1 // SPDX-License-Identifier: GPL-2.0
2
3 /*
4 * Copyright 2016-2021 HabanaLabs, Ltd.
5 * All Rights Reserved.
6 */
7
8 #include "habanalabs.h"
9 #include "../include/hw_ip/mmu/mmu_general.h"
10
11 #include <linux/pci.h>
12 #include <linux/uaccess.h>
13 #include <linux/vmalloc.h>
14 #include <linux/iommu.h>
15
16 #define MMU_ADDR_BUF_SIZE 40
17 #define MMU_ASID_BUF_SIZE 10
18 #define MMU_KBUF_SIZE (MMU_ADDR_BUF_SIZE + MMU_ASID_BUF_SIZE)
19 #define I2C_MAX_TRANSACTION_LEN 8
20
hl_debugfs_i2c_read(struct hl_device * hdev,u8 i2c_bus,u8 i2c_addr,u8 i2c_reg,u8 i2c_len,u64 * val)21 static int hl_debugfs_i2c_read(struct hl_device *hdev, u8 i2c_bus, u8 i2c_addr,
22 u8 i2c_reg, u8 i2c_len, u64 *val)
23 {
24 struct cpucp_packet pkt;
25 int rc;
26
27 if (!hl_device_operational(hdev, NULL))
28 return -EBUSY;
29
30 if (i2c_len > I2C_MAX_TRANSACTION_LEN) {
31 dev_err(hdev->dev, "I2C transaction length %u, exceeds maximum of %u\n",
32 i2c_len, I2C_MAX_TRANSACTION_LEN);
33 return -EINVAL;
34 }
35
36 memset(&pkt, 0, sizeof(pkt));
37
38 pkt.ctl = cpu_to_le32(CPUCP_PACKET_I2C_RD <<
39 CPUCP_PKT_CTL_OPCODE_SHIFT);
40 pkt.i2c_bus = i2c_bus;
41 pkt.i2c_addr = i2c_addr;
42 pkt.i2c_reg = i2c_reg;
43 pkt.i2c_len = i2c_len;
44
45 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, val);
46 if (rc && rc != -EAGAIN)
47 dev_err(hdev->dev, "Failed to read from I2C, error %d\n", rc);
48
49 return rc;
50 }
51
hl_debugfs_i2c_write(struct hl_device * hdev,u8 i2c_bus,u8 i2c_addr,u8 i2c_reg,u8 i2c_len,u64 val)52 static int hl_debugfs_i2c_write(struct hl_device *hdev, u8 i2c_bus, u8 i2c_addr,
53 u8 i2c_reg, u8 i2c_len, u64 val)
54 {
55 struct cpucp_packet pkt;
56 int rc;
57
58 if (!hl_device_operational(hdev, NULL))
59 return -EBUSY;
60
61 if (i2c_len > I2C_MAX_TRANSACTION_LEN) {
62 dev_err(hdev->dev, "I2C transaction length %u, exceeds maximum of %u\n",
63 i2c_len, I2C_MAX_TRANSACTION_LEN);
64 return -EINVAL;
65 }
66
67 memset(&pkt, 0, sizeof(pkt));
68
69 pkt.ctl = cpu_to_le32(CPUCP_PACKET_I2C_WR <<
70 CPUCP_PKT_CTL_OPCODE_SHIFT);
71 pkt.i2c_bus = i2c_bus;
72 pkt.i2c_addr = i2c_addr;
73 pkt.i2c_reg = i2c_reg;
74 pkt.i2c_len = i2c_len;
75 pkt.value = cpu_to_le64(val);
76
77 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, NULL);
78 if (rc && rc != -EAGAIN)
79 dev_err(hdev->dev, "Failed to write to I2C, error %d\n", rc);
80
81 return rc;
82 }
83
hl_debugfs_led_set(struct hl_device * hdev,u8 led,u8 state)84 static void hl_debugfs_led_set(struct hl_device *hdev, u8 led, u8 state)
85 {
86 struct cpucp_packet pkt;
87 int rc;
88
89 if (!hl_device_operational(hdev, NULL))
90 return;
91
92 memset(&pkt, 0, sizeof(pkt));
93
94 pkt.ctl = cpu_to_le32(CPUCP_PACKET_LED_SET <<
95 CPUCP_PKT_CTL_OPCODE_SHIFT);
96 pkt.led_index = cpu_to_le32(led);
97 pkt.value = cpu_to_le64(state);
98
99 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, NULL);
100 if (rc && rc != -EAGAIN)
101 dev_err(hdev->dev, "Failed to set LED %d, error %d\n", led, rc);
102 }
103
command_buffers_show(struct seq_file * s,void * data)104 static int command_buffers_show(struct seq_file *s, void *data)
105 {
106 struct hl_debugfs_entry *entry = s->private;
107 struct hl_dbg_device_entry *dev_entry = entry->dev_entry;
108 struct hl_cb *cb;
109 bool first = true;
110
111 spin_lock(&dev_entry->cb_spinlock);
112
113 list_for_each_entry(cb, &dev_entry->cb_list, debugfs_list) {
114 if (first) {
115 first = false;
116 seq_puts(s, "\n");
117 seq_puts(s, " CB ID CTX ID CB size CB RefCnt mmap? CS counter\n");
118 seq_puts(s, "---------------------------------------------------------------\n");
119 }
120 seq_printf(s,
121 " %03llu %d 0x%08x %d %d %d\n",
122 cb->buf->handle, cb->ctx->asid, cb->size,
123 kref_read(&cb->buf->refcount),
124 atomic_read(&cb->buf->mmap), atomic_read(&cb->cs_cnt));
125 }
126
127 spin_unlock(&dev_entry->cb_spinlock);
128
129 if (!first)
130 seq_puts(s, "\n");
131
132 return 0;
133 }
134
command_submission_show(struct seq_file * s,void * data)135 static int command_submission_show(struct seq_file *s, void *data)
136 {
137 struct hl_debugfs_entry *entry = s->private;
138 struct hl_dbg_device_entry *dev_entry = entry->dev_entry;
139 struct hl_cs *cs;
140 bool first = true;
141
142 spin_lock(&dev_entry->cs_spinlock);
143
144 list_for_each_entry(cs, &dev_entry->cs_list, debugfs_list) {
145 if (first) {
146 first = false;
147 seq_puts(s, "\n");
148 seq_puts(s, " CS ID CS TYPE CTX ASID CS RefCnt Submitted Completed\n");
149 seq_puts(s, "----------------------------------------------------------------\n");
150 }
151 seq_printf(s,
152 " %llu %d %d %d %d %d\n",
153 cs->sequence, cs->type, cs->ctx->asid,
154 kref_read(&cs->refcount),
155 cs->submitted, cs->completed);
156 }
157
158 spin_unlock(&dev_entry->cs_spinlock);
159
160 if (!first)
161 seq_puts(s, "\n");
162
163 return 0;
164 }
165
command_submission_jobs_show(struct seq_file * s,void * data)166 static int command_submission_jobs_show(struct seq_file *s, void *data)
167 {
168 struct hl_debugfs_entry *entry = s->private;
169 struct hl_dbg_device_entry *dev_entry = entry->dev_entry;
170 struct hl_cs_job *job;
171 bool first = true;
172
173 spin_lock(&dev_entry->cs_job_spinlock);
174
175 list_for_each_entry(job, &dev_entry->cs_job_list, debugfs_list) {
176 if (first) {
177 first = false;
178 seq_puts(s, "\n");
179 seq_puts(s, " JOB ID CS ID CS TYPE CTX ASID JOB RefCnt H/W Queue\n");
180 seq_puts(s, "---------------------------------------------------------------\n");
181 }
182 if (job->cs)
183 seq_printf(s,
184 " %02d %llu %d %d %d %d\n",
185 job->id, job->cs->sequence, job->cs->type,
186 job->cs->ctx->asid, kref_read(&job->refcount),
187 job->hw_queue_id);
188 else
189 seq_printf(s,
190 " %02d 0 0 %d %d %d\n",
191 job->id, HL_KERNEL_ASID_ID,
192 kref_read(&job->refcount), job->hw_queue_id);
193 }
194
195 spin_unlock(&dev_entry->cs_job_spinlock);
196
197 if (!first)
198 seq_puts(s, "\n");
199
200 return 0;
201 }
202
userptr_show(struct seq_file * s,void * data)203 static int userptr_show(struct seq_file *s, void *data)
204 {
205 struct hl_debugfs_entry *entry = s->private;
206 struct hl_dbg_device_entry *dev_entry = entry->dev_entry;
207 struct hl_userptr *userptr;
208 char dma_dir[4][30] = {"DMA_BIDIRECTIONAL", "DMA_TO_DEVICE",
209 "DMA_FROM_DEVICE", "DMA_NONE"};
210 bool first = true;
211
212 spin_lock(&dev_entry->userptr_spinlock);
213
214 list_for_each_entry(userptr, &dev_entry->userptr_list, debugfs_list) {
215 if (first) {
216 first = false;
217 seq_puts(s, "\n");
218 seq_puts(s, " pid user virtual address size dma dir\n");
219 seq_puts(s, "----------------------------------------------------------\n");
220 }
221 seq_printf(s, " %-7d 0x%-14llx %-10llu %-30s\n",
222 userptr->pid, userptr->addr, userptr->size,
223 dma_dir[userptr->dir]);
224 }
225
226 spin_unlock(&dev_entry->userptr_spinlock);
227
228 if (!first)
229 seq_puts(s, "\n");
230
231 return 0;
232 }
233
vm_show(struct seq_file * s,void * data)234 static int vm_show(struct seq_file *s, void *data)
235 {
236 struct hl_debugfs_entry *entry = s->private;
237 struct hl_dbg_device_entry *dev_entry = entry->dev_entry;
238 struct hl_vm_hw_block_list_node *lnode;
239 struct hl_ctx *ctx;
240 struct hl_vm *vm;
241 struct hl_vm_hash_node *hnode;
242 struct hl_userptr *userptr;
243 struct hl_vm_phys_pg_pack *phys_pg_pack = NULL;
244 struct hl_va_range *va_range;
245 struct hl_vm_va_block *va_block;
246 enum vm_type *vm_type;
247 bool once = true;
248 u64 j;
249 int i;
250
251 mutex_lock(&dev_entry->ctx_mem_hash_mutex);
252
253 list_for_each_entry(ctx, &dev_entry->ctx_mem_hash_list, debugfs_list) {
254 once = false;
255 seq_puts(s, "\n\n----------------------------------------------------");
256 seq_puts(s, "\n----------------------------------------------------\n\n");
257 seq_printf(s, "ctx asid: %u\n", ctx->asid);
258
259 seq_puts(s, "\nmappings:\n\n");
260 seq_puts(s, " virtual address size handle\n");
261 seq_puts(s, "----------------------------------------------------\n");
262 mutex_lock(&ctx->mem_hash_lock);
263 hash_for_each(ctx->mem_hash, i, hnode, node) {
264 vm_type = hnode->ptr;
265
266 if (*vm_type == VM_TYPE_USERPTR) {
267 userptr = hnode->ptr;
268 seq_printf(s,
269 " 0x%-14llx %-10llu\n",
270 hnode->vaddr, userptr->size);
271 } else {
272 phys_pg_pack = hnode->ptr;
273 seq_printf(s,
274 " 0x%-14llx %-10llu %-4u\n",
275 hnode->vaddr, phys_pg_pack->total_size,
276 phys_pg_pack->handle);
277 }
278 }
279 mutex_unlock(&ctx->mem_hash_lock);
280
281 if (ctx->asid != HL_KERNEL_ASID_ID &&
282 !list_empty(&ctx->hw_block_mem_list)) {
283 seq_puts(s, "\nhw_block mappings:\n\n");
284 seq_puts(s,
285 " virtual address block size mapped size HW block id\n");
286 seq_puts(s,
287 "---------------------------------------------------------------\n");
288 mutex_lock(&ctx->hw_block_list_lock);
289 list_for_each_entry(lnode, &ctx->hw_block_mem_list, node) {
290 seq_printf(s,
291 " 0x%-14lx %-6u %-6u %-9u\n",
292 lnode->vaddr, lnode->block_size, lnode->mapped_size,
293 lnode->id);
294 }
295 mutex_unlock(&ctx->hw_block_list_lock);
296 }
297
298 vm = &ctx->hdev->vm;
299 spin_lock(&vm->idr_lock);
300
301 if (!idr_is_empty(&vm->phys_pg_pack_handles))
302 seq_puts(s, "\n\nallocations:\n");
303
304 idr_for_each_entry(&vm->phys_pg_pack_handles, phys_pg_pack, i) {
305 if (phys_pg_pack->asid != ctx->asid)
306 continue;
307
308 seq_printf(s, "\nhandle: %u\n", phys_pg_pack->handle);
309 seq_printf(s, "page size: %u\n\n",
310 phys_pg_pack->page_size);
311 seq_puts(s, " physical address\n");
312 seq_puts(s, "---------------------\n");
313 for (j = 0 ; j < phys_pg_pack->npages ; j++) {
314 seq_printf(s, " 0x%-14llx\n",
315 phys_pg_pack->pages[j]);
316 }
317 }
318 spin_unlock(&vm->idr_lock);
319
320 }
321
322 mutex_unlock(&dev_entry->ctx_mem_hash_mutex);
323
324 ctx = hl_get_compute_ctx(dev_entry->hdev);
325 if (ctx) {
326 seq_puts(s, "\nVA ranges:\n\n");
327 for (i = HL_VA_RANGE_TYPE_HOST ; i < HL_VA_RANGE_TYPE_MAX ; ++i) {
328 va_range = ctx->va_range[i];
329 seq_printf(s, " va_range %d\n", i);
330 seq_puts(s, "---------------------\n");
331 mutex_lock(&va_range->lock);
332 list_for_each_entry(va_block, &va_range->list, node) {
333 seq_printf(s, "%#16llx - %#16llx (%#llx)\n",
334 va_block->start, va_block->end,
335 va_block->size);
336 }
337 mutex_unlock(&va_range->lock);
338 seq_puts(s, "\n");
339 }
340 hl_ctx_put(ctx);
341 }
342
343 if (!once)
344 seq_puts(s, "\n");
345
346 return 0;
347 }
348
userptr_lookup_show(struct seq_file * s,void * data)349 static int userptr_lookup_show(struct seq_file *s, void *data)
350 {
351 struct hl_debugfs_entry *entry = s->private;
352 struct hl_dbg_device_entry *dev_entry = entry->dev_entry;
353 struct scatterlist *sg;
354 struct hl_userptr *userptr;
355 bool first = true;
356 u64 total_npages, npages, sg_start, sg_end;
357 dma_addr_t dma_addr;
358 int i;
359
360 spin_lock(&dev_entry->userptr_spinlock);
361
362 list_for_each_entry(userptr, &dev_entry->userptr_list, debugfs_list) {
363 if (dev_entry->userptr_lookup >= userptr->addr &&
364 dev_entry->userptr_lookup < userptr->addr + userptr->size) {
365 total_npages = 0;
366 for_each_sgtable_dma_sg(userptr->sgt, sg, i) {
367 npages = hl_get_sg_info(sg, &dma_addr);
368 sg_start = userptr->addr +
369 total_npages * PAGE_SIZE;
370 sg_end = userptr->addr +
371 (total_npages + npages) * PAGE_SIZE;
372
373 if (dev_entry->userptr_lookup >= sg_start &&
374 dev_entry->userptr_lookup < sg_end) {
375 dma_addr += (dev_entry->userptr_lookup -
376 sg_start);
377 if (first) {
378 first = false;
379 seq_puts(s, "\n");
380 seq_puts(s, " user virtual address dma address pid region start region size\n");
381 seq_puts(s, "---------------------------------------------------------------------------------------\n");
382 }
383 seq_printf(s, " 0x%-18llx 0x%-16llx %-8u 0x%-16llx %-12llu\n",
384 dev_entry->userptr_lookup,
385 (u64)dma_addr, userptr->pid,
386 userptr->addr, userptr->size);
387 }
388 total_npages += npages;
389 }
390 }
391 }
392
393 spin_unlock(&dev_entry->userptr_spinlock);
394
395 if (!first)
396 seq_puts(s, "\n");
397
398 return 0;
399 }
400
userptr_lookup_write(struct file * file,const char __user * buf,size_t count,loff_t * f_pos)401 static ssize_t userptr_lookup_write(struct file *file, const char __user *buf,
402 size_t count, loff_t *f_pos)
403 {
404 struct seq_file *s = file->private_data;
405 struct hl_debugfs_entry *entry = s->private;
406 struct hl_dbg_device_entry *dev_entry = entry->dev_entry;
407 ssize_t rc;
408 u64 value;
409
410 rc = kstrtoull_from_user(buf, count, 16, &value);
411 if (rc)
412 return rc;
413
414 dev_entry->userptr_lookup = value;
415
416 return count;
417 }
418
mmu_show(struct seq_file * s,void * data)419 static int mmu_show(struct seq_file *s, void *data)
420 {
421 struct hl_debugfs_entry *entry = s->private;
422 struct hl_dbg_device_entry *dev_entry = entry->dev_entry;
423 struct hl_device *hdev = dev_entry->hdev;
424 struct hl_ctx *ctx;
425 struct hl_mmu_hop_info hops_info = {0};
426 u64 virt_addr = dev_entry->mmu_addr, phys_addr;
427 int i;
428
429 if (dev_entry->mmu_asid == HL_KERNEL_ASID_ID)
430 ctx = hdev->kernel_ctx;
431 else
432 ctx = hl_get_compute_ctx(hdev);
433
434 if (!ctx) {
435 dev_err(hdev->dev, "no ctx available\n");
436 return 0;
437 }
438
439 if (hl_mmu_get_tlb_info(ctx, virt_addr, &hops_info)) {
440 dev_err(hdev->dev, "virt addr 0x%llx is not mapped to phys addr\n",
441 virt_addr);
442 goto put_ctx;
443 }
444
445 hl_mmu_va_to_pa(ctx, virt_addr, &phys_addr);
446
447 if (hops_info.scrambled_vaddr &&
448 (dev_entry->mmu_addr != hops_info.scrambled_vaddr))
449 seq_printf(s,
450 "asid: %u, virt_addr: 0x%llx, scrambled virt_addr: 0x%llx,\nphys_addr: 0x%llx, scrambled_phys_addr: 0x%llx\n",
451 dev_entry->mmu_asid, dev_entry->mmu_addr,
452 hops_info.scrambled_vaddr,
453 hops_info.unscrambled_paddr, phys_addr);
454 else
455 seq_printf(s,
456 "asid: %u, virt_addr: 0x%llx, phys_addr: 0x%llx\n",
457 dev_entry->mmu_asid, dev_entry->mmu_addr, phys_addr);
458
459 for (i = 0 ; i < hops_info.used_hops ; i++) {
460 seq_printf(s, "hop%d_addr: 0x%llx\n",
461 i, hops_info.hop_info[i].hop_addr);
462 seq_printf(s, "hop%d_pte_addr: 0x%llx\n",
463 i, hops_info.hop_info[i].hop_pte_addr);
464 seq_printf(s, "hop%d_pte: 0x%llx\n",
465 i, hops_info.hop_info[i].hop_pte_val);
466 }
467
468 put_ctx:
469 if (dev_entry->mmu_asid != HL_KERNEL_ASID_ID)
470 hl_ctx_put(ctx);
471
472 return 0;
473 }
474
mmu_asid_va_write(struct file * file,const char __user * buf,size_t count,loff_t * f_pos)475 static ssize_t mmu_asid_va_write(struct file *file, const char __user *buf,
476 size_t count, loff_t *f_pos)
477 {
478 struct seq_file *s = file->private_data;
479 struct hl_debugfs_entry *entry = s->private;
480 struct hl_dbg_device_entry *dev_entry = entry->dev_entry;
481 struct hl_device *hdev = dev_entry->hdev;
482 char kbuf[MMU_KBUF_SIZE] = {0};
483 char *c;
484 ssize_t rc;
485
486 if (count > sizeof(kbuf) - 1)
487 goto err;
488 if (copy_from_user(kbuf, buf, count))
489 goto err;
490 kbuf[count] = 0;
491
492 c = strchr(kbuf, ' ');
493 if (!c)
494 goto err;
495 *c = '\0';
496
497 rc = kstrtouint(kbuf, 10, &dev_entry->mmu_asid);
498 if (rc)
499 goto err;
500
501 if (strncmp(c+1, "0x", 2))
502 goto err;
503 rc = kstrtoull(c+3, 16, &dev_entry->mmu_addr);
504 if (rc)
505 goto err;
506
507 return count;
508
509 err:
510 dev_err(hdev->dev, "usage: echo <asid> <0xaddr> > mmu\n");
511
512 return -EINVAL;
513 }
514
mmu_ack_error(struct seq_file * s,void * data)515 static int mmu_ack_error(struct seq_file *s, void *data)
516 {
517 struct hl_debugfs_entry *entry = s->private;
518 struct hl_dbg_device_entry *dev_entry = entry->dev_entry;
519 struct hl_device *hdev = dev_entry->hdev;
520 int rc;
521
522 if (!dev_entry->mmu_cap_mask) {
523 dev_err(hdev->dev, "mmu_cap_mask is not set\n");
524 goto err;
525 }
526
527 rc = hdev->asic_funcs->ack_mmu_errors(hdev, dev_entry->mmu_cap_mask);
528 if (rc)
529 goto err;
530
531 return 0;
532 err:
533 return -EINVAL;
534 }
535
mmu_ack_error_value_write(struct file * file,const char __user * buf,size_t count,loff_t * f_pos)536 static ssize_t mmu_ack_error_value_write(struct file *file,
537 const char __user *buf,
538 size_t count, loff_t *f_pos)
539 {
540 struct seq_file *s = file->private_data;
541 struct hl_debugfs_entry *entry = s->private;
542 struct hl_dbg_device_entry *dev_entry = entry->dev_entry;
543 struct hl_device *hdev = dev_entry->hdev;
544 char kbuf[MMU_KBUF_SIZE] = {0};
545 ssize_t rc;
546
547 if (count > sizeof(kbuf) - 1)
548 goto err;
549
550 if (copy_from_user(kbuf, buf, count))
551 goto err;
552
553 kbuf[count] = 0;
554
555 if (strncmp(kbuf, "0x", 2))
556 goto err;
557
558 rc = kstrtoull(kbuf, 16, &dev_entry->mmu_cap_mask);
559 if (rc)
560 goto err;
561
562 return count;
563 err:
564 dev_err(hdev->dev, "usage: echo <0xmmu_cap_mask > > mmu_error\n");
565
566 return -EINVAL;
567 }
568
engines_show(struct seq_file * s,void * data)569 static int engines_show(struct seq_file *s, void *data)
570 {
571 struct hl_debugfs_entry *entry = s->private;
572 struct hl_dbg_device_entry *dev_entry = entry->dev_entry;
573 struct hl_device *hdev = dev_entry->hdev;
574 struct engines_data eng_data;
575
576 if (hdev->reset_info.in_reset) {
577 dev_warn_ratelimited(hdev->dev,
578 "Can't check device idle during reset\n");
579 return 0;
580 }
581
582 eng_data.actual_size = 0;
583 eng_data.allocated_buf_size = HL_ENGINES_DATA_MAX_SIZE;
584 eng_data.buf = vmalloc(eng_data.allocated_buf_size);
585 if (!eng_data.buf)
586 return -ENOMEM;
587
588 hdev->asic_funcs->is_device_idle(hdev, NULL, 0, &eng_data);
589
590 if (eng_data.actual_size > eng_data.allocated_buf_size) {
591 dev_err(hdev->dev,
592 "Engines data size (%d Bytes) is bigger than allocated size (%u Bytes)\n",
593 eng_data.actual_size, eng_data.allocated_buf_size);
594 vfree(eng_data.buf);
595 return -ENOMEM;
596 }
597
598 seq_write(s, eng_data.buf, eng_data.actual_size);
599
600 vfree(eng_data.buf);
601
602 return 0;
603 }
604
hl_memory_scrub(struct file * f,const char __user * buf,size_t count,loff_t * ppos)605 static ssize_t hl_memory_scrub(struct file *f, const char __user *buf,
606 size_t count, loff_t *ppos)
607 {
608 struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
609 struct hl_device *hdev = entry->hdev;
610 u64 val = hdev->memory_scrub_val;
611 int rc;
612
613 if (!hl_device_operational(hdev, NULL)) {
614 dev_warn_ratelimited(hdev->dev, "Can't scrub memory, device is not operational\n");
615 return -EIO;
616 }
617
618 mutex_lock(&hdev->fpriv_list_lock);
619 if (hdev->is_compute_ctx_active) {
620 mutex_unlock(&hdev->fpriv_list_lock);
621 dev_err(hdev->dev, "can't scrub dram, context exist\n");
622 return -EBUSY;
623 }
624 hdev->is_in_dram_scrub = true;
625 mutex_unlock(&hdev->fpriv_list_lock);
626
627 rc = hdev->asic_funcs->scrub_device_dram(hdev, val);
628
629 mutex_lock(&hdev->fpriv_list_lock);
630 hdev->is_in_dram_scrub = false;
631 mutex_unlock(&hdev->fpriv_list_lock);
632
633 if (rc)
634 return rc;
635 return count;
636 }
637
hl_is_device_va(struct hl_device * hdev,u64 addr)638 static bool hl_is_device_va(struct hl_device *hdev, u64 addr)
639 {
640 struct asic_fixed_properties *prop = &hdev->asic_prop;
641
642 if (prop->dram_supports_virtual_memory &&
643 (addr >= prop->dmmu.start_addr && addr < prop->dmmu.end_addr))
644 return true;
645
646 if (addr >= prop->pmmu.start_addr &&
647 addr < prop->pmmu.end_addr)
648 return true;
649
650 if (addr >= prop->pmmu_huge.start_addr &&
651 addr < prop->pmmu_huge.end_addr)
652 return true;
653
654 return false;
655 }
656
hl_is_device_internal_memory_va(struct hl_device * hdev,u64 addr,u32 size)657 static bool hl_is_device_internal_memory_va(struct hl_device *hdev, u64 addr,
658 u32 size)
659 {
660 struct asic_fixed_properties *prop = &hdev->asic_prop;
661 u64 dram_start_addr, dram_end_addr;
662
663 if (prop->dram_supports_virtual_memory) {
664 dram_start_addr = prop->dmmu.start_addr;
665 dram_end_addr = prop->dmmu.end_addr;
666 } else {
667 dram_start_addr = prop->dram_base_address;
668 dram_end_addr = prop->dram_end_address;
669 }
670
671 if (hl_mem_area_inside_range(addr, size, dram_start_addr,
672 dram_end_addr))
673 return true;
674
675 if (hl_mem_area_inside_range(addr, size, prop->sram_base_address,
676 prop->sram_end_address))
677 return true;
678
679 return false;
680 }
681
device_va_to_pa(struct hl_device * hdev,u64 virt_addr,u32 size,u64 * phys_addr)682 static int device_va_to_pa(struct hl_device *hdev, u64 virt_addr, u32 size,
683 u64 *phys_addr)
684 {
685 struct hl_vm_phys_pg_pack *phys_pg_pack;
686 struct hl_ctx *ctx;
687 struct hl_vm_hash_node *hnode;
688 u64 end_address, range_size;
689 struct hl_userptr *userptr;
690 enum vm_type *vm_type;
691 bool valid = false;
692 int i, rc = 0;
693
694 ctx = hl_get_compute_ctx(hdev);
695
696 if (!ctx) {
697 dev_err(hdev->dev, "no ctx available\n");
698 return -EINVAL;
699 }
700
701 /* Verify address is mapped */
702 mutex_lock(&ctx->mem_hash_lock);
703 hash_for_each(ctx->mem_hash, i, hnode, node) {
704 vm_type = hnode->ptr;
705
706 if (*vm_type == VM_TYPE_USERPTR) {
707 userptr = hnode->ptr;
708 range_size = userptr->size;
709 } else {
710 phys_pg_pack = hnode->ptr;
711 range_size = phys_pg_pack->total_size;
712 }
713
714 end_address = virt_addr + size;
715 if ((virt_addr >= hnode->vaddr) &&
716 (end_address <= hnode->vaddr + range_size)) {
717 valid = true;
718 break;
719 }
720 }
721 mutex_unlock(&ctx->mem_hash_lock);
722
723 if (!valid) {
724 dev_err(hdev->dev,
725 "virt addr 0x%llx is not mapped\n",
726 virt_addr);
727 rc = -EINVAL;
728 goto put_ctx;
729 }
730
731 rc = hl_mmu_va_to_pa(ctx, virt_addr, phys_addr);
732 if (rc) {
733 dev_err(hdev->dev,
734 "virt addr 0x%llx is not mapped to phys addr\n",
735 virt_addr);
736 rc = -EINVAL;
737 }
738
739 put_ctx:
740 hl_ctx_put(ctx);
741
742 return rc;
743 }
744
hl_access_dev_mem_by_region(struct hl_device * hdev,u64 addr,u64 * val,enum debugfs_access_type acc_type,bool * found)745 static int hl_access_dev_mem_by_region(struct hl_device *hdev, u64 addr,
746 u64 *val, enum debugfs_access_type acc_type, bool *found)
747 {
748 size_t acc_size = (acc_type == DEBUGFS_READ64 || acc_type == DEBUGFS_WRITE64) ?
749 sizeof(u64) : sizeof(u32);
750 struct pci_mem_region *mem_reg;
751 int i;
752
753 for (i = 0; i < PCI_REGION_NUMBER; i++) {
754 mem_reg = &hdev->pci_mem_region[i];
755 if (!mem_reg->used)
756 continue;
757 if (addr >= mem_reg->region_base &&
758 addr <= mem_reg->region_base + mem_reg->region_size - acc_size) {
759 *found = true;
760 return hdev->asic_funcs->access_dev_mem(hdev, i, addr, val, acc_type);
761 }
762 }
763 return 0;
764 }
765
hl_access_host_mem(struct hl_device * hdev,u64 addr,u64 * val,enum debugfs_access_type acc_type)766 static void hl_access_host_mem(struct hl_device *hdev, u64 addr, u64 *val,
767 enum debugfs_access_type acc_type)
768 {
769 struct asic_fixed_properties *prop = &hdev->asic_prop;
770 u64 offset = prop->device_dma_offset_for_host_access;
771
772 switch (acc_type) {
773 case DEBUGFS_READ32:
774 *val = *(u32 *) phys_to_virt(addr - offset);
775 break;
776 case DEBUGFS_WRITE32:
777 *(u32 *) phys_to_virt(addr - offset) = *val;
778 break;
779 case DEBUGFS_READ64:
780 *val = *(u64 *) phys_to_virt(addr - offset);
781 break;
782 case DEBUGFS_WRITE64:
783 *(u64 *) phys_to_virt(addr - offset) = *val;
784 break;
785 default:
786 dev_err(hdev->dev, "hostmem access-type %d id not supported\n", acc_type);
787 break;
788 }
789 }
790
hl_access_mem(struct hl_device * hdev,u64 addr,u64 * val,enum debugfs_access_type acc_type)791 static int hl_access_mem(struct hl_device *hdev, u64 addr, u64 *val,
792 enum debugfs_access_type acc_type)
793 {
794 size_t acc_size = (acc_type == DEBUGFS_READ64 || acc_type == DEBUGFS_WRITE64) ?
795 sizeof(u64) : sizeof(u32);
796 u64 host_start = hdev->asic_prop.host_base_address;
797 u64 host_end = hdev->asic_prop.host_end_address;
798 bool user_address, found = false;
799 int rc;
800
801 user_address = hl_is_device_va(hdev, addr);
802 if (user_address) {
803 rc = device_va_to_pa(hdev, addr, acc_size, &addr);
804 if (rc)
805 return rc;
806 }
807
808 rc = hl_access_dev_mem_by_region(hdev, addr, val, acc_type, &found);
809 if (rc) {
810 dev_err(hdev->dev,
811 "Failed reading addr %#llx from dev mem (%d)\n",
812 addr, rc);
813 return rc;
814 }
815
816 if (found)
817 return 0;
818
819 if (!user_address || device_iommu_mapped(&hdev->pdev->dev)) {
820 rc = -EINVAL;
821 goto err;
822 }
823
824 if (addr >= host_start && addr <= host_end - acc_size) {
825 hl_access_host_mem(hdev, addr, val, acc_type);
826 } else {
827 rc = -EINVAL;
828 goto err;
829 }
830
831 return 0;
832 err:
833 dev_err(hdev->dev, "invalid addr %#llx\n", addr);
834 return rc;
835 }
836
hl_data_read32(struct file * f,char __user * buf,size_t count,loff_t * ppos)837 static ssize_t hl_data_read32(struct file *f, char __user *buf,
838 size_t count, loff_t *ppos)
839 {
840 struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
841 struct hl_device *hdev = entry->hdev;
842 u64 value64, addr = entry->addr;
843 char tmp_buf[32];
844 ssize_t rc;
845 u32 val;
846
847 if (hdev->reset_info.in_reset) {
848 dev_warn_ratelimited(hdev->dev, "Can't read during reset\n");
849 return 0;
850 }
851
852 if (*ppos)
853 return 0;
854
855 rc = hl_access_mem(hdev, addr, &value64, DEBUGFS_READ32);
856 if (rc)
857 return rc;
858
859 val = value64; /* downcast back to 32 */
860
861 sprintf(tmp_buf, "0x%08x\n", val);
862 return simple_read_from_buffer(buf, count, ppos, tmp_buf,
863 strlen(tmp_buf));
864 }
865
hl_data_write32(struct file * f,const char __user * buf,size_t count,loff_t * ppos)866 static ssize_t hl_data_write32(struct file *f, const char __user *buf,
867 size_t count, loff_t *ppos)
868 {
869 struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
870 struct hl_device *hdev = entry->hdev;
871 u64 value64, addr = entry->addr;
872 u32 value;
873 ssize_t rc;
874
875 if (hdev->reset_info.in_reset) {
876 dev_warn_ratelimited(hdev->dev, "Can't write during reset\n");
877 return 0;
878 }
879
880 rc = kstrtouint_from_user(buf, count, 16, &value);
881 if (rc)
882 return rc;
883
884 value64 = value;
885 rc = hl_access_mem(hdev, addr, &value64, DEBUGFS_WRITE32);
886 if (rc)
887 return rc;
888
889 return count;
890 }
891
hl_data_read64(struct file * f,char __user * buf,size_t count,loff_t * ppos)892 static ssize_t hl_data_read64(struct file *f, char __user *buf,
893 size_t count, loff_t *ppos)
894 {
895 struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
896 struct hl_device *hdev = entry->hdev;
897 u64 addr = entry->addr;
898 char tmp_buf[32];
899 ssize_t rc;
900 u64 val;
901
902 if (hdev->reset_info.in_reset) {
903 dev_warn_ratelimited(hdev->dev, "Can't read during reset\n");
904 return 0;
905 }
906
907 if (*ppos)
908 return 0;
909
910 rc = hl_access_mem(hdev, addr, &val, DEBUGFS_READ64);
911 if (rc)
912 return rc;
913
914 sprintf(tmp_buf, "0x%016llx\n", val);
915 return simple_read_from_buffer(buf, count, ppos, tmp_buf,
916 strlen(tmp_buf));
917 }
918
hl_data_write64(struct file * f,const char __user * buf,size_t count,loff_t * ppos)919 static ssize_t hl_data_write64(struct file *f, const char __user *buf,
920 size_t count, loff_t *ppos)
921 {
922 struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
923 struct hl_device *hdev = entry->hdev;
924 u64 addr = entry->addr;
925 u64 value;
926 ssize_t rc;
927
928 if (hdev->reset_info.in_reset) {
929 dev_warn_ratelimited(hdev->dev, "Can't write during reset\n");
930 return 0;
931 }
932
933 rc = kstrtoull_from_user(buf, count, 16, &value);
934 if (rc)
935 return rc;
936
937 rc = hl_access_mem(hdev, addr, &value, DEBUGFS_WRITE64);
938 if (rc)
939 return rc;
940
941 return count;
942 }
943
hl_dma_size_write(struct file * f,const char __user * buf,size_t count,loff_t * ppos)944 static ssize_t hl_dma_size_write(struct file *f, const char __user *buf,
945 size_t count, loff_t *ppos)
946 {
947 struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
948 struct hl_device *hdev = entry->hdev;
949 u64 addr = entry->addr;
950 ssize_t rc;
951 u32 size;
952
953 if (hdev->reset_info.in_reset) {
954 dev_warn_ratelimited(hdev->dev, "Can't DMA during reset\n");
955 return 0;
956 }
957 rc = kstrtouint_from_user(buf, count, 16, &size);
958 if (rc)
959 return rc;
960
961 if (!size) {
962 dev_err(hdev->dev, "DMA read failed. size can't be 0\n");
963 return -EINVAL;
964 }
965
966 if (size > SZ_128M) {
967 dev_err(hdev->dev,
968 "DMA read failed. size can't be larger than 128MB\n");
969 return -EINVAL;
970 }
971
972 if (!hl_is_device_internal_memory_va(hdev, addr, size)) {
973 dev_err(hdev->dev,
974 "DMA read failed. Invalid 0x%010llx + 0x%08x\n",
975 addr, size);
976 return -EINVAL;
977 }
978
979 /* Free the previous allocation, if there was any */
980 entry->data_dma_blob_desc.size = 0;
981 vfree(entry->data_dma_blob_desc.data);
982
983 entry->data_dma_blob_desc.data = vmalloc(size);
984 if (!entry->data_dma_blob_desc.data)
985 return -ENOMEM;
986
987 rc = hdev->asic_funcs->debugfs_read_dma(hdev, addr, size,
988 entry->data_dma_blob_desc.data);
989 if (rc) {
990 dev_err(hdev->dev, "Failed to DMA from 0x%010llx\n", addr);
991 vfree(entry->data_dma_blob_desc.data);
992 entry->data_dma_blob_desc.data = NULL;
993 return -EIO;
994 }
995
996 entry->data_dma_blob_desc.size = size;
997
998 return count;
999 }
1000
hl_monitor_dump_trigger(struct file * f,const char __user * buf,size_t count,loff_t * ppos)1001 static ssize_t hl_monitor_dump_trigger(struct file *f, const char __user *buf,
1002 size_t count, loff_t *ppos)
1003 {
1004 struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
1005 struct hl_device *hdev = entry->hdev;
1006 u32 size, trig;
1007 ssize_t rc;
1008
1009 if (hdev->reset_info.in_reset) {
1010 dev_warn_ratelimited(hdev->dev, "Can't dump monitors during reset\n");
1011 return 0;
1012 }
1013 rc = kstrtouint_from_user(buf, count, 10, &trig);
1014 if (rc)
1015 return rc;
1016
1017 if (trig != 1) {
1018 dev_err(hdev->dev, "Must write 1 to trigger monitor dump\n");
1019 return -EINVAL;
1020 }
1021
1022 size = sizeof(struct cpucp_monitor_dump);
1023
1024 /* Free the previous allocation, if there was any */
1025 entry->mon_dump_blob_desc.size = 0;
1026 vfree(entry->mon_dump_blob_desc.data);
1027
1028 entry->mon_dump_blob_desc.data = vmalloc(size);
1029 if (!entry->mon_dump_blob_desc.data)
1030 return -ENOMEM;
1031
1032 rc = hdev->asic_funcs->get_monitor_dump(hdev, entry->mon_dump_blob_desc.data);
1033 if (rc) {
1034 dev_err(hdev->dev, "Failed to dump monitors\n");
1035 vfree(entry->mon_dump_blob_desc.data);
1036 entry->mon_dump_blob_desc.data = NULL;
1037 return -EIO;
1038 }
1039
1040 entry->mon_dump_blob_desc.size = size;
1041
1042 return count;
1043 }
1044
hl_get_power_state(struct file * f,char __user * buf,size_t count,loff_t * ppos)1045 static ssize_t hl_get_power_state(struct file *f, char __user *buf,
1046 size_t count, loff_t *ppos)
1047 {
1048 struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
1049 struct hl_device *hdev = entry->hdev;
1050 char tmp_buf[200];
1051 int i;
1052
1053 if (*ppos)
1054 return 0;
1055
1056 if (hdev->pdev->current_state == PCI_D0)
1057 i = 1;
1058 else if (hdev->pdev->current_state == PCI_D3hot)
1059 i = 2;
1060 else
1061 i = 3;
1062
1063 sprintf(tmp_buf,
1064 "current power state: %d\n1 - D0\n2 - D3hot\n3 - Unknown\n", i);
1065 return simple_read_from_buffer(buf, count, ppos, tmp_buf,
1066 strlen(tmp_buf));
1067 }
1068
hl_set_power_state(struct file * f,const char __user * buf,size_t count,loff_t * ppos)1069 static ssize_t hl_set_power_state(struct file *f, const char __user *buf,
1070 size_t count, loff_t *ppos)
1071 {
1072 struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
1073 struct hl_device *hdev = entry->hdev;
1074 u32 value;
1075 ssize_t rc;
1076
1077 rc = kstrtouint_from_user(buf, count, 10, &value);
1078 if (rc)
1079 return rc;
1080
1081 if (value == 1) {
1082 pci_set_power_state(hdev->pdev, PCI_D0);
1083 pci_restore_state(hdev->pdev);
1084 rc = pci_enable_device(hdev->pdev);
1085 if (rc < 0)
1086 return rc;
1087 } else if (value == 2) {
1088 pci_save_state(hdev->pdev);
1089 pci_disable_device(hdev->pdev);
1090 pci_set_power_state(hdev->pdev, PCI_D3hot);
1091 } else {
1092 dev_dbg(hdev->dev, "invalid power state value %u\n", value);
1093 return -EINVAL;
1094 }
1095
1096 return count;
1097 }
1098
hl_i2c_data_read(struct file * f,char __user * buf,size_t count,loff_t * ppos)1099 static ssize_t hl_i2c_data_read(struct file *f, char __user *buf,
1100 size_t count, loff_t *ppos)
1101 {
1102 struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
1103 struct hl_device *hdev = entry->hdev;
1104 char tmp_buf[32];
1105 u64 val;
1106 ssize_t rc;
1107
1108 if (*ppos)
1109 return 0;
1110
1111 rc = hl_debugfs_i2c_read(hdev, entry->i2c_bus, entry->i2c_addr,
1112 entry->i2c_reg, entry->i2c_len, &val);
1113 if (rc) {
1114 dev_err(hdev->dev,
1115 "Failed to read from I2C bus %d, addr %d, reg %d, len %d\n",
1116 entry->i2c_bus, entry->i2c_addr, entry->i2c_reg, entry->i2c_len);
1117 return rc;
1118 }
1119
1120 sprintf(tmp_buf, "%#02llx\n", val);
1121 rc = simple_read_from_buffer(buf, count, ppos, tmp_buf,
1122 strlen(tmp_buf));
1123
1124 return rc;
1125 }
1126
hl_i2c_data_write(struct file * f,const char __user * buf,size_t count,loff_t * ppos)1127 static ssize_t hl_i2c_data_write(struct file *f, const char __user *buf,
1128 size_t count, loff_t *ppos)
1129 {
1130 struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
1131 struct hl_device *hdev = entry->hdev;
1132 u64 value;
1133 ssize_t rc;
1134
1135 rc = kstrtou64_from_user(buf, count, 16, &value);
1136 if (rc)
1137 return rc;
1138
1139 rc = hl_debugfs_i2c_write(hdev, entry->i2c_bus, entry->i2c_addr,
1140 entry->i2c_reg, entry->i2c_len, value);
1141 if (rc) {
1142 dev_err(hdev->dev,
1143 "Failed to write %#02llx to I2C bus %d, addr %d, reg %d, len %d\n",
1144 value, entry->i2c_bus, entry->i2c_addr, entry->i2c_reg, entry->i2c_len);
1145 return rc;
1146 }
1147
1148 return count;
1149 }
1150
hl_led0_write(struct file * f,const char __user * buf,size_t count,loff_t * ppos)1151 static ssize_t hl_led0_write(struct file *f, const char __user *buf,
1152 size_t count, loff_t *ppos)
1153 {
1154 struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
1155 struct hl_device *hdev = entry->hdev;
1156 u32 value;
1157 ssize_t rc;
1158
1159 rc = kstrtouint_from_user(buf, count, 10, &value);
1160 if (rc)
1161 return rc;
1162
1163 value = value ? 1 : 0;
1164
1165 hl_debugfs_led_set(hdev, 0, value);
1166
1167 return count;
1168 }
1169
hl_led1_write(struct file * f,const char __user * buf,size_t count,loff_t * ppos)1170 static ssize_t hl_led1_write(struct file *f, const char __user *buf,
1171 size_t count, loff_t *ppos)
1172 {
1173 struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
1174 struct hl_device *hdev = entry->hdev;
1175 u32 value;
1176 ssize_t rc;
1177
1178 rc = kstrtouint_from_user(buf, count, 10, &value);
1179 if (rc)
1180 return rc;
1181
1182 value = value ? 1 : 0;
1183
1184 hl_debugfs_led_set(hdev, 1, value);
1185
1186 return count;
1187 }
1188
hl_led2_write(struct file * f,const char __user * buf,size_t count,loff_t * ppos)1189 static ssize_t hl_led2_write(struct file *f, const char __user *buf,
1190 size_t count, loff_t *ppos)
1191 {
1192 struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
1193 struct hl_device *hdev = entry->hdev;
1194 u32 value;
1195 ssize_t rc;
1196
1197 rc = kstrtouint_from_user(buf, count, 10, &value);
1198 if (rc)
1199 return rc;
1200
1201 value = value ? 1 : 0;
1202
1203 hl_debugfs_led_set(hdev, 2, value);
1204
1205 return count;
1206 }
1207
hl_device_read(struct file * f,char __user * buf,size_t count,loff_t * ppos)1208 static ssize_t hl_device_read(struct file *f, char __user *buf,
1209 size_t count, loff_t *ppos)
1210 {
1211 static const char *help =
1212 "Valid values: disable, enable, suspend, resume, cpu_timeout\n";
1213 return simple_read_from_buffer(buf, count, ppos, help, strlen(help));
1214 }
1215
hl_device_write(struct file * f,const char __user * buf,size_t count,loff_t * ppos)1216 static ssize_t hl_device_write(struct file *f, const char __user *buf,
1217 size_t count, loff_t *ppos)
1218 {
1219 struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
1220 struct hl_device *hdev = entry->hdev;
1221 char data[30] = {0};
1222
1223 /* don't allow partial writes */
1224 if (*ppos != 0)
1225 return 0;
1226
1227 simple_write_to_buffer(data, 29, ppos, buf, count);
1228
1229 if (strncmp("disable", data, strlen("disable")) == 0) {
1230 hdev->disabled = true;
1231 } else if (strncmp("enable", data, strlen("enable")) == 0) {
1232 hdev->disabled = false;
1233 } else if (strncmp("suspend", data, strlen("suspend")) == 0) {
1234 hdev->asic_funcs->suspend(hdev);
1235 } else if (strncmp("resume", data, strlen("resume")) == 0) {
1236 hdev->asic_funcs->resume(hdev);
1237 } else if (strncmp("cpu_timeout", data, strlen("cpu_timeout")) == 0) {
1238 hdev->device_cpu_disabled = true;
1239 } else {
1240 dev_err(hdev->dev,
1241 "Valid values: disable, enable, suspend, resume, cpu_timeout\n");
1242 count = -EINVAL;
1243 }
1244
1245 return count;
1246 }
1247
hl_clk_gate_read(struct file * f,char __user * buf,size_t count,loff_t * ppos)1248 static ssize_t hl_clk_gate_read(struct file *f, char __user *buf,
1249 size_t count, loff_t *ppos)
1250 {
1251 return 0;
1252 }
1253
hl_clk_gate_write(struct file * f,const char __user * buf,size_t count,loff_t * ppos)1254 static ssize_t hl_clk_gate_write(struct file *f, const char __user *buf,
1255 size_t count, loff_t *ppos)
1256 {
1257 return count;
1258 }
1259
hl_stop_on_err_read(struct file * f,char __user * buf,size_t count,loff_t * ppos)1260 static ssize_t hl_stop_on_err_read(struct file *f, char __user *buf,
1261 size_t count, loff_t *ppos)
1262 {
1263 struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
1264 struct hl_device *hdev = entry->hdev;
1265 char tmp_buf[200];
1266 ssize_t rc;
1267
1268 if (!hdev->asic_prop.configurable_stop_on_err)
1269 return -EOPNOTSUPP;
1270
1271 if (*ppos)
1272 return 0;
1273
1274 sprintf(tmp_buf, "%d\n", hdev->stop_on_err);
1275 rc = simple_read_from_buffer(buf, strlen(tmp_buf) + 1, ppos, tmp_buf,
1276 strlen(tmp_buf) + 1);
1277
1278 return rc;
1279 }
1280
hl_stop_on_err_write(struct file * f,const char __user * buf,size_t count,loff_t * ppos)1281 static ssize_t hl_stop_on_err_write(struct file *f, const char __user *buf,
1282 size_t count, loff_t *ppos)
1283 {
1284 struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
1285 struct hl_device *hdev = entry->hdev;
1286 u32 value;
1287 ssize_t rc;
1288
1289 if (!hdev->asic_prop.configurable_stop_on_err)
1290 return -EOPNOTSUPP;
1291
1292 if (hdev->reset_info.in_reset) {
1293 dev_warn_ratelimited(hdev->dev,
1294 "Can't change stop on error during reset\n");
1295 return 0;
1296 }
1297
1298 rc = kstrtouint_from_user(buf, count, 10, &value);
1299 if (rc)
1300 return rc;
1301
1302 hdev->stop_on_err = value ? 1 : 0;
1303
1304 hl_device_reset(hdev, 0);
1305
1306 return count;
1307 }
1308
hl_security_violations_read(struct file * f,char __user * buf,size_t count,loff_t * ppos)1309 static ssize_t hl_security_violations_read(struct file *f, char __user *buf,
1310 size_t count, loff_t *ppos)
1311 {
1312 struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
1313 struct hl_device *hdev = entry->hdev;
1314
1315 hdev->asic_funcs->ack_protection_bits_errors(hdev);
1316
1317 return 0;
1318 }
1319
hl_state_dump_read(struct file * f,char __user * buf,size_t count,loff_t * ppos)1320 static ssize_t hl_state_dump_read(struct file *f, char __user *buf,
1321 size_t count, loff_t *ppos)
1322 {
1323 struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
1324 ssize_t rc;
1325
1326 down_read(&entry->state_dump_sem);
1327 if (!entry->state_dump[entry->state_dump_head])
1328 rc = 0;
1329 else
1330 rc = simple_read_from_buffer(
1331 buf, count, ppos,
1332 entry->state_dump[entry->state_dump_head],
1333 strlen(entry->state_dump[entry->state_dump_head]));
1334 up_read(&entry->state_dump_sem);
1335
1336 return rc;
1337 }
1338
hl_state_dump_write(struct file * f,const char __user * buf,size_t count,loff_t * ppos)1339 static ssize_t hl_state_dump_write(struct file *f, const char __user *buf,
1340 size_t count, loff_t *ppos)
1341 {
1342 struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
1343 struct hl_device *hdev = entry->hdev;
1344 ssize_t rc;
1345 u32 size;
1346 int i;
1347
1348 rc = kstrtouint_from_user(buf, count, 10, &size);
1349 if (rc)
1350 return rc;
1351
1352 if (size <= 0 || size >= ARRAY_SIZE(entry->state_dump)) {
1353 dev_err(hdev->dev, "Invalid number of dumps to skip\n");
1354 return -EINVAL;
1355 }
1356
1357 if (entry->state_dump[entry->state_dump_head]) {
1358 down_write(&entry->state_dump_sem);
1359 for (i = 0; i < size; ++i) {
1360 vfree(entry->state_dump[entry->state_dump_head]);
1361 entry->state_dump[entry->state_dump_head] = NULL;
1362 if (entry->state_dump_head > 0)
1363 entry->state_dump_head--;
1364 else
1365 entry->state_dump_head =
1366 ARRAY_SIZE(entry->state_dump) - 1;
1367 }
1368 up_write(&entry->state_dump_sem);
1369 }
1370
1371 return count;
1372 }
1373
hl_timeout_locked_read(struct file * f,char __user * buf,size_t count,loff_t * ppos)1374 static ssize_t hl_timeout_locked_read(struct file *f, char __user *buf,
1375 size_t count, loff_t *ppos)
1376 {
1377 struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
1378 struct hl_device *hdev = entry->hdev;
1379 char tmp_buf[200];
1380 ssize_t rc;
1381
1382 if (*ppos)
1383 return 0;
1384
1385 sprintf(tmp_buf, "%d\n",
1386 jiffies_to_msecs(hdev->timeout_jiffies) / 1000);
1387 rc = simple_read_from_buffer(buf, strlen(tmp_buf) + 1, ppos, tmp_buf,
1388 strlen(tmp_buf) + 1);
1389
1390 return rc;
1391 }
1392
hl_timeout_locked_write(struct file * f,const char __user * buf,size_t count,loff_t * ppos)1393 static ssize_t hl_timeout_locked_write(struct file *f, const char __user *buf,
1394 size_t count, loff_t *ppos)
1395 {
1396 struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
1397 struct hl_device *hdev = entry->hdev;
1398 u32 value;
1399 ssize_t rc;
1400
1401 rc = kstrtouint_from_user(buf, count, 10, &value);
1402 if (rc)
1403 return rc;
1404
1405 if (value)
1406 hdev->timeout_jiffies = msecs_to_jiffies(value * 1000);
1407 else
1408 hdev->timeout_jiffies = MAX_SCHEDULE_TIMEOUT;
1409
1410 return count;
1411 }
1412
hl_check_razwi_happened(struct file * f,char __user * buf,size_t count,loff_t * ppos)1413 static ssize_t hl_check_razwi_happened(struct file *f, char __user *buf,
1414 size_t count, loff_t *ppos)
1415 {
1416 struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
1417 struct hl_device *hdev = entry->hdev;
1418
1419 hdev->asic_funcs->check_if_razwi_happened(hdev);
1420
1421 return 0;
1422 }
1423
1424 static const struct file_operations hl_mem_scrub_fops = {
1425 .owner = THIS_MODULE,
1426 .write = hl_memory_scrub,
1427 };
1428
1429 static const struct file_operations hl_data32b_fops = {
1430 .owner = THIS_MODULE,
1431 .read = hl_data_read32,
1432 .write = hl_data_write32
1433 };
1434
1435 static const struct file_operations hl_data64b_fops = {
1436 .owner = THIS_MODULE,
1437 .read = hl_data_read64,
1438 .write = hl_data_write64
1439 };
1440
1441 static const struct file_operations hl_dma_size_fops = {
1442 .owner = THIS_MODULE,
1443 .write = hl_dma_size_write
1444 };
1445
1446 static const struct file_operations hl_monitor_dump_fops = {
1447 .owner = THIS_MODULE,
1448 .write = hl_monitor_dump_trigger
1449 };
1450
1451 static const struct file_operations hl_i2c_data_fops = {
1452 .owner = THIS_MODULE,
1453 .read = hl_i2c_data_read,
1454 .write = hl_i2c_data_write
1455 };
1456
1457 static const struct file_operations hl_power_fops = {
1458 .owner = THIS_MODULE,
1459 .read = hl_get_power_state,
1460 .write = hl_set_power_state
1461 };
1462
1463 static const struct file_operations hl_led0_fops = {
1464 .owner = THIS_MODULE,
1465 .write = hl_led0_write
1466 };
1467
1468 static const struct file_operations hl_led1_fops = {
1469 .owner = THIS_MODULE,
1470 .write = hl_led1_write
1471 };
1472
1473 static const struct file_operations hl_led2_fops = {
1474 .owner = THIS_MODULE,
1475 .write = hl_led2_write
1476 };
1477
1478 static const struct file_operations hl_device_fops = {
1479 .owner = THIS_MODULE,
1480 .read = hl_device_read,
1481 .write = hl_device_write
1482 };
1483
1484 static const struct file_operations hl_clk_gate_fops = {
1485 .owner = THIS_MODULE,
1486 .read = hl_clk_gate_read,
1487 .write = hl_clk_gate_write
1488 };
1489
1490 static const struct file_operations hl_stop_on_err_fops = {
1491 .owner = THIS_MODULE,
1492 .read = hl_stop_on_err_read,
1493 .write = hl_stop_on_err_write
1494 };
1495
1496 static const struct file_operations hl_security_violations_fops = {
1497 .owner = THIS_MODULE,
1498 .read = hl_security_violations_read
1499 };
1500
1501 static const struct file_operations hl_state_dump_fops = {
1502 .owner = THIS_MODULE,
1503 .read = hl_state_dump_read,
1504 .write = hl_state_dump_write
1505 };
1506
1507 static const struct file_operations hl_timeout_locked_fops = {
1508 .owner = THIS_MODULE,
1509 .read = hl_timeout_locked_read,
1510 .write = hl_timeout_locked_write
1511 };
1512
1513 static const struct file_operations hl_razwi_check_fops = {
1514 .owner = THIS_MODULE,
1515 .read = hl_check_razwi_happened
1516 };
1517
1518 static const struct hl_info_list hl_debugfs_list[] = {
1519 {"command_buffers", command_buffers_show, NULL},
1520 {"command_submission", command_submission_show, NULL},
1521 {"command_submission_jobs", command_submission_jobs_show, NULL},
1522 {"userptr", userptr_show, NULL},
1523 {"vm", vm_show, NULL},
1524 {"userptr_lookup", userptr_lookup_show, userptr_lookup_write},
1525 {"mmu", mmu_show, mmu_asid_va_write},
1526 {"mmu_error", mmu_ack_error, mmu_ack_error_value_write},
1527 {"engines", engines_show, NULL},
1528 };
1529
hl_debugfs_open(struct inode * inode,struct file * file)1530 static int hl_debugfs_open(struct inode *inode, struct file *file)
1531 {
1532 struct hl_debugfs_entry *node = inode->i_private;
1533
1534 return single_open(file, node->info_ent->show, node);
1535 }
1536
hl_debugfs_write(struct file * file,const char __user * buf,size_t count,loff_t * f_pos)1537 static ssize_t hl_debugfs_write(struct file *file, const char __user *buf,
1538 size_t count, loff_t *f_pos)
1539 {
1540 struct hl_debugfs_entry *node = file->f_inode->i_private;
1541
1542 if (node->info_ent->write)
1543 return node->info_ent->write(file, buf, count, f_pos);
1544 else
1545 return -EINVAL;
1546
1547 }
1548
1549 static const struct file_operations hl_debugfs_fops = {
1550 .owner = THIS_MODULE,
1551 .open = hl_debugfs_open,
1552 .read = seq_read,
1553 .write = hl_debugfs_write,
1554 .llseek = seq_lseek,
1555 .release = single_release,
1556 };
1557
add_secured_nodes(struct hl_dbg_device_entry * dev_entry,struct dentry * root)1558 static void add_secured_nodes(struct hl_dbg_device_entry *dev_entry, struct dentry *root)
1559 {
1560 debugfs_create_u8("i2c_bus",
1561 0644,
1562 root,
1563 &dev_entry->i2c_bus);
1564
1565 debugfs_create_u8("i2c_addr",
1566 0644,
1567 root,
1568 &dev_entry->i2c_addr);
1569
1570 debugfs_create_u8("i2c_reg",
1571 0644,
1572 root,
1573 &dev_entry->i2c_reg);
1574
1575 debugfs_create_u8("i2c_len",
1576 0644,
1577 root,
1578 &dev_entry->i2c_len);
1579
1580 debugfs_create_file("i2c_data",
1581 0644,
1582 root,
1583 dev_entry,
1584 &hl_i2c_data_fops);
1585
1586 debugfs_create_file("led0",
1587 0200,
1588 root,
1589 dev_entry,
1590 &hl_led0_fops);
1591
1592 debugfs_create_file("led1",
1593 0200,
1594 root,
1595 dev_entry,
1596 &hl_led1_fops);
1597
1598 debugfs_create_file("led2",
1599 0200,
1600 root,
1601 dev_entry,
1602 &hl_led2_fops);
1603 }
1604
add_files_to_device(struct hl_device * hdev,struct hl_dbg_device_entry * dev_entry,struct dentry * root)1605 static void add_files_to_device(struct hl_device *hdev, struct hl_dbg_device_entry *dev_entry,
1606 struct dentry *root)
1607 {
1608 int count = ARRAY_SIZE(hl_debugfs_list);
1609 struct hl_debugfs_entry *entry;
1610 int i;
1611
1612 debugfs_create_x64("memory_scrub_val",
1613 0644,
1614 root,
1615 &hdev->memory_scrub_val);
1616
1617 debugfs_create_file("memory_scrub",
1618 0200,
1619 root,
1620 dev_entry,
1621 &hl_mem_scrub_fops);
1622
1623 debugfs_create_x64("addr",
1624 0644,
1625 root,
1626 &dev_entry->addr);
1627
1628 debugfs_create_file("data32",
1629 0644,
1630 root,
1631 dev_entry,
1632 &hl_data32b_fops);
1633
1634 debugfs_create_file("data64",
1635 0644,
1636 root,
1637 dev_entry,
1638 &hl_data64b_fops);
1639
1640 debugfs_create_file("set_power_state",
1641 0644,
1642 root,
1643 dev_entry,
1644 &hl_power_fops);
1645
1646 debugfs_create_file("device",
1647 0644,
1648 root,
1649 dev_entry,
1650 &hl_device_fops);
1651
1652 debugfs_create_file("clk_gate",
1653 0644,
1654 root,
1655 dev_entry,
1656 &hl_clk_gate_fops);
1657
1658 debugfs_create_file("stop_on_err",
1659 0644,
1660 root,
1661 dev_entry,
1662 &hl_stop_on_err_fops);
1663
1664 debugfs_create_file("dump_security_violations",
1665 0400,
1666 root,
1667 dev_entry,
1668 &hl_security_violations_fops);
1669
1670 debugfs_create_file("dump_razwi_events",
1671 0400,
1672 root,
1673 dev_entry,
1674 &hl_razwi_check_fops);
1675
1676 debugfs_create_file("dma_size",
1677 0200,
1678 root,
1679 dev_entry,
1680 &hl_dma_size_fops);
1681
1682 debugfs_create_blob("data_dma",
1683 0400,
1684 root,
1685 &dev_entry->data_dma_blob_desc);
1686
1687 debugfs_create_file("monitor_dump_trig",
1688 0200,
1689 root,
1690 dev_entry,
1691 &hl_monitor_dump_fops);
1692
1693 debugfs_create_blob("monitor_dump",
1694 0400,
1695 root,
1696 &dev_entry->mon_dump_blob_desc);
1697
1698 debugfs_create_x8("skip_reset_on_timeout",
1699 0644,
1700 root,
1701 &hdev->reset_info.skip_reset_on_timeout);
1702
1703 debugfs_create_file("state_dump",
1704 0644,
1705 root,
1706 dev_entry,
1707 &hl_state_dump_fops);
1708
1709 debugfs_create_file("timeout_locked",
1710 0644,
1711 root,
1712 dev_entry,
1713 &hl_timeout_locked_fops);
1714
1715 debugfs_create_u32("device_release_watchdog_timeout",
1716 0644,
1717 root,
1718 &hdev->device_release_watchdog_timeout_sec);
1719
1720 debugfs_create_u16("server_type",
1721 0444,
1722 root,
1723 &hdev->asic_prop.server_type);
1724
1725 for (i = 0, entry = dev_entry->entry_arr ; i < count ; i++, entry++) {
1726 debugfs_create_file(hl_debugfs_list[i].name,
1727 0644,
1728 root,
1729 entry,
1730 &hl_debugfs_fops);
1731 entry->info_ent = &hl_debugfs_list[i];
1732 entry->dev_entry = dev_entry;
1733 }
1734 }
1735
hl_debugfs_device_init(struct hl_device * hdev)1736 int hl_debugfs_device_init(struct hl_device *hdev)
1737 {
1738 struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs;
1739 int count = ARRAY_SIZE(hl_debugfs_list);
1740
1741 dev_entry->hdev = hdev;
1742 dev_entry->entry_arr = kmalloc_array(count, sizeof(struct hl_debugfs_entry), GFP_KERNEL);
1743 if (!dev_entry->entry_arr)
1744 return -ENOMEM;
1745
1746 dev_entry->data_dma_blob_desc.size = 0;
1747 dev_entry->data_dma_blob_desc.data = NULL;
1748 dev_entry->mon_dump_blob_desc.size = 0;
1749 dev_entry->mon_dump_blob_desc.data = NULL;
1750
1751 INIT_LIST_HEAD(&dev_entry->file_list);
1752 INIT_LIST_HEAD(&dev_entry->cb_list);
1753 INIT_LIST_HEAD(&dev_entry->cs_list);
1754 INIT_LIST_HEAD(&dev_entry->cs_job_list);
1755 INIT_LIST_HEAD(&dev_entry->userptr_list);
1756 INIT_LIST_HEAD(&dev_entry->ctx_mem_hash_list);
1757 mutex_init(&dev_entry->file_mutex);
1758 init_rwsem(&dev_entry->state_dump_sem);
1759 spin_lock_init(&dev_entry->cb_spinlock);
1760 spin_lock_init(&dev_entry->cs_spinlock);
1761 spin_lock_init(&dev_entry->cs_job_spinlock);
1762 spin_lock_init(&dev_entry->userptr_spinlock);
1763 mutex_init(&dev_entry->ctx_mem_hash_mutex);
1764
1765 return 0;
1766 }
1767
hl_debugfs_device_fini(struct hl_device * hdev)1768 void hl_debugfs_device_fini(struct hl_device *hdev)
1769 {
1770 struct hl_dbg_device_entry *entry = &hdev->hl_debugfs;
1771 int i;
1772
1773 mutex_destroy(&entry->ctx_mem_hash_mutex);
1774 mutex_destroy(&entry->file_mutex);
1775
1776 vfree(entry->data_dma_blob_desc.data);
1777 vfree(entry->mon_dump_blob_desc.data);
1778
1779 for (i = 0; i < ARRAY_SIZE(entry->state_dump); ++i)
1780 vfree(entry->state_dump[i]);
1781
1782 kfree(entry->entry_arr);
1783 }
1784
hl_debugfs_add_device(struct hl_device * hdev)1785 void hl_debugfs_add_device(struct hl_device *hdev)
1786 {
1787 struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs;
1788
1789 dev_entry->root = hdev->drm.accel->debugfs_root;
1790
1791 add_files_to_device(hdev, dev_entry, dev_entry->root);
1792
1793 if (!hdev->asic_prop.fw_security_enabled)
1794 add_secured_nodes(dev_entry, dev_entry->root);
1795 }
1796
hl_debugfs_add_file(struct hl_fpriv * hpriv)1797 void hl_debugfs_add_file(struct hl_fpriv *hpriv)
1798 {
1799 struct hl_dbg_device_entry *dev_entry = &hpriv->hdev->hl_debugfs;
1800
1801 mutex_lock(&dev_entry->file_mutex);
1802 list_add(&hpriv->debugfs_list, &dev_entry->file_list);
1803 mutex_unlock(&dev_entry->file_mutex);
1804 }
1805
hl_debugfs_remove_file(struct hl_fpriv * hpriv)1806 void hl_debugfs_remove_file(struct hl_fpriv *hpriv)
1807 {
1808 struct hl_dbg_device_entry *dev_entry = &hpriv->hdev->hl_debugfs;
1809
1810 mutex_lock(&dev_entry->file_mutex);
1811 list_del(&hpriv->debugfs_list);
1812 mutex_unlock(&dev_entry->file_mutex);
1813 }
1814
hl_debugfs_add_cb(struct hl_cb * cb)1815 void hl_debugfs_add_cb(struct hl_cb *cb)
1816 {
1817 struct hl_dbg_device_entry *dev_entry = &cb->hdev->hl_debugfs;
1818
1819 spin_lock(&dev_entry->cb_spinlock);
1820 list_add(&cb->debugfs_list, &dev_entry->cb_list);
1821 spin_unlock(&dev_entry->cb_spinlock);
1822 }
1823
hl_debugfs_remove_cb(struct hl_cb * cb)1824 void hl_debugfs_remove_cb(struct hl_cb *cb)
1825 {
1826 struct hl_dbg_device_entry *dev_entry = &cb->hdev->hl_debugfs;
1827
1828 spin_lock(&dev_entry->cb_spinlock);
1829 list_del(&cb->debugfs_list);
1830 spin_unlock(&dev_entry->cb_spinlock);
1831 }
1832
hl_debugfs_add_cs(struct hl_cs * cs)1833 void hl_debugfs_add_cs(struct hl_cs *cs)
1834 {
1835 struct hl_dbg_device_entry *dev_entry = &cs->ctx->hdev->hl_debugfs;
1836
1837 spin_lock(&dev_entry->cs_spinlock);
1838 list_add(&cs->debugfs_list, &dev_entry->cs_list);
1839 spin_unlock(&dev_entry->cs_spinlock);
1840 }
1841
hl_debugfs_remove_cs(struct hl_cs * cs)1842 void hl_debugfs_remove_cs(struct hl_cs *cs)
1843 {
1844 struct hl_dbg_device_entry *dev_entry = &cs->ctx->hdev->hl_debugfs;
1845
1846 spin_lock(&dev_entry->cs_spinlock);
1847 list_del(&cs->debugfs_list);
1848 spin_unlock(&dev_entry->cs_spinlock);
1849 }
1850
hl_debugfs_add_job(struct hl_device * hdev,struct hl_cs_job * job)1851 void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job)
1852 {
1853 struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs;
1854
1855 spin_lock(&dev_entry->cs_job_spinlock);
1856 list_add(&job->debugfs_list, &dev_entry->cs_job_list);
1857 spin_unlock(&dev_entry->cs_job_spinlock);
1858 }
1859
hl_debugfs_remove_job(struct hl_device * hdev,struct hl_cs_job * job)1860 void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job)
1861 {
1862 struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs;
1863
1864 spin_lock(&dev_entry->cs_job_spinlock);
1865 list_del(&job->debugfs_list);
1866 spin_unlock(&dev_entry->cs_job_spinlock);
1867 }
1868
hl_debugfs_add_userptr(struct hl_device * hdev,struct hl_userptr * userptr)1869 void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr)
1870 {
1871 struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs;
1872
1873 spin_lock(&dev_entry->userptr_spinlock);
1874 list_add(&userptr->debugfs_list, &dev_entry->userptr_list);
1875 spin_unlock(&dev_entry->userptr_spinlock);
1876 }
1877
hl_debugfs_remove_userptr(struct hl_device * hdev,struct hl_userptr * userptr)1878 void hl_debugfs_remove_userptr(struct hl_device *hdev,
1879 struct hl_userptr *userptr)
1880 {
1881 struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs;
1882
1883 spin_lock(&dev_entry->userptr_spinlock);
1884 list_del(&userptr->debugfs_list);
1885 spin_unlock(&dev_entry->userptr_spinlock);
1886 }
1887
hl_debugfs_add_ctx_mem_hash(struct hl_device * hdev,struct hl_ctx * ctx)1888 void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx)
1889 {
1890 struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs;
1891
1892 mutex_lock(&dev_entry->ctx_mem_hash_mutex);
1893 list_add(&ctx->debugfs_list, &dev_entry->ctx_mem_hash_list);
1894 mutex_unlock(&dev_entry->ctx_mem_hash_mutex);
1895 }
1896
hl_debugfs_remove_ctx_mem_hash(struct hl_device * hdev,struct hl_ctx * ctx)1897 void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx)
1898 {
1899 struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs;
1900
1901 mutex_lock(&dev_entry->ctx_mem_hash_mutex);
1902 list_del(&ctx->debugfs_list);
1903 mutex_unlock(&dev_entry->ctx_mem_hash_mutex);
1904 }
1905
1906 /**
1907 * hl_debugfs_set_state_dump - register state dump making it accessible via
1908 * debugfs
1909 * @hdev: pointer to the device structure
1910 * @data: the actual dump data
1911 * @length: the length of the data
1912 */
hl_debugfs_set_state_dump(struct hl_device * hdev,char * data,unsigned long length)1913 void hl_debugfs_set_state_dump(struct hl_device *hdev, char *data,
1914 unsigned long length)
1915 {
1916 struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs;
1917
1918 down_write(&dev_entry->state_dump_sem);
1919
1920 dev_entry->state_dump_head = (dev_entry->state_dump_head + 1) %
1921 ARRAY_SIZE(dev_entry->state_dump);
1922 vfree(dev_entry->state_dump[dev_entry->state_dump_head]);
1923 dev_entry->state_dump[dev_entry->state_dump_head] = data;
1924
1925 up_write(&dev_entry->state_dump_sem);
1926 }
1927