1 // SPDX-License-Identifier: GPL-2.0 2 3 /* 4 * Copyright 2016-2021 HabanaLabs, Ltd. 5 * All Rights Reserved. 6 */ 7 8 #include "habanalabs.h" 9 10 #include <linux/slab.h> 11 12 static void encaps_handle_do_release(struct hl_cs_encaps_sig_handle *handle, bool put_hw_sob, 13 bool put_ctx) 14 { 15 struct hl_encaps_signals_mgr *mgr = &handle->ctx->sig_mgr; 16 17 if (put_hw_sob) 18 hw_sob_put(handle->hw_sob); 19 20 spin_lock(&mgr->lock); 21 idr_remove(&mgr->handles, handle->id); 22 spin_unlock(&mgr->lock); 23 24 if (put_ctx) 25 hl_ctx_put(handle->ctx); 26 27 kfree(handle); 28 } 29 30 void hl_encaps_release_handle_and_put_ctx(struct kref *ref) 31 { 32 struct hl_cs_encaps_sig_handle *handle = 33 container_of(ref, struct hl_cs_encaps_sig_handle, refcount); 34 35 encaps_handle_do_release(handle, false, true); 36 } 37 38 static void hl_encaps_release_handle_and_put_sob(struct kref *ref) 39 { 40 struct hl_cs_encaps_sig_handle *handle = 41 container_of(ref, struct hl_cs_encaps_sig_handle, refcount); 42 43 encaps_handle_do_release(handle, true, false); 44 } 45 46 void hl_encaps_release_handle_and_put_sob_ctx(struct kref *ref) 47 { 48 struct hl_cs_encaps_sig_handle *handle = 49 container_of(ref, struct hl_cs_encaps_sig_handle, refcount); 50 51 encaps_handle_do_release(handle, true, true); 52 } 53 54 static void hl_encaps_sig_mgr_init(struct hl_encaps_signals_mgr *mgr) 55 { 56 spin_lock_init(&mgr->lock); 57 idr_init(&mgr->handles); 58 } 59 60 static void hl_encaps_sig_mgr_fini(struct hl_device *hdev, struct hl_encaps_signals_mgr *mgr) 61 { 62 struct hl_cs_encaps_sig_handle *handle; 63 struct idr *idp; 64 u32 id; 65 66 idp = &mgr->handles; 67 68 /* The IDR is expected to be empty at this stage, because any left signal should have been 69 * released as part of CS roll-back. 70 */ 71 if (!idr_is_empty(idp)) { 72 dev_warn(hdev->dev, 73 "device released while some encaps signals handles are still allocated\n"); 74 idr_for_each_entry(idp, handle, id) 75 kref_put(&handle->refcount, hl_encaps_release_handle_and_put_sob); 76 } 77 78 idr_destroy(&mgr->handles); 79 } 80 81 static void hl_ctx_fini(struct hl_ctx *ctx) 82 { 83 struct hl_device *hdev = ctx->hdev; 84 int i; 85 86 /* Release all allocated HW block mapped list entries and destroy 87 * the mutex. 88 */ 89 hl_hw_block_mem_fini(ctx); 90 91 /* 92 * If we arrived here, there are no jobs waiting for this context 93 * on its queues so we can safely remove it. 94 * This is because for each CS, we increment the ref count and for 95 * every CS that was finished we decrement it and we won't arrive 96 * to this function unless the ref count is 0 97 */ 98 99 for (i = 0 ; i < hdev->asic_prop.max_pending_cs ; i++) 100 hl_fence_put(ctx->cs_pending[i]); 101 102 kfree(ctx->cs_pending); 103 104 if (ctx->asid != HL_KERNEL_ASID_ID) { 105 dev_dbg(hdev->dev, "closing user context, asid=%u\n", ctx->asid); 106 107 /* The engines are stopped as there is no executing CS, but the 108 * Coresight might be still working by accessing addresses 109 * related to the stopped engines. Hence stop it explicitly. 110 */ 111 if (hdev->in_debug) 112 hl_device_set_debug_mode(hdev, ctx, false); 113 114 hdev->asic_funcs->ctx_fini(ctx); 115 116 hl_dec_ctx_fini(ctx); 117 118 hl_cb_va_pool_fini(ctx); 119 hl_vm_ctx_fini(ctx); 120 hl_asid_free(hdev, ctx->asid); 121 hl_encaps_sig_mgr_fini(hdev, &ctx->sig_mgr); 122 mutex_destroy(&ctx->ts_reg_lock); 123 } else { 124 dev_dbg(hdev->dev, "closing kernel context\n"); 125 hdev->asic_funcs->ctx_fini(ctx); 126 hl_vm_ctx_fini(ctx); 127 hl_mmu_ctx_fini(ctx); 128 } 129 } 130 131 void hl_ctx_do_release(struct kref *ref) 132 { 133 struct hl_ctx *ctx; 134 135 ctx = container_of(ref, struct hl_ctx, refcount); 136 137 hl_ctx_fini(ctx); 138 139 if (ctx->hpriv) { 140 struct hl_fpriv *hpriv = ctx->hpriv; 141 142 mutex_lock(&hpriv->ctx_lock); 143 hpriv->ctx = NULL; 144 mutex_unlock(&hpriv->ctx_lock); 145 146 hl_hpriv_put(hpriv); 147 } 148 149 kfree(ctx); 150 } 151 152 int hl_ctx_create(struct hl_device *hdev, struct hl_fpriv *hpriv) 153 { 154 struct hl_ctx_mgr *ctx_mgr = &hpriv->ctx_mgr; 155 struct hl_ctx *ctx; 156 int rc; 157 158 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 159 if (!ctx) { 160 rc = -ENOMEM; 161 goto out_err; 162 } 163 164 mutex_lock(&ctx_mgr->lock); 165 rc = idr_alloc(&ctx_mgr->handles, ctx, 1, 0, GFP_KERNEL); 166 mutex_unlock(&ctx_mgr->lock); 167 168 if (rc < 0) { 169 dev_err(hdev->dev, "Failed to allocate IDR for a new CTX\n"); 170 goto free_ctx; 171 } 172 173 ctx->handle = rc; 174 175 rc = hl_ctx_init(hdev, ctx, false); 176 if (rc) 177 goto remove_from_idr; 178 179 hl_hpriv_get(hpriv); 180 ctx->hpriv = hpriv; 181 182 /* TODO: remove for multiple contexts per process */ 183 hpriv->ctx = ctx; 184 185 /* TODO: remove the following line for multiple process support */ 186 hdev->is_compute_ctx_active = true; 187 188 return 0; 189 190 remove_from_idr: 191 mutex_lock(&ctx_mgr->lock); 192 idr_remove(&ctx_mgr->handles, ctx->handle); 193 mutex_unlock(&ctx_mgr->lock); 194 free_ctx: 195 kfree(ctx); 196 out_err: 197 return rc; 198 } 199 200 int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx) 201 { 202 int rc = 0, i; 203 204 ctx->hdev = hdev; 205 206 kref_init(&ctx->refcount); 207 208 ctx->cs_sequence = 1; 209 spin_lock_init(&ctx->cs_lock); 210 atomic_set(&ctx->thread_ctx_switch_token, 1); 211 ctx->thread_ctx_switch_wait_token = 0; 212 ctx->cs_pending = kcalloc(hdev->asic_prop.max_pending_cs, 213 sizeof(struct hl_fence *), 214 GFP_KERNEL); 215 if (!ctx->cs_pending) 216 return -ENOMEM; 217 218 INIT_LIST_HEAD(&ctx->outcome_store.used_list); 219 INIT_LIST_HEAD(&ctx->outcome_store.free_list); 220 hash_init(ctx->outcome_store.outcome_map); 221 for (i = 0; i < ARRAY_SIZE(ctx->outcome_store.nodes_pool); ++i) 222 list_add(&ctx->outcome_store.nodes_pool[i].list_link, 223 &ctx->outcome_store.free_list); 224 225 hl_hw_block_mem_init(ctx); 226 227 if (is_kernel_ctx) { 228 ctx->asid = HL_KERNEL_ASID_ID; /* Kernel driver gets ASID 0 */ 229 rc = hl_vm_ctx_init(ctx); 230 if (rc) { 231 dev_err(hdev->dev, "Failed to init mem ctx module\n"); 232 rc = -ENOMEM; 233 goto err_hw_block_mem_fini; 234 } 235 236 rc = hdev->asic_funcs->ctx_init(ctx); 237 if (rc) { 238 dev_err(hdev->dev, "ctx_init failed\n"); 239 goto err_vm_ctx_fini; 240 } 241 } else { 242 ctx->asid = hl_asid_alloc(hdev); 243 if (!ctx->asid) { 244 dev_err(hdev->dev, "No free ASID, failed to create context\n"); 245 rc = -ENOMEM; 246 goto err_hw_block_mem_fini; 247 } 248 249 rc = hl_vm_ctx_init(ctx); 250 if (rc) { 251 dev_err(hdev->dev, "Failed to init mem ctx module\n"); 252 rc = -ENOMEM; 253 goto err_asid_free; 254 } 255 256 rc = hl_cb_va_pool_init(ctx); 257 if (rc) { 258 dev_err(hdev->dev, 259 "Failed to init VA pool for mapped CB\n"); 260 goto err_vm_ctx_fini; 261 } 262 263 rc = hdev->asic_funcs->ctx_init(ctx); 264 if (rc) { 265 dev_err(hdev->dev, "ctx_init failed\n"); 266 goto err_cb_va_pool_fini; 267 } 268 269 hl_encaps_sig_mgr_init(&ctx->sig_mgr); 270 271 mutex_init(&ctx->ts_reg_lock); 272 273 dev_dbg(hdev->dev, "create user context, comm=\"%s\", asid=%u\n", 274 current->comm, ctx->asid); 275 } 276 277 return 0; 278 279 err_cb_va_pool_fini: 280 hl_cb_va_pool_fini(ctx); 281 err_vm_ctx_fini: 282 hl_vm_ctx_fini(ctx); 283 err_asid_free: 284 if (ctx->asid != HL_KERNEL_ASID_ID) 285 hl_asid_free(hdev, ctx->asid); 286 err_hw_block_mem_fini: 287 hl_hw_block_mem_fini(ctx); 288 kfree(ctx->cs_pending); 289 290 return rc; 291 } 292 293 static int hl_ctx_get_unless_zero(struct hl_ctx *ctx) 294 { 295 return kref_get_unless_zero(&ctx->refcount); 296 } 297 298 void hl_ctx_get(struct hl_ctx *ctx) 299 { 300 kref_get(&ctx->refcount); 301 } 302 303 int hl_ctx_put(struct hl_ctx *ctx) 304 { 305 return kref_put(&ctx->refcount, hl_ctx_do_release); 306 } 307 308 struct hl_ctx *hl_get_compute_ctx(struct hl_device *hdev) 309 { 310 struct hl_ctx *ctx = NULL; 311 struct hl_fpriv *hpriv; 312 313 mutex_lock(&hdev->fpriv_list_lock); 314 315 list_for_each_entry(hpriv, &hdev->fpriv_list, dev_node) { 316 mutex_lock(&hpriv->ctx_lock); 317 ctx = hpriv->ctx; 318 if (ctx && !hl_ctx_get_unless_zero(ctx)) 319 ctx = NULL; 320 mutex_unlock(&hpriv->ctx_lock); 321 322 /* There can only be a single user which has opened the compute device, so exit 323 * immediately once we find its context or if we see that it has been released 324 */ 325 break; 326 } 327 328 mutex_unlock(&hdev->fpriv_list_lock); 329 330 return ctx; 331 } 332 333 /* 334 * hl_ctx_get_fence_locked - get CS fence under CS lock 335 * 336 * @ctx: pointer to the context structure. 337 * @seq: CS sequences number 338 * 339 * @return valid fence pointer on success, NULL if fence is gone, otherwise 340 * error pointer. 341 * 342 * NOTE: this function shall be called with cs_lock locked 343 */ 344 static struct hl_fence *hl_ctx_get_fence_locked(struct hl_ctx *ctx, u64 seq) 345 { 346 struct asic_fixed_properties *asic_prop = &ctx->hdev->asic_prop; 347 struct hl_fence *fence; 348 349 if (seq >= ctx->cs_sequence) 350 return ERR_PTR(-EINVAL); 351 352 if (seq + asic_prop->max_pending_cs < ctx->cs_sequence) 353 return NULL; 354 355 fence = ctx->cs_pending[seq & (asic_prop->max_pending_cs - 1)]; 356 hl_fence_get(fence); 357 return fence; 358 } 359 360 struct hl_fence *hl_ctx_get_fence(struct hl_ctx *ctx, u64 seq) 361 { 362 struct hl_fence *fence; 363 364 spin_lock(&ctx->cs_lock); 365 366 fence = hl_ctx_get_fence_locked(ctx, seq); 367 368 spin_unlock(&ctx->cs_lock); 369 370 return fence; 371 } 372 373 /* 374 * hl_ctx_get_fences - get multiple CS fences under the same CS lock 375 * 376 * @ctx: pointer to the context structure. 377 * @seq_arr: array of CS sequences to wait for 378 * @fence: fence array to store the CS fences 379 * @arr_len: length of seq_arr and fence_arr 380 * 381 * @return 0 on success, otherwise non 0 error code 382 */ 383 int hl_ctx_get_fences(struct hl_ctx *ctx, u64 *seq_arr, 384 struct hl_fence **fence, u32 arr_len) 385 { 386 struct hl_fence **fence_arr_base = fence; 387 int i, rc = 0; 388 389 spin_lock(&ctx->cs_lock); 390 391 for (i = 0; i < arr_len; i++, fence++) { 392 u64 seq = seq_arr[i]; 393 394 *fence = hl_ctx_get_fence_locked(ctx, seq); 395 396 if (IS_ERR(*fence)) { 397 dev_err(ctx->hdev->dev, 398 "Failed to get fence for CS with seq 0x%llx\n", 399 seq); 400 rc = PTR_ERR(*fence); 401 break; 402 } 403 } 404 405 spin_unlock(&ctx->cs_lock); 406 407 if (rc) 408 hl_fences_put(fence_arr_base, i); 409 410 return rc; 411 } 412 413 /* 414 * hl_ctx_mgr_init - initialize the context manager 415 * 416 * @ctx_mgr: pointer to context manager structure 417 * 418 * This manager is an object inside the hpriv object of the user process. 419 * The function is called when a user process opens the FD. 420 */ 421 void hl_ctx_mgr_init(struct hl_ctx_mgr *ctx_mgr) 422 { 423 mutex_init(&ctx_mgr->lock); 424 idr_init(&ctx_mgr->handles); 425 } 426 427 /* 428 * hl_ctx_mgr_fini - finalize the context manager 429 * 430 * @hdev: pointer to device structure 431 * @ctx_mgr: pointer to context manager structure 432 * 433 * This function goes over all the contexts in the manager and frees them. 434 * It is called when a process closes the FD. 435 */ 436 void hl_ctx_mgr_fini(struct hl_device *hdev, struct hl_ctx_mgr *ctx_mgr) 437 { 438 struct hl_ctx *ctx; 439 struct idr *idp; 440 u32 id; 441 442 idp = &ctx_mgr->handles; 443 444 idr_for_each_entry(idp, ctx, id) 445 kref_put(&ctx->refcount, hl_ctx_do_release); 446 447 idr_destroy(&ctx_mgr->handles); 448 mutex_destroy(&ctx_mgr->lock); 449 } 450