1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26
27 /*
28 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
29 */
30
31 #include <sys/param.h>
32 #include <sys/types.h>
33 #include <sys/sysmacros.h>
34 #include <sys/systm.h>
35 #include <sys/thread.h>
36 #include <sys/proc.h>
37 #include <sys/task.h>
38 #include <sys/project.h>
39 #include <sys/signal.h>
40 #include <sys/errno.h>
41 #include <sys/vmparam.h>
42 #include <sys/stack.h>
43 #include <sys/procfs.h>
44 #include <sys/prsystm.h>
45 #include <sys/cpuvar.h>
46 #include <sys/kmem.h>
47 #include <sys/vtrace.h>
48 #include <sys/door.h>
49 #include <vm/seg_kp.h>
50 #include <sys/debug.h>
51 #include <sys/schedctl.h>
52 #include <sys/poll.h>
53 #include <sys/copyops.h>
54 #include <sys/lwp_upimutex_impl.h>
55 #include <sys/cpupart.h>
56 #include <sys/lgrp.h>
57 #include <sys/rctl.h>
58 #include <sys/contract_impl.h>
59 #include <sys/cpc_impl.h>
60 #include <sys/sdt.h>
61 #include <sys/cmn_err.h>
62 #include <sys/brand.h>
63 #include <sys/cyclic.h>
64 #include <sys/pool.h>
65
66 /* hash function for the lwpid hash table, p->p_tidhash[] */
67 #define TIDHASH(tid, hash_sz) ((tid) & ((hash_sz) - 1))
68
69 void *segkp_lwp; /* cookie for pool of segkp resources */
70 extern void reapq_move_lq_to_tq(kthread_t *);
71 extern void freectx_ctx(struct ctxop *);
72
73 /*
74 * Create a kernel thread associated with a particular system process. Give
75 * it an LWP so that microstate accounting will be available for it.
76 */
77 kthread_t *
lwp_kernel_create(proc_t * p,void (* proc)(),void * arg,int state,pri_t pri)78 lwp_kernel_create(proc_t *p, void (*proc)(), void *arg, int state, pri_t pri)
79 {
80 klwp_t *lwp;
81
82 VERIFY((p->p_flag & SSYS) != 0);
83
84 lwp = lwp_create(proc, arg, 0, p, state, pri, &t0.t_hold, syscid, 0);
85
86 VERIFY(lwp != NULL);
87
88 return (lwptot(lwp));
89 }
90
91 /*
92 * Create a thread that appears to be stopped at sys_rtt.
93 */
94 klwp_t *
lwp_create(void (* proc)(),caddr_t arg,size_t len,proc_t * p,int state,int pri,const k_sigset_t * smask,int cid,id_t lwpid)95 lwp_create(void (*proc)(), caddr_t arg, size_t len, proc_t *p,
96 int state, int pri, const k_sigset_t *smask, int cid, id_t lwpid)
97 {
98 klwp_t *lwp = NULL;
99 kthread_t *t;
100 kthread_t *tx;
101 cpupart_t *oldpart = NULL;
102 size_t stksize;
103 caddr_t lwpdata = NULL;
104 processorid_t binding;
105 int err = 0;
106 kproject_t *oldkpj, *newkpj;
107 void *bufp = NULL;
108 klwp_t *curlwp;
109 lwpent_t *lep;
110 lwpdir_t *old_dir = NULL;
111 uint_t old_dirsz = 0;
112 tidhash_t *old_hash = NULL;
113 uint_t old_hashsz = 0;
114 ret_tidhash_t *ret_tidhash = NULL;
115 int i;
116 int rctlfail = 0;
117 boolean_t branded = 0;
118 struct ctxop *ctx = NULL;
119
120 ASSERT(cid != sysdccid); /* system threads must start in SYS */
121
122 ASSERT(p != &p0); /* No new LWPs in p0. */
123
124 mutex_enter(&p->p_lock);
125 mutex_enter(&p->p_zone->zone_nlwps_lock);
126 /*
127 * don't enforce rctl limits on system processes
128 */
129 if (!CLASS_KERNEL(cid)) {
130 if (p->p_task->tk_nlwps >= p->p_task->tk_nlwps_ctl)
131 if (rctl_test(rc_task_lwps, p->p_task->tk_rctls, p,
132 1, 0) & RCT_DENY)
133 rctlfail = 1;
134 if (p->p_task->tk_proj->kpj_nlwps >=
135 p->p_task->tk_proj->kpj_nlwps_ctl)
136 if (rctl_test(rc_project_nlwps,
137 p->p_task->tk_proj->kpj_rctls, p, 1, 0)
138 & RCT_DENY)
139 rctlfail = 1;
140 if (p->p_zone->zone_nlwps >= p->p_zone->zone_nlwps_ctl)
141 if (rctl_test(rc_zone_nlwps, p->p_zone->zone_rctls, p,
142 1, 0) & RCT_DENY)
143 rctlfail = 1;
144 }
145 if (rctlfail) {
146 mutex_exit(&p->p_zone->zone_nlwps_lock);
147 mutex_exit(&p->p_lock);
148 atomic_inc_32(&p->p_zone->zone_ffcap);
149 return (NULL);
150 }
151 p->p_task->tk_nlwps++;
152 p->p_task->tk_proj->kpj_nlwps++;
153 p->p_zone->zone_nlwps++;
154 mutex_exit(&p->p_zone->zone_nlwps_lock);
155 mutex_exit(&p->p_lock);
156
157 curlwp = ttolwp(curthread);
158 if (curlwp == NULL || (stksize = curlwp->lwp_childstksz) == 0)
159 stksize = lwp_default_stksize;
160
161 if (CLASS_KERNEL(cid)) {
162 /*
163 * Since we are creating an LWP in an SSYS process, we do not
164 * inherit anything from the current thread's LWP. We set
165 * stksize and lwpdata to 0 in order to let thread_create()
166 * allocate a regular kernel thread stack for this thread.
167 */
168 curlwp = NULL;
169 stksize = 0;
170 lwpdata = NULL;
171
172 } else if (stksize == lwp_default_stksize) {
173 /*
174 * Try to reuse an <lwp,stack> from the LWP deathrow.
175 */
176 if (lwp_reapcnt > 0) {
177 mutex_enter(&reaplock);
178 if ((t = lwp_deathrow) != NULL) {
179 ASSERT(t->t_swap);
180 lwp_deathrow = t->t_forw;
181 lwp_reapcnt--;
182 lwpdata = t->t_swap;
183 lwp = t->t_lwp;
184 ctx = t->t_ctx;
185 t->t_swap = NULL;
186 t->t_lwp = NULL;
187 t->t_ctx = NULL;
188 reapq_move_lq_to_tq(t);
189 }
190 mutex_exit(&reaplock);
191 if (lwp != NULL) {
192 lwp_stk_fini(lwp);
193 }
194 if (ctx != NULL) {
195 freectx_ctx(ctx);
196 }
197 }
198 if (lwpdata == NULL &&
199 (lwpdata = (caddr_t)segkp_cache_get(segkp_lwp)) == NULL) {
200 mutex_enter(&p->p_lock);
201 mutex_enter(&p->p_zone->zone_nlwps_lock);
202 p->p_task->tk_nlwps--;
203 p->p_task->tk_proj->kpj_nlwps--;
204 p->p_zone->zone_nlwps--;
205 mutex_exit(&p->p_zone->zone_nlwps_lock);
206 mutex_exit(&p->p_lock);
207 atomic_inc_32(&p->p_zone->zone_ffnomem);
208 return (NULL);
209 }
210 } else {
211 stksize = roundup(stksize, PAGESIZE);
212 if ((lwpdata = (caddr_t)segkp_get(segkp, stksize,
213 (KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED))) == NULL) {
214 mutex_enter(&p->p_lock);
215 mutex_enter(&p->p_zone->zone_nlwps_lock);
216 p->p_task->tk_nlwps--;
217 p->p_task->tk_proj->kpj_nlwps--;
218 p->p_zone->zone_nlwps--;
219 mutex_exit(&p->p_zone->zone_nlwps_lock);
220 mutex_exit(&p->p_lock);
221 atomic_inc_32(&p->p_zone->zone_ffnomem);
222 return (NULL);
223 }
224 }
225
226 /*
227 * Create a thread, initializing the stack pointer
228 */
229 t = thread_create(lwpdata, stksize, NULL, NULL, 0, p, TS_STOPPED, pri);
230
231 /*
232 * If a non-NULL stack base is passed in, thread_create() assumes
233 * that the stack might be statically allocated (as opposed to being
234 * allocated from segkp), and so it does not set t_swap. Since
235 * the lwpdata was allocated from segkp, we must set t_swap to point
236 * to it ourselves.
237 *
238 * This would be less confusing if t_swap had a better name; it really
239 * indicates that the stack is allocated from segkp, regardless of
240 * whether or not it is swappable.
241 */
242 if (lwpdata != NULL) {
243 ASSERT(!CLASS_KERNEL(cid));
244 ASSERT(t->t_swap == NULL);
245 t->t_swap = lwpdata; /* Start of page-able data */
246 }
247
248 /*
249 * If the stack and lwp can be reused, mark the thread as such.
250 * When we get to reapq_add() from resume_from_zombie(), these
251 * threads will go onto lwp_deathrow instead of thread_deathrow.
252 */
253 if (!CLASS_KERNEL(cid) && stksize == lwp_default_stksize)
254 t->t_flag |= T_LWPREUSE;
255
256 if (lwp == NULL)
257 lwp = kmem_cache_alloc(lwp_cache, KM_SLEEP);
258 bzero(lwp, sizeof (*lwp));
259 t->t_lwp = lwp;
260
261 t->t_hold = *smask;
262 lwp->lwp_thread = t;
263 lwp->lwp_procp = p;
264 lwp->lwp_sigaltstack.ss_flags = SS_DISABLE;
265 if (curlwp != NULL && curlwp->lwp_childstksz != 0)
266 lwp->lwp_childstksz = curlwp->lwp_childstksz;
267
268 t->t_stk = lwp_stk_init(lwp, t->t_stk);
269 thread_load(t, proc, arg, len);
270
271 /*
272 * Allocate the SIGPROF buffer if ITIMER_REALPROF is in effect.
273 */
274 if (p->p_rprof_cyclic != CYCLIC_NONE)
275 t->t_rprof = kmem_zalloc(sizeof (struct rprof), KM_SLEEP);
276
277 if (cid != NOCLASS)
278 (void) CL_ALLOC(&bufp, cid, KM_SLEEP);
279
280 /*
281 * Allocate an lwp directory entry for the new lwp.
282 */
283 lep = kmem_zalloc(sizeof (*lep), KM_SLEEP);
284
285 mutex_enter(&p->p_lock);
286 grow:
287 /*
288 * Grow the lwp (thread) directory and lwpid hash table if necessary.
289 * A note on the growth algorithm:
290 * The new lwp directory size is computed as:
291 * new = 2 * old + 2
292 * Starting with an initial size of 2 (see exec_common()),
293 * this yields numbers that are a power of two minus 2:
294 * 2, 6, 14, 30, 62, 126, 254, 510, 1022, ...
295 * The size of the lwpid hash table must be a power of two
296 * and must be commensurate in size with the lwp directory
297 * so that hash bucket chains remain short. Therefore,
298 * the lwpid hash table size is computed as:
299 * hashsz = (dirsz + 2) / 2
300 * which leads to these hash table sizes corresponding to
301 * the above directory sizes:
302 * 2, 4, 8, 16, 32, 64, 128, 256, 512, ...
303 * A note on growing the hash table:
304 * For performance reasons, code in lwp_unpark() does not
305 * acquire curproc->p_lock when searching the hash table.
306 * Rather, it calls lwp_hash_lookup_and_lock() which
307 * acquires only the individual hash bucket lock, taking
308 * care to deal with reallocation of the hash table
309 * during the time it takes to acquire the lock.
310 *
311 * This is sufficient to protect the integrity of the
312 * hash table, but it requires us to acquire all of the
313 * old hash bucket locks before growing the hash table
314 * and to release them afterwards. It also requires us
315 * not to free the old hash table because some thread
316 * in lwp_hash_lookup_and_lock() might still be trying
317 * to acquire the old bucket lock.
318 *
319 * So we adopt the tactic of keeping all of the retired
320 * hash tables on a linked list, so they can be safely
321 * freed when the process exits or execs.
322 *
323 * Because the hash table grows in powers of two, the
324 * total size of all of the hash tables will be slightly
325 * less than twice the size of the largest hash table.
326 */
327 while (p->p_lwpfree == NULL) {
328 uint_t dirsz = p->p_lwpdir_sz;
329 lwpdir_t *new_dir;
330 uint_t new_dirsz;
331 lwpdir_t *ldp;
332 tidhash_t *new_hash;
333 uint_t new_hashsz;
334
335 mutex_exit(&p->p_lock);
336
337 /*
338 * Prepare to remember the old p_tidhash for later
339 * kmem_free()ing when the process exits or execs.
340 */
341 if (ret_tidhash == NULL)
342 ret_tidhash = kmem_zalloc(sizeof (ret_tidhash_t),
343 KM_SLEEP);
344 if (old_dir != NULL)
345 kmem_free(old_dir, old_dirsz * sizeof (*old_dir));
346 if (old_hash != NULL)
347 kmem_free(old_hash, old_hashsz * sizeof (*old_hash));
348
349 new_dirsz = 2 * dirsz + 2;
350 new_dir = kmem_zalloc(new_dirsz * sizeof (lwpdir_t), KM_SLEEP);
351 for (ldp = new_dir, i = 1; i < new_dirsz; i++, ldp++)
352 ldp->ld_next = ldp + 1;
353 new_hashsz = (new_dirsz + 2) / 2;
354 new_hash = kmem_zalloc(new_hashsz * sizeof (tidhash_t),
355 KM_SLEEP);
356
357 mutex_enter(&p->p_lock);
358 if (p == curproc)
359 prbarrier(p);
360
361 if (dirsz != p->p_lwpdir_sz || p->p_lwpfree != NULL) {
362 /*
363 * Someone else beat us to it or some lwp exited.
364 * Set up to free our memory and take a lap.
365 */
366 old_dir = new_dir;
367 old_dirsz = new_dirsz;
368 old_hash = new_hash;
369 old_hashsz = new_hashsz;
370 } else {
371 /*
372 * For the benefit of lwp_hash_lookup_and_lock(),
373 * called from lwp_unpark(), which searches the
374 * tid hash table without acquiring p->p_lock,
375 * we must acquire all of the tid hash table
376 * locks before replacing p->p_tidhash.
377 */
378 old_hash = p->p_tidhash;
379 old_hashsz = p->p_tidhash_sz;
380 for (i = 0; i < old_hashsz; i++) {
381 mutex_enter(&old_hash[i].th_lock);
382 mutex_enter(&new_hash[i].th_lock);
383 }
384
385 /*
386 * We simply hash in all of the old directory entries.
387 * This works because the old directory has no empty
388 * slots and the new hash table starts out empty.
389 * This reproduces the original directory ordering
390 * (required for /proc directory semantics).
391 */
392 old_dir = p->p_lwpdir;
393 old_dirsz = p->p_lwpdir_sz;
394 p->p_lwpdir = new_dir;
395 p->p_lwpfree = new_dir;
396 p->p_lwpdir_sz = new_dirsz;
397 for (ldp = old_dir, i = 0; i < old_dirsz; i++, ldp++)
398 lwp_hash_in(p, ldp->ld_entry,
399 new_hash, new_hashsz, 0);
400
401 /*
402 * Remember the old hash table along with all
403 * of the previously-remembered hash tables.
404 * We will free them at process exit or exec.
405 */
406 ret_tidhash->rth_tidhash = old_hash;
407 ret_tidhash->rth_tidhash_sz = old_hashsz;
408 ret_tidhash->rth_next = p->p_ret_tidhash;
409 p->p_ret_tidhash = ret_tidhash;
410
411 /*
412 * Now establish the new tid hash table.
413 * As soon as we assign p->p_tidhash,
414 * code in lwp_unpark() can start using it.
415 */
416 membar_producer();
417 p->p_tidhash = new_hash;
418
419 /*
420 * It is necessary that p_tidhash reach global
421 * visibility before p_tidhash_sz. Otherwise,
422 * code in lwp_hash_lookup_and_lock() could
423 * index into the old p_tidhash using the new
424 * p_tidhash_sz and thereby access invalid data.
425 */
426 membar_producer();
427 p->p_tidhash_sz = new_hashsz;
428
429 /*
430 * Release the locks; allow lwp_unpark() to carry on.
431 */
432 for (i = 0; i < old_hashsz; i++) {
433 mutex_exit(&old_hash[i].th_lock);
434 mutex_exit(&new_hash[i].th_lock);
435 }
436
437 /*
438 * Avoid freeing these objects below.
439 */
440 ret_tidhash = NULL;
441 old_hash = NULL;
442 old_hashsz = 0;
443 }
444 }
445
446 /*
447 * Block the process against /proc while we manipulate p->p_tlist,
448 * unless lwp_create() was called by /proc for the PCAGENT operation.
449 * We want to do this early enough so that we don't drop p->p_lock
450 * until the thread is put on the p->p_tlist.
451 */
452 if (p == curproc) {
453 prbarrier(p);
454 /*
455 * If the current lwp has been requested to stop, do so now.
456 * Otherwise we have a race condition between /proc attempting
457 * to stop the process and this thread creating a new lwp
458 * that was not seen when the /proc PCSTOP request was issued.
459 * We rely on stop() to call prbarrier(p) before returning.
460 */
461 while ((curthread->t_proc_flag & TP_PRSTOP) &&
462 !ttolwp(curthread)->lwp_nostop) {
463 /*
464 * We called pool_barrier_enter() before calling
465 * here to lwp_create(). We have to call
466 * pool_barrier_exit() before stopping.
467 */
468 pool_barrier_exit();
469 prbarrier(p);
470 stop(PR_REQUESTED, 0);
471 /*
472 * And we have to repeat the call to
473 * pool_barrier_enter after stopping.
474 */
475 pool_barrier_enter();
476 prbarrier(p);
477 }
478
479 /*
480 * If process is exiting, there could be a race between
481 * the agent lwp creation and the new lwp currently being
482 * created. So to prevent this race lwp creation is failed
483 * if the process is exiting.
484 */
485 if (p->p_flag & (SEXITLWPS|SKILLED)) {
486 err = 1;
487 goto error;
488 }
489
490 /*
491 * Since we might have dropped p->p_lock, the
492 * lwp directory free list might have changed.
493 */
494 if (p->p_lwpfree == NULL)
495 goto grow;
496 }
497
498 kpreempt_disable(); /* can't grab cpu_lock here */
499
500 /*
501 * Inherit processor and processor set bindings from curthread.
502 *
503 * For kernel LWPs, we do not inherit processor set bindings at
504 * process creation time (i.e. when p != curproc). After the
505 * kernel process is created, any subsequent LWPs must be created
506 * by threads in the kernel process, at which point we *will*
507 * inherit processor set bindings.
508 */
509 if (CLASS_KERNEL(cid) && p != curproc) {
510 t->t_bind_cpu = binding = PBIND_NONE;
511 t->t_cpupart = oldpart = &cp_default;
512 t->t_bind_pset = PS_NONE;
513 t->t_bindflag = (uchar_t)default_binding_mode;
514 } else {
515 binding = curthread->t_bind_cpu;
516 t->t_bind_cpu = binding;
517 oldpart = t->t_cpupart;
518 t->t_cpupart = curthread->t_cpupart;
519 t->t_bind_pset = curthread->t_bind_pset;
520 t->t_bindflag = curthread->t_bindflag |
521 (uchar_t)default_binding_mode;
522 }
523
524 /*
525 * thread_create() initializes this thread's home lgroup to the root.
526 * Choose a more suitable lgroup, since this thread is associated
527 * with an lwp.
528 */
529 ASSERT(oldpart != NULL);
530 if (binding != PBIND_NONE && t->t_affinitycnt == 0) {
531 t->t_bound_cpu = cpu[binding];
532 if (t->t_lpl != t->t_bound_cpu->cpu_lpl)
533 lgrp_move_thread(t, t->t_bound_cpu->cpu_lpl, 1);
534 } else if (CLASS_KERNEL(cid)) {
535 /*
536 * Kernel threads are always in the root lgrp.
537 */
538 lgrp_move_thread(t,
539 &t->t_cpupart->cp_lgrploads[LGRP_ROOTID], 1);
540 } else {
541 lgrp_move_thread(t, lgrp_choose(t, t->t_cpupart), 1);
542 }
543
544 kpreempt_enable();
545
546 /*
547 * make sure lpl points to our own partition
548 */
549 ASSERT(t->t_lpl >= t->t_cpupart->cp_lgrploads);
550 ASSERT(t->t_lpl < t->t_cpupart->cp_lgrploads +
551 t->t_cpupart->cp_nlgrploads);
552
553 /*
554 * It is safe to point the thread to the new project without holding it
555 * since we're holding the target process' p_lock here and therefore
556 * we're guaranteed that it will not move to another project.
557 */
558 newkpj = p->p_task->tk_proj;
559 oldkpj = ttoproj(t);
560 if (newkpj != oldkpj) {
561 t->t_proj = newkpj;
562 (void) project_hold(newkpj);
563 project_rele(oldkpj);
564 }
565
566 if (cid != NOCLASS) {
567 /*
568 * If the lwp is being created in the current process
569 * and matches the current thread's scheduling class,
570 * we should propagate the current thread's scheduling
571 * parameters by calling CL_FORK. Otherwise just use
572 * the defaults by calling CL_ENTERCLASS.
573 */
574 if (p != curproc || curthread->t_cid != cid) {
575 err = CL_ENTERCLASS(t, cid, NULL, NULL, bufp);
576 t->t_pri = pri; /* CL_ENTERCLASS may have changed it */
577 /*
578 * We don't call schedctl_set_cidpri(t) here
579 * because the schedctl data is not yet set
580 * up for the newly-created lwp.
581 */
582 } else {
583 t->t_clfuncs = &(sclass[cid].cl_funcs->thread);
584 err = CL_FORK(curthread, t, bufp);
585 t->t_cid = cid;
586 }
587 if (err) {
588 atomic_inc_32(&p->p_zone->zone_ffmisc);
589 goto error;
590 } else {
591 bufp = NULL;
592 }
593 }
594
595 /*
596 * If we were given an lwpid then use it, else allocate one.
597 */
598 if (lwpid != 0)
599 t->t_tid = lwpid;
600 else {
601 /*
602 * lwp/thread id 0 is never valid; reserved for special checks.
603 * lwp/thread id 1 is reserved for the main thread.
604 * Start again at 2 when INT_MAX has been reached
605 * (id_t is a signed 32-bit integer).
606 */
607 id_t prev_id = p->p_lwpid; /* last allocated tid */
608
609 do { /* avoid lwpid duplication */
610 if (p->p_lwpid == INT_MAX) {
611 p->p_flag |= SLWPWRAP;
612 p->p_lwpid = 1;
613 }
614 if ((t->t_tid = ++p->p_lwpid) == prev_id) {
615 /*
616 * All lwpids are allocated; fail the request.
617 */
618 err = 1;
619 atomic_inc_32(&p->p_zone->zone_ffnoproc);
620 goto error;
621 }
622 /*
623 * We only need to worry about colliding with an id
624 * that's already in use if this process has
625 * cycled through all available lwp ids.
626 */
627 if ((p->p_flag & SLWPWRAP) == 0)
628 break;
629 } while (lwp_hash_lookup(p, t->t_tid) != NULL);
630 }
631
632 /*
633 * If this is a branded process, let the brand do any necessary lwp
634 * initialization.
635 */
636 if (PROC_IS_BRANDED(p)) {
637 if (BROP(p)->b_initlwp(lwp)) {
638 err = 1;
639 atomic_inc_32(&p->p_zone->zone_ffmisc);
640 goto error;
641 }
642 branded = 1;
643 }
644
645 if (t->t_tid == 1) {
646 kpreempt_disable();
647 ASSERT(t->t_lpl != NULL);
648 p->p_t1_lgrpid = t->t_lpl->lpl_lgrpid;
649 kpreempt_enable();
650 if (p->p_tr_lgrpid != LGRP_NONE &&
651 p->p_tr_lgrpid != p->p_t1_lgrpid) {
652 lgrp_update_trthr_migrations(1);
653 }
654 }
655
656 p->p_lwpcnt++;
657 t->t_waitfor = -1;
658
659 /*
660 * Turn microstate accounting on for thread if on for process.
661 */
662 if (p->p_flag & SMSACCT)
663 t->t_proc_flag |= TP_MSACCT;
664
665 /*
666 * If the process has watchpoints, mark the new thread as such.
667 */
668 if (pr_watch_active(p))
669 watch_enable(t);
670
671 /*
672 * The lwp is being created in the stopped state.
673 * We set all the necessary flags to indicate that fact here.
674 * We omit the TS_CREATE flag from t_schedflag so that the lwp
675 * cannot be set running until the caller is finished with it,
676 * even if lwp_continue() is called on it after we drop p->p_lock.
677 * When the caller is finished with the newly-created lwp,
678 * the caller must call lwp_create_done() to allow the lwp
679 * to be set running. If the TP_HOLDLWP is left set, the
680 * lwp will suspend itself after reaching system call exit.
681 */
682 init_mstate(t, LMS_STOPPED);
683 t->t_proc_flag |= TP_HOLDLWP;
684 t->t_schedflag |= (TS_ALLSTART & ~(TS_CSTART | TS_CREATE));
685 t->t_whystop = PR_SUSPENDED;
686 t->t_whatstop = SUSPEND_NORMAL;
687 t->t_sig_check = 1; /* ensure that TP_HOLDLWP is honored */
688
689 /*
690 * Set system call processing flags in case tracing or profiling
691 * is set. The first system call will evaluate these and turn
692 * them off if they aren't needed.
693 */
694 t->t_pre_sys = 1;
695 t->t_post_sys = 1;
696
697 /*
698 * Insert the new thread into the list of all threads.
699 */
700 if ((tx = p->p_tlist) == NULL) {
701 t->t_back = t;
702 t->t_forw = t;
703 p->p_tlist = t;
704 } else {
705 t->t_forw = tx;
706 t->t_back = tx->t_back;
707 tx->t_back->t_forw = t;
708 tx->t_back = t;
709 }
710
711 /*
712 * Insert the new lwp into an lwp directory slot position
713 * and into the lwpid hash table.
714 */
715 lep->le_thread = t;
716 lep->le_lwpid = t->t_tid;
717 lep->le_start = t->t_start;
718 lwp_hash_in(p, lep, p->p_tidhash, p->p_tidhash_sz, 1);
719
720 lwp_fp_init(lwp);
721
722 if (state == TS_RUN) {
723 /*
724 * We set the new lwp running immediately.
725 */
726 t->t_proc_flag &= ~TP_HOLDLWP;
727 lwp_create_done(t);
728 }
729
730 error:
731 if (err) {
732 if (CLASS_KERNEL(cid)) {
733 /*
734 * This should only happen if a system process runs
735 * out of lwpids, which shouldn't occur.
736 */
737 panic("Failed to create a system LWP");
738 }
739 /*
740 * We have failed to create an lwp, so decrement the number
741 * of lwps in the task and let the lgroup load averages know
742 * that this thread isn't going to show up.
743 */
744 kpreempt_disable();
745 lgrp_move_thread(t, NULL, 1);
746 kpreempt_enable();
747
748 ASSERT(MUTEX_HELD(&p->p_lock));
749 mutex_enter(&p->p_zone->zone_nlwps_lock);
750 p->p_task->tk_nlwps--;
751 p->p_task->tk_proj->kpj_nlwps--;
752 p->p_zone->zone_nlwps--;
753 mutex_exit(&p->p_zone->zone_nlwps_lock);
754 if (cid != NOCLASS && bufp != NULL)
755 CL_FREE(cid, bufp);
756
757 if (branded)
758 BROP(p)->b_freelwp(lwp);
759
760 mutex_exit(&p->p_lock);
761 t->t_state = TS_FREE;
762 thread_rele(t);
763
764 /*
765 * We need to remove t from the list of all threads
766 * because thread_exit()/lwp_exit() isn't called on t.
767 */
768 mutex_enter(&pidlock);
769 ASSERT(t != t->t_next); /* t0 never exits */
770 t->t_next->t_prev = t->t_prev;
771 t->t_prev->t_next = t->t_next;
772 mutex_exit(&pidlock);
773
774 thread_free(t);
775 kmem_free(lep, sizeof (*lep));
776 lwp = NULL;
777 } else {
778 mutex_exit(&p->p_lock);
779 }
780
781 if (old_dir != NULL)
782 kmem_free(old_dir, old_dirsz * sizeof (*old_dir));
783 if (old_hash != NULL)
784 kmem_free(old_hash, old_hashsz * sizeof (*old_hash));
785 if (ret_tidhash != NULL)
786 kmem_free(ret_tidhash, sizeof (ret_tidhash_t));
787
788 DTRACE_PROC1(lwp__create, kthread_t *, t);
789 return (lwp);
790 }
791
792 /*
793 * lwp_create_done() is called by the caller of lwp_create() to set the
794 * newly-created lwp running after the caller has finished manipulating it.
795 */
796 void
lwp_create_done(kthread_t * t)797 lwp_create_done(kthread_t *t)
798 {
799 proc_t *p = ttoproc(t);
800
801 ASSERT(MUTEX_HELD(&p->p_lock));
802
803 /*
804 * We set the TS_CREATE and TS_CSTART flags and call setrun_locked().
805 * (The absence of the TS_CREATE flag prevents the lwp from running
806 * until we are finished with it, even if lwp_continue() is called on
807 * it by some other lwp in the process or elsewhere in the kernel.)
808 */
809 thread_lock(t);
810 ASSERT(t->t_state == TS_STOPPED && !(t->t_schedflag & TS_CREATE));
811 /*
812 * If TS_CSTART is set, lwp_continue(t) has been called and
813 * has already incremented p_lwprcnt; avoid doing this twice.
814 */
815 if (!(t->t_schedflag & TS_CSTART))
816 p->p_lwprcnt++;
817 t->t_schedflag |= (TS_CSTART | TS_CREATE);
818 setrun_locked(t);
819 thread_unlock(t);
820 }
821
822 /*
823 * Copy an LWP's active templates, and clear the latest contracts.
824 */
825 void
lwp_ctmpl_copy(klwp_t * dst,klwp_t * src)826 lwp_ctmpl_copy(klwp_t *dst, klwp_t *src)
827 {
828 int i;
829
830 for (i = 0; i < ct_ntypes; i++) {
831 dst->lwp_ct_active[i] = ctmpl_dup(src->lwp_ct_active[i]);
832 dst->lwp_ct_latest[i] = NULL;
833 }
834 }
835
836 /*
837 * Clear an LWP's contract template state.
838 */
839 void
lwp_ctmpl_clear(klwp_t * lwp)840 lwp_ctmpl_clear(klwp_t *lwp)
841 {
842 ct_template_t *tmpl;
843 int i;
844
845 for (i = 0; i < ct_ntypes; i++) {
846 if ((tmpl = lwp->lwp_ct_active[i]) != NULL) {
847 ctmpl_free(tmpl);
848 lwp->lwp_ct_active[i] = NULL;
849 }
850
851 if (lwp->lwp_ct_latest[i] != NULL) {
852 contract_rele(lwp->lwp_ct_latest[i]);
853 lwp->lwp_ct_latest[i] = NULL;
854 }
855 }
856 }
857
858 /*
859 * Individual lwp exit.
860 * If this is the last lwp, exit the whole process.
861 */
862 void
lwp_exit(void)863 lwp_exit(void)
864 {
865 kthread_t *t = curthread;
866 klwp_t *lwp = ttolwp(t);
867 proc_t *p = ttoproc(t);
868
869 ASSERT(MUTEX_HELD(&p->p_lock));
870
871 mutex_exit(&p->p_lock);
872
873 #if defined(__sparc)
874 /*
875 * Ensure that the user stack is fully abandoned..
876 */
877 trash_user_windows();
878 #endif
879
880 tsd_exit(); /* free thread specific data */
881
882 kcpc_passivate(); /* Clean up performance counter state */
883
884 pollcleanup();
885
886 if (t->t_door)
887 door_slam();
888
889 if (t->t_schedctl != NULL)
890 schedctl_lwp_cleanup(t);
891
892 if (t->t_upimutex != NULL)
893 upimutex_cleanup();
894
895 /*
896 * Perform any brand specific exit processing, then release any
897 * brand data associated with the lwp
898 */
899 if (PROC_IS_BRANDED(p))
900 BROP(p)->b_lwpexit(lwp);
901
902 lwp_pcb_exit();
903
904 mutex_enter(&p->p_lock);
905 lwp_cleanup();
906
907 /*
908 * When this process is dumping core, its lwps are held here
909 * until the core dump is finished. Then exitlwps() is called
910 * again to release these lwps so that they can finish exiting.
911 */
912 if (p->p_flag & SCOREDUMP)
913 stop(PR_SUSPENDED, SUSPEND_NORMAL);
914
915 /*
916 * Block the process against /proc now that we have really acquired
917 * p->p_lock (to decrement p_lwpcnt and manipulate p_tlist at least).
918 */
919 prbarrier(p);
920
921 /*
922 * Call proc_exit() if this is the last non-daemon lwp in the process.
923 */
924 if (!(t->t_proc_flag & TP_DAEMON) &&
925 p->p_lwpcnt == p->p_lwpdaemon + 1) {
926 mutex_exit(&p->p_lock);
927 if (proc_exit(CLD_EXITED, 0) == 0) {
928 /* Restarting init. */
929 return;
930 }
931
932 /*
933 * proc_exit() returns a non-zero value when some other
934 * lwp got there first. We just have to continue in
935 * lwp_exit().
936 */
937 mutex_enter(&p->p_lock);
938 ASSERT(curproc->p_flag & SEXITLWPS);
939 prbarrier(p);
940 }
941
942 DTRACE_PROC(lwp__exit);
943
944 /*
945 * If the lwp is a detached lwp or if the process is exiting,
946 * remove (lwp_hash_out()) the lwp from the lwp directory.
947 * Otherwise null out the lwp's le_thread pointer in the lwp
948 * directory so that other threads will see it as a zombie lwp.
949 */
950 prlwpexit(t); /* notify /proc */
951 if (!(t->t_proc_flag & TP_TWAIT) || (p->p_flag & SEXITLWPS))
952 lwp_hash_out(p, t->t_tid);
953 else {
954 ASSERT(!(t->t_proc_flag & TP_DAEMON));
955 p->p_lwpdir[t->t_dslot].ld_entry->le_thread = NULL;
956 p->p_zombcnt++;
957 cv_broadcast(&p->p_lwpexit);
958 }
959 if (t->t_proc_flag & TP_DAEMON) {
960 p->p_lwpdaemon--;
961 t->t_proc_flag &= ~TP_DAEMON;
962 }
963 t->t_proc_flag &= ~TP_TWAIT;
964
965 /*
966 * Maintain accurate lwp count for task.max-lwps resource control.
967 */
968 mutex_enter(&p->p_zone->zone_nlwps_lock);
969 p->p_task->tk_nlwps--;
970 p->p_task->tk_proj->kpj_nlwps--;
971 p->p_zone->zone_nlwps--;
972 mutex_exit(&p->p_zone->zone_nlwps_lock);
973
974 CL_EXIT(t); /* tell the scheduler that t is exiting */
975 ASSERT(p->p_lwpcnt != 0);
976 p->p_lwpcnt--;
977
978 /*
979 * If all remaining non-daemon lwps are waiting in lwp_wait(),
980 * wake them up so someone can return EDEADLK.
981 * (See the block comment preceeding lwp_wait().)
982 */
983 if (p->p_lwpcnt == p->p_lwpdaemon + (p->p_lwpwait - p->p_lwpdwait))
984 cv_broadcast(&p->p_lwpexit);
985
986 t->t_proc_flag |= TP_LWPEXIT;
987 term_mstate(t);
988
989 t->t_forw->t_back = t->t_back;
990 t->t_back->t_forw = t->t_forw;
991 if (t == p->p_tlist)
992 p->p_tlist = t->t_forw;
993
994 /*
995 * Clean up the signal state.
996 */
997 if (t->t_sigqueue != NULL)
998 sigdelq(p, t, 0);
999 if (lwp->lwp_curinfo != NULL) {
1000 siginfofree(lwp->lwp_curinfo);
1001 lwp->lwp_curinfo = NULL;
1002 }
1003
1004 /*
1005 * If we have spymaster information (that is, if we're an agent LWP),
1006 * free that now.
1007 */
1008 if (lwp->lwp_spymaster != NULL) {
1009 kmem_free(lwp->lwp_spymaster, sizeof (psinfo_t));
1010 lwp->lwp_spymaster = NULL;
1011 }
1012
1013 thread_rele(t);
1014
1015 /*
1016 * Terminated lwps are associated with process zero and are put onto
1017 * death-row by resume(). Avoid preemption after resetting t->t_procp.
1018 */
1019 t->t_preempt++;
1020
1021 if (t->t_ctx != NULL)
1022 exitctx(t);
1023 if (p->p_pctx != NULL)
1024 exitpctx(p);
1025
1026 t->t_procp = &p0;
1027
1028 /*
1029 * Notify the HAT about the change of address space
1030 */
1031 hat_thread_exit(t);
1032 /*
1033 * When this is the last running lwp in this process and some lwp is
1034 * waiting for this condition to become true, or this thread was being
1035 * suspended, then the waiting lwp is awakened.
1036 *
1037 * Also, if the process is exiting, we may have a thread waiting in
1038 * exitlwps() that needs to be notified.
1039 */
1040 if (--p->p_lwprcnt == 0 || (t->t_proc_flag & TP_HOLDLWP) ||
1041 (p->p_flag & SEXITLWPS))
1042 cv_broadcast(&p->p_holdlwps);
1043
1044 /*
1045 * Need to drop p_lock so we can reacquire pidlock.
1046 */
1047 mutex_exit(&p->p_lock);
1048 mutex_enter(&pidlock);
1049
1050 ASSERT(t != t->t_next); /* t0 never exits */
1051 t->t_next->t_prev = t->t_prev;
1052 t->t_prev->t_next = t->t_next;
1053 cv_broadcast(&t->t_joincv); /* wake up anyone in thread_join */
1054 mutex_exit(&pidlock);
1055
1056 t->t_state = TS_ZOMB;
1057 swtch_from_zombie();
1058 /* never returns */
1059 }
1060
1061
1062 /*
1063 * Cleanup function for an exiting lwp.
1064 * Called both from lwp_exit() and from proc_exit().
1065 * p->p_lock is repeatedly released and grabbed in this function.
1066 */
1067 void
lwp_cleanup(void)1068 lwp_cleanup(void)
1069 {
1070 kthread_t *t = curthread;
1071 proc_t *p = ttoproc(t);
1072
1073 ASSERT(MUTEX_HELD(&p->p_lock));
1074
1075 /* untimeout any lwp-bound realtime timers */
1076 if (p->p_itimer != NULL)
1077 timer_lwpexit();
1078
1079 /*
1080 * If this is the /proc agent lwp that is exiting, readjust p_lwpid
1081 * so it appears that the agent never existed, and clear p_agenttp.
1082 */
1083 if (t == p->p_agenttp) {
1084 ASSERT(t->t_tid == p->p_lwpid);
1085 p->p_lwpid--;
1086 p->p_agenttp = NULL;
1087 }
1088
1089 /*
1090 * Do lgroup bookkeeping to account for thread exiting.
1091 */
1092 kpreempt_disable();
1093 lgrp_move_thread(t, NULL, 1);
1094 if (t->t_tid == 1) {
1095 p->p_t1_lgrpid = LGRP_NONE;
1096 }
1097 kpreempt_enable();
1098
1099 lwp_ctmpl_clear(ttolwp(t));
1100 }
1101
1102 int
lwp_suspend(kthread_t * t)1103 lwp_suspend(kthread_t *t)
1104 {
1105 int tid;
1106 proc_t *p = ttoproc(t);
1107
1108 ASSERT(MUTEX_HELD(&p->p_lock));
1109
1110 /*
1111 * Set the thread's TP_HOLDLWP flag so it will stop in holdlwp().
1112 * If an lwp is stopping itself, there is no need to wait.
1113 */
1114 top:
1115 t->t_proc_flag |= TP_HOLDLWP;
1116 if (t == curthread) {
1117 t->t_sig_check = 1;
1118 } else {
1119 /*
1120 * Make sure the lwp stops promptly.
1121 */
1122 thread_lock(t);
1123 t->t_sig_check = 1;
1124 /*
1125 * XXX Should use virtual stop like /proc does instead of
1126 * XXX waking the thread to get it to stop.
1127 */
1128 if (ISWAKEABLE(t) || ISWAITING(t)) {
1129 setrun_locked(t);
1130 } else if (t->t_state == TS_ONPROC && t->t_cpu != CPU) {
1131 poke_cpu(t->t_cpu->cpu_id);
1132 }
1133
1134 tid = t->t_tid; /* remember thread ID */
1135 /*
1136 * Wait for lwp to stop
1137 */
1138 while (!SUSPENDED(t)) {
1139 /*
1140 * Drop the thread lock before waiting and reacquire it
1141 * afterwards, so the thread can change its t_state
1142 * field.
1143 */
1144 thread_unlock(t);
1145
1146 /*
1147 * Check if aborted by exitlwps().
1148 */
1149 if (p->p_flag & SEXITLWPS)
1150 lwp_exit();
1151
1152 /*
1153 * Cooperate with jobcontrol signals and /proc stopping
1154 * by calling cv_wait_sig() to wait for the target
1155 * lwp to stop. Just using cv_wait() can lead to
1156 * deadlock because, if some other lwp has stopped
1157 * by either of these mechanisms, then p_lwprcnt will
1158 * never become zero if we do a cv_wait().
1159 */
1160 if (!cv_wait_sig(&p->p_holdlwps, &p->p_lock))
1161 return (EINTR);
1162
1163 /*
1164 * Check to see if thread died while we were
1165 * waiting for it to suspend.
1166 */
1167 if (idtot(p, tid) == NULL)
1168 return (ESRCH);
1169
1170 thread_lock(t);
1171 /*
1172 * If the TP_HOLDLWP flag went away, lwp_continue()
1173 * or vfork() must have been called while we were
1174 * waiting, so start over again.
1175 */
1176 if ((t->t_proc_flag & TP_HOLDLWP) == 0) {
1177 thread_unlock(t);
1178 goto top;
1179 }
1180 }
1181 thread_unlock(t);
1182 }
1183 return (0);
1184 }
1185
1186 /*
1187 * continue a lwp that's been stopped by lwp_suspend().
1188 */
1189 void
lwp_continue(kthread_t * t)1190 lwp_continue(kthread_t *t)
1191 {
1192 proc_t *p = ttoproc(t);
1193 int was_suspended = t->t_proc_flag & TP_HOLDLWP;
1194
1195 ASSERT(MUTEX_HELD(&p->p_lock));
1196
1197 t->t_proc_flag &= ~TP_HOLDLWP;
1198 thread_lock(t);
1199 if (SUSPENDED(t) &&
1200 !(p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH))) {
1201 p->p_lwprcnt++;
1202 t->t_schedflag |= TS_CSTART;
1203 setrun_locked(t);
1204 }
1205 thread_unlock(t);
1206 /*
1207 * Wakeup anyone waiting for this thread to be suspended
1208 */
1209 if (was_suspended)
1210 cv_broadcast(&p->p_holdlwps);
1211 }
1212
1213 /*
1214 * ********************************
1215 * Miscellaneous lwp routines *
1216 * ********************************
1217 */
1218 /*
1219 * When a process is undergoing a forkall(), its p_flag is set to SHOLDFORK.
1220 * This will cause the process's lwps to stop at a hold point. A hold
1221 * point is where a kernel thread has a flat stack. This is at the
1222 * return from a system call and at the return from a user level trap.
1223 *
1224 * When a process is undergoing a fork1() or vfork(), its p_flag is set to
1225 * SHOLDFORK1. This will cause the process's lwps to stop at a modified
1226 * hold point. The lwps in the process are not being cloned, so they
1227 * are held at the usual hold points and also within issig_forreal().
1228 * This has the side-effect that their system calls do not return
1229 * showing EINTR.
1230 *
1231 * An lwp can also be held. This is identified by the TP_HOLDLWP flag on
1232 * the thread. The TP_HOLDLWP flag is set in lwp_suspend(), where the active
1233 * lwp is waiting for the target lwp to be stopped.
1234 */
1235 void
holdlwp(void)1236 holdlwp(void)
1237 {
1238 proc_t *p = curproc;
1239 kthread_t *t = curthread;
1240
1241 mutex_enter(&p->p_lock);
1242 /*
1243 * Don't terminate immediately if the process is dumping core.
1244 * Once the process has dumped core, all lwps are terminated.
1245 */
1246 if (!(p->p_flag & SCOREDUMP)) {
1247 if ((p->p_flag & SEXITLWPS) || (t->t_proc_flag & TP_EXITLWP))
1248 lwp_exit();
1249 }
1250 if (!(ISHOLD(p)) && !(p->p_flag & (SHOLDFORK1 | SHOLDWATCH))) {
1251 mutex_exit(&p->p_lock);
1252 return;
1253 }
1254 /*
1255 * stop() decrements p->p_lwprcnt and cv_signal()s &p->p_holdlwps
1256 * when p->p_lwprcnt becomes zero.
1257 */
1258 stop(PR_SUSPENDED, SUSPEND_NORMAL);
1259 if (p->p_flag & SEXITLWPS)
1260 lwp_exit();
1261 mutex_exit(&p->p_lock);
1262 }
1263
1264 /*
1265 * Have all lwps within the process hold at a point where they are
1266 * cloneable (SHOLDFORK) or just safe w.r.t. fork1 (SHOLDFORK1).
1267 */
1268 int
holdlwps(int holdflag)1269 holdlwps(int holdflag)
1270 {
1271 proc_t *p = curproc;
1272
1273 ASSERT(holdflag == SHOLDFORK || holdflag == SHOLDFORK1);
1274 mutex_enter(&p->p_lock);
1275 schedctl_finish_sigblock(curthread);
1276 again:
1277 while (p->p_flag & (SEXITLWPS | SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) {
1278 /*
1279 * If another lwp is doing a forkall() or proc_exit(), bail out.
1280 */
1281 if (p->p_flag & (SEXITLWPS | SHOLDFORK)) {
1282 mutex_exit(&p->p_lock);
1283 return (0);
1284 }
1285 /*
1286 * Another lwp is doing a fork1() or is undergoing
1287 * watchpoint activity. We hold here for it to complete.
1288 */
1289 stop(PR_SUSPENDED, SUSPEND_NORMAL);
1290 }
1291 p->p_flag |= holdflag;
1292 pokelwps(p);
1293 --p->p_lwprcnt;
1294 /*
1295 * Wait for the process to become quiescent (p->p_lwprcnt == 0).
1296 */
1297 while (p->p_lwprcnt > 0) {
1298 /*
1299 * Check if aborted by exitlwps().
1300 * Also check if SHOLDWATCH is set; it takes precedence.
1301 */
1302 if (p->p_flag & (SEXITLWPS | SHOLDWATCH)) {
1303 p->p_lwprcnt++;
1304 p->p_flag &= ~holdflag;
1305 cv_broadcast(&p->p_holdlwps);
1306 goto again;
1307 }
1308 /*
1309 * Cooperate with jobcontrol signals and /proc stopping.
1310 * If some other lwp has stopped by either of these
1311 * mechanisms, then p_lwprcnt will never become zero
1312 * and the process will appear deadlocked unless we
1313 * stop here in sympathy with the other lwp before
1314 * doing the cv_wait() below.
1315 *
1316 * If the other lwp stops after we do the cv_wait(), it
1317 * will wake us up to loop around and do the sympathy stop.
1318 *
1319 * Since stop() drops p->p_lock, we must start from
1320 * the top again on returning from stop().
1321 */
1322 if (p->p_stopsig | (curthread->t_proc_flag & TP_PRSTOP)) {
1323 int whystop = p->p_stopsig? PR_JOBCONTROL :
1324 PR_REQUESTED;
1325 p->p_lwprcnt++;
1326 p->p_flag &= ~holdflag;
1327 stop(whystop, p->p_stopsig);
1328 goto again;
1329 }
1330 cv_wait(&p->p_holdlwps, &p->p_lock);
1331 }
1332 p->p_lwprcnt++;
1333 p->p_flag &= ~holdflag;
1334 mutex_exit(&p->p_lock);
1335 return (1);
1336 }
1337
1338 /*
1339 * See comments for holdwatch(), below.
1340 */
1341 static int
holdcheck(int clearflags)1342 holdcheck(int clearflags)
1343 {
1344 proc_t *p = curproc;
1345
1346 /*
1347 * If we are trying to exit, that takes precedence over anything else.
1348 */
1349 if (p->p_flag & SEXITLWPS) {
1350 p->p_lwprcnt++;
1351 p->p_flag &= ~clearflags;
1352 lwp_exit();
1353 }
1354
1355 /*
1356 * If another thread is calling fork1(), stop the current thread so the
1357 * other can complete.
1358 */
1359 if (p->p_flag & SHOLDFORK1) {
1360 p->p_lwprcnt++;
1361 stop(PR_SUSPENDED, SUSPEND_NORMAL);
1362 if (p->p_flag & SEXITLWPS) {
1363 p->p_flag &= ~clearflags;
1364 lwp_exit();
1365 }
1366 return (-1);
1367 }
1368
1369 /*
1370 * If another thread is calling fork(), then indicate we are doing
1371 * watchpoint activity. This will cause holdlwps() above to stop the
1372 * forking thread, at which point we can continue with watchpoint
1373 * activity.
1374 */
1375 if (p->p_flag & SHOLDFORK) {
1376 p->p_lwprcnt++;
1377 while (p->p_flag & SHOLDFORK) {
1378 p->p_flag |= SHOLDWATCH;
1379 cv_broadcast(&p->p_holdlwps);
1380 cv_wait(&p->p_holdlwps, &p->p_lock);
1381 p->p_flag &= ~SHOLDWATCH;
1382 }
1383 return (-1);
1384 }
1385
1386 return (0);
1387 }
1388
1389 /*
1390 * Stop all lwps within the process, holding themselves in the kernel while the
1391 * active lwp undergoes watchpoint activity. This is more complicated than
1392 * expected because stop() relies on calling holdwatch() in order to copyin data
1393 * from the user's address space. A double barrier is used to prevent an
1394 * infinite loop.
1395 *
1396 * o The first thread into holdwatch() is the 'master' thread and does
1397 * the following:
1398 *
1399 * - Sets SHOLDWATCH on the current process
1400 * - Sets TP_WATCHSTOP on the current thread
1401 * - Waits for all threads to be either stopped or have
1402 * TP_WATCHSTOP set.
1403 * - Sets the SWATCHOK flag on the process
1404 * - Unsets TP_WATCHSTOP
1405 * - Waits for the other threads to completely stop
1406 * - Unsets SWATCHOK
1407 *
1408 * o If SHOLDWATCH is already set when we enter this function, then another
1409 * thread is already trying to stop this thread. This 'slave' thread
1410 * does the following:
1411 *
1412 * - Sets TP_WATCHSTOP on the current thread
1413 * - Waits for SWATCHOK flag to be set
1414 * - Calls stop()
1415 *
1416 * o If SWATCHOK is set on the process, then this function immediately
1417 * returns, as we must have been called via stop().
1418 *
1419 * In addition, there are other flags that take precedence over SHOLDWATCH:
1420 *
1421 * o If SEXITLWPS is set, exit immediately.
1422 *
1423 * o If SHOLDFORK1 is set, wait for fork1() to complete.
1424 *
1425 * o If SHOLDFORK is set, then watchpoint activity takes precedence In this
1426 * case, set SHOLDWATCH, signalling the forking thread to stop first.
1427 *
1428 * o If the process is being stopped via /proc (TP_PRSTOP is set), then we
1429 * stop the current thread.
1430 *
1431 * Returns 0 if all threads have been quiesced. Returns non-zero if not all
1432 * threads were stopped, or the list of watched pages has changed.
1433 */
1434 int
holdwatch(void)1435 holdwatch(void)
1436 {
1437 proc_t *p = curproc;
1438 kthread_t *t = curthread;
1439 int ret = 0;
1440
1441 mutex_enter(&p->p_lock);
1442
1443 p->p_lwprcnt--;
1444
1445 /*
1446 * Check for bail-out conditions as outlined above.
1447 */
1448 if (holdcheck(0) != 0) {
1449 mutex_exit(&p->p_lock);
1450 return (-1);
1451 }
1452
1453 if (!(p->p_flag & SHOLDWATCH)) {
1454 /*
1455 * We are the master watchpoint thread. Set SHOLDWATCH and poke
1456 * the other threads.
1457 */
1458 p->p_flag |= SHOLDWATCH;
1459 pokelwps(p);
1460
1461 /*
1462 * Wait for all threads to be stopped or have TP_WATCHSTOP set.
1463 */
1464 while (pr_allstopped(p, 1) > 0) {
1465 if (holdcheck(SHOLDWATCH) != 0) {
1466 p->p_flag &= ~SHOLDWATCH;
1467 mutex_exit(&p->p_lock);
1468 return (-1);
1469 }
1470
1471 cv_wait(&p->p_holdlwps, &p->p_lock);
1472 }
1473
1474 /*
1475 * All threads are now stopped or in the process of stopping.
1476 * Set SWATCHOK and let them stop completely.
1477 */
1478 p->p_flag |= SWATCHOK;
1479 t->t_proc_flag &= ~TP_WATCHSTOP;
1480 cv_broadcast(&p->p_holdlwps);
1481
1482 while (pr_allstopped(p, 0) > 0) {
1483 /*
1484 * At first glance, it may appear that we don't need a
1485 * call to holdcheck() here. But if the process gets a
1486 * SIGKILL signal, one of our stopped threads may have
1487 * been awakened and is waiting in exitlwps(), which
1488 * takes precedence over watchpoints.
1489 */
1490 if (holdcheck(SHOLDWATCH | SWATCHOK) != 0) {
1491 p->p_flag &= ~(SHOLDWATCH | SWATCHOK);
1492 mutex_exit(&p->p_lock);
1493 return (-1);
1494 }
1495
1496 cv_wait(&p->p_holdlwps, &p->p_lock);
1497 }
1498
1499 /*
1500 * All threads are now completely stopped.
1501 */
1502 p->p_flag &= ~SWATCHOK;
1503 p->p_flag &= ~SHOLDWATCH;
1504 p->p_lwprcnt++;
1505
1506 } else if (!(p->p_flag & SWATCHOK)) {
1507
1508 /*
1509 * SHOLDWATCH is set, so another thread is trying to do
1510 * watchpoint activity. Indicate this thread is stopping, and
1511 * wait for the OK from the master thread.
1512 */
1513 t->t_proc_flag |= TP_WATCHSTOP;
1514 cv_broadcast(&p->p_holdlwps);
1515
1516 while (!(p->p_flag & SWATCHOK)) {
1517 if (holdcheck(0) != 0) {
1518 t->t_proc_flag &= ~TP_WATCHSTOP;
1519 mutex_exit(&p->p_lock);
1520 return (-1);
1521 }
1522
1523 cv_wait(&p->p_holdlwps, &p->p_lock);
1524 }
1525
1526 /*
1527 * Once the master thread has given the OK, this thread can
1528 * actually call stop().
1529 */
1530 t->t_proc_flag &= ~TP_WATCHSTOP;
1531 p->p_lwprcnt++;
1532
1533 stop(PR_SUSPENDED, SUSPEND_NORMAL);
1534
1535 /*
1536 * It's not OK to do watchpoint activity, notify caller to
1537 * retry.
1538 */
1539 ret = -1;
1540
1541 } else {
1542
1543 /*
1544 * The only way we can hit the case where SHOLDWATCH is set and
1545 * SWATCHOK is set is if we are triggering this from within a
1546 * stop() call. Assert that this is the case.
1547 */
1548
1549 ASSERT(t->t_proc_flag & TP_STOPPING);
1550 p->p_lwprcnt++;
1551 }
1552
1553 mutex_exit(&p->p_lock);
1554
1555 return (ret);
1556 }
1557
1558 /*
1559 * force all interruptible lwps to trap into the kernel.
1560 */
1561 void
pokelwps(proc_t * p)1562 pokelwps(proc_t *p)
1563 {
1564 kthread_t *t;
1565
1566 ASSERT(MUTEX_HELD(&p->p_lock));
1567
1568 t = p->p_tlist;
1569 do {
1570 if (t == curthread)
1571 continue;
1572 thread_lock(t);
1573 aston(t); /* make thread trap or do post_syscall */
1574 if (ISWAKEABLE(t) || ISWAITING(t)) {
1575 setrun_locked(t);
1576 } else if (t->t_state == TS_STOPPED) {
1577 /*
1578 * Ensure that proc_exit() is not blocked by lwps
1579 * that were stopped via jobcontrol or /proc.
1580 */
1581 if (p->p_flag & SEXITLWPS) {
1582 p->p_stopsig = 0;
1583 t->t_schedflag |= (TS_XSTART | TS_PSTART);
1584 setrun_locked(t);
1585 }
1586 /*
1587 * If we are holding lwps for a forkall(),
1588 * force lwps that have been suspended via
1589 * lwp_suspend() and are suspended inside
1590 * of a system call to proceed to their
1591 * holdlwp() points where they are clonable.
1592 */
1593 if ((p->p_flag & SHOLDFORK) && SUSPENDED(t)) {
1594 if ((t->t_schedflag & TS_CSTART) == 0) {
1595 p->p_lwprcnt++;
1596 t->t_schedflag |= TS_CSTART;
1597 setrun_locked(t);
1598 }
1599 }
1600 } else if (t->t_state == TS_ONPROC) {
1601 if (t->t_cpu != CPU)
1602 poke_cpu(t->t_cpu->cpu_id);
1603 }
1604 thread_unlock(t);
1605 } while ((t = t->t_forw) != p->p_tlist);
1606 }
1607
1608 /*
1609 * undo the effects of holdlwps() or holdwatch().
1610 */
1611 void
continuelwps(proc_t * p)1612 continuelwps(proc_t *p)
1613 {
1614 kthread_t *t;
1615
1616 /*
1617 * If this flag is set, then the original holdwatch() didn't actually
1618 * stop the process. See comments for holdwatch().
1619 */
1620 if (p->p_flag & SWATCHOK) {
1621 ASSERT(curthread->t_proc_flag & TP_STOPPING);
1622 return;
1623 }
1624
1625 ASSERT(MUTEX_HELD(&p->p_lock));
1626 ASSERT((p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) == 0);
1627
1628 t = p->p_tlist;
1629 do {
1630 thread_lock(t); /* SUSPENDED looks at t_schedflag */
1631 if (SUSPENDED(t) && !(t->t_proc_flag & TP_HOLDLWP)) {
1632 p->p_lwprcnt++;
1633 t->t_schedflag |= TS_CSTART;
1634 setrun_locked(t);
1635 }
1636 thread_unlock(t);
1637 } while ((t = t->t_forw) != p->p_tlist);
1638 }
1639
1640 /*
1641 * Force all other LWPs in the current process other than the caller to exit,
1642 * and then cv_wait() on p_holdlwps for them to exit. The exitlwps() function
1643 * is typically used in these situations:
1644 *
1645 * (a) prior to an exec() system call
1646 * (b) prior to dumping a core file
1647 * (c) prior to a uadmin() shutdown
1648 *
1649 * If the 'coredump' flag is set, other LWPs are quiesced but not destroyed.
1650 * Multiple threads in the process can call this function at one time by
1651 * triggering execs or core dumps simultaneously, so the SEXITLWPS bit is used
1652 * to declare one particular thread the winner who gets to kill the others.
1653 * If a thread wins the exitlwps() dance, zero is returned; otherwise an
1654 * appropriate errno value is returned to caller for its system call to return.
1655 */
1656 int
exitlwps(int coredump)1657 exitlwps(int coredump)
1658 {
1659 proc_t *p = curproc;
1660 int heldcnt;
1661
1662 if (curthread->t_door)
1663 door_slam();
1664 if (p->p_door_list)
1665 door_revoke_all();
1666 if (curthread->t_schedctl != NULL)
1667 schedctl_lwp_cleanup(curthread);
1668
1669 /*
1670 * Ensure that before starting to wait for other lwps to exit,
1671 * cleanup all upimutexes held by curthread. Otherwise, some other
1672 * lwp could be waiting (uninterruptibly) for a upimutex held by
1673 * curthread, and the call to pokelwps() below would deadlock.
1674 * Even if a blocked upimutex_lock is made interruptible,
1675 * curthread's upimutexes need to be unlocked: do it here.
1676 */
1677 if (curthread->t_upimutex != NULL)
1678 upimutex_cleanup();
1679
1680 /*
1681 * Grab p_lock in order to check and set SEXITLWPS to declare a winner.
1682 * We must also block any further /proc access from this point forward.
1683 */
1684 mutex_enter(&p->p_lock);
1685 prbarrier(p);
1686
1687 if (p->p_flag & SEXITLWPS) {
1688 mutex_exit(&p->p_lock);
1689 aston(curthread); /* force a trip through post_syscall */
1690 return (set_errno(EINTR));
1691 }
1692
1693 p->p_flag |= SEXITLWPS;
1694 if (coredump) /* tell other lwps to stop, not exit */
1695 p->p_flag |= SCOREDUMP;
1696
1697 /*
1698 * Give precedence to exitlwps() if a holdlwps() is
1699 * in progress. The lwp doing the holdlwps() operation
1700 * is aborted when it is awakened.
1701 */
1702 while (p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) {
1703 cv_broadcast(&p->p_holdlwps);
1704 cv_wait(&p->p_holdlwps, &p->p_lock);
1705 prbarrier(p);
1706 }
1707 p->p_flag |= SHOLDFORK;
1708 pokelwps(p);
1709
1710 /*
1711 * Wait for process to become quiescent.
1712 */
1713 --p->p_lwprcnt;
1714 while (p->p_lwprcnt > 0) {
1715 cv_wait(&p->p_holdlwps, &p->p_lock);
1716 prbarrier(p);
1717 }
1718 p->p_lwprcnt++;
1719 ASSERT(p->p_lwprcnt == 1);
1720
1721 /*
1722 * The SCOREDUMP flag puts the process into a quiescent
1723 * state. The process's lwps remain attached to this
1724 * process until exitlwps() is called again without the
1725 * 'coredump' flag set, then the lwps are terminated
1726 * and the process can exit.
1727 */
1728 if (coredump) {
1729 p->p_flag &= ~(SCOREDUMP | SHOLDFORK | SEXITLWPS);
1730 goto out;
1731 }
1732
1733 /*
1734 * Determine if there are any lwps left dangling in
1735 * the stopped state. This happens when exitlwps()
1736 * aborts a holdlwps() operation.
1737 */
1738 p->p_flag &= ~SHOLDFORK;
1739 if ((heldcnt = p->p_lwpcnt) > 1) {
1740 kthread_t *t;
1741 for (t = curthread->t_forw; --heldcnt > 0; t = t->t_forw) {
1742 t->t_proc_flag &= ~TP_TWAIT;
1743 lwp_continue(t);
1744 }
1745 }
1746
1747 /*
1748 * Wait for all other lwps to exit.
1749 */
1750 --p->p_lwprcnt;
1751 while (p->p_lwpcnt > 1) {
1752 cv_wait(&p->p_holdlwps, &p->p_lock);
1753 prbarrier(p);
1754 }
1755 ++p->p_lwprcnt;
1756 ASSERT(p->p_lwpcnt == 1 && p->p_lwprcnt == 1);
1757
1758 p->p_flag &= ~SEXITLWPS;
1759 curthread->t_proc_flag &= ~TP_TWAIT;
1760
1761 out:
1762 if (!coredump && p->p_zombcnt) { /* cleanup the zombie lwps */
1763 lwpdir_t *ldp;
1764 lwpent_t *lep;
1765 int i;
1766
1767 for (ldp = p->p_lwpdir, i = 0; i < p->p_lwpdir_sz; i++, ldp++) {
1768 lep = ldp->ld_entry;
1769 if (lep != NULL && lep->le_thread != curthread) {
1770 ASSERT(lep->le_thread == NULL);
1771 p->p_zombcnt--;
1772 lwp_hash_out(p, lep->le_lwpid);
1773 }
1774 }
1775 ASSERT(p->p_zombcnt == 0);
1776 }
1777
1778 /*
1779 * If some other LWP in the process wanted us to suspend ourself,
1780 * then we will not do it. The other LWP is now terminated and
1781 * no one will ever continue us again if we suspend ourself.
1782 */
1783 curthread->t_proc_flag &= ~TP_HOLDLWP;
1784 p->p_flag &= ~(SHOLDFORK | SHOLDFORK1 | SHOLDWATCH | SLWPWRAP);
1785 mutex_exit(&p->p_lock);
1786 return (0);
1787 }
1788
1789 /*
1790 * duplicate a lwp.
1791 */
1792 klwp_t *
forklwp(klwp_t * lwp,proc_t * cp,id_t lwpid)1793 forklwp(klwp_t *lwp, proc_t *cp, id_t lwpid)
1794 {
1795 klwp_t *clwp;
1796 void *tregs, *tfpu;
1797 kthread_t *t = lwptot(lwp);
1798 kthread_t *ct;
1799 proc_t *p = lwptoproc(lwp);
1800 int cid;
1801 void *bufp;
1802 void *brand_data;
1803 int val;
1804
1805 ASSERT(p == curproc);
1806 ASSERT(t == curthread || (SUSPENDED(t) && lwp->lwp_asleep == 0));
1807
1808 #if defined(__sparc)
1809 if (t == curthread)
1810 (void) flush_user_windows_to_stack(NULL);
1811 #endif
1812
1813 if (t == curthread)
1814 /* copy args out of registers first */
1815 (void) save_syscall_args();
1816
1817 clwp = lwp_create(cp->p_lwpcnt == 0 ? lwp_rtt_initial : lwp_rtt,
1818 NULL, 0, cp, TS_STOPPED, t->t_pri, &t->t_hold, NOCLASS, lwpid);
1819 if (clwp == NULL)
1820 return (NULL);
1821
1822 /*
1823 * most of the parent's lwp can be copied to its duplicate,
1824 * except for the fields that are unique to each lwp, like
1825 * lwp_thread, lwp_procp, lwp_regs, and lwp_ap.
1826 */
1827 ct = clwp->lwp_thread;
1828 tregs = clwp->lwp_regs;
1829 tfpu = clwp->lwp_fpu;
1830 brand_data = clwp->lwp_brand;
1831
1832 /*
1833 * Copy parent lwp to child lwp. Hold child's p_lock to prevent
1834 * mstate_aggr_state() from reading stale mstate entries copied
1835 * from lwp to clwp.
1836 */
1837 mutex_enter(&cp->p_lock);
1838 *clwp = *lwp;
1839
1840 /* clear microstate and resource usage data in new lwp */
1841 init_mstate(ct, LMS_STOPPED);
1842 bzero(&clwp->lwp_ru, sizeof (clwp->lwp_ru));
1843 mutex_exit(&cp->p_lock);
1844
1845 /* fix up child's lwp */
1846
1847 clwp->lwp_pcb.pcb_flags = 0;
1848 #if defined(__sparc)
1849 clwp->lwp_pcb.pcb_step = STEP_NONE;
1850 #endif
1851 clwp->lwp_cursig = 0;
1852 clwp->lwp_extsig = 0;
1853 clwp->lwp_curinfo = (struct sigqueue *)0;
1854 clwp->lwp_thread = ct;
1855 ct->t_sysnum = t->t_sysnum;
1856 clwp->lwp_regs = tregs;
1857 clwp->lwp_fpu = tfpu;
1858 clwp->lwp_brand = brand_data;
1859 clwp->lwp_ap = clwp->lwp_arg;
1860 clwp->lwp_procp = cp;
1861 bzero(clwp->lwp_timer, sizeof (clwp->lwp_timer));
1862 clwp->lwp_lastfault = 0;
1863 clwp->lwp_lastfaddr = 0;
1864
1865 /* copy parent's struct regs to child. */
1866 lwp_forkregs(lwp, clwp);
1867
1868 /*
1869 * Fork thread context ops, if any.
1870 */
1871 if (t->t_ctx)
1872 forkctx(t, ct);
1873
1874 /* fix door state in the child */
1875 if (t->t_door)
1876 door_fork(t, ct);
1877
1878 /* copy current contract templates, clear latest contracts */
1879 lwp_ctmpl_copy(clwp, lwp);
1880
1881 mutex_enter(&cp->p_lock);
1882 /* lwp_create() set the TP_HOLDLWP flag */
1883 if (!(t->t_proc_flag & TP_HOLDLWP))
1884 ct->t_proc_flag &= ~TP_HOLDLWP;
1885 if (cp->p_flag & SMSACCT)
1886 ct->t_proc_flag |= TP_MSACCT;
1887 mutex_exit(&cp->p_lock);
1888
1889 /* Allow brand to propagate brand-specific state */
1890 if (PROC_IS_BRANDED(p))
1891 BROP(p)->b_forklwp(lwp, clwp);
1892
1893 retry:
1894 cid = t->t_cid;
1895
1896 val = CL_ALLOC(&bufp, cid, KM_SLEEP);
1897 ASSERT(val == 0);
1898
1899 mutex_enter(&p->p_lock);
1900 if (cid != t->t_cid) {
1901 /*
1902 * Someone just changed this thread's scheduling class,
1903 * so try pre-allocating the buffer again. Hopefully we
1904 * don't hit this often.
1905 */
1906 mutex_exit(&p->p_lock);
1907 CL_FREE(cid, bufp);
1908 goto retry;
1909 }
1910
1911 ct->t_unpark = t->t_unpark;
1912 ct->t_clfuncs = t->t_clfuncs;
1913 CL_FORK(t, ct, bufp);
1914 ct->t_cid = t->t_cid; /* after data allocated so prgetpsinfo works */
1915 mutex_exit(&p->p_lock);
1916
1917 return (clwp);
1918 }
1919
1920 /*
1921 * Add a new lwp entry to the lwp directory and to the lwpid hash table.
1922 */
1923 void
lwp_hash_in(proc_t * p,lwpent_t * lep,tidhash_t * tidhash,uint_t tidhash_sz,int do_lock)1924 lwp_hash_in(proc_t *p, lwpent_t *lep, tidhash_t *tidhash, uint_t tidhash_sz,
1925 int do_lock)
1926 {
1927 tidhash_t *thp = &tidhash[TIDHASH(lep->le_lwpid, tidhash_sz)];
1928 lwpdir_t **ldpp;
1929 lwpdir_t *ldp;
1930 kthread_t *t;
1931
1932 /*
1933 * Allocate a directory element from the free list.
1934 * Code elsewhere guarantees a free slot.
1935 */
1936 ldp = p->p_lwpfree;
1937 p->p_lwpfree = ldp->ld_next;
1938 ASSERT(ldp->ld_entry == NULL);
1939 ldp->ld_entry = lep;
1940
1941 if (do_lock)
1942 mutex_enter(&thp->th_lock);
1943
1944 /*
1945 * Insert it into the lwpid hash table.
1946 */
1947 ldpp = &thp->th_list;
1948 ldp->ld_next = *ldpp;
1949 *ldpp = ldp;
1950
1951 /*
1952 * Set the active thread's directory slot entry.
1953 */
1954 if ((t = lep->le_thread) != NULL) {
1955 ASSERT(lep->le_lwpid == t->t_tid);
1956 t->t_dslot = (int)(ldp - p->p_lwpdir);
1957 }
1958
1959 if (do_lock)
1960 mutex_exit(&thp->th_lock);
1961 }
1962
1963 /*
1964 * Remove an lwp from the lwpid hash table and free its directory entry.
1965 * This is done when a detached lwp exits in lwp_exit() or
1966 * when a non-detached lwp is waited for in lwp_wait() or
1967 * when a zombie lwp is detached in lwp_detach().
1968 */
1969 void
lwp_hash_out(proc_t * p,id_t lwpid)1970 lwp_hash_out(proc_t *p, id_t lwpid)
1971 {
1972 tidhash_t *thp = &p->p_tidhash[TIDHASH(lwpid, p->p_tidhash_sz)];
1973 lwpdir_t **ldpp;
1974 lwpdir_t *ldp;
1975 lwpent_t *lep;
1976
1977 mutex_enter(&thp->th_lock);
1978 for (ldpp = &thp->th_list;
1979 (ldp = *ldpp) != NULL; ldpp = &ldp->ld_next) {
1980 lep = ldp->ld_entry;
1981 if (lep->le_lwpid == lwpid) {
1982 prlwpfree(p, lep); /* /proc deals with le_trace */
1983 *ldpp = ldp->ld_next;
1984 ldp->ld_entry = NULL;
1985 ldp->ld_next = p->p_lwpfree;
1986 p->p_lwpfree = ldp;
1987 kmem_free(lep, sizeof (*lep));
1988 break;
1989 }
1990 }
1991 mutex_exit(&thp->th_lock);
1992 }
1993
1994 /*
1995 * Lookup an lwp in the lwpid hash table by lwpid.
1996 */
1997 lwpdir_t *
lwp_hash_lookup(proc_t * p,id_t lwpid)1998 lwp_hash_lookup(proc_t *p, id_t lwpid)
1999 {
2000 tidhash_t *thp;
2001 lwpdir_t *ldp;
2002
2003 /*
2004 * The process may be exiting, after p_tidhash has been set to NULL in
2005 * proc_exit() but before prfee() has been called. Return failure in
2006 * this case.
2007 */
2008 if (p->p_tidhash == NULL)
2009 return (NULL);
2010
2011 thp = &p->p_tidhash[TIDHASH(lwpid, p->p_tidhash_sz)];
2012 for (ldp = thp->th_list; ldp != NULL; ldp = ldp->ld_next) {
2013 if (ldp->ld_entry->le_lwpid == lwpid)
2014 return (ldp);
2015 }
2016
2017 return (NULL);
2018 }
2019
2020 /*
2021 * Same as lwp_hash_lookup(), but acquire and return
2022 * the tid hash table entry lock on success.
2023 */
2024 lwpdir_t *
lwp_hash_lookup_and_lock(proc_t * p,id_t lwpid,kmutex_t ** mpp)2025 lwp_hash_lookup_and_lock(proc_t *p, id_t lwpid, kmutex_t **mpp)
2026 {
2027 tidhash_t *tidhash;
2028 uint_t tidhash_sz;
2029 tidhash_t *thp;
2030 lwpdir_t *ldp;
2031
2032 top:
2033 tidhash_sz = p->p_tidhash_sz;
2034 membar_consumer();
2035 if ((tidhash = p->p_tidhash) == NULL)
2036 return (NULL);
2037
2038 thp = &tidhash[TIDHASH(lwpid, tidhash_sz)];
2039 mutex_enter(&thp->th_lock);
2040
2041 /*
2042 * Since we are not holding p->p_lock, the tid hash table
2043 * may have changed. If so, start over. If not, then
2044 * it cannot change until after we drop &thp->th_lock;
2045 */
2046 if (tidhash != p->p_tidhash || tidhash_sz != p->p_tidhash_sz) {
2047 mutex_exit(&thp->th_lock);
2048 goto top;
2049 }
2050
2051 for (ldp = thp->th_list; ldp != NULL; ldp = ldp->ld_next) {
2052 if (ldp->ld_entry->le_lwpid == lwpid) {
2053 *mpp = &thp->th_lock;
2054 return (ldp);
2055 }
2056 }
2057
2058 mutex_exit(&thp->th_lock);
2059 return (NULL);
2060 }
2061
2062 /*
2063 * Update the indicated LWP usage statistic for the current LWP.
2064 */
2065 void
lwp_stat_update(lwp_stat_id_t lwp_stat_id,long inc)2066 lwp_stat_update(lwp_stat_id_t lwp_stat_id, long inc)
2067 {
2068 klwp_t *lwp = ttolwp(curthread);
2069
2070 if (lwp == NULL)
2071 return;
2072
2073 switch (lwp_stat_id) {
2074 case LWP_STAT_INBLK:
2075 lwp->lwp_ru.inblock += inc;
2076 break;
2077 case LWP_STAT_OUBLK:
2078 lwp->lwp_ru.oublock += inc;
2079 break;
2080 case LWP_STAT_MSGRCV:
2081 lwp->lwp_ru.msgrcv += inc;
2082 break;
2083 case LWP_STAT_MSGSND:
2084 lwp->lwp_ru.msgsnd += inc;
2085 break;
2086 default:
2087 panic("lwp_stat_update: invalid lwp_stat_id 0x%x", lwp_stat_id);
2088 }
2089 }
2090