xref: /freebsd/contrib/llvm-project/openmp/runtime/src/z_Linux_util.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 /*
2  * z_Linux_util.cpp -- platform specific routines.
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "kmp.h"
14 #include "kmp_affinity.h"
15 #include "kmp_i18n.h"
16 #include "kmp_io.h"
17 #include "kmp_itt.h"
18 #include "kmp_lock.h"
19 #include "kmp_stats.h"
20 #include "kmp_str.h"
21 #include "kmp_wait_release.h"
22 #include "kmp_wrapper_getpid.h"
23 
24 #if !KMP_OS_DRAGONFLY && !KMP_OS_FREEBSD && !KMP_OS_NETBSD && !KMP_OS_OPENBSD
25 #include <alloca.h>
26 #endif
27 #include <math.h> // HUGE_VAL.
28 #if KMP_OS_LINUX
29 #include <semaphore.h>
30 #endif // KMP_OS_LINUX
31 #include <sys/resource.h>
32 #if KMP_OS_AIX
33 #include <sys/ldr.h>
34 #include <libperfstat.h>
35 #else
36 #include <sys/syscall.h>
37 #endif
38 #include <sys/time.h>
39 #include <sys/times.h>
40 #include <unistd.h>
41 
42 #if KMP_OS_LINUX
43 #include <sys/sysinfo.h>
44 #if KMP_USE_FUTEX
45 // We should really include <futex.h>, but that causes compatibility problems on
46 // different Linux* OS distributions that either require that you include (or
47 // break when you try to include) <pci/types.h>. Since all we need is the two
48 // macros below (which are part of the kernel ABI, so can't change) we just
49 // define the constants here and don't include <futex.h>
50 #ifndef FUTEX_WAIT
51 #define FUTEX_WAIT 0
52 #endif
53 #ifndef FUTEX_WAKE
54 #define FUTEX_WAKE 1
55 #endif
56 #endif
57 #elif KMP_OS_DARWIN
58 #include <mach/mach.h>
59 #include <sys/sysctl.h>
60 #elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD
61 #include <sys/types.h>
62 #include <sys/sysctl.h>
63 #include <sys/user.h>
64 #include <pthread_np.h>
65 #if KMP_OS_DRAGONFLY
66 #include <kvm.h>
67 #endif
68 #elif KMP_OS_NETBSD || KMP_OS_OPENBSD
69 #include <sys/types.h>
70 #include <sys/sysctl.h>
71 #if KMP_OS_NETBSD
72 #include <sched.h>
73 #endif
74 #elif KMP_OS_SOLARIS
75 #include <libproc.h>
76 #include <procfs.h>
77 #include <thread.h>
78 #include <sys/loadavg.h>
79 #endif
80 
81 #include <ctype.h>
82 #include <dirent.h>
83 #include <fcntl.h>
84 
85 struct kmp_sys_timer {
86   struct timespec start;
87 };
88 
89 #ifndef TIMEVAL_TO_TIMESPEC
90 // Convert timeval to timespec.
91 #define TIMEVAL_TO_TIMESPEC(tv, ts)                                            \
92   do {                                                                         \
93     (ts)->tv_sec = (tv)->tv_sec;                                               \
94     (ts)->tv_nsec = (tv)->tv_usec * 1000;                                      \
95   } while (0)
96 #endif
97 
98 // Convert timespec to nanoseconds.
99 #define TS2NS(timespec)                                                        \
100   (((timespec).tv_sec * (long int)1e9) + (timespec).tv_nsec)
101 
102 static struct kmp_sys_timer __kmp_sys_timer_data;
103 
104 #if KMP_HANDLE_SIGNALS
105 typedef void (*sig_func_t)(int);
106 STATIC_EFI2_WORKAROUND struct sigaction __kmp_sighldrs[NSIG];
107 static sigset_t __kmp_sigset;
108 #endif
109 
110 static int __kmp_init_runtime = FALSE;
111 
112 static int __kmp_fork_count = 0;
113 
114 static pthread_condattr_t __kmp_suspend_cond_attr;
115 static pthread_mutexattr_t __kmp_suspend_mutex_attr;
116 
117 static kmp_cond_align_t __kmp_wait_cv;
118 static kmp_mutex_align_t __kmp_wait_mx;
119 
120 kmp_uint64 __kmp_ticks_per_msec = 1000000;
121 kmp_uint64 __kmp_ticks_per_usec = 1000;
122 
123 #ifdef DEBUG_SUSPEND
__kmp_print_cond(char * buffer,kmp_cond_align_t * cond)124 static void __kmp_print_cond(char *buffer, kmp_cond_align_t *cond) {
125   KMP_SNPRINTF(buffer, 128, "(cond (lock (%ld, %d)), (descr (%p)))",
126                cond->c_cond.__c_lock.__status, cond->c_cond.__c_lock.__spinlock,
127                cond->c_cond.__c_waiting);
128 }
129 #endif
130 
131 #if ((KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_DRAGONFLY ||   \
132       KMP_OS_AIX) &&                                                           \
133      KMP_AFFINITY_SUPPORTED)
134 
135 /* Affinity support */
136 
__kmp_affinity_bind_thread(int which)137 void __kmp_affinity_bind_thread(int which) {
138   KMP_ASSERT2(KMP_AFFINITY_CAPABLE(),
139               "Illegal set affinity operation when not capable");
140 
141   kmp_affin_mask_t *mask;
142   KMP_CPU_ALLOC_ON_STACK(mask);
143   KMP_CPU_ZERO(mask);
144   KMP_CPU_SET(which, mask);
145   __kmp_set_system_affinity(mask, TRUE);
146   KMP_CPU_FREE_FROM_STACK(mask);
147 }
148 
149 #if KMP_OS_AIX
__kmp_affinity_determine_capable(const char * env_var)150 void __kmp_affinity_determine_capable(const char *env_var) {
151   // All versions of AIX support bindprocessor().
152 
153   size_t mask_size = __kmp_xproc / CHAR_BIT;
154   // Round up to byte boundary.
155   if (__kmp_xproc % CHAR_BIT)
156     ++mask_size;
157 
158   // Round up to the mask_size_type boundary.
159   if (mask_size % sizeof(__kmp_affin_mask_size))
160     mask_size += sizeof(__kmp_affin_mask_size) -
161                  mask_size % sizeof(__kmp_affin_mask_size);
162   KMP_AFFINITY_ENABLE(mask_size);
163   KA_TRACE(10,
164            ("__kmp_affinity_determine_capable: "
165             "AIX OS affinity interface bindprocessor functional (mask size = "
166             "%" KMP_SIZE_T_SPEC ").\n",
167             __kmp_affin_mask_size));
168 }
169 
170 #else // !KMP_OS_AIX
171 
172 /* Determine if we can access affinity functionality on this version of
173  * Linux* OS by checking __NR_sched_{get,set}affinity system calls, and set
174  * __kmp_affin_mask_size to the appropriate value (0 means not capable). */
__kmp_affinity_determine_capable(const char * env_var)175 void __kmp_affinity_determine_capable(const char *env_var) {
176   // Check and see if the OS supports thread affinity.
177 
178 #if KMP_OS_LINUX
179 #define KMP_CPU_SET_SIZE_LIMIT (1024 * 1024)
180 #define KMP_CPU_SET_TRY_SIZE CACHE_LINE
181 #elif KMP_OS_FREEBSD || KMP_OS_DRAGONFLY
182 #define KMP_CPU_SET_SIZE_LIMIT (sizeof(cpuset_t))
183 #elif KMP_OS_NETBSD
184 #define KMP_CPU_SET_SIZE_LIMIT (256)
185 #endif
186 
187   int verbose = __kmp_affinity.flags.verbose;
188   int warnings = __kmp_affinity.flags.warnings;
189   enum affinity_type type = __kmp_affinity.type;
190 
191 #if KMP_OS_LINUX
192   long gCode;
193   unsigned char *buf;
194   buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT);
195 
196   // If the syscall returns a suggestion for the size,
197   // then we don't have to search for an appropriate size.
198   gCode = syscall(__NR_sched_getaffinity, 0, KMP_CPU_SET_TRY_SIZE, buf);
199   KA_TRACE(30, ("__kmp_affinity_determine_capable: "
200                 "initial getaffinity call returned %ld errno = %d\n",
201                 gCode, errno));
202 
203   if (gCode < 0 && errno != EINVAL) {
204     // System call not supported
205     if (verbose ||
206         (warnings && (type != affinity_none) && (type != affinity_default) &&
207          (type != affinity_disabled))) {
208       int error = errno;
209       kmp_msg_t err_code = KMP_ERR(error);
210       __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
211                 err_code, __kmp_msg_null);
212       if (__kmp_generate_warnings == kmp_warnings_off) {
213         __kmp_str_free(&err_code.str);
214       }
215     }
216     KMP_AFFINITY_DISABLE();
217     KMP_INTERNAL_FREE(buf);
218     return;
219   } else if (gCode > 0) {
220     // The optimal situation: the OS returns the size of the buffer it expects.
221     KMP_AFFINITY_ENABLE(gCode);
222     KA_TRACE(10, ("__kmp_affinity_determine_capable: "
223                   "affinity supported (mask size %d)\n",
224                   (int)__kmp_affin_mask_size));
225     KMP_INTERNAL_FREE(buf);
226     return;
227   }
228 
229   // Call the getaffinity system call repeatedly with increasing set sizes
230   // until we succeed, or reach an upper bound on the search.
231   KA_TRACE(30, ("__kmp_affinity_determine_capable: "
232                 "searching for proper set size\n"));
233   int size;
234   for (size = 1; size <= KMP_CPU_SET_SIZE_LIMIT; size *= 2) {
235     gCode = syscall(__NR_sched_getaffinity, 0, size, buf);
236     KA_TRACE(30, ("__kmp_affinity_determine_capable: "
237                   "getaffinity for mask size %ld returned %ld errno = %d\n",
238                   size, gCode, errno));
239 
240     if (gCode < 0) {
241       if (errno == ENOSYS) {
242         // We shouldn't get here
243         KA_TRACE(30, ("__kmp_affinity_determine_capable: "
244                       "inconsistent OS call behavior: errno == ENOSYS for mask "
245                       "size %d\n",
246                       size));
247         if (verbose ||
248             (warnings && (type != affinity_none) &&
249              (type != affinity_default) && (type != affinity_disabled))) {
250           int error = errno;
251           kmp_msg_t err_code = KMP_ERR(error);
252           __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
253                     err_code, __kmp_msg_null);
254           if (__kmp_generate_warnings == kmp_warnings_off) {
255             __kmp_str_free(&err_code.str);
256           }
257         }
258         KMP_AFFINITY_DISABLE();
259         KMP_INTERNAL_FREE(buf);
260         return;
261       }
262       continue;
263     }
264 
265     KMP_AFFINITY_ENABLE(gCode);
266     KA_TRACE(10, ("__kmp_affinity_determine_capable: "
267                   "affinity supported (mask size %d)\n",
268                   (int)__kmp_affin_mask_size));
269     KMP_INTERNAL_FREE(buf);
270     return;
271   }
272 #elif KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_DRAGONFLY
273   long gCode;
274   unsigned char *buf;
275   buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT);
276   gCode = pthread_getaffinity_np(pthread_self(), KMP_CPU_SET_SIZE_LIMIT,
277                                  reinterpret_cast<cpuset_t *>(buf));
278   KA_TRACE(30, ("__kmp_affinity_determine_capable: "
279                 "initial getaffinity call returned %d errno = %d\n",
280                 gCode, errno));
281   if (gCode == 0) {
282     KMP_AFFINITY_ENABLE(KMP_CPU_SET_SIZE_LIMIT);
283     KA_TRACE(10, ("__kmp_affinity_determine_capable: "
284                   "affinity supported (mask size %d)\n",
285                   (int)__kmp_affin_mask_size));
286     KMP_INTERNAL_FREE(buf);
287     return;
288   }
289 #endif
290   KMP_INTERNAL_FREE(buf);
291 
292   // Affinity is not supported
293   KMP_AFFINITY_DISABLE();
294   KA_TRACE(10, ("__kmp_affinity_determine_capable: "
295                 "cannot determine mask size - affinity not supported\n"));
296   if (verbose || (warnings && (type != affinity_none) &&
297                   (type != affinity_default) && (type != affinity_disabled))) {
298     KMP_WARNING(AffCantGetMaskSize, env_var);
299   }
300 }
301 #endif // KMP_OS_AIX
302 #endif // (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD ||                  \
303            KMP_OS_DRAGONFLY || KMP_OS_AIX) && KMP_AFFINITY_SUPPORTED
304 
305 #if KMP_USE_FUTEX
306 
__kmp_futex_determine_capable()307 int __kmp_futex_determine_capable() {
308   int loc = 0;
309   long rc = syscall(__NR_futex, &loc, FUTEX_WAKE, 1, NULL, NULL, 0);
310   int retval = (rc == 0) || (errno != ENOSYS);
311 
312   KA_TRACE(10,
313            ("__kmp_futex_determine_capable: rc = %d errno = %d\n", rc, errno));
314   KA_TRACE(10, ("__kmp_futex_determine_capable: futex syscall%s supported\n",
315                 retval ? "" : " not"));
316 
317   return retval;
318 }
319 
320 #endif // KMP_USE_FUTEX
321 
322 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_WASM) && (!KMP_ASM_INTRINS)
323 /* Only 32-bit "add-exchange" instruction on IA-32 architecture causes us to
324    use compare_and_store for these routines */
325 
__kmp_test_then_or8(volatile kmp_int8 * p,kmp_int8 d)326 kmp_int8 __kmp_test_then_or8(volatile kmp_int8 *p, kmp_int8 d) {
327   kmp_int8 old_value, new_value;
328 
329   old_value = TCR_1(*p);
330   new_value = old_value | d;
331 
332   while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
333     KMP_CPU_PAUSE();
334     old_value = TCR_1(*p);
335     new_value = old_value | d;
336   }
337   return old_value;
338 }
339 
__kmp_test_then_and8(volatile kmp_int8 * p,kmp_int8 d)340 kmp_int8 __kmp_test_then_and8(volatile kmp_int8 *p, kmp_int8 d) {
341   kmp_int8 old_value, new_value;
342 
343   old_value = TCR_1(*p);
344   new_value = old_value & d;
345 
346   while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
347     KMP_CPU_PAUSE();
348     old_value = TCR_1(*p);
349     new_value = old_value & d;
350   }
351   return old_value;
352 }
353 
__kmp_test_then_or32(volatile kmp_uint32 * p,kmp_uint32 d)354 kmp_uint32 __kmp_test_then_or32(volatile kmp_uint32 *p, kmp_uint32 d) {
355   kmp_uint32 old_value, new_value;
356 
357   old_value = TCR_4(*p);
358   new_value = old_value | d;
359 
360   while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
361     KMP_CPU_PAUSE();
362     old_value = TCR_4(*p);
363     new_value = old_value | d;
364   }
365   return old_value;
366 }
367 
__kmp_test_then_and32(volatile kmp_uint32 * p,kmp_uint32 d)368 kmp_uint32 __kmp_test_then_and32(volatile kmp_uint32 *p, kmp_uint32 d) {
369   kmp_uint32 old_value, new_value;
370 
371   old_value = TCR_4(*p);
372   new_value = old_value & d;
373 
374   while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
375     KMP_CPU_PAUSE();
376     old_value = TCR_4(*p);
377     new_value = old_value & d;
378   }
379   return old_value;
380 }
381 
382 #if KMP_ARCH_X86 || KMP_ARCH_WASM
__kmp_test_then_add8(volatile kmp_int8 * p,kmp_int8 d)383 kmp_int8 __kmp_test_then_add8(volatile kmp_int8 *p, kmp_int8 d) {
384   kmp_int8 old_value, new_value;
385 
386   old_value = TCR_1(*p);
387   new_value = old_value + d;
388 
389   while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
390     KMP_CPU_PAUSE();
391     old_value = TCR_1(*p);
392     new_value = old_value + d;
393   }
394   return old_value;
395 }
396 
__kmp_test_then_add64(volatile kmp_int64 * p,kmp_int64 d)397 kmp_int64 __kmp_test_then_add64(volatile kmp_int64 *p, kmp_int64 d) {
398   kmp_int64 old_value, new_value;
399 
400   old_value = TCR_8(*p);
401   new_value = old_value + d;
402 
403   while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
404     KMP_CPU_PAUSE();
405     old_value = TCR_8(*p);
406     new_value = old_value + d;
407   }
408   return old_value;
409 }
410 #endif /* KMP_ARCH_X86 */
411 
__kmp_test_then_or64(volatile kmp_uint64 * p,kmp_uint64 d)412 kmp_uint64 __kmp_test_then_or64(volatile kmp_uint64 *p, kmp_uint64 d) {
413   kmp_uint64 old_value, new_value;
414 
415   old_value = TCR_8(*p);
416   new_value = old_value | d;
417   while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
418     KMP_CPU_PAUSE();
419     old_value = TCR_8(*p);
420     new_value = old_value | d;
421   }
422   return old_value;
423 }
424 
__kmp_test_then_and64(volatile kmp_uint64 * p,kmp_uint64 d)425 kmp_uint64 __kmp_test_then_and64(volatile kmp_uint64 *p, kmp_uint64 d) {
426   kmp_uint64 old_value, new_value;
427 
428   old_value = TCR_8(*p);
429   new_value = old_value & d;
430   while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
431     KMP_CPU_PAUSE();
432     old_value = TCR_8(*p);
433     new_value = old_value & d;
434   }
435   return old_value;
436 }
437 
438 #endif /* (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) */
439 
__kmp_terminate_thread(int gtid)440 void __kmp_terminate_thread(int gtid) {
441   int status;
442   kmp_info_t *th = __kmp_threads[gtid];
443 
444   if (!th)
445     return;
446 
447 #ifdef KMP_CANCEL_THREADS
448   KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid));
449   status = pthread_cancel(th->th.th_info.ds.ds_thread);
450   if (status != 0 && status != ESRCH) {
451     __kmp_fatal(KMP_MSG(CantTerminateWorkerThread), KMP_ERR(status),
452                 __kmp_msg_null);
453   }
454 #endif
455   KMP_YIELD(TRUE);
456 } //
457 
458 /* Set thread stack info.
459    If values are unreasonable, assume call failed and use incremental stack
460    refinement method instead. Returns TRUE if the stack parameters could be
461    determined exactly, FALSE if incremental refinement is necessary. */
__kmp_set_stack_info(int gtid,kmp_info_t * th)462 static kmp_int32 __kmp_set_stack_info(int gtid, kmp_info_t *th) {
463   int stack_data;
464 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||     \
465     KMP_OS_HURD || KMP_OS_SOLARIS || KMP_OS_AIX
466   int status;
467   size_t size = 0;
468   void *addr = 0;
469 
470   /* Always do incremental stack refinement for ubermaster threads since the
471      initial thread stack range can be reduced by sibling thread creation so
472      pthread_attr_getstack may cause thread gtid aliasing */
473   if (!KMP_UBER_GTID(gtid)) {
474 
475 #if KMP_OS_SOLARIS
476     stack_t s;
477     if ((status = thr_stksegment(&s)) < 0) {
478       KMP_CHECK_SYSFAIL("thr_stksegment", status);
479     }
480 
481     addr = s.ss_sp;
482     size = s.ss_size;
483     KA_TRACE(60, ("__kmp_set_stack_info: T#%d thr_stksegment returned size:"
484                   " %lu, low addr: %p\n",
485                   gtid, size, addr));
486 #else
487     pthread_attr_t attr;
488     /* Fetch the real thread attributes */
489     status = pthread_attr_init(&attr);
490     KMP_CHECK_SYSFAIL("pthread_attr_init", status);
491 #if KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD
492     status = pthread_attr_get_np(pthread_self(), &attr);
493     KMP_CHECK_SYSFAIL("pthread_attr_get_np", status);
494 #else
495     status = pthread_getattr_np(pthread_self(), &attr);
496     KMP_CHECK_SYSFAIL("pthread_getattr_np", status);
497 #endif
498     status = pthread_attr_getstack(&attr, &addr, &size);
499     KMP_CHECK_SYSFAIL("pthread_attr_getstack", status);
500     KA_TRACE(60,
501              ("__kmp_set_stack_info: T#%d pthread_attr_getstack returned size:"
502               " %lu, low addr: %p\n",
503               gtid, size, addr));
504     status = pthread_attr_destroy(&attr);
505     KMP_CHECK_SYSFAIL("pthread_attr_destroy", status);
506 #endif
507   }
508 
509   if (size != 0 && addr != 0) { // was stack parameter determination successful?
510     /* Store the correct base and size */
511     TCW_PTR(th->th.th_info.ds.ds_stackbase, (((char *)addr) + size));
512     TCW_PTR(th->th.th_info.ds.ds_stacksize, size);
513     TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE);
514     return TRUE;
515   }
516 #endif /* KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD  \
517           || KMP_OS_HURD || KMP_OS_SOLARIS */
518   /* Use incremental refinement starting from initial conservative estimate */
519   TCW_PTR(th->th.th_info.ds.ds_stacksize, 0);
520   TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data);
521   TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE);
522   return FALSE;
523 }
524 
__kmp_launch_worker(void * thr)525 static void *__kmp_launch_worker(void *thr) {
526   int status, old_type, old_state;
527 #ifdef KMP_BLOCK_SIGNALS
528   sigset_t new_set, old_set;
529 #endif /* KMP_BLOCK_SIGNALS */
530   void *exit_val;
531 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||     \
532     KMP_OS_OPENBSD || KMP_OS_HURD || KMP_OS_SOLARIS || KMP_OS_AIX
533   void *volatile padding = 0;
534 #endif
535   int gtid;
536 
537   gtid = ((kmp_info_t *)thr)->th.th_info.ds.ds_gtid;
538   __kmp_gtid_set_specific(gtid);
539 #ifdef KMP_TDATA_GTID
540   __kmp_gtid = gtid;
541 #endif
542 #if KMP_STATS_ENABLED
543   // set thread local index to point to thread-specific stats
544   __kmp_stats_thread_ptr = ((kmp_info_t *)thr)->th.th_stats;
545   __kmp_stats_thread_ptr->startLife();
546   KMP_SET_THREAD_STATE(IDLE);
547   KMP_INIT_PARTITIONED_TIMERS(OMP_idle);
548 #endif
549 
550 #if USE_ITT_BUILD
551   __kmp_itt_thread_name(gtid);
552 #endif /* USE_ITT_BUILD */
553 
554 #if KMP_AFFINITY_SUPPORTED
555   __kmp_affinity_bind_init_mask(gtid);
556 #endif
557 
558 #ifdef KMP_CANCEL_THREADS
559   status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
560   KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
561   // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
562   status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
563   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
564 #endif
565 
566 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
567   // Set FP control regs to be a copy of the parallel initialization thread's.
568   __kmp_clear_x87_fpu_status_word();
569   __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word);
570   __kmp_load_mxcsr(&__kmp_init_mxcsr);
571 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
572 
573 #ifdef KMP_BLOCK_SIGNALS
574   status = sigfillset(&new_set);
575   KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
576   status = pthread_sigmask(SIG_BLOCK, &new_set, &old_set);
577   KMP_CHECK_SYSFAIL("pthread_sigmask", status);
578 #endif /* KMP_BLOCK_SIGNALS */
579 
580 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||     \
581     KMP_OS_OPENBSD || KMP_OS_HURD || KMP_OS_SOLARIS || KMP_OS_AIX
582   if (__kmp_stkoffset > 0 && gtid > 0) {
583     padding = KMP_ALLOCA(gtid * __kmp_stkoffset);
584     (void)padding;
585   }
586 #endif
587 
588   KMP_MB();
589   __kmp_set_stack_info(gtid, (kmp_info_t *)thr);
590 
591   __kmp_check_stack_overlap((kmp_info_t *)thr);
592 
593   exit_val = __kmp_launch_thread((kmp_info_t *)thr);
594 
595 #ifdef KMP_BLOCK_SIGNALS
596   status = pthread_sigmask(SIG_SETMASK, &old_set, NULL);
597   KMP_CHECK_SYSFAIL("pthread_sigmask", status);
598 #endif /* KMP_BLOCK_SIGNALS */
599 
600   return exit_val;
601 }
602 
603 #if KMP_USE_MONITOR
604 /* The monitor thread controls all of the threads in the complex */
605 
__kmp_launch_monitor(void * thr)606 static void *__kmp_launch_monitor(void *thr) {
607   int status, old_type, old_state;
608 #ifdef KMP_BLOCK_SIGNALS
609   sigset_t new_set;
610 #endif /* KMP_BLOCK_SIGNALS */
611   struct timespec interval;
612 
613   KMP_MB(); /* Flush all pending memory write invalidates.  */
614 
615   KA_TRACE(10, ("__kmp_launch_monitor: #1 launched\n"));
616 
617   /* register us as the monitor thread */
618   __kmp_gtid_set_specific(KMP_GTID_MONITOR);
619 #ifdef KMP_TDATA_GTID
620   __kmp_gtid = KMP_GTID_MONITOR;
621 #endif
622 
623   KMP_MB();
624 
625 #if USE_ITT_BUILD
626   // Instruct Intel(R) Threading Tools to ignore monitor thread.
627   __kmp_itt_thread_ignore();
628 #endif /* USE_ITT_BUILD */
629 
630   __kmp_set_stack_info(((kmp_info_t *)thr)->th.th_info.ds.ds_gtid,
631                        (kmp_info_t *)thr);
632 
633   __kmp_check_stack_overlap((kmp_info_t *)thr);
634 
635 #ifdef KMP_CANCEL_THREADS
636   status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
637   KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
638   // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
639   status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
640   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
641 #endif
642 
643 #if KMP_REAL_TIME_FIX
644   // This is a potential fix which allows application with real-time scheduling
645   // policy work. However, decision about the fix is not made yet, so it is
646   // disabled by default.
647   { // Are program started with real-time scheduling policy?
648     int sched = sched_getscheduler(0);
649     if (sched == SCHED_FIFO || sched == SCHED_RR) {
650       // Yes, we are a part of real-time application. Try to increase the
651       // priority of the monitor.
652       struct sched_param param;
653       int max_priority = sched_get_priority_max(sched);
654       int rc;
655       KMP_WARNING(RealTimeSchedNotSupported);
656       sched_getparam(0, &param);
657       if (param.sched_priority < max_priority) {
658         param.sched_priority += 1;
659         rc = sched_setscheduler(0, sched, &param);
660         if (rc != 0) {
661           int error = errno;
662           kmp_msg_t err_code = KMP_ERR(error);
663           __kmp_msg(kmp_ms_warning, KMP_MSG(CantChangeMonitorPriority),
664                     err_code, KMP_MSG(MonitorWillStarve), __kmp_msg_null);
665           if (__kmp_generate_warnings == kmp_warnings_off) {
666             __kmp_str_free(&err_code.str);
667           }
668         }
669       } else {
670         // We cannot abort here, because number of CPUs may be enough for all
671         // the threads, including the monitor thread, so application could
672         // potentially work...
673         __kmp_msg(kmp_ms_warning, KMP_MSG(RunningAtMaxPriority),
674                   KMP_MSG(MonitorWillStarve), KMP_HNT(RunningAtMaxPriority),
675                   __kmp_msg_null);
676       }
677     }
678     // AC: free thread that waits for monitor started
679     TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
680   }
681 #endif // KMP_REAL_TIME_FIX
682 
683   KMP_MB(); /* Flush all pending memory write invalidates.  */
684 
685   if (__kmp_monitor_wakeups == 1) {
686     interval.tv_sec = 1;
687     interval.tv_nsec = 0;
688   } else {
689     interval.tv_sec = 0;
690     interval.tv_nsec = (KMP_NSEC_PER_SEC / __kmp_monitor_wakeups);
691   }
692 
693   KA_TRACE(10, ("__kmp_launch_monitor: #2 monitor\n"));
694 
695   while (!TCR_4(__kmp_global.g.g_done)) {
696     struct timespec now;
697     struct timeval tval;
698 
699     /*  This thread monitors the state of the system */
700 
701     KA_TRACE(15, ("__kmp_launch_monitor: update\n"));
702 
703     status = gettimeofday(&tval, NULL);
704     KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
705     TIMEVAL_TO_TIMESPEC(&tval, &now);
706 
707     now.tv_sec += interval.tv_sec;
708     now.tv_nsec += interval.tv_nsec;
709 
710     if (now.tv_nsec >= KMP_NSEC_PER_SEC) {
711       now.tv_sec += 1;
712       now.tv_nsec -= KMP_NSEC_PER_SEC;
713     }
714 
715     status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
716     KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
717     // AC: the monitor should not fall asleep if g_done has been set
718     if (!TCR_4(__kmp_global.g.g_done)) { // check once more under mutex
719       status = pthread_cond_timedwait(&__kmp_wait_cv.c_cond,
720                                       &__kmp_wait_mx.m_mutex, &now);
721       if (status != 0) {
722         if (status != ETIMEDOUT && status != EINTR) {
723           KMP_SYSFAIL("pthread_cond_timedwait", status);
724         }
725       }
726     }
727     status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
728     KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
729 
730     TCW_4(__kmp_global.g.g_time.dt.t_value,
731           TCR_4(__kmp_global.g.g_time.dt.t_value) + 1);
732 
733     KMP_MB(); /* Flush all pending memory write invalidates.  */
734   }
735 
736   KA_TRACE(10, ("__kmp_launch_monitor: #3 cleanup\n"));
737 
738 #ifdef KMP_BLOCK_SIGNALS
739   status = sigfillset(&new_set);
740   KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
741   status = pthread_sigmask(SIG_UNBLOCK, &new_set, NULL);
742   KMP_CHECK_SYSFAIL("pthread_sigmask", status);
743 #endif /* KMP_BLOCK_SIGNALS */
744 
745   KA_TRACE(10, ("__kmp_launch_monitor: #4 finished\n"));
746 
747   if (__kmp_global.g.g_abort != 0) {
748     /* now we need to terminate the worker threads  */
749     /* the value of t_abort is the signal we caught */
750 
751     int gtid;
752 
753     KA_TRACE(10, ("__kmp_launch_monitor: #5 terminate sig=%d\n",
754                   __kmp_global.g.g_abort));
755 
756     /* terminate the OpenMP worker threads */
757     /* TODO this is not valid for sibling threads!!
758      * the uber master might not be 0 anymore.. */
759     for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid)
760       __kmp_terminate_thread(gtid);
761 
762     __kmp_cleanup();
763 
764     KA_TRACE(10, ("__kmp_launch_monitor: #6 raise sig=%d\n",
765                   __kmp_global.g.g_abort));
766 
767     if (__kmp_global.g.g_abort > 0)
768       raise(__kmp_global.g.g_abort);
769   }
770 
771   KA_TRACE(10, ("__kmp_launch_monitor: #7 exit\n"));
772 
773   return thr;
774 }
775 #endif // KMP_USE_MONITOR
776 
__kmp_create_worker(int gtid,kmp_info_t * th,size_t stack_size)777 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) {
778   pthread_t handle;
779   pthread_attr_t thread_attr;
780   int status;
781 
782   th->th.th_info.ds.ds_gtid = gtid;
783 
784 #if KMP_STATS_ENABLED
785   // sets up worker thread stats
786   __kmp_acquire_tas_lock(&__kmp_stats_lock, gtid);
787 
788   // th->th.th_stats is used to transfer thread-specific stats-pointer to
789   // __kmp_launch_worker. So when thread is created (goes into
790   // __kmp_launch_worker) it will set its thread local pointer to
791   // th->th.th_stats
792   if (!KMP_UBER_GTID(gtid)) {
793     th->th.th_stats = __kmp_stats_list->push_back(gtid);
794   } else {
795     // For root threads, __kmp_stats_thread_ptr is set in __kmp_register_root(),
796     // so set the th->th.th_stats field to it.
797     th->th.th_stats = __kmp_stats_thread_ptr;
798   }
799   __kmp_release_tas_lock(&__kmp_stats_lock, gtid);
800 
801 #endif // KMP_STATS_ENABLED
802 
803   if (KMP_UBER_GTID(gtid)) {
804     KA_TRACE(10, ("__kmp_create_worker: uber thread (%d)\n", gtid));
805     th->th.th_info.ds.ds_thread = pthread_self();
806     __kmp_set_stack_info(gtid, th);
807     __kmp_check_stack_overlap(th);
808     return;
809   }
810 
811   KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid));
812 
813   KMP_MB(); /* Flush all pending memory write invalidates.  */
814 
815 #ifdef KMP_THREAD_ATTR
816   status = pthread_attr_init(&thread_attr);
817   if (status != 0) {
818     __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
819   }
820   status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
821   if (status != 0) {
822     __kmp_fatal(KMP_MSG(CantSetWorkerState), KMP_ERR(status), __kmp_msg_null);
823   }
824 
825   /* Set stack size for this thread now.
826      The multiple of 2 is there because on some machines, requesting an unusual
827      stacksize causes the thread to have an offset before the dummy alloca()
828      takes place to create the offset.  Since we want the user to have a
829      sufficient stacksize AND support a stack offset, we alloca() twice the
830      offset so that the upcoming alloca() does not eliminate any premade offset,
831      and also gives the user the stack space they requested for all threads */
832   stack_size += gtid * __kmp_stkoffset * 2;
833 
834   KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
835                 "__kmp_stksize = %lu bytes, final stacksize = %lu bytes\n",
836                 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
837 
838 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
839   status = pthread_attr_setstacksize(&thread_attr, stack_size);
840 #ifdef KMP_BACKUP_STKSIZE
841   if (status != 0) {
842     if (!__kmp_env_stksize) {
843       stack_size = KMP_BACKUP_STKSIZE + gtid * __kmp_stkoffset;
844       __kmp_stksize = KMP_BACKUP_STKSIZE;
845       KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
846                     "__kmp_stksize = %lu bytes, (backup) final stacksize = %lu "
847                     "bytes\n",
848                     gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
849       status = pthread_attr_setstacksize(&thread_attr, stack_size);
850     }
851   }
852 #endif /* KMP_BACKUP_STKSIZE */
853   if (status != 0) {
854     __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
855                 KMP_HNT(ChangeWorkerStackSize), __kmp_msg_null);
856   }
857 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
858 
859 #endif /* KMP_THREAD_ATTR */
860 
861   status =
862       pthread_create(&handle, &thread_attr, __kmp_launch_worker, (void *)th);
863   if (status != 0 || !handle) { // ??? Why do we check handle??
864 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
865     if (status == EINVAL) {
866       __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
867                   KMP_HNT(IncreaseWorkerStackSize), __kmp_msg_null);
868     }
869     if (status == ENOMEM) {
870       __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
871                   KMP_HNT(DecreaseWorkerStackSize), __kmp_msg_null);
872     }
873 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
874     if (status == EAGAIN) {
875       __kmp_fatal(KMP_MSG(NoResourcesForWorkerThread), KMP_ERR(status),
876                   KMP_HNT(Decrease_NUM_THREADS), __kmp_msg_null);
877     }
878     KMP_SYSFAIL("pthread_create", status);
879   }
880 
881   th->th.th_info.ds.ds_thread = handle;
882 
883 #ifdef KMP_THREAD_ATTR
884   status = pthread_attr_destroy(&thread_attr);
885   if (status) {
886     kmp_msg_t err_code = KMP_ERR(status);
887     __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
888               __kmp_msg_null);
889     if (__kmp_generate_warnings == kmp_warnings_off) {
890       __kmp_str_free(&err_code.str);
891     }
892   }
893 #endif /* KMP_THREAD_ATTR */
894 
895   KMP_MB(); /* Flush all pending memory write invalidates.  */
896 
897   KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid));
898 
899 } // __kmp_create_worker
900 
901 #if KMP_USE_MONITOR
__kmp_create_monitor(kmp_info_t * th)902 void __kmp_create_monitor(kmp_info_t *th) {
903   pthread_t handle;
904   pthread_attr_t thread_attr;
905   size_t size;
906   int status;
907   int auto_adj_size = FALSE;
908 
909   if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
910     // We don't need monitor thread in case of MAX_BLOCKTIME
911     KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of "
912                   "MAX blocktime\n"));
913     th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op
914     th->th.th_info.ds.ds_gtid = 0;
915     return;
916   }
917   KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n"));
918 
919   KMP_MB(); /* Flush all pending memory write invalidates.  */
920 
921   th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR;
922   th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR;
923 #if KMP_REAL_TIME_FIX
924   TCW_4(__kmp_global.g.g_time.dt.t_value,
925         -1); // Will use it for synchronization a bit later.
926 #else
927   TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
928 #endif // KMP_REAL_TIME_FIX
929 
930 #ifdef KMP_THREAD_ATTR
931   if (__kmp_monitor_stksize == 0) {
932     __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
933     auto_adj_size = TRUE;
934   }
935   status = pthread_attr_init(&thread_attr);
936   if (status != 0) {
937     __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
938   }
939   status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
940   if (status != 0) {
941     __kmp_fatal(KMP_MSG(CantSetMonitorState), KMP_ERR(status), __kmp_msg_null);
942   }
943 
944 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
945   status = pthread_attr_getstacksize(&thread_attr, &size);
946   KMP_CHECK_SYSFAIL("pthread_attr_getstacksize", status);
947 #else
948   size = __kmp_sys_min_stksize;
949 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
950 #endif /* KMP_THREAD_ATTR */
951 
952   if (__kmp_monitor_stksize == 0) {
953     __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
954   }
955   if (__kmp_monitor_stksize < __kmp_sys_min_stksize) {
956     __kmp_monitor_stksize = __kmp_sys_min_stksize;
957   }
958 
959   KA_TRACE(10, ("__kmp_create_monitor: default stacksize = %lu bytes,"
960                 "requested stacksize = %lu bytes\n",
961                 size, __kmp_monitor_stksize));
962 
963 retry:
964 
965 /* Set stack size for this thread now. */
966 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
967   KA_TRACE(10, ("__kmp_create_monitor: setting stacksize = %lu bytes,",
968                 __kmp_monitor_stksize));
969   status = pthread_attr_setstacksize(&thread_attr, __kmp_monitor_stksize);
970   if (status != 0) {
971     if (auto_adj_size) {
972       __kmp_monitor_stksize *= 2;
973       goto retry;
974     }
975     kmp_msg_t err_code = KMP_ERR(status);
976     __kmp_msg(kmp_ms_warning, // should this be fatal?  BB
977               KMP_MSG(CantSetMonitorStackSize, (long int)__kmp_monitor_stksize),
978               err_code, KMP_HNT(ChangeMonitorStackSize), __kmp_msg_null);
979     if (__kmp_generate_warnings == kmp_warnings_off) {
980       __kmp_str_free(&err_code.str);
981     }
982   }
983 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
984 
985   status =
986       pthread_create(&handle, &thread_attr, __kmp_launch_monitor, (void *)th);
987 
988   if (status != 0) {
989 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
990     if (status == EINVAL) {
991       if (auto_adj_size && (__kmp_monitor_stksize < (size_t)0x40000000)) {
992         __kmp_monitor_stksize *= 2;
993         goto retry;
994       }
995       __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
996                   KMP_ERR(status), KMP_HNT(IncreaseMonitorStackSize),
997                   __kmp_msg_null);
998     }
999     if (status == ENOMEM) {
1000       __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
1001                   KMP_ERR(status), KMP_HNT(DecreaseMonitorStackSize),
1002                   __kmp_msg_null);
1003     }
1004 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
1005     if (status == EAGAIN) {
1006       __kmp_fatal(KMP_MSG(NoResourcesForMonitorThread), KMP_ERR(status),
1007                   KMP_HNT(DecreaseNumberOfThreadsInUse), __kmp_msg_null);
1008     }
1009     KMP_SYSFAIL("pthread_create", status);
1010   }
1011 
1012   th->th.th_info.ds.ds_thread = handle;
1013 
1014 #if KMP_REAL_TIME_FIX
1015   // Wait for the monitor thread is really started and set its *priority*.
1016   KMP_DEBUG_ASSERT(sizeof(kmp_uint32) ==
1017                    sizeof(__kmp_global.g.g_time.dt.t_value));
1018   __kmp_wait_4((kmp_uint32 volatile *)&__kmp_global.g.g_time.dt.t_value, -1,
1019                &__kmp_neq_4, NULL);
1020 #endif // KMP_REAL_TIME_FIX
1021 
1022 #ifdef KMP_THREAD_ATTR
1023   status = pthread_attr_destroy(&thread_attr);
1024   if (status != 0) {
1025     kmp_msg_t err_code = KMP_ERR(status);
1026     __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
1027               __kmp_msg_null);
1028     if (__kmp_generate_warnings == kmp_warnings_off) {
1029       __kmp_str_free(&err_code.str);
1030     }
1031   }
1032 #endif
1033 
1034   KMP_MB(); /* Flush all pending memory write invalidates.  */
1035 
1036   KA_TRACE(10, ("__kmp_create_monitor: monitor created %#.8lx\n",
1037                 th->th.th_info.ds.ds_thread));
1038 
1039 } // __kmp_create_monitor
1040 #endif // KMP_USE_MONITOR
1041 
__kmp_exit_thread(int exit_status)1042 void __kmp_exit_thread(int exit_status) {
1043 #if KMP_OS_WASI
1044 // TODO: the wasm32-wasi-threads target does not yet support pthread_exit.
1045 #else
1046   pthread_exit((void *)(intptr_t)exit_status);
1047 #endif
1048 } // __kmp_exit_thread
1049 
1050 #if KMP_USE_MONITOR
1051 void __kmp_resume_monitor();
1052 
__kmp_reap_monitor(kmp_info_t * th)1053 extern "C" void __kmp_reap_monitor(kmp_info_t *th) {
1054   int status;
1055   void *exit_val;
1056 
1057   KA_TRACE(10, ("__kmp_reap_monitor: try to reap monitor thread with handle"
1058                 " %#.8lx\n",
1059                 th->th.th_info.ds.ds_thread));
1060 
1061   // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR.
1062   // If both tid and gtid are 0, it means the monitor did not ever start.
1063   // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down.
1064   KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid);
1065   if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) {
1066     KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n"));
1067     return;
1068   }
1069 
1070   KMP_MB(); /* Flush all pending memory write invalidates.  */
1071 
1072   /* First, check to see whether the monitor thread exists to wake it up. This
1073      is to avoid performance problem when the monitor sleeps during
1074      blocktime-size interval */
1075 
1076   status = pthread_kill(th->th.th_info.ds.ds_thread, 0);
1077   if (status != ESRCH) {
1078     __kmp_resume_monitor(); // Wake up the monitor thread
1079   }
1080   KA_TRACE(10, ("__kmp_reap_monitor: try to join with monitor\n"));
1081   status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1082   if (exit_val != th) {
1083     __kmp_fatal(KMP_MSG(ReapMonitorError), KMP_ERR(status), __kmp_msg_null);
1084   }
1085 
1086   th->th.th_info.ds.ds_tid = KMP_GTID_DNE;
1087   th->th.th_info.ds.ds_gtid = KMP_GTID_DNE;
1088 
1089   KA_TRACE(10, ("__kmp_reap_monitor: done reaping monitor thread with handle"
1090                 " %#.8lx\n",
1091                 th->th.th_info.ds.ds_thread));
1092 
1093   KMP_MB(); /* Flush all pending memory write invalidates.  */
1094 }
1095 #else
1096 // Empty symbol to export (see exports_so.txt) when
1097 // monitor thread feature is disabled
__kmp_reap_monitor(kmp_info_t * th)1098 extern "C" void __kmp_reap_monitor(kmp_info_t *th) { (void)th; }
1099 #endif // KMP_USE_MONITOR
1100 
__kmp_reap_worker(kmp_info_t * th)1101 void __kmp_reap_worker(kmp_info_t *th) {
1102   int status;
1103   void *exit_val;
1104 
1105   KMP_MB(); /* Flush all pending memory write invalidates.  */
1106 
1107   KA_TRACE(
1108       10, ("__kmp_reap_worker: try to reap T#%d\n", th->th.th_info.ds.ds_gtid));
1109 
1110   status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1111 #ifdef KMP_DEBUG
1112   /* Don't expose these to the user until we understand when they trigger */
1113   if (status != 0) {
1114     __kmp_fatal(KMP_MSG(ReapWorkerError), KMP_ERR(status), __kmp_msg_null);
1115   }
1116   if (exit_val != th) {
1117     KA_TRACE(10, ("__kmp_reap_worker: worker T#%d did not reap properly, "
1118                   "exit_val = %p\n",
1119                   th->th.th_info.ds.ds_gtid, exit_val));
1120   }
1121 #else
1122   (void)status; // unused variable
1123 #endif /* KMP_DEBUG */
1124 
1125   KA_TRACE(10, ("__kmp_reap_worker: done reaping T#%d\n",
1126                 th->th.th_info.ds.ds_gtid));
1127 
1128   KMP_MB(); /* Flush all pending memory write invalidates.  */
1129 }
1130 
1131 #if KMP_HANDLE_SIGNALS
1132 
__kmp_null_handler(int signo)1133 static void __kmp_null_handler(int signo) {
1134   //  Do nothing, for doing SIG_IGN-type actions.
1135 } // __kmp_null_handler
1136 
__kmp_team_handler(int signo)1137 static void __kmp_team_handler(int signo) {
1138   if (__kmp_global.g.g_abort == 0) {
1139 /* Stage 1 signal handler, let's shut down all of the threads */
1140 #ifdef KMP_DEBUG
1141     __kmp_debug_printf("__kmp_team_handler: caught signal = %d\n", signo);
1142 #endif
1143     switch (signo) {
1144     case SIGHUP:
1145     case SIGINT:
1146     case SIGQUIT:
1147     case SIGILL:
1148     case SIGABRT:
1149     case SIGFPE:
1150     case SIGBUS:
1151     case SIGSEGV:
1152 #ifdef SIGSYS
1153     case SIGSYS:
1154 #endif
1155     case SIGTERM:
1156       if (__kmp_debug_buf) {
1157         __kmp_dump_debug_buffer();
1158       }
1159       __kmp_unregister_library(); // cleanup shared memory
1160       KMP_MB(); // Flush all pending memory write invalidates.
1161       TCW_4(__kmp_global.g.g_abort, signo);
1162       KMP_MB(); // Flush all pending memory write invalidates.
1163       TCW_4(__kmp_global.g.g_done, TRUE);
1164       KMP_MB(); // Flush all pending memory write invalidates.
1165       break;
1166     default:
1167 #ifdef KMP_DEBUG
1168       __kmp_debug_printf("__kmp_team_handler: unknown signal type");
1169 #endif
1170       break;
1171     }
1172   }
1173 } // __kmp_team_handler
1174 
__kmp_sigaction(int signum,const struct sigaction * act,struct sigaction * oldact)1175 static void __kmp_sigaction(int signum, const struct sigaction *act,
1176                             struct sigaction *oldact) {
1177   int rc = sigaction(signum, act, oldact);
1178   KMP_CHECK_SYSFAIL_ERRNO("sigaction", rc);
1179 }
1180 
__kmp_install_one_handler(int sig,sig_func_t handler_func,int parallel_init)1181 static void __kmp_install_one_handler(int sig, sig_func_t handler_func,
1182                                       int parallel_init) {
1183   KMP_MB(); // Flush all pending memory write invalidates.
1184   KB_TRACE(60,
1185            ("__kmp_install_one_handler( %d, ..., %d )\n", sig, parallel_init));
1186   if (parallel_init) {
1187     struct sigaction new_action;
1188     struct sigaction old_action;
1189     new_action.sa_handler = handler_func;
1190     new_action.sa_flags = 0;
1191     sigfillset(&new_action.sa_mask);
1192     __kmp_sigaction(sig, &new_action, &old_action);
1193     if (old_action.sa_handler == __kmp_sighldrs[sig].sa_handler) {
1194       sigaddset(&__kmp_sigset, sig);
1195     } else {
1196       // Restore/keep user's handler if one previously installed.
1197       __kmp_sigaction(sig, &old_action, NULL);
1198     }
1199   } else {
1200     // Save initial/system signal handlers to see if user handlers installed.
1201     __kmp_sigaction(sig, NULL, &__kmp_sighldrs[sig]);
1202   }
1203   KMP_MB(); // Flush all pending memory write invalidates.
1204 } // __kmp_install_one_handler
1205 
__kmp_remove_one_handler(int sig)1206 static void __kmp_remove_one_handler(int sig) {
1207   KB_TRACE(60, ("__kmp_remove_one_handler( %d )\n", sig));
1208   if (sigismember(&__kmp_sigset, sig)) {
1209     struct sigaction old;
1210     KMP_MB(); // Flush all pending memory write invalidates.
1211     __kmp_sigaction(sig, &__kmp_sighldrs[sig], &old);
1212     if ((old.sa_handler != __kmp_team_handler) &&
1213         (old.sa_handler != __kmp_null_handler)) {
1214       // Restore the users signal handler.
1215       KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, "
1216                     "restoring: sig=%d\n",
1217                     sig));
1218       __kmp_sigaction(sig, &old, NULL);
1219     }
1220     sigdelset(&__kmp_sigset, sig);
1221     KMP_MB(); // Flush all pending memory write invalidates.
1222   }
1223 } // __kmp_remove_one_handler
1224 
__kmp_install_signals(int parallel_init)1225 void __kmp_install_signals(int parallel_init) {
1226   KB_TRACE(10, ("__kmp_install_signals( %d )\n", parallel_init));
1227   if (__kmp_handle_signals || !parallel_init) {
1228     // If ! parallel_init, we do not install handlers, just save original
1229     // handlers. Let us do it even __handle_signals is 0.
1230     sigemptyset(&__kmp_sigset);
1231     __kmp_install_one_handler(SIGHUP, __kmp_team_handler, parallel_init);
1232     __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init);
1233     __kmp_install_one_handler(SIGQUIT, __kmp_team_handler, parallel_init);
1234     __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init);
1235     __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init);
1236     __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init);
1237     __kmp_install_one_handler(SIGBUS, __kmp_team_handler, parallel_init);
1238     __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init);
1239 #ifdef SIGSYS
1240     __kmp_install_one_handler(SIGSYS, __kmp_team_handler, parallel_init);
1241 #endif // SIGSYS
1242     __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init);
1243 #ifdef SIGPIPE
1244     __kmp_install_one_handler(SIGPIPE, __kmp_team_handler, parallel_init);
1245 #endif // SIGPIPE
1246   }
1247 } // __kmp_install_signals
1248 
__kmp_remove_signals(void)1249 void __kmp_remove_signals(void) {
1250   int sig;
1251   KB_TRACE(10, ("__kmp_remove_signals()\n"));
1252   for (sig = 1; sig < NSIG; ++sig) {
1253     __kmp_remove_one_handler(sig);
1254   }
1255 } // __kmp_remove_signals
1256 
1257 #endif // KMP_HANDLE_SIGNALS
1258 
__kmp_enable(int new_state)1259 void __kmp_enable(int new_state) {
1260 #ifdef KMP_CANCEL_THREADS
1261   int status, old_state;
1262   status = pthread_setcancelstate(new_state, &old_state);
1263   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1264   KMP_DEBUG_ASSERT(old_state == PTHREAD_CANCEL_DISABLE);
1265 #endif
1266 }
1267 
__kmp_disable(int * old_state)1268 void __kmp_disable(int *old_state) {
1269 #ifdef KMP_CANCEL_THREADS
1270   int status;
1271   status = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, old_state);
1272   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1273 #endif
1274 }
1275 
__kmp_atfork_prepare(void)1276 static void __kmp_atfork_prepare(void) {
1277   __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
1278   __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
1279 }
1280 
__kmp_atfork_parent(void)1281 static void __kmp_atfork_parent(void) {
1282   __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1283   __kmp_release_bootstrap_lock(&__kmp_initz_lock);
1284 }
1285 
1286 /* Reset the library so execution in the child starts "all over again" with
1287    clean data structures in initial states.  Don't worry about freeing memory
1288    allocated by parent, just abandon it to be safe. */
__kmp_atfork_child(void)1289 static void __kmp_atfork_child(void) {
1290   __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1291   __kmp_release_bootstrap_lock(&__kmp_initz_lock);
1292   /* TODO make sure this is done right for nested/sibling */
1293   // ATT:  Memory leaks are here? TODO: Check it and fix.
1294   /* KMP_ASSERT( 0 ); */
1295 
1296   ++__kmp_fork_count;
1297 
1298 #if KMP_AFFINITY_SUPPORTED
1299 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_DRAGONFLY ||     \
1300     KMP_OS_AIX
1301   // reset the affinity in the child to the initial thread
1302   // affinity in the parent
1303   kmp_set_thread_affinity_mask_initial();
1304 #endif
1305   // Set default not to bind threads tightly in the child (we're expecting
1306   // over-subscription after the fork and this can improve things for
1307   // scripting languages that use OpenMP inside process-parallel code).
1308   if (__kmp_nested_proc_bind.bind_types != NULL) {
1309     __kmp_nested_proc_bind.bind_types[0] = proc_bind_false;
1310   }
1311   for (kmp_affinity_t *affinity : __kmp_affinities)
1312     *affinity = KMP_AFFINITY_INIT(affinity->env_var);
1313   __kmp_affin_fullMask = nullptr;
1314   __kmp_affin_origMask = nullptr;
1315   __kmp_topology = nullptr;
1316 #endif // KMP_AFFINITY_SUPPORTED
1317 
1318 #if KMP_USE_MONITOR
1319   __kmp_init_monitor = 0;
1320 #endif
1321   __kmp_init_parallel = FALSE;
1322   __kmp_init_middle = FALSE;
1323   __kmp_init_serial = FALSE;
1324   TCW_4(__kmp_init_gtid, FALSE);
1325   __kmp_init_common = FALSE;
1326 
1327   TCW_4(__kmp_init_user_locks, FALSE);
1328 #if !KMP_USE_DYNAMIC_LOCK
1329   __kmp_user_lock_table.used = 1;
1330   __kmp_user_lock_table.allocated = 0;
1331   __kmp_user_lock_table.table = NULL;
1332   __kmp_lock_blocks = NULL;
1333 #endif
1334 
1335   __kmp_all_nth = 0;
1336   TCW_4(__kmp_nth, 0);
1337 
1338   __kmp_thread_pool = NULL;
1339   __kmp_thread_pool_insert_pt = NULL;
1340   __kmp_team_pool = NULL;
1341 
1342   /* Must actually zero all the *cache arguments passed to __kmpc_threadprivate
1343      here so threadprivate doesn't use stale data */
1344   KA_TRACE(10, ("__kmp_atfork_child: checking cache address list %p\n",
1345                 __kmp_threadpriv_cache_list));
1346 
1347   while (__kmp_threadpriv_cache_list != NULL) {
1348 
1349     if (*__kmp_threadpriv_cache_list->addr != NULL) {
1350       KC_TRACE(50, ("__kmp_atfork_child: zeroing cache at address %p\n",
1351                     &(*__kmp_threadpriv_cache_list->addr)));
1352 
1353       *__kmp_threadpriv_cache_list->addr = NULL;
1354     }
1355     __kmp_threadpriv_cache_list = __kmp_threadpriv_cache_list->next;
1356   }
1357 
1358   __kmp_init_runtime = FALSE;
1359 
1360   /* reset statically initialized locks */
1361   __kmp_init_bootstrap_lock(&__kmp_initz_lock);
1362   __kmp_init_bootstrap_lock(&__kmp_stdio_lock);
1363   __kmp_init_bootstrap_lock(&__kmp_console_lock);
1364   __kmp_init_bootstrap_lock(&__kmp_task_team_lock);
1365 
1366 #if USE_ITT_BUILD
1367   __kmp_itt_reset(); // reset ITT's global state
1368 #endif /* USE_ITT_BUILD */
1369 
1370   {
1371     // Child process often get terminated without any use of OpenMP. That might
1372     // cause mapped shared memory file to be left unattended. Thus we postpone
1373     // library registration till middle initialization in the child process.
1374     __kmp_need_register_serial = FALSE;
1375     __kmp_serial_initialize();
1376   }
1377 
1378   /* This is necessary to make sure no stale data is left around */
1379   /* AC: customers complain that we use unsafe routines in the atfork
1380      handler. Mathworks: dlsym() is unsafe. We call dlsym and dlopen
1381      in dynamic_link when check the presence of shared tbbmalloc library.
1382      Suggestion is to make the library initialization lazier, similar
1383      to what done for __kmpc_begin(). */
1384   // TODO: synchronize all static initializations with regular library
1385   //       startup; look at kmp_global.cpp and etc.
1386   //__kmp_internal_begin ();
1387 }
1388 
__kmp_register_atfork(void)1389 void __kmp_register_atfork(void) {
1390   if (__kmp_need_register_atfork) {
1391 #if !KMP_OS_WASI
1392     int status = pthread_atfork(__kmp_atfork_prepare, __kmp_atfork_parent,
1393                                 __kmp_atfork_child);
1394     KMP_CHECK_SYSFAIL("pthread_atfork", status);
1395 #endif
1396     __kmp_need_register_atfork = FALSE;
1397   }
1398 }
1399 
__kmp_suspend_initialize(void)1400 void __kmp_suspend_initialize(void) {
1401   int status;
1402   status = pthread_mutexattr_init(&__kmp_suspend_mutex_attr);
1403   KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1404   status = pthread_condattr_init(&__kmp_suspend_cond_attr);
1405   KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1406 }
1407 
__kmp_suspend_initialize_thread(kmp_info_t * th)1408 void __kmp_suspend_initialize_thread(kmp_info_t *th) {
1409   int old_value = KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count);
1410   int new_value = __kmp_fork_count + 1;
1411   // Return if already initialized
1412   if (old_value == new_value)
1413     return;
1414   // Wait, then return if being initialized
1415   if (old_value == -1 || !__kmp_atomic_compare_store(
1416                              &th->th.th_suspend_init_count, old_value, -1)) {
1417     while (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) != new_value) {
1418       KMP_CPU_PAUSE();
1419     }
1420   } else {
1421     // Claim to be the initializer and do initializations
1422     int status;
1423     status = pthread_cond_init(&th->th.th_suspend_cv.c_cond,
1424                                &__kmp_suspend_cond_attr);
1425     KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1426     status = pthread_mutex_init(&th->th.th_suspend_mx.m_mutex,
1427                                 &__kmp_suspend_mutex_attr);
1428     KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1429     KMP_ATOMIC_ST_REL(&th->th.th_suspend_init_count, new_value);
1430   }
1431 }
1432 
__kmp_suspend_uninitialize_thread(kmp_info_t * th)1433 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) {
1434   if (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) > __kmp_fork_count) {
1435     /* this means we have initialize the suspension pthread objects for this
1436        thread in this instance of the process */
1437     int status;
1438 
1439     status = pthread_cond_destroy(&th->th.th_suspend_cv.c_cond);
1440     if (status != 0 && status != EBUSY) {
1441       KMP_SYSFAIL("pthread_cond_destroy", status);
1442     }
1443     status = pthread_mutex_destroy(&th->th.th_suspend_mx.m_mutex);
1444     if (status != 0 && status != EBUSY) {
1445       KMP_SYSFAIL("pthread_mutex_destroy", status);
1446     }
1447     --th->th.th_suspend_init_count;
1448     KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count) ==
1449                      __kmp_fork_count);
1450   }
1451 }
1452 
1453 // return true if lock obtained, false otherwise
__kmp_try_suspend_mx(kmp_info_t * th)1454 int __kmp_try_suspend_mx(kmp_info_t *th) {
1455   return (pthread_mutex_trylock(&th->th.th_suspend_mx.m_mutex) == 0);
1456 }
1457 
__kmp_lock_suspend_mx(kmp_info_t * th)1458 void __kmp_lock_suspend_mx(kmp_info_t *th) {
1459   int status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex);
1460   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1461 }
1462 
__kmp_unlock_suspend_mx(kmp_info_t * th)1463 void __kmp_unlock_suspend_mx(kmp_info_t *th) {
1464   int status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1465   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1466 }
1467 
1468 /* This routine puts the calling thread to sleep after setting the
1469    sleep bit for the indicated flag variable to true. */
1470 template <class C>
__kmp_suspend_template(int th_gtid,C * flag)1471 static inline void __kmp_suspend_template(int th_gtid, C *flag) {
1472   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_suspend);
1473   kmp_info_t *th = __kmp_threads[th_gtid];
1474   int status;
1475   typename C::flag_t old_spin;
1476 
1477   KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag = %p\n", th_gtid,
1478                 flag->get()));
1479 
1480   __kmp_suspend_initialize_thread(th);
1481 
1482   __kmp_lock_suspend_mx(th);
1483 
1484   KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for spin(%p)\n",
1485                 th_gtid, flag->get()));
1486 
1487   /* TODO: shouldn't this use release semantics to ensure that
1488      __kmp_suspend_initialize_thread gets called first? */
1489   old_spin = flag->set_sleeping();
1490   TCW_PTR(th->th.th_sleep_loc, (void *)flag);
1491   th->th.th_sleep_loc_type = flag->get_type();
1492   if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME &&
1493       __kmp_pause_status != kmp_soft_paused) {
1494     flag->unset_sleeping();
1495     TCW_PTR(th->th.th_sleep_loc, NULL);
1496     th->th.th_sleep_loc_type = flag_unset;
1497     __kmp_unlock_suspend_mx(th);
1498     return;
1499   }
1500   KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for spin(%p)==%x,"
1501                " was %x\n",
1502                th_gtid, flag->get(), flag->load(), old_spin));
1503 
1504   if (flag->done_check_val(old_spin) || flag->done_check()) {
1505     flag->unset_sleeping();
1506     TCW_PTR(th->th.th_sleep_loc, NULL);
1507     th->th.th_sleep_loc_type = flag_unset;
1508     KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit "
1509                  "for spin(%p)\n",
1510                  th_gtid, flag->get()));
1511   } else {
1512     /* Encapsulate in a loop as the documentation states that this may
1513        "with low probability" return when the condition variable has
1514        not been signaled or broadcast */
1515     int deactivated = FALSE;
1516 
1517     while (flag->is_sleeping()) {
1518 #ifdef DEBUG_SUSPEND
1519       char buffer[128];
1520       __kmp_suspend_count++;
1521       __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1522       __kmp_printf("__kmp_suspend_template: suspending T#%d: %s\n", th_gtid,
1523                    buffer);
1524 #endif
1525       // Mark the thread as no longer active (only in the first iteration of the
1526       // loop).
1527       if (!deactivated) {
1528         th->th.th_active = FALSE;
1529         if (th->th.th_active_in_pool) {
1530           th->th.th_active_in_pool = FALSE;
1531           KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
1532           KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0);
1533         }
1534         deactivated = TRUE;
1535       }
1536 
1537       KMP_DEBUG_ASSERT(th->th.th_sleep_loc);
1538       KMP_DEBUG_ASSERT(flag->get_type() == th->th.th_sleep_loc_type);
1539 
1540 #if USE_SUSPEND_TIMEOUT
1541       struct timespec now;
1542       struct timeval tval;
1543       int msecs;
1544 
1545       status = gettimeofday(&tval, NULL);
1546       KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1547       TIMEVAL_TO_TIMESPEC(&tval, &now);
1548 
1549       msecs = (4 * __kmp_dflt_blocktime) + 200;
1550       now.tv_sec += msecs / 1000;
1551       now.tv_nsec += (msecs % 1000) * 1000;
1552 
1553       KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform "
1554                     "pthread_cond_timedwait\n",
1555                     th_gtid));
1556       status = pthread_cond_timedwait(&th->th.th_suspend_cv.c_cond,
1557                                       &th->th.th_suspend_mx.m_mutex, &now);
1558 #else
1559       KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform"
1560                     " pthread_cond_wait\n",
1561                     th_gtid));
1562       status = pthread_cond_wait(&th->th.th_suspend_cv.c_cond,
1563                                  &th->th.th_suspend_mx.m_mutex);
1564 #endif // USE_SUSPEND_TIMEOUT
1565 
1566       if ((status != 0) && (status != EINTR) && (status != ETIMEDOUT)) {
1567         KMP_SYSFAIL("pthread_cond_wait", status);
1568       }
1569 
1570       KMP_DEBUG_ASSERT(flag->get_type() == flag->get_ptr_type());
1571 
1572       if (!flag->is_sleeping() &&
1573           ((status == EINTR) || (status == ETIMEDOUT))) {
1574         // if interrupt or timeout, and thread is no longer sleeping, we need to
1575         // make sure sleep_loc gets reset; however, this shouldn't be needed if
1576         // we woke up with resume
1577         flag->unset_sleeping();
1578         TCW_PTR(th->th.th_sleep_loc, NULL);
1579         th->th.th_sleep_loc_type = flag_unset;
1580       }
1581 #ifdef KMP_DEBUG
1582       if (status == ETIMEDOUT) {
1583         if (flag->is_sleeping()) {
1584           KF_TRACE(100,
1585                    ("__kmp_suspend_template: T#%d timeout wakeup\n", th_gtid));
1586         } else {
1587           KF_TRACE(2, ("__kmp_suspend_template: T#%d timeout wakeup, sleep bit "
1588                        "not set!\n",
1589                        th_gtid));
1590           TCW_PTR(th->th.th_sleep_loc, NULL);
1591           th->th.th_sleep_loc_type = flag_unset;
1592         }
1593       } else if (flag->is_sleeping()) {
1594         KF_TRACE(100,
1595                  ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid));
1596       }
1597 #endif
1598     } // while
1599 
1600     // Mark the thread as active again (if it was previous marked as inactive)
1601     if (deactivated) {
1602       th->th.th_active = TRUE;
1603       if (TCR_4(th->th.th_in_pool)) {
1604         KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth);
1605         th->th.th_active_in_pool = TRUE;
1606       }
1607     }
1608   }
1609   // We may have had the loop variable set before entering the loop body;
1610   // so we need to reset sleep_loc.
1611   TCW_PTR(th->th.th_sleep_loc, NULL);
1612   th->th.th_sleep_loc_type = flag_unset;
1613 
1614   KMP_DEBUG_ASSERT(!flag->is_sleeping());
1615   KMP_DEBUG_ASSERT(!th->th.th_sleep_loc);
1616 #ifdef DEBUG_SUSPEND
1617   {
1618     char buffer[128];
1619     __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1620     __kmp_printf("__kmp_suspend_template: T#%d has awakened: %s\n", th_gtid,
1621                  buffer);
1622   }
1623 #endif
1624 
1625   __kmp_unlock_suspend_mx(th);
1626   KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid));
1627 }
1628 
1629 template <bool C, bool S>
__kmp_suspend_32(int th_gtid,kmp_flag_32<C,S> * flag)1630 void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag) {
1631   __kmp_suspend_template(th_gtid, flag);
1632 }
1633 template <bool C, bool S>
__kmp_suspend_64(int th_gtid,kmp_flag_64<C,S> * flag)1634 void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag) {
1635   __kmp_suspend_template(th_gtid, flag);
1636 }
1637 template <bool C, bool S>
__kmp_atomic_suspend_64(int th_gtid,kmp_atomic_flag_64<C,S> * flag)1638 void __kmp_atomic_suspend_64(int th_gtid, kmp_atomic_flag_64<C, S> *flag) {
1639   __kmp_suspend_template(th_gtid, flag);
1640 }
__kmp_suspend_oncore(int th_gtid,kmp_flag_oncore * flag)1641 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) {
1642   __kmp_suspend_template(th_gtid, flag);
1643 }
1644 
1645 template void __kmp_suspend_32<false, false>(int, kmp_flag_32<false, false> *);
1646 template void __kmp_suspend_64<false, true>(int, kmp_flag_64<false, true> *);
1647 template void __kmp_suspend_64<true, false>(int, kmp_flag_64<true, false> *);
1648 template void
1649 __kmp_atomic_suspend_64<false, true>(int, kmp_atomic_flag_64<false, true> *);
1650 template void
1651 __kmp_atomic_suspend_64<true, false>(int, kmp_atomic_flag_64<true, false> *);
1652 
1653 /* This routine signals the thread specified by target_gtid to wake up
1654    after setting the sleep bit indicated by the flag argument to FALSE.
1655    The target thread must already have called __kmp_suspend_template() */
1656 template <class C>
__kmp_resume_template(int target_gtid,C * flag)1657 static inline void __kmp_resume_template(int target_gtid, C *flag) {
1658   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1659   kmp_info_t *th = __kmp_threads[target_gtid];
1660   int status;
1661 
1662 #ifdef KMP_DEBUG
1663   int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1664 #endif
1665 
1666   KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n",
1667                 gtid, target_gtid));
1668   KMP_DEBUG_ASSERT(gtid != target_gtid);
1669 
1670   __kmp_suspend_initialize_thread(th);
1671 
1672   __kmp_lock_suspend_mx(th);
1673 
1674   if (!flag || flag != th->th.th_sleep_loc) {
1675     // coming from __kmp_null_resume_wrapper, or thread is now sleeping on a
1676     // different location; wake up at new location
1677     flag = (C *)CCAST(void *, th->th.th_sleep_loc);
1678   }
1679 
1680   // First, check if the flag is null or its type has changed. If so, someone
1681   // else woke it up.
1682   if (!flag) { // Thread doesn't appear to be sleeping on anything
1683     KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1684                  "awake: flag(%p)\n",
1685                  gtid, target_gtid, (void *)NULL));
1686     __kmp_unlock_suspend_mx(th);
1687     return;
1688   } else if (flag->get_type() != th->th.th_sleep_loc_type) {
1689     // Flag type does not appear to match this function template; possibly the
1690     // thread is sleeping on something else. Try null resume again.
1691     KF_TRACE(
1692         5,
1693         ("__kmp_resume_template: T#%d retrying, thread T#%d Mismatch flag(%p), "
1694          "spin(%p) type=%d ptr_type=%d\n",
1695          gtid, target_gtid, flag, flag->get(), flag->get_type(),
1696          th->th.th_sleep_loc_type));
1697     __kmp_unlock_suspend_mx(th);
1698     __kmp_null_resume_wrapper(th);
1699     return;
1700   } else { // if multiple threads are sleeping, flag should be internally
1701     // referring to a specific thread here
1702     if (!flag->is_sleeping()) {
1703       KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1704                    "awake: flag(%p): %u\n",
1705                    gtid, target_gtid, flag->get(), (unsigned int)flag->load()));
1706       __kmp_unlock_suspend_mx(th);
1707       return;
1708     }
1709   }
1710   KMP_DEBUG_ASSERT(flag);
1711   flag->unset_sleeping();
1712   TCW_PTR(th->th.th_sleep_loc, NULL);
1713   th->th.th_sleep_loc_type = flag_unset;
1714 
1715   KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset "
1716                "sleep bit for flag's loc(%p): %u\n",
1717                gtid, target_gtid, flag->get(), (unsigned int)flag->load()));
1718 
1719 #ifdef DEBUG_SUSPEND
1720   {
1721     char buffer[128];
1722     __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1723     __kmp_printf("__kmp_resume_template: T#%d resuming T#%d: %s\n", gtid,
1724                  target_gtid, buffer);
1725   }
1726 #endif
1727   status = pthread_cond_signal(&th->th.th_suspend_cv.c_cond);
1728   KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1729   __kmp_unlock_suspend_mx(th);
1730   KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up"
1731                 " for T#%d\n",
1732                 gtid, target_gtid));
1733 }
1734 
1735 template <bool C, bool S>
__kmp_resume_32(int target_gtid,kmp_flag_32<C,S> * flag)1736 void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag) {
1737   __kmp_resume_template(target_gtid, flag);
1738 }
1739 template <bool C, bool S>
__kmp_resume_64(int target_gtid,kmp_flag_64<C,S> * flag)1740 void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag) {
1741   __kmp_resume_template(target_gtid, flag);
1742 }
1743 template <bool C, bool S>
__kmp_atomic_resume_64(int target_gtid,kmp_atomic_flag_64<C,S> * flag)1744 void __kmp_atomic_resume_64(int target_gtid, kmp_atomic_flag_64<C, S> *flag) {
1745   __kmp_resume_template(target_gtid, flag);
1746 }
__kmp_resume_oncore(int target_gtid,kmp_flag_oncore * flag)1747 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) {
1748   __kmp_resume_template(target_gtid, flag);
1749 }
1750 
1751 template void __kmp_resume_32<false, true>(int, kmp_flag_32<false, true> *);
1752 template void __kmp_resume_32<false, false>(int, kmp_flag_32<false, false> *);
1753 template void __kmp_resume_64<false, true>(int, kmp_flag_64<false, true> *);
1754 template void
1755 __kmp_atomic_resume_64<false, true>(int, kmp_atomic_flag_64<false, true> *);
1756 
1757 #if KMP_USE_MONITOR
__kmp_resume_monitor()1758 void __kmp_resume_monitor() {
1759   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1760   int status;
1761 #ifdef KMP_DEBUG
1762   int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1763   KF_TRACE(30, ("__kmp_resume_monitor: T#%d wants to wakeup T#%d enter\n", gtid,
1764                 KMP_GTID_MONITOR));
1765   KMP_DEBUG_ASSERT(gtid != KMP_GTID_MONITOR);
1766 #endif
1767   status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
1768   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1769 #ifdef DEBUG_SUSPEND
1770   {
1771     char buffer[128];
1772     __kmp_print_cond(buffer, &__kmp_wait_cv.c_cond);
1773     __kmp_printf("__kmp_resume_monitor: T#%d resuming T#%d: %s\n", gtid,
1774                  KMP_GTID_MONITOR, buffer);
1775   }
1776 #endif
1777   status = pthread_cond_signal(&__kmp_wait_cv.c_cond);
1778   KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1779   status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
1780   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1781   KF_TRACE(30, ("__kmp_resume_monitor: T#%d exiting after signaling wake up"
1782                 " for T#%d\n",
1783                 gtid, KMP_GTID_MONITOR));
1784 }
1785 #endif // KMP_USE_MONITOR
1786 
__kmp_yield()1787 void __kmp_yield() { sched_yield(); }
1788 
__kmp_gtid_set_specific(int gtid)1789 void __kmp_gtid_set_specific(int gtid) {
1790   if (__kmp_init_gtid) {
1791     int status;
1792     status = pthread_setspecific(__kmp_gtid_threadprivate_key,
1793                                  (void *)(intptr_t)(gtid + 1));
1794     KMP_CHECK_SYSFAIL("pthread_setspecific", status);
1795   } else {
1796     KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n"));
1797   }
1798 }
1799 
__kmp_gtid_get_specific()1800 int __kmp_gtid_get_specific() {
1801   int gtid;
1802   if (!__kmp_init_gtid) {
1803     KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning "
1804                   "KMP_GTID_SHUTDOWN\n"));
1805     return KMP_GTID_SHUTDOWN;
1806   }
1807   gtid = (int)(size_t)pthread_getspecific(__kmp_gtid_threadprivate_key);
1808   if (gtid == 0) {
1809     gtid = KMP_GTID_DNE;
1810   } else {
1811     gtid--;
1812   }
1813   KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n",
1814                 __kmp_gtid_threadprivate_key, gtid));
1815   return gtid;
1816 }
1817 
__kmp_read_cpu_time(void)1818 double __kmp_read_cpu_time(void) {
1819   /*clock_t   t;*/
1820   struct tms buffer;
1821 
1822   /*t =*/times(&buffer);
1823 
1824   return (double)(buffer.tms_utime + buffer.tms_cutime) /
1825          (double)CLOCKS_PER_SEC;
1826 }
1827 
__kmp_read_system_info(struct kmp_sys_info * info)1828 int __kmp_read_system_info(struct kmp_sys_info *info) {
1829   int status;
1830   struct rusage r_usage;
1831 
1832   memset(info, 0, sizeof(*info));
1833 
1834   status = getrusage(RUSAGE_SELF, &r_usage);
1835   KMP_CHECK_SYSFAIL_ERRNO("getrusage", status);
1836 
1837 #if !KMP_OS_WASI
1838   // The maximum resident set size utilized (in kilobytes)
1839   info->maxrss = r_usage.ru_maxrss;
1840   // The number of page faults serviced without any I/O
1841   info->minflt = r_usage.ru_minflt;
1842   // The number of page faults serviced that required I/O
1843   info->majflt = r_usage.ru_majflt;
1844   // The number of times a process was "swapped" out of memory
1845   info->nswap = r_usage.ru_nswap;
1846   // The number of times the file system had to perform input
1847   info->inblock = r_usage.ru_inblock;
1848   // The number of times the file system had to perform output
1849   info->oublock = r_usage.ru_oublock;
1850   // The number of times a context switch was voluntarily
1851   info->nvcsw = r_usage.ru_nvcsw;
1852   // The number of times a context switch was forced
1853   info->nivcsw = r_usage.ru_nivcsw;
1854 #endif
1855 
1856   return (status != 0);
1857 }
1858 
__kmp_read_system_time(double * delta)1859 void __kmp_read_system_time(double *delta) {
1860   double t_ns;
1861   struct timeval tval;
1862   struct timespec stop;
1863   int status;
1864 
1865   status = gettimeofday(&tval, NULL);
1866   KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1867   TIMEVAL_TO_TIMESPEC(&tval, &stop);
1868   t_ns = (double)(TS2NS(stop) - TS2NS(__kmp_sys_timer_data.start));
1869   *delta = (t_ns * 1e-9);
1870 }
1871 
__kmp_clear_system_time(void)1872 void __kmp_clear_system_time(void) {
1873   struct timeval tval;
1874   int status;
1875   status = gettimeofday(&tval, NULL);
1876   KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1877   TIMEVAL_TO_TIMESPEC(&tval, &__kmp_sys_timer_data.start);
1878 }
1879 
__kmp_get_xproc(void)1880 static int __kmp_get_xproc(void) {
1881 
1882   int r = 0;
1883 
1884 #if KMP_OS_LINUX
1885 
1886   __kmp_type_convert(sysconf(_SC_NPROCESSORS_CONF), &(r));
1887 
1888 #elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_OPENBSD || \
1889     KMP_OS_HURD || KMP_OS_SOLARIS || KMP_OS_WASI || KMP_OS_AIX
1890 
1891   __kmp_type_convert(sysconf(_SC_NPROCESSORS_ONLN), &(r));
1892 
1893 #elif KMP_OS_DARWIN
1894 
1895   size_t len = sizeof(r);
1896   sysctlbyname("hw.logicalcpu", &r, &len, NULL, 0);
1897 
1898 #else
1899 
1900 #error "Unknown or unsupported OS."
1901 
1902 #endif
1903 
1904   return r > 0 ? r : 2; /* guess value of 2 if OS told us 0 */
1905 
1906 } // __kmp_get_xproc
1907 
__kmp_read_from_file(char const * path,char const * format,...)1908 int __kmp_read_from_file(char const *path, char const *format, ...) {
1909   int result;
1910   va_list args;
1911 
1912   va_start(args, format);
1913   FILE *f = fopen(path, "rb");
1914   if (f == NULL) {
1915     va_end(args);
1916     return 0;
1917   }
1918   result = vfscanf(f, format, args);
1919   fclose(f);
1920   va_end(args);
1921 
1922   return result;
1923 }
1924 
__kmp_runtime_initialize(void)1925 void __kmp_runtime_initialize(void) {
1926   int status;
1927   pthread_mutexattr_t mutex_attr;
1928   pthread_condattr_t cond_attr;
1929 
1930   if (__kmp_init_runtime) {
1931     return;
1932   }
1933 
1934 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1935   if (!__kmp_cpuinfo.initialized) {
1936     __kmp_query_cpuid(&__kmp_cpuinfo);
1937   }
1938 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
1939 
1940   __kmp_xproc = __kmp_get_xproc();
1941 
1942 #if !KMP_32_BIT_ARCH
1943   struct rlimit rlim;
1944   // read stack size of calling thread, save it as default for worker threads;
1945   // this should be done before reading environment variables
1946   status = getrlimit(RLIMIT_STACK, &rlim);
1947   if (status == 0) { // success?
1948     __kmp_stksize = rlim.rlim_cur;
1949     __kmp_check_stksize(&__kmp_stksize); // check value and adjust if needed
1950   }
1951 #endif /* KMP_32_BIT_ARCH */
1952 
1953   if (sysconf(_SC_THREADS)) {
1954 
1955     /* Query the maximum number of threads */
1956     __kmp_type_convert(sysconf(_SC_THREAD_THREADS_MAX), &(__kmp_sys_max_nth));
1957 #ifdef __ve__
1958     if (__kmp_sys_max_nth == -1) {
1959       // VE's pthread supports only up to 64 threads per a VE process.
1960       // So we use that KMP_MAX_NTH (predefined as 64) here.
1961       __kmp_sys_max_nth = KMP_MAX_NTH;
1962     }
1963 #else
1964     if (__kmp_sys_max_nth == -1) {
1965       /* Unlimited threads for NPTL */
1966       __kmp_sys_max_nth = INT_MAX;
1967     } else if (__kmp_sys_max_nth <= 1) {
1968       /* Can't tell, just use PTHREAD_THREADS_MAX */
1969       __kmp_sys_max_nth = KMP_MAX_NTH;
1970     }
1971 #endif
1972 
1973     /* Query the minimum stack size */
1974     __kmp_sys_min_stksize = sysconf(_SC_THREAD_STACK_MIN);
1975     if (__kmp_sys_min_stksize <= 1) {
1976       __kmp_sys_min_stksize = KMP_MIN_STKSIZE;
1977     }
1978   }
1979 
1980   /* Set up minimum number of threads to switch to TLS gtid */
1981   __kmp_tls_gtid_min = KMP_TLS_GTID_MIN;
1982 
1983   status = pthread_key_create(&__kmp_gtid_threadprivate_key,
1984                               __kmp_internal_end_dest);
1985   KMP_CHECK_SYSFAIL("pthread_key_create", status);
1986   status = pthread_mutexattr_init(&mutex_attr);
1987   KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1988   status = pthread_mutex_init(&__kmp_wait_mx.m_mutex, &mutex_attr);
1989   KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1990   status = pthread_mutexattr_destroy(&mutex_attr);
1991   KMP_CHECK_SYSFAIL("pthread_mutexattr_destroy", status);
1992   status = pthread_condattr_init(&cond_attr);
1993   KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1994   status = pthread_cond_init(&__kmp_wait_cv.c_cond, &cond_attr);
1995   KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1996   status = pthread_condattr_destroy(&cond_attr);
1997   KMP_CHECK_SYSFAIL("pthread_condattr_destroy", status);
1998 #if USE_ITT_BUILD
1999   __kmp_itt_initialize();
2000 #endif /* USE_ITT_BUILD */
2001 
2002   __kmp_init_runtime = TRUE;
2003 }
2004 
__kmp_runtime_destroy(void)2005 void __kmp_runtime_destroy(void) {
2006   int status;
2007 
2008   if (!__kmp_init_runtime) {
2009     return; // Nothing to do.
2010   }
2011 
2012 #if USE_ITT_BUILD
2013   __kmp_itt_destroy();
2014 #endif /* USE_ITT_BUILD */
2015 
2016   status = pthread_key_delete(__kmp_gtid_threadprivate_key);
2017   KMP_CHECK_SYSFAIL("pthread_key_delete", status);
2018 
2019   status = pthread_mutex_destroy(&__kmp_wait_mx.m_mutex);
2020   if (status != 0 && status != EBUSY) {
2021     KMP_SYSFAIL("pthread_mutex_destroy", status);
2022   }
2023   status = pthread_cond_destroy(&__kmp_wait_cv.c_cond);
2024   if (status != 0 && status != EBUSY) {
2025     KMP_SYSFAIL("pthread_cond_destroy", status);
2026   }
2027 #if KMP_AFFINITY_SUPPORTED
2028   __kmp_affinity_uninitialize();
2029 #endif
2030 
2031   __kmp_init_runtime = FALSE;
2032 }
2033 
2034 /* Put the thread to sleep for a time period */
2035 /* NOTE: not currently used anywhere */
__kmp_thread_sleep(int millis)2036 void __kmp_thread_sleep(int millis) { sleep((millis + 500) / 1000); }
2037 
2038 /* Calculate the elapsed wall clock time for the user */
__kmp_elapsed(double * t)2039 void __kmp_elapsed(double *t) {
2040   int status;
2041 #ifdef FIX_SGI_CLOCK
2042   struct timespec ts;
2043 
2044   status = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts);
2045   KMP_CHECK_SYSFAIL_ERRNO("clock_gettime", status);
2046   *t =
2047       (double)ts.tv_nsec * (1.0 / (double)KMP_NSEC_PER_SEC) + (double)ts.tv_sec;
2048 #else
2049   struct timeval tv;
2050 
2051   status = gettimeofday(&tv, NULL);
2052   KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
2053   *t =
2054       (double)tv.tv_usec * (1.0 / (double)KMP_USEC_PER_SEC) + (double)tv.tv_sec;
2055 #endif
2056 }
2057 
2058 /* Calculate the elapsed wall clock tick for the user */
__kmp_elapsed_tick(double * t)2059 void __kmp_elapsed_tick(double *t) { *t = 1 / (double)CLOCKS_PER_SEC; }
2060 
2061 /* Return the current time stamp in nsec */
__kmp_now_nsec()2062 kmp_uint64 __kmp_now_nsec() {
2063   struct timeval t;
2064   gettimeofday(&t, NULL);
2065   kmp_uint64 nsec = (kmp_uint64)KMP_NSEC_PER_SEC * (kmp_uint64)t.tv_sec +
2066                     (kmp_uint64)1000 * (kmp_uint64)t.tv_usec;
2067   return nsec;
2068 }
2069 
2070 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
2071 /* Measure clock ticks per millisecond */
__kmp_initialize_system_tick()2072 void __kmp_initialize_system_tick() {
2073   kmp_uint64 now, nsec2, diff;
2074   kmp_uint64 delay = 1000000; // ~450 usec on most machines.
2075   kmp_uint64 nsec = __kmp_now_nsec();
2076   kmp_uint64 goal = __kmp_hardware_timestamp() + delay;
2077   while ((now = __kmp_hardware_timestamp()) < goal)
2078     ;
2079   nsec2 = __kmp_now_nsec();
2080   diff = nsec2 - nsec;
2081   if (diff > 0) {
2082     double tpus = 1000.0 * (double)(delay + (now - goal)) / (double)diff;
2083     if (tpus > 0.0) {
2084       __kmp_ticks_per_msec = (kmp_uint64)(tpus * 1000.0);
2085       __kmp_ticks_per_usec = (kmp_uint64)tpus;
2086     }
2087   }
2088 }
2089 #endif
2090 
2091 /* Determine whether the given address is mapped into the current address
2092    space. */
2093 
__kmp_is_address_mapped(void * addr)2094 int __kmp_is_address_mapped(void *addr) {
2095 
2096   int found = 0;
2097   int rc;
2098 
2099 #if KMP_OS_LINUX || KMP_OS_HURD
2100 
2101   /* On GNUish OSes, read the /proc/<pid>/maps pseudo-file to get all the
2102      address ranges mapped into the address space. */
2103 
2104   char *name = __kmp_str_format("/proc/%d/maps", getpid());
2105   FILE *file = NULL;
2106 
2107   file = fopen(name, "r");
2108   KMP_ASSERT(file != NULL);
2109 
2110   for (;;) {
2111 
2112     void *beginning = NULL;
2113     void *ending = NULL;
2114     char perms[5];
2115 
2116     rc = fscanf(file, "%p-%p %4s %*[^\n]\n", &beginning, &ending, perms);
2117     if (rc == EOF) {
2118       break;
2119     }
2120     KMP_ASSERT(rc == 3 &&
2121                KMP_STRLEN(perms) == 4); // Make sure all fields are read.
2122 
2123     // Ending address is not included in the region, but beginning is.
2124     if ((addr >= beginning) && (addr < ending)) {
2125       perms[2] = 0; // 3th and 4th character does not matter.
2126       if (strcmp(perms, "rw") == 0) {
2127         // Memory we are looking for should be readable and writable.
2128         found = 1;
2129       }
2130       break;
2131     }
2132   }
2133 
2134   // Free resources.
2135   fclose(file);
2136   KMP_INTERNAL_FREE(name);
2137 #elif KMP_OS_FREEBSD
2138   char *buf;
2139   size_t lstsz;
2140   int mib[] = {CTL_KERN, KERN_PROC, KERN_PROC_VMMAP, getpid()};
2141   rc = sysctl(mib, 4, NULL, &lstsz, NULL, 0);
2142   if (rc < 0)
2143     return 0;
2144   // We pass from number of vm entry's semantic
2145   // to size of whole entry map list.
2146   lstsz = lstsz * 4 / 3;
2147   buf = reinterpret_cast<char *>(KMP_INTERNAL_MALLOC(lstsz));
2148   rc = sysctl(mib, 4, buf, &lstsz, NULL, 0);
2149   if (rc < 0) {
2150     KMP_INTERNAL_FREE(buf);
2151     return 0;
2152   }
2153 
2154   char *lw = buf;
2155   char *up = buf + lstsz;
2156 
2157   while (lw < up) {
2158     struct kinfo_vmentry *cur = reinterpret_cast<struct kinfo_vmentry *>(lw);
2159     size_t cursz = cur->kve_structsize;
2160     if (cursz == 0)
2161       break;
2162     void *start = reinterpret_cast<void *>(cur->kve_start);
2163     void *end = reinterpret_cast<void *>(cur->kve_end);
2164     // Readable/Writable addresses within current map entry
2165     if ((addr >= start) && (addr < end)) {
2166       if ((cur->kve_protection & KVME_PROT_READ) != 0 &&
2167           (cur->kve_protection & KVME_PROT_WRITE) != 0) {
2168         found = 1;
2169         break;
2170       }
2171     }
2172     lw += cursz;
2173   }
2174   KMP_INTERNAL_FREE(buf);
2175 #elif KMP_OS_DRAGONFLY
2176   char err[_POSIX2_LINE_MAX];
2177   kinfo_proc *proc;
2178   vmspace sp;
2179   vm_map *cur;
2180   vm_map_entry entry, *c;
2181   struct proc p;
2182   kvm_t *fd;
2183   uintptr_t uaddr;
2184   int num;
2185 
2186   fd = kvm_openfiles(nullptr, nullptr, nullptr, O_RDONLY, err);
2187   if (!fd) {
2188     return 0;
2189   }
2190 
2191   proc = kvm_getprocs(fd, KERN_PROC_PID, getpid(), &num);
2192 
2193   if (kvm_read(fd, static_cast<uintptr_t>(proc->kp_paddr), &p, sizeof(p)) !=
2194           sizeof(p) ||
2195       kvm_read(fd, reinterpret_cast<uintptr_t>(p.p_vmspace), &sp, sizeof(sp)) !=
2196           sizeof(sp)) {
2197     kvm_close(fd);
2198     return 0;
2199   }
2200 
2201   (void)rc;
2202   cur = &sp.vm_map;
2203   uaddr = reinterpret_cast<uintptr_t>(addr);
2204   for (c = kvm_vm_map_entry_first(fd, cur, &entry); c;
2205        c = kvm_vm_map_entry_next(fd, c, &entry)) {
2206     if ((uaddr >= entry.ba.start) && (uaddr <= entry.ba.end)) {
2207       if ((entry.protection & VM_PROT_READ) != 0 &&
2208           (entry.protection & VM_PROT_WRITE) != 0) {
2209         found = 1;
2210         break;
2211       }
2212     }
2213   }
2214 
2215   kvm_close(fd);
2216 #elif KMP_OS_SOLARIS
2217   prmap_t *cur, *map;
2218   void *buf;
2219   uintptr_t uaddr;
2220   ssize_t rd;
2221   int err;
2222   int file;
2223 
2224   pid_t pid = getpid();
2225   struct ps_prochandle *fd = Pgrab(pid, PGRAB_RDONLY, &err);
2226   ;
2227 
2228   if (!fd) {
2229     return 0;
2230   }
2231 
2232   char *name = __kmp_str_format("/proc/%d/map", pid);
2233   size_t sz = (1 << 20);
2234   file = open(name, O_RDONLY);
2235   if (file == -1) {
2236     KMP_INTERNAL_FREE(name);
2237     return 0;
2238   }
2239 
2240   buf = KMP_INTERNAL_MALLOC(sz);
2241 
2242   while (sz > 0 && (rd = pread(file, buf, sz, 0)) == sz) {
2243     void *newbuf;
2244     sz <<= 1;
2245     newbuf = KMP_INTERNAL_REALLOC(buf, sz);
2246     buf = newbuf;
2247   }
2248 
2249   map = reinterpret_cast<prmap_t *>(buf);
2250   uaddr = reinterpret_cast<uintptr_t>(addr);
2251 
2252   for (cur = map; rd > 0; cur++, rd = -sizeof(*map)) {
2253     if ((uaddr >= cur->pr_vaddr) && (uaddr < cur->pr_vaddr)) {
2254       if ((cur->pr_mflags & MA_READ) != 0 && (cur->pr_mflags & MA_WRITE) != 0) {
2255         found = 1;
2256         break;
2257       }
2258     }
2259   }
2260 
2261   KMP_INTERNAL_FREE(map);
2262   close(file);
2263   KMP_INTERNAL_FREE(name);
2264 #elif KMP_OS_DARWIN
2265 
2266   /* On OS X*, /proc pseudo filesystem is not available. Try to read memory
2267      using vm interface. */
2268 
2269   int buffer;
2270   vm_size_t count;
2271   rc = vm_read_overwrite(
2272       mach_task_self(), // Task to read memory of.
2273       (vm_address_t)(addr), // Address to read from.
2274       1, // Number of bytes to be read.
2275       (vm_address_t)(&buffer), // Address of buffer to save read bytes in.
2276       &count // Address of var to save number of read bytes in.
2277   );
2278   if (rc == 0) {
2279     // Memory successfully read.
2280     found = 1;
2281   }
2282 
2283 #elif KMP_OS_NETBSD
2284 
2285   int mib[5];
2286   mib[0] = CTL_VM;
2287   mib[1] = VM_PROC;
2288   mib[2] = VM_PROC_MAP;
2289   mib[3] = getpid();
2290   mib[4] = sizeof(struct kinfo_vmentry);
2291 
2292   size_t size;
2293   rc = sysctl(mib, __arraycount(mib), NULL, &size, NULL, 0);
2294   KMP_ASSERT(!rc);
2295   KMP_ASSERT(size);
2296 
2297   size = size * 4 / 3;
2298   struct kinfo_vmentry *kiv = (struct kinfo_vmentry *)KMP_INTERNAL_MALLOC(size);
2299   KMP_ASSERT(kiv);
2300 
2301   rc = sysctl(mib, __arraycount(mib), kiv, &size, NULL, 0);
2302   KMP_ASSERT(!rc);
2303   KMP_ASSERT(size);
2304 
2305   for (size_t i = 0; i < size; i++) {
2306     if (kiv[i].kve_start >= (uint64_t)addr &&
2307         kiv[i].kve_end <= (uint64_t)addr) {
2308       found = 1;
2309       break;
2310     }
2311   }
2312   KMP_INTERNAL_FREE(kiv);
2313 #elif KMP_OS_OPENBSD
2314 
2315   int mib[3];
2316   mib[0] = CTL_KERN;
2317   mib[1] = KERN_PROC_VMMAP;
2318   mib[2] = getpid();
2319 
2320   size_t size;
2321   uint64_t end;
2322   rc = sysctl(mib, 3, NULL, &size, NULL, 0);
2323   KMP_ASSERT(!rc);
2324   KMP_ASSERT(size);
2325   end = size;
2326 
2327   struct kinfo_vmentry kiv = {.kve_start = 0};
2328 
2329   while ((rc = sysctl(mib, 3, &kiv, &size, NULL, 0)) == 0) {
2330     KMP_ASSERT(size);
2331     if (kiv.kve_end == end)
2332       break;
2333 
2334     if (kiv.kve_start >= (uint64_t)addr && kiv.kve_end <= (uint64_t)addr) {
2335       found = 1;
2336       break;
2337     }
2338     kiv.kve_start += 1;
2339   }
2340 #elif KMP_OS_WASI
2341   found = (int)addr < (__builtin_wasm_memory_size(0) * PAGESIZE);
2342 #elif KMP_OS_AIX
2343 
2344   uint32_t loadQueryBufSize = 4096u; // Default loadquery buffer size.
2345   char *loadQueryBuf;
2346 
2347   for (;;) {
2348     loadQueryBuf = (char *)KMP_INTERNAL_MALLOC(loadQueryBufSize);
2349     if (loadQueryBuf == NULL) {
2350       return 0;
2351     }
2352 
2353     rc = loadquery(L_GETXINFO | L_IGNOREUNLOAD, loadQueryBuf, loadQueryBufSize);
2354     if (rc < 0) {
2355       KMP_INTERNAL_FREE(loadQueryBuf);
2356       if (errno != ENOMEM) {
2357         return 0;
2358       }
2359       // errno == ENOMEM; double the size.
2360       loadQueryBufSize <<= 1;
2361       continue;
2362     }
2363     // Obtained the load info successfully.
2364     break;
2365   }
2366 
2367   struct ld_xinfo *curLdInfo = (struct ld_xinfo *)loadQueryBuf;
2368 
2369   // Loop through the load info to find if there is a match.
2370   for (;;) {
2371     uintptr_t curDataStart = (uintptr_t)curLdInfo->ldinfo_dataorg;
2372     uintptr_t curDataEnd = curDataStart + curLdInfo->ldinfo_datasize;
2373 
2374     // The data segment is readable and writable.
2375     if (curDataStart <= (uintptr_t)addr && (uintptr_t)addr < curDataEnd) {
2376       found = 1;
2377       break;
2378     }
2379     if (curLdInfo->ldinfo_next == 0u) {
2380       // Reached the end of load info.
2381       break;
2382     }
2383     curLdInfo = (struct ld_xinfo *)((char *)curLdInfo + curLdInfo->ldinfo_next);
2384   }
2385   KMP_INTERNAL_FREE(loadQueryBuf);
2386 
2387 #else
2388 
2389 #error "Unknown or unsupported OS"
2390 
2391 #endif
2392 
2393   return found;
2394 
2395 } // __kmp_is_address_mapped
2396 
2397 #ifdef USE_LOAD_BALANCE
2398 
2399 #if KMP_OS_DARWIN || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||    \
2400     KMP_OS_OPENBSD || KMP_OS_SOLARIS
2401 
2402 // The function returns the rounded value of the system load average
2403 // during given time interval which depends on the value of
2404 // __kmp_load_balance_interval variable (default is 60 sec, other values
2405 // may be 300 sec or 900 sec).
2406 // It returns -1 in case of error.
__kmp_get_load_balance(int max)2407 int __kmp_get_load_balance(int max) {
2408   double averages[3];
2409   int ret_avg = 0;
2410 
2411   int res = getloadavg(averages, 3);
2412 
2413   // Check __kmp_load_balance_interval to determine which of averages to use.
2414   // getloadavg() may return the number of samples less than requested that is
2415   // less than 3.
2416   if (__kmp_load_balance_interval < 180 && (res >= 1)) {
2417     ret_avg = (int)averages[0]; // 1 min
2418   } else if ((__kmp_load_balance_interval >= 180 &&
2419               __kmp_load_balance_interval < 600) &&
2420              (res >= 2)) {
2421     ret_avg = (int)averages[1]; // 5 min
2422   } else if ((__kmp_load_balance_interval >= 600) && (res == 3)) {
2423     ret_avg = (int)averages[2]; // 15 min
2424   } else { // Error occurred
2425     return -1;
2426   }
2427 
2428   return ret_avg;
2429 }
2430 
2431 #elif KMP_OS_AIX
2432 
2433 // The function returns number of running (not sleeping) threads, or -1 in case
2434 // of error.
__kmp_get_load_balance(int max)2435 int __kmp_get_load_balance(int max) {
2436 
2437   static int glb_running_threads = 0; // Saved count of the running threads for
2438                                       // the thread balance algorithm.
2439   static double glb_call_time = 0; // Thread balance algorithm call time.
2440   int running_threads = 0; // Number of running threads in the system.
2441 
2442   double call_time = 0.0;
2443 
2444   __kmp_elapsed(&call_time);
2445 
2446   if (glb_call_time &&
2447       (call_time - glb_call_time < __kmp_load_balance_interval))
2448     return glb_running_threads;
2449 
2450   glb_call_time = call_time;
2451 
2452   if (max <= 0) {
2453     max = INT_MAX;
2454   }
2455 
2456   // Check how many perfstat_cpu_t structures are available.
2457   int logical_cpus = perfstat_cpu(NULL, NULL, sizeof(perfstat_cpu_t), 0);
2458   if (logical_cpus <= 0) {
2459     glb_call_time = -1;
2460     return -1;
2461   }
2462 
2463   perfstat_cpu_t *cpu_stat = (perfstat_cpu_t *)KMP_INTERNAL_MALLOC(
2464       logical_cpus * sizeof(perfstat_cpu_t));
2465   if (cpu_stat == NULL) {
2466     glb_call_time = -1;
2467     return -1;
2468   }
2469 
2470   // Set first CPU as the name of the first logical CPU for which the info is
2471   // desired.
2472   perfstat_id_t first_cpu_name;
2473   strcpy(first_cpu_name.name, FIRST_CPU);
2474 
2475   // Get the stat info of logical CPUs.
2476   int rc = perfstat_cpu(&first_cpu_name, cpu_stat, sizeof(perfstat_cpu_t),
2477                         logical_cpus);
2478   KMP_DEBUG_ASSERT(rc == logical_cpus);
2479   if (rc <= 0) {
2480     KMP_INTERNAL_FREE(cpu_stat);
2481     glb_call_time = -1;
2482     return -1;
2483   }
2484   for (int i = 0; i < logical_cpus; ++i) {
2485     running_threads += cpu_stat[i].runque;
2486     if (running_threads >= max)
2487       break;
2488   }
2489 
2490   // There _might_ be a timing hole where the thread executing this
2491   // code gets skipped in the load balance, and running_threads is 0.
2492   // Assert in the debug builds only!!!
2493   KMP_DEBUG_ASSERT(running_threads > 0);
2494   if (running_threads <= 0)
2495     running_threads = 1;
2496 
2497   KMP_INTERNAL_FREE(cpu_stat);
2498 
2499   glb_running_threads = running_threads;
2500 
2501   return running_threads;
2502 }
2503 
2504 #else // Linux* OS
2505 
2506 // The function returns number of running (not sleeping) threads, or -1 in case
2507 // of error. Error could be reported if Linux* OS kernel too old (without
2508 // "/proc" support). Counting running threads stops if max running threads
2509 // encountered.
__kmp_get_load_balance(int max)2510 int __kmp_get_load_balance(int max) {
2511   static int permanent_error = 0;
2512   static int glb_running_threads = 0; // Saved count of the running threads for
2513   // the thread balance algorithm
2514   static double glb_call_time = 0; /* Thread balance algorithm call time */
2515 
2516   int running_threads = 0; // Number of running threads in the system.
2517 
2518   DIR *proc_dir = NULL; // Handle of "/proc/" directory.
2519   struct dirent *proc_entry = NULL;
2520 
2521   kmp_str_buf_t task_path; // "/proc/<pid>/task/<tid>/" path.
2522   DIR *task_dir = NULL; // Handle of "/proc/<pid>/task/<tid>/" directory.
2523   struct dirent *task_entry = NULL;
2524   int task_path_fixed_len;
2525 
2526   kmp_str_buf_t stat_path; // "/proc/<pid>/task/<tid>/stat" path.
2527   int stat_file = -1;
2528   int stat_path_fixed_len;
2529 
2530 #ifdef KMP_DEBUG
2531   int total_processes = 0; // Total number of processes in system.
2532 #endif
2533 
2534   double call_time = 0.0;
2535 
2536   __kmp_str_buf_init(&task_path);
2537   __kmp_str_buf_init(&stat_path);
2538 
2539   __kmp_elapsed(&call_time);
2540 
2541   if (glb_call_time &&
2542       (call_time - glb_call_time < __kmp_load_balance_interval)) {
2543     running_threads = glb_running_threads;
2544     goto finish;
2545   }
2546 
2547   glb_call_time = call_time;
2548 
2549   // Do not spend time on scanning "/proc/" if we have a permanent error.
2550   if (permanent_error) {
2551     running_threads = -1;
2552     goto finish;
2553   }
2554 
2555   if (max <= 0) {
2556     max = INT_MAX;
2557   }
2558 
2559   // Open "/proc/" directory.
2560   proc_dir = opendir("/proc");
2561   if (proc_dir == NULL) {
2562     // Cannot open "/proc/". Probably the kernel does not support it. Return an
2563     // error now and in subsequent calls.
2564     running_threads = -1;
2565     permanent_error = 1;
2566     goto finish;
2567   }
2568 
2569   // Initialize fixed part of task_path. This part will not change.
2570   __kmp_str_buf_cat(&task_path, "/proc/", 6);
2571   task_path_fixed_len = task_path.used; // Remember number of used characters.
2572 
2573   proc_entry = readdir(proc_dir);
2574   while (proc_entry != NULL) {
2575     // Proc entry is a directory and name starts with a digit. Assume it is a
2576     // process' directory.
2577     if (proc_entry->d_type == DT_DIR && isdigit(proc_entry->d_name[0])) {
2578 
2579 #ifdef KMP_DEBUG
2580       ++total_processes;
2581 #endif
2582       // Make sure init process is the very first in "/proc", so we can replace
2583       // strcmp( proc_entry->d_name, "1" ) == 0 with simpler total_processes ==
2584       // 1. We are going to check that total_processes == 1 => d_name == "1" is
2585       // true (where "=>" is implication). Since C++ does not have => operator,
2586       // let us replace it with its equivalent: a => b == ! a || b.
2587       KMP_DEBUG_ASSERT(total_processes != 1 ||
2588                        strcmp(proc_entry->d_name, "1") == 0);
2589 
2590       // Construct task_path.
2591       task_path.used = task_path_fixed_len; // Reset task_path to "/proc/".
2592       __kmp_str_buf_cat(&task_path, proc_entry->d_name,
2593                         KMP_STRLEN(proc_entry->d_name));
2594       __kmp_str_buf_cat(&task_path, "/task", 5);
2595 
2596       task_dir = opendir(task_path.str);
2597       if (task_dir == NULL) {
2598         // Process can finish between reading "/proc/" directory entry and
2599         // opening process' "task/" directory. So, in general case we should not
2600         // complain, but have to skip this process and read the next one. But on
2601         // systems with no "task/" support we will spend lot of time to scan
2602         // "/proc/" tree again and again without any benefit. "init" process
2603         // (its pid is 1) should exist always, so, if we cannot open
2604         // "/proc/1/task/" directory, it means "task/" is not supported by
2605         // kernel. Report an error now and in the future.
2606         if (strcmp(proc_entry->d_name, "1") == 0) {
2607           running_threads = -1;
2608           permanent_error = 1;
2609           goto finish;
2610         }
2611       } else {
2612         // Construct fixed part of stat file path.
2613         __kmp_str_buf_clear(&stat_path);
2614         __kmp_str_buf_cat(&stat_path, task_path.str, task_path.used);
2615         __kmp_str_buf_cat(&stat_path, "/", 1);
2616         stat_path_fixed_len = stat_path.used;
2617 
2618         task_entry = readdir(task_dir);
2619         while (task_entry != NULL) {
2620           // It is a directory and name starts with a digit.
2621           if (proc_entry->d_type == DT_DIR && isdigit(task_entry->d_name[0])) {
2622 
2623             // Construct complete stat file path. Easiest way would be:
2624             //  __kmp_str_buf_print( & stat_path, "%s/%s/stat", task_path.str,
2625             //  task_entry->d_name );
2626             // but seriae of __kmp_str_buf_cat works a bit faster.
2627             stat_path.used =
2628                 stat_path_fixed_len; // Reset stat path to its fixed part.
2629             __kmp_str_buf_cat(&stat_path, task_entry->d_name,
2630                               KMP_STRLEN(task_entry->d_name));
2631             __kmp_str_buf_cat(&stat_path, "/stat", 5);
2632 
2633             // Note: Low-level API (open/read/close) is used. High-level API
2634             // (fopen/fclose)  works ~ 30 % slower.
2635             stat_file = open(stat_path.str, O_RDONLY);
2636             if (stat_file == -1) {
2637               // We cannot report an error because task (thread) can terminate
2638               // just before reading this file.
2639             } else {
2640               /* Content of "stat" file looks like:
2641                  24285 (program) S ...
2642 
2643                  It is a single line (if program name does not include funny
2644                  symbols). First number is a thread id, then name of executable
2645                  file name in paretheses, then state of the thread. We need just
2646                  thread state.
2647 
2648                  Good news: Length of program name is 15 characters max. Longer
2649                  names are truncated.
2650 
2651                  Thus, we need rather short buffer: 15 chars for program name +
2652                  2 parenthesis, + 3 spaces + ~7 digits of pid = 37.
2653 
2654                  Bad news: Program name may contain special symbols like space,
2655                  closing parenthesis, or even new line. This makes parsing
2656                  "stat" file not 100 % reliable. In case of fanny program names
2657                  parsing may fail (report incorrect thread state).
2658 
2659                  Parsing "status" file looks more promissing (due to different
2660                  file structure and escaping special symbols) but reading and
2661                  parsing of "status" file works slower.
2662                   -- ln
2663               */
2664               char buffer[65];
2665               ssize_t len;
2666               len = read(stat_file, buffer, sizeof(buffer) - 1);
2667               if (len >= 0) {
2668                 buffer[len] = 0;
2669                 // Using scanf:
2670                 //     sscanf( buffer, "%*d (%*s) %c ", & state );
2671                 // looks very nice, but searching for a closing parenthesis
2672                 // works a bit faster.
2673                 char *close_parent = strstr(buffer, ") ");
2674                 if (close_parent != NULL) {
2675                   char state = *(close_parent + 2);
2676                   if (state == 'R') {
2677                     ++running_threads;
2678                     if (running_threads >= max) {
2679                       goto finish;
2680                     }
2681                   }
2682                 }
2683               }
2684               close(stat_file);
2685               stat_file = -1;
2686             }
2687           }
2688           task_entry = readdir(task_dir);
2689         }
2690         closedir(task_dir);
2691         task_dir = NULL;
2692       }
2693     }
2694     proc_entry = readdir(proc_dir);
2695   }
2696 
2697   // There _might_ be a timing hole where the thread executing this
2698   // code get skipped in the load balance, and running_threads is 0.
2699   // Assert in the debug builds only!!!
2700   KMP_DEBUG_ASSERT(running_threads > 0);
2701   if (running_threads <= 0) {
2702     running_threads = 1;
2703   }
2704 
2705 finish: // Clean up and exit.
2706   if (proc_dir != NULL) {
2707     closedir(proc_dir);
2708   }
2709   __kmp_str_buf_free(&task_path);
2710   if (task_dir != NULL) {
2711     closedir(task_dir);
2712   }
2713   __kmp_str_buf_free(&stat_path);
2714   if (stat_file != -1) {
2715     close(stat_file);
2716   }
2717 
2718   glb_running_threads = running_threads;
2719 
2720   return running_threads;
2721 
2722 } // __kmp_get_load_balance
2723 
2724 #endif // KMP_OS_DARWIN
2725 
2726 #endif // USE_LOAD_BALANCE
2727 
2728 #if !(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_MIC ||                            \
2729       ((KMP_OS_LINUX || KMP_OS_DARWIN) && KMP_ARCH_AARCH64) ||                 \
2730       KMP_ARCH_PPC64 || KMP_ARCH_RISCV64 || KMP_ARCH_LOONGARCH64 ||            \
2731       KMP_ARCH_ARM || KMP_ARCH_VE || KMP_ARCH_S390X || KMP_ARCH_PPC_XCOFF ||   \
2732       KMP_ARCH_AARCH64_32)
2733 
2734 // Because WebAssembly will use `call_indirect` to invoke the microtask and
2735 // WebAssembly indirect calls check that the called signature is a precise
2736 // match, we need to cast each microtask function pointer back from `void *` to
2737 // its original type.
2738 typedef void (*microtask_t0)(int *, int *);
2739 typedef void (*microtask_t1)(int *, int *, void *);
2740 typedef void (*microtask_t2)(int *, int *, void *, void *);
2741 typedef void (*microtask_t3)(int *, int *, void *, void *, void *);
2742 typedef void (*microtask_t4)(int *, int *, void *, void *, void *, void *);
2743 typedef void (*microtask_t5)(int *, int *, void *, void *, void *, void *,
2744                              void *);
2745 typedef void (*microtask_t6)(int *, int *, void *, void *, void *, void *,
2746                              void *, void *);
2747 typedef void (*microtask_t7)(int *, int *, void *, void *, void *, void *,
2748                              void *, void *, void *);
2749 typedef void (*microtask_t8)(int *, int *, void *, void *, void *, void *,
2750                              void *, void *, void *, void *);
2751 typedef void (*microtask_t9)(int *, int *, void *, void *, void *, void *,
2752                              void *, void *, void *, void *, void *);
2753 typedef void (*microtask_t10)(int *, int *, void *, void *, void *, void *,
2754                               void *, void *, void *, void *, void *, void *);
2755 typedef void (*microtask_t11)(int *, int *, void *, void *, void *, void *,
2756                               void *, void *, void *, void *, void *, void *,
2757                               void *);
2758 typedef void (*microtask_t12)(int *, int *, void *, void *, void *, void *,
2759                               void *, void *, void *, void *, void *, void *,
2760                               void *, void *);
2761 typedef void (*microtask_t13)(int *, int *, void *, void *, void *, void *,
2762                               void *, void *, void *, void *, void *, void *,
2763                               void *, void *, void *);
2764 typedef void (*microtask_t14)(int *, int *, void *, void *, void *, void *,
2765                               void *, void *, void *, void *, void *, void *,
2766                               void *, void *, void *, void *);
2767 typedef void (*microtask_t15)(int *, int *, void *, void *, void *, void *,
2768                               void *, void *, void *, void *, void *, void *,
2769                               void *, void *, void *, void *, void *);
2770 
2771 // we really only need the case with 1 argument, because CLANG always build
2772 // a struct of pointers to shared variables referenced in the outlined function
__kmp_invoke_microtask(microtask_t pkfn,int gtid,int tid,int argc,void * p_argv[],void ** exit_frame_ptr)2773 int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int tid, int argc,
2774                            void *p_argv[]
2775 #if OMPT_SUPPORT
2776                            ,
2777                            void **exit_frame_ptr
2778 #endif
2779 ) {
2780 #if OMPT_SUPPORT
2781   *exit_frame_ptr = OMPT_GET_FRAME_ADDRESS(0);
2782 #endif
2783 
2784   switch (argc) {
2785   default:
2786     fprintf(stderr, "Too many args to microtask: %d!\n", argc);
2787     fflush(stderr);
2788     exit(-1);
2789   case 0:
2790     (*(microtask_t0)pkfn)(&gtid, &tid);
2791     break;
2792   case 1:
2793     (*(microtask_t1)pkfn)(&gtid, &tid, p_argv[0]);
2794     break;
2795   case 2:
2796     (*(microtask_t2)pkfn)(&gtid, &tid, p_argv[0], p_argv[1]);
2797     break;
2798   case 3:
2799     (*(microtask_t3)pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2]);
2800     break;
2801   case 4:
2802     (*(microtask_t4)pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2],
2803                           p_argv[3]);
2804     break;
2805   case 5:
2806     (*(microtask_t5)pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2],
2807                           p_argv[3], p_argv[4]);
2808     break;
2809   case 6:
2810     (*(microtask_t6)pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2],
2811                           p_argv[3], p_argv[4], p_argv[5]);
2812     break;
2813   case 7:
2814     (*(microtask_t7)pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2],
2815                           p_argv[3], p_argv[4], p_argv[5], p_argv[6]);
2816     break;
2817   case 8:
2818     (*(microtask_t8)pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2],
2819                           p_argv[3], p_argv[4], p_argv[5], p_argv[6],
2820                           p_argv[7]);
2821     break;
2822   case 9:
2823     (*(microtask_t9)pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2],
2824                           p_argv[3], p_argv[4], p_argv[5], p_argv[6], p_argv[7],
2825                           p_argv[8]);
2826     break;
2827   case 10:
2828     (*(microtask_t10)pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2],
2829                            p_argv[3], p_argv[4], p_argv[5], p_argv[6],
2830                            p_argv[7], p_argv[8], p_argv[9]);
2831     break;
2832   case 11:
2833     (*(microtask_t11)pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2],
2834                            p_argv[3], p_argv[4], p_argv[5], p_argv[6],
2835                            p_argv[7], p_argv[8], p_argv[9], p_argv[10]);
2836     break;
2837   case 12:
2838     (*(microtask_t12)pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2],
2839                            p_argv[3], p_argv[4], p_argv[5], p_argv[6],
2840                            p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2841                            p_argv[11]);
2842     break;
2843   case 13:
2844     (*(microtask_t13)pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2],
2845                            p_argv[3], p_argv[4], p_argv[5], p_argv[6],
2846                            p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2847                            p_argv[11], p_argv[12]);
2848     break;
2849   case 14:
2850     (*(microtask_t14)pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2],
2851                            p_argv[3], p_argv[4], p_argv[5], p_argv[6],
2852                            p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2853                            p_argv[11], p_argv[12], p_argv[13]);
2854     break;
2855   case 15:
2856     (*(microtask_t15)pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2],
2857                            p_argv[3], p_argv[4], p_argv[5], p_argv[6],
2858                            p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2859                            p_argv[11], p_argv[12], p_argv[13], p_argv[14]);
2860     break;
2861   }
2862 
2863   return 1;
2864 }
2865 
2866 #endif
2867 
2868 #if KMP_OS_LINUX
2869 // Functions for hidden helper task
2870 namespace {
2871 // Condition variable for initializing hidden helper team
2872 pthread_cond_t hidden_helper_threads_initz_cond_var;
2873 pthread_mutex_t hidden_helper_threads_initz_lock;
2874 volatile int hidden_helper_initz_signaled = FALSE;
2875 
2876 // Condition variable for deinitializing hidden helper team
2877 pthread_cond_t hidden_helper_threads_deinitz_cond_var;
2878 pthread_mutex_t hidden_helper_threads_deinitz_lock;
2879 volatile int hidden_helper_deinitz_signaled = FALSE;
2880 
2881 // Condition variable for the wrapper function of main thread
2882 pthread_cond_t hidden_helper_main_thread_cond_var;
2883 pthread_mutex_t hidden_helper_main_thread_lock;
2884 volatile int hidden_helper_main_thread_signaled = FALSE;
2885 
2886 // Semaphore for worker threads. We don't use condition variable here in case
2887 // that when multiple signals are sent at the same time, only one thread might
2888 // be waken.
2889 sem_t hidden_helper_task_sem;
2890 } // namespace
2891 
__kmp_hidden_helper_worker_thread_wait()2892 void __kmp_hidden_helper_worker_thread_wait() {
2893   int status = sem_wait(&hidden_helper_task_sem);
2894   KMP_CHECK_SYSFAIL("sem_wait", status);
2895 }
2896 
__kmp_do_initialize_hidden_helper_threads()2897 void __kmp_do_initialize_hidden_helper_threads() {
2898   // Initialize condition variable
2899   int status =
2900       pthread_cond_init(&hidden_helper_threads_initz_cond_var, nullptr);
2901   KMP_CHECK_SYSFAIL("pthread_cond_init", status);
2902 
2903   status = pthread_cond_init(&hidden_helper_threads_deinitz_cond_var, nullptr);
2904   KMP_CHECK_SYSFAIL("pthread_cond_init", status);
2905 
2906   status = pthread_cond_init(&hidden_helper_main_thread_cond_var, nullptr);
2907   KMP_CHECK_SYSFAIL("pthread_cond_init", status);
2908 
2909   status = pthread_mutex_init(&hidden_helper_threads_initz_lock, nullptr);
2910   KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
2911 
2912   status = pthread_mutex_init(&hidden_helper_threads_deinitz_lock, nullptr);
2913   KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
2914 
2915   status = pthread_mutex_init(&hidden_helper_main_thread_lock, nullptr);
2916   KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
2917 
2918   // Initialize the semaphore
2919   status = sem_init(&hidden_helper_task_sem, 0, 0);
2920   KMP_CHECK_SYSFAIL("sem_init", status);
2921 
2922   // Create a new thread to finish initialization
2923   pthread_t handle;
2924   status = pthread_create(
2925       &handle, nullptr,
2926       [](void *) -> void * {
2927         __kmp_hidden_helper_threads_initz_routine();
2928         return nullptr;
2929       },
2930       nullptr);
2931   KMP_CHECK_SYSFAIL("pthread_create", status);
2932 }
2933 
__kmp_hidden_helper_threads_initz_wait()2934 void __kmp_hidden_helper_threads_initz_wait() {
2935   // Initial thread waits here for the completion of the initialization. The
2936   // condition variable will be notified by main thread of hidden helper teams.
2937   int status = pthread_mutex_lock(&hidden_helper_threads_initz_lock);
2938   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2939 
2940   if (!TCR_4(hidden_helper_initz_signaled)) {
2941     status = pthread_cond_wait(&hidden_helper_threads_initz_cond_var,
2942                                &hidden_helper_threads_initz_lock);
2943     KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2944   }
2945 
2946   status = pthread_mutex_unlock(&hidden_helper_threads_initz_lock);
2947   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2948 }
2949 
__kmp_hidden_helper_initz_release()2950 void __kmp_hidden_helper_initz_release() {
2951   // After all initialization, reset __kmp_init_hidden_helper_threads to false.
2952   int status = pthread_mutex_lock(&hidden_helper_threads_initz_lock);
2953   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2954 
2955   status = pthread_cond_signal(&hidden_helper_threads_initz_cond_var);
2956   KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2957 
2958   TCW_SYNC_4(hidden_helper_initz_signaled, TRUE);
2959 
2960   status = pthread_mutex_unlock(&hidden_helper_threads_initz_lock);
2961   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2962 }
2963 
__kmp_hidden_helper_main_thread_wait()2964 void __kmp_hidden_helper_main_thread_wait() {
2965   // The main thread of hidden helper team will be blocked here. The
2966   // condition variable can only be signal in the destructor of RTL.
2967   int status = pthread_mutex_lock(&hidden_helper_main_thread_lock);
2968   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2969 
2970   if (!TCR_4(hidden_helper_main_thread_signaled)) {
2971     status = pthread_cond_wait(&hidden_helper_main_thread_cond_var,
2972                                &hidden_helper_main_thread_lock);
2973     KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2974   }
2975 
2976   status = pthread_mutex_unlock(&hidden_helper_main_thread_lock);
2977   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2978 }
2979 
__kmp_hidden_helper_main_thread_release()2980 void __kmp_hidden_helper_main_thread_release() {
2981   // The initial thread of OpenMP RTL should call this function to wake up the
2982   // main thread of hidden helper team.
2983   int status = pthread_mutex_lock(&hidden_helper_main_thread_lock);
2984   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2985 
2986   status = pthread_cond_signal(&hidden_helper_main_thread_cond_var);
2987   KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
2988 
2989   // The hidden helper team is done here
2990   TCW_SYNC_4(hidden_helper_main_thread_signaled, TRUE);
2991 
2992   status = pthread_mutex_unlock(&hidden_helper_main_thread_lock);
2993   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2994 }
2995 
__kmp_hidden_helper_worker_thread_signal()2996 void __kmp_hidden_helper_worker_thread_signal() {
2997   int status = sem_post(&hidden_helper_task_sem);
2998   KMP_CHECK_SYSFAIL("sem_post", status);
2999 }
3000 
__kmp_hidden_helper_threads_deinitz_wait()3001 void __kmp_hidden_helper_threads_deinitz_wait() {
3002   // Initial thread waits here for the completion of the deinitialization. The
3003   // condition variable will be notified by main thread of hidden helper teams.
3004   int status = pthread_mutex_lock(&hidden_helper_threads_deinitz_lock);
3005   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
3006 
3007   if (!TCR_4(hidden_helper_deinitz_signaled)) {
3008     status = pthread_cond_wait(&hidden_helper_threads_deinitz_cond_var,
3009                                &hidden_helper_threads_deinitz_lock);
3010     KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
3011   }
3012 
3013   status = pthread_mutex_unlock(&hidden_helper_threads_deinitz_lock);
3014   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
3015 }
3016 
__kmp_hidden_helper_threads_deinitz_release()3017 void __kmp_hidden_helper_threads_deinitz_release() {
3018   int status = pthread_mutex_lock(&hidden_helper_threads_deinitz_lock);
3019   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
3020 
3021   status = pthread_cond_signal(&hidden_helper_threads_deinitz_cond_var);
3022   KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
3023 
3024   TCW_SYNC_4(hidden_helper_deinitz_signaled, TRUE);
3025 
3026   status = pthread_mutex_unlock(&hidden_helper_threads_deinitz_lock);
3027   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
3028 }
3029 #else // KMP_OS_LINUX
__kmp_hidden_helper_worker_thread_wait()3030 void __kmp_hidden_helper_worker_thread_wait() {
3031   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
3032 }
3033 
__kmp_do_initialize_hidden_helper_threads()3034 void __kmp_do_initialize_hidden_helper_threads() {
3035   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
3036 }
3037 
__kmp_hidden_helper_threads_initz_wait()3038 void __kmp_hidden_helper_threads_initz_wait() {
3039   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
3040 }
3041 
__kmp_hidden_helper_initz_release()3042 void __kmp_hidden_helper_initz_release() {
3043   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
3044 }
3045 
__kmp_hidden_helper_main_thread_wait()3046 void __kmp_hidden_helper_main_thread_wait() {
3047   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
3048 }
3049 
__kmp_hidden_helper_main_thread_release()3050 void __kmp_hidden_helper_main_thread_release() {
3051   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
3052 }
3053 
__kmp_hidden_helper_worker_thread_signal()3054 void __kmp_hidden_helper_worker_thread_signal() {
3055   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
3056 }
3057 
__kmp_hidden_helper_threads_deinitz_wait()3058 void __kmp_hidden_helper_threads_deinitz_wait() {
3059   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
3060 }
3061 
__kmp_hidden_helper_threads_deinitz_release()3062 void __kmp_hidden_helper_threads_deinitz_release() {
3063   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
3064 }
3065 #endif // KMP_OS_LINUX
3066 
__kmp_detect_shm()3067 bool __kmp_detect_shm() {
3068   DIR *dir = opendir("/dev/shm");
3069   if (dir) { // /dev/shm exists
3070     closedir(dir);
3071     return true;
3072   } else if (ENOENT == errno) { // /dev/shm does not exist
3073     return false;
3074   } else { // opendir() failed
3075     return false;
3076   }
3077 }
3078 
__kmp_detect_tmp()3079 bool __kmp_detect_tmp() {
3080   DIR *dir = opendir("/tmp");
3081   if (dir) { // /tmp exists
3082     closedir(dir);
3083     return true;
3084   } else if (ENOENT == errno) { // /tmp does not exist
3085     return false;
3086   } else { // opendir() failed
3087     return false;
3088   }
3089 }
3090 
3091 // end of file //
3092