1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25
26 /*
27 * hermon_srq.c
28 * Hermon Shared Receive Queue Processing Routines
29 *
30 * Implements all the routines necessary for allocating, freeing, querying,
31 * modifying and posting shared receive queues.
32 */
33
34 #include <sys/sysmacros.h>
35 #include <sys/types.h>
36 #include <sys/conf.h>
37 #include <sys/ddi.h>
38 #include <sys/sunddi.h>
39 #include <sys/modctl.h>
40 #include <sys/bitmap.h>
41
42 #include <sys/ib/adapters/hermon/hermon.h>
43
44 static void hermon_srq_sgl_to_logwqesz(hermon_state_t *state, uint_t num_sgl,
45 hermon_qp_wq_type_t wq_type, uint_t *logwqesz, uint_t *max_sgl);
46
47 /*
48 * hermon_srq_alloc()
49 * Context: Can be called only from user or kernel context.
50 */
51 int
hermon_srq_alloc(hermon_state_t * state,hermon_srq_info_t * srqinfo,uint_t sleepflag)52 hermon_srq_alloc(hermon_state_t *state, hermon_srq_info_t *srqinfo,
53 uint_t sleepflag)
54 {
55 ibt_srq_hdl_t ibt_srqhdl;
56 hermon_pdhdl_t pd;
57 ibt_srq_sizes_t *sizes;
58 ibt_srq_sizes_t *real_sizes;
59 hermon_srqhdl_t *srqhdl;
60 ibt_srq_flags_t flags;
61 hermon_rsrc_t *srqc, *rsrc;
62 hermon_hw_srqc_t srqc_entry;
63 uint32_t *buf;
64 hermon_srqhdl_t srq;
65 hermon_umap_db_entry_t *umapdb;
66 ibt_mr_attr_t mr_attr;
67 hermon_mr_options_t mr_op;
68 hermon_mrhdl_t mr;
69 uint64_t value, srq_desc_off;
70 uint32_t log_srq_size;
71 uint32_t uarpg;
72 uint_t srq_is_umap;
73 int flag, status;
74 uint_t max_sgl;
75 uint_t wqesz;
76 uint_t srq_wr_sz;
77 _NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*sizes))
78
79 /*
80 * options-->wq_location used to be for location, now explicitly
81 * LOCATION_NORMAL
82 */
83
84 /*
85 * Extract the necessary info from the hermon_srq_info_t structure
86 */
87 real_sizes = srqinfo->srqi_real_sizes;
88 sizes = srqinfo->srqi_sizes;
89 pd = srqinfo->srqi_pd;
90 ibt_srqhdl = srqinfo->srqi_ibt_srqhdl;
91 flags = srqinfo->srqi_flags;
92 srqhdl = srqinfo->srqi_srqhdl;
93
94 /*
95 * Determine whether SRQ is being allocated for userland access or
96 * whether it is being allocated for kernel access. If the SRQ is
97 * being allocated for userland access, then lookup the UAR doorbell
98 * page number for the current process. Note: If this is not found
99 * (e.g. if the process has not previously open()'d the Hermon driver),
100 * then an error is returned.
101 */
102 srq_is_umap = (flags & IBT_SRQ_USER_MAP) ? 1 : 0;
103 if (srq_is_umap) {
104 status = hermon_umap_db_find(state->hs_instance, ddi_get_pid(),
105 MLNX_UMAP_UARPG_RSRC, &value, 0, NULL);
106 if (status != DDI_SUCCESS) {
107 status = IBT_INVALID_PARAM;
108 goto srqalloc_fail3;
109 }
110 uarpg = ((hermon_rsrc_t *)(uintptr_t)value)->hr_indx;
111 } else {
112 uarpg = state->hs_kernel_uar_index;
113 }
114
115 /* Increase PD refcnt */
116 hermon_pd_refcnt_inc(pd);
117
118 /* Allocate an SRQ context entry */
119 status = hermon_rsrc_alloc(state, HERMON_SRQC, 1, sleepflag, &srqc);
120 if (status != DDI_SUCCESS) {
121 status = IBT_INSUFF_RESOURCE;
122 goto srqalloc_fail1;
123 }
124
125 /* Allocate the SRQ Handle entry */
126 status = hermon_rsrc_alloc(state, HERMON_SRQHDL, 1, sleepflag, &rsrc);
127 if (status != DDI_SUCCESS) {
128 status = IBT_INSUFF_RESOURCE;
129 goto srqalloc_fail2;
130 }
131
132 srq = (hermon_srqhdl_t)rsrc->hr_addr;
133 _NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*srq))
134
135 bzero(srq, sizeof (struct hermon_sw_srq_s));
136 /* Calculate the SRQ number */
137
138 /* just use the index, implicit in Hermon */
139 srq->srq_srqnum = srqc->hr_indx;
140
141 /*
142 * If this will be a user-mappable SRQ, then allocate an entry for
143 * the "userland resources database". This will later be added to
144 * the database (after all further SRQ operations are successful).
145 * If we fail here, we must undo the reference counts and the
146 * previous resource allocation.
147 */
148 if (srq_is_umap) {
149 umapdb = hermon_umap_db_alloc(state->hs_instance,
150 srq->srq_srqnum, MLNX_UMAP_SRQMEM_RSRC,
151 (uint64_t)(uintptr_t)rsrc);
152 if (umapdb == NULL) {
153 status = IBT_INSUFF_RESOURCE;
154 goto srqalloc_fail3;
155 }
156 }
157
158 /*
159 * Allocate the doorbell record. Hermon just needs one for the
160 * SRQ, and use uarpg (above) as the uar index
161 */
162
163 status = hermon_dbr_alloc(state, uarpg, &srq->srq_wq_dbr_acchdl,
164 &srq->srq_wq_vdbr, &srq->srq_wq_pdbr, &srq->srq_rdbr_mapoffset);
165 if (status != DDI_SUCCESS) {
166 status = IBT_INSUFF_RESOURCE;
167 goto srqalloc_fail4;
168 }
169
170 /*
171 * Calculate the appropriate size for the SRQ.
172 * Note: All Hermon SRQs must be a power-of-2 in size. Also
173 * they may not be any smaller than HERMON_SRQ_MIN_SIZE. This step
174 * is to round the requested size up to the next highest power-of-2
175 */
176 srq_wr_sz = max(sizes->srq_wr_sz + 1, HERMON_SRQ_MIN_SIZE);
177 log_srq_size = highbit(srq_wr_sz);
178 if (ISP2(srq_wr_sz)) {
179 log_srq_size = log_srq_size - 1;
180 }
181
182 /*
183 * Next we verify that the rounded-up size is valid (i.e. consistent
184 * with the device limits and/or software-configured limits). If not,
185 * then obviously we have a lot of cleanup to do before returning.
186 */
187 if (log_srq_size > state->hs_cfg_profile->cp_log_max_srq_sz) {
188 status = IBT_HCA_WR_EXCEEDED;
189 goto srqalloc_fail4a;
190 }
191
192 /*
193 * Next we verify that the requested number of SGL is valid (i.e.
194 * consistent with the device limits and/or software-configured
195 * limits). If not, then obviously the same cleanup needs to be done.
196 */
197 max_sgl = state->hs_ibtfinfo.hca_attr->hca_max_srq_sgl;
198 if (sizes->srq_sgl_sz > max_sgl) {
199 status = IBT_HCA_SGL_EXCEEDED;
200 goto srqalloc_fail4a;
201 }
202
203 /*
204 * Determine the SRQ's WQE sizes. This depends on the requested
205 * number of SGLs. Note: This also has the side-effect of
206 * calculating the real number of SGLs (for the calculated WQE size)
207 */
208 hermon_srq_sgl_to_logwqesz(state, sizes->srq_sgl_sz,
209 HERMON_QP_WQ_TYPE_RECVQ, &srq->srq_wq_log_wqesz,
210 &srq->srq_wq_sgl);
211
212 /*
213 * Allocate the memory for SRQ work queues. Note: The location from
214 * which we will allocate these work queues is always
215 * QUEUE_LOCATION_NORMAL. Since Hermon work queues are not
216 * allowed to cross a 32-bit (4GB) boundary, the alignment of the work
217 * queue memory is very important. We used to allocate work queues
218 * (the combined receive and send queues) so that they would be aligned
219 * on their combined size. That alignment guaranteed that they would
220 * never cross the 4GB boundary (Hermon work queues are on the order of
221 * MBs at maximum). Now we are able to relax this alignment constraint
222 * by ensuring that the IB address assigned to the queue memory (as a
223 * result of the hermon_mr_register() call) is offset from zero.
224 * Previously, we had wanted to use the ddi_dma_mem_alloc() routine to
225 * guarantee the alignment, but when attempting to use IOMMU bypass
226 * mode we found that we were not allowed to specify any alignment that
227 * was more restrictive than the system page size. So we avoided this
228 * constraint by passing two alignment values, one for the memory
229 * allocation itself and the other for the DMA handle (for later bind).
230 * This used to cause more memory than necessary to be allocated (in
231 * order to guarantee the more restrictive alignment contraint). But
232 * be guaranteeing the zero-based IB virtual address for the queue, we
233 * are able to conserve this memory.
234 *
235 * Note: If SRQ is not user-mappable, then it may come from either
236 * kernel system memory or from HCA-attached local DDR memory.
237 *
238 * Note2: We align this queue on a pagesize boundary. This is required
239 * to make sure that all the resulting IB addresses will start at 0, for
240 * a zero-based queue. By making sure we are aligned on at least a
241 * page, any offset we use into our queue will be the same as when we
242 * perform hermon_srq_modify() operations later.
243 */
244 wqesz = (1 << srq->srq_wq_log_wqesz);
245 srq->srq_wqinfo.qa_size = (1 << log_srq_size) * wqesz;
246 srq->srq_wqinfo.qa_alloc_align = PAGESIZE;
247 srq->srq_wqinfo.qa_bind_align = PAGESIZE;
248 if (srq_is_umap) {
249 srq->srq_wqinfo.qa_location = HERMON_QUEUE_LOCATION_USERLAND;
250 } else {
251 srq->srq_wqinfo.qa_location = HERMON_QUEUE_LOCATION_NORMAL;
252 }
253 status = hermon_queue_alloc(state, &srq->srq_wqinfo, sleepflag);
254 if (status != DDI_SUCCESS) {
255 status = IBT_INSUFF_RESOURCE;
256 goto srqalloc_fail4a;
257 }
258 buf = (uint32_t *)srq->srq_wqinfo.qa_buf_aligned;
259 _NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*buf))
260
261 /*
262 * Register the memory for the SRQ work queues. The memory for the SRQ
263 * must be registered in the Hermon cMPT tables. This gives us the LKey
264 * to specify in the SRQ context later. Note: If the work queue is to
265 * be allocated from DDR memory, then only a "bypass" mapping is
266 * appropriate. And if the SRQ memory is user-mappable, then we force
267 * DDI_DMA_CONSISTENT mapping. Also, in order to meet the alignment
268 * restriction, we pass the "mro_bind_override_addr" flag in the call
269 * to hermon_mr_register(). This guarantees that the resulting IB vaddr
270 * will be zero-based (modulo the offset into the first page). If we
271 * fail here, we still have the bunch of resource and reference count
272 * cleanup to do.
273 */
274 flag = (sleepflag == HERMON_SLEEP) ? IBT_MR_SLEEP :
275 IBT_MR_NOSLEEP;
276 mr_attr.mr_vaddr = (uint64_t)(uintptr_t)buf;
277 mr_attr.mr_len = srq->srq_wqinfo.qa_size;
278 mr_attr.mr_as = NULL;
279 mr_attr.mr_flags = flag | IBT_MR_ENABLE_LOCAL_WRITE;
280 mr_op.mro_bind_type = state->hs_cfg_profile->cp_iommu_bypass;
281 mr_op.mro_bind_dmahdl = srq->srq_wqinfo.qa_dmahdl;
282 mr_op.mro_bind_override_addr = 1;
283 status = hermon_mr_register(state, pd, &mr_attr, &mr,
284 &mr_op, HERMON_SRQ_CMPT);
285 if (status != DDI_SUCCESS) {
286 status = IBT_INSUFF_RESOURCE;
287 goto srqalloc_fail5;
288 }
289 _NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*mr))
290
291 /*
292 * Calculate the offset between the kernel virtual address space
293 * and the IB virtual address space. This will be used when
294 * posting work requests to properly initialize each WQE.
295 */
296 srq_desc_off = (uint64_t)(uintptr_t)srq->srq_wqinfo.qa_buf_aligned -
297 (uint64_t)mr->mr_bindinfo.bi_addr;
298
299 srq->srq_wq_wqhdr = hermon_wrid_wqhdr_create(1 << log_srq_size);
300
301 /*
302 * Fill in all the return arguments (if necessary). This includes
303 * real queue size and real SGLs.
304 */
305 if (real_sizes != NULL) {
306 real_sizes->srq_wr_sz = (1 << log_srq_size) - 1;
307 real_sizes->srq_sgl_sz = srq->srq_wq_sgl;
308 }
309
310 /*
311 * Fill in the SRQC entry. This is the final step before passing
312 * ownership of the SRQC entry to the Hermon hardware. We use all of
313 * the information collected/calculated above to fill in the
314 * requisite portions of the SRQC. Note: If this SRQ is going to be
315 * used for userland access, then we need to set the UAR page number
316 * appropriately (otherwise it's a "don't care")
317 */
318 bzero(&srqc_entry, sizeof (hermon_hw_srqc_t));
319 srqc_entry.state = HERMON_SRQ_STATE_HW_OWNER;
320 srqc_entry.log_srq_size = log_srq_size;
321 srqc_entry.srqn = srq->srq_srqnum;
322 srqc_entry.log_rq_stride = srq->srq_wq_log_wqesz - 4;
323 /* 16-byte chunks */
324
325 srqc_entry.page_offs = srq->srq_wqinfo.qa_pgoffs >> 6;
326 srqc_entry.log2_pgsz = mr->mr_log2_pgsz;
327 srqc_entry.mtt_base_addrh = (uint32_t)((mr->mr_mttaddr >> 32) & 0xFF);
328 srqc_entry.mtt_base_addrl = mr->mr_mttaddr >> 3;
329 srqc_entry.pd = pd->pd_pdnum;
330 srqc_entry.dbr_addrh = (uint32_t)((uint64_t)srq->srq_wq_pdbr >> 32);
331 srqc_entry.dbr_addrl = (uint32_t)((uint64_t)srq->srq_wq_pdbr >> 2);
332
333 /*
334 * all others - specifically, xrcd, cqn_xrc, lwm, wqe_cnt, and wqe_cntr
335 * are zero thanks to the bzero of the structure
336 */
337
338 /*
339 * Write the SRQC entry to hardware. Lastly, we pass ownership of
340 * the entry to the hardware (using the Hermon SW2HW_SRQ firmware
341 * command). Note: In general, this operation shouldn't fail. But
342 * if it does, we have to undo everything we've done above before
343 * returning error.
344 */
345 status = hermon_cmn_ownership_cmd_post(state, SW2HW_SRQ, &srqc_entry,
346 sizeof (hermon_hw_srqc_t), srq->srq_srqnum,
347 sleepflag);
348 if (status != HERMON_CMD_SUCCESS) {
349 cmn_err(CE_CONT, "Hermon: SW2HW_SRQ command failed: %08x\n",
350 status);
351 if (status == HERMON_CMD_INVALID_STATUS) {
352 hermon_fm_ereport(state, HCA_SYS_ERR, HCA_ERR_SRV_LOST);
353 }
354 status = ibc_get_ci_failure(0);
355 goto srqalloc_fail8;
356 }
357
358 /*
359 * Fill in the rest of the Hermon SRQ handle. We can update
360 * the following fields for use in further operations on the SRQ.
361 */
362 srq->srq_srqcrsrcp = srqc;
363 srq->srq_rsrcp = rsrc;
364 srq->srq_mrhdl = mr;
365 srq->srq_refcnt = 0;
366 srq->srq_is_umap = srq_is_umap;
367 srq->srq_uarpg = uarpg;
368 srq->srq_umap_dhp = (devmap_cookie_t)NULL;
369 srq->srq_pdhdl = pd;
370 srq->srq_wq_bufsz = (1 << log_srq_size);
371 srq->srq_wq_buf = buf;
372 srq->srq_desc_off = srq_desc_off;
373 srq->srq_hdlrarg = (void *)ibt_srqhdl;
374 srq->srq_state = 0;
375 srq->srq_real_sizes.srq_wr_sz = (1 << log_srq_size);
376 srq->srq_real_sizes.srq_sgl_sz = srq->srq_wq_sgl;
377
378 /*
379 * Put SRQ handle in Hermon SRQNum-to-SRQhdl list. Then fill in the
380 * "srqhdl" and return success
381 */
382 hermon_icm_set_num_to_hdl(state, HERMON_SRQC, srqc->hr_indx, srq);
383
384 /*
385 * If this is a user-mappable SRQ, then we need to insert the
386 * previously allocated entry into the "userland resources database".
387 * This will allow for later lookup during devmap() (i.e. mmap())
388 * calls.
389 */
390 if (srq->srq_is_umap) {
391 hermon_umap_db_add(umapdb);
392 } else { /* initialize work queue for kernel SRQs */
393 int i, len, last;
394 uint16_t *desc;
395
396 desc = (uint16_t *)buf;
397 len = wqesz / sizeof (*desc);
398 last = srq->srq_wq_bufsz - 1;
399 for (i = 0; i < last; i++) {
400 desc[1] = htons(i + 1);
401 desc += len;
402 }
403 srq->srq_wq_wqhdr->wq_tail = last;
404 srq->srq_wq_wqhdr->wq_head = 0;
405 }
406
407 *srqhdl = srq;
408
409 return (status);
410
411 /*
412 * The following is cleanup for all possible failure cases in this routine
413 */
414 srqalloc_fail8:
415 hermon_wrid_wqhdr_destroy(srq->srq_wq_wqhdr);
416 srqalloc_fail7:
417 if (hermon_mr_deregister(state, &mr, HERMON_MR_DEREG_ALL,
418 HERMON_SLEEPFLAG_FOR_CONTEXT()) != DDI_SUCCESS) {
419 HERMON_WARNING(state, "failed to deregister SRQ memory");
420 }
421 srqalloc_fail5:
422 hermon_queue_free(&srq->srq_wqinfo);
423 srqalloc_fail4a:
424 hermon_dbr_free(state, uarpg, srq->srq_wq_vdbr);
425 srqalloc_fail4:
426 if (srq_is_umap) {
427 hermon_umap_db_free(umapdb);
428 }
429 srqalloc_fail3:
430 hermon_rsrc_free(state, &rsrc);
431 srqalloc_fail2:
432 hermon_rsrc_free(state, &srqc);
433 srqalloc_fail1:
434 hermon_pd_refcnt_dec(pd);
435 srqalloc_fail:
436 return (status);
437 }
438
439
440 /*
441 * hermon_srq_free()
442 * Context: Can be called only from user or kernel context.
443 */
444 /* ARGSUSED */
445 int
hermon_srq_free(hermon_state_t * state,hermon_srqhdl_t * srqhdl,uint_t sleepflag)446 hermon_srq_free(hermon_state_t *state, hermon_srqhdl_t *srqhdl,
447 uint_t sleepflag)
448 {
449 hermon_rsrc_t *srqc, *rsrc;
450 hermon_umap_db_entry_t *umapdb;
451 uint64_t value;
452 hermon_srqhdl_t srq;
453 hermon_mrhdl_t mr;
454 hermon_pdhdl_t pd;
455 hermon_hw_srqc_t srqc_entry;
456 uint32_t srqnum;
457 uint_t maxprot;
458 int status;
459
460 /*
461 * Pull all the necessary information from the Hermon Shared Receive
462 * Queue handle. This is necessary here because the resource for the
463 * SRQ handle is going to be freed up as part of this operation.
464 */
465 srq = *srqhdl;
466 mutex_enter(&srq->srq_lock);
467 srqc = srq->srq_srqcrsrcp;
468 rsrc = srq->srq_rsrcp;
469 pd = srq->srq_pdhdl;
470 mr = srq->srq_mrhdl;
471 srqnum = srq->srq_srqnum;
472
473 /*
474 * If there are work queues still associated with the SRQ, then return
475 * an error. Otherwise, we will be holding the SRQ lock.
476 */
477 if (srq->srq_refcnt != 0) {
478 mutex_exit(&srq->srq_lock);
479 return (IBT_SRQ_IN_USE);
480 }
481
482 /*
483 * If this was a user-mappable SRQ, then we need to remove its entry
484 * from the "userland resources database". If it is also currently
485 * mmap()'d out to a user process, then we need to call
486 * devmap_devmem_remap() to remap the SRQ memory to an invalid mapping.
487 * We also need to invalidate the SRQ tracking information for the
488 * user mapping.
489 */
490 if (srq->srq_is_umap) {
491 status = hermon_umap_db_find(state->hs_instance,
492 srq->srq_srqnum, MLNX_UMAP_SRQMEM_RSRC, &value,
493 HERMON_UMAP_DB_REMOVE, &umapdb);
494 if (status != DDI_SUCCESS) {
495 mutex_exit(&srq->srq_lock);
496 HERMON_WARNING(state, "failed to find in database");
497 return (ibc_get_ci_failure(0));
498 }
499 hermon_umap_db_free(umapdb);
500 if (srq->srq_umap_dhp != NULL) {
501 maxprot = (PROT_READ | PROT_WRITE | PROT_USER);
502 status = devmap_devmem_remap(srq->srq_umap_dhp,
503 state->hs_dip, 0, 0, srq->srq_wqinfo.qa_size,
504 maxprot, DEVMAP_MAPPING_INVALID, NULL);
505 if (status != DDI_SUCCESS) {
506 mutex_exit(&srq->srq_lock);
507 HERMON_WARNING(state, "failed in SRQ memory "
508 "devmap_devmem_remap()");
509 return (ibc_get_ci_failure(0));
510 }
511 srq->srq_umap_dhp = (devmap_cookie_t)NULL;
512 }
513 }
514
515 /*
516 * Put NULL into the Hermon SRQNum-to-SRQHdl list. This will allow any
517 * in-progress events to detect that the SRQ corresponding to this
518 * number has been freed.
519 */
520 hermon_icm_set_num_to_hdl(state, HERMON_SRQC, srqc->hr_indx, NULL);
521
522 mutex_exit(&srq->srq_lock);
523 _NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*srq));
524
525 /*
526 * Reclaim SRQC entry from hardware (using the Hermon HW2SW_SRQ
527 * firmware command). If the ownership transfer fails for any reason,
528 * then it is an indication that something (either in HW or SW) has
529 * gone seriously wrong.
530 */
531 status = hermon_cmn_ownership_cmd_post(state, HW2SW_SRQ, &srqc_entry,
532 sizeof (hermon_hw_srqc_t), srqnum, sleepflag);
533 if (status != HERMON_CMD_SUCCESS) {
534 HERMON_WARNING(state, "failed to reclaim SRQC ownership");
535 cmn_err(CE_CONT, "Hermon: HW2SW_SRQ command failed: %08x\n",
536 status);
537 if (status == HERMON_CMD_INVALID_STATUS) {
538 hermon_fm_ereport(state, HCA_SYS_ERR, HCA_ERR_SRV_LOST);
539 }
540 return (ibc_get_ci_failure(0));
541 }
542
543 /*
544 * Deregister the memory for the Shared Receive Queue. If this fails
545 * for any reason, then it is an indication that something (either
546 * in HW or SW) has gone seriously wrong. So we print a warning
547 * message and return.
548 */
549 status = hermon_mr_deregister(state, &mr, HERMON_MR_DEREG_ALL,
550 sleepflag);
551 if (status != DDI_SUCCESS) {
552 HERMON_WARNING(state, "failed to deregister SRQ memory");
553 return (IBT_FAILURE);
554 }
555
556 hermon_wrid_wqhdr_destroy(srq->srq_wq_wqhdr);
557
558 /* Free the memory for the SRQ */
559 hermon_queue_free(&srq->srq_wqinfo);
560
561 /* Free the dbr */
562 hermon_dbr_free(state, srq->srq_uarpg, srq->srq_wq_vdbr);
563
564 /* Free the Hermon SRQ Handle */
565 hermon_rsrc_free(state, &rsrc);
566
567 /* Free the SRQC entry resource */
568 hermon_rsrc_free(state, &srqc);
569
570 /* Decrement the reference count on the protection domain (PD) */
571 hermon_pd_refcnt_dec(pd);
572
573 /* Set the srqhdl pointer to NULL and return success */
574 *srqhdl = NULL;
575
576 return (DDI_SUCCESS);
577 }
578
579
580 /*
581 * hermon_srq_modify()
582 * Context: Can be called only from user or kernel context.
583 */
584 int
hermon_srq_modify(hermon_state_t * state,hermon_srqhdl_t srq,uint_t size,uint_t * real_size,uint_t sleepflag)585 hermon_srq_modify(hermon_state_t *state, hermon_srqhdl_t srq, uint_t size,
586 uint_t *real_size, uint_t sleepflag)
587 {
588 hermon_qalloc_info_t new_srqinfo, old_srqinfo;
589 hermon_rsrc_t *mtt, *old_mtt;
590 hermon_bind_info_t bind;
591 hermon_bind_info_t old_bind;
592 hermon_mrhdl_t mr;
593 hermon_hw_srqc_t srqc_entry;
594 hermon_hw_dmpt_t mpt_entry;
595 uint64_t *wre_new, *wre_old;
596 uint64_t mtt_addr;
597 uint64_t srq_pgoffs;
598 uint64_t srq_desc_off;
599 uint32_t *buf, srq_old_bufsz;
600 uint32_t wqesz;
601 uint_t max_srq_size;
602 uint_t mtt_pgsize_bits;
603 uint_t log_srq_size, maxprot;
604 int status;
605
606 if ((state->hs_devlim.mod_wr_srq == 0) ||
607 (state->hs_cfg_profile->cp_srq_resize_enabled == 0))
608 return (IBT_NOT_SUPPORTED);
609
610 /*
611 * If size requested is larger than device capability, return
612 * Insufficient Resources
613 */
614 max_srq_size = (1 << state->hs_cfg_profile->cp_log_max_srq_sz);
615 if (size > max_srq_size) {
616 return (IBT_HCA_WR_EXCEEDED);
617 }
618
619 /*
620 * Calculate the appropriate size for the SRQ.
621 * Note: All Hermon SRQs must be a power-of-2 in size. Also
622 * they may not be any smaller than HERMON_SRQ_MIN_SIZE. This step
623 * is to round the requested size up to the next highest power-of-2
624 */
625 size = max(size, HERMON_SRQ_MIN_SIZE);
626 log_srq_size = highbit(size);
627 if (ISP2(size)) {
628 log_srq_size = log_srq_size - 1;
629 }
630
631 /*
632 * Next we verify that the rounded-up size is valid (i.e. consistent
633 * with the device limits and/or software-configured limits).
634 */
635 if (log_srq_size > state->hs_cfg_profile->cp_log_max_srq_sz) {
636 status = IBT_HCA_WR_EXCEEDED;
637 goto srqmodify_fail;
638 }
639
640 /*
641 * Allocate the memory for newly resized Shared Receive Queue.
642 *
643 * Note: If SRQ is not user-mappable, then it may come from either
644 * kernel system memory or from HCA-attached local DDR memory.
645 *
646 * Note2: We align this queue on a pagesize boundary. This is required
647 * to make sure that all the resulting IB addresses will start at 0,
648 * for a zero-based queue. By making sure we are aligned on at least a
649 * page, any offset we use into our queue will be the same as it was
650 * when we allocated it at hermon_srq_alloc() time.
651 */
652 wqesz = (1 << srq->srq_wq_log_wqesz);
653 new_srqinfo.qa_size = (1 << log_srq_size) * wqesz;
654 new_srqinfo.qa_alloc_align = PAGESIZE;
655 new_srqinfo.qa_bind_align = PAGESIZE;
656 if (srq->srq_is_umap) {
657 new_srqinfo.qa_location = HERMON_QUEUE_LOCATION_USERLAND;
658 } else {
659 new_srqinfo.qa_location = HERMON_QUEUE_LOCATION_NORMAL;
660 }
661 status = hermon_queue_alloc(state, &new_srqinfo, sleepflag);
662 if (status != DDI_SUCCESS) {
663 status = IBT_INSUFF_RESOURCE;
664 goto srqmodify_fail;
665 }
666 buf = (uint32_t *)new_srqinfo.qa_buf_aligned;
667 _NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*buf))
668
669 /*
670 * Allocate the memory for the new WRE list. This will be used later
671 * when we resize the wridlist based on the new SRQ size.
672 */
673 wre_new = kmem_zalloc((1 << log_srq_size) * sizeof (uint64_t),
674 sleepflag);
675 if (wre_new == NULL) {
676 status = IBT_INSUFF_RESOURCE;
677 goto srqmodify_fail;
678 }
679
680 /*
681 * Fill in the "bind" struct. This struct provides the majority
682 * of the information that will be used to distinguish between an
683 * "addr" binding (as is the case here) and a "buf" binding (see
684 * below). The "bind" struct is later passed to hermon_mr_mem_bind()
685 * which does most of the "heavy lifting" for the Hermon memory
686 * registration routines.
687 */
688 _NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(bind))
689 bzero(&bind, sizeof (hermon_bind_info_t));
690 bind.bi_type = HERMON_BINDHDL_VADDR;
691 bind.bi_addr = (uint64_t)(uintptr_t)buf;
692 bind.bi_len = new_srqinfo.qa_size;
693 bind.bi_as = NULL;
694 bind.bi_flags = sleepflag == HERMON_SLEEP ? IBT_MR_SLEEP :
695 IBT_MR_NOSLEEP | IBT_MR_ENABLE_LOCAL_WRITE;
696 bind.bi_bypass = state->hs_cfg_profile->cp_iommu_bypass;
697
698 status = hermon_mr_mtt_bind(state, &bind, new_srqinfo.qa_dmahdl, &mtt,
699 &mtt_pgsize_bits, 0); /* no relaxed ordering */
700 if (status != DDI_SUCCESS) {
701 status = status;
702 kmem_free(wre_new, (1 << log_srq_size) *
703 sizeof (uint64_t));
704 hermon_queue_free(&new_srqinfo);
705 goto srqmodify_fail;
706 }
707
708 /*
709 * Calculate the offset between the kernel virtual address space
710 * and the IB virtual address space. This will be used when
711 * posting work requests to properly initialize each WQE.
712 *
713 * Note: bind addr is zero-based (from alloc) so we calculate the
714 * correct new offset here.
715 */
716 bind.bi_addr = bind.bi_addr & ((1 << mtt_pgsize_bits) - 1);
717 srq_desc_off = (uint64_t)(uintptr_t)new_srqinfo.qa_buf_aligned -
718 (uint64_t)bind.bi_addr;
719 srq_pgoffs = (uint_t)
720 ((uintptr_t)new_srqinfo.qa_buf_aligned & HERMON_PAGEOFFSET);
721
722 /*
723 * Fill in the MPT entry. This is the final step before passing
724 * ownership of the MPT entry to the Hermon hardware. We use all of
725 * the information collected/calculated above to fill in the
726 * requisite portions of the MPT.
727 */
728 bzero(&mpt_entry, sizeof (hermon_hw_dmpt_t));
729 mpt_entry.reg_win_len = bind.bi_len;
730 mtt_addr = (mtt->hr_indx << HERMON_MTT_SIZE_SHIFT);
731 mpt_entry.mtt_addr_h = mtt_addr >> 32;
732 mpt_entry.mtt_addr_l = mtt_addr >> 3;
733
734 /*
735 * for hermon we build up a new srqc and pass that (partially filled
736 * to resize SRQ instead of modifying the (d)mpt directly
737 */
738
739
740
741 /*
742 * Now we grab the SRQ lock. Since we will be updating the actual
743 * SRQ location and the producer/consumer indexes, we should hold
744 * the lock.
745 *
746 * We do a HERMON_NOSLEEP here (and below), though, because we are
747 * holding the "srq_lock" and if we got raised to interrupt level
748 * by priority inversion, we would not want to block in this routine
749 * waiting for success.
750 */
751 mutex_enter(&srq->srq_lock);
752
753 /*
754 * Copy old entries to new buffer
755 */
756 srq_old_bufsz = srq->srq_wq_bufsz;
757 bcopy(srq->srq_wq_buf, buf, srq_old_bufsz * wqesz);
758
759 /*
760 * Setup MPT information for use in the MODIFY_MPT command
761 */
762 mr = srq->srq_mrhdl;
763 mutex_enter(&mr->mr_lock);
764
765 /*
766 * now, setup the srqc information needed for resize - limit the
767 * values, but use the same structure as the srqc
768 */
769
770 srqc_entry.log_srq_size = log_srq_size;
771 srqc_entry.page_offs = srq_pgoffs >> 6;
772 srqc_entry.log2_pgsz = mr->mr_log2_pgsz;
773 srqc_entry.mtt_base_addrl = (uint64_t)mtt_addr >> 32;
774 srqc_entry.mtt_base_addrh = mtt_addr >> 3;
775
776 /*
777 * RESIZE_SRQ
778 *
779 * If this fails for any reason, then it is an indication that
780 * something (either in HW or SW) has gone seriously wrong. So we
781 * print a warning message and return.
782 */
783 status = hermon_resize_srq_cmd_post(state, &srqc_entry,
784 srq->srq_srqnum, sleepflag);
785 if (status != HERMON_CMD_SUCCESS) {
786 cmn_err(CE_CONT, "Hermon: RESIZE_SRQ command failed: %08x\n",
787 status);
788 if (status == HERMON_CMD_INVALID_STATUS) {
789 hermon_fm_ereport(state, HCA_SYS_ERR, HCA_ERR_SRV_LOST);
790 }
791 (void) hermon_mr_mtt_unbind(state, &bind, mtt);
792 kmem_free(wre_new, (1 << log_srq_size) *
793 sizeof (uint64_t));
794 hermon_queue_free(&new_srqinfo);
795 mutex_exit(&mr->mr_lock);
796 mutex_exit(&srq->srq_lock);
797 return (ibc_get_ci_failure(0));
798 }
799 /*
800 * Update the Hermon Shared Receive Queue handle with all the new
801 * information. At the same time, save away all the necessary
802 * information for freeing up the old resources
803 */
804 old_srqinfo = srq->srq_wqinfo;
805 old_mtt = srq->srq_mrhdl->mr_mttrsrcp;
806 bcopy(&srq->srq_mrhdl->mr_bindinfo, &old_bind,
807 sizeof (hermon_bind_info_t));
808
809 /* Now set the new info */
810 srq->srq_wqinfo = new_srqinfo;
811 srq->srq_wq_buf = buf;
812 srq->srq_wq_bufsz = (1 << log_srq_size);
813 bcopy(&bind, &srq->srq_mrhdl->mr_bindinfo, sizeof (hermon_bind_info_t));
814 srq->srq_mrhdl->mr_mttrsrcp = mtt;
815 srq->srq_desc_off = srq_desc_off;
816 srq->srq_real_sizes.srq_wr_sz = (1 << log_srq_size);
817
818 /* Update MR mtt pagesize */
819 mr->mr_logmttpgsz = mtt_pgsize_bits;
820 mutex_exit(&mr->mr_lock);
821
822 /*
823 * Initialize new wridlist, if needed.
824 *
825 * If a wridlist already is setup on an SRQ (the QP associated with an
826 * SRQ has moved "from_reset") then we must update this wridlist based
827 * on the new SRQ size. We allocate the new size of Work Request ID
828 * Entries, copy over the old entries to the new list, and
829 * re-initialize the srq wridlist in non-umap case
830 */
831 wre_old = srq->srq_wq_wqhdr->wq_wrid;
832
833 bcopy(wre_old, wre_new, srq_old_bufsz * sizeof (uint64_t));
834
835 /* Setup new sizes in wre */
836 srq->srq_wq_wqhdr->wq_wrid = wre_new;
837
838 /*
839 * If "old" SRQ was a user-mappable SRQ that is currently mmap()'d out
840 * to a user process, then we need to call devmap_devmem_remap() to
841 * invalidate the mapping to the SRQ memory. We also need to
842 * invalidate the SRQ tracking information for the user mapping.
843 *
844 * Note: On failure, the remap really shouldn't ever happen. So, if it
845 * does, it is an indication that something has gone seriously wrong.
846 * So we print a warning message and return error (knowing, of course,
847 * that the "old" SRQ memory will be leaked)
848 */
849 if ((srq->srq_is_umap) && (srq->srq_umap_dhp != NULL)) {
850 maxprot = (PROT_READ | PROT_WRITE | PROT_USER);
851 status = devmap_devmem_remap(srq->srq_umap_dhp,
852 state->hs_dip, 0, 0, srq->srq_wqinfo.qa_size, maxprot,
853 DEVMAP_MAPPING_INVALID, NULL);
854 if (status != DDI_SUCCESS) {
855 mutex_exit(&srq->srq_lock);
856 HERMON_WARNING(state, "failed in SRQ memory "
857 "devmap_devmem_remap()");
858 /* We can, however, free the memory for old wre */
859 kmem_free(wre_old, srq_old_bufsz * sizeof (uint64_t));
860 return (ibc_get_ci_failure(0));
861 }
862 srq->srq_umap_dhp = (devmap_cookie_t)NULL;
863 }
864
865 /*
866 * Drop the SRQ lock now. The only thing left to do is to free up
867 * the old resources.
868 */
869 mutex_exit(&srq->srq_lock);
870
871 /*
872 * Unbind the MTT entries.
873 */
874 status = hermon_mr_mtt_unbind(state, &old_bind, old_mtt);
875 if (status != DDI_SUCCESS) {
876 HERMON_WARNING(state, "failed to unbind old SRQ memory");
877 status = ibc_get_ci_failure(0);
878 goto srqmodify_fail;
879 }
880
881 /* Free the memory for old wre */
882 kmem_free(wre_old, srq_old_bufsz * sizeof (uint64_t));
883
884 /* Free the memory for the old SRQ */
885 hermon_queue_free(&old_srqinfo);
886
887 /*
888 * Fill in the return arguments (if necessary). This includes the
889 * real new completion queue size.
890 */
891 if (real_size != NULL) {
892 *real_size = (1 << log_srq_size);
893 }
894
895 return (DDI_SUCCESS);
896
897 srqmodify_fail:
898 return (status);
899 }
900
901
902 /*
903 * hermon_srq_refcnt_inc()
904 * Context: Can be called from interrupt or base context.
905 */
906 void
hermon_srq_refcnt_inc(hermon_srqhdl_t srq)907 hermon_srq_refcnt_inc(hermon_srqhdl_t srq)
908 {
909 mutex_enter(&srq->srq_lock);
910 srq->srq_refcnt++;
911 mutex_exit(&srq->srq_lock);
912 }
913
914
915 /*
916 * hermon_srq_refcnt_dec()
917 * Context: Can be called from interrupt or base context.
918 */
919 void
hermon_srq_refcnt_dec(hermon_srqhdl_t srq)920 hermon_srq_refcnt_dec(hermon_srqhdl_t srq)
921 {
922 mutex_enter(&srq->srq_lock);
923 srq->srq_refcnt--;
924 mutex_exit(&srq->srq_lock);
925 }
926
927
928 /*
929 * hermon_srqhdl_from_srqnum()
930 * Context: Can be called from interrupt or base context.
931 *
932 * This routine is important because changing the unconstrained
933 * portion of the SRQ number is critical to the detection of a
934 * potential race condition in the SRQ handler code (i.e. the case
935 * where a SRQ is freed and alloc'd again before an event for the
936 * "old" SRQ can be handled).
937 *
938 * While this is not a perfect solution (not sure that one exists)
939 * it does help to mitigate the chance that this race condition will
940 * cause us to deliver a "stale" event to the new SRQ owner. Note:
941 * this solution does not scale well because the number of constrained
942 * bits increases (and, hence, the number of unconstrained bits
943 * decreases) as the number of supported SRQ grows. For small and
944 * intermediate values, it should hopefully provide sufficient
945 * protection.
946 */
947 hermon_srqhdl_t
hermon_srqhdl_from_srqnum(hermon_state_t * state,uint_t srqnum)948 hermon_srqhdl_from_srqnum(hermon_state_t *state, uint_t srqnum)
949 {
950 uint_t srqindx, srqmask;
951
952 /* Calculate the SRQ table index from the srqnum */
953 srqmask = (1 << state->hs_cfg_profile->cp_log_num_srq) - 1;
954 srqindx = srqnum & srqmask;
955 return (hermon_icm_num_to_hdl(state, HERMON_SRQC, srqindx));
956 }
957
958
959 /*
960 * hermon_srq_sgl_to_logwqesz()
961 * Context: Can be called from interrupt or base context.
962 */
963 static void
hermon_srq_sgl_to_logwqesz(hermon_state_t * state,uint_t num_sgl,hermon_qp_wq_type_t wq_type,uint_t * logwqesz,uint_t * max_sgl)964 hermon_srq_sgl_to_logwqesz(hermon_state_t *state, uint_t num_sgl,
965 hermon_qp_wq_type_t wq_type, uint_t *logwqesz, uint_t *max_sgl)
966 {
967 uint_t max_size, log2, actual_sgl;
968
969 switch (wq_type) {
970 case HERMON_QP_WQ_TYPE_RECVQ:
971 /*
972 * Use requested maximum SGL to calculate max descriptor size
973 * (while guaranteeing that the descriptor size is a
974 * power-of-2 cachelines).
975 */
976 max_size = (HERMON_QP_WQE_MLX_SRQ_HDRS + (num_sgl << 4));
977 log2 = highbit(max_size);
978 if (ISP2(max_size)) {
979 log2 = log2 - 1;
980 }
981
982 /* Make sure descriptor is at least the minimum size */
983 log2 = max(log2, HERMON_QP_WQE_LOG_MINIMUM);
984
985 /* Calculate actual number of SGL (given WQE size) */
986 actual_sgl = ((1 << log2) - HERMON_QP_WQE_MLX_SRQ_HDRS) >> 4;
987 break;
988
989 default:
990 HERMON_WARNING(state, "unexpected work queue type");
991 break;
992 }
993
994 /* Fill in the return values */
995 *logwqesz = log2;
996 *max_sgl = min(state->hs_cfg_profile->cp_srq_max_sgl, actual_sgl);
997 }
998