1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/slab.h>
3 #include <linux/file.h>
4 #include <linux/fdtable.h>
5 #include <linux/freezer.h>
6 #include <linux/mm.h>
7 #include <linux/stat.h>
8 #include <linux/fcntl.h>
9 #include <linux/swap.h>
10 #include <linux/ctype.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/pagemap.h>
14 #include <linux/perf_event.h>
15 #include <linux/highmem.h>
16 #include <linux/spinlock.h>
17 #include <linux/key.h>
18 #include <linux/personality.h>
19 #include <linux/binfmts.h>
20 #include <linux/coredump.h>
21 #include <linux/sort.h>
22 #include <linux/sched/coredump.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/utsname.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/module.h>
28 #include <linux/namei.h>
29 #include <linux/mount.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/tsacct_kern.h>
33 #include <linux/cn_proc.h>
34 #include <linux/audit.h>
35 #include <linux/kmod.h>
36 #include <linux/fsnotify.h>
37 #include <linux/fs_struct.h>
38 #include <linux/pipe_fs_i.h>
39 #include <linux/oom.h>
40 #include <linux/compat.h>
41 #include <linux/fs.h>
42 #include <linux/path.h>
43 #include <linux/timekeeping.h>
44 #include <linux/sysctl.h>
45 #include <linux/elf.h>
46
47 #include <linux/uaccess.h>
48 #include <asm/mmu_context.h>
49 #include <asm/tlb.h>
50 #include <asm/exec.h>
51
52 #include <trace/events/task.h>
53 #include "internal.h"
54
55 #include <trace/events/sched.h>
56
57 static bool dump_vma_snapshot(struct coredump_params *cprm);
58 static void free_vma_snapshot(struct coredump_params *cprm);
59
60 #define CORE_FILE_NOTE_SIZE_DEFAULT (4*1024*1024)
61 /* Define a reasonable max cap */
62 #define CORE_FILE_NOTE_SIZE_MAX (16*1024*1024)
63
64 static int core_uses_pid;
65 static unsigned int core_pipe_limit;
66 static unsigned int core_sort_vma;
67 static char core_pattern[CORENAME_MAX_SIZE] = "core";
68 static int core_name_size = CORENAME_MAX_SIZE;
69 unsigned int core_file_note_size_limit = CORE_FILE_NOTE_SIZE_DEFAULT;
70
71 struct core_name {
72 char *corename;
73 int used, size;
74 };
75
expand_corename(struct core_name * cn,int size)76 static int expand_corename(struct core_name *cn, int size)
77 {
78 char *corename;
79
80 size = kmalloc_size_roundup(size);
81 corename = krealloc(cn->corename, size, GFP_KERNEL);
82
83 if (!corename)
84 return -ENOMEM;
85
86 if (size > core_name_size) /* racy but harmless */
87 core_name_size = size;
88
89 cn->size = size;
90 cn->corename = corename;
91 return 0;
92 }
93
cn_vprintf(struct core_name * cn,const char * fmt,va_list arg)94 static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt,
95 va_list arg)
96 {
97 int free, need;
98 va_list arg_copy;
99
100 again:
101 free = cn->size - cn->used;
102
103 va_copy(arg_copy, arg);
104 need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy);
105 va_end(arg_copy);
106
107 if (need < free) {
108 cn->used += need;
109 return 0;
110 }
111
112 if (!expand_corename(cn, cn->size + need - free + 1))
113 goto again;
114
115 return -ENOMEM;
116 }
117
cn_printf(struct core_name * cn,const char * fmt,...)118 static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...)
119 {
120 va_list arg;
121 int ret;
122
123 va_start(arg, fmt);
124 ret = cn_vprintf(cn, fmt, arg);
125 va_end(arg);
126
127 return ret;
128 }
129
130 static __printf(2, 3)
cn_esc_printf(struct core_name * cn,const char * fmt,...)131 int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
132 {
133 int cur = cn->used;
134 va_list arg;
135 int ret;
136
137 va_start(arg, fmt);
138 ret = cn_vprintf(cn, fmt, arg);
139 va_end(arg);
140
141 if (ret == 0) {
142 /*
143 * Ensure that this coredump name component can't cause the
144 * resulting corefile path to consist of a ".." or ".".
145 */
146 if ((cn->used - cur == 1 && cn->corename[cur] == '.') ||
147 (cn->used - cur == 2 && cn->corename[cur] == '.'
148 && cn->corename[cur+1] == '.'))
149 cn->corename[cur] = '!';
150
151 /*
152 * Empty names are fishy and could be used to create a "//" in a
153 * corefile name, causing the coredump to happen one directory
154 * level too high. Enforce that all components of the core
155 * pattern are at least one character long.
156 */
157 if (cn->used == cur)
158 ret = cn_printf(cn, "!");
159 }
160
161 for (; cur < cn->used; ++cur) {
162 if (cn->corename[cur] == '/')
163 cn->corename[cur] = '!';
164 }
165 return ret;
166 }
167
cn_print_exe_file(struct core_name * cn,bool name_only)168 static int cn_print_exe_file(struct core_name *cn, bool name_only)
169 {
170 struct file *exe_file;
171 char *pathbuf, *path, *ptr;
172 int ret;
173
174 exe_file = get_mm_exe_file(current->mm);
175 if (!exe_file)
176 return cn_esc_printf(cn, "%s (path unknown)", current->comm);
177
178 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
179 if (!pathbuf) {
180 ret = -ENOMEM;
181 goto put_exe_file;
182 }
183
184 path = file_path(exe_file, pathbuf, PATH_MAX);
185 if (IS_ERR(path)) {
186 ret = PTR_ERR(path);
187 goto free_buf;
188 }
189
190 if (name_only) {
191 ptr = strrchr(path, '/');
192 if (ptr)
193 path = ptr + 1;
194 }
195 ret = cn_esc_printf(cn, "%s", path);
196
197 free_buf:
198 kfree(pathbuf);
199 put_exe_file:
200 fput(exe_file);
201 return ret;
202 }
203
204 /* format_corename will inspect the pattern parameter, and output a
205 * name into corename, which must have space for at least
206 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
207 */
format_corename(struct core_name * cn,struct coredump_params * cprm,size_t ** argv,int * argc)208 static int format_corename(struct core_name *cn, struct coredump_params *cprm,
209 size_t **argv, int *argc)
210 {
211 const struct cred *cred = current_cred();
212 const char *pat_ptr = core_pattern;
213 int ispipe = (*pat_ptr == '|');
214 bool was_space = false;
215 int pid_in_pattern = 0;
216 int err = 0;
217
218 cn->used = 0;
219 cn->corename = NULL;
220 if (expand_corename(cn, core_name_size))
221 return -ENOMEM;
222 cn->corename[0] = '\0';
223
224 if (ispipe) {
225 int argvs = sizeof(core_pattern) / 2;
226 (*argv) = kmalloc_array(argvs, sizeof(**argv), GFP_KERNEL);
227 if (!(*argv))
228 return -ENOMEM;
229 (*argv)[(*argc)++] = 0;
230 ++pat_ptr;
231 if (!(*pat_ptr))
232 return -ENOMEM;
233 }
234
235 /* Repeat as long as we have more pattern to process and more output
236 space */
237 while (*pat_ptr) {
238 /*
239 * Split on spaces before doing template expansion so that
240 * %e and %E don't get split if they have spaces in them
241 */
242 if (ispipe) {
243 if (isspace(*pat_ptr)) {
244 if (cn->used != 0)
245 was_space = true;
246 pat_ptr++;
247 continue;
248 } else if (was_space) {
249 was_space = false;
250 err = cn_printf(cn, "%c", '\0');
251 if (err)
252 return err;
253 (*argv)[(*argc)++] = cn->used;
254 }
255 }
256 if (*pat_ptr != '%') {
257 err = cn_printf(cn, "%c", *pat_ptr++);
258 } else {
259 switch (*++pat_ptr) {
260 /* single % at the end, drop that */
261 case 0:
262 goto out;
263 /* Double percent, output one percent */
264 case '%':
265 err = cn_printf(cn, "%c", '%');
266 break;
267 /* pid */
268 case 'p':
269 pid_in_pattern = 1;
270 err = cn_printf(cn, "%d",
271 task_tgid_vnr(current));
272 break;
273 /* global pid */
274 case 'P':
275 err = cn_printf(cn, "%d",
276 task_tgid_nr(current));
277 break;
278 case 'i':
279 err = cn_printf(cn, "%d",
280 task_pid_vnr(current));
281 break;
282 case 'I':
283 err = cn_printf(cn, "%d",
284 task_pid_nr(current));
285 break;
286 /* uid */
287 case 'u':
288 err = cn_printf(cn, "%u",
289 from_kuid(&init_user_ns,
290 cred->uid));
291 break;
292 /* gid */
293 case 'g':
294 err = cn_printf(cn, "%u",
295 from_kgid(&init_user_ns,
296 cred->gid));
297 break;
298 case 'd':
299 err = cn_printf(cn, "%d",
300 __get_dumpable(cprm->mm_flags));
301 break;
302 /* signal that caused the coredump */
303 case 's':
304 err = cn_printf(cn, "%d",
305 cprm->siginfo->si_signo);
306 break;
307 /* UNIX time of coredump */
308 case 't': {
309 time64_t time;
310
311 time = ktime_get_real_seconds();
312 err = cn_printf(cn, "%lld", time);
313 break;
314 }
315 /* hostname */
316 case 'h':
317 down_read(&uts_sem);
318 err = cn_esc_printf(cn, "%s",
319 utsname()->nodename);
320 up_read(&uts_sem);
321 break;
322 /* executable, could be changed by prctl PR_SET_NAME etc */
323 case 'e':
324 err = cn_esc_printf(cn, "%s", current->comm);
325 break;
326 /* file name of executable */
327 case 'f':
328 err = cn_print_exe_file(cn, true);
329 break;
330 case 'E':
331 err = cn_print_exe_file(cn, false);
332 break;
333 /* core limit size */
334 case 'c':
335 err = cn_printf(cn, "%lu",
336 rlimit(RLIMIT_CORE));
337 break;
338 /* CPU the task ran on */
339 case 'C':
340 err = cn_printf(cn, "%d", cprm->cpu);
341 break;
342 default:
343 break;
344 }
345 ++pat_ptr;
346 }
347
348 if (err)
349 return err;
350 }
351
352 out:
353 /* Backward compatibility with core_uses_pid:
354 *
355 * If core_pattern does not include a %p (as is the default)
356 * and core_uses_pid is set, then .%pid will be appended to
357 * the filename. Do not do this for piped commands. */
358 if (!ispipe && !pid_in_pattern && core_uses_pid) {
359 err = cn_printf(cn, ".%d", task_tgid_vnr(current));
360 if (err)
361 return err;
362 }
363 return ispipe;
364 }
365
zap_process(struct signal_struct * signal,int exit_code)366 static int zap_process(struct signal_struct *signal, int exit_code)
367 {
368 struct task_struct *t;
369 int nr = 0;
370
371 signal->flags = SIGNAL_GROUP_EXIT;
372 signal->group_exit_code = exit_code;
373 signal->group_stop_count = 0;
374
375 __for_each_thread(signal, t) {
376 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
377 if (t != current && !(t->flags & PF_POSTCOREDUMP)) {
378 sigaddset(&t->pending.signal, SIGKILL);
379 signal_wake_up(t, 1);
380 nr++;
381 }
382 }
383
384 return nr;
385 }
386
zap_threads(struct task_struct * tsk,struct core_state * core_state,int exit_code)387 static int zap_threads(struct task_struct *tsk,
388 struct core_state *core_state, int exit_code)
389 {
390 struct signal_struct *signal = tsk->signal;
391 int nr = -EAGAIN;
392
393 spin_lock_irq(&tsk->sighand->siglock);
394 if (!(signal->flags & SIGNAL_GROUP_EXIT) && !signal->group_exec_task) {
395 /* Allow SIGKILL, see prepare_signal() */
396 signal->core_state = core_state;
397 nr = zap_process(signal, exit_code);
398 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
399 tsk->flags |= PF_DUMPCORE;
400 atomic_set(&core_state->nr_threads, nr);
401 }
402 spin_unlock_irq(&tsk->sighand->siglock);
403 return nr;
404 }
405
coredump_wait(int exit_code,struct core_state * core_state)406 static int coredump_wait(int exit_code, struct core_state *core_state)
407 {
408 struct task_struct *tsk = current;
409 int core_waiters = -EBUSY;
410
411 init_completion(&core_state->startup);
412 core_state->dumper.task = tsk;
413 core_state->dumper.next = NULL;
414
415 core_waiters = zap_threads(tsk, core_state, exit_code);
416 if (core_waiters > 0) {
417 struct core_thread *ptr;
418
419 wait_for_completion_state(&core_state->startup,
420 TASK_UNINTERRUPTIBLE|TASK_FREEZABLE);
421 /*
422 * Wait for all the threads to become inactive, so that
423 * all the thread context (extended register state, like
424 * fpu etc) gets copied to the memory.
425 */
426 ptr = core_state->dumper.next;
427 while (ptr != NULL) {
428 wait_task_inactive(ptr->task, TASK_ANY);
429 ptr = ptr->next;
430 }
431 }
432
433 return core_waiters;
434 }
435
coredump_finish(bool core_dumped)436 static void coredump_finish(bool core_dumped)
437 {
438 struct core_thread *curr, *next;
439 struct task_struct *task;
440
441 spin_lock_irq(¤t->sighand->siglock);
442 if (core_dumped && !__fatal_signal_pending(current))
443 current->signal->group_exit_code |= 0x80;
444 next = current->signal->core_state->dumper.next;
445 current->signal->core_state = NULL;
446 spin_unlock_irq(¤t->sighand->siglock);
447
448 while ((curr = next) != NULL) {
449 next = curr->next;
450 task = curr->task;
451 /*
452 * see coredump_task_exit(), curr->task must not see
453 * ->task == NULL before we read ->next.
454 */
455 smp_mb();
456 curr->task = NULL;
457 wake_up_process(task);
458 }
459 }
460
dump_interrupted(void)461 static bool dump_interrupted(void)
462 {
463 /*
464 * SIGKILL or freezing() interrupt the coredumping. Perhaps we
465 * can do try_to_freeze() and check __fatal_signal_pending(),
466 * but then we need to teach dump_write() to restart and clear
467 * TIF_SIGPENDING.
468 */
469 return fatal_signal_pending(current) || freezing(current);
470 }
471
wait_for_dump_helpers(struct file * file)472 static void wait_for_dump_helpers(struct file *file)
473 {
474 struct pipe_inode_info *pipe = file->private_data;
475
476 pipe_lock(pipe);
477 pipe->readers++;
478 pipe->writers--;
479 wake_up_interruptible_sync(&pipe->rd_wait);
480 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
481 pipe_unlock(pipe);
482
483 /*
484 * We actually want wait_event_freezable() but then we need
485 * to clear TIF_SIGPENDING and improve dump_interrupted().
486 */
487 wait_event_interruptible(pipe->rd_wait, pipe->readers == 1);
488
489 pipe_lock(pipe);
490 pipe->readers--;
491 pipe->writers++;
492 pipe_unlock(pipe);
493 }
494
495 /*
496 * umh_pipe_setup
497 * helper function to customize the process used
498 * to collect the core in userspace. Specifically
499 * it sets up a pipe and installs it as fd 0 (stdin)
500 * for the process. Returns 0 on success, or
501 * PTR_ERR on failure.
502 * Note that it also sets the core limit to 1. This
503 * is a special value that we use to trap recursive
504 * core dumps
505 */
umh_pipe_setup(struct subprocess_info * info,struct cred * new)506 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
507 {
508 struct file *files[2];
509 struct coredump_params *cp = (struct coredump_params *)info->data;
510 int err = create_pipe_files(files, 0);
511 if (err)
512 return err;
513
514 cp->file = files[1];
515
516 err = replace_fd(0, files[0], 0);
517 fput(files[0]);
518 /* and disallow core files too */
519 current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
520
521 return err;
522 }
523
do_coredump(const kernel_siginfo_t * siginfo)524 void do_coredump(const kernel_siginfo_t *siginfo)
525 {
526 struct core_state core_state;
527 struct core_name cn;
528 struct mm_struct *mm = current->mm;
529 struct linux_binfmt * binfmt;
530 const struct cred *old_cred;
531 struct cred *cred;
532 int retval = 0;
533 int ispipe;
534 size_t *argv = NULL;
535 int argc = 0;
536 /* require nonrelative corefile path and be extra careful */
537 bool need_suid_safe = false;
538 bool core_dumped = false;
539 static atomic_t core_dump_count = ATOMIC_INIT(0);
540 struct coredump_params cprm = {
541 .siginfo = siginfo,
542 .limit = rlimit(RLIMIT_CORE),
543 /*
544 * We must use the same mm->flags while dumping core to avoid
545 * inconsistency of bit flags, since this flag is not protected
546 * by any locks.
547 */
548 .mm_flags = mm->flags,
549 .vma_meta = NULL,
550 .cpu = raw_smp_processor_id(),
551 };
552
553 audit_core_dumps(siginfo->si_signo);
554
555 binfmt = mm->binfmt;
556 if (!binfmt || !binfmt->core_dump)
557 goto fail;
558 if (!__get_dumpable(cprm.mm_flags))
559 goto fail;
560
561 cred = prepare_creds();
562 if (!cred)
563 goto fail;
564 /*
565 * We cannot trust fsuid as being the "true" uid of the process
566 * nor do we know its entire history. We only know it was tainted
567 * so we dump it as root in mode 2, and only into a controlled
568 * environment (pipe handler or fully qualified path).
569 */
570 if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
571 /* Setuid core dump mode */
572 cred->fsuid = GLOBAL_ROOT_UID; /* Dump root private */
573 need_suid_safe = true;
574 }
575
576 retval = coredump_wait(siginfo->si_signo, &core_state);
577 if (retval < 0)
578 goto fail_creds;
579
580 old_cred = override_creds(cred);
581
582 ispipe = format_corename(&cn, &cprm, &argv, &argc);
583
584 if (ispipe) {
585 int argi;
586 int dump_count;
587 char **helper_argv;
588 struct subprocess_info *sub_info;
589
590 if (ispipe < 0) {
591 coredump_report_failure("format_corename failed, aborting core");
592 goto fail_unlock;
593 }
594
595 if (cprm.limit == 1) {
596 /* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
597 *
598 * Normally core limits are irrelevant to pipes, since
599 * we're not writing to the file system, but we use
600 * cprm.limit of 1 here as a special value, this is a
601 * consistent way to catch recursive crashes.
602 * We can still crash if the core_pattern binary sets
603 * RLIM_CORE = !1, but it runs as root, and can do
604 * lots of stupid things.
605 *
606 * Note that we use task_tgid_vnr here to grab the pid
607 * of the process group leader. That way we get the
608 * right pid if a thread in a multi-threaded
609 * core_pattern process dies.
610 */
611 coredump_report_failure("RLIMIT_CORE is set to 1, aborting core");
612 goto fail_unlock;
613 }
614 cprm.limit = RLIM_INFINITY;
615
616 dump_count = atomic_inc_return(&core_dump_count);
617 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
618 coredump_report_failure("over core_pipe_limit, skipping core dump");
619 goto fail_dropcount;
620 }
621
622 helper_argv = kmalloc_array(argc + 1, sizeof(*helper_argv),
623 GFP_KERNEL);
624 if (!helper_argv) {
625 coredump_report_failure("%s failed to allocate memory", __func__);
626 goto fail_dropcount;
627 }
628 for (argi = 0; argi < argc; argi++)
629 helper_argv[argi] = cn.corename + argv[argi];
630 helper_argv[argi] = NULL;
631
632 retval = -ENOMEM;
633 sub_info = call_usermodehelper_setup(helper_argv[0],
634 helper_argv, NULL, GFP_KERNEL,
635 umh_pipe_setup, NULL, &cprm);
636 if (sub_info)
637 retval = call_usermodehelper_exec(sub_info,
638 UMH_WAIT_EXEC);
639
640 kfree(helper_argv);
641 if (retval) {
642 coredump_report_failure("|%s pipe failed", cn.corename);
643 goto close_fail;
644 }
645 } else {
646 struct mnt_idmap *idmap;
647 struct inode *inode;
648 int open_flags = O_CREAT | O_WRONLY | O_NOFOLLOW |
649 O_LARGEFILE | O_EXCL;
650
651 if (cprm.limit < binfmt->min_coredump)
652 goto fail_unlock;
653
654 if (need_suid_safe && cn.corename[0] != '/') {
655 coredump_report_failure(
656 "this process can only dump core to a fully qualified path, skipping core dump");
657 goto fail_unlock;
658 }
659
660 /*
661 * Unlink the file if it exists unless this is a SUID
662 * binary - in that case, we're running around with root
663 * privs and don't want to unlink another user's coredump.
664 */
665 if (!need_suid_safe) {
666 /*
667 * If it doesn't exist, that's fine. If there's some
668 * other problem, we'll catch it at the filp_open().
669 */
670 do_unlinkat(AT_FDCWD, getname_kernel(cn.corename));
671 }
672
673 /*
674 * There is a race between unlinking and creating the
675 * file, but if that causes an EEXIST here, that's
676 * fine - another process raced with us while creating
677 * the corefile, and the other process won. To userspace,
678 * what matters is that at least one of the two processes
679 * writes its coredump successfully, not which one.
680 */
681 if (need_suid_safe) {
682 /*
683 * Using user namespaces, normal user tasks can change
684 * their current->fs->root to point to arbitrary
685 * directories. Since the intention of the "only dump
686 * with a fully qualified path" rule is to control where
687 * coredumps may be placed using root privileges,
688 * current->fs->root must not be used. Instead, use the
689 * root directory of init_task.
690 */
691 struct path root;
692
693 task_lock(&init_task);
694 get_fs_root(init_task.fs, &root);
695 task_unlock(&init_task);
696 cprm.file = file_open_root(&root, cn.corename,
697 open_flags, 0600);
698 path_put(&root);
699 } else {
700 cprm.file = filp_open(cn.corename, open_flags, 0600);
701 }
702 if (IS_ERR(cprm.file))
703 goto fail_unlock;
704
705 inode = file_inode(cprm.file);
706 if (inode->i_nlink > 1)
707 goto close_fail;
708 if (d_unhashed(cprm.file->f_path.dentry))
709 goto close_fail;
710 /*
711 * AK: actually i see no reason to not allow this for named
712 * pipes etc, but keep the previous behaviour for now.
713 */
714 if (!S_ISREG(inode->i_mode))
715 goto close_fail;
716 /*
717 * Don't dump core if the filesystem changed owner or mode
718 * of the file during file creation. This is an issue when
719 * a process dumps core while its cwd is e.g. on a vfat
720 * filesystem.
721 */
722 idmap = file_mnt_idmap(cprm.file);
723 if (!vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode),
724 current_fsuid())) {
725 coredump_report_failure("Core dump to %s aborted: "
726 "cannot preserve file owner", cn.corename);
727 goto close_fail;
728 }
729 if ((inode->i_mode & 0677) != 0600) {
730 coredump_report_failure("Core dump to %s aborted: "
731 "cannot preserve file permissions", cn.corename);
732 goto close_fail;
733 }
734 if (!(cprm.file->f_mode & FMODE_CAN_WRITE))
735 goto close_fail;
736 if (do_truncate(idmap, cprm.file->f_path.dentry,
737 0, 0, cprm.file))
738 goto close_fail;
739 }
740
741 /* get us an unshared descriptor table; almost always a no-op */
742 /* The cell spufs coredump code reads the file descriptor tables */
743 retval = unshare_files();
744 if (retval)
745 goto close_fail;
746 if (!dump_interrupted()) {
747 /*
748 * umh disabled with CONFIG_STATIC_USERMODEHELPER_PATH="" would
749 * have this set to NULL.
750 */
751 if (!cprm.file) {
752 coredump_report_failure("Core dump to |%s disabled", cn.corename);
753 goto close_fail;
754 }
755 if (!dump_vma_snapshot(&cprm))
756 goto close_fail;
757
758 file_start_write(cprm.file);
759 core_dumped = binfmt->core_dump(&cprm);
760 /*
761 * Ensures that file size is big enough to contain the current
762 * file postion. This prevents gdb from complaining about
763 * a truncated file if the last "write" to the file was
764 * dump_skip.
765 */
766 if (cprm.to_skip) {
767 cprm.to_skip--;
768 dump_emit(&cprm, "", 1);
769 }
770 file_end_write(cprm.file);
771 free_vma_snapshot(&cprm);
772 }
773 if (ispipe && core_pipe_limit)
774 wait_for_dump_helpers(cprm.file);
775 close_fail:
776 if (cprm.file)
777 filp_close(cprm.file, NULL);
778 fail_dropcount:
779 if (ispipe)
780 atomic_dec(&core_dump_count);
781 fail_unlock:
782 kfree(argv);
783 kfree(cn.corename);
784 coredump_finish(core_dumped);
785 revert_creds(old_cred);
786 fail_creds:
787 put_cred(cred);
788 fail:
789 return;
790 }
791
792 /*
793 * Core dumping helper functions. These are the only things you should
794 * do on a core-file: use only these functions to write out all the
795 * necessary info.
796 */
__dump_emit(struct coredump_params * cprm,const void * addr,int nr)797 static int __dump_emit(struct coredump_params *cprm, const void *addr, int nr)
798 {
799 struct file *file = cprm->file;
800 loff_t pos = file->f_pos;
801 ssize_t n;
802 if (cprm->written + nr > cprm->limit)
803 return 0;
804
805
806 if (dump_interrupted())
807 return 0;
808 n = __kernel_write(file, addr, nr, &pos);
809 if (n != nr)
810 return 0;
811 file->f_pos = pos;
812 cprm->written += n;
813 cprm->pos += n;
814
815 return 1;
816 }
817
__dump_skip(struct coredump_params * cprm,size_t nr)818 static int __dump_skip(struct coredump_params *cprm, size_t nr)
819 {
820 static char zeroes[PAGE_SIZE];
821 struct file *file = cprm->file;
822 if (file->f_mode & FMODE_LSEEK) {
823 if (dump_interrupted() ||
824 vfs_llseek(file, nr, SEEK_CUR) < 0)
825 return 0;
826 cprm->pos += nr;
827 return 1;
828 } else {
829 while (nr > PAGE_SIZE) {
830 if (!__dump_emit(cprm, zeroes, PAGE_SIZE))
831 return 0;
832 nr -= PAGE_SIZE;
833 }
834 return __dump_emit(cprm, zeroes, nr);
835 }
836 }
837
dump_emit(struct coredump_params * cprm,const void * addr,int nr)838 int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
839 {
840 if (cprm->to_skip) {
841 if (!__dump_skip(cprm, cprm->to_skip))
842 return 0;
843 cprm->to_skip = 0;
844 }
845 return __dump_emit(cprm, addr, nr);
846 }
847 EXPORT_SYMBOL(dump_emit);
848
dump_skip_to(struct coredump_params * cprm,unsigned long pos)849 void dump_skip_to(struct coredump_params *cprm, unsigned long pos)
850 {
851 cprm->to_skip = pos - cprm->pos;
852 }
853 EXPORT_SYMBOL(dump_skip_to);
854
dump_skip(struct coredump_params * cprm,size_t nr)855 void dump_skip(struct coredump_params *cprm, size_t nr)
856 {
857 cprm->to_skip += nr;
858 }
859 EXPORT_SYMBOL(dump_skip);
860
861 #ifdef CONFIG_ELF_CORE
dump_emit_page(struct coredump_params * cprm,struct page * page)862 static int dump_emit_page(struct coredump_params *cprm, struct page *page)
863 {
864 struct bio_vec bvec;
865 struct iov_iter iter;
866 struct file *file = cprm->file;
867 loff_t pos;
868 ssize_t n;
869
870 if (!page)
871 return 0;
872
873 if (cprm->to_skip) {
874 if (!__dump_skip(cprm, cprm->to_skip))
875 return 0;
876 cprm->to_skip = 0;
877 }
878 if (cprm->written + PAGE_SIZE > cprm->limit)
879 return 0;
880 if (dump_interrupted())
881 return 0;
882 pos = file->f_pos;
883 bvec_set_page(&bvec, page, PAGE_SIZE, 0);
884 iov_iter_bvec(&iter, ITER_SOURCE, &bvec, 1, PAGE_SIZE);
885 n = __kernel_write_iter(cprm->file, &iter, &pos);
886 if (n != PAGE_SIZE)
887 return 0;
888 file->f_pos = pos;
889 cprm->written += PAGE_SIZE;
890 cprm->pos += PAGE_SIZE;
891
892 return 1;
893 }
894
895 /*
896 * If we might get machine checks from kernel accesses during the
897 * core dump, let's get those errors early rather than during the
898 * IO. This is not performance-critical enough to warrant having
899 * all the machine check logic in the iovec paths.
900 */
901 #ifdef copy_mc_to_kernel
902
903 #define dump_page_alloc() alloc_page(GFP_KERNEL)
904 #define dump_page_free(x) __free_page(x)
dump_page_copy(struct page * src,struct page * dst)905 static struct page *dump_page_copy(struct page *src, struct page *dst)
906 {
907 void *buf = kmap_local_page(src);
908 size_t left = copy_mc_to_kernel(page_address(dst), buf, PAGE_SIZE);
909 kunmap_local(buf);
910 return left ? NULL : dst;
911 }
912
913 #else
914
915 /* We just want to return non-NULL; it's never used. */
916 #define dump_page_alloc() ERR_PTR(-EINVAL)
917 #define dump_page_free(x) ((void)(x))
dump_page_copy(struct page * src,struct page * dst)918 static inline struct page *dump_page_copy(struct page *src, struct page *dst)
919 {
920 return src;
921 }
922 #endif
923
dump_user_range(struct coredump_params * cprm,unsigned long start,unsigned long len)924 int dump_user_range(struct coredump_params *cprm, unsigned long start,
925 unsigned long len)
926 {
927 unsigned long addr;
928 struct page *dump_page;
929
930 dump_page = dump_page_alloc();
931 if (!dump_page)
932 return 0;
933
934 for (addr = start; addr < start + len; addr += PAGE_SIZE) {
935 struct page *page;
936
937 /*
938 * To avoid having to allocate page tables for virtual address
939 * ranges that have never been used yet, and also to make it
940 * easy to generate sparse core files, use a helper that returns
941 * NULL when encountering an empty page table entry that would
942 * otherwise have been filled with the zero page.
943 */
944 page = get_dump_page(addr);
945 if (page) {
946 int stop = !dump_emit_page(cprm, dump_page_copy(page, dump_page));
947 put_page(page);
948 if (stop) {
949 dump_page_free(dump_page);
950 return 0;
951 }
952 } else {
953 dump_skip(cprm, PAGE_SIZE);
954 }
955 cond_resched();
956 }
957 dump_page_free(dump_page);
958 return 1;
959 }
960 #endif
961
dump_align(struct coredump_params * cprm,int align)962 int dump_align(struct coredump_params *cprm, int align)
963 {
964 unsigned mod = (cprm->pos + cprm->to_skip) & (align - 1);
965 if (align & (align - 1))
966 return 0;
967 if (mod)
968 cprm->to_skip += align - mod;
969 return 1;
970 }
971 EXPORT_SYMBOL(dump_align);
972
973 #ifdef CONFIG_SYSCTL
974
validate_coredump_safety(void)975 void validate_coredump_safety(void)
976 {
977 if (suid_dumpable == SUID_DUMP_ROOT &&
978 core_pattern[0] != '/' && core_pattern[0] != '|') {
979
980 coredump_report_failure("Unsafe core_pattern used with fs.suid_dumpable=2: "
981 "pipe handler or fully qualified core dump path required. "
982 "Set kernel.core_pattern before fs.suid_dumpable.");
983 }
984 }
985
proc_dostring_coredump(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)986 static int proc_dostring_coredump(const struct ctl_table *table, int write,
987 void *buffer, size_t *lenp, loff_t *ppos)
988 {
989 int error = proc_dostring(table, write, buffer, lenp, ppos);
990
991 if (!error)
992 validate_coredump_safety();
993 return error;
994 }
995
996 static const unsigned int core_file_note_size_min = CORE_FILE_NOTE_SIZE_DEFAULT;
997 static const unsigned int core_file_note_size_max = CORE_FILE_NOTE_SIZE_MAX;
998
999 static const struct ctl_table coredump_sysctls[] = {
1000 {
1001 .procname = "core_uses_pid",
1002 .data = &core_uses_pid,
1003 .maxlen = sizeof(int),
1004 .mode = 0644,
1005 .proc_handler = proc_dointvec,
1006 },
1007 {
1008 .procname = "core_pattern",
1009 .data = core_pattern,
1010 .maxlen = CORENAME_MAX_SIZE,
1011 .mode = 0644,
1012 .proc_handler = proc_dostring_coredump,
1013 },
1014 {
1015 .procname = "core_pipe_limit",
1016 .data = &core_pipe_limit,
1017 .maxlen = sizeof(unsigned int),
1018 .mode = 0644,
1019 .proc_handler = proc_dointvec,
1020 },
1021 {
1022 .procname = "core_file_note_size_limit",
1023 .data = &core_file_note_size_limit,
1024 .maxlen = sizeof(unsigned int),
1025 .mode = 0644,
1026 .proc_handler = proc_douintvec_minmax,
1027 .extra1 = (unsigned int *)&core_file_note_size_min,
1028 .extra2 = (unsigned int *)&core_file_note_size_max,
1029 },
1030 {
1031 .procname = "core_sort_vma",
1032 .data = &core_sort_vma,
1033 .maxlen = sizeof(int),
1034 .mode = 0644,
1035 .proc_handler = proc_douintvec_minmax,
1036 .extra1 = SYSCTL_ZERO,
1037 .extra2 = SYSCTL_ONE,
1038 },
1039 };
1040
init_fs_coredump_sysctls(void)1041 static int __init init_fs_coredump_sysctls(void)
1042 {
1043 register_sysctl_init("kernel", coredump_sysctls);
1044 return 0;
1045 }
1046 fs_initcall(init_fs_coredump_sysctls);
1047 #endif /* CONFIG_SYSCTL */
1048
1049 /*
1050 * The purpose of always_dump_vma() is to make sure that special kernel mappings
1051 * that are useful for post-mortem analysis are included in every core dump.
1052 * In that way we ensure that the core dump is fully interpretable later
1053 * without matching up the same kernel and hardware config to see what PC values
1054 * meant. These special mappings include - vDSO, vsyscall, and other
1055 * architecture specific mappings
1056 */
always_dump_vma(struct vm_area_struct * vma)1057 static bool always_dump_vma(struct vm_area_struct *vma)
1058 {
1059 /* Any vsyscall mappings? */
1060 if (vma == get_gate_vma(vma->vm_mm))
1061 return true;
1062
1063 /*
1064 * Assume that all vmas with a .name op should always be dumped.
1065 * If this changes, a new vm_ops field can easily be added.
1066 */
1067 if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
1068 return true;
1069
1070 /*
1071 * arch_vma_name() returns non-NULL for special architecture mappings,
1072 * such as vDSO sections.
1073 */
1074 if (arch_vma_name(vma))
1075 return true;
1076
1077 return false;
1078 }
1079
1080 #define DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER 1
1081
1082 /*
1083 * Decide how much of @vma's contents should be included in a core dump.
1084 */
vma_dump_size(struct vm_area_struct * vma,unsigned long mm_flags)1085 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1086 unsigned long mm_flags)
1087 {
1088 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1089
1090 /* always dump the vdso and vsyscall sections */
1091 if (always_dump_vma(vma))
1092 goto whole;
1093
1094 if (vma->vm_flags & VM_DONTDUMP)
1095 return 0;
1096
1097 /* support for DAX */
1098 if (vma_is_dax(vma)) {
1099 if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
1100 goto whole;
1101 if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
1102 goto whole;
1103 return 0;
1104 }
1105
1106 /* Hugetlb memory check */
1107 if (is_vm_hugetlb_page(vma)) {
1108 if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1109 goto whole;
1110 if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1111 goto whole;
1112 return 0;
1113 }
1114
1115 /* Do not dump I/O mapped devices or special mappings */
1116 if (vma->vm_flags & VM_IO)
1117 return 0;
1118
1119 /* By default, dump shared memory if mapped from an anonymous file. */
1120 if (vma->vm_flags & VM_SHARED) {
1121 if (file_inode(vma->vm_file)->i_nlink == 0 ?
1122 FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1123 goto whole;
1124 return 0;
1125 }
1126
1127 /* Dump segments that have been written to. */
1128 if ((!IS_ENABLED(CONFIG_MMU) || vma->anon_vma) && FILTER(ANON_PRIVATE))
1129 goto whole;
1130 if (vma->vm_file == NULL)
1131 return 0;
1132
1133 if (FILTER(MAPPED_PRIVATE))
1134 goto whole;
1135
1136 /*
1137 * If this is the beginning of an executable file mapping,
1138 * dump the first page to aid in determining what was mapped here.
1139 */
1140 if (FILTER(ELF_HEADERS) &&
1141 vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1142 if ((READ_ONCE(file_inode(vma->vm_file)->i_mode) & 0111) != 0)
1143 return PAGE_SIZE;
1144
1145 /*
1146 * ELF libraries aren't always executable.
1147 * We'll want to check whether the mapping starts with the ELF
1148 * magic, but not now - we're holding the mmap lock,
1149 * so copy_from_user() doesn't work here.
1150 * Use a placeholder instead, and fix it up later in
1151 * dump_vma_snapshot().
1152 */
1153 return DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER;
1154 }
1155
1156 #undef FILTER
1157
1158 return 0;
1159
1160 whole:
1161 return vma->vm_end - vma->vm_start;
1162 }
1163
1164 /*
1165 * Helper function for iterating across a vma list. It ensures that the caller
1166 * will visit `gate_vma' prior to terminating the search.
1167 */
coredump_next_vma(struct vma_iterator * vmi,struct vm_area_struct * vma,struct vm_area_struct * gate_vma)1168 static struct vm_area_struct *coredump_next_vma(struct vma_iterator *vmi,
1169 struct vm_area_struct *vma,
1170 struct vm_area_struct *gate_vma)
1171 {
1172 if (gate_vma && (vma == gate_vma))
1173 return NULL;
1174
1175 vma = vma_next(vmi);
1176 if (vma)
1177 return vma;
1178 return gate_vma;
1179 }
1180
free_vma_snapshot(struct coredump_params * cprm)1181 static void free_vma_snapshot(struct coredump_params *cprm)
1182 {
1183 if (cprm->vma_meta) {
1184 int i;
1185 for (i = 0; i < cprm->vma_count; i++) {
1186 struct file *file = cprm->vma_meta[i].file;
1187 if (file)
1188 fput(file);
1189 }
1190 kvfree(cprm->vma_meta);
1191 cprm->vma_meta = NULL;
1192 }
1193 }
1194
cmp_vma_size(const void * vma_meta_lhs_ptr,const void * vma_meta_rhs_ptr)1195 static int cmp_vma_size(const void *vma_meta_lhs_ptr, const void *vma_meta_rhs_ptr)
1196 {
1197 const struct core_vma_metadata *vma_meta_lhs = vma_meta_lhs_ptr;
1198 const struct core_vma_metadata *vma_meta_rhs = vma_meta_rhs_ptr;
1199
1200 if (vma_meta_lhs->dump_size < vma_meta_rhs->dump_size)
1201 return -1;
1202 if (vma_meta_lhs->dump_size > vma_meta_rhs->dump_size)
1203 return 1;
1204 return 0;
1205 }
1206
1207 /*
1208 * Under the mmap_lock, take a snapshot of relevant information about the task's
1209 * VMAs.
1210 */
dump_vma_snapshot(struct coredump_params * cprm)1211 static bool dump_vma_snapshot(struct coredump_params *cprm)
1212 {
1213 struct vm_area_struct *gate_vma, *vma = NULL;
1214 struct mm_struct *mm = current->mm;
1215 VMA_ITERATOR(vmi, mm, 0);
1216 int i = 0;
1217
1218 /*
1219 * Once the stack expansion code is fixed to not change VMA bounds
1220 * under mmap_lock in read mode, this can be changed to take the
1221 * mmap_lock in read mode.
1222 */
1223 if (mmap_write_lock_killable(mm))
1224 return false;
1225
1226 cprm->vma_data_size = 0;
1227 gate_vma = get_gate_vma(mm);
1228 cprm->vma_count = mm->map_count + (gate_vma ? 1 : 0);
1229
1230 cprm->vma_meta = kvmalloc_array(cprm->vma_count, sizeof(*cprm->vma_meta), GFP_KERNEL);
1231 if (!cprm->vma_meta) {
1232 mmap_write_unlock(mm);
1233 return false;
1234 }
1235
1236 while ((vma = coredump_next_vma(&vmi, vma, gate_vma)) != NULL) {
1237 struct core_vma_metadata *m = cprm->vma_meta + i;
1238
1239 m->start = vma->vm_start;
1240 m->end = vma->vm_end;
1241 m->flags = vma->vm_flags;
1242 m->dump_size = vma_dump_size(vma, cprm->mm_flags);
1243 m->pgoff = vma->vm_pgoff;
1244 m->file = vma->vm_file;
1245 if (m->file)
1246 get_file(m->file);
1247 i++;
1248 }
1249
1250 mmap_write_unlock(mm);
1251
1252 for (i = 0; i < cprm->vma_count; i++) {
1253 struct core_vma_metadata *m = cprm->vma_meta + i;
1254
1255 if (m->dump_size == DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER) {
1256 char elfmag[SELFMAG];
1257
1258 if (copy_from_user(elfmag, (void __user *)m->start, SELFMAG) ||
1259 memcmp(elfmag, ELFMAG, SELFMAG) != 0) {
1260 m->dump_size = 0;
1261 } else {
1262 m->dump_size = PAGE_SIZE;
1263 }
1264 }
1265
1266 cprm->vma_data_size += m->dump_size;
1267 }
1268
1269 if (core_sort_vma)
1270 sort(cprm->vma_meta, cprm->vma_count, sizeof(*cprm->vma_meta),
1271 cmp_vma_size, NULL);
1272
1273 return true;
1274 }
1275