1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25 */
26
27 /* Portions Copyright 2010 Robert Milkowski */
28
29 #include <sys/types.h>
30 #include <sys/param.h>
31 #include <sys/sysmacros.h>
32 #include <sys/kmem.h>
33 #include <sys/pathname.h>
34 #include <sys/vnode.h>
35 #include <sys/vfs.h>
36 #include <sys/mntent.h>
37 #include <sys/cmn_err.h>
38 #include <sys/zfs_znode.h>
39 #include <sys/zfs_vnops.h>
40 #include <sys/zfs_dir.h>
41 #include <sys/zil.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/dmu.h>
44 #include <sys/dsl_prop.h>
45 #include <sys/dsl_dataset.h>
46 #include <sys/dsl_deleg.h>
47 #include <sys/spa.h>
48 #include <sys/zap.h>
49 #include <sys/sa.h>
50 #include <sys/sa_impl.h>
51 #include <sys/policy.h>
52 #include <sys/atomic.h>
53 #include <sys/zfs_ioctl.h>
54 #include <sys/zfs_ctldir.h>
55 #include <sys/zfs_fuid.h>
56 #include <sys/zfs_quota.h>
57 #include <sys/sunddi.h>
58 #include <sys/dmu_objset.h>
59 #include <sys/dsl_dir.h>
60 #include <sys/objlist.h>
61 #include <sys/zfeature.h>
62 #include <sys/zpl.h>
63 #include <linux/vfs_compat.h>
64 #include <linux/fs.h>
65 #include "zfs_comutil.h"
66
67 enum {
68 TOKEN_RO,
69 TOKEN_RW,
70 TOKEN_SETUID,
71 TOKEN_NOSETUID,
72 TOKEN_EXEC,
73 TOKEN_NOEXEC,
74 TOKEN_DEVICES,
75 TOKEN_NODEVICES,
76 TOKEN_DIRXATTR,
77 TOKEN_SAXATTR,
78 TOKEN_XATTR,
79 TOKEN_NOXATTR,
80 TOKEN_ATIME,
81 TOKEN_NOATIME,
82 TOKEN_RELATIME,
83 TOKEN_NORELATIME,
84 TOKEN_NBMAND,
85 TOKEN_NONBMAND,
86 TOKEN_MNTPOINT,
87 TOKEN_LAST,
88 };
89
90 static const match_table_t zpl_tokens = {
91 { TOKEN_RO, MNTOPT_RO },
92 { TOKEN_RW, MNTOPT_RW },
93 { TOKEN_SETUID, MNTOPT_SETUID },
94 { TOKEN_NOSETUID, MNTOPT_NOSETUID },
95 { TOKEN_EXEC, MNTOPT_EXEC },
96 { TOKEN_NOEXEC, MNTOPT_NOEXEC },
97 { TOKEN_DEVICES, MNTOPT_DEVICES },
98 { TOKEN_NODEVICES, MNTOPT_NODEVICES },
99 { TOKEN_DIRXATTR, MNTOPT_DIRXATTR },
100 { TOKEN_SAXATTR, MNTOPT_SAXATTR },
101 { TOKEN_XATTR, MNTOPT_XATTR },
102 { TOKEN_NOXATTR, MNTOPT_NOXATTR },
103 { TOKEN_ATIME, MNTOPT_ATIME },
104 { TOKEN_NOATIME, MNTOPT_NOATIME },
105 { TOKEN_RELATIME, MNTOPT_RELATIME },
106 { TOKEN_NORELATIME, MNTOPT_NORELATIME },
107 { TOKEN_NBMAND, MNTOPT_NBMAND },
108 { TOKEN_NONBMAND, MNTOPT_NONBMAND },
109 { TOKEN_MNTPOINT, MNTOPT_MNTPOINT "=%s" },
110 { TOKEN_LAST, NULL },
111 };
112
113 static void
zfsvfs_vfs_free(vfs_t * vfsp)114 zfsvfs_vfs_free(vfs_t *vfsp)
115 {
116 if (vfsp != NULL) {
117 if (vfsp->vfs_mntpoint != NULL)
118 kmem_strfree(vfsp->vfs_mntpoint);
119 mutex_destroy(&vfsp->vfs_mntpt_lock);
120 kmem_free(vfsp, sizeof (vfs_t));
121 }
122 }
123
124 static int
zfsvfs_parse_option(char * option,int token,substring_t * args,vfs_t * vfsp)125 zfsvfs_parse_option(char *option, int token, substring_t *args, vfs_t *vfsp)
126 {
127 switch (token) {
128 case TOKEN_RO:
129 vfsp->vfs_readonly = B_TRUE;
130 vfsp->vfs_do_readonly = B_TRUE;
131 break;
132 case TOKEN_RW:
133 vfsp->vfs_readonly = B_FALSE;
134 vfsp->vfs_do_readonly = B_TRUE;
135 break;
136 case TOKEN_SETUID:
137 vfsp->vfs_setuid = B_TRUE;
138 vfsp->vfs_do_setuid = B_TRUE;
139 break;
140 case TOKEN_NOSETUID:
141 vfsp->vfs_setuid = B_FALSE;
142 vfsp->vfs_do_setuid = B_TRUE;
143 break;
144 case TOKEN_EXEC:
145 vfsp->vfs_exec = B_TRUE;
146 vfsp->vfs_do_exec = B_TRUE;
147 break;
148 case TOKEN_NOEXEC:
149 vfsp->vfs_exec = B_FALSE;
150 vfsp->vfs_do_exec = B_TRUE;
151 break;
152 case TOKEN_DEVICES:
153 vfsp->vfs_devices = B_TRUE;
154 vfsp->vfs_do_devices = B_TRUE;
155 break;
156 case TOKEN_NODEVICES:
157 vfsp->vfs_devices = B_FALSE;
158 vfsp->vfs_do_devices = B_TRUE;
159 break;
160 case TOKEN_DIRXATTR:
161 vfsp->vfs_xattr = ZFS_XATTR_DIR;
162 vfsp->vfs_do_xattr = B_TRUE;
163 break;
164 case TOKEN_SAXATTR:
165 vfsp->vfs_xattr = ZFS_XATTR_SA;
166 vfsp->vfs_do_xattr = B_TRUE;
167 break;
168 case TOKEN_XATTR:
169 vfsp->vfs_xattr = ZFS_XATTR_SA;
170 vfsp->vfs_do_xattr = B_TRUE;
171 break;
172 case TOKEN_NOXATTR:
173 vfsp->vfs_xattr = ZFS_XATTR_OFF;
174 vfsp->vfs_do_xattr = B_TRUE;
175 break;
176 case TOKEN_ATIME:
177 vfsp->vfs_atime = B_TRUE;
178 vfsp->vfs_do_atime = B_TRUE;
179 break;
180 case TOKEN_NOATIME:
181 vfsp->vfs_atime = B_FALSE;
182 vfsp->vfs_do_atime = B_TRUE;
183 break;
184 case TOKEN_RELATIME:
185 vfsp->vfs_relatime = B_TRUE;
186 vfsp->vfs_do_relatime = B_TRUE;
187 break;
188 case TOKEN_NORELATIME:
189 vfsp->vfs_relatime = B_FALSE;
190 vfsp->vfs_do_relatime = B_TRUE;
191 break;
192 case TOKEN_NBMAND:
193 vfsp->vfs_nbmand = B_TRUE;
194 vfsp->vfs_do_nbmand = B_TRUE;
195 break;
196 case TOKEN_NONBMAND:
197 vfsp->vfs_nbmand = B_FALSE;
198 vfsp->vfs_do_nbmand = B_TRUE;
199 break;
200 case TOKEN_MNTPOINT:
201 if (vfsp->vfs_mntpoint != NULL)
202 kmem_strfree(vfsp->vfs_mntpoint);
203 vfsp->vfs_mntpoint = match_strdup(&args[0]);
204 if (vfsp->vfs_mntpoint == NULL)
205 return (SET_ERROR(ENOMEM));
206 break;
207 default:
208 break;
209 }
210
211 return (0);
212 }
213
214 /*
215 * Parse the raw mntopts and return a vfs_t describing the options.
216 */
217 static int
zfsvfs_parse_options(char * mntopts,vfs_t ** vfsp)218 zfsvfs_parse_options(char *mntopts, vfs_t **vfsp)
219 {
220 vfs_t *tmp_vfsp;
221 int error;
222
223 tmp_vfsp = kmem_zalloc(sizeof (vfs_t), KM_SLEEP);
224 mutex_init(&tmp_vfsp->vfs_mntpt_lock, NULL, MUTEX_DEFAULT, NULL);
225
226 if (mntopts != NULL) {
227 substring_t args[MAX_OPT_ARGS];
228 char *tmp_mntopts, *p, *t;
229 int token;
230
231 tmp_mntopts = t = kmem_strdup(mntopts);
232 if (tmp_mntopts == NULL)
233 return (SET_ERROR(ENOMEM));
234
235 while ((p = strsep(&t, ",")) != NULL) {
236 if (!*p)
237 continue;
238
239 args[0].to = args[0].from = NULL;
240 token = match_token(p, zpl_tokens, args);
241 error = zfsvfs_parse_option(p, token, args, tmp_vfsp);
242 if (error) {
243 kmem_strfree(tmp_mntopts);
244 zfsvfs_vfs_free(tmp_vfsp);
245 return (error);
246 }
247 }
248
249 kmem_strfree(tmp_mntopts);
250 }
251
252 *vfsp = tmp_vfsp;
253
254 return (0);
255 }
256
257 boolean_t
zfs_is_readonly(zfsvfs_t * zfsvfs)258 zfs_is_readonly(zfsvfs_t *zfsvfs)
259 {
260 return (!!(zfsvfs->z_sb->s_flags & SB_RDONLY));
261 }
262
263 int
zfs_sync(struct super_block * sb,int wait,cred_t * cr)264 zfs_sync(struct super_block *sb, int wait, cred_t *cr)
265 {
266 (void) cr;
267 zfsvfs_t *zfsvfs = sb->s_fs_info;
268 ASSERT3P(zfsvfs, !=, NULL);
269
270 /*
271 * Semantically, the only requirement is that the sync be initiated.
272 * The DMU syncs out txgs frequently, so there's nothing to do.
273 */
274 if (!wait)
275 return (0);
276
277 int err = zfs_enter(zfsvfs, FTAG);
278 if (err != 0)
279 return (err);
280
281 /*
282 * Sync any pending writes, but do not block if the pool is suspended.
283 * This is to help with shutting down with pools suspended, as we don't
284 * want to block in that case.
285 */
286 err = zil_commit_flags(zfsvfs->z_log, 0, ZIL_COMMIT_NOW);
287 zfs_exit(zfsvfs, FTAG);
288
289 return (err);
290 }
291
292 static void
atime_changed_cb(void * arg,uint64_t newval)293 atime_changed_cb(void *arg, uint64_t newval)
294 {
295 zfsvfs_t *zfsvfs = arg;
296 struct super_block *sb = zfsvfs->z_sb;
297
298 if (sb == NULL)
299 return;
300 /*
301 * Update SB_NOATIME bit in VFS super block. Since atime update is
302 * determined by atime_needs_update(), atime_needs_update() needs to
303 * return false if atime is turned off, and not unconditionally return
304 * false if atime is turned on.
305 */
306 if (newval)
307 sb->s_flags &= ~SB_NOATIME;
308 else
309 sb->s_flags |= SB_NOATIME;
310 }
311
312 static void
relatime_changed_cb(void * arg,uint64_t newval)313 relatime_changed_cb(void *arg, uint64_t newval)
314 {
315 ((zfsvfs_t *)arg)->z_relatime = newval;
316 }
317
318 static void
xattr_changed_cb(void * arg,uint64_t newval)319 xattr_changed_cb(void *arg, uint64_t newval)
320 {
321 zfsvfs_t *zfsvfs = arg;
322
323 if (newval == ZFS_XATTR_OFF) {
324 zfsvfs->z_flags &= ~ZSB_XATTR;
325 } else {
326 zfsvfs->z_flags |= ZSB_XATTR;
327
328 if (newval == ZFS_XATTR_SA)
329 zfsvfs->z_xattr_sa = B_TRUE;
330 else
331 zfsvfs->z_xattr_sa = B_FALSE;
332 }
333 }
334
335 static void
acltype_changed_cb(void * arg,uint64_t newval)336 acltype_changed_cb(void *arg, uint64_t newval)
337 {
338 zfsvfs_t *zfsvfs = arg;
339
340 switch (newval) {
341 case ZFS_ACLTYPE_NFSV4:
342 case ZFS_ACLTYPE_OFF:
343 zfsvfs->z_acl_type = ZFS_ACLTYPE_OFF;
344 zfsvfs->z_sb->s_flags &= ~SB_POSIXACL;
345 break;
346 case ZFS_ACLTYPE_POSIX:
347 #ifdef CONFIG_FS_POSIX_ACL
348 zfsvfs->z_acl_type = ZFS_ACLTYPE_POSIX;
349 zfsvfs->z_sb->s_flags |= SB_POSIXACL;
350 #else
351 zfsvfs->z_acl_type = ZFS_ACLTYPE_OFF;
352 zfsvfs->z_sb->s_flags &= ~SB_POSIXACL;
353 #endif /* CONFIG_FS_POSIX_ACL */
354 break;
355 default:
356 break;
357 }
358 }
359
360 static void
blksz_changed_cb(void * arg,uint64_t newval)361 blksz_changed_cb(void *arg, uint64_t newval)
362 {
363 zfsvfs_t *zfsvfs = arg;
364 ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os)));
365 ASSERT3U(newval, >=, SPA_MINBLOCKSIZE);
366 ASSERT(ISP2(newval));
367
368 zfsvfs->z_max_blksz = newval;
369 }
370
371 static void
readonly_changed_cb(void * arg,uint64_t newval)372 readonly_changed_cb(void *arg, uint64_t newval)
373 {
374 zfsvfs_t *zfsvfs = arg;
375 struct super_block *sb = zfsvfs->z_sb;
376
377 if (sb == NULL)
378 return;
379
380 if (newval)
381 sb->s_flags |= SB_RDONLY;
382 else
383 sb->s_flags &= ~SB_RDONLY;
384 }
385
386 static void
devices_changed_cb(void * arg,uint64_t newval)387 devices_changed_cb(void *arg, uint64_t newval)
388 {
389 }
390
391 static void
setuid_changed_cb(void * arg,uint64_t newval)392 setuid_changed_cb(void *arg, uint64_t newval)
393 {
394 }
395
396 static void
exec_changed_cb(void * arg,uint64_t newval)397 exec_changed_cb(void *arg, uint64_t newval)
398 {
399 }
400
401 static void
nbmand_changed_cb(void * arg,uint64_t newval)402 nbmand_changed_cb(void *arg, uint64_t newval)
403 {
404 zfsvfs_t *zfsvfs = arg;
405 struct super_block *sb = zfsvfs->z_sb;
406
407 if (sb == NULL)
408 return;
409
410 if (newval == TRUE)
411 sb->s_flags |= SB_MANDLOCK;
412 else
413 sb->s_flags &= ~SB_MANDLOCK;
414 }
415
416 static void
snapdir_changed_cb(void * arg,uint64_t newval)417 snapdir_changed_cb(void *arg, uint64_t newval)
418 {
419 ((zfsvfs_t *)arg)->z_show_ctldir = newval;
420 }
421
422 static void
acl_mode_changed_cb(void * arg,uint64_t newval)423 acl_mode_changed_cb(void *arg, uint64_t newval)
424 {
425 zfsvfs_t *zfsvfs = arg;
426
427 zfsvfs->z_acl_mode = newval;
428 }
429
430 static void
acl_inherit_changed_cb(void * arg,uint64_t newval)431 acl_inherit_changed_cb(void *arg, uint64_t newval)
432 {
433 ((zfsvfs_t *)arg)->z_acl_inherit = newval;
434 }
435
436 static void
longname_changed_cb(void * arg,uint64_t newval)437 longname_changed_cb(void *arg, uint64_t newval)
438 {
439 ((zfsvfs_t *)arg)->z_longname = newval;
440 }
441
442 static int
zfs_register_callbacks(vfs_t * vfsp)443 zfs_register_callbacks(vfs_t *vfsp)
444 {
445 struct dsl_dataset *ds = NULL;
446 objset_t *os = NULL;
447 zfsvfs_t *zfsvfs = NULL;
448 int error = 0;
449
450 ASSERT(vfsp);
451 zfsvfs = vfsp->vfs_data;
452 ASSERT(zfsvfs);
453 os = zfsvfs->z_os;
454
455 /*
456 * The act of registering our callbacks will destroy any mount
457 * options we may have. In order to enable temporary overrides
458 * of mount options, we stash away the current values and
459 * restore them after we register the callbacks.
460 */
461 if (zfs_is_readonly(zfsvfs) || !spa_writeable(dmu_objset_spa(os))) {
462 vfsp->vfs_do_readonly = B_TRUE;
463 vfsp->vfs_readonly = B_TRUE;
464 }
465
466 /*
467 * Register property callbacks.
468 *
469 * It would probably be fine to just check for i/o error from
470 * the first prop_register(), but I guess I like to go
471 * overboard...
472 */
473 ds = dmu_objset_ds(os);
474 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
475 error = dsl_prop_register(ds,
476 zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs);
477 error = error ? error : dsl_prop_register(ds,
478 zfs_prop_to_name(ZFS_PROP_RELATIME), relatime_changed_cb, zfsvfs);
479 error = error ? error : dsl_prop_register(ds,
480 zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs);
481 error = error ? error : dsl_prop_register(ds,
482 zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs);
483 error = error ? error : dsl_prop_register(ds,
484 zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs);
485 error = error ? error : dsl_prop_register(ds,
486 zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs);
487 error = error ? error : dsl_prop_register(ds,
488 zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs);
489 error = error ? error : dsl_prop_register(ds,
490 zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs);
491 error = error ? error : dsl_prop_register(ds,
492 zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs);
493 error = error ? error : dsl_prop_register(ds,
494 zfs_prop_to_name(ZFS_PROP_ACLTYPE), acltype_changed_cb, zfsvfs);
495 error = error ? error : dsl_prop_register(ds,
496 zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs);
497 error = error ? error : dsl_prop_register(ds,
498 zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb,
499 zfsvfs);
500 error = error ? error : dsl_prop_register(ds,
501 zfs_prop_to_name(ZFS_PROP_NBMAND), nbmand_changed_cb, zfsvfs);
502 error = error ? error : dsl_prop_register(ds,
503 zfs_prop_to_name(ZFS_PROP_LONGNAME), longname_changed_cb, zfsvfs);
504 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
505 if (error)
506 goto unregister;
507
508 /*
509 * Invoke our callbacks to restore temporary mount options.
510 */
511 if (vfsp->vfs_do_readonly)
512 readonly_changed_cb(zfsvfs, vfsp->vfs_readonly);
513 if (vfsp->vfs_do_setuid)
514 setuid_changed_cb(zfsvfs, vfsp->vfs_setuid);
515 if (vfsp->vfs_do_exec)
516 exec_changed_cb(zfsvfs, vfsp->vfs_exec);
517 if (vfsp->vfs_do_devices)
518 devices_changed_cb(zfsvfs, vfsp->vfs_devices);
519 if (vfsp->vfs_do_xattr)
520 xattr_changed_cb(zfsvfs, vfsp->vfs_xattr);
521 if (vfsp->vfs_do_atime)
522 atime_changed_cb(zfsvfs, vfsp->vfs_atime);
523 if (vfsp->vfs_do_relatime)
524 relatime_changed_cb(zfsvfs, vfsp->vfs_relatime);
525 if (vfsp->vfs_do_nbmand)
526 nbmand_changed_cb(zfsvfs, vfsp->vfs_nbmand);
527
528 return (0);
529
530 unregister:
531 dsl_prop_unregister_all(ds, zfsvfs);
532 return (error);
533 }
534
535 /*
536 * Takes a dataset, a property, a value and that value's setpoint as
537 * found in the ZAP. Checks if the property has been changed in the vfs.
538 * If so, val and setpoint will be overwritten with updated content.
539 * Otherwise, they are left unchanged.
540 */
541 int
zfs_get_temporary_prop(dsl_dataset_t * ds,zfs_prop_t zfs_prop,uint64_t * val,char * setpoint)542 zfs_get_temporary_prop(dsl_dataset_t *ds, zfs_prop_t zfs_prop, uint64_t *val,
543 char *setpoint)
544 {
545 int error;
546 zfsvfs_t *zfvp;
547 vfs_t *vfsp;
548 objset_t *os;
549 uint64_t tmp = *val;
550
551 error = dmu_objset_from_ds(ds, &os);
552 if (error != 0)
553 return (error);
554
555 if (dmu_objset_type(os) != DMU_OST_ZFS)
556 return (EINVAL);
557
558 mutex_enter(&os->os_user_ptr_lock);
559 zfvp = dmu_objset_get_user(os);
560 mutex_exit(&os->os_user_ptr_lock);
561 if (zfvp == NULL)
562 return (ESRCH);
563
564 vfsp = zfvp->z_vfs;
565
566 switch (zfs_prop) {
567 case ZFS_PROP_ATIME:
568 if (vfsp->vfs_do_atime)
569 tmp = vfsp->vfs_atime;
570 break;
571 case ZFS_PROP_RELATIME:
572 if (vfsp->vfs_do_relatime)
573 tmp = vfsp->vfs_relatime;
574 break;
575 case ZFS_PROP_DEVICES:
576 if (vfsp->vfs_do_devices)
577 tmp = vfsp->vfs_devices;
578 break;
579 case ZFS_PROP_EXEC:
580 if (vfsp->vfs_do_exec)
581 tmp = vfsp->vfs_exec;
582 break;
583 case ZFS_PROP_SETUID:
584 if (vfsp->vfs_do_setuid)
585 tmp = vfsp->vfs_setuid;
586 break;
587 case ZFS_PROP_READONLY:
588 if (vfsp->vfs_do_readonly)
589 tmp = vfsp->vfs_readonly;
590 break;
591 case ZFS_PROP_XATTR:
592 if (vfsp->vfs_do_xattr)
593 tmp = vfsp->vfs_xattr;
594 break;
595 case ZFS_PROP_NBMAND:
596 if (vfsp->vfs_do_nbmand)
597 tmp = vfsp->vfs_nbmand;
598 break;
599 default:
600 return (ENOENT);
601 }
602
603 if (tmp != *val) {
604 if (setpoint)
605 (void) strcpy(setpoint, "temporary");
606 *val = tmp;
607 }
608 return (0);
609 }
610
611 /*
612 * Associate this zfsvfs with the given objset, which must be owned.
613 * This will cache a bunch of on-disk state from the objset in the
614 * zfsvfs.
615 */
616 static int
zfsvfs_init(zfsvfs_t * zfsvfs,objset_t * os)617 zfsvfs_init(zfsvfs_t *zfsvfs, objset_t *os)
618 {
619 int error;
620 uint64_t val;
621
622 zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE;
623 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
624 zfsvfs->z_os = os;
625
626 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
627 if (error != 0)
628 return (error);
629 if (zfsvfs->z_version >
630 zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
631 (void) printk("Can't mount a version %lld file system "
632 "on a version %lld pool\n. Pool must be upgraded to mount "
633 "this file system.\n", (u_longlong_t)zfsvfs->z_version,
634 (u_longlong_t)spa_version(dmu_objset_spa(os)));
635 return (SET_ERROR(ENOTSUP));
636 }
637 error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &val);
638 if (error != 0)
639 return (error);
640 zfsvfs->z_norm = (int)val;
641
642 error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &val);
643 if (error != 0)
644 return (error);
645 zfsvfs->z_utf8 = (val != 0);
646
647 error = zfs_get_zplprop(os, ZFS_PROP_CASE, &val);
648 if (error != 0)
649 return (error);
650 zfsvfs->z_case = (uint_t)val;
651
652 if ((error = zfs_get_zplprop(os, ZFS_PROP_ACLTYPE, &val)) != 0)
653 return (error);
654 zfsvfs->z_acl_type = (uint_t)val;
655
656 /*
657 * Fold case on file systems that are always or sometimes case
658 * insensitive.
659 */
660 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
661 zfsvfs->z_case == ZFS_CASE_MIXED)
662 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
663
664 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
665 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
666
667 uint64_t sa_obj = 0;
668 if (zfsvfs->z_use_sa) {
669 /* should either have both of these objects or none */
670 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
671 &sa_obj);
672 if (error != 0)
673 return (error);
674
675 error = zfs_get_zplprop(os, ZFS_PROP_XATTR, &val);
676 if ((error == 0) && (val == ZFS_XATTR_SA))
677 zfsvfs->z_xattr_sa = B_TRUE;
678 }
679
680 error = zfs_get_zplprop(os, ZFS_PROP_DEFAULTUSERQUOTA,
681 &zfsvfs->z_defaultuserquota);
682 if (error != 0)
683 return (error);
684
685 error = zfs_get_zplprop(os, ZFS_PROP_DEFAULTGROUPQUOTA,
686 &zfsvfs->z_defaultgroupquota);
687 if (error != 0)
688 return (error);
689
690 error = zfs_get_zplprop(os, ZFS_PROP_DEFAULTPROJECTQUOTA,
691 &zfsvfs->z_defaultprojectquota);
692 if (error != 0)
693 return (error);
694
695 error = zfs_get_zplprop(os, ZFS_PROP_DEFAULTUSEROBJQUOTA,
696 &zfsvfs->z_defaultuserobjquota);
697 if (error != 0)
698 return (error);
699
700 error = zfs_get_zplprop(os, ZFS_PROP_DEFAULTGROUPOBJQUOTA,
701 &zfsvfs->z_defaultgroupobjquota);
702 if (error != 0)
703 return (error);
704
705 error = zfs_get_zplprop(os, ZFS_PROP_DEFAULTPROJECTOBJQUOTA,
706 &zfsvfs->z_defaultprojectobjquota);
707 if (error != 0)
708 return (error);
709
710 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
711 &zfsvfs->z_root);
712 if (error != 0)
713 return (error);
714 ASSERT(zfsvfs->z_root != 0);
715
716 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
717 &zfsvfs->z_unlinkedobj);
718 if (error != 0)
719 return (error);
720
721 error = zap_lookup(os, MASTER_NODE_OBJ,
722 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
723 8, 1, &zfsvfs->z_userquota_obj);
724 if (error == ENOENT)
725 zfsvfs->z_userquota_obj = 0;
726 else if (error != 0)
727 return (error);
728
729 error = zap_lookup(os, MASTER_NODE_OBJ,
730 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
731 8, 1, &zfsvfs->z_groupquota_obj);
732 if (error == ENOENT)
733 zfsvfs->z_groupquota_obj = 0;
734 else if (error != 0)
735 return (error);
736
737 error = zap_lookup(os, MASTER_NODE_OBJ,
738 zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTQUOTA],
739 8, 1, &zfsvfs->z_projectquota_obj);
740 if (error == ENOENT)
741 zfsvfs->z_projectquota_obj = 0;
742 else if (error != 0)
743 return (error);
744
745 error = zap_lookup(os, MASTER_NODE_OBJ,
746 zfs_userquota_prop_prefixes[ZFS_PROP_USEROBJQUOTA],
747 8, 1, &zfsvfs->z_userobjquota_obj);
748 if (error == ENOENT)
749 zfsvfs->z_userobjquota_obj = 0;
750 else if (error != 0)
751 return (error);
752
753 error = zap_lookup(os, MASTER_NODE_OBJ,
754 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPOBJQUOTA],
755 8, 1, &zfsvfs->z_groupobjquota_obj);
756 if (error == ENOENT)
757 zfsvfs->z_groupobjquota_obj = 0;
758 else if (error != 0)
759 return (error);
760
761 error = zap_lookup(os, MASTER_NODE_OBJ,
762 zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTOBJQUOTA],
763 8, 1, &zfsvfs->z_projectobjquota_obj);
764 if (error == ENOENT)
765 zfsvfs->z_projectobjquota_obj = 0;
766 else if (error != 0)
767 return (error);
768
769 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
770 &zfsvfs->z_fuid_obj);
771 if (error == ENOENT)
772 zfsvfs->z_fuid_obj = 0;
773 else if (error != 0)
774 return (error);
775
776 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
777 &zfsvfs->z_shares_dir);
778 if (error == ENOENT)
779 zfsvfs->z_shares_dir = 0;
780 else if (error != 0)
781 return (error);
782
783 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
784 &zfsvfs->z_attr_table);
785 if (error != 0)
786 return (error);
787
788 if (zfsvfs->z_version >= ZPL_VERSION_SA)
789 sa_register_update_callback(os, zfs_sa_upgrade);
790
791 return (0);
792 }
793
794 int
zfsvfs_create(const char * osname,boolean_t readonly,zfsvfs_t ** zfvp)795 zfsvfs_create(const char *osname, boolean_t readonly, zfsvfs_t **zfvp)
796 {
797 objset_t *os;
798 zfsvfs_t *zfsvfs;
799 int error;
800 boolean_t ro = (readonly || (strchr(osname, '@') != NULL));
801
802 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
803
804 error = dmu_objset_own(osname, DMU_OST_ZFS, ro, B_TRUE, zfsvfs, &os);
805 if (error != 0) {
806 kmem_free(zfsvfs, sizeof (zfsvfs_t));
807 return (error);
808 }
809
810 error = zfsvfs_create_impl(zfvp, zfsvfs, os);
811
812 return (error);
813 }
814
815
816 /*
817 * Note: zfsvfs is assumed to be malloc'd, and will be freed by this function
818 * on a failure. Do not pass in a statically allocated zfsvfs.
819 */
820 int
zfsvfs_create_impl(zfsvfs_t ** zfvp,zfsvfs_t * zfsvfs,objset_t * os)821 zfsvfs_create_impl(zfsvfs_t **zfvp, zfsvfs_t *zfsvfs, objset_t *os)
822 {
823 int error;
824
825 zfsvfs->z_vfs = NULL;
826 zfsvfs->z_sb = NULL;
827 zfsvfs->z_parent = zfsvfs;
828
829 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
830 mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
831 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
832 offsetof(znode_t, z_link_node));
833 ZFS_TEARDOWN_INIT(zfsvfs);
834 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
835 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
836
837 int size = MIN(1 << (highbit64(zfs_object_mutex_size) - 1),
838 ZFS_OBJ_MTX_MAX);
839 zfsvfs->z_hold_size = size;
840 zfsvfs->z_hold_trees = vmem_zalloc(sizeof (avl_tree_t) * size,
841 KM_SLEEP);
842 zfsvfs->z_hold_locks = vmem_zalloc(sizeof (kmutex_t) * size, KM_SLEEP);
843 for (int i = 0; i != size; i++) {
844 avl_create(&zfsvfs->z_hold_trees[i], zfs_znode_hold_compare,
845 sizeof (znode_hold_t), offsetof(znode_hold_t, zh_node));
846 mutex_init(&zfsvfs->z_hold_locks[i], NULL, MUTEX_DEFAULT, NULL);
847 }
848
849 error = zfsvfs_init(zfsvfs, os);
850 if (error != 0) {
851 dmu_objset_disown(os, B_TRUE, zfsvfs);
852 *zfvp = NULL;
853 zfsvfs_free(zfsvfs);
854 return (error);
855 }
856
857 zfsvfs->z_drain_task = TASKQID_INVALID;
858 zfsvfs->z_draining = B_FALSE;
859 zfsvfs->z_drain_cancel = B_TRUE;
860
861 *zfvp = zfsvfs;
862 return (0);
863 }
864
865 static int
zfsvfs_setup(zfsvfs_t * zfsvfs,boolean_t mounting)866 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
867 {
868 int error;
869 boolean_t readonly = zfs_is_readonly(zfsvfs);
870
871 error = zfs_register_callbacks(zfsvfs->z_vfs);
872 if (error)
873 return (error);
874
875 /*
876 * If we are not mounting (ie: online recv), then we don't
877 * have to worry about replaying the log as we blocked all
878 * operations out since we closed the ZIL.
879 */
880 if (mounting) {
881 ASSERT0P(zfsvfs->z_kstat.dk_kstats);
882 error = dataset_kstats_create(&zfsvfs->z_kstat, zfsvfs->z_os);
883 if (error)
884 return (error);
885 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data,
886 &zfsvfs->z_kstat.dk_zil_sums);
887
888 /*
889 * During replay we remove the read only flag to
890 * allow replays to succeed.
891 */
892 if (readonly != 0) {
893 readonly_changed_cb(zfsvfs, B_FALSE);
894 } else {
895 zap_stats_t zs;
896 if (zap_get_stats(zfsvfs->z_os, zfsvfs->z_unlinkedobj,
897 &zs) == 0) {
898 dataset_kstats_update_nunlinks_kstat(
899 &zfsvfs->z_kstat, zs.zs_num_entries);
900 dprintf_ds(zfsvfs->z_os->os_dsl_dataset,
901 "num_entries in unlinked set: %llu",
902 zs.zs_num_entries);
903 }
904 zfs_unlinked_drain(zfsvfs);
905 dsl_dir_t *dd = zfsvfs->z_os->os_dsl_dataset->ds_dir;
906 dd->dd_activity_cancelled = B_FALSE;
907 }
908
909 /*
910 * Parse and replay the intent log.
911 *
912 * Because of ziltest, this must be done after
913 * zfs_unlinked_drain(). (Further note: ziltest
914 * doesn't use readonly mounts, where
915 * zfs_unlinked_drain() isn't called.) This is because
916 * ziltest causes spa_sync() to think it's committed,
917 * but actually it is not, so the intent log contains
918 * many txg's worth of changes.
919 *
920 * In particular, if object N is in the unlinked set in
921 * the last txg to actually sync, then it could be
922 * actually freed in a later txg and then reallocated
923 * in a yet later txg. This would write a "create
924 * object N" record to the intent log. Normally, this
925 * would be fine because the spa_sync() would have
926 * written out the fact that object N is free, before
927 * we could write the "create object N" intent log
928 * record.
929 *
930 * But when we are in ziltest mode, we advance the "open
931 * txg" without actually spa_sync()-ing the changes to
932 * disk. So we would see that object N is still
933 * allocated and in the unlinked set, and there is an
934 * intent log record saying to allocate it.
935 */
936 if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
937 if (zil_replay_disable) {
938 zil_destroy(zfsvfs->z_log, B_FALSE);
939 } else {
940 zfsvfs->z_replay = B_TRUE;
941 zil_replay(zfsvfs->z_os, zfsvfs,
942 zfs_replay_vector);
943 zfsvfs->z_replay = B_FALSE;
944 }
945 }
946
947 /* restore readonly bit */
948 if (readonly != 0)
949 readonly_changed_cb(zfsvfs, B_TRUE);
950 } else {
951 ASSERT3P(zfsvfs->z_kstat.dk_kstats, !=, NULL);
952 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data,
953 &zfsvfs->z_kstat.dk_zil_sums);
954 }
955
956 /*
957 * Set the objset user_ptr to track its zfsvfs.
958 */
959 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
960 dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
961 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
962
963 return (0);
964 }
965
966 void
zfsvfs_free(zfsvfs_t * zfsvfs)967 zfsvfs_free(zfsvfs_t *zfsvfs)
968 {
969 int i, size = zfsvfs->z_hold_size;
970
971 zfs_fuid_destroy(zfsvfs);
972
973 mutex_destroy(&zfsvfs->z_znodes_lock);
974 mutex_destroy(&zfsvfs->z_lock);
975 list_destroy(&zfsvfs->z_all_znodes);
976 ZFS_TEARDOWN_DESTROY(zfsvfs);
977 rw_destroy(&zfsvfs->z_teardown_inactive_lock);
978 rw_destroy(&zfsvfs->z_fuid_lock);
979 for (i = 0; i != size; i++) {
980 avl_destroy(&zfsvfs->z_hold_trees[i]);
981 mutex_destroy(&zfsvfs->z_hold_locks[i]);
982 }
983 vmem_free(zfsvfs->z_hold_trees, sizeof (avl_tree_t) * size);
984 vmem_free(zfsvfs->z_hold_locks, sizeof (kmutex_t) * size);
985 zfsvfs_vfs_free(zfsvfs->z_vfs);
986 dataset_kstats_destroy(&zfsvfs->z_kstat);
987 kmem_free(zfsvfs, sizeof (zfsvfs_t));
988 }
989
990 static void
zfs_set_fuid_feature(zfsvfs_t * zfsvfs)991 zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
992 {
993 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
994 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
995 }
996
997 static void
zfs_unregister_callbacks(zfsvfs_t * zfsvfs)998 zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
999 {
1000 objset_t *os = zfsvfs->z_os;
1001
1002 if (!dmu_objset_is_snapshot(os))
1003 dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs);
1004 }
1005
1006 #ifdef HAVE_MLSLABEL
1007 /*
1008 * Check that the hex label string is appropriate for the dataset being
1009 * mounted into the global_zone proper.
1010 *
1011 * Return an error if the hex label string is not default or
1012 * admin_low/admin_high. For admin_low labels, the corresponding
1013 * dataset must be readonly.
1014 */
1015 int
zfs_check_global_label(const char * dsname,const char * hexsl)1016 zfs_check_global_label(const char *dsname, const char *hexsl)
1017 {
1018 if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1019 return (0);
1020 if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1021 return (0);
1022 if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1023 /* must be readonly */
1024 uint64_t rdonly;
1025
1026 if (dsl_prop_get_integer(dsname,
1027 zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1028 return (SET_ERROR(EACCES));
1029 return (rdonly ? 0 : SET_ERROR(EACCES));
1030 }
1031 return (SET_ERROR(EACCES));
1032 }
1033 #endif /* HAVE_MLSLABEL */
1034
1035 static int
zfs_statfs_project(zfsvfs_t * zfsvfs,znode_t * zp,struct kstatfs * statp,uint32_t bshift)1036 zfs_statfs_project(zfsvfs_t *zfsvfs, znode_t *zp, struct kstatfs *statp,
1037 uint32_t bshift)
1038 {
1039 char buf[20 + DMU_OBJACCT_PREFIX_LEN];
1040 uint64_t offset = DMU_OBJACCT_PREFIX_LEN;
1041 uint64_t quota;
1042 uint64_t used;
1043 int err;
1044
1045 strlcpy(buf, DMU_OBJACCT_PREFIX, DMU_OBJACCT_PREFIX_LEN + 1);
1046 err = zfs_id_to_fuidstr(zfsvfs, NULL, zp->z_projid, buf + offset,
1047 sizeof (buf) - offset, B_FALSE);
1048 if (err)
1049 return (err);
1050
1051 if (zfsvfs->z_projectquota_obj == 0) {
1052 if (zfsvfs->z_defaultprojectquota == 0)
1053 goto objs;
1054 quota = zfsvfs->z_defaultprojectquota;
1055 } else {
1056 err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectquota_obj,
1057 buf + offset, 8, 1, "a);
1058 if (err && (quota = zfsvfs->z_defaultprojectquota) == 0) {
1059 if (err == ENOENT)
1060 goto objs;
1061 return (err);
1062 }
1063 }
1064
1065 err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT,
1066 buf + offset, 8, 1, &used);
1067 if (unlikely(err == ENOENT)) {
1068 uint32_t blksize;
1069 u_longlong_t nblocks;
1070
1071 /*
1072 * Quota accounting is async, so it is possible race case.
1073 * There is at least one object with the given project ID.
1074 */
1075 sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
1076 if (unlikely(zp->z_blksz == 0))
1077 blksize = zfsvfs->z_max_blksz;
1078
1079 used = blksize * nblocks;
1080 } else if (err) {
1081 return (err);
1082 }
1083
1084 statp->f_blocks = quota >> bshift;
1085 statp->f_bfree = (quota > used) ? ((quota - used) >> bshift) : 0;
1086 statp->f_bavail = statp->f_bfree;
1087
1088 objs:
1089
1090 if (zfsvfs->z_projectobjquota_obj == 0) {
1091 if (zfsvfs->z_defaultprojectobjquota == 0)
1092 return (0);
1093 quota = zfsvfs->z_defaultprojectobjquota;
1094 } else {
1095 err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectobjquota_obj,
1096 buf + offset, 8, 1, "a);
1097 if (err && (quota = zfsvfs->z_defaultprojectobjquota) == 0) {
1098 if (err == ENOENT)
1099 return (0);
1100 return (err);
1101 }
1102 }
1103
1104
1105 err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT,
1106 buf, 8, 1, &used);
1107 if (unlikely(err == ENOENT)) {
1108 /*
1109 * Quota accounting is async, so it is possible race case.
1110 * There is at least one object with the given project ID.
1111 */
1112 used = 1;
1113 } else if (err) {
1114 return (err);
1115 }
1116
1117 statp->f_files = quota;
1118 statp->f_ffree = (quota > used) ? (quota - used) : 0;
1119
1120 return (0);
1121 }
1122
1123 int
zfs_statvfs(struct inode * ip,struct kstatfs * statp)1124 zfs_statvfs(struct inode *ip, struct kstatfs *statp)
1125 {
1126 zfsvfs_t *zfsvfs = ITOZSB(ip);
1127 uint64_t refdbytes, availbytes, usedobjs, availobjs;
1128 int err = 0;
1129
1130 if ((err = zfs_enter(zfsvfs, FTAG)) != 0)
1131 return (err);
1132
1133 dmu_objset_space(zfsvfs->z_os,
1134 &refdbytes, &availbytes, &usedobjs, &availobjs);
1135
1136 uint64_t fsid = dmu_objset_fsid_guid(zfsvfs->z_os);
1137 /*
1138 * The underlying storage pool actually uses multiple block
1139 * size. Under Solaris frsize (fragment size) is reported as
1140 * the smallest block size we support, and bsize (block size)
1141 * as the filesystem's maximum block size. Unfortunately,
1142 * under Linux the fragment size and block size are often used
1143 * interchangeably. Thus we are forced to report both of them
1144 * as the filesystem's maximum block size.
1145 */
1146 statp->f_frsize = zfsvfs->z_max_blksz;
1147 statp->f_bsize = zfsvfs->z_max_blksz;
1148 uint32_t bshift = fls(statp->f_bsize) - 1;
1149
1150 /*
1151 * The following report "total" blocks of various kinds in
1152 * the file system, but reported in terms of f_bsize - the
1153 * "preferred" size.
1154 */
1155
1156 /* Round up so we never have a filesystem using 0 blocks. */
1157 refdbytes = P2ROUNDUP(refdbytes, statp->f_bsize);
1158 statp->f_blocks = (refdbytes + availbytes) >> bshift;
1159 statp->f_bfree = availbytes >> bshift;
1160 statp->f_bavail = statp->f_bfree; /* no root reservation */
1161
1162 /*
1163 * statvfs() should really be called statufs(), because it assumes
1164 * static metadata. ZFS doesn't preallocate files, so the best
1165 * we can do is report the max that could possibly fit in f_files,
1166 * and that minus the number actually used in f_ffree.
1167 * For f_ffree, report the smaller of the number of objects available
1168 * and the number of blocks (each object will take at least a block).
1169 */
1170 statp->f_ffree = MIN(availobjs, availbytes >> DNODE_SHIFT);
1171 statp->f_files = statp->f_ffree + usedobjs;
1172 statp->f_fsid.val[0] = (uint32_t)fsid;
1173 statp->f_fsid.val[1] = (uint32_t)(fsid >> 32);
1174 statp->f_type = ZFS_SUPER_MAGIC;
1175 statp->f_namelen =
1176 zfsvfs->z_longname ? (ZAP_MAXNAMELEN_NEW - 1) : (MAXNAMELEN - 1);
1177
1178 /*
1179 * We have all of 40 characters to stuff a string here.
1180 * Is there anything useful we could/should provide?
1181 */
1182 memset(statp->f_spare, 0, sizeof (statp->f_spare));
1183
1184 if (dmu_objset_projectquota_enabled(zfsvfs->z_os) &&
1185 dmu_objset_projectquota_present(zfsvfs->z_os)) {
1186 znode_t *zp = ITOZ(ip);
1187
1188 if (zp->z_pflags & ZFS_PROJINHERIT && zp->z_projid &&
1189 zpl_is_valid_projid(zp->z_projid))
1190 err = zfs_statfs_project(zfsvfs, zp, statp, bshift);
1191 }
1192
1193 zfs_exit(zfsvfs, FTAG);
1194 return (err);
1195 }
1196
1197 static int
zfs_root(zfsvfs_t * zfsvfs,struct inode ** ipp)1198 zfs_root(zfsvfs_t *zfsvfs, struct inode **ipp)
1199 {
1200 znode_t *rootzp;
1201 int error;
1202
1203 if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
1204 return (error);
1205
1206 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1207 if (error == 0)
1208 *ipp = ZTOI(rootzp);
1209
1210 zfs_exit(zfsvfs, FTAG);
1211 return (error);
1212 }
1213
1214 /*
1215 * Dentry and inode caches referenced by a task in non-root memcg are
1216 * not going to be scanned by the kernel-provided shrinker. So, if
1217 * kernel prunes nothing, fall back to this manual walk to free dnodes.
1218 * To avoid scanning the same znodes multiple times they are always rotated
1219 * to the end of the z_all_znodes list. New znodes are inserted at the
1220 * end of the list so we're always scanning the oldest znodes first.
1221 */
1222 static int
zfs_prune_aliases(zfsvfs_t * zfsvfs,unsigned long nr_to_scan)1223 zfs_prune_aliases(zfsvfs_t *zfsvfs, unsigned long nr_to_scan)
1224 {
1225 znode_t **zp_array, *zp;
1226 int max_array = MIN(nr_to_scan, PAGE_SIZE * 8 / sizeof (znode_t *));
1227 int objects = 0;
1228 int i = 0, j = 0;
1229
1230 zp_array = vmem_zalloc(max_array * sizeof (znode_t *), KM_SLEEP);
1231
1232 mutex_enter(&zfsvfs->z_znodes_lock);
1233 while ((zp = list_head(&zfsvfs->z_all_znodes)) != NULL) {
1234
1235 if ((i++ > nr_to_scan) || (j >= max_array))
1236 break;
1237
1238 ASSERT(list_link_active(&zp->z_link_node));
1239 list_remove(&zfsvfs->z_all_znodes, zp);
1240 list_insert_tail(&zfsvfs->z_all_znodes, zp);
1241
1242 /* Skip active znodes and .zfs entries */
1243 if (MUTEX_HELD(&zp->z_lock) || zp->z_is_ctldir)
1244 continue;
1245
1246 if (igrab(ZTOI(zp)) == NULL)
1247 continue;
1248
1249 zp_array[j] = zp;
1250 j++;
1251 }
1252 mutex_exit(&zfsvfs->z_znodes_lock);
1253
1254 for (i = 0; i < j; i++) {
1255 zp = zp_array[i];
1256
1257 ASSERT3P(zp, !=, NULL);
1258 d_prune_aliases(ZTOI(zp));
1259
1260 if (atomic_read(&ZTOI(zp)->i_count) == 1)
1261 objects++;
1262
1263 zrele(zp);
1264 }
1265
1266 vmem_free(zp_array, max_array * sizeof (znode_t *));
1267
1268 return (objects);
1269 }
1270
1271 /*
1272 * The ARC has requested that the filesystem drop entries from the dentry
1273 * and inode caches. This can occur when the ARC needs to free meta data
1274 * blocks but can't because they are all pinned by entries in these caches.
1275 */
1276 #if defined(HAVE_SUPER_BLOCK_S_SHRINK)
1277 #define S_SHRINK(sb) (&(sb)->s_shrink)
1278 #elif defined(HAVE_SUPER_BLOCK_S_SHRINK_PTR)
1279 #define S_SHRINK(sb) ((sb)->s_shrink)
1280 #endif
1281
1282 int
zfs_prune(struct super_block * sb,unsigned long nr_to_scan,int * objects)1283 zfs_prune(struct super_block *sb, unsigned long nr_to_scan, int *objects)
1284 {
1285 zfsvfs_t *zfsvfs = sb->s_fs_info;
1286 int error = 0;
1287 struct shrinker *shrinker = S_SHRINK(sb);
1288 struct shrink_control sc = {
1289 .nr_to_scan = nr_to_scan,
1290 .gfp_mask = GFP_KERNEL,
1291 };
1292
1293 if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
1294 return (error);
1295
1296 #ifdef SHRINKER_NUMA_AWARE
1297 if (shrinker->flags & SHRINKER_NUMA_AWARE) {
1298 long tc = 1;
1299 for_each_online_node(sc.nid) {
1300 long c = shrinker->count_objects(shrinker, &sc);
1301 if (c == 0 || c == SHRINK_EMPTY)
1302 continue;
1303 tc += c;
1304 }
1305 *objects = 0;
1306 for_each_online_node(sc.nid) {
1307 long c = shrinker->count_objects(shrinker, &sc);
1308 if (c == 0 || c == SHRINK_EMPTY)
1309 continue;
1310 if (c > tc)
1311 tc = c;
1312 sc.nr_to_scan = mult_frac(nr_to_scan, c, tc) + 1;
1313 *objects += (*shrinker->scan_objects)(shrinker, &sc);
1314 }
1315 } else {
1316 *objects = (*shrinker->scan_objects)(shrinker, &sc);
1317 }
1318 #else
1319 *objects = (*shrinker->scan_objects)(shrinker, &sc);
1320 #endif
1321
1322 /*
1323 * Fall back to zfs_prune_aliases if kernel's shrinker did nothing
1324 * due to dentry and inode caches being referenced by a task running
1325 * in non-root memcg.
1326 */
1327 if (*objects == 0)
1328 *objects = zfs_prune_aliases(zfsvfs, nr_to_scan);
1329
1330 zfs_exit(zfsvfs, FTAG);
1331
1332 dprintf_ds(zfsvfs->z_os->os_dsl_dataset,
1333 "pruning, nr_to_scan=%lu objects=%d error=%d\n",
1334 nr_to_scan, *objects, error);
1335
1336 return (error);
1337 }
1338
1339 /*
1340 * Teardown the zfsvfs_t.
1341 *
1342 * Note, if 'unmounting' is FALSE, we return with the 'z_teardown_lock'
1343 * and 'z_teardown_inactive_lock' held.
1344 */
1345 static int
zfsvfs_teardown(zfsvfs_t * zfsvfs,boolean_t unmounting)1346 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1347 {
1348 znode_t *zp;
1349
1350 zfs_unlinked_drain_stop_wait(zfsvfs);
1351
1352 /*
1353 * If someone has not already unmounted this file system,
1354 * drain the zrele_taskq to ensure all active references to the
1355 * zfsvfs_t have been handled only then can it be safely destroyed.
1356 */
1357 if (zfsvfs->z_os) {
1358 /*
1359 * If we're unmounting we have to wait for the list to
1360 * drain completely.
1361 *
1362 * If we're not unmounting there's no guarantee the list
1363 * will drain completely, but iputs run from the taskq
1364 * may add the parents of dir-based xattrs to the taskq
1365 * so we want to wait for these.
1366 *
1367 * We can safely check z_all_znodes for being empty because the
1368 * VFS has already blocked operations which add to it.
1369 */
1370 int round = 0;
1371 while (!list_is_empty(&zfsvfs->z_all_znodes)) {
1372 taskq_wait_outstanding(dsl_pool_zrele_taskq(
1373 dmu_objset_pool(zfsvfs->z_os)), 0);
1374 if (++round > 1 && !unmounting)
1375 break;
1376 }
1377 }
1378
1379 ZFS_TEARDOWN_ENTER_WRITE(zfsvfs, FTAG);
1380
1381 if (!unmounting) {
1382 /*
1383 * We purge the parent filesystem's super block as the
1384 * parent filesystem and all of its snapshots have their
1385 * inode's super block set to the parent's filesystem's
1386 * super block. Note, 'z_parent' is self referential
1387 * for non-snapshots.
1388 */
1389 shrink_dcache_sb(zfsvfs->z_parent->z_sb);
1390 }
1391
1392 /*
1393 * Close the zil. NB: Can't close the zil while zfs_inactive
1394 * threads are blocked as zil_close can call zfs_inactive.
1395 */
1396 if (zfsvfs->z_log) {
1397 zil_close(zfsvfs->z_log);
1398 zfsvfs->z_log = NULL;
1399 }
1400
1401 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1402
1403 /*
1404 * If we are not unmounting (ie: online recv) and someone already
1405 * unmounted this file system while we were doing the switcheroo,
1406 * or a reopen of z_os failed then just bail out now.
1407 */
1408 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1409 rw_exit(&zfsvfs->z_teardown_inactive_lock);
1410 ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1411 return (SET_ERROR(EIO));
1412 }
1413
1414 /*
1415 * At this point there are no VFS ops active, and any new VFS ops
1416 * will fail with EIO since we have z_teardown_lock for writer (only
1417 * relevant for forced unmount).
1418 *
1419 * Release all holds on dbufs. We also grab an extra reference to all
1420 * the remaining inodes so that the kernel does not attempt to free
1421 * any inodes of a suspended fs. This can cause deadlocks since the
1422 * zfs_resume_fs() process may involve starting threads, which might
1423 * attempt to free unreferenced inodes to free up memory for the new
1424 * thread.
1425 */
1426 if (!unmounting) {
1427 mutex_enter(&zfsvfs->z_znodes_lock);
1428 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1429 zp = list_next(&zfsvfs->z_all_znodes, zp)) {
1430 if (zp->z_sa_hdl)
1431 zfs_znode_dmu_fini(zp);
1432 if (igrab(ZTOI(zp)) != NULL)
1433 zp->z_suspended = B_TRUE;
1434
1435 }
1436 mutex_exit(&zfsvfs->z_znodes_lock);
1437 }
1438
1439 /*
1440 * If we are unmounting, set the unmounted flag and let new VFS ops
1441 * unblock. zfs_inactive will have the unmounted behavior, and all
1442 * other VFS ops will fail with EIO.
1443 */
1444 if (unmounting) {
1445 zfsvfs->z_unmounted = B_TRUE;
1446 rw_exit(&zfsvfs->z_teardown_inactive_lock);
1447 ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1448 }
1449
1450 /*
1451 * z_os will be NULL if there was an error in attempting to reopen
1452 * zfsvfs, so just return as the properties had already been
1453 *
1454 * unregistered and cached data had been evicted before.
1455 */
1456 if (zfsvfs->z_os == NULL)
1457 return (0);
1458
1459 /*
1460 * Unregister properties.
1461 */
1462 zfs_unregister_callbacks(zfsvfs);
1463
1464 /*
1465 * Evict cached data. We must write out any dirty data before
1466 * disowning the dataset.
1467 */
1468 objset_t *os = zfsvfs->z_os;
1469 boolean_t os_dirty = B_FALSE;
1470 for (int t = 0; t < TXG_SIZE; t++) {
1471 if (dmu_objset_is_dirty(os, t)) {
1472 os_dirty = B_TRUE;
1473 break;
1474 }
1475 }
1476 if (!zfs_is_readonly(zfsvfs) && os_dirty) {
1477 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1478 }
1479 dmu_objset_evict_dbufs(zfsvfs->z_os);
1480 dsl_dir_t *dd = os->os_dsl_dataset->ds_dir;
1481 dsl_dir_cancel_waiters(dd);
1482
1483 return (0);
1484 }
1485
1486 static atomic_long_t zfs_bdi_seq = ATOMIC_LONG_INIT(0);
1487
1488 int
zfs_domount(struct super_block * sb,zfs_mnt_t * zm,int silent)1489 zfs_domount(struct super_block *sb, zfs_mnt_t *zm, int silent)
1490 {
1491 const char *osname = zm->mnt_osname;
1492 struct inode *root_inode = NULL;
1493 uint64_t recordsize;
1494 int error = 0;
1495 zfsvfs_t *zfsvfs = NULL;
1496 vfs_t *vfs = NULL;
1497 int canwrite;
1498 int dataset_visible_zone;
1499
1500 ASSERT(zm);
1501 ASSERT(osname);
1502
1503 dataset_visible_zone = zone_dataset_visible(osname, &canwrite);
1504
1505 /*
1506 * Refuse to mount a filesystem if we are in a namespace and the
1507 * dataset is not visible or writable in that namespace.
1508 */
1509 if (!INGLOBALZONE(curproc) &&
1510 (!dataset_visible_zone || !canwrite)) {
1511 return (SET_ERROR(EPERM));
1512 }
1513
1514 error = zfsvfs_parse_options(zm->mnt_data, &vfs);
1515 if (error)
1516 return (error);
1517
1518 /*
1519 * If a non-writable filesystem is being mounted without the
1520 * read-only flag, pretend it was set, as done for snapshots.
1521 */
1522 if (!canwrite)
1523 vfs->vfs_readonly = B_TRUE;
1524
1525 error = zfsvfs_create(osname, vfs->vfs_readonly, &zfsvfs);
1526 if (error) {
1527 zfsvfs_vfs_free(vfs);
1528 goto out;
1529 }
1530
1531 if ((error = dsl_prop_get_integer(osname, "recordsize",
1532 &recordsize, NULL))) {
1533 zfsvfs_vfs_free(vfs);
1534 goto out;
1535 }
1536
1537 vfs->vfs_data = zfsvfs;
1538 zfsvfs->z_vfs = vfs;
1539 zfsvfs->z_sb = sb;
1540 sb->s_fs_info = zfsvfs;
1541 sb->s_magic = ZFS_SUPER_MAGIC;
1542 sb->s_maxbytes = MAX_LFS_FILESIZE;
1543 sb->s_time_gran = 1;
1544 sb->s_blocksize = recordsize;
1545 sb->s_blocksize_bits = ilog2(recordsize);
1546
1547 error = -super_setup_bdi_name(sb, "%.28s-%ld", "zfs",
1548 atomic_long_inc_return(&zfs_bdi_seq));
1549 if (error)
1550 goto out;
1551
1552 sb->s_bdi->ra_pages = 0;
1553
1554 /* Set callback operations for the file system. */
1555 sb->s_op = &zpl_super_operations;
1556 sb->s_xattr = zpl_xattr_handlers;
1557 sb->s_export_op = &zpl_export_operations;
1558
1559 /* Set features for file system. */
1560 zfs_set_fuid_feature(zfsvfs);
1561
1562 if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1563 uint64_t pval;
1564
1565 atime_changed_cb(zfsvfs, B_FALSE);
1566 readonly_changed_cb(zfsvfs, B_TRUE);
1567 if ((error = dsl_prop_get_integer(osname,
1568 "xattr", &pval, NULL)))
1569 goto out;
1570 xattr_changed_cb(zfsvfs, pval);
1571 if ((error = dsl_prop_get_integer(osname,
1572 "acltype", &pval, NULL)))
1573 goto out;
1574 acltype_changed_cb(zfsvfs, pval);
1575 zfsvfs->z_issnap = B_TRUE;
1576 zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1577 zfsvfs->z_snap_defer_time = jiffies;
1578
1579 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1580 dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1581 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1582 } else {
1583 if ((error = zfsvfs_setup(zfsvfs, B_TRUE)))
1584 goto out;
1585 }
1586
1587 /* Allocate a root inode for the filesystem. */
1588 error = zfs_root(zfsvfs, &root_inode);
1589 if (error) {
1590 (void) zfs_umount(sb);
1591 zfsvfs = NULL; /* avoid double-free; first in zfs_umount */
1592 goto out;
1593 }
1594
1595 /* Allocate a root dentry for the filesystem */
1596 sb->s_root = d_make_root(root_inode);
1597 if (sb->s_root == NULL) {
1598 (void) zfs_umount(sb);
1599 zfsvfs = NULL; /* avoid double-free; first in zfs_umount */
1600 error = SET_ERROR(ENOMEM);
1601 goto out;
1602 }
1603
1604 if (!zfsvfs->z_issnap)
1605 zfsctl_create(zfsvfs);
1606
1607 zfsvfs->z_arc_prune = arc_add_prune_callback(zpl_prune_sb, sb);
1608 out:
1609 if (error) {
1610 if (zfsvfs != NULL) {
1611 dmu_objset_disown(zfsvfs->z_os, B_TRUE, zfsvfs);
1612 zfsvfs_free(zfsvfs);
1613 }
1614 /*
1615 * make sure we don't have dangling sb->s_fs_info which
1616 * zfs_preumount will use.
1617 */
1618 sb->s_fs_info = NULL;
1619 }
1620
1621 return (error);
1622 }
1623
1624 /*
1625 * Called when an unmount is requested and certain sanity checks have
1626 * already passed. At this point no dentries or inodes have been reclaimed
1627 * from their respective caches. We drop the extra reference on the .zfs
1628 * control directory to allow everything to be reclaimed. All snapshots
1629 * must already have been unmounted to reach this point.
1630 */
1631 void
zfs_preumount(struct super_block * sb)1632 zfs_preumount(struct super_block *sb)
1633 {
1634 zfsvfs_t *zfsvfs = sb->s_fs_info;
1635
1636 /* zfsvfs is NULL when zfs_domount fails during mount */
1637 if (zfsvfs) {
1638 zfs_unlinked_drain_stop_wait(zfsvfs);
1639 zfsctl_destroy(sb->s_fs_info);
1640 /*
1641 * Wait for zrele_async before entering evict_inodes in
1642 * generic_shutdown_super. The reason we must finish before
1643 * evict_inodes is when lazytime is on, or when zfs_purgedir
1644 * calls zfs_zget, zrele would bump i_count from 0 to 1. This
1645 * would race with the i_count check in evict_inodes. This means
1646 * it could destroy the inode while we are still using it.
1647 *
1648 * We wait for two passes. xattr directories in the first pass
1649 * may add xattr entries in zfs_purgedir, so in the second pass
1650 * we wait for them. We don't use taskq_wait here because it is
1651 * a pool wide taskq. Other mounted filesystems can constantly
1652 * do zrele_async and there's no guarantee when taskq will be
1653 * empty.
1654 */
1655 taskq_wait_outstanding(dsl_pool_zrele_taskq(
1656 dmu_objset_pool(zfsvfs->z_os)), 0);
1657 taskq_wait_outstanding(dsl_pool_zrele_taskq(
1658 dmu_objset_pool(zfsvfs->z_os)), 0);
1659 }
1660 }
1661
1662 /*
1663 * Called once all other unmount released tear down has occurred.
1664 * It is our responsibility to release any remaining infrastructure.
1665 */
1666 int
zfs_umount(struct super_block * sb)1667 zfs_umount(struct super_block *sb)
1668 {
1669 zfsvfs_t *zfsvfs = sb->s_fs_info;
1670 objset_t *os;
1671
1672 if (zfsvfs->z_arc_prune != NULL)
1673 arc_remove_prune_callback(zfsvfs->z_arc_prune);
1674 VERIFY0(zfsvfs_teardown(zfsvfs, B_TRUE));
1675 os = zfsvfs->z_os;
1676
1677 /*
1678 * z_os will be NULL if there was an error in
1679 * attempting to reopen zfsvfs.
1680 */
1681 if (os != NULL) {
1682 /*
1683 * Unset the objset user_ptr.
1684 */
1685 mutex_enter(&os->os_user_ptr_lock);
1686 dmu_objset_set_user(os, NULL);
1687 mutex_exit(&os->os_user_ptr_lock);
1688
1689 /*
1690 * Finally release the objset
1691 */
1692 dmu_objset_disown(os, B_TRUE, zfsvfs);
1693 }
1694
1695 zfsvfs_free(zfsvfs);
1696 sb->s_fs_info = NULL;
1697 return (0);
1698 }
1699
1700 int
zfs_remount(struct super_block * sb,int * flags,zfs_mnt_t * zm)1701 zfs_remount(struct super_block *sb, int *flags, zfs_mnt_t *zm)
1702 {
1703 zfsvfs_t *zfsvfs = sb->s_fs_info;
1704 vfs_t *vfsp;
1705 boolean_t issnap = dmu_objset_is_snapshot(zfsvfs->z_os);
1706 int error;
1707
1708 if ((issnap || !spa_writeable(dmu_objset_spa(zfsvfs->z_os))) &&
1709 !(*flags & SB_RDONLY)) {
1710 *flags |= SB_RDONLY;
1711 return (EROFS);
1712 }
1713
1714 error = zfsvfs_parse_options(zm->mnt_data, &vfsp);
1715 if (error)
1716 return (error);
1717
1718 if (!zfs_is_readonly(zfsvfs) && (*flags & SB_RDONLY))
1719 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1720
1721 zfs_unregister_callbacks(zfsvfs);
1722 zfsvfs_vfs_free(zfsvfs->z_vfs);
1723
1724 vfsp->vfs_data = zfsvfs;
1725 zfsvfs->z_vfs = vfsp;
1726 if (!issnap)
1727 (void) zfs_register_callbacks(vfsp);
1728
1729 return (error);
1730 }
1731
1732 int
zfs_vget(struct super_block * sb,struct inode ** ipp,fid_t * fidp)1733 zfs_vget(struct super_block *sb, struct inode **ipp, fid_t *fidp)
1734 {
1735 zfsvfs_t *zfsvfs = sb->s_fs_info;
1736 znode_t *zp;
1737 uint64_t object = 0;
1738 uint64_t fid_gen = 0;
1739 uint64_t gen_mask;
1740 uint64_t zp_gen;
1741 int i, err;
1742
1743 *ipp = NULL;
1744
1745 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1746 zfid_short_t *zfid = (zfid_short_t *)fidp;
1747
1748 for (i = 0; i < sizeof (zfid->zf_object); i++)
1749 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1750
1751 for (i = 0; i < sizeof (zfid->zf_gen); i++)
1752 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1753 } else {
1754 return (SET_ERROR(EINVAL));
1755 }
1756
1757 /* LONG_FID_LEN means snapdirs */
1758 if (fidp->fid_len == LONG_FID_LEN) {
1759 zfid_long_t *zlfid = (zfid_long_t *)fidp;
1760 uint64_t objsetid = 0;
1761 uint64_t setgen = 0;
1762
1763 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1764 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1765
1766 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1767 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1768
1769 if (objsetid != ZFSCTL_INO_SNAPDIRS - object) {
1770 dprintf("snapdir fid: objsetid (%llu) != "
1771 "ZFSCTL_INO_SNAPDIRS (%llu) - object (%llu)\n",
1772 objsetid, ZFSCTL_INO_SNAPDIRS, object);
1773
1774 return (SET_ERROR(EINVAL));
1775 }
1776
1777 if (fid_gen > 1 || setgen != 0) {
1778 dprintf("snapdir fid: fid_gen (%llu) and setgen "
1779 "(%llu)\n", fid_gen, setgen);
1780 return (SET_ERROR(EINVAL));
1781 }
1782
1783 return (zfsctl_snapdir_vget(sb, objsetid, fid_gen, ipp));
1784 }
1785
1786 if ((err = zfs_enter(zfsvfs, FTAG)) != 0)
1787 return (err);
1788 /* A zero fid_gen means we are in the .zfs control directories */
1789 if (fid_gen == 0 &&
1790 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1791 if (zfsvfs->z_show_ctldir == ZFS_SNAPDIR_DISABLED) {
1792 zfs_exit(zfsvfs, FTAG);
1793 return (SET_ERROR(ENOENT));
1794 }
1795
1796 *ipp = zfsvfs->z_ctldir;
1797 ASSERT(*ipp != NULL);
1798
1799 if (object == ZFSCTL_INO_SNAPDIR) {
1800 VERIFY0(zfsctl_root_lookup(*ipp, "snapshot", ipp,
1801 0, kcred, NULL, NULL));
1802 } else {
1803 /*
1804 * Must have an existing ref, so igrab()
1805 * cannot return NULL
1806 */
1807 VERIFY3P(igrab(*ipp), !=, NULL);
1808 }
1809 zfs_exit(zfsvfs, FTAG);
1810 return (0);
1811 }
1812
1813 gen_mask = -1ULL >> (64 - 8 * i);
1814
1815 dprintf("getting %llu [%llu mask %llx]\n", object, fid_gen, gen_mask);
1816 if ((err = zfs_zget(zfsvfs, object, &zp))) {
1817 zfs_exit(zfsvfs, FTAG);
1818 return (err);
1819 }
1820
1821 /* Don't export xattr stuff */
1822 if (zp->z_pflags & ZFS_XATTR) {
1823 zrele(zp);
1824 zfs_exit(zfsvfs, FTAG);
1825 return (SET_ERROR(ENOENT));
1826 }
1827
1828 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
1829 sizeof (uint64_t));
1830 zp_gen = zp_gen & gen_mask;
1831 if (zp_gen == 0)
1832 zp_gen = 1;
1833 if ((fid_gen == 0) && (zfsvfs->z_root == object))
1834 fid_gen = zp_gen;
1835 if (zp->z_unlinked || zp_gen != fid_gen) {
1836 dprintf("znode gen (%llu) != fid gen (%llu)\n", zp_gen,
1837 fid_gen);
1838 zrele(zp);
1839 zfs_exit(zfsvfs, FTAG);
1840 return (SET_ERROR(ENOENT));
1841 }
1842
1843 *ipp = ZTOI(zp);
1844 if (*ipp)
1845 zfs_znode_update_vfs(ITOZ(*ipp));
1846
1847 zfs_exit(zfsvfs, FTAG);
1848 return (0);
1849 }
1850
1851 /*
1852 * Block out VFS ops and close zfsvfs_t
1853 *
1854 * Note, if successful, then we return with the 'z_teardown_lock' and
1855 * 'z_teardown_inactive_lock' write held. We leave ownership of the underlying
1856 * dataset and objset intact so that they can be atomically handed off during
1857 * a subsequent rollback or recv operation and the resume thereafter.
1858 */
1859 int
zfs_suspend_fs(zfsvfs_t * zfsvfs)1860 zfs_suspend_fs(zfsvfs_t *zfsvfs)
1861 {
1862 int error;
1863
1864 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
1865 return (error);
1866
1867 return (0);
1868 }
1869
1870 /*
1871 * Rebuild SA and release VOPs. Note that ownership of the underlying dataset
1872 * is an invariant across any of the operations that can be performed while the
1873 * filesystem was suspended. Whether it succeeded or failed, the preconditions
1874 * are the same: the relevant objset and associated dataset are owned by
1875 * zfsvfs, held, and long held on entry.
1876 */
1877 int
zfs_resume_fs(zfsvfs_t * zfsvfs,dsl_dataset_t * ds)1878 zfs_resume_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds)
1879 {
1880 int err, err2;
1881 znode_t *zp;
1882
1883 ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs));
1884 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
1885
1886 /*
1887 * We already own this, so just update the objset_t, as the one we
1888 * had before may have been evicted.
1889 */
1890 objset_t *os;
1891 VERIFY3P(ds->ds_owner, ==, zfsvfs);
1892 VERIFY(dsl_dataset_long_held(ds));
1893 dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds));
1894 dsl_pool_config_enter(dp, FTAG);
1895 VERIFY0(dmu_objset_from_ds(ds, &os));
1896 dsl_pool_config_exit(dp, FTAG);
1897
1898 err = zfsvfs_init(zfsvfs, os);
1899 if (err != 0)
1900 goto bail;
1901
1902 ds->ds_dir->dd_activity_cancelled = B_FALSE;
1903 VERIFY0(zfsvfs_setup(zfsvfs, B_FALSE));
1904
1905 zfs_set_fuid_feature(zfsvfs);
1906 zfsvfs->z_rollback_time = jiffies;
1907
1908 /*
1909 * Attempt to re-establish all the active inodes with their
1910 * dbufs. If a zfs_rezget() fails, then we unhash the inode
1911 * and mark it stale. This prevents a collision if a new
1912 * inode/object is created which must use the same inode
1913 * number. The stale inode will be be released when the
1914 * VFS prunes the dentry holding the remaining references
1915 * on the stale inode.
1916 */
1917 mutex_enter(&zfsvfs->z_znodes_lock);
1918 for (zp = list_head(&zfsvfs->z_all_znodes); zp;
1919 zp = list_next(&zfsvfs->z_all_znodes, zp)) {
1920 err2 = zfs_rezget(zp);
1921 if (err2) {
1922 zpl_d_drop_aliases(ZTOI(zp));
1923 remove_inode_hash(ZTOI(zp));
1924 }
1925
1926 /* see comment in zfs_suspend_fs() */
1927 if (zp->z_suspended) {
1928 zfs_zrele_async(zp);
1929 zp->z_suspended = B_FALSE;
1930 }
1931 }
1932 mutex_exit(&zfsvfs->z_znodes_lock);
1933
1934 if (!zfs_is_readonly(zfsvfs) && !zfsvfs->z_unmounted) {
1935 /*
1936 * zfs_suspend_fs() could have interrupted freeing
1937 * of dnodes. We need to restart this freeing so
1938 * that we don't "leak" the space.
1939 */
1940 zfs_unlinked_drain(zfsvfs);
1941 }
1942
1943 /*
1944 * Most of the time zfs_suspend_fs is used for changing the contents
1945 * of the underlying dataset. ZFS rollback and receive operations
1946 * might create files for which negative dentries are present in
1947 * the cache. Since walking the dcache would require a lot of GPL-only
1948 * code duplication, it's much easier on these rather rare occasions
1949 * just to flush the whole dcache for the given dataset/filesystem.
1950 */
1951 shrink_dcache_sb(zfsvfs->z_sb);
1952
1953 bail:
1954 if (err != 0)
1955 zfsvfs->z_unmounted = B_TRUE;
1956
1957 /* release the VFS ops */
1958 rw_exit(&zfsvfs->z_teardown_inactive_lock);
1959 ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1960
1961 if (err != 0) {
1962 /*
1963 * Since we couldn't setup the sa framework, try to force
1964 * unmount this file system.
1965 */
1966 if (zfsvfs->z_os)
1967 (void) zfs_umount(zfsvfs->z_sb);
1968 }
1969 return (err);
1970 }
1971
1972 /*
1973 * Release VOPs and unmount a suspended filesystem.
1974 */
1975 int
zfs_end_fs(zfsvfs_t * zfsvfs,dsl_dataset_t * ds)1976 zfs_end_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds)
1977 {
1978 ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs));
1979 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
1980
1981 /*
1982 * We already own this, so just hold and rele it to update the
1983 * objset_t, as the one we had before may have been evicted.
1984 */
1985 objset_t *os;
1986 VERIFY3P(ds->ds_owner, ==, zfsvfs);
1987 VERIFY(dsl_dataset_long_held(ds));
1988 dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds));
1989 dsl_pool_config_enter(dp, FTAG);
1990 VERIFY0(dmu_objset_from_ds(ds, &os));
1991 dsl_pool_config_exit(dp, FTAG);
1992 zfsvfs->z_os = os;
1993
1994 /* release the VOPs */
1995 rw_exit(&zfsvfs->z_teardown_inactive_lock);
1996 ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1997
1998 /*
1999 * Try to force unmount this file system.
2000 */
2001 (void) zfs_umount(zfsvfs->z_sb);
2002 zfsvfs->z_unmounted = B_TRUE;
2003 return (0);
2004 }
2005
2006 /*
2007 * Automounted snapshots rely on periodic revalidation
2008 * to defer snapshots from being automatically unmounted.
2009 */
2010
2011 inline void
zfs_exit_fs(zfsvfs_t * zfsvfs)2012 zfs_exit_fs(zfsvfs_t *zfsvfs)
2013 {
2014 if (!zfsvfs->z_issnap)
2015 return;
2016
2017 if (time_after(jiffies, zfsvfs->z_snap_defer_time +
2018 MAX(zfs_expire_snapshot * HZ / 2, HZ))) {
2019 zfsvfs->z_snap_defer_time = jiffies;
2020 zfsctl_snapshot_unmount_delay(zfsvfs->z_os->os_spa,
2021 dmu_objset_id(zfsvfs->z_os),
2022 zfs_expire_snapshot);
2023 }
2024 }
2025
2026 int
zfs_set_version(zfsvfs_t * zfsvfs,uint64_t newvers)2027 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
2028 {
2029 int error;
2030 objset_t *os = zfsvfs->z_os;
2031 dmu_tx_t *tx;
2032
2033 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2034 return (SET_ERROR(EINVAL));
2035
2036 if (newvers < zfsvfs->z_version)
2037 return (SET_ERROR(EINVAL));
2038
2039 if (zfs_spa_version_map(newvers) >
2040 spa_version(dmu_objset_spa(zfsvfs->z_os)))
2041 return (SET_ERROR(ENOTSUP));
2042
2043 tx = dmu_tx_create(os);
2044 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2045 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2046 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
2047 ZFS_SA_ATTRS);
2048 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2049 }
2050 error = dmu_tx_assign(tx, DMU_TX_WAIT);
2051 if (error) {
2052 dmu_tx_abort(tx);
2053 return (error);
2054 }
2055
2056 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2057 8, 1, &newvers, tx);
2058
2059 if (error) {
2060 dmu_tx_commit(tx);
2061 return (error);
2062 }
2063
2064 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2065 uint64_t sa_obj;
2066
2067 ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2068 SPA_VERSION_SA);
2069 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2070 DMU_OT_NONE, 0, tx);
2071
2072 error = zap_add(os, MASTER_NODE_OBJ,
2073 ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2074 ASSERT0(error);
2075
2076 VERIFY0(sa_set_sa_object(os, sa_obj));
2077 sa_register_update_callback(os, zfs_sa_upgrade);
2078 }
2079
2080 spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
2081 "from %llu to %llu", zfsvfs->z_version, newvers);
2082
2083 dmu_tx_commit(tx);
2084
2085 zfsvfs->z_version = newvers;
2086 os->os_version = newvers;
2087
2088 zfs_set_fuid_feature(zfsvfs);
2089
2090 return (0);
2091 }
2092
2093 int
zfs_set_default_quota(zfsvfs_t * zfsvfs,zfs_prop_t prop,uint64_t quota)2094 zfs_set_default_quota(zfsvfs_t *zfsvfs, zfs_prop_t prop, uint64_t quota)
2095 {
2096 int error;
2097 objset_t *os = zfsvfs->z_os;
2098 const char *propstr = zfs_prop_to_name(prop);
2099 dmu_tx_t *tx;
2100
2101 tx = dmu_tx_create(os);
2102 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, propstr);
2103 error = dmu_tx_assign(tx, DMU_TX_WAIT);
2104 if (error) {
2105 dmu_tx_abort(tx);
2106 return (error);
2107 }
2108
2109 if (quota == 0) {
2110 error = zap_remove(os, MASTER_NODE_OBJ, propstr, tx);
2111 if (error == ENOENT)
2112 error = 0;
2113 } else {
2114 error = zap_update(os, MASTER_NODE_OBJ, propstr, 8, 1,
2115 "a, tx);
2116 }
2117
2118 if (error)
2119 goto out;
2120
2121 switch (prop) {
2122 case ZFS_PROP_DEFAULTUSERQUOTA:
2123 zfsvfs->z_defaultuserquota = quota;
2124 break;
2125 case ZFS_PROP_DEFAULTGROUPQUOTA:
2126 zfsvfs->z_defaultgroupquota = quota;
2127 break;
2128 case ZFS_PROP_DEFAULTPROJECTQUOTA:
2129 zfsvfs->z_defaultprojectquota = quota;
2130 break;
2131 case ZFS_PROP_DEFAULTUSEROBJQUOTA:
2132 zfsvfs->z_defaultuserobjquota = quota;
2133 break;
2134 case ZFS_PROP_DEFAULTGROUPOBJQUOTA:
2135 zfsvfs->z_defaultgroupobjquota = quota;
2136 break;
2137 case ZFS_PROP_DEFAULTPROJECTOBJQUOTA:
2138 zfsvfs->z_defaultprojectobjquota = quota;
2139 break;
2140 default:
2141 break;
2142 }
2143
2144 out:
2145 dmu_tx_commit(tx);
2146 return (error);
2147 }
2148
2149 /*
2150 * Return true if the corresponding vfs's unmounted flag is set.
2151 * Otherwise return false.
2152 * If this function returns true we know VFS unmount has been initiated.
2153 */
2154 boolean_t
zfs_get_vfs_flag_unmounted(objset_t * os)2155 zfs_get_vfs_flag_unmounted(objset_t *os)
2156 {
2157 zfsvfs_t *zfvp;
2158 boolean_t unmounted = B_FALSE;
2159
2160 ASSERT(dmu_objset_type(os) == DMU_OST_ZFS);
2161
2162 mutex_enter(&os->os_user_ptr_lock);
2163 zfvp = dmu_objset_get_user(os);
2164 if (zfvp != NULL && zfvp->z_unmounted)
2165 unmounted = B_TRUE;
2166 mutex_exit(&os->os_user_ptr_lock);
2167
2168 return (unmounted);
2169 }
2170
2171 void
zfsvfs_update_fromname(const char * oldname,const char * newname)2172 zfsvfs_update_fromname(const char *oldname, const char *newname)
2173 {
2174 /*
2175 * We don't need to do anything here, the devname is always current by
2176 * virtue of zfsvfs->z_sb->s_op->show_devname.
2177 */
2178 (void) oldname, (void) newname;
2179 }
2180
2181 void
zfs_init(void)2182 zfs_init(void)
2183 {
2184 zfsctl_init();
2185 zfs_znode_init();
2186 dmu_objset_register_type(DMU_OST_ZFS, zpl_get_file_info);
2187 register_filesystem(&zpl_fs_type);
2188 }
2189
2190 void
zfs_fini(void)2191 zfs_fini(void)
2192 {
2193 /*
2194 * we don't use outstanding because zpl_posix_acl_free might add more.
2195 */
2196 taskq_wait(system_delay_taskq);
2197 taskq_wait(system_taskq);
2198 unregister_filesystem(&zpl_fs_type);
2199 zfs_znode_fini();
2200 zfsctl_fini();
2201 }
2202
2203 #if defined(_KERNEL)
2204 EXPORT_SYMBOL(zfs_suspend_fs);
2205 EXPORT_SYMBOL(zfs_resume_fs);
2206 EXPORT_SYMBOL(zfs_set_version);
2207 EXPORT_SYMBOL(zfsvfs_create);
2208 EXPORT_SYMBOL(zfsvfs_free);
2209 EXPORT_SYMBOL(zfs_is_readonly);
2210 EXPORT_SYMBOL(zfs_domount);
2211 EXPORT_SYMBOL(zfs_preumount);
2212 EXPORT_SYMBOL(zfs_umount);
2213 EXPORT_SYMBOL(zfs_remount);
2214 EXPORT_SYMBOL(zfs_statvfs);
2215 EXPORT_SYMBOL(zfs_vget);
2216 EXPORT_SYMBOL(zfs_prune);
2217 EXPORT_SYMBOL(zfs_set_default_quota);
2218 #endif
2219