block, va_list, node)
428 dev_dbg(hdev->dev,
429 "va block, start: 0x%llx, end: 0x%llx, size: %llu\n",
430 va_block->start, va_block->end, va_block->size);
431 #endif
432 }
433
434 /**
435 * merge_va_blocks_locked() - merge a virtual block if possible.
436 * @hdev: pointer to the habanalabs device structure.
437 * @va_list: pointer to the virtual addresses block list.
438 * @va_block: virtual block to merge with adjacent blocks.
439 *
440 * This function does the following:
441 * - Merge the given blocks with the adjacent blocks if their virtual ranges
442 * create a contiguous virtual range.
443 *
444 * This Function should be called only when va_list lock is taken.
445 */
merge_va_blocks_locked(struct hl_device * hdev,struct list_head * va_list,struct hl_vm_va_block * va_block)446 static void merge_va_blocks_locked(struct hl_device *hdev,
447 struct list_head *va_list, struct hl_vm_va_block *va_block)
448 {
449 struct hl_vm_va_block *prev, *next;
450
451 prev = list_prev_entry(va_block, node);
452 if (&prev->node != va_list && prev->end + 1 == va_block->start) {
453 prev->end = va_block->end;
454 prev->size = prev->end - prev->start + 1;
455 list_del(&va_block->node);
456 kfree(va_block);
457 va_block = prev;
458 }
459
460 next = list_next_entry(va_block, node);
461 if (&next->node != va_list && va_block->end + 1 == next->start) {
462 next->start = va_block->start;
463 next->size = next->end - next->start + 1;
464 list_del(&va_block->node);
465 kfree(va_block);
466 }
467 }
468
469 /**
470 * add_va_block_locked() - add a virtual block to the virtual addresses list.
471 * @hdev: pointer to the habanalabs device structure.
472 * @va_list: pointer to the virtual addresses block list.
473 * @start: start virtual address.
474 * @end: end virtual address.
475 *
476 * This function does the following:
477 * - Add the given block to the virtual blocks list and merge with other blocks
478 * if a contiguous virtual block can be created.
479 *
480 * This Function should be called only when va_list lock is taken.
481 */
add_va_block_locked(struct hl_device * hdev,struct list_head * va_list,u64 start,u64 end)482 static int add_va_block_locked(struct hl_device *hdev,
483 struct list_head *va_list, u64 start, u64 end)
484 {
485 struct hl_vm_va_block *va_block, *res = NULL;
486 u64 size = end - start + 1;
487
488 print_va_list_locked(hdev, va_list);
489
490 list_for_each_entry(va_block, va_list, node) {
491 /* TODO: remove upon matureness */
492 if (hl_mem_area_crosses_range(start, size, va_block->start,
493 va_block->end)) {
494 dev_err(hdev->dev,
495 "block crossing ranges at start 0x%llx, end 0x%llx\n",
496 va_block->start, va_block->end);
497 return -EINVAL;
498 }
499
500 if (va_block->end < start)
501 res = va_block;
502 }
503
504 va_block = kmalloc(sizeof(*va_block), GFP_KERNEL);
505 if (!va_block)
506 return -ENOMEM;
507
508 va_block->start = start;
509 va_block->end = end;
510 va_block->size = size;
511
512 if (!res)
513 list_add(&va_block->node, va_list);
514 else
515 list_add(&va_block->node, &res->node);
516
517 merge_va_blocks_locked(hdev, va_list, va_block);
518
519 print_va_list_locked(hdev, va_list);
520
521 return 0;
522 }
523
524 /**
525 * add_va_block() - wrapper for add_va_block_locked.
526 * @hdev: pointer to the habanalabs device structure.
527 * @va_range: pointer to the virtual addresses range object.
528 * @start: start virtual address.
529 * @end: end virtual address.
530 *
531 * This function does the following:
532 * - Takes the list lock and calls add_va_block_locked.
533 */
add_va_block(struct hl_device * hdev,struct hl_va_range * va_range,u64 start,u64 end)534 static inline int add_va_block(struct hl_device *hdev,
535 struct hl_va_range *va_range, u64 start, u64 end)
536 {
537 int rc;
538
539 mutex_lock(&va_range->lock);
540 rc = add_va_block_locked(hdev, &va_range->list, start, end);
541 mutex_unlock(&va_range->lock);
542
543 return rc;
544 }
545
546 /**
547 * is_hint_crossing_range() - check if hint address crossing specified reserved.
548 * @range_type: virtual space range type.
549 * @start_addr: start virtual address.
550 * @size: block size.
551 * @prop: asic properties structure to retrieve reserved ranges from.
552 */
is_hint_crossing_range(enum hl_va_range_type range_type,u64 start_addr,u32 size,struct asic_fixed_properties * prop)553 static inline bool is_hint_crossing_range(enum hl_va_range_type range_type,
554 u64 start_addr, u32 size, struct asic_fixed_properties *prop) {
555 bool range_cross;
556
557 if (range_type == HL_VA_RANGE_TYPE_DRAM)
558 range_cross =
559 hl_mem_area_crosses_range(start_addr, size,
560 prop->hints_dram_reserved_va_range.start_addr,
561 prop->hints_dram_reserved_va_range.end_addr);
562 else if (range_type == HL_VA_RANGE_TYPE_HOST)
563 range_cross =
564 hl_mem_area_crosses_range(start_addr, size,
565 prop->hints_host_reserved_va_range.start_addr,
566 prop->hints_host_reserved_va_range.end_addr);
567 else
568 range_cross =
569 hl_mem_area_crosses_range(start_addr, size,
570 prop->hints_host_hpage_reserved_va_range.start_addr,
571 prop->hints_host_hpage_reserved_va_range.end_addr);
572
573 return range_cross;
574 }
575
576 /**
577 * get_va_block() - get a virtual block for the given size and alignment.
578 *
579 * @hdev: pointer to the habanalabs device structure.
580 * @va_range: pointer to the virtual addresses range.
581 * @size: requested block size.
582 * @hint_addr: hint for requested address by the user.
583 * @va_block_align: required alignment of the virtual block start address.
584 * @range_type: va range type (host, dram)
585 * @flags: additional memory flags, currently only uses HL_MEM_FORCE_HINT
586 *
587 * This function does the following:
588 * - Iterate on the virtual block list to find a suitable virtual block for the
589 * given size, hint address and alignment.
590 * - Reserve the requested block and update the list.
591 * - Return the start address of the virtual block.
592 */
get_va_block(struct hl_device * hdev,struct hl_va_range * va_range,u64 size,u64 hint_addr,u32 va_block_align,enum hl_va_range_type range_type,u32 flags)593 static u64 get_va_block(struct hl_device *hdev,
594 struct hl_va_range *va_range,
595 u64 size, u64 hint_addr, u32 va_block_align,
596 enum hl_va_range_type range_type,
597 u32 flags)
598 {
599 struct hl_vm_va_block *va_block, *new_va_block = NULL;
600 struct asic_fixed_properties *prop = &hdev->asic_prop;
601 u64 tmp_hint_addr, valid_start, valid_size, prev_start, prev_end,
602 align_mask, reserved_valid_start = 0, reserved_valid_size = 0,
603 dram_hint_mask = prop->dram_hints_align_mask;
604 bool add_prev = false;
605 bool is_align_pow_2 = is_power_of_2(va_range->page_size);
606 bool is_hint_dram_addr = hl_is_dram_va(hdev, hint_addr);
607 bool force_hint = flags & HL_MEM_FORCE_HINT;
608 int rc;
609
610 if (is_align_pow_2)
611 align_mask = ~((u64)va_block_align - 1);
612 else
613 /*
614 * with non-power-of-2 range we work only with page granularity
615 * and the start address is page aligned,
616 * so no need for alignment checking.
617 */
618 size = DIV_ROUND_UP_ULL(size, va_range->page_size) *
619 va_range->page_size;
620
621 tmp_hint_addr = hint_addr & ~dram_hint_mask;
622
623 /* Check if we need to ignore hint address */
624 if ((is_align_pow_2 && (hint_addr & (va_block_align - 1))) ||
625 (!is_align_pow_2 && is_hint_dram_addr &&
626 do_div(tmp_hint_addr, va_range->page_size))) {
627
628 if (force_hint) {
629 /* Hint must be respected, so here we just fail */
630 dev_err(hdev->dev,
631 "Hint address 0x%llx is not page aligned - cannot be respected\n",
632 hint_addr);
633 return 0;
634 }
635
636 dev_dbg(hdev->dev,
637 "Hint address 0x%llx will be ignored because it is not aligned\n",
638 hint_addr);
639 hint_addr = 0;
640 }
641
642 mutex_lock(&va_range->lock);
643
644 print_va_list_locked(hdev, &va_range->list);
645
646 list_for_each_entry(va_block, &va_range->list, node) {
647 /* Calc the first possible aligned addr */
648 valid_start = va_block->start;
649
650 if (is_align_pow_2 && (valid_start & (va_block_align - 1))) {
651 valid_start &= align_mask;
652 valid_start += va_block_align;
653 if (valid_start > va_block->end)
654 continue;
655 }
656
657 valid_size = va_block->end - valid_start + 1;
658 if (valid_size < size)
659 continue;
660
661 /*
662 * In case hint address is 0, and hints_range_reservation
663 * property enabled, then avoid allocating va blocks from the
664 * range reserved for hint addresses
665 */
666 if (prop->hints_range_reservation && !hint_addr)
667 if (is_hint_crossing_range(range_type, valid_start,
668 size, prop))
669 continue;
670
671 /* Pick the minimal length block which has the required size */
672 if (!new_va_block || (valid_size < reserved_valid_size)) {
673 new_va_block = va_block;
674 reserved_valid_start = valid_start;
675 reserved_valid_size = valid_size;
676 }
677
678 if (hint_addr && hint_addr >= valid_start &&
679 (hint_addr + size) <= va_block->end) {
680 new_va_block = va_block;
681 reserved_valid_start = hint_addr;
682 reserved_valid_size = valid_size;
683 break;
684 }
685 }
686
687 if (!new_va_block) {
688 dev_err(hdev->dev, "no available va block for size %llu\n",
689 size);
690 goto out;
691 }
692
693 if (force_hint && reserved_valid_start != hint_addr) {
694 /* Hint address must be respected. If we are here - this means
695 * we could not respect it.
696 */
697 dev_err(hdev->dev,
698 "Hint address 0x%llx could not be respected\n",
699 hint_addr);
700 reserved_valid_start = 0;
701 goto out;
702 }
703
704 /*
705 * Check if there is some leftover range due to reserving the new
706 * va block, then return it to the main virtual addresses list.
707 */
708 if (reserved_valid_start > new_va_block->start) {
709 prev_start = new_va_block->start;
710 prev_end = reserved_valid_start - 1;
711
712 new_va_block->start = reserved_valid_start;
713 new_va_block->size = reserved_valid_size;
714
715 add_prev = true;
716 }
717
718 if (new_va_block->size > size) {
719 new_va_block->start += size;
720 new_va_block->size = new_va_block->end - new_va_block->start + 1;
721 } else {
722 list_del(&new_va_block->node);
723 kfree(new_va_block);
724 }
725
726 if (add_prev) {
727 rc = add_va_block_locked(hdev, &va_range->list, prev_start, prev_end);
728 if (rc) {
729 reserved_valid_start = 0;
730 goto out;
731 }
732 }
733
734 print_va_list_locked(hdev, &va_range->list);
735 out:
736 mutex_unlock(&va_range->lock);
737
738 return reserved_valid_start;
739 }
740
741 /*
742 * hl_reserve_va_block() - reserve a virtual block of a given size.
743 * @hdev: pointer to the habanalabs device structure.
744 * @ctx: current context
745 * @type: virtual addresses range type.
746 * @size: requested block size.
747 * @alignment: required alignment in bytes of the virtual block start address,
748 * 0 means no alignment.
749 *
750 * This function does the following:
751 * - Iterate on the virtual block list to find a suitable virtual block for the
752 * given size and alignment.
753 * - Reserve the requested block and update the list.
754 * - Return the start address of the virtual block.
755 */
hl_reserve_va_block(struct hl_device * hdev,struct hl_ctx * ctx,enum hl_va_range_type type,u64 size,u32 alignment)756 u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
757 enum hl_va_range_type type, u64 size, u32 alignment)
758 {
759 return get_va_block(hdev, ctx->va_range[type], size, 0,
760 max(alignment, ctx->va_range[type]->page_size),
761 type, 0);
762 }
763
764 /**
765 * hl_get_va_range_type() - get va_range type for the given address and size.
766 * @ctx: context to fetch va_range from.
767 * @address: the start address of the area we want to validate.
768 * @size: the size in bytes of the area we want to validate.
769 * @type: returned va_range type.
770 *
771 * Return: true if the area is inside a valid range, false otherwise.
772 */
hl_get_va_range_type(struct hl_ctx * ctx,u64 address,u64 size,enum hl_va_range_type * type)773 static int hl_get_va_range_type(struct hl_ctx *ctx, u64 address, u64 size,
774 enum hl_va_range_type *type)
775 {
776 int i;
777
778 for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX; i++) {
779 if (hl_mem_area_inside_range(address, size,
780 ctx->va_range[i]->start_addr,
781 ctx->va_range[i]->end_addr)) {
782 *type = i;
783 return 0;
784 }
785 }
786
787 return -EINVAL;
788 }
789
790 /**
791 * hl_unreserve_va_block() - wrapper for add_va_block to unreserve a va block.
792 * @hdev: pointer to the habanalabs device structure
793 * @ctx: pointer to the context structure.
794 * @start_addr: start virtual address.
795 * @size: number of bytes to unreserve.
796 *
797 * This function does the following:
798 * - Takes the list lock and calls add_va_block_locked.
799 */
hl_unreserve_va_block(struct hl_device * hdev,struct hl_ctx * ctx,u64 start_addr,u64 size)800 int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
801 u64 start_addr, u64 size)
802 {
803 enum hl_va_range_type type;
804 int rc;
805
806 rc = hl_get_va_range_type(ctx, start_addr, size, &type);
807 if (rc) {
808 dev_err(hdev->dev,
809 "cannot find va_range for va %#llx size %llu",
810 start_addr, size);
811 return rc;
812 }
813
814 rc = add_va_block(hdev, ctx->va_range[type], start_addr,
815 start_addr + size - 1);
816 if (rc)
817 dev_warn(hdev->dev,
818 "add va block failed for vaddr: 0x%llx\n", start_addr);
819
820 return rc;
821 }
822
823 /**
824 * init_phys_pg_pack_from_userptr() - initialize physical page pack from host
825 * memory
826 * @ctx: pointer to the context structure.
827 * @userptr: userptr to initialize from.
828 * @pphys_pg_pack: result pointer.
829 * @force_regular_page: tell the function to ignore huge page optimization,
830 * even if possible. Needed for cases where the device VA
831 * is allocated before we know the composition of the
832 * physical pages
833 *
834 * This function does the following:
835 * - Create a physical page pack from the physical pages related to the given
836 * virtual block.
837 */
init_phys_pg_pack_from_userptr(struct hl_ctx * ctx,struct hl_userptr * userptr,struct hl_vm_phys_pg_pack ** pphys_pg_pack,bool force_regular_page)838 static int init_phys_pg_pack_from_userptr(struct hl_ctx *ctx,
839 struct hl_userptr *userptr,
840 struct hl_vm_phys_pg_pack **pphys_pg_pack,
841 bool force_regular_page)
842 {
843 u32 npages, page_size = PAGE_SIZE,
844 huge_page_size = ctx->hdev->asic_prop.pmmu_huge.page_size;
845 u32 pgs_in_huge_page = huge_page_size >> __ffs(page_size);
846 struct hl_vm_phys_pg_pack *phys_pg_pack;
847 bool first = true, is_huge_page_opt;
848 u64 page_mask, total_npages;
849 struct scatterlist *sg;
850 dma_addr_t dma_addr;
851 int rc, i, j;
852
853 phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL);
854 if (!phys_pg_pack)
855 return -ENOMEM;
856
857 phys_pg_pack->vm_type = userptr->vm_type;
858 phys_pg_pack->created_from_userptr = true;
859 phys_pg_pack->asid = ctx->asid;
860 atomic_set(&phys_pg_pack->mapping_cnt, 1);
861
862 is_huge_page_opt = (force_regular_page ? false : true);
863
864 /* Only if all dma_addrs are aligned to 2MB and their
865 * sizes is at least 2MB, we can use huge page mapping.
866 * We limit the 2MB optimization to this condition,
867 * since later on we acquire the related VA range as one
868 * consecutive block.
869 */
870 total_npages = 0;
871 for_each_sgtable_dma_sg(userptr->sgt, sg, i) {
872 npages = hl_get_sg_info(sg, &dma_addr);
873
874 total_npages += npages;
875
876 if ((npages % pgs_in_huge_page) ||
877 (dma_addr & (huge_page_size - 1)))
878 is_huge_page_opt = false;
879 }
880
881 if (is_huge_page_opt) {
882 page_size = huge_page_size;
883 do_div(total_npages, pgs_in_huge_page);
884 }
885
886 page_mask = ~(((u64) page_size) - 1);
887
888 phys_pg_pack->pages = kvmalloc_array(total_npages, sizeof(u64),
889 GFP_KERNEL);
890 if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) {
891 rc = -ENOMEM;
892 goto page_pack_arr_mem_err;
893 }
894
895 phys_pg_pack->npages = total_npages;
896 phys_pg_pack->page_size = page_size;
897 phys_pg_pack->total_size = total_npages * page_size;
898
899 j = 0;
900 for_each_sgtable_dma_sg(userptr->sgt, sg, i) {
901 npages = hl_get_sg_info(sg, &dma_addr);
902
903 /* align down to physical page size and save the offset */
904 if (first) {
905 first = false;
906 phys_pg_pack->offset = dma_addr & (page_size - 1);
907 dma_addr &= page_mask;
908 }
909
910 while (npages) {
911 phys_pg_pack->pages[j++] = dma_addr;
912 dma_addr += page_size;
913
914 if (is_huge_page_opt)
915 npages -= pgs_in_huge_page;
916 else
917 npages--;
918 }
919 }
920
921 *pphys_pg_pack = phys_pg_pack;
922
923 return 0;
924
925 page_pack_arr_mem_err:
926 kfree(phys_pg_pack);
927
928 return rc;
929 }
930
931 /**
932 * map_phys_pg_pack() - maps the physical page pack..
933 * @ctx: pointer to the context structure.
934 * @vaddr: start address of the virtual area to map from.
935 * @phys_pg_pack: the pack of physical pages to map to.
936 *
937 * This function does the following:
938 * - Maps each chunk of virtual memory to matching physical chunk.
939 * - Stores number of successful mappings in the given argument.
940 * - Returns 0 on success, error code otherwise.
941 */
map_phys_pg_pack(struct hl_ctx * ctx,u64 vaddr,struct hl_vm_phys_pg_pack * phys_pg_pack)942 static int map_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr,
943 struct hl_vm_phys_pg_pack *phys_pg_pack)
944 {
945 struct hl_device *hdev = ctx->hdev;
946 u64 next_vaddr = vaddr, paddr, mapped_pg_cnt = 0, i;
947 u32 page_size = phys_pg_pack->page_size;
948 int rc = 0;
949 bool is_host_addr;
950
951 for (i = 0 ; i < phys_pg_pack->npages ; i++) {
952 paddr = phys_pg_pack->pages[i];
953
954 rc = hl_mmu_map_page(ctx, next_vaddr, paddr, page_size,
955 (i + 1) == phys_pg_pack->npages);
956 if (rc) {
957 dev_err(hdev->dev,
958 "map failed (%d) for handle %u, npages: %llu, mapped: %llu\n",
959 rc, phys_pg_pack->handle, phys_pg_pack->npages,
960 mapped_pg_cnt);
961 goto err;
962 }
963
964 mapped_pg_cnt++;
965 next_vaddr += page_size;
966 }
967
968 return 0;
969
970 err:
971 is_host_addr = !hl_is_dram_va(hdev, vaddr);
972
973 next_vaddr = vaddr;
974 for (i = 0 ; i < mapped_pg_cnt ; i++) {
975 if (hl_mmu_unmap_page(ctx, next_vaddr, page_size,
976 (i + 1) == mapped_pg_cnt))
977 dev_warn_ratelimited(hdev->dev,
978 "failed to unmap handle %u, va: 0x%llx, pa: 0x%llx, page size: %u\n",
979 phys_pg_pack->handle, next_vaddr,
980 phys_pg_pack->pages[i], page_size);
981
982 next_vaddr += page_size;
983
984 /*
985 * unmapping on Palladium can be really long, so avoid a CPU
986 * soft lockup bug by sleeping a little between unmapping pages
987 *
988 * In addition, on host num of pages could be huge,
989 * because page size could be 4KB, so when unmapping host
990 * pages sleep every 32K pages to avoid soft lockup
991 */
992 if (hdev->pldm || (is_host_addr && (i & 0x7FFF) == 0))
993 usleep_range(50, 200);
994 }
995
996 return rc;
997 }
998
999 /**
1000 * unmap_phys_pg_pack() - unmaps the physical page pack.
1001 * @ctx: pointer to the context structure.
1002 * @vaddr: start address of the virtual area to unmap.
1003 * @phys_pg_pack: the pack of physical pages to unmap.
1004 */
unmap_phys_pg_pack(struct hl_ctx * ctx,u64 vaddr,struct hl_vm_phys_pg_pack * phys_pg_pack)1005 static void unmap_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr,
1006 struct hl_vm_phys_pg_pack *phys_pg_pack)
1007 {
1008 struct hl_device *hdev = ctx->hdev;
1009 u64 next_vaddr, i;
1010 bool is_host_addr;
1011 u32 page_size;
1012
1013 is_host_addr = !hl_is_dram_va(hdev, vaddr);
1014 page_size = phys_pg_pack->page_size;
1015 next_vaddr = vaddr;
1016
1017 for (i = 0 ; i < phys_pg_pack->npages ; i++, next_vaddr += page_size) {
1018 if (hl_mmu_unmap_page(ctx, next_vaddr, page_size,
1019 (i + 1) == phys_pg_pack->npages))
1020 dev_warn_ratelimited(hdev->dev,
1021 "unmap failed for vaddr: 0x%llx\n", next_vaddr);
1022
1023 /*
1024 * unmapping on Palladium can be really long, so avoid a CPU
1025 * soft lockup bug by sleeping a little between unmapping pages
1026 *
1027 * In addition, on host num of pages could be huge,
1028 * because page size could be 4KB, so when unmapping host
1029 * pages sleep every 32K pages to avoid soft lockup
1030 */
1031 if (hdev->pldm || (is_host_addr && (i & 0x7FFF) == 0))
1032 usleep_range(50, 200);
1033 }
1034 }
1035
1036 /**
1037 * map_device_va() - map the given memory.
1038 * @ctx: pointer to the context structure.
1039 * @args: host parameters with handle/host virtual address.
1040 * @device_addr: pointer to result device virtual address.
1041 *
1042 * This function does the following:
1043 * - If given a physical device memory handle, map to a device virtual block
1044 * and return the start address of this block.
1045 * - If given a host virtual address and size, find the related physical pages,
1046 * map a device virtual block to this pages and return the start address of
1047 * this block.
1048 */
map_device_va(struct hl_ctx * ctx,struct hl_mem_in * args,u64 * device_addr)1049 static int map_device_va(struct hl_ctx *ctx, struct hl_mem_in *args, u64 *device_addr)
1050 {
1051 struct hl_vm_phys_pg_pack *phys_pg_pack;
1052 enum hl_va_range_type va_range_type = 0;
1053 struct hl_device *hdev = ctx->hdev;
1054 struct hl_userptr *userptr = NULL;
1055 u32 handle = 0, va_block_align;
1056 struct hl_vm_hash_node *hnode;
1057 struct hl_vm *vm = &hdev->vm;
1058 struct hl_va_range *va_range;
1059 bool is_userptr, do_prefetch;
1060 u64 ret_vaddr, hint_addr;
1061 enum vm_type *vm_type;
1062 int rc;
1063
1064 /* set map flags */
1065 is_userptr = args->flags & HL_MEM_USERPTR;
1066 do_prefetch = hdev->supports_mmu_prefetch && (args->flags & HL_MEM_PREFETCH);
1067
1068 /* Assume failure */
1069 *device_addr = 0;
1070
1071 if (is_userptr) {
1072 u64 addr = args->map_host.host_virt_addr,
1073 size = args->map_host.mem_size;
1074 u32 page_size = hdev->asic_prop.pmmu.page_size,
1075 huge_page_size = hdev->asic_prop.pmmu_huge.page_size;
1076
1077 rc = dma_map_host_va(hdev, addr, size, &userptr);
1078 if (rc)
1079 return rc;
1080
1081 rc = init_phys_pg_pack_from_userptr(ctx, userptr,
1082 &phys_pg_pack, false);
1083 if (rc) {
1084 dev_err(hdev->dev,
1085 "unable to init page pack for vaddr 0x%llx\n",
1086 addr);
1087 goto init_page_pack_err;
1088 }
1089
1090 vm_type = (enum vm_type *) userptr;
1091 hint_addr = args->map_host.hint_addr;
1092 handle = phys_pg_pack->handle;
1093
1094 /* get required alignment */
1095 if (phys_pg_pack->page_size == page_size) {
1096 va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST];
1097 va_range_type = HL_VA_RANGE_TYPE_HOST;
1098 /*
1099 * huge page alignment may be needed in case of regular
1100 * page mapping, depending on the host VA alignment
1101 */
1102 if (addr & (huge_page_size - 1))
1103 va_block_align = page_size;
1104 else
1105 va_block_align = huge_page_size;
1106 } else {
1107 /*
1108 * huge page alignment is needed in case of huge page
1109 * mapping
1110 */
1111 va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE];
1112 va_range_type = HL_VA_RANGE_TYPE_HOST_HUGE;
1113 va_block_align = huge_page_size;
1114 }
1115 } else {
1116 handle = lower_32_bits(args->map_device.handle);
1117
1118 spin_lock(&vm->idr_lock);
1119 phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
1120 if (!phys_pg_pack) {
1121 spin_unlock(&vm->idr_lock);
1122 dev_err(hdev->dev,
1123 "no match for handle %u\n", handle);
1124 return -EINVAL;
1125 }
1126
1127 /* increment now to avoid freeing device memory while mapping */
1128 atomic_inc(&phys_pg_pack->mapping_cnt);
1129
1130 spin_unlock(&vm->idr_lock);
1131
1132 vm_type = (enum vm_type *) phys_pg_pack;
1133
1134 hint_addr = args->map_device.hint_addr;
1135
1136 /* DRAM VA alignment is the same as the MMU page size */
1137 va_range = ctx->va_range[HL_VA_RANGE_TYPE_DRAM];
1138 va_range_type = HL_VA_RANGE_TYPE_DRAM;
1139 va_block_align = hdev->asic_prop.dmmu.page_size;
1140 }
1141
1142 /*
1143 * relevant for mapping device physical memory only, as host memory is
1144 * implicitly shared
1145 */
1146 if (!is_userptr && !(phys_pg_pack->flags & HL_MEM_SHARED) &&
1147 phys_pg_pack->asid != ctx->asid) {
1148 dev_err(hdev->dev,
1149 "Failed to map memory, handle %u is not shared\n",
1150 handle);
1151 rc = -EPERM;
1152 goto shared_err;
1153 }
1154
1155 hnode = kzalloc(sizeof(*hnode), GFP_KERNEL);
1156 if (!hnode) {
1157 rc = -ENOMEM;
1158 goto hnode_err;
1159 }
1160
1161 if (hint_addr && phys_pg_pack->offset) {
1162 if (args->flags & HL_MEM_FORCE_HINT) {
1163 /* Fail if hint must be respected but it can't be */
1164 dev_err(hdev->dev,
1165 "Hint address 0x%llx cannot be respected because source memory is not aligned 0x%x\n",
1166 hint_addr, phys_pg_pack->offset);
1167 rc = -EINVAL;
1168 goto va_block_err;
1169 }
1170 dev_dbg(hdev->dev,
1171 "Hint address 0x%llx will be ignored because source memory is not aligned 0x%x\n",
1172 hint_addr, phys_pg_pack->offset);
1173 }
1174
1175 ret_vaddr = get_va_block(hdev, va_range, phys_pg_pack->total_size,
1176 hint_addr, va_block_align,
1177 va_range_type, args->flags);
1178 if (!ret_vaddr) {
1179 dev_err(hdev->dev, "no available va block for handle %u\n",
1180 handle);
1181 rc = -ENOMEM;
1182 goto va_block_err;
1183 }
1184
1185 mutex_lock(&hdev->mmu_lock);
1186
1187 rc = map_phys_pg_pack(ctx, ret_vaddr, phys_pg_pack);
1188 if (rc) {
1189 dev_err(hdev->dev, "mapping page pack failed (%d) for handle %u\n",
1190 rc, handle);
1191 mutex_unlock(&hdev->mmu_lock);
1192 goto map_err;
1193 }
1194
1195 rc = hl_mmu_invalidate_cache_range(hdev, false, *vm_type | MMU_OP_SKIP_LOW_CACHE_INV,
1196 ctx->asid, ret_vaddr, phys_pg_pack->total_size);
1197 mutex_unlock(&hdev->mmu_lock);
1198 if (rc)
1199 goto map_err;
1200
1201 /*
1202 * prefetch is done upon user's request. it is performed in WQ as and so can
1203 * be outside the MMU lock. the operation itself is already protected by the mmu lock
1204 */
1205 if (do_prefetch) {
1206 rc = hl_mmu_prefetch_cache_range(ctx, *vm_type, ctx->asid, ret_vaddr,
1207 phys_pg_pack->total_size);
1208 if (rc)
1209 goto map_err;
1210 }
1211
1212 ret_vaddr += phys_pg_pack->offset;
1213
1214 hnode->ptr = vm_type;
1215 hnode->vaddr = ret_vaddr;
1216 hnode->handle = is_userptr ? MEM_HANDLE_INVALID : handle;
1217
1218 mutex_lock(&ctx->mem_hash_lock);
1219 hash_add(ctx->mem_hash, &hnode->node, ret_vaddr);
1220 mutex_unlock(&ctx->mem_hash_lock);
1221
1222 *device_addr = ret_vaddr;
1223
1224 if (is_userptr)
1225 free_phys_pg_pack(hdev, phys_pg_pack);
1226
1227 return rc;
1228
1229 map_err:
1230 if (add_va_block(hdev, va_range, ret_vaddr,
1231 ret_vaddr + phys_pg_pack->total_size - 1))
1232 dev_warn(hdev->dev,
1233 "release va block failed for handle 0x%x, vaddr: 0x%llx\n",
1234 handle, ret_vaddr);
1235
1236 va_block_err:
1237 kfree(hnode);
1238 hnode_err:
1239 shared_err:
1240 atomic_dec(&phys_pg_pack->mapping_cnt);
1241 if (is_userptr)
1242 free_phys_pg_pack(hdev, phys_pg_pack);
1243 init_page_pack_err:
1244 if (is_userptr)
1245 dma_unmap_host_va(hdev, userptr);
1246
1247 return rc;
1248 }
1249
1250 /* Should be called while the context's mem_hash_lock is taken */
get_vm_hash_node_locked(struct hl_ctx * ctx,u64 vaddr)1251 static struct hl_vm_hash_node *get_vm_hash_node_locked(struct hl_ctx *ctx, u64 vaddr)
1252 {
1253 struct hl_vm_hash_node *hnode;
1254
1255 hash_for_each_possible(ctx->mem_hash, hnode, node, vaddr)
1256 if (vaddr == hnode->vaddr)
1257 return hnode;
1258
1259 return NULL;
1260 }
1261
1262 /**
1263 * unmap_device_va() - unmap the given device virtual address.
1264 * @ctx: pointer to the context structure.
1265 * @args: host parameters with device virtual address to unmap.
1266 * @ctx_free: true if in context free flow, false otherwise.
1267 *
1268 * This function does the following:
1269 * - unmap the physical pages related to the given virtual address.
1270 * - return the device virtual block to the virtual block list.
1271 */
unmap_device_va(struct hl_ctx * ctx,struct hl_mem_in * args,bool ctx_free)1272 static int unmap_device_va(struct hl_ctx *ctx, struct hl_mem_in *args,
1273 bool ctx_free)
1274 {
1275 struct hl_vm_phys_pg_pack *phys_pg_pack = NULL;
1276 u64 vaddr = args->unmap.device_virt_addr;
1277 struct asic_fixed_properties *prop;
1278 struct hl_device *hdev = ctx->hdev;
1279 struct hl_userptr *userptr = NULL;
1280 struct hl_vm_hash_node *hnode;
1281 struct hl_va_range *va_range;
1282 enum vm_type *vm_type;
1283 bool is_userptr;
1284 int rc = 0;
1285
1286 prop = &hdev->asic_prop;
1287
1288 /* protect from double entrance */
1289 mutex_lock(&ctx->mem_hash_lock);
1290 hnode = get_vm_hash_node_locked(ctx, vaddr);
1291 if (!hnode) {
1292 mutex_unlock(&ctx->mem_hash_lock);
1293 dev_err(hdev->dev, "unmap failed, no mem hnode for vaddr 0x%llx\n", vaddr);
1294 return -EINVAL;
1295 }
1296
1297 if (hnode->export_cnt) {
1298 mutex_unlock(&ctx->mem_hash_lock);
1299 dev_err(hdev->dev, "failed to unmap %#llx, memory is exported\n", vaddr);
1300 return -EINVAL;
1301 }
1302
1303 hash_del(&hnode->node);
1304 mutex_unlock(&ctx->mem_hash_lock);
1305
1306 vm_type = hnode->ptr;
1307
1308 if (*vm_type == VM_TYPE_USERPTR) {
1309 is_userptr = true;
1310 userptr = hnode->ptr;
1311
1312 rc = init_phys_pg_pack_from_userptr(ctx, userptr, &phys_pg_pack,
1313 false);
1314 if (rc) {
1315 dev_err(hdev->dev,
1316 "unable to init page pack for vaddr 0x%llx\n",
1317 vaddr);
1318 goto vm_type_err;
1319 }
1320
1321 if (phys_pg_pack->page_size ==
1322 hdev->asic_prop.pmmu.page_size)
1323 va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST];
1324 else
1325 va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE];
1326 } else if (*vm_type == VM_TYPE_PHYS_PACK) {
1327 is_userptr = false;
1328 va_range = ctx->va_range[HL_VA_RANGE_TYPE_DRAM];
1329 phys_pg_pack = hnode->ptr;
1330 } else {
1331 dev_warn(hdev->dev,
1332 "unmap failed, unknown vm desc for vaddr 0x%llx\n",
1333 vaddr);
1334 rc = -EFAULT;
1335 goto vm_type_err;
1336 }
1337
1338 if (atomic_read(&phys_pg_pack->mapping_cnt) == 0) {
1339 dev_err(hdev->dev, "vaddr 0x%llx is not mapped\n", vaddr);
1340 rc = -EINVAL;
1341 goto mapping_cnt_err;
1342 }
1343
1344 if (!is_userptr && !is_power_of_2(phys_pg_pack->page_size))
1345 vaddr = prop->dram_base_address +
1346 DIV_ROUND_DOWN_ULL(vaddr - prop->dram_base_address,
1347 phys_pg_pack->page_size) *
1348 phys_pg_pack->page_size;
1349 else
1350 vaddr &= ~(((u64) phys_pg_pack->page_size) - 1);
1351
1352 mutex_lock(&hdev->mmu_lock);
1353
1354 unmap_phys_pg_pack(ctx, vaddr, phys_pg_pack);
1355
1356 /*
1357 * During context free this function is called in a loop to clean all
1358 * the context mappings. Hence the cache invalidation can be called once
1359 * at the loop end rather than for each iteration
1360 */
1361 if (!ctx_free)
1362 rc = hl_mmu_invalidate_cache_range(hdev, true, *vm_type, ctx->asid, vaddr,
1363 phys_pg_pack->total_size);
1364
1365 mutex_unlock(&hdev->mmu_lock);
1366
1367 /*
1368 * If the context is closing we don't need to check for the MMU cache
1369 * invalidation return code and update the VA free list as in this flow
1370 * we invalidate the MMU cache outside of this unmap function and the VA
1371 * free list will be freed anyway.
1372 */
1373 if (!ctx_free) {
1374 int tmp_rc;
1375
1376 tmp_rc = add_va_block(hdev, va_range, vaddr,
1377 vaddr + phys_pg_pack->total_size - 1);
1378 if (tmp_rc) {
1379 dev_warn(hdev->dev,
1380 "add va block failed for vaddr: 0x%llx\n",
1381 vaddr);
1382 if (!rc)
1383 rc = tmp_rc;
1384 }
1385 }
1386
1387 atomic_dec(&phys_pg_pack->mapping_cnt);
1388 kfree(hnode);
1389
1390 if (is_userptr) {
1391 free_phys_pg_pack(hdev, phys_pg_pack);
1392 dma_unmap_host_va(hdev, userptr);
1393 }
1394
1395 return rc;
1396
1397 mapping_cnt_err:
1398 if (is_userptr)
1399 free_phys_pg_pack(hdev, phys_pg_pack);
1400 vm_type_err:
1401 mutex_lock(&ctx->mem_hash_lock);
1402 hash_add(ctx->mem_hash, &hnode->node, vaddr);
1403 mutex_unlock(&ctx->mem_hash_lock);
1404
1405 return rc;
1406 }
1407
map_block(struct hl_device * hdev,u64 address,u64 * handle,u32 * size)1408 static int map_block(struct hl_device *hdev, u64 address, u64 *handle, u32 *size)
1409 {
1410 u32 block_id;
1411 int rc;
1412
1413 *handle = 0;
1414 if (size)
1415 *size = 0;
1416
1417 rc = hdev->asic_funcs->get_hw_block_id(hdev, address, size, &block_id);
1418 if (rc)
1419 return rc;
1420
1421 *handle = block_id | HL_MMAP_TYPE_BLOCK;
1422 *handle <<= PAGE_SHIFT;
1423
1424 return 0;
1425 }
1426
hw_block_vm_close(struct vm_area_struct * vma)1427 static void hw_block_vm_close(struct vm_area_struct *vma)
1428 {
1429 struct hl_vm_hw_block_list_node *lnode =
1430 (struct hl_vm_hw_block_list_node *) vma->vm_private_data;
1431 struct hl_ctx *ctx = lnode->ctx;
1432 long new_mmap_size;
1433
1434 new_mmap_size = lnode->mapped_size - (vma->vm_end - vma->vm_start);
1435 if (new_mmap_size > 0) {
1436 lnode->mapped_size = new_mmap_size;
1437 return;
1438 }
1439
1440 mutex_lock(&ctx->hw_block_list_lock);
1441 list_del(&lnode->node);
1442 mutex_unlock(&ctx->hw_block_list_lock);
1443 hl_ctx_put(ctx);
1444 kfree(lnode);
1445 vma->vm_private_data = NULL;
1446 }
1447
1448 static const struct vm_operations_struct hw_block_vm_ops = {
1449 .close = hw_block_vm_close
1450 };
1451
1452 /**
1453 * hl_hw_block_mmap() - mmap a hw block to user.
1454 * @hpriv: pointer to the private data of the fd
1455 * @vma: pointer to vm_area_struct of the process
1456 *
1457 * Driver increments context reference for every HW block mapped in order
1458 * to prevent user from closing FD without unmapping first
1459 */
hl_hw_block_mmap(struct hl_fpriv * hpriv,struct vm_area_struct * vma)1460 int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma)
1461 {
1462 struct hl_vm_hw_block_list_node *lnode;
1463 struct hl_device *hdev = hpriv->hdev;
1464 struct hl_ctx *ctx = hpriv->ctx;
1465 u32 block_id, block_size;
1466 int rc;
1467
1468 /* We use the page offset to hold the block id and thus we need to clear
1469 * it before doing the mmap itself
1470 */
1471 block_id = vma->vm_pgoff;
1472 vma->vm_pgoff = 0;
1473
1474 /* Driver only allows mapping of a complete HW block */
1475 block_size = vma->vm_end - vma->vm_start;
1476
1477 if (!access_ok((void __user *) (uintptr_t) vma->vm_start, block_size)) {
1478 dev_err(hdev->dev,
1479 "user pointer is invalid - 0x%lx\n",
1480 vma->vm_start);
1481
1482 return -EINVAL;
1483 }
1484
1485 lnode = kzalloc(sizeof(*lnode), GFP_KERNEL);
1486 if (!lnode)
1487 return -ENOMEM;
1488
1489 rc = hdev->asic_funcs->hw_block_mmap(hdev, vma, block_id, block_size);
1490 if (rc) {
1491 kfree(lnode);
1492 return rc;
1493 }
1494
1495 hl_ctx_get(ctx);
1496
1497 lnode->ctx = ctx;
1498 lnode->vaddr = vma->vm_start;
1499 lnode->block_size = block_size;
1500 lnode->mapped_size = lnode->block_size;
1501 lnode->id = block_id;
1502
1503 vma->vm_private_data = lnode;
1504 vma->vm_ops = &hw_block_vm_ops;
1505
1506 mutex_lock(&ctx->hw_block_list_lock);
1507 list_add_tail(&lnode->node, &ctx->hw_block_mem_list);
1508 mutex_unlock(&ctx->hw_block_list_lock);
1509
1510 vma->vm_pgoff = block_id;
1511
1512 return 0;
1513 }
1514
set_dma_sg(struct scatterlist * sg,u64 bar_address,u64 chunk_size,struct device * dev,enum dma_data_direction dir)1515 static int set_dma_sg(struct scatterlist *sg, u64 bar_address, u64 chunk_size,
1516 struct device *dev, enum dma_data_direction dir)
1517 {
1518 dma_addr_t addr;
1519 int rc;
1520
1521 addr = dma_map_resource(dev, bar_address, chunk_size, dir,
1522 DMA_ATTR_SKIP_CPU_SYNC);
1523 rc = dma_mapping_error(dev, addr);
1524 if (rc)
1525 return rc;
1526
1527 sg_set_page(sg, NULL, chunk_size, 0);
1528 sg_dma_address(sg) = addr;
1529 sg_dma_len(sg) = chunk_size;
1530
1531 return 0;
1532 }
1533
alloc_sgt_from_device_pages(struct hl_device * hdev,u64 * pages,u64 npages,u64 page_size,u64 exported_size,u64 offset,struct device * dev,enum dma_data_direction dir)1534 static struct sg_table *alloc_sgt_from_device_pages(struct hl_device *hdev, u64 *pages, u64 npages,
1535 u64 page_size, u64 exported_size, u64 offset,
1536 struct device *dev, enum dma_data_direction dir)
1537 {
1538 u64 dma_max_seg_size, curr_page, size, chunk_size, left_size_to_export, left_size_in_page,
1539 left_size_in_dma_seg, device_address, bar_address, start_page;
1540 struct asic_fixed_properties *prop = &hdev->asic_prop;
1541 struct scatterlist *sg;
1542 unsigned int nents, i;
1543 struct sg_table *sgt;
1544 bool next_sg_entry;
1545 int rc;
1546
1547 /* Align max segment size to PAGE_SIZE to fit the minimal IOMMU mapping granularity */
1548 dma_max_seg_size = ALIGN_DOWN(dma_get_max_seg_size(dev), PAGE_SIZE);
1549 if (dma_max_seg_size < PAGE_SIZE) {
1550 dev_err_ratelimited(hdev->dev,
1551 "dma_max_seg_size %llu can't be smaller than PAGE_SIZE\n",
1552 dma_max_seg_size);
1553 return ERR_PTR(-EINVAL);
1554 }
1555
1556 sgt = kzalloc(sizeof(*sgt), GFP_KERNEL);
1557 if (!sgt)
1558 return ERR_PTR(-ENOMEM);
1559
1560 /* Use the offset to move to the actual first page that is exported */
1561 for (start_page = 0 ; start_page < npages ; ++start_page) {
1562 if (offset < page_size)
1563 break;
1564
1565 /* The offset value was validated so there can't be an underflow */
1566 offset -= page_size;
1567 }
1568
1569 /* Calculate the required number of entries for the SG table */
1570 curr_page = start_page;
1571 nents = 1;
1572 left_size_to_export = exported_size;
1573 left_size_in_page = page_size - offset;
1574 left_size_in_dma_seg = dma_max_seg_size;
1575 next_sg_entry = false;
1576
1577 while (true) {
1578 size = min3(left_size_to_export, left_size_in_page, left_size_in_dma_seg);
1579 left_size_to_export -= size;
1580 left_size_in_page -= size;
1581 left_size_in_dma_seg -= size;
1582
1583 if (!left_size_to_export)
1584 break;
1585
1586 if (!left_size_in_page) {
1587 /* left_size_to_export is not zero so there must be another page */
1588 if (pages[curr_page] + page_size != pages[curr_page + 1])
1589 next_sg_entry = true;
1590
1591 ++curr_page;
1592 left_size_in_page = page_size;
1593 }
1594
1595 if (!left_size_in_dma_seg) {
1596 next_sg_entry = true;
1597 left_size_in_dma_seg = dma_max_seg_size;
1598 }
1599
1600 if (next_sg_entry) {
1601 ++nents;
1602 next_sg_entry = false;
1603 }
1604 }
1605
1606 rc = sg_alloc_table(sgt, nents, GFP_KERNEL | __GFP_ZERO);
1607 if (rc)
1608 goto err_free_sgt;
1609
1610 /* Prepare the SG table entries */
1611 curr_page = start_page;
1612 device_address = pages[curr_page] + offset;
1613 left_size_to_export = exported_size;
1614 left_size_in_page = page_size - offset;
1615 left_size_in_dma_seg = dma_max_seg_size;
1616 next_sg_entry = false;
1617
1618 for_each_sgtable_dma_sg(sgt, sg, i) {
1619 bar_address = hdev->dram_pci_bar_start + (device_address - prop->dram_base_address);
1620 chunk_size = 0;
1621
1622 for ( ; curr_page < npages ; ++curr_page) {
1623 size = min3(left_size_to_export, left_size_in_page, left_size_in_dma_seg);
1624 chunk_size += size;
1625 left_size_to_export -= size;
1626 left_size_in_page -= size;
1627 left_size_in_dma_seg -= size;
1628
1629 if (!left_size_to_export)
1630 break;
1631
1632 if (!left_size_in_page) {
1633 /* left_size_to_export is not zero so there must be another page */
1634 if (pages[curr_page] + page_size != pages[curr_page + 1]) {
1635 device_address = pages[curr_page + 1];
1636 next_sg_entry = true;
1637 }
1638
1639 left_size_in_page = page_size;
1640 }
1641
1642 if (!left_size_in_dma_seg) {
1643 /*
1644 * Skip setting a new device address if already moving to a page
1645 * which is not contiguous with the current page.
1646 */
1647 if (!next_sg_entry) {
1648 device_address += chunk_size;
1649 next_sg_entry = true;
1650 }
1651
1652 left_size_in_dma_seg = dma_max_seg_size;
1653 }
1654
1655 if (next_sg_entry) {
1656 next_sg_entry = false;
1657 break;
1658 }
1659 }
1660
1661 rc = set_dma_sg(sg, bar_address, chunk_size, dev, dir);
1662 if (rc)
1663 goto err_unmap;
1664 }
1665
1666 /* There should be nothing left to export exactly after looping over all SG elements */
1667 if (left_size_to_export) {
1668 dev_err(hdev->dev,
1669 "left size to export %#llx after initializing %u SG elements\n",
1670 left_size_to_export, sgt->nents);
1671 rc = -ENOMEM;
1672 goto err_unmap;
1673 }
1674
1675 /*
1676 * Because we are not going to include a CPU list, we want to have some chance that other
1677 * users will detect this when going over SG table, by setting the orig_nents to 0 and using
1678 * only nents (length of DMA list).
1679 */
1680 sgt->orig_nents = 0;
1681
1682 dev_dbg(hdev->dev, "prepared SG table with %u entries for importer %s\n",
1683 nents, dev_name(dev));
1684 for_each_sgtable_dma_sg(sgt, sg, i)
1685 dev_dbg(hdev->dev,
1686 "SG entry %d: address %#llx, length %#x\n",
1687 i, sg_dma_address(sg), sg_dma_len(sg));
1688
1689 return sgt;
1690
1691 err_unmap:
1692 for_each_sgtable_dma_sg(sgt, sg, i) {
1693 if (!sg_dma_len(sg))
1694 continue;
1695
1696 dma_unmap_resource(dev, sg_dma_address(sg), sg_dma_len(sg), dir,
1697 DMA_ATTR_SKIP_CPU_SYNC);
1698 }
1699
1700 sg_free_table(sgt);
1701
1702 err_free_sgt:
1703 kfree(sgt);
1704 return ERR_PTR(rc);
1705 }
1706
hl_dmabuf_attach(struct dma_buf * dmabuf,struct dma_buf_attachment * attachment)1707 static int hl_dmabuf_attach(struct dma_buf *dmabuf,
1708 struct dma_buf_attachment *attachment)
1709 {
1710 struct hl_dmabuf_priv *hl_dmabuf;
1711 struct hl_device *hdev;
1712 int rc;
1713
1714 hl_dmabuf = dmabuf->priv;
1715 hdev = hl_dmabuf->ctx->hdev;
1716
1717 rc = pci_p2pdma_distance(hdev->pdev, attachment->dev, true);
1718
1719 if (rc < 0)
1720 attachment->peer2peer = false;
1721 return 0;
1722 }
1723
hl_map_dmabuf(struct dma_buf_attachment * attachment,enum dma_data_direction dir)1724 static struct sg_table *hl_map_dmabuf(struct dma_buf_attachment *attachment,
1725 enum dma_data_direction dir)
1726 {
1727 u64 *pages, npages, page_size, exported_size, offset;
1728 struct dma_buf *dma_buf = attachment->dmabuf;
1729 struct hl_vm_phys_pg_pack *phys_pg_pack;
1730 struct hl_dmabuf_priv *hl_dmabuf;
1731 struct hl_device *hdev;
1732 struct sg_table *sgt;
1733
1734 hl_dmabuf = dma_buf->priv;
1735 hdev = hl_dmabuf->ctx->hdev;
1736
1737 if (!attachment->peer2peer) {
1738 dev_dbg(hdev->dev, "Failed to map dmabuf because p2p is disabled\n");
1739 return ERR_PTR(-EPERM);
1740 }
1741
1742 exported_size = hl_dmabuf->dmabuf->size;
1743 offset = hl_dmabuf->offset;
1744 phys_pg_pack = hl_dmabuf->phys_pg_pack;
1745
1746 if (phys_pg_pack) {
1747 pages = phys_pg_pack->pages;
1748 npages = phys_pg_pack->npages;
1749 page_size = phys_pg_pack->page_size;
1750 } else {
1751 pages = &hl_dmabuf->device_phys_addr;
1752 npages = 1;
1753 page_size = hl_dmabuf->dmabuf->size;
1754 }
1755
1756 sgt = alloc_sgt_from_device_pages(hdev, pages, npages, page_size, exported_size, offset,
1757 attachment->dev, dir);
1758 if (IS_ERR(sgt))
1759 dev_err(hdev->dev, "failed (%ld) to initialize sgt for dmabuf\n", PTR_ERR(sgt));
1760
1761 return sgt;
1762 }
1763
hl_unmap_dmabuf(struct dma_buf_attachment * attachment,struct sg_table * sgt,enum dma_data_direction dir)1764 static void hl_unmap_dmabuf(struct dma_buf_attachment *attachment,
1765 struct sg_table *sgt,
1766 enum dma_data_direction dir)
1767 {
1768 struct scatterlist *sg;
1769 int i;
1770
1771 /* The memory behind the dma-buf has *always* resided on the device itself, i.e. it lives
1772 * only in the 'device' domain (after all, it maps a PCI bar address which points to the
1773 * device memory).
1774 *
1775 * Therefore, it was never in the 'CPU' domain and hence, there is no need to perform
1776 * a sync of the memory to the CPU's cache, as it never resided inside that cache.
1777 */
1778 for_each_sgtable_dma_sg(sgt, sg, i)
1779 dma_unmap_resource(attachment->dev, sg_dma_address(sg),
1780 sg_dma_len(sg), dir,
1781 DMA_ATTR_SKIP_CPU_SYNC);
1782
1783 /* Need to restore orig_nents because sg_free_table use that field */
1784 sgt->orig_nents = sgt->nents;
1785 sg_free_table(sgt);
1786 kfree(sgt);
1787 }
1788
memhash_node_export_get(struct hl_ctx * ctx,u64 addr)1789 static struct hl_vm_hash_node *memhash_node_export_get(struct hl_ctx *ctx, u64 addr)
1790 {
1791 struct hl_device *hdev = ctx->hdev;
1792 struct hl_vm_hash_node *hnode;
1793
1794 /* get the memory handle */
1795 mutex_lock(&ctx->mem_hash_lock);
1796 hnode = get_vm_hash_node_locked(ctx, addr);
1797 if (!hnode) {
1798 mutex_unlock(&ctx->mem_hash_lock);
1799 dev_dbg(hdev->dev, "map address %#llx not found\n", addr);
1800 return ERR_PTR(-EINVAL);
1801 }
1802
1803 if (upper_32_bits(hnode->handle)) {
1804 mutex_unlock(&ctx->mem_hash_lock);
1805 dev_dbg(hdev->dev, "invalid handle %#llx for map address %#llx\n",
1806 hnode->handle, addr);
1807 return ERR_PTR(-EINVAL);
1808 }
1809
1810 /*
1811 * node found, increase export count so this memory cannot be unmapped
1812 * and the hash node cannot be deleted.
1813 */
1814 hnode->export_cnt++;
1815 mutex_unlock(&ctx->mem_hash_lock);
1816
1817 return hnode;
1818 }
1819
memhash_node_export_put(struct hl_ctx * ctx,struct hl_vm_hash_node * hnode)1820 static void memhash_node_export_put(struct hl_ctx *ctx, struct hl_vm_hash_node *hnode)
1821 {
1822 mutex_lock(&ctx->mem_hash_lock);
1823 hnode->export_cnt--;
1824 mutex_unlock(&ctx->mem_hash_lock);
1825 }
1826
hl_release_dmabuf(struct dma_buf * dmabuf)1827 static void hl_release_dmabuf(struct dma_buf *dmabuf)
1828 {
1829 struct hl_dmabuf_priv *hl_dmabuf = dmabuf->priv;
1830 struct hl_ctx *ctx;
1831
1832 ctx = hl_dmabuf->ctx;
1833
1834 if (hl_dmabuf->memhash_hnode)
1835 memhash_node_export_put(ctx, hl_dmabuf->memhash_hnode);
1836
1837 atomic_dec(&ctx->hdev->dmabuf_export_cnt);
1838 hl_ctx_put(ctx);
1839
1840 /* Paired with get_file() in export_dmabuf() */
1841 fput(ctx->hpriv->file_priv->filp);
1842
1843 kfree(hl_dmabuf);
1844 }
1845
1846 static const struct dma_buf_ops habanalabs_dmabuf_ops = {
1847 .attach = hl_dmabuf_attach,
1848 .map_dma_buf = hl_map_dmabuf,
1849 .unmap_dma_buf = hl_unmap_dmabuf,
1850 .release = hl_release_dmabuf,
1851 };
1852
export_dmabuf(struct hl_ctx * ctx,struct hl_dmabuf_priv * hl_dmabuf,u64 total_size,int flags,int * dmabuf_fd)1853 static int export_dmabuf(struct hl_ctx *ctx,
1854 struct hl_dmabuf_priv *hl_dmabuf,
1855 u64 total_size, int flags, int *dmabuf_fd)
1856 {
1857 DEFINE_DMA_BUF_EXPORT_INFO(exp_info);
1858 struct hl_device *hdev = ctx->hdev;
1859 CLASS(get_unused_fd, fd)(flags);
1860
1861 if (fd < 0) {
1862 dev_err(hdev->dev, "failed to get a file descriptor for a dma-buf, %d\n", fd);
1863 return fd;
1864 }
1865
1866 exp_info.ops = &habanalabs_dmabuf_ops;
1867 exp_info.size = total_size;
1868 exp_info.flags = flags;
1869 exp_info.priv = hl_dmabuf;
1870
1871 hl_dmabuf->dmabuf = dma_buf_export(&exp_info);
1872 if (IS_ERR(hl_dmabuf->dmabuf)) {
1873 dev_err(hdev->dev, "failed to export dma-buf\n");
1874 return PTR_ERR(hl_dmabuf->dmabuf);
1875 }
1876
1877 hl_dmabuf->ctx = ctx;
1878 hl_ctx_get(hl_dmabuf->ctx);
1879 atomic_inc(&ctx->hdev->dmabuf_export_cnt);
1880
1881 /* Get compute device file to enforce release order, such that all exported dma-buf will be
1882 * released first and only then the compute device.
1883 * Paired with fput() in hl_release_dmabuf().
1884 */
1885 get_file(ctx->hpriv->file_priv->filp);
1886
1887 *dmabuf_fd = fd;
1888 fd_install(take_fd(fd), hl_dmabuf->dmabuf->file);
1889
1890 return 0;
1891 }
1892
validate_export_params_common(struct hl_device * hdev,u64 addr,u64 size,u64 offset)1893 static int validate_export_params_common(struct hl_device *hdev, u64 addr, u64 size, u64 offset)
1894 {
1895 if (!PAGE_ALIGNED(addr)) {
1896 dev_dbg(hdev->dev,
1897 "exported device memory address 0x%llx should be aligned to PAGE_SIZE 0x%lx\n",
1898 addr, PAGE_SIZE);
1899 return -EINVAL;
1900 }
1901
1902 if (!size || !PAGE_ALIGNED(size)) {
1903 dev_dbg(hdev->dev,
1904 "exported device memory size %llu should be a multiple of PAGE_SIZE %lu\n",
1905 size, PAGE_SIZE);
1906 return -EINVAL;
1907 }
1908
1909 if (!PAGE_ALIGNED(offset)) {
1910 dev_dbg(hdev->dev,
1911 "exported device memory offset %llu should be a multiple of PAGE_SIZE %lu\n",
1912 offset, PAGE_SIZE);
1913 return -EINVAL;
1914 }
1915
1916 return 0;
1917 }
1918
validate_export_params_no_mmu(struct hl_device * hdev,u64 device_addr,u64 size)1919 static int validate_export_params_no_mmu(struct hl_device *hdev, u64 device_addr, u64 size)
1920 {
1921 struct asic_fixed_properties *prop = &hdev->asic_prop;
1922 u64 bar_address;
1923 int rc;
1924
1925 rc = validate_export_params_common(hdev, device_addr, size, 0);
1926 if (rc)
1927 return rc;
1928
1929 if (device_addr < prop->dram_user_base_address ||
1930 (device_addr + size) > prop->dram_end_address ||
1931 (device_addr + size) < device_addr) {
1932 dev_dbg(hdev->dev,
1933 "DRAM memory range 0x%llx (+0x%llx) is outside of DRAM boundaries\n",
1934 device_addr, size);
1935 return -EINVAL;
1936 }
1937
1938 bar_address = hdev->dram_pci_bar_start + (device_addr - prop->dram_base_address);
1939
1940 if ((bar_address + size) > (hdev->dram_pci_bar_start + prop->dram_pci_bar_size) ||
1941 (bar_address + size) < bar_address) {
1942 dev_dbg(hdev->dev,
1943 "DRAM memory range 0x%llx (+0x%llx) is outside of PCI BAR boundaries\n",
1944 device_addr, size);
1945 return -EINVAL;
1946 }
1947
1948 return 0;
1949 }
1950
validate_export_params(struct hl_device * hdev,u64 device_addr,u64 size,u64 offset,struct hl_vm_phys_pg_pack * phys_pg_pack)1951 static int validate_export_params(struct hl_device *hdev, u64 device_addr, u64 size, u64 offset,
1952 struct hl_vm_phys_pg_pack *phys_pg_pack)
1953 {
1954 struct asic_fixed_properties *prop = &hdev->asic_prop;
1955 u64 bar_address;
1956 int i, rc;
1957
1958 rc = validate_export_params_common(hdev, device_addr, size, offset);
1959 if (rc)
1960 return rc;
1961
1962 if ((offset + size) > phys_pg_pack->total_size) {
1963 dev_dbg(hdev->dev, "offset %#llx and size %#llx exceed total map size %#llx\n",
1964 offset, size, phys_pg_pack->total_size);
1965 return -EINVAL;
1966 }
1967
1968 for (i = 0 ; i < phys_pg_pack->npages ; i++) {
1969 bar_address = hdev->dram_pci_bar_start +
1970 (phys_pg_pack->pages[i] - prop->dram_base_address);
1971
1972 if ((bar_address + phys_pg_pack->page_size) >
1973 (hdev->dram_pci_bar_start + prop->dram_pci_bar_size) ||
1974 (bar_address + phys_pg_pack->page_size) < bar_address) {
1975 dev_dbg(hdev->dev,
1976 "DRAM memory range 0x%llx (+0x%x) is outside of PCI BAR boundaries\n",
1977 phys_pg_pack->pages[i], phys_pg_pack->page_size);
1978 return -EINVAL;
1979 }
1980 }
1981
1982 return 0;
1983 }
1984
get_phys_pg_pack_from_hash_node(struct hl_device * hdev,struct hl_vm_hash_node * hnode)1985 static struct hl_vm_phys_pg_pack *get_phys_pg_pack_from_hash_node(struct hl_device *hdev,
1986 struct hl_vm_hash_node *hnode)
1987 {
1988 struct hl_vm_phys_pg_pack *phys_pg_pack;
1989 struct hl_vm *vm = &hdev->vm;
1990
1991 spin_lock(&vm->idr_lock);
1992 phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, (u32) hnode->handle);
1993 if (!phys_pg_pack) {
1994 spin_unlock(&vm->idr_lock);
1995 dev_dbg(hdev->dev, "no match for handle 0x%x\n", (u32) hnode->handle);
1996 return ERR_PTR(-EINVAL);
1997 }
1998
1999 spin_unlock(&vm->idr_lock);
2000
2001 if (phys_pg_pack->vm_type != VM_TYPE_PHYS_PACK) {
2002 dev_dbg(hdev->dev, "handle 0x%llx does not represent DRAM memory\n", hnode->handle);
2003 return ERR_PTR(-EINVAL);
2004 }
2005
2006 return phys_pg_pack;
2007 }
2008
2009 /**
2010 * export_dmabuf_from_addr() - export a dma-buf object for the given memory
2011 * address and size.
2012 * @ctx: pointer to the context structure.
2013 * @addr: device address.
2014 * @size: size of device memory to export.
2015 * @offset: the offset into the buffer from which to start exporting
2016 * @flags: DMA-BUF file/FD flags.
2017 * @dmabuf_fd: pointer to result FD that represents the dma-buf object.
2018 *
2019 * Create and export a dma-buf object for an existing memory allocation inside
2020 * the device memory, and return a FD which is associated with the dma-buf
2021 * object.
2022 *
2023 * Return: 0 on success, non-zero for failure.
2024 */
export_dmabuf_from_addr(struct hl_ctx * ctx,u64 addr,u64 size,u64 offset,int flags,int * dmabuf_fd)2025 static int export_dmabuf_from_addr(struct hl_ctx *ctx, u64 addr, u64 size, u64 offset,
2026 int flags, int *dmabuf_fd)
2027 {
2028 struct hl_vm_phys_pg_pack *phys_pg_pack = NULL;
2029 struct hl_vm_hash_node *hnode = NULL;
2030 struct asic_fixed_properties *prop;
2031 struct hl_dmabuf_priv *hl_dmabuf;
2032 struct hl_device *hdev;
2033 int rc;
2034
2035 hdev = ctx->hdev;
2036 prop = &hdev->asic_prop;
2037
2038 /* offset must be 0 in devices without virtual memory support */
2039 if (!prop->dram_supports_virtual_memory && offset) {
2040 dev_dbg(hdev->dev, "offset is not allowed in device without virtual memory\n");
2041 return -EINVAL;
2042 }
2043
2044 hl_dmabuf = kzalloc(sizeof(*hl_dmabuf), GFP_KERNEL);
2045 if (!hl_dmabuf)
2046 return -ENOMEM;
2047
2048 if (prop->dram_supports_virtual_memory) {
2049 hnode = memhash_node_export_get(ctx, addr);
2050 if (IS_ERR(hnode)) {
2051 rc = PTR_ERR(hnode);
2052 goto err_free_dmabuf_wrapper;
2053 }
2054 phys_pg_pack = get_phys_pg_pack_from_hash_node(hdev, hnode);
2055 if (IS_ERR(phys_pg_pack)) {
2056 rc = PTR_ERR(phys_pg_pack);
2057 goto dec_memhash_export_cnt;
2058 }
2059 rc = validate_export_params(hdev, addr, size, offset, phys_pg_pack);
2060 if (rc)
2061 goto dec_memhash_export_cnt;
2062
2063 hl_dmabuf->phys_pg_pack = phys_pg_pack;
2064 hl_dmabuf->memhash_hnode = hnode;
2065 hl_dmabuf->offset = offset;
2066 } else {
2067 rc = validate_export_params_no_mmu(hdev, addr, size);
2068 if (rc)
2069 goto err_free_dmabuf_wrapper;
2070
2071 hl_dmabuf->device_phys_addr = addr;
2072 }
2073
2074 rc = export_dmabuf(ctx, hl_dmabuf, size, flags, dmabuf_fd);
2075 if (rc)
2076 goto dec_memhash_export_cnt;
2077
2078 return 0;
2079
2080 dec_memhash_export_cnt:
2081 if (prop->dram_supports_virtual_memory)
2082 memhash_node_export_put(ctx, hnode);
2083 err_free_dmabuf_wrapper:
2084 kfree(hl_dmabuf);
2085 return rc;
2086 }
2087
ts_buff_release(struct hl_mmap_mem_buf * buf)2088 static void ts_buff_release(struct hl_mmap_mem_buf *buf)
2089 {
2090 struct hl_ts_buff *ts_buff = buf->private;
2091
2092 vfree(ts_buff->kernel_buff_address);
2093 vfree(ts_buff->user_buff_address);
2094 kfree(ts_buff);
2095 }
2096
hl_ts_mmap(struct hl_mmap_mem_buf * buf,struct vm_area_struct * vma,void * args)2097 static int hl_ts_mmap(struct hl_mmap_mem_buf *buf, struct vm_area_struct *vma, void *args)
2098 {
2099 struct hl_ts_buff *ts_buff = buf->private;
2100
2101 vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP | VM_DONTCOPY | VM_NORESERVE);
2102 return remap_vmalloc_range(vma, ts_buff->user_buff_address, 0);
2103 }
2104
hl_ts_alloc_buf(struct hl_mmap_mem_buf * buf,gfp_t gfp,void * args)2105 static int hl_ts_alloc_buf(struct hl_mmap_mem_buf *buf, gfp_t gfp, void *args)
2106 {
2107 struct hl_ts_buff *ts_buff = NULL;
2108 u32 num_elements;
2109 size_t size;
2110 void *p;
2111
2112 num_elements = *(u32 *)args;
2113
2114 ts_buff = kzalloc(sizeof(*ts_buff), gfp);
2115 if (!ts_buff)
2116 return -ENOMEM;
2117
2118 /* Allocate the user buffer */
2119 size = num_elements * sizeof(u64);
2120 p = vmalloc_user(size);
2121 if (!p)
2122 goto free_mem;
2123
2124 ts_buff->user_buff_address = p;
2125 buf->mappable_size = size;
2126
2127 /* Allocate the internal kernel buffer */
2128 size = num_elements * sizeof(struct hl_user_pending_interrupt);
2129 p = vzalloc(size);
2130 if (!p)
2131 goto free_user_buff;
2132
2133 ts_buff->kernel_buff_address = p;
2134 ts_buff->kernel_buff_size = size;
2135
2136 buf->private = ts_buff;
2137
2138 return 0;
2139
2140 free_user_buff:
2141 vfree(ts_buff->user_buff_address);
2142 free_mem:
2143 kfree(ts_buff);
2144 return -ENOMEM;
2145 }
2146
2147 static struct hl_mmap_mem_buf_behavior hl_ts_behavior = {
2148 .topic = "TS",
2149 .mem_id = HL_MMAP_TYPE_TS_BUFF,
2150 .mmap = hl_ts_mmap,
2151 .alloc = hl_ts_alloc_buf,
2152 .release = ts_buff_release,
2153 };
2154
2155 /**
2156 * allocate_timestamps_buffers() - allocate timestamps buffers
2157 * This function will allocate ts buffer that will later on be mapped to the user
2158 * in order to be able to read the timestamp.
2159 * in addition it'll allocate an extra buffer for registration management.
2160 * since we cannot fail during registration for out-of-memory situation, so
2161 * we'll prepare a pool which will be used as user interrupt nodes and instead
2162 * of dynamically allocating nodes while registration we'll pick the node from
2163 * this pool. in addition it'll add node to the mapping hash which will be used
2164 * to map user ts buffer to the internal kernel ts buffer.
2165 * @hpriv: pointer to the private data of the fd
2166 * @args: ioctl input
2167 * @handle: user timestamp buffer handle as an output
2168 */
allocate_timestamps_buffers(struct hl_fpriv * hpriv,struct hl_mem_in * args,u64 * handle)2169 static int allocate_timestamps_buffers(struct hl_fpriv *hpriv, struct hl_mem_in *args, u64 *handle)
2170 {
2171 struct hl_mem_mgr *mmg = &hpriv->mem_mgr;
2172 struct hl_mmap_mem_buf *buf;
2173
2174 if (args->num_of_elements > TS_MAX_ELEMENTS_NUM) {
2175 dev_err(mmg->dev, "Num of elements exceeds Max allowed number (0x%x > 0x%x)\n",
2176 args->num_of_elements, TS_MAX_ELEMENTS_NUM);
2177 return -EINVAL;
2178 }
2179
2180 buf = hl_mmap_mem_buf_alloc(mmg, &hl_ts_behavior, GFP_KERNEL, &args->num_of_elements);
2181 if (!buf)
2182 return -ENOMEM;
2183
2184 *handle = buf->handle;
2185
2186 return 0;
2187 }
2188
hl_mem_ioctl(struct drm_device * ddev,void * data,struct drm_file * file_priv)2189 int hl_mem_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv)
2190 {
2191 struct hl_fpriv *hpriv = file_priv->driver_priv;
2192 enum hl_device_status status;
2193 union hl_mem_args *args = data;
2194 struct hl_device *hdev = hpriv->hdev;
2195 struct hl_ctx *ctx = hpriv->ctx;
2196 u64 block_handle, device_addr = 0;
2197 u32 handle = 0, block_size;
2198 int rc, dmabuf_fd = -EBADF;
2199
2200 if (!hl_device_operational(hdev, &status)) {
2201 dev_dbg_ratelimited(hdev->dev,
2202 "Device is %s. Can't execute MEMORY IOCTL\n",
2203 hdev->status[status]);
2204 return -EBUSY;
2205 }
2206
2207 switch (args->in.op) {
2208 case HL_MEM_OP_ALLOC:
2209 if (args->in.alloc.mem_size == 0) {
2210 dev_err(hdev->dev,
2211 "alloc size must be larger than 0\n");
2212 rc = -EINVAL;
2213 goto out;
2214 }
2215
2216 /* If DRAM does not support virtual memory the driver won't
2217 * handle the allocation/freeing of that memory. However, for
2218 * system administration/monitoring purposes, the driver will
2219 * keep track of the amount of DRAM memory that is allocated
2220 * and freed by the user. Because this code totally relies on
2221 * the user's input, the driver can't ensure the validity
2222 * of this accounting.
2223 */
2224 if (!hdev->asic_prop.dram_supports_virtual_memory) {
2225 atomic64_add(args->in.alloc.mem_size,
2226 &ctx->dram_phys_mem);
2227 atomic64_add(args->in.alloc.mem_size,
2228 &hdev->dram_used_mem);
2229
2230 dev_dbg(hdev->dev, "DRAM alloc is not supported\n");
2231 rc = 0;
2232
2233 memset(args, 0, sizeof(*args));
2234 args->out.handle = 0;
2235 goto out;
2236 }
2237
2238 rc = alloc_device_memory(ctx, &args->in, &handle);
2239
2240 memset(args, 0, sizeof(*args));
2241 args->out.handle = (__u64) handle;
2242 break;
2243
2244 case HL_MEM_OP_FREE:
2245 /* If DRAM does not support virtual memory the driver won't
2246 * handle the allocation/freeing of that memory. However, for
2247 * system administration/monitoring purposes, the driver will
2248 * keep track of the amount of DRAM memory that is allocated
2249 * and freed by the user. Because this code totally relies on
2250 * the user's input, the driver can't ensure the validity
2251 * of this accounting.
2252 */
2253 if (!hdev->asic_prop.dram_supports_virtual_memory) {
2254 atomic64_sub(args->in.alloc.mem_size,
2255 &ctx->dram_phys_mem);
2256 atomic64_sub(args->in.alloc.mem_size,
2257 &hdev->dram_used_mem);
2258
2259 dev_dbg(hdev->dev, "DRAM alloc is not supported\n");
2260 rc = 0;
2261
2262 goto out;
2263 }
2264
2265 rc = free_device_memory(ctx, &args->in);
2266 break;
2267
2268 case HL_MEM_OP_MAP:
2269 rc = map_device_va(ctx, &args->in, &device_addr);
2270
2271 memset(args, 0, sizeof(*args));
2272 args->out.device_virt_addr = device_addr;
2273 break;
2274
2275 case HL_MEM_OP_UNMAP:
2276 rc = unmap_device_va(ctx, &args->in, false);
2277 break;
2278
2279 case HL_MEM_OP_MAP_BLOCK:
2280 rc = map_block(hdev, args->in.map_block.block_addr,
2281 &block_handle, &block_size);
2282 args->out.block_handle = block_handle;
2283 args->out.block_size = block_size;
2284 break;
2285
2286 case HL_MEM_OP_EXPORT_DMABUF_FD:
2287 rc = export_dmabuf_from_addr(ctx,
2288 args->in.export_dmabuf_fd.addr,
2289 args->in.export_dmabuf_fd.mem_size,
2290 args->in.export_dmabuf_fd.offset,
2291 args->in.flags,
2292 &dmabuf_fd);
2293 memset(args, 0, sizeof(*args));
2294 args->out.fd = dmabuf_fd;
2295 break;
2296
2297 case HL_MEM_OP_TS_ALLOC:
2298 rc = allocate_timestamps_buffers(hpriv, &args->in, &args->out.handle);
2299 break;
2300 default:
2301 dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n");
2302 rc = -EINVAL;
2303 break;
2304 }
2305
2306 out:
2307 return rc;
2308 }
2309
get_user_memory(struct hl_device * hdev,u64 addr,u64 size,u32 npages,u64 start,u32 offset,struct hl_userptr * userptr)2310 static int get_user_memory(struct hl_device *hdev, u64 addr, u64 size,
2311 u32 npages, u64 start, u32 offset,
2312 struct hl_userptr *userptr)
2313 {
2314 int rc;
2315
2316 if (!access_ok((void __user *) (uintptr_t) addr, size)) {
2317 dev_err(hdev->dev, "user pointer is invalid - 0x%llx\n", addr);
2318 return -EFAULT;
2319 }
2320
2321 userptr->pages = kvmalloc_array(npages, sizeof(struct page *), GFP_KERNEL);
2322 if (!userptr->pages)
2323 return -ENOMEM;
2324
2325 rc = pin_user_pages_fast(start, npages, FOLL_WRITE | FOLL_LONGTERM,
2326 userptr->pages);
2327
2328 if (rc != npages) {
2329 dev_err(hdev->dev,
2330 "Failed (%d) to pin host memory with user ptr 0x%llx, size 0x%llx, npages %d\n",
2331 rc, addr, size, npages);
2332 if (rc < 0)
2333 goto destroy_pages;
2334 npages = rc;
2335 rc = -EFAULT;
2336 goto put_pages;
2337 }
2338 userptr->npages = npages;
2339
2340 rc = sg_alloc_table_from_pages(userptr->sgt,
2341 userptr->pages,
2342 npages, offset, size, GFP_KERNEL);
2343 if (rc < 0) {
2344 dev_err(hdev->dev, "failed to create SG table from pages\n");
2345 goto put_pages;
2346 }
2347
2348 return 0;
2349
2350 put_pages:
2351 unpin_user_pages(userptr->pages, npages);
2352 destroy_pages:
2353 kvfree(userptr->pages);
2354 return rc;
2355 }
2356
2357 /**
2358 * hl_pin_host_memory() - pins a chunk of host memory.
2359 * @hdev: pointer to the habanalabs device structure.
2360 * @addr: the host virtual address of the memory area.
2361 * @size: the size of the memory area.
2362 * @userptr: pointer to hl_userptr structure.
2363 *
2364 * This function does the following:
2365 * - Pins the physical pages.
2366 * - Create an SG list from those pages.
2367 */
hl_pin_host_memory(struct hl_device * hdev,u64 addr,u64 size,struct hl_userptr * userptr)2368 int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size,
2369 struct hl_userptr *userptr)
2370 {
2371 u64 start, end;
2372 u32 npages, offset;
2373 int rc;
2374
2375 if (!size) {
2376 dev_err(hdev->dev, "size to pin is invalid - %llu\n", size);
2377 return -EINVAL;
2378 }
2379
2380 /*
2381 * If the combination of the address and size requested for this memory
2382 * region causes an integer overflow, return error.
2383 */
2384 if (((addr + size) < addr) ||
2385 PAGE_ALIGN(addr + size) < (addr + size)) {
2386 dev_err(hdev->dev,
2387 "user pointer 0x%llx + %llu causes integer overflow\n",
2388 addr, size);
2389 return -EINVAL;
2390 }
2391
2392 userptr->pid = current->pid;
2393 userptr->sgt = kzalloc(sizeof(*userptr->sgt), GFP_KERNEL);
2394 if (!userptr->sgt)
2395 return -ENOMEM;
2396
2397 start = addr & PAGE_MASK;
2398 offset = addr & ~PAGE_MASK;
2399 end = PAGE_ALIGN(addr + size);
2400 npages = (end - start) >> PAGE_SHIFT;
2401
2402 userptr->size = size;
2403 userptr->addr = addr;
2404 userptr->dma_mapped = false;
2405 INIT_LIST_HEAD(&userptr->job_node);
2406
2407 rc = get_user_memory(hdev, addr, size, npages, start, offset,
2408 userptr);
2409 if (rc) {
2410 dev_err(hdev->dev,
2411 "failed to get user memory for address 0x%llx\n",
2412 addr);
2413 goto free_sgt;
2414 }
2415
2416 hl_debugfs_add_userptr(hdev, userptr);
2417
2418 return 0;
2419
2420 free_sgt:
2421 kfree(userptr->sgt);
2422 return rc;
2423 }
2424
2425 /*
2426 * hl_unpin_host_memory - unpins a chunk of host memory.
2427 * @hdev: pointer to the habanalabs device structure
2428 * @userptr: pointer to hl_userptr structure
2429 *
2430 * This function does the following:
2431 * - Unpins the physical pages related to the host memory
2432 * - Free the SG list
2433 */
hl_unpin_host_memory(struct hl_device * hdev,struct hl_userptr * userptr)2434 void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr)
2435 {
2436 hl_debugfs_remove_userptr(hdev, userptr);
2437
2438 if (userptr->dma_mapped)
2439 hl_dma_unmap_sgtable(hdev, userptr->sgt, userptr->dir);
2440
2441 unpin_user_pages_dirty_lock(userptr->pages, userptr->npages, true);
2442 kvfree(userptr->pages);
2443
2444 list_del(&userptr->job_node);
2445
2446 sg_free_table(userptr->sgt);
2447 kfree(userptr->sgt);
2448 }
2449
2450 /**
2451 * hl_userptr_delete_list() - clear userptr list.
2452 * @hdev: pointer to the habanalabs device structure.
2453 * @userptr_list: pointer to the list to clear.
2454 *
2455 * This function does the following:
2456 * - Iterates over the list and unpins the host memory and frees the userptr
2457 * structure.
2458 */
hl_userptr_delete_list(struct hl_device * hdev,struct list_head * userptr_list)2459 void hl_userptr_delete_list(struct hl_device *hdev,
2460 struct list_head *userptr_list)
2461 {
2462 struct hl_userptr *userptr, *tmp;
2463
2464 list_for_each_entry_safe(userptr, tmp, userptr_list, job_node) {
2465 hl_unpin_host_memory(hdev, userptr);
2466 kfree(userptr);
2467 }
2468
2469 INIT_LIST_HEAD(userptr_list);
2470 }
2471
2472 /**
2473 * hl_userptr_is_pinned() - returns whether the given userptr is pinned.
2474 * @hdev: pointer to the habanalabs device structure.
2475 * @addr: user address to check.
2476 * @size: user block size to check.
2477 * @userptr_list: pointer to the list to clear.
2478 * @userptr: pointer to userptr to check.
2479 *
2480 * This function does the following:
2481 * - Iterates over the list and checks if the given userptr is in it, means is
2482 * pinned. If so, returns true, otherwise returns false.
2483 */
hl_userptr_is_pinned(struct hl_device * hdev,u64 addr,u32 size,struct list_head * userptr_list,struct hl_userptr ** userptr)2484 bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr,
2485 u32 size, struct list_head *userptr_list,
2486 struct hl_userptr **userptr)
2487 {
2488 list_for_each_entry((*userptr), userptr_list, job_node) {
2489 if ((addr == (*userptr)->addr) && (size == (*userptr)->size))
2490 return true;
2491 }
2492
2493 return false;
2494 }
2495
2496 /**
2497 * va_range_init() - initialize virtual addresses range.
2498 * @hdev: pointer to the habanalabs device structure.
2499 * @va_ranges: pointer to va_ranges array.
2500 * @range_type: virtual address range type.
2501 * @start: range start address, inclusive.
2502 * @end: range end address, inclusive.
2503 * @page_size: page size for this va_range.
2504 *
2505 * This function does the following:
2506 * - Initializes the virtual addresses list of the given range with the given
2507 * addresses.
2508 */
va_range_init(struct hl_device * hdev,struct hl_va_range ** va_ranges,enum hl_va_range_type range_type,u64 start,u64 end,u32 page_size)2509 static int va_range_init(struct hl_device *hdev, struct hl_va_range **va_ranges,
2510 enum hl_va_range_type range_type, u64 start,
2511 u64 end, u32 page_size)
2512 {
2513 struct hl_va_range *va_range = va_ranges[range_type];
2514 int rc;
2515
2516 INIT_LIST_HEAD(&va_range->list);
2517
2518 /*
2519 * PAGE_SIZE alignment
2520 * it is the caller's responsibility to align the addresses if the
2521 * page size is not a power of 2
2522 */
2523
2524 if (is_power_of_2(page_size)) {
2525 start = round_up(start, page_size);
2526
2527 /*
2528 * The end of the range is inclusive, hence we need to align it
2529 * to the end of the last full page in the range. For example if
2530 * end = 0x3ff5 with page size 0x1000, we need to align it to
2531 * 0x2fff. The remaining 0xff5 bytes do not form a full page.
2532 */
2533 end = round_down(end + 1, page_size) - 1;
2534 }
2535
2536 if (start >= end) {
2537 dev_err(hdev->dev, "too small vm range for va list\n");
2538 return -EFAULT;
2539 }
2540
2541 rc = add_va_block(hdev, va_range, start, end);
2542
2543 if (rc) {
2544 dev_err(hdev->dev, "Failed to init host va list\n");
2545 return rc;
2546 }
2547
2548 va_range->start_addr = start;
2549 va_range->end_addr = end;
2550 va_range->page_size = page_size;
2551
2552 return 0;
2553 }
2554
2555 /**
2556 * va_range_fini() - clear a virtual addresses range.
2557 * @hdev: pointer to the habanalabs structure.
2558 * @va_range: pointer to virtual addresses range.
2559 *
2560 * This function does the following:
2561 * - Frees the virtual addresses block list and its lock.
2562 */
va_range_fini(struct hl_device * hdev,struct hl_va_range * va_range)2563 static void va_range_fini(struct hl_device *hdev, struct hl_va_range *va_range)
2564 {
2565 mutex_lock(&va_range->lock);
2566 clear_va_list_locked(hdev, &va_range->list);
2567 mutex_unlock(&va_range->lock);
2568
2569 mutex_destroy(&va_range->lock);
2570 kfree(va_range);
2571 }
2572
2573 /**
2574 * vm_ctx_init_with_ranges() - initialize virtual memory for context.
2575 * @ctx: pointer to the habanalabs context structure.
2576 * @host_range_start: host virtual addresses range start.
2577 * @host_range_end: host virtual addresses range end.
2578 * @host_page_size: host page size.
2579 * @host_huge_range_start: host virtual addresses range start for memory
2580 * allocated with huge pages.
2581 * @host_huge_range_end: host virtual addresses range end for memory allocated
2582 * with huge pages.
2583 * @host_huge_page_size: host huge page size.
2584 * @dram_range_start: dram virtual addresses range start.
2585 * @dram_range_end: dram virtual addresses range end.
2586 * @dram_page_size: dram page size.
2587 *
2588 * This function initializes the following:
2589 * - MMU for context.
2590 * - Virtual address to area descriptor hashtable.
2591 * - Virtual block list of available virtual memory.
2592 */
vm_ctx_init_with_ranges(struct hl_ctx * ctx,u64 host_range_start,u64 host_range_end,u32 host_page_size,u64 host_huge_range_start,u64 host_huge_range_end,u32 host_huge_page_size,u64 dram_range_start,u64 dram_range_end,u32 dram_page_size)2593 static int vm_ctx_init_with_ranges(struct hl_ctx *ctx,
2594 u64 host_range_start,
2595 u64 host_range_end,
2596 u32 host_page_size,
2597 u64 host_huge_range_start,
2598 u64 host_huge_range_end,
2599 u32 host_huge_page_size,
2600 u64 dram_range_start,
2601 u64 dram_range_end,
2602 u32 dram_page_size)
2603 {
2604 struct hl_device *hdev = ctx->hdev;
2605 int i, rc;
2606
2607 for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX ; i++) {
2608 ctx->va_range[i] =
2609 kzalloc(sizeof(struct hl_va_range), GFP_KERNEL);
2610 if (!ctx->va_range[i]) {
2611 rc = -ENOMEM;
2612 goto free_va_range;
2613 }
2614 }
2615
2616 rc = hl_mmu_ctx_init(ctx);
2617 if (rc) {
2618 dev_err(hdev->dev, "failed to init context %d\n", ctx->asid);
2619 goto free_va_range;
2620 }
2621
2622 mutex_init(&ctx->mem_hash_lock);
2623 hash_init(ctx->mem_hash);
2624
2625 mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
2626
2627 rc = va_range_init(hdev, ctx->va_range, HL_VA_RANGE_TYPE_HOST,
2628 host_range_start, host_range_end, host_page_size);
2629 if (rc) {
2630 dev_err(hdev->dev, "failed to init host vm range\n");
2631 goto mmu_ctx_fini;
2632 }
2633
2634 if (hdev->pmmu_huge_range) {
2635 mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
2636
2637 rc = va_range_init(hdev,
2638 ctx->va_range, HL_VA_RANGE_TYPE_HOST_HUGE,
2639 host_huge_range_start, host_huge_range_end,
2640 host_huge_page_size);
2641 if (rc) {
2642 dev_err(hdev->dev,
2643 "failed to init host huge vm range\n");
2644 goto clear_host_va_range;
2645 }
2646 } else {
2647 kfree(ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]);
2648 ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE] =
2649 ctx->va_range[HL_VA_RANGE_TYPE_HOST];
2650 }
2651
2652 mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_DRAM]->lock);
2653
2654 rc = va_range_init(hdev, ctx->va_range, HL_VA_RANGE_TYPE_DRAM,
2655 dram_range_start, dram_range_end, dram_page_size);
2656 if (rc) {
2657 dev_err(hdev->dev, "failed to init dram vm range\n");
2658 goto clear_host_huge_va_range;
2659 }
2660
2661 hl_debugfs_add_ctx_mem_hash(hdev, ctx);
2662
2663 return 0;
2664
2665 clear_host_huge_va_range:
2666 mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_DRAM]->lock);
2667
2668 if (hdev->pmmu_huge_range) {
2669 mutex_lock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
2670 clear_va_list_locked(hdev,
2671 &ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->list);
2672 mutex_unlock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
2673 }
2674 clear_host_va_range:
2675 if (hdev->pmmu_huge_range)
2676 mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
2677 mutex_lock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
2678 clear_va_list_locked(hdev, &ctx->va_range[HL_VA_RANGE_TYPE_HOST]->list);
2679 mutex_unlock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
2680 mmu_ctx_fini:
2681 mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
2682 mutex_destroy(&ctx->mem_hash_lock);
2683 hl_mmu_ctx_fini(ctx);
2684 free_va_range:
2685 for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX ; i++)
2686 kfree(ctx->va_range[i]);
2687
2688 return rc;
2689 }
2690
hl_vm_ctx_init(struct hl_ctx * ctx)2691 int hl_vm_ctx_init(struct hl_ctx *ctx)
2692 {
2693 struct asic_fixed_properties *prop = &ctx->hdev->asic_prop;
2694 u64 host_range_start, host_range_end, host_huge_range_start,
2695 host_huge_range_end, dram_range_start, dram_range_end;
2696 u32 host_page_size, host_huge_page_size, dram_page_size;
2697
2698 atomic64_set(&ctx->dram_phys_mem, 0);
2699
2700 /*
2701 * In case of DRAM mapping, the returned address is the physical
2702 * address of the memory related to the given handle.
2703 */
2704 if (ctx->hdev->mmu_disable)
2705 return 0;
2706
2707 dram_range_start = prop->dmmu.start_addr;
2708 dram_range_end = prop->dmmu.end_addr - 1;
2709 dram_page_size = prop->dram_page_size ?
2710 prop->dram_page_size : prop->dmmu.page_size;
2711 host_range_start = prop->pmmu.start_addr;
2712 host_range_end = prop->pmmu.end_addr - 1;
2713 host_page_size = prop->pmmu.page_size;
2714 host_huge_range_start = prop->pmmu_huge.start_addr;
2715 host_huge_range_end = prop->pmmu_huge.end_addr - 1;
2716 host_huge_page_size = prop->pmmu_huge.page_size;
2717
2718 return vm_ctx_init_with_ranges(ctx, host_range_start, host_range_end,
2719 host_page_size, host_huge_range_start,
2720 host_huge_range_end, host_huge_page_size,
2721 dram_range_start, dram_range_end, dram_page_size);
2722 }
2723
2724 /**
2725 * hl_vm_ctx_fini() - virtual memory teardown of context.
2726 * @ctx: pointer to the habanalabs context structure.
2727 *
2728 * This function perform teardown the following:
2729 * - Virtual block list of available virtual memory.
2730 * - Virtual address to area descriptor hashtable.
2731 * - MMU for context.
2732 *
2733 * In addition this function does the following:
2734 * - Unmaps the existing hashtable nodes if the hashtable is not empty. The
2735 * hashtable should be empty as no valid mappings should exist at this
2736 * point.
2737 * - Frees any existing physical page list from the idr which relates to the
2738 * current context asid.
2739 * - This function checks the virtual block list for correctness. At this point
2740 * the list should contain one element which describes the whole virtual
2741 * memory range of the context. Otherwise, a warning is printed.
2742 */
hl_vm_ctx_fini(struct hl_ctx * ctx)2743 void hl_vm_ctx_fini(struct hl_ctx *ctx)
2744 {
2745 struct hl_vm_phys_pg_pack *phys_pg_list, *tmp_phys_node;
2746 struct hl_device *hdev = ctx->hdev;
2747 struct hl_vm_hash_node *hnode;
2748 struct hl_vm *vm = &hdev->vm;
2749 struct hlist_node *tmp_node;
2750 struct list_head free_list;
2751 struct hl_mem_in args;
2752 int i;
2753
2754 if (hdev->mmu_disable)
2755 return;
2756
2757 hl_debugfs_remove_ctx_mem_hash(hdev, ctx);
2758
2759 /*
2760 * Clearly something went wrong on hard reset so no point in printing
2761 * another side effect error
2762 */
2763 if (!hdev->reset_info.hard_reset_pending && !hash_empty(ctx->mem_hash))
2764 dev_dbg(hdev->dev,
2765 "user released device without removing its memory mappings\n");
2766
2767 hash_for_each_safe(ctx->mem_hash, i, tmp_node, hnode, node) {
2768 dev_dbg(hdev->dev,
2769 "hl_mem_hash_node of vaddr 0x%llx of asid %d is still alive\n",
2770 hnode->vaddr, ctx->asid);
2771 args.unmap.device_virt_addr = hnode->vaddr;
2772 unmap_device_va(ctx, &args, true);
2773 }
2774
2775 mutex_lock(&hdev->mmu_lock);
2776
2777 /* invalidate the cache once after the unmapping loop */
2778 hl_mmu_invalidate_cache(hdev, true, MMU_OP_USERPTR);
2779 hl_mmu_invalidate_cache(hdev, true, MMU_OP_PHYS_PACK);
2780
2781 mutex_unlock(&hdev->mmu_lock);
2782
2783 INIT_LIST_HEAD(&free_list);
2784
2785 spin_lock(&vm->idr_lock);
2786 idr_for_each_entry(&vm->phys_pg_pack_handles, phys_pg_list, i)
2787 if (phys_pg_list->asid == ctx->asid) {
2788 dev_dbg(hdev->dev,
2789 "page list 0x%px of asid %d is still alive\n",
2790 phys_pg_list, ctx->asid);
2791
2792 atomic64_sub(phys_pg_list->total_size, &hdev->dram_used_mem);
2793 idr_remove(&vm->phys_pg_pack_handles, i);
2794 list_add(&phys_pg_list->node, &free_list);
2795 }
2796 spin_unlock(&vm->idr_lock);
2797
2798 list_for_each_entry_safe(phys_pg_list, tmp_phys_node, &free_list, node)
2799 free_phys_pg_pack(hdev, phys_pg_list);
2800
2801 va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_DRAM]);
2802 va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_HOST]);
2803
2804 if (hdev->pmmu_huge_range)
2805 va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]);
2806
2807 mutex_destroy(&ctx->mem_hash_lock);
2808 hl_mmu_ctx_fini(ctx);
2809
2810 /* In this case we need to clear the global accounting of DRAM usage
2811 * because the user notifies us on allocations. If the user is no more,
2812 * all DRAM is available
2813 */
2814 if (ctx->asid != HL_KERNEL_ASID_ID &&
2815 !hdev->asic_prop.dram_supports_virtual_memory)
2816 atomic64_set(&hdev->dram_used_mem, 0);
2817 }
2818
2819 /**
2820 * hl_vm_init() - initialize virtual memory module.
2821 * @hdev: pointer to the habanalabs device structure.
2822 *
2823 * This function initializes the following:
2824 * - MMU module.
2825 * - DRAM physical pages pool of 2MB.
2826 * - Idr for device memory allocation handles.
2827 */
hl_vm_init(struct hl_device * hdev)2828 int hl_vm_init(struct hl_device *hdev)
2829 {
2830 struct asic_fixed_properties *prop = &hdev->asic_prop;
2831 struct hl_vm *vm = &hdev->vm;
2832 int rc;
2833
2834 if (is_power_of_2(prop->dram_page_size))
2835 vm->dram_pg_pool =
2836 gen_pool_create(__ffs(prop->dram_page_size), -1);
2837 else
2838 vm->dram_pg_pool =
2839 gen_pool_create(__ffs(DRAM_POOL_PAGE_SIZE), -1);
2840
2841 if (!vm->dram_pg_pool) {
2842 dev_err(hdev->dev, "Failed to create dram page pool\n");
2843 return -ENOMEM;
2844 }
2845
2846 kref_init(&vm->dram_pg_pool_refcount);
2847
2848 rc = gen_pool_add(vm->dram_pg_pool, prop->dram_user_base_address,
2849 prop->dram_end_address - prop->dram_user_base_address,
2850 -1);
2851
2852 if (rc) {
2853 dev_err(hdev->dev,
2854 "Failed to add memory to dram page pool %d\n", rc);
2855 goto pool_add_err;
2856 }
2857
2858 spin_lock_init(&vm->idr_lock);
2859 idr_init(&vm->phys_pg_pack_handles);
2860
2861 atomic64_set(&hdev->dram_used_mem, 0);
2862
2863 vm->init_done = true;
2864
2865 return 0;
2866
2867 pool_add_err:
2868 gen_pool_destroy(vm->dram_pg_pool);
2869
2870 return rc;
2871 }
2872
2873 /**
2874 * hl_vm_fini() - virtual memory module teardown.
2875 * @hdev: pointer to the habanalabs device structure.
2876 *
2877 * This function perform teardown to the following:
2878 * - Idr for device memory allocation handles.
2879 * - DRAM physical pages pool of 2MB.
2880 * - MMU module.
2881 */
hl_vm_fini(struct hl_device * hdev)2882 void hl_vm_fini(struct hl_device *hdev)
2883 {
2884 struct hl_vm *vm = &hdev->vm;
2885
2886 if (!vm->init_done)
2887 return;
2888
2889 /*
2890 * At this point all the contexts should be freed and hence no DRAM
2891 * memory should be in use. Hence the DRAM pool should be freed here.
2892 */
2893 if (kref_put(&vm->dram_pg_pool_refcount, dram_pg_pool_do_release) != 1)
2894 dev_warn(hdev->dev, "dram_pg_pool was not destroyed on %s\n",
2895 __func__);
2896
2897 vm->init_done = false;
2898 }
2899
2900 /**
2901 * hl_hw_block_mem_init() - HW block memory initialization.
2902 * @ctx: pointer to the habanalabs context structure.
2903 *
2904 * This function initializes the HW block virtual mapped addresses list and
2905 * it's lock.
2906 */
hl_hw_block_mem_init(struct hl_ctx * ctx)2907 void hl_hw_block_mem_init(struct hl_ctx *ctx)
2908 {
2909 mutex_init(&ctx->hw_block_list_lock);
2910 INIT_LIST_HEAD(&ctx->hw_block_mem_list);
2911 }
2912
2913 /**
2914 * hl_hw_block_mem_fini() - HW block memory teardown.
2915 * @ctx: pointer to the habanalabs context structure.
2916 *
2917 * This function clears the HW block virtual mapped addresses list and destroys
2918 * it's lock.
2919 */
hl_hw_block_mem_fini(struct hl_ctx * ctx)2920 void hl_hw_block_mem_fini(struct hl_ctx *ctx)
2921 {
2922 struct hl_vm_hw_block_list_node *lnode, *tmp;
2923
2924 if (!list_empty(&ctx->hw_block_mem_list))
2925 dev_crit(ctx->hdev->dev, "HW block mem list isn't empty\n");
2926
2927 list_for_each_entry_safe(lnode, tmp, &ctx->hw_block_mem_list, node) {
2928 list_del(&lnode->node);
2929 kfree(lnode);
2930 }
2931
2932 mutex_destroy(&ctx->hw_block_list_lock);
2933 }
2934