xref: /linux/drivers/gpu/drm/i915/display/intel_hdcp.c (revision df02351331671abb26788bc13f6d276e26ae068f)
1 /* SPDX-License-Identifier: MIT */
2 /*
3  * Copyright (C) 2017 Google, Inc.
4  * Copyright _ 2017-2019, Intel Corporation.
5  *
6  * Authors:
7  * Sean Paul <seanpaul@chromium.org>
8  * Ramalingam C <ramalingam.c@intel.com>
9  */
10 
11 #include <linux/component.h>
12 #include <linux/debugfs.h>
13 #include <linux/i2c.h>
14 #include <linux/random.h>
15 
16 #include <drm/display/drm_hdcp_helper.h>
17 #include <drm/intel/i915_component.h>
18 
19 #include "i915_drv.h"
20 #include "i915_reg.h"
21 #include "intel_connector.h"
22 #include "intel_de.h"
23 #include "intel_display_power.h"
24 #include "intel_display_power_well.h"
25 #include "intel_display_types.h"
26 #include "intel_hdcp.h"
27 #include "intel_hdcp_gsc.h"
28 #include "intel_hdcp_regs.h"
29 #include "intel_hdcp_shim.h"
30 #include "intel_pcode.h"
31 
32 #define KEY_LOAD_TRIES	5
33 #define HDCP2_LC_RETRY_CNT			3
34 
35 static void
intel_hdcp_adjust_hdcp_line_rekeying(struct intel_encoder * encoder,struct intel_hdcp * hdcp,bool enable)36 intel_hdcp_adjust_hdcp_line_rekeying(struct intel_encoder *encoder,
37 				     struct intel_hdcp *hdcp,
38 				     bool enable)
39 {
40 	struct intel_display *display = to_intel_display(encoder);
41 	i915_reg_t rekey_reg;
42 	u32 rekey_bit = 0;
43 
44 	/* Here we assume HDMI is in TMDS mode of operation */
45 	if (!intel_encoder_is_hdmi(encoder))
46 		return;
47 
48 	if (DISPLAY_VER(display) >= 30) {
49 		rekey_reg = TRANS_DDI_FUNC_CTL(display, hdcp->cpu_transcoder);
50 		rekey_bit = XE3_TRANS_DDI_HDCP_LINE_REKEY_DISABLE;
51 	} else if (IS_DISPLAY_VERx100_STEP(display, 1401, STEP_B0, STEP_FOREVER) ||
52 		   IS_DISPLAY_VERx100_STEP(display, 2000, STEP_B0, STEP_FOREVER)) {
53 		rekey_reg = TRANS_DDI_FUNC_CTL(display, hdcp->cpu_transcoder);
54 		rekey_bit = TRANS_DDI_HDCP_LINE_REKEY_DISABLE;
55 	} else if (IS_DISPLAY_VERx100_STEP(display, 1400, STEP_D0, STEP_FOREVER)) {
56 		rekey_reg = CHICKEN_TRANS(display, hdcp->cpu_transcoder);
57 		rekey_bit = HDCP_LINE_REKEY_DISABLE;
58 	}
59 
60 	if (rekey_bit)
61 		intel_de_rmw(display, rekey_reg, rekey_bit, enable ? 0 : rekey_bit);
62 }
63 
intel_conn_to_vcpi(struct intel_atomic_state * state,struct intel_connector * connector)64 static int intel_conn_to_vcpi(struct intel_atomic_state *state,
65 			      struct intel_connector *connector)
66 {
67 	struct drm_dp_mst_topology_mgr *mgr;
68 	struct drm_dp_mst_atomic_payload *payload;
69 	struct drm_dp_mst_topology_state *mst_state;
70 	int vcpi = 0;
71 
72 	/* For HDMI this is forced to be 0x0. For DP SST also this is 0x0. */
73 	if (!connector->mst.port)
74 		return 0;
75 	mgr = connector->mst.port->mgr;
76 
77 	drm_modeset_lock(&mgr->base.lock, state->base.acquire_ctx);
78 	mst_state = to_drm_dp_mst_topology_state(mgr->base.state);
79 	payload = drm_atomic_get_mst_payload_state(mst_state, connector->mst.port);
80 	if (drm_WARN_ON(mgr->dev, !payload))
81 		goto out;
82 
83 	vcpi = payload->vcpi;
84 	if (drm_WARN_ON(mgr->dev, vcpi < 0)) {
85 		vcpi = 0;
86 		goto out;
87 	}
88 out:
89 	return vcpi;
90 }
91 
92 /*
93  * intel_hdcp_required_content_stream selects the most highest common possible HDCP
94  * content_type for all streams in DP MST topology because security f/w doesn't
95  * have any provision to mark content_type for each stream separately, it marks
96  * all available streams with the content_type proivided at the time of port
97  * authentication. This may prohibit the userspace to use type1 content on
98  * HDCP 2.2 capable sink because of other sink are not capable of HDCP 2.2 in
99  * DP MST topology. Though it is not compulsory, security fw should change its
100  * policy to mark different content_types for different streams.
101  */
102 static int
intel_hdcp_required_content_stream(struct intel_atomic_state * state,struct intel_digital_port * dig_port)103 intel_hdcp_required_content_stream(struct intel_atomic_state *state,
104 				   struct intel_digital_port *dig_port)
105 {
106 	struct intel_display *display = to_intel_display(state);
107 	struct drm_connector_list_iter conn_iter;
108 	struct intel_digital_port *conn_dig_port;
109 	struct intel_connector *connector;
110 	struct hdcp_port_data *data = &dig_port->hdcp.port_data;
111 	bool enforce_type0 = false;
112 	int k;
113 
114 	if (dig_port->hdcp.auth_status)
115 		return 0;
116 
117 	data->k = 0;
118 
119 	if (!dig_port->hdcp.mst_type1_capable)
120 		enforce_type0 = true;
121 
122 	drm_connector_list_iter_begin(display->drm, &conn_iter);
123 	for_each_intel_connector_iter(connector, &conn_iter) {
124 		if (connector->base.status == connector_status_disconnected)
125 			continue;
126 
127 		if (!intel_encoder_is_mst(intel_attached_encoder(connector)))
128 			continue;
129 
130 		conn_dig_port = intel_attached_dig_port(connector);
131 		if (conn_dig_port != dig_port)
132 			continue;
133 
134 		data->streams[data->k].stream_id =
135 			intel_conn_to_vcpi(state, connector);
136 		data->k++;
137 
138 		/* if there is only one active stream */
139 		if (dig_port->dp.mst.active_links <= 1)
140 			break;
141 	}
142 	drm_connector_list_iter_end(&conn_iter);
143 
144 	if (drm_WARN_ON(display->drm, data->k > INTEL_NUM_PIPES(display) || data->k == 0))
145 		return -EINVAL;
146 
147 	/*
148 	 * Apply common protection level across all streams in DP MST Topology.
149 	 * Use highest supported content type for all streams in DP MST Topology.
150 	 */
151 	for (k = 0; k < data->k; k++)
152 		data->streams[k].stream_type =
153 			enforce_type0 ? DRM_MODE_HDCP_CONTENT_TYPE0 : DRM_MODE_HDCP_CONTENT_TYPE1;
154 
155 	return 0;
156 }
157 
intel_hdcp_prepare_streams(struct intel_atomic_state * state,struct intel_connector * connector)158 static int intel_hdcp_prepare_streams(struct intel_atomic_state *state,
159 				      struct intel_connector *connector)
160 {
161 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
162 	struct hdcp_port_data *data = &dig_port->hdcp.port_data;
163 	struct intel_hdcp *hdcp = &connector->hdcp;
164 
165 	if (intel_encoder_is_mst(intel_attached_encoder(connector)))
166 		return intel_hdcp_required_content_stream(state, dig_port);
167 
168 	data->k = 1;
169 	data->streams[0].stream_id = 0;
170 	data->streams[0].stream_type = hdcp->content_type;
171 
172 	return 0;
173 }
174 
175 static
intel_hdcp_is_ksv_valid(u8 * ksv)176 bool intel_hdcp_is_ksv_valid(u8 *ksv)
177 {
178 	int i, ones = 0;
179 	/* KSV has 20 1's and 20 0's */
180 	for (i = 0; i < DRM_HDCP_KSV_LEN; i++)
181 		ones += hweight8(ksv[i]);
182 	if (ones != 20)
183 		return false;
184 
185 	return true;
186 }
187 
188 static
intel_hdcp_read_valid_bksv(struct intel_digital_port * dig_port,const struct intel_hdcp_shim * shim,u8 * bksv)189 int intel_hdcp_read_valid_bksv(struct intel_digital_port *dig_port,
190 			       const struct intel_hdcp_shim *shim, u8 *bksv)
191 {
192 	struct intel_display *display = to_intel_display(dig_port);
193 	int ret, i, tries = 2;
194 
195 	/* HDCP spec states that we must retry the bksv if it is invalid */
196 	for (i = 0; i < tries; i++) {
197 		ret = shim->read_bksv(dig_port, bksv);
198 		if (ret)
199 			return ret;
200 		if (intel_hdcp_is_ksv_valid(bksv))
201 			break;
202 	}
203 	if (i == tries) {
204 		drm_dbg_kms(display->drm, "Bksv is invalid\n");
205 		return -ENODEV;
206 	}
207 
208 	return 0;
209 }
210 
211 /* Is HDCP1.4 capable on Platform and Sink */
intel_hdcp_get_capability(struct intel_connector * connector)212 static bool intel_hdcp_get_capability(struct intel_connector *connector)
213 {
214 	struct intel_digital_port *dig_port;
215 	const struct intel_hdcp_shim *shim = connector->hdcp.shim;
216 	bool capable = false;
217 	u8 bksv[5];
218 
219 	if (!intel_attached_encoder(connector))
220 		return capable;
221 
222 	dig_port = intel_attached_dig_port(connector);
223 
224 	if (!shim)
225 		return capable;
226 
227 	if (shim->hdcp_get_capability) {
228 		shim->hdcp_get_capability(dig_port, &capable);
229 	} else {
230 		if (!intel_hdcp_read_valid_bksv(dig_port, shim, bksv))
231 			capable = true;
232 	}
233 
234 	return capable;
235 }
236 
237 /*
238  * Check if the source has all the building blocks ready to make
239  * HDCP 2.2 work
240  */
intel_hdcp2_prerequisite(struct intel_connector * connector)241 static bool intel_hdcp2_prerequisite(struct intel_connector *connector)
242 {
243 	struct intel_display *display = to_intel_display(connector);
244 	struct intel_hdcp *hdcp = &connector->hdcp;
245 
246 	/* I915 support for HDCP2.2 */
247 	if (!hdcp->hdcp2_supported)
248 		return false;
249 
250 	/* If MTL+ make sure gsc is loaded and proxy is setup */
251 	if (intel_hdcp_gsc_cs_required(display)) {
252 		if (!intel_hdcp_gsc_check_status(display))
253 			return false;
254 	}
255 
256 	/* MEI/GSC interface is solid depending on which is used */
257 	mutex_lock(&display->hdcp.hdcp_mutex);
258 	if (!display->hdcp.comp_added || !display->hdcp.arbiter) {
259 		mutex_unlock(&display->hdcp.hdcp_mutex);
260 		return false;
261 	}
262 	mutex_unlock(&display->hdcp.hdcp_mutex);
263 
264 	return true;
265 }
266 
267 /* Is HDCP2.2 capable on Platform and Sink */
intel_hdcp2_get_capability(struct intel_connector * connector)268 static bool intel_hdcp2_get_capability(struct intel_connector *connector)
269 {
270 	struct intel_hdcp *hdcp = &connector->hdcp;
271 	bool capable = false;
272 
273 	if (!intel_hdcp2_prerequisite(connector))
274 		return false;
275 
276 	/* Sink's capability for HDCP2.2 */
277 	hdcp->shim->hdcp_2_2_get_capability(connector, &capable);
278 
279 	return capable;
280 }
281 
intel_hdcp_get_remote_capability(struct intel_connector * connector,bool * hdcp_capable,bool * hdcp2_capable)282 static void intel_hdcp_get_remote_capability(struct intel_connector *connector,
283 					     bool *hdcp_capable,
284 					     bool *hdcp2_capable)
285 {
286 	struct intel_hdcp *hdcp = &connector->hdcp;
287 
288 	if (!hdcp->shim->get_remote_hdcp_capability)
289 		return;
290 
291 	hdcp->shim->get_remote_hdcp_capability(connector, hdcp_capable,
292 					       hdcp2_capable);
293 
294 	if (!intel_hdcp2_prerequisite(connector))
295 		*hdcp2_capable = false;
296 }
297 
intel_hdcp_in_use(struct intel_display * display,enum transcoder cpu_transcoder,enum port port)298 static bool intel_hdcp_in_use(struct intel_display *display,
299 			      enum transcoder cpu_transcoder, enum port port)
300 {
301 	return intel_de_read(display,
302 			     HDCP_STATUS(display, cpu_transcoder, port)) &
303 		HDCP_STATUS_ENC;
304 }
305 
intel_hdcp2_in_use(struct intel_display * display,enum transcoder cpu_transcoder,enum port port)306 static bool intel_hdcp2_in_use(struct intel_display *display,
307 			       enum transcoder cpu_transcoder, enum port port)
308 {
309 	return intel_de_read(display,
310 			     HDCP2_STATUS(display, cpu_transcoder, port)) &
311 		LINK_ENCRYPTION_STATUS;
312 }
313 
intel_hdcp_poll_ksv_fifo(struct intel_digital_port * dig_port,const struct intel_hdcp_shim * shim)314 static int intel_hdcp_poll_ksv_fifo(struct intel_digital_port *dig_port,
315 				    const struct intel_hdcp_shim *shim)
316 {
317 	int ret, read_ret;
318 	bool ksv_ready;
319 
320 	/* Poll for ksv list ready (spec says max time allowed is 5s) */
321 	ret = __wait_for(read_ret = shim->read_ksv_ready(dig_port,
322 							 &ksv_ready),
323 			 read_ret || ksv_ready, 5 * 1000 * 1000, 1000,
324 			 100 * 1000);
325 	if (ret)
326 		return ret;
327 	if (read_ret)
328 		return read_ret;
329 	if (!ksv_ready)
330 		return -ETIMEDOUT;
331 
332 	return 0;
333 }
334 
hdcp_key_loadable(struct intel_display * display)335 static bool hdcp_key_loadable(struct intel_display *display)
336 {
337 	struct drm_i915_private *i915 = to_i915(display->drm);
338 	enum i915_power_well_id id;
339 	intel_wakeref_t wakeref;
340 	bool enabled = false;
341 
342 	/*
343 	 * On HSW and BDW, Display HW loads the Key as soon as Display resumes.
344 	 * On all BXT+, SW can load the keys only when the PW#1 is turned on.
345 	 */
346 	if (display->platform.haswell || display->platform.broadwell)
347 		id = HSW_DISP_PW_GLOBAL;
348 	else
349 		id = SKL_DISP_PW_1;
350 
351 	/* PG1 (power well #1) needs to be enabled */
352 	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
353 		enabled = intel_display_power_well_is_enabled(display, id);
354 
355 	/*
356 	 * Another req for hdcp key loadability is enabled state of pll for
357 	 * cdclk. Without active crtc we won't land here. So we are assuming that
358 	 * cdclk is already on.
359 	 */
360 
361 	return enabled;
362 }
363 
intel_hdcp_clear_keys(struct intel_display * display)364 static void intel_hdcp_clear_keys(struct intel_display *display)
365 {
366 	intel_de_write(display, HDCP_KEY_CONF, HDCP_CLEAR_KEYS_TRIGGER);
367 	intel_de_write(display, HDCP_KEY_STATUS,
368 		       HDCP_KEY_LOAD_DONE | HDCP_KEY_LOAD_STATUS | HDCP_FUSE_IN_PROGRESS | HDCP_FUSE_ERROR | HDCP_FUSE_DONE);
369 }
370 
intel_hdcp_load_keys(struct intel_display * display)371 static int intel_hdcp_load_keys(struct intel_display *display)
372 {
373 	struct drm_i915_private *i915 = to_i915(display->drm);
374 	int ret;
375 	u32 val;
376 
377 	val = intel_de_read(display, HDCP_KEY_STATUS);
378 	if ((val & HDCP_KEY_LOAD_DONE) && (val & HDCP_KEY_LOAD_STATUS))
379 		return 0;
380 
381 	/*
382 	 * On HSW and BDW HW loads the HDCP1.4 Key when Display comes
383 	 * out of reset. So if Key is not already loaded, its an error state.
384 	 */
385 	if (display->platform.haswell || display->platform.broadwell)
386 		if (!(intel_de_read(display, HDCP_KEY_STATUS) & HDCP_KEY_LOAD_DONE))
387 			return -ENXIO;
388 
389 	/*
390 	 * Initiate loading the HDCP key from fuses.
391 	 *
392 	 * BXT+ platforms, HDCP key needs to be loaded by SW. Only display
393 	 * version 9 platforms (minus BXT) differ in the key load trigger
394 	 * process from other platforms. These platforms use the GT Driver
395 	 * Mailbox interface.
396 	 */
397 	if (DISPLAY_VER(display) == 9 && !display->platform.broxton) {
398 		ret = snb_pcode_write(&i915->uncore, SKL_PCODE_LOAD_HDCP_KEYS, 1);
399 		if (ret) {
400 			drm_err(display->drm,
401 				"Failed to initiate HDCP key load (%d)\n",
402 				ret);
403 			return ret;
404 		}
405 	} else {
406 		intel_de_write(display, HDCP_KEY_CONF, HDCP_KEY_LOAD_TRIGGER);
407 	}
408 
409 	/* Wait for the keys to load (500us) */
410 	ret = intel_de_wait_custom(display, HDCP_KEY_STATUS,
411 				   HDCP_KEY_LOAD_DONE, HDCP_KEY_LOAD_DONE,
412 				   10, 1, &val);
413 	if (ret)
414 		return ret;
415 	else if (!(val & HDCP_KEY_LOAD_STATUS))
416 		return -ENXIO;
417 
418 	/* Send Aksv over to PCH display for use in authentication */
419 	intel_de_write(display, HDCP_KEY_CONF, HDCP_AKSV_SEND_TRIGGER);
420 
421 	return 0;
422 }
423 
424 /* Returns updated SHA-1 index */
intel_write_sha_text(struct intel_display * display,u32 sha_text)425 static int intel_write_sha_text(struct intel_display *display, u32 sha_text)
426 {
427 	intel_de_write(display, HDCP_SHA_TEXT, sha_text);
428 	if (intel_de_wait_for_set(display, HDCP_REP_CTL, HDCP_SHA1_READY, 1)) {
429 		drm_err(display->drm, "Timed out waiting for SHA1 ready\n");
430 		return -ETIMEDOUT;
431 	}
432 	return 0;
433 }
434 
435 static
intel_hdcp_get_repeater_ctl(struct intel_display * display,enum transcoder cpu_transcoder,enum port port)436 u32 intel_hdcp_get_repeater_ctl(struct intel_display *display,
437 				enum transcoder cpu_transcoder, enum port port)
438 {
439 	if (DISPLAY_VER(display) >= 12) {
440 		switch (cpu_transcoder) {
441 		case TRANSCODER_A:
442 			return HDCP_TRANSA_REP_PRESENT |
443 			       HDCP_TRANSA_SHA1_M0;
444 		case TRANSCODER_B:
445 			return HDCP_TRANSB_REP_PRESENT |
446 			       HDCP_TRANSB_SHA1_M0;
447 		case TRANSCODER_C:
448 			return HDCP_TRANSC_REP_PRESENT |
449 			       HDCP_TRANSC_SHA1_M0;
450 		case TRANSCODER_D:
451 			return HDCP_TRANSD_REP_PRESENT |
452 			       HDCP_TRANSD_SHA1_M0;
453 		default:
454 			drm_err(display->drm, "Unknown transcoder %d\n",
455 				cpu_transcoder);
456 			return 0;
457 		}
458 	}
459 
460 	switch (port) {
461 	case PORT_A:
462 		return HDCP_DDIA_REP_PRESENT | HDCP_DDIA_SHA1_M0;
463 	case PORT_B:
464 		return HDCP_DDIB_REP_PRESENT | HDCP_DDIB_SHA1_M0;
465 	case PORT_C:
466 		return HDCP_DDIC_REP_PRESENT | HDCP_DDIC_SHA1_M0;
467 	case PORT_D:
468 		return HDCP_DDID_REP_PRESENT | HDCP_DDID_SHA1_M0;
469 	case PORT_E:
470 		return HDCP_DDIE_REP_PRESENT | HDCP_DDIE_SHA1_M0;
471 	default:
472 		drm_err(display->drm, "Unknown port %d\n", port);
473 		return 0;
474 	}
475 }
476 
477 static
intel_hdcp_validate_v_prime(struct intel_connector * connector,const struct intel_hdcp_shim * shim,u8 * ksv_fifo,u8 num_downstream,u8 * bstatus)478 int intel_hdcp_validate_v_prime(struct intel_connector *connector,
479 				const struct intel_hdcp_shim *shim,
480 				u8 *ksv_fifo, u8 num_downstream, u8 *bstatus)
481 {
482 	struct intel_display *display = to_intel_display(connector);
483 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
484 	enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
485 	enum port port = dig_port->base.port;
486 	u32 vprime, sha_text, sha_leftovers, rep_ctl;
487 	int ret, i, j, sha_idx;
488 
489 	/* Process V' values from the receiver */
490 	for (i = 0; i < DRM_HDCP_V_PRIME_NUM_PARTS; i++) {
491 		ret = shim->read_v_prime_part(dig_port, i, &vprime);
492 		if (ret)
493 			return ret;
494 		intel_de_write(display, HDCP_SHA_V_PRIME(i), vprime);
495 	}
496 
497 	/*
498 	 * We need to write the concatenation of all device KSVs, BINFO (DP) ||
499 	 * BSTATUS (HDMI), and M0 (which is added via HDCP_REP_CTL). This byte
500 	 * stream is written via the HDCP_SHA_TEXT register in 32-bit
501 	 * increments. Every 64 bytes, we need to write HDCP_REP_CTL again. This
502 	 * index will keep track of our progress through the 64 bytes as well as
503 	 * helping us work the 40-bit KSVs through our 32-bit register.
504 	 *
505 	 * NOTE: data passed via HDCP_SHA_TEXT should be big-endian
506 	 */
507 	sha_idx = 0;
508 	sha_text = 0;
509 	sha_leftovers = 0;
510 	rep_ctl = intel_hdcp_get_repeater_ctl(display, cpu_transcoder, port);
511 	intel_de_write(display, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
512 	for (i = 0; i < num_downstream; i++) {
513 		unsigned int sha_empty;
514 		u8 *ksv = &ksv_fifo[i * DRM_HDCP_KSV_LEN];
515 
516 		/* Fill up the empty slots in sha_text and write it out */
517 		sha_empty = sizeof(sha_text) - sha_leftovers;
518 		for (j = 0; j < sha_empty; j++) {
519 			u8 off = ((sizeof(sha_text) - j - 1 - sha_leftovers) * 8);
520 			sha_text |= ksv[j] << off;
521 		}
522 
523 		ret = intel_write_sha_text(display, sha_text);
524 		if (ret < 0)
525 			return ret;
526 
527 		/* Programming guide writes this every 64 bytes */
528 		sha_idx += sizeof(sha_text);
529 		if (!(sha_idx % 64))
530 			intel_de_write(display, HDCP_REP_CTL,
531 				       rep_ctl | HDCP_SHA1_TEXT_32);
532 
533 		/* Store the leftover bytes from the ksv in sha_text */
534 		sha_leftovers = DRM_HDCP_KSV_LEN - sha_empty;
535 		sha_text = 0;
536 		for (j = 0; j < sha_leftovers; j++)
537 			sha_text |= ksv[sha_empty + j] <<
538 					((sizeof(sha_text) - j - 1) * 8);
539 
540 		/*
541 		 * If we still have room in sha_text for more data, continue.
542 		 * Otherwise, write it out immediately.
543 		 */
544 		if (sizeof(sha_text) > sha_leftovers)
545 			continue;
546 
547 		ret = intel_write_sha_text(display, sha_text);
548 		if (ret < 0)
549 			return ret;
550 		sha_leftovers = 0;
551 		sha_text = 0;
552 		sha_idx += sizeof(sha_text);
553 	}
554 
555 	/*
556 	 * We need to write BINFO/BSTATUS, and M0 now. Depending on how many
557 	 * bytes are leftover from the last ksv, we might be able to fit them
558 	 * all in sha_text (first 2 cases), or we might need to split them up
559 	 * into 2 writes (last 2 cases).
560 	 */
561 	if (sha_leftovers == 0) {
562 		/* Write 16 bits of text, 16 bits of M0 */
563 		intel_de_write(display, HDCP_REP_CTL,
564 			       rep_ctl | HDCP_SHA1_TEXT_16);
565 		ret = intel_write_sha_text(display,
566 					   bstatus[0] << 8 | bstatus[1]);
567 		if (ret < 0)
568 			return ret;
569 		sha_idx += sizeof(sha_text);
570 
571 		/* Write 32 bits of M0 */
572 		intel_de_write(display, HDCP_REP_CTL,
573 			       rep_ctl | HDCP_SHA1_TEXT_0);
574 		ret = intel_write_sha_text(display, 0);
575 		if (ret < 0)
576 			return ret;
577 		sha_idx += sizeof(sha_text);
578 
579 		/* Write 16 bits of M0 */
580 		intel_de_write(display, HDCP_REP_CTL,
581 			       rep_ctl | HDCP_SHA1_TEXT_16);
582 		ret = intel_write_sha_text(display, 0);
583 		if (ret < 0)
584 			return ret;
585 		sha_idx += sizeof(sha_text);
586 
587 	} else if (sha_leftovers == 1) {
588 		/* Write 24 bits of text, 8 bits of M0 */
589 		intel_de_write(display, HDCP_REP_CTL,
590 			       rep_ctl | HDCP_SHA1_TEXT_24);
591 		sha_text |= bstatus[0] << 16 | bstatus[1] << 8;
592 		/* Only 24-bits of data, must be in the LSB */
593 		sha_text = (sha_text & 0xffffff00) >> 8;
594 		ret = intel_write_sha_text(display, sha_text);
595 		if (ret < 0)
596 			return ret;
597 		sha_idx += sizeof(sha_text);
598 
599 		/* Write 32 bits of M0 */
600 		intel_de_write(display, HDCP_REP_CTL,
601 			       rep_ctl | HDCP_SHA1_TEXT_0);
602 		ret = intel_write_sha_text(display, 0);
603 		if (ret < 0)
604 			return ret;
605 		sha_idx += sizeof(sha_text);
606 
607 		/* Write 24 bits of M0 */
608 		intel_de_write(display, HDCP_REP_CTL,
609 			       rep_ctl | HDCP_SHA1_TEXT_8);
610 		ret = intel_write_sha_text(display, 0);
611 		if (ret < 0)
612 			return ret;
613 		sha_idx += sizeof(sha_text);
614 
615 	} else if (sha_leftovers == 2) {
616 		/* Write 32 bits of text */
617 		intel_de_write(display, HDCP_REP_CTL,
618 			       rep_ctl | HDCP_SHA1_TEXT_32);
619 		sha_text |= bstatus[0] << 8 | bstatus[1];
620 		ret = intel_write_sha_text(display, sha_text);
621 		if (ret < 0)
622 			return ret;
623 		sha_idx += sizeof(sha_text);
624 
625 		/* Write 64 bits of M0 */
626 		intel_de_write(display, HDCP_REP_CTL,
627 			       rep_ctl | HDCP_SHA1_TEXT_0);
628 		for (i = 0; i < 2; i++) {
629 			ret = intel_write_sha_text(display, 0);
630 			if (ret < 0)
631 				return ret;
632 			sha_idx += sizeof(sha_text);
633 		}
634 
635 		/*
636 		 * Terminate the SHA-1 stream by hand. For the other leftover
637 		 * cases this is appended by the hardware.
638 		 */
639 		intel_de_write(display, HDCP_REP_CTL,
640 			       rep_ctl | HDCP_SHA1_TEXT_32);
641 		sha_text = DRM_HDCP_SHA1_TERMINATOR << 24;
642 		ret = intel_write_sha_text(display, sha_text);
643 		if (ret < 0)
644 			return ret;
645 		sha_idx += sizeof(sha_text);
646 	} else if (sha_leftovers == 3) {
647 		/* Write 32 bits of text (filled from LSB) */
648 		intel_de_write(display, HDCP_REP_CTL,
649 			       rep_ctl | HDCP_SHA1_TEXT_32);
650 		sha_text |= bstatus[0];
651 		ret = intel_write_sha_text(display, sha_text);
652 		if (ret < 0)
653 			return ret;
654 		sha_idx += sizeof(sha_text);
655 
656 		/* Write 8 bits of text (filled from LSB), 24 bits of M0 */
657 		intel_de_write(display, HDCP_REP_CTL,
658 			       rep_ctl | HDCP_SHA1_TEXT_8);
659 		ret = intel_write_sha_text(display, bstatus[1]);
660 		if (ret < 0)
661 			return ret;
662 		sha_idx += sizeof(sha_text);
663 
664 		/* Write 32 bits of M0 */
665 		intel_de_write(display, HDCP_REP_CTL,
666 			       rep_ctl | HDCP_SHA1_TEXT_0);
667 		ret = intel_write_sha_text(display, 0);
668 		if (ret < 0)
669 			return ret;
670 		sha_idx += sizeof(sha_text);
671 
672 		/* Write 8 bits of M0 */
673 		intel_de_write(display, HDCP_REP_CTL,
674 			       rep_ctl | HDCP_SHA1_TEXT_24);
675 		ret = intel_write_sha_text(display, 0);
676 		if (ret < 0)
677 			return ret;
678 		sha_idx += sizeof(sha_text);
679 	} else {
680 		drm_dbg_kms(display->drm, "Invalid number of leftovers %d\n",
681 			    sha_leftovers);
682 		return -EINVAL;
683 	}
684 
685 	intel_de_write(display, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
686 	/* Fill up to 64-4 bytes with zeros (leave the last write for length) */
687 	while ((sha_idx % 64) < (64 - sizeof(sha_text))) {
688 		ret = intel_write_sha_text(display, 0);
689 		if (ret < 0)
690 			return ret;
691 		sha_idx += sizeof(sha_text);
692 	}
693 
694 	/*
695 	 * Last write gets the length of the concatenation in bits. That is:
696 	 *  - 5 bytes per device
697 	 *  - 10 bytes for BINFO/BSTATUS(2), M0(8)
698 	 */
699 	sha_text = (num_downstream * 5 + 10) * 8;
700 	ret = intel_write_sha_text(display, sha_text);
701 	if (ret < 0)
702 		return ret;
703 
704 	/* Tell the HW we're done with the hash and wait for it to ACK */
705 	intel_de_write(display, HDCP_REP_CTL,
706 		       rep_ctl | HDCP_SHA1_COMPLETE_HASH);
707 	if (intel_de_wait_for_set(display, HDCP_REP_CTL,
708 				  HDCP_SHA1_COMPLETE, 1)) {
709 		drm_err(display->drm, "Timed out waiting for SHA1 complete\n");
710 		return -ETIMEDOUT;
711 	}
712 	if (!(intel_de_read(display, HDCP_REP_CTL) & HDCP_SHA1_V_MATCH)) {
713 		drm_dbg_kms(display->drm, "SHA-1 mismatch, HDCP failed\n");
714 		return -ENXIO;
715 	}
716 
717 	return 0;
718 }
719 
720 /* Implements Part 2 of the HDCP authorization procedure */
721 static
intel_hdcp_auth_downstream(struct intel_connector * connector)722 int intel_hdcp_auth_downstream(struct intel_connector *connector)
723 {
724 	struct intel_display *display = to_intel_display(connector);
725 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
726 	const struct intel_hdcp_shim *shim = connector->hdcp.shim;
727 	u8 bstatus[2], num_downstream, *ksv_fifo;
728 	int ret, i, tries = 3;
729 
730 	ret = intel_hdcp_poll_ksv_fifo(dig_port, shim);
731 	if (ret) {
732 		drm_dbg_kms(display->drm,
733 			    "KSV list failed to become ready (%d)\n", ret);
734 		return ret;
735 	}
736 
737 	ret = shim->read_bstatus(dig_port, bstatus);
738 	if (ret)
739 		return ret;
740 
741 	if (DRM_HDCP_MAX_DEVICE_EXCEEDED(bstatus[0]) ||
742 	    DRM_HDCP_MAX_CASCADE_EXCEEDED(bstatus[1])) {
743 		drm_dbg_kms(display->drm, "Max Topology Limit Exceeded\n");
744 		return -EPERM;
745 	}
746 
747 	/*
748 	 * When repeater reports 0 device count, HDCP1.4 spec allows disabling
749 	 * the HDCP encryption. That implies that repeater can't have its own
750 	 * display. As there is no consumption of encrypted content in the
751 	 * repeater with 0 downstream devices, we are failing the
752 	 * authentication.
753 	 */
754 	num_downstream = DRM_HDCP_NUM_DOWNSTREAM(bstatus[0]);
755 	if (num_downstream == 0) {
756 		drm_dbg_kms(display->drm,
757 			    "Repeater with zero downstream devices\n");
758 		return -EINVAL;
759 	}
760 
761 	ksv_fifo = kcalloc(DRM_HDCP_KSV_LEN, num_downstream, GFP_KERNEL);
762 	if (!ksv_fifo) {
763 		drm_dbg_kms(display->drm, "Out of mem: ksv_fifo\n");
764 		return -ENOMEM;
765 	}
766 
767 	ret = shim->read_ksv_fifo(dig_port, num_downstream, ksv_fifo);
768 	if (ret)
769 		goto err;
770 
771 	if (drm_hdcp_check_ksvs_revoked(display->drm, ksv_fifo,
772 					num_downstream) > 0) {
773 		drm_err(display->drm, "Revoked Ksv(s) in ksv_fifo\n");
774 		ret = -EPERM;
775 		goto err;
776 	}
777 
778 	/*
779 	 * When V prime mismatches, DP Spec mandates re-read of
780 	 * V prime atleast twice.
781 	 */
782 	for (i = 0; i < tries; i++) {
783 		ret = intel_hdcp_validate_v_prime(connector, shim,
784 						  ksv_fifo, num_downstream,
785 						  bstatus);
786 		if (!ret)
787 			break;
788 	}
789 
790 	if (i == tries) {
791 		drm_dbg_kms(display->drm,
792 			    "V Prime validation failed.(%d)\n", ret);
793 		goto err;
794 	}
795 
796 	drm_dbg_kms(display->drm, "HDCP is enabled (%d downstream devices)\n",
797 		    num_downstream);
798 	ret = 0;
799 err:
800 	kfree(ksv_fifo);
801 	return ret;
802 }
803 
804 /* Implements Part 1 of the HDCP authorization procedure */
intel_hdcp_auth(struct intel_connector * connector)805 static int intel_hdcp_auth(struct intel_connector *connector)
806 {
807 	struct intel_display *display = to_intel_display(connector);
808 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
809 	struct intel_hdcp *hdcp = &connector->hdcp;
810 	const struct intel_hdcp_shim *shim = hdcp->shim;
811 	enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
812 	enum port port = dig_port->base.port;
813 	unsigned long r0_prime_gen_start;
814 	int ret, i, tries = 2;
815 	union {
816 		u32 reg[2];
817 		u8 shim[DRM_HDCP_AN_LEN];
818 	} an;
819 	union {
820 		u32 reg[2];
821 		u8 shim[DRM_HDCP_KSV_LEN];
822 	} bksv;
823 	union {
824 		u32 reg;
825 		u8 shim[DRM_HDCP_RI_LEN];
826 	} ri;
827 	bool repeater_present, hdcp_capable;
828 
829 	/*
830 	 * Detects whether the display is HDCP capable. Although we check for
831 	 * valid Bksv below, the HDCP over DP spec requires that we check
832 	 * whether the display supports HDCP before we write An. For HDMI
833 	 * displays, this is not necessary.
834 	 */
835 	if (shim->hdcp_get_capability) {
836 		ret = shim->hdcp_get_capability(dig_port, &hdcp_capable);
837 		if (ret)
838 			return ret;
839 		if (!hdcp_capable) {
840 			drm_dbg_kms(display->drm,
841 				    "Panel is not HDCP capable\n");
842 			return -EINVAL;
843 		}
844 	}
845 
846 	/* Initialize An with 2 random values and acquire it */
847 	for (i = 0; i < 2; i++)
848 		intel_de_write(display,
849 			       HDCP_ANINIT(display, cpu_transcoder, port),
850 			       get_random_u32());
851 	intel_de_write(display, HDCP_CONF(display, cpu_transcoder, port),
852 		       HDCP_CONF_CAPTURE_AN);
853 
854 	/* Wait for An to be acquired */
855 	if (intel_de_wait_for_set(display,
856 				  HDCP_STATUS(display, cpu_transcoder, port),
857 				  HDCP_STATUS_AN_READY, 1)) {
858 		drm_err(display->drm, "Timed out waiting for An\n");
859 		return -ETIMEDOUT;
860 	}
861 
862 	an.reg[0] = intel_de_read(display,
863 				  HDCP_ANLO(display, cpu_transcoder, port));
864 	an.reg[1] = intel_de_read(display,
865 				  HDCP_ANHI(display, cpu_transcoder, port));
866 	ret = shim->write_an_aksv(dig_port, an.shim);
867 	if (ret)
868 		return ret;
869 
870 	r0_prime_gen_start = jiffies;
871 
872 	memset(&bksv, 0, sizeof(bksv));
873 
874 	ret = intel_hdcp_read_valid_bksv(dig_port, shim, bksv.shim);
875 	if (ret < 0)
876 		return ret;
877 
878 	if (drm_hdcp_check_ksvs_revoked(display->drm, bksv.shim, 1) > 0) {
879 		drm_err(display->drm, "BKSV is revoked\n");
880 		return -EPERM;
881 	}
882 
883 	intel_de_write(display, HDCP_BKSVLO(display, cpu_transcoder, port),
884 		       bksv.reg[0]);
885 	intel_de_write(display, HDCP_BKSVHI(display, cpu_transcoder, port),
886 		       bksv.reg[1]);
887 
888 	ret = shim->repeater_present(dig_port, &repeater_present);
889 	if (ret)
890 		return ret;
891 	if (repeater_present)
892 		intel_de_write(display, HDCP_REP_CTL,
893 			       intel_hdcp_get_repeater_ctl(display, cpu_transcoder, port));
894 
895 	ret = shim->toggle_signalling(dig_port, cpu_transcoder, true);
896 	if (ret)
897 		return ret;
898 
899 	intel_de_write(display, HDCP_CONF(display, cpu_transcoder, port),
900 		       HDCP_CONF_AUTH_AND_ENC);
901 
902 	/* Wait for R0 ready */
903 	if (wait_for(intel_de_read(display, HDCP_STATUS(display, cpu_transcoder, port)) &
904 		     (HDCP_STATUS_R0_READY | HDCP_STATUS_ENC), 1)) {
905 		drm_err(display->drm, "Timed out waiting for R0 ready\n");
906 		return -ETIMEDOUT;
907 	}
908 
909 	/*
910 	 * Wait for R0' to become available. The spec says 100ms from Aksv, but
911 	 * some monitors can take longer than this. We'll set the timeout at
912 	 * 300ms just to be sure.
913 	 *
914 	 * On DP, there's an R0_READY bit available but no such bit
915 	 * exists on HDMI. Since the upper-bound is the same, we'll just do
916 	 * the stupid thing instead of polling on one and not the other.
917 	 */
918 	wait_remaining_ms_from_jiffies(r0_prime_gen_start, 300);
919 
920 	tries = 3;
921 
922 	/*
923 	 * DP HDCP Spec mandates the two more reattempt to read R0, incase
924 	 * of R0 mismatch.
925 	 */
926 	for (i = 0; i < tries; i++) {
927 		ri.reg = 0;
928 		ret = shim->read_ri_prime(dig_port, ri.shim);
929 		if (ret)
930 			return ret;
931 		intel_de_write(display,
932 			       HDCP_RPRIME(display, cpu_transcoder, port),
933 			       ri.reg);
934 
935 		/* Wait for Ri prime match */
936 		if (!wait_for(intel_de_read(display, HDCP_STATUS(display, cpu_transcoder, port)) &
937 			      (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1))
938 			break;
939 	}
940 
941 	if (i == tries) {
942 		drm_dbg_kms(display->drm,
943 			    "Timed out waiting for Ri prime match (%x)\n",
944 			    intel_de_read(display,
945 					  HDCP_STATUS(display, cpu_transcoder, port)));
946 		return -ETIMEDOUT;
947 	}
948 
949 	/* Wait for encryption confirmation */
950 	if (intel_de_wait_for_set(display,
951 				  HDCP_STATUS(display, cpu_transcoder, port),
952 				  HDCP_STATUS_ENC,
953 				  HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
954 		drm_err(display->drm, "Timed out waiting for encryption\n");
955 		return -ETIMEDOUT;
956 	}
957 
958 	/* DP MST Auth Part 1 Step 2.a and Step 2.b */
959 	if (shim->stream_encryption) {
960 		ret = shim->stream_encryption(connector, true);
961 		if (ret) {
962 			drm_err(display->drm, "[CONNECTOR:%d:%s] Failed to enable HDCP 1.4 stream enc\n",
963 				connector->base.base.id, connector->base.name);
964 			return ret;
965 		}
966 		drm_dbg_kms(display->drm, "HDCP 1.4 transcoder: %s stream encrypted\n",
967 			    transcoder_name(hdcp->stream_transcoder));
968 	}
969 
970 	if (repeater_present)
971 		return intel_hdcp_auth_downstream(connector);
972 
973 	drm_dbg_kms(display->drm, "HDCP is enabled (no repeater present)\n");
974 	return 0;
975 }
976 
_intel_hdcp_disable(struct intel_connector * connector)977 static int _intel_hdcp_disable(struct intel_connector *connector)
978 {
979 	struct intel_display *display = to_intel_display(connector);
980 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
981 	struct intel_hdcp *hdcp = &connector->hdcp;
982 	enum port port = dig_port->base.port;
983 	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
984 	u32 repeater_ctl;
985 	int ret;
986 
987 	drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s] HDCP is being disabled...\n",
988 		    connector->base.base.id, connector->base.name);
989 
990 	if (hdcp->shim->stream_encryption) {
991 		ret = hdcp->shim->stream_encryption(connector, false);
992 		if (ret) {
993 			drm_err(display->drm, "[CONNECTOR:%d:%s] Failed to disable HDCP 1.4 stream enc\n",
994 				connector->base.base.id, connector->base.name);
995 			return ret;
996 		}
997 		drm_dbg_kms(display->drm, "HDCP 1.4 transcoder: %s stream encryption disabled\n",
998 			    transcoder_name(hdcp->stream_transcoder));
999 		/*
1000 		 * If there are other connectors on this port using HDCP,
1001 		 * don't disable it until it disabled HDCP encryption for
1002 		 * all connectors in MST topology.
1003 		 */
1004 		if (dig_port->hdcp.num_streams > 0)
1005 			return 0;
1006 	}
1007 
1008 	hdcp->hdcp_encrypted = false;
1009 	intel_de_write(display, HDCP_CONF(display, cpu_transcoder, port), 0);
1010 	if (intel_de_wait_for_clear(display,
1011 				    HDCP_STATUS(display, cpu_transcoder, port),
1012 				    ~0, HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
1013 		drm_err(display->drm,
1014 			"Failed to disable HDCP, timeout clearing status\n");
1015 		return -ETIMEDOUT;
1016 	}
1017 
1018 	repeater_ctl = intel_hdcp_get_repeater_ctl(display, cpu_transcoder,
1019 						   port);
1020 	intel_de_rmw(display, HDCP_REP_CTL, repeater_ctl, 0);
1021 
1022 	ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder, false);
1023 	if (ret) {
1024 		drm_err(display->drm, "Failed to disable HDCP signalling\n");
1025 		return ret;
1026 	}
1027 
1028 	drm_dbg_kms(display->drm, "HDCP is disabled\n");
1029 	return 0;
1030 }
1031 
intel_hdcp1_enable(struct intel_connector * connector)1032 static int intel_hdcp1_enable(struct intel_connector *connector)
1033 {
1034 	struct intel_display *display = to_intel_display(connector);
1035 	struct intel_hdcp *hdcp = &connector->hdcp;
1036 	int i, ret, tries = 3;
1037 
1038 	drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s] HDCP is being enabled...\n",
1039 		    connector->base.base.id, connector->base.name);
1040 
1041 	if (!hdcp_key_loadable(display)) {
1042 		drm_err(display->drm, "HDCP key Load is not possible\n");
1043 		return -ENXIO;
1044 	}
1045 
1046 	for (i = 0; i < KEY_LOAD_TRIES; i++) {
1047 		ret = intel_hdcp_load_keys(display);
1048 		if (!ret)
1049 			break;
1050 		intel_hdcp_clear_keys(display);
1051 	}
1052 	if (ret) {
1053 		drm_err(display->drm, "Could not load HDCP keys, (%d)\n",
1054 			ret);
1055 		return ret;
1056 	}
1057 
1058 	intel_hdcp_adjust_hdcp_line_rekeying(connector->encoder, hdcp, true);
1059 
1060 	/* Incase of authentication failures, HDCP spec expects reauth. */
1061 	for (i = 0; i < tries; i++) {
1062 		ret = intel_hdcp_auth(connector);
1063 		if (!ret) {
1064 			hdcp->hdcp_encrypted = true;
1065 			return 0;
1066 		}
1067 
1068 		drm_dbg_kms(display->drm, "HDCP Auth failure (%d)\n", ret);
1069 
1070 		/* Ensuring HDCP encryption and signalling are stopped. */
1071 		_intel_hdcp_disable(connector);
1072 	}
1073 
1074 	drm_dbg_kms(display->drm,
1075 		    "HDCP authentication failed (%d tries/%d)\n", tries, ret);
1076 	return ret;
1077 }
1078 
intel_hdcp_to_connector(struct intel_hdcp * hdcp)1079 static struct intel_connector *intel_hdcp_to_connector(struct intel_hdcp *hdcp)
1080 {
1081 	return container_of(hdcp, struct intel_connector, hdcp);
1082 }
1083 
intel_hdcp_update_value(struct intel_connector * connector,u64 value,bool update_property)1084 static void intel_hdcp_update_value(struct intel_connector *connector,
1085 				    u64 value, bool update_property)
1086 {
1087 	struct intel_display *display = to_intel_display(connector);
1088 	struct drm_i915_private *i915 = to_i915(display->drm);
1089 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1090 	struct intel_hdcp *hdcp = &connector->hdcp;
1091 
1092 	drm_WARN_ON(display->drm, !mutex_is_locked(&hdcp->mutex));
1093 
1094 	if (hdcp->value == value)
1095 		return;
1096 
1097 	drm_WARN_ON(display->drm, !mutex_is_locked(&dig_port->hdcp.mutex));
1098 
1099 	if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
1100 		if (!drm_WARN_ON(display->drm, dig_port->hdcp.num_streams == 0))
1101 			dig_port->hdcp.num_streams--;
1102 	} else if (value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
1103 		dig_port->hdcp.num_streams++;
1104 	}
1105 
1106 	hdcp->value = value;
1107 	if (update_property) {
1108 		drm_connector_get(&connector->base);
1109 		if (!queue_work(i915->unordered_wq, &hdcp->prop_work))
1110 			drm_connector_put(&connector->base);
1111 	}
1112 }
1113 
1114 /* Implements Part 3 of the HDCP authorization procedure */
intel_hdcp_check_link(struct intel_connector * connector)1115 static int intel_hdcp_check_link(struct intel_connector *connector)
1116 {
1117 	struct intel_display *display = to_intel_display(connector);
1118 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1119 	struct intel_hdcp *hdcp = &connector->hdcp;
1120 	enum port port = dig_port->base.port;
1121 	enum transcoder cpu_transcoder;
1122 	int ret = 0;
1123 
1124 	mutex_lock(&hdcp->mutex);
1125 	mutex_lock(&dig_port->hdcp.mutex);
1126 
1127 	cpu_transcoder = hdcp->cpu_transcoder;
1128 
1129 	/* Check_link valid only when HDCP1.4 is enabled */
1130 	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
1131 	    !hdcp->hdcp_encrypted) {
1132 		ret = -EINVAL;
1133 		goto out;
1134 	}
1135 
1136 	if (drm_WARN_ON(display->drm,
1137 			!intel_hdcp_in_use(display, cpu_transcoder, port))) {
1138 		drm_err(display->drm,
1139 			"[CONNECTOR:%d:%s] HDCP link stopped encryption,%x\n",
1140 			connector->base.base.id, connector->base.name,
1141 			intel_de_read(display, HDCP_STATUS(display, cpu_transcoder, port)));
1142 		ret = -ENXIO;
1143 		intel_hdcp_update_value(connector,
1144 					DRM_MODE_CONTENT_PROTECTION_DESIRED,
1145 					true);
1146 		goto out;
1147 	}
1148 
1149 	if (hdcp->shim->check_link(dig_port, connector)) {
1150 		if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
1151 			intel_hdcp_update_value(connector,
1152 				DRM_MODE_CONTENT_PROTECTION_ENABLED, true);
1153 		}
1154 		goto out;
1155 	}
1156 
1157 	drm_dbg_kms(display->drm,
1158 		    "[CONNECTOR:%d:%s] HDCP link failed, retrying authentication\n",
1159 		    connector->base.base.id, connector->base.name);
1160 
1161 	ret = _intel_hdcp_disable(connector);
1162 	if (ret) {
1163 		drm_err(display->drm, "Failed to disable hdcp (%d)\n", ret);
1164 		intel_hdcp_update_value(connector,
1165 					DRM_MODE_CONTENT_PROTECTION_DESIRED,
1166 					true);
1167 		goto out;
1168 	}
1169 
1170 	ret = intel_hdcp1_enable(connector);
1171 	if (ret) {
1172 		drm_err(display->drm, "Failed to enable hdcp (%d)\n", ret);
1173 		intel_hdcp_update_value(connector,
1174 					DRM_MODE_CONTENT_PROTECTION_DESIRED,
1175 					true);
1176 		goto out;
1177 	}
1178 
1179 out:
1180 	mutex_unlock(&dig_port->hdcp.mutex);
1181 	mutex_unlock(&hdcp->mutex);
1182 	return ret;
1183 }
1184 
intel_hdcp_prop_work(struct work_struct * work)1185 static void intel_hdcp_prop_work(struct work_struct *work)
1186 {
1187 	struct intel_hdcp *hdcp = container_of(work, struct intel_hdcp,
1188 					       prop_work);
1189 	struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
1190 	struct intel_display *display = to_intel_display(connector);
1191 
1192 	drm_modeset_lock(&display->drm->mode_config.connection_mutex, NULL);
1193 	mutex_lock(&hdcp->mutex);
1194 
1195 	/*
1196 	 * This worker is only used to flip between ENABLED/DESIRED. Either of
1197 	 * those to UNDESIRED is handled by core. If value == UNDESIRED,
1198 	 * we're running just after hdcp has been disabled, so just exit
1199 	 */
1200 	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
1201 		drm_hdcp_update_content_protection(&connector->base,
1202 						   hdcp->value);
1203 
1204 	mutex_unlock(&hdcp->mutex);
1205 	drm_modeset_unlock(&display->drm->mode_config.connection_mutex);
1206 
1207 	drm_connector_put(&connector->base);
1208 }
1209 
is_hdcp_supported(struct intel_display * display,enum port port)1210 bool is_hdcp_supported(struct intel_display *display, enum port port)
1211 {
1212 	return DISPLAY_RUNTIME_INFO(display)->has_hdcp &&
1213 		(DISPLAY_VER(display) >= 12 || port < PORT_E);
1214 }
1215 
1216 static int
hdcp2_prepare_ake_init(struct intel_connector * connector,struct hdcp2_ake_init * ake_data)1217 hdcp2_prepare_ake_init(struct intel_connector *connector,
1218 		       struct hdcp2_ake_init *ake_data)
1219 {
1220 	struct intel_display *display = to_intel_display(connector);
1221 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1222 	struct hdcp_port_data *data = &dig_port->hdcp.port_data;
1223 	struct i915_hdcp_arbiter *arbiter;
1224 	int ret;
1225 
1226 	mutex_lock(&display->hdcp.hdcp_mutex);
1227 	arbiter = display->hdcp.arbiter;
1228 
1229 	if (!arbiter || !arbiter->ops) {
1230 		mutex_unlock(&display->hdcp.hdcp_mutex);
1231 		return -EINVAL;
1232 	}
1233 
1234 	ret = arbiter->ops->initiate_hdcp2_session(arbiter->hdcp_dev, data, ake_data);
1235 	if (ret)
1236 		drm_dbg_kms(display->drm, "Prepare_ake_init failed. %d\n",
1237 			    ret);
1238 	mutex_unlock(&display->hdcp.hdcp_mutex);
1239 
1240 	return ret;
1241 }
1242 
1243 static int
hdcp2_verify_rx_cert_prepare_km(struct intel_connector * connector,struct hdcp2_ake_send_cert * rx_cert,bool * paired,struct hdcp2_ake_no_stored_km * ek_pub_km,size_t * msg_sz)1244 hdcp2_verify_rx_cert_prepare_km(struct intel_connector *connector,
1245 				struct hdcp2_ake_send_cert *rx_cert,
1246 				bool *paired,
1247 				struct hdcp2_ake_no_stored_km *ek_pub_km,
1248 				size_t *msg_sz)
1249 {
1250 	struct intel_display *display = to_intel_display(connector);
1251 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1252 	struct hdcp_port_data *data = &dig_port->hdcp.port_data;
1253 	struct i915_hdcp_arbiter *arbiter;
1254 	int ret;
1255 
1256 	mutex_lock(&display->hdcp.hdcp_mutex);
1257 	arbiter = display->hdcp.arbiter;
1258 
1259 	if (!arbiter || !arbiter->ops) {
1260 		mutex_unlock(&display->hdcp.hdcp_mutex);
1261 		return -EINVAL;
1262 	}
1263 
1264 	ret = arbiter->ops->verify_receiver_cert_prepare_km(arbiter->hdcp_dev, data,
1265 							 rx_cert, paired,
1266 							 ek_pub_km, msg_sz);
1267 	if (ret < 0)
1268 		drm_dbg_kms(display->drm, "Verify rx_cert failed. %d\n",
1269 			    ret);
1270 	mutex_unlock(&display->hdcp.hdcp_mutex);
1271 
1272 	return ret;
1273 }
1274 
hdcp2_verify_hprime(struct intel_connector * connector,struct hdcp2_ake_send_hprime * rx_hprime)1275 static int hdcp2_verify_hprime(struct intel_connector *connector,
1276 			       struct hdcp2_ake_send_hprime *rx_hprime)
1277 {
1278 	struct intel_display *display = to_intel_display(connector);
1279 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1280 	struct hdcp_port_data *data = &dig_port->hdcp.port_data;
1281 	struct i915_hdcp_arbiter *arbiter;
1282 	int ret;
1283 
1284 	mutex_lock(&display->hdcp.hdcp_mutex);
1285 	arbiter = display->hdcp.arbiter;
1286 
1287 	if (!arbiter || !arbiter->ops) {
1288 		mutex_unlock(&display->hdcp.hdcp_mutex);
1289 		return -EINVAL;
1290 	}
1291 
1292 	ret = arbiter->ops->verify_hprime(arbiter->hdcp_dev, data, rx_hprime);
1293 	if (ret < 0)
1294 		drm_dbg_kms(display->drm, "Verify hprime failed. %d\n", ret);
1295 	mutex_unlock(&display->hdcp.hdcp_mutex);
1296 
1297 	return ret;
1298 }
1299 
1300 static int
hdcp2_store_pairing_info(struct intel_connector * connector,struct hdcp2_ake_send_pairing_info * pairing_info)1301 hdcp2_store_pairing_info(struct intel_connector *connector,
1302 			 struct hdcp2_ake_send_pairing_info *pairing_info)
1303 {
1304 	struct intel_display *display = to_intel_display(connector);
1305 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1306 	struct hdcp_port_data *data = &dig_port->hdcp.port_data;
1307 	struct i915_hdcp_arbiter *arbiter;
1308 	int ret;
1309 
1310 	mutex_lock(&display->hdcp.hdcp_mutex);
1311 	arbiter = display->hdcp.arbiter;
1312 
1313 	if (!arbiter || !arbiter->ops) {
1314 		mutex_unlock(&display->hdcp.hdcp_mutex);
1315 		return -EINVAL;
1316 	}
1317 
1318 	ret = arbiter->ops->store_pairing_info(arbiter->hdcp_dev, data, pairing_info);
1319 	if (ret < 0)
1320 		drm_dbg_kms(display->drm, "Store pairing info failed. %d\n",
1321 			    ret);
1322 	mutex_unlock(&display->hdcp.hdcp_mutex);
1323 
1324 	return ret;
1325 }
1326 
1327 static int
hdcp2_prepare_lc_init(struct intel_connector * connector,struct hdcp2_lc_init * lc_init)1328 hdcp2_prepare_lc_init(struct intel_connector *connector,
1329 		      struct hdcp2_lc_init *lc_init)
1330 {
1331 	struct intel_display *display = to_intel_display(connector);
1332 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1333 	struct hdcp_port_data *data = &dig_port->hdcp.port_data;
1334 	struct i915_hdcp_arbiter *arbiter;
1335 	int ret;
1336 
1337 	mutex_lock(&display->hdcp.hdcp_mutex);
1338 	arbiter = display->hdcp.arbiter;
1339 
1340 	if (!arbiter || !arbiter->ops) {
1341 		mutex_unlock(&display->hdcp.hdcp_mutex);
1342 		return -EINVAL;
1343 	}
1344 
1345 	ret = arbiter->ops->initiate_locality_check(arbiter->hdcp_dev, data, lc_init);
1346 	if (ret < 0)
1347 		drm_dbg_kms(display->drm, "Prepare lc_init failed. %d\n",
1348 			    ret);
1349 	mutex_unlock(&display->hdcp.hdcp_mutex);
1350 
1351 	return ret;
1352 }
1353 
1354 static int
hdcp2_verify_lprime(struct intel_connector * connector,struct hdcp2_lc_send_lprime * rx_lprime)1355 hdcp2_verify_lprime(struct intel_connector *connector,
1356 		    struct hdcp2_lc_send_lprime *rx_lprime)
1357 {
1358 	struct intel_display *display = to_intel_display(connector);
1359 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1360 	struct hdcp_port_data *data = &dig_port->hdcp.port_data;
1361 	struct i915_hdcp_arbiter *arbiter;
1362 	int ret;
1363 
1364 	mutex_lock(&display->hdcp.hdcp_mutex);
1365 	arbiter = display->hdcp.arbiter;
1366 
1367 	if (!arbiter || !arbiter->ops) {
1368 		mutex_unlock(&display->hdcp.hdcp_mutex);
1369 		return -EINVAL;
1370 	}
1371 
1372 	ret = arbiter->ops->verify_lprime(arbiter->hdcp_dev, data, rx_lprime);
1373 	if (ret < 0)
1374 		drm_dbg_kms(display->drm, "Verify L_Prime failed. %d\n",
1375 			    ret);
1376 	mutex_unlock(&display->hdcp.hdcp_mutex);
1377 
1378 	return ret;
1379 }
1380 
hdcp2_prepare_skey(struct intel_connector * connector,struct hdcp2_ske_send_eks * ske_data)1381 static int hdcp2_prepare_skey(struct intel_connector *connector,
1382 			      struct hdcp2_ske_send_eks *ske_data)
1383 {
1384 	struct intel_display *display = to_intel_display(connector);
1385 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1386 	struct hdcp_port_data *data = &dig_port->hdcp.port_data;
1387 	struct i915_hdcp_arbiter *arbiter;
1388 	int ret;
1389 
1390 	mutex_lock(&display->hdcp.hdcp_mutex);
1391 	arbiter = display->hdcp.arbiter;
1392 
1393 	if (!arbiter || !arbiter->ops) {
1394 		mutex_unlock(&display->hdcp.hdcp_mutex);
1395 		return -EINVAL;
1396 	}
1397 
1398 	ret = arbiter->ops->get_session_key(arbiter->hdcp_dev, data, ske_data);
1399 	if (ret < 0)
1400 		drm_dbg_kms(display->drm, "Get session key failed. %d\n",
1401 			    ret);
1402 	mutex_unlock(&display->hdcp.hdcp_mutex);
1403 
1404 	return ret;
1405 }
1406 
1407 static int
hdcp2_verify_rep_topology_prepare_ack(struct intel_connector * connector,struct hdcp2_rep_send_receiverid_list * rep_topology,struct hdcp2_rep_send_ack * rep_send_ack)1408 hdcp2_verify_rep_topology_prepare_ack(struct intel_connector *connector,
1409 				      struct hdcp2_rep_send_receiverid_list
1410 								*rep_topology,
1411 				      struct hdcp2_rep_send_ack *rep_send_ack)
1412 {
1413 	struct intel_display *display = to_intel_display(connector);
1414 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1415 	struct hdcp_port_data *data = &dig_port->hdcp.port_data;
1416 	struct i915_hdcp_arbiter *arbiter;
1417 	int ret;
1418 
1419 	mutex_lock(&display->hdcp.hdcp_mutex);
1420 	arbiter = display->hdcp.arbiter;
1421 
1422 	if (!arbiter || !arbiter->ops) {
1423 		mutex_unlock(&display->hdcp.hdcp_mutex);
1424 		return -EINVAL;
1425 	}
1426 
1427 	ret = arbiter->ops->repeater_check_flow_prepare_ack(arbiter->hdcp_dev,
1428 							    data,
1429 							    rep_topology,
1430 							    rep_send_ack);
1431 	if (ret < 0)
1432 		drm_dbg_kms(display->drm,
1433 			    "Verify rep topology failed. %d\n", ret);
1434 	mutex_unlock(&display->hdcp.hdcp_mutex);
1435 
1436 	return ret;
1437 }
1438 
1439 static int
hdcp2_verify_mprime(struct intel_connector * connector,struct hdcp2_rep_stream_ready * stream_ready)1440 hdcp2_verify_mprime(struct intel_connector *connector,
1441 		    struct hdcp2_rep_stream_ready *stream_ready)
1442 {
1443 	struct intel_display *display = to_intel_display(connector);
1444 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1445 	struct hdcp_port_data *data = &dig_port->hdcp.port_data;
1446 	struct i915_hdcp_arbiter *arbiter;
1447 	int ret;
1448 
1449 	mutex_lock(&display->hdcp.hdcp_mutex);
1450 	arbiter = display->hdcp.arbiter;
1451 
1452 	if (!arbiter || !arbiter->ops) {
1453 		mutex_unlock(&display->hdcp.hdcp_mutex);
1454 		return -EINVAL;
1455 	}
1456 
1457 	ret = arbiter->ops->verify_mprime(arbiter->hdcp_dev, data, stream_ready);
1458 	if (ret < 0)
1459 		drm_dbg_kms(display->drm, "Verify mprime failed. %d\n", ret);
1460 	mutex_unlock(&display->hdcp.hdcp_mutex);
1461 
1462 	return ret;
1463 }
1464 
hdcp2_authenticate_port(struct intel_connector * connector)1465 static int hdcp2_authenticate_port(struct intel_connector *connector)
1466 {
1467 	struct intel_display *display = to_intel_display(connector);
1468 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1469 	struct hdcp_port_data *data = &dig_port->hdcp.port_data;
1470 	struct i915_hdcp_arbiter *arbiter;
1471 	int ret;
1472 
1473 	mutex_lock(&display->hdcp.hdcp_mutex);
1474 	arbiter = display->hdcp.arbiter;
1475 
1476 	if (!arbiter || !arbiter->ops) {
1477 		mutex_unlock(&display->hdcp.hdcp_mutex);
1478 		return -EINVAL;
1479 	}
1480 
1481 	ret = arbiter->ops->enable_hdcp_authentication(arbiter->hdcp_dev, data);
1482 	if (ret < 0)
1483 		drm_dbg_kms(display->drm, "Enable hdcp auth failed. %d\n",
1484 			    ret);
1485 	mutex_unlock(&display->hdcp.hdcp_mutex);
1486 
1487 	return ret;
1488 }
1489 
hdcp2_close_session(struct intel_connector * connector)1490 static int hdcp2_close_session(struct intel_connector *connector)
1491 {
1492 	struct intel_display *display = to_intel_display(connector);
1493 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1494 	struct i915_hdcp_arbiter *arbiter;
1495 	int ret;
1496 
1497 	mutex_lock(&display->hdcp.hdcp_mutex);
1498 	arbiter = display->hdcp.arbiter;
1499 
1500 	if (!arbiter || !arbiter->ops) {
1501 		mutex_unlock(&display->hdcp.hdcp_mutex);
1502 		return -EINVAL;
1503 	}
1504 
1505 	ret = arbiter->ops->close_hdcp_session(arbiter->hdcp_dev,
1506 					     &dig_port->hdcp.port_data);
1507 	mutex_unlock(&display->hdcp.hdcp_mutex);
1508 
1509 	return ret;
1510 }
1511 
hdcp2_deauthenticate_port(struct intel_connector * connector)1512 static int hdcp2_deauthenticate_port(struct intel_connector *connector)
1513 {
1514 	return hdcp2_close_session(connector);
1515 }
1516 
1517 /* Authentication flow starts from here */
hdcp2_authentication_key_exchange(struct intel_connector * connector)1518 static int hdcp2_authentication_key_exchange(struct intel_connector *connector)
1519 {
1520 	struct intel_display *display = to_intel_display(connector);
1521 	struct intel_digital_port *dig_port =
1522 		intel_attached_dig_port(connector);
1523 	struct intel_hdcp *hdcp = &connector->hdcp;
1524 	union {
1525 		struct hdcp2_ake_init ake_init;
1526 		struct hdcp2_ake_send_cert send_cert;
1527 		struct hdcp2_ake_no_stored_km no_stored_km;
1528 		struct hdcp2_ake_send_hprime send_hprime;
1529 		struct hdcp2_ake_send_pairing_info pairing_info;
1530 	} msgs;
1531 	const struct intel_hdcp_shim *shim = hdcp->shim;
1532 	size_t size;
1533 	int ret, i, max_retries;
1534 
1535 	/* Init for seq_num */
1536 	hdcp->seq_num_v = 0;
1537 	hdcp->seq_num_m = 0;
1538 
1539 	if (intel_encoder_is_dp(&dig_port->base) ||
1540 	    intel_encoder_is_mst(&dig_port->base))
1541 		max_retries = 10;
1542 	else
1543 		max_retries = 1;
1544 
1545 	ret = hdcp2_prepare_ake_init(connector, &msgs.ake_init);
1546 	if (ret < 0)
1547 		return ret;
1548 
1549 	/*
1550 	 * Retry the first read and write to downstream at least 10 times
1551 	 * with a 50ms delay if not hdcp2 capable for DP/DPMST encoders
1552 	 * (dock decides to stop advertising hdcp2 capability for some reason).
1553 	 * The reason being that during suspend resume dock usually keeps the
1554 	 * HDCP2 registers inaccessible causing AUX error. This wouldn't be a
1555 	 * big problem if the userspace just kept retrying with some delay while
1556 	 * it continues to play low value content but most userspace applications
1557 	 * end up throwing an error when it receives one from KMD. This makes
1558 	 * sure we give the dock and the sink devices to complete its power cycle
1559 	 * and then try HDCP authentication. The values of 10 and delay of 50ms
1560 	 * was decided based on multiple trial and errors.
1561 	 */
1562 	for (i = 0; i < max_retries; i++) {
1563 		if (!intel_hdcp2_get_capability(connector)) {
1564 			msleep(50);
1565 			continue;
1566 		}
1567 
1568 		ret = shim->write_2_2_msg(connector, &msgs.ake_init,
1569 					  sizeof(msgs.ake_init));
1570 		if (ret < 0)
1571 			continue;
1572 
1573 		ret = shim->read_2_2_msg(connector, HDCP_2_2_AKE_SEND_CERT,
1574 					 &msgs.send_cert, sizeof(msgs.send_cert));
1575 		if (ret > 0)
1576 			break;
1577 	}
1578 
1579 	if (ret < 0)
1580 		return ret;
1581 
1582 	if (msgs.send_cert.rx_caps[0] != HDCP_2_2_RX_CAPS_VERSION_VAL) {
1583 		drm_dbg_kms(display->drm, "cert.rx_caps dont claim HDCP2.2\n");
1584 		return -EINVAL;
1585 	}
1586 
1587 	hdcp->is_repeater = HDCP_2_2_RX_REPEATER(msgs.send_cert.rx_caps[2]);
1588 
1589 	if (drm_hdcp_check_ksvs_revoked(display->drm,
1590 					msgs.send_cert.cert_rx.receiver_id,
1591 					1) > 0) {
1592 		drm_err(display->drm, "Receiver ID is revoked\n");
1593 		return -EPERM;
1594 	}
1595 
1596 	/*
1597 	 * Here msgs.no_stored_km will hold msgs corresponding to the km
1598 	 * stored also.
1599 	 */
1600 	ret = hdcp2_verify_rx_cert_prepare_km(connector, &msgs.send_cert,
1601 					      &hdcp->is_paired,
1602 					      &msgs.no_stored_km, &size);
1603 	if (ret < 0)
1604 		return ret;
1605 
1606 	ret = shim->write_2_2_msg(connector, &msgs.no_stored_km, size);
1607 	if (ret < 0)
1608 		return ret;
1609 
1610 	ret = shim->read_2_2_msg(connector, HDCP_2_2_AKE_SEND_HPRIME,
1611 				 &msgs.send_hprime, sizeof(msgs.send_hprime));
1612 	if (ret < 0)
1613 		return ret;
1614 
1615 	ret = hdcp2_verify_hprime(connector, &msgs.send_hprime);
1616 	if (ret < 0)
1617 		return ret;
1618 
1619 	if (!hdcp->is_paired) {
1620 		/* Pairing is required */
1621 		ret = shim->read_2_2_msg(connector,
1622 					 HDCP_2_2_AKE_SEND_PAIRING_INFO,
1623 					 &msgs.pairing_info,
1624 					 sizeof(msgs.pairing_info));
1625 		if (ret < 0)
1626 			return ret;
1627 
1628 		ret = hdcp2_store_pairing_info(connector, &msgs.pairing_info);
1629 		if (ret < 0)
1630 			return ret;
1631 		hdcp->is_paired = true;
1632 	}
1633 
1634 	return 0;
1635 }
1636 
hdcp2_locality_check(struct intel_connector * connector)1637 static int hdcp2_locality_check(struct intel_connector *connector)
1638 {
1639 	struct intel_hdcp *hdcp = &connector->hdcp;
1640 	union {
1641 		struct hdcp2_lc_init lc_init;
1642 		struct hdcp2_lc_send_lprime send_lprime;
1643 	} msgs;
1644 	const struct intel_hdcp_shim *shim = hdcp->shim;
1645 	int tries = HDCP2_LC_RETRY_CNT, ret, i;
1646 
1647 	for (i = 0; i < tries; i++) {
1648 		ret = hdcp2_prepare_lc_init(connector, &msgs.lc_init);
1649 		if (ret < 0)
1650 			continue;
1651 
1652 		ret = shim->write_2_2_msg(connector, &msgs.lc_init,
1653 				      sizeof(msgs.lc_init));
1654 		if (ret < 0)
1655 			continue;
1656 
1657 		ret = shim->read_2_2_msg(connector,
1658 					 HDCP_2_2_LC_SEND_LPRIME,
1659 					 &msgs.send_lprime,
1660 					 sizeof(msgs.send_lprime));
1661 		if (ret < 0)
1662 			continue;
1663 
1664 		ret = hdcp2_verify_lprime(connector, &msgs.send_lprime);
1665 		if (!ret)
1666 			break;
1667 	}
1668 
1669 	return ret;
1670 }
1671 
hdcp2_session_key_exchange(struct intel_connector * connector)1672 static int hdcp2_session_key_exchange(struct intel_connector *connector)
1673 {
1674 	struct intel_hdcp *hdcp = &connector->hdcp;
1675 	struct hdcp2_ske_send_eks send_eks;
1676 	int ret;
1677 
1678 	ret = hdcp2_prepare_skey(connector, &send_eks);
1679 	if (ret < 0)
1680 		return ret;
1681 
1682 	ret = hdcp->shim->write_2_2_msg(connector, &send_eks,
1683 					sizeof(send_eks));
1684 	if (ret < 0)
1685 		return ret;
1686 
1687 	return 0;
1688 }
1689 
1690 static
_hdcp2_propagate_stream_management_info(struct intel_connector * connector)1691 int _hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1692 {
1693 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1694 	struct hdcp_port_data *data = &dig_port->hdcp.port_data;
1695 	struct intel_hdcp *hdcp = &connector->hdcp;
1696 	union {
1697 		struct hdcp2_rep_stream_manage stream_manage;
1698 		struct hdcp2_rep_stream_ready stream_ready;
1699 	} msgs;
1700 	const struct intel_hdcp_shim *shim = hdcp->shim;
1701 	int ret, streams_size_delta, i;
1702 
1703 	if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX)
1704 		return -ERANGE;
1705 
1706 	/* Prepare RepeaterAuth_Stream_Manage msg */
1707 	msgs.stream_manage.msg_id = HDCP_2_2_REP_STREAM_MANAGE;
1708 	drm_hdcp_cpu_to_be24(msgs.stream_manage.seq_num_m, hdcp->seq_num_m);
1709 
1710 	msgs.stream_manage.k = cpu_to_be16(data->k);
1711 
1712 	for (i = 0; i < data->k; i++) {
1713 		msgs.stream_manage.streams[i].stream_id = data->streams[i].stream_id;
1714 		msgs.stream_manage.streams[i].stream_type = data->streams[i].stream_type;
1715 	}
1716 
1717 	streams_size_delta = (HDCP_2_2_MAX_CONTENT_STREAMS_CNT - data->k) *
1718 				sizeof(struct hdcp2_streamid_type);
1719 	/* Send it to Repeater */
1720 	ret = shim->write_2_2_msg(connector, &msgs.stream_manage,
1721 				  sizeof(msgs.stream_manage) - streams_size_delta);
1722 	if (ret < 0)
1723 		goto out;
1724 
1725 	ret = shim->read_2_2_msg(connector, HDCP_2_2_REP_STREAM_READY,
1726 				 &msgs.stream_ready, sizeof(msgs.stream_ready));
1727 	if (ret < 0)
1728 		goto out;
1729 
1730 	data->seq_num_m = hdcp->seq_num_m;
1731 
1732 	ret = hdcp2_verify_mprime(connector, &msgs.stream_ready);
1733 
1734 out:
1735 	hdcp->seq_num_m++;
1736 
1737 	return ret;
1738 }
1739 
1740 static
hdcp2_authenticate_repeater_topology(struct intel_connector * connector)1741 int hdcp2_authenticate_repeater_topology(struct intel_connector *connector)
1742 {
1743 	struct intel_display *display = to_intel_display(connector);
1744 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1745 	struct intel_hdcp *hdcp = &connector->hdcp;
1746 	union {
1747 		struct hdcp2_rep_send_receiverid_list recvid_list;
1748 		struct hdcp2_rep_send_ack rep_ack;
1749 	} msgs;
1750 	const struct intel_hdcp_shim *shim = hdcp->shim;
1751 	u32 seq_num_v, device_cnt;
1752 	u8 *rx_info;
1753 	int ret;
1754 
1755 	ret = shim->read_2_2_msg(connector, HDCP_2_2_REP_SEND_RECVID_LIST,
1756 				 &msgs.recvid_list, sizeof(msgs.recvid_list));
1757 	if (ret < 0)
1758 		return ret;
1759 
1760 	rx_info = msgs.recvid_list.rx_info;
1761 
1762 	if (HDCP_2_2_MAX_CASCADE_EXCEEDED(rx_info[1]) ||
1763 	    HDCP_2_2_MAX_DEVS_EXCEEDED(rx_info[1])) {
1764 		drm_dbg_kms(display->drm, "Topology Max Size Exceeded\n");
1765 		return -EINVAL;
1766 	}
1767 
1768 	/*
1769 	 * MST topology is not Type 1 capable if it contains a downstream
1770 	 * device that is only HDCP 1.x or Legacy HDCP 2.0/2.1 compliant.
1771 	 */
1772 	dig_port->hdcp.mst_type1_capable =
1773 		!HDCP_2_2_HDCP1_DEVICE_CONNECTED(rx_info[1]) &&
1774 		!HDCP_2_2_HDCP_2_0_REP_CONNECTED(rx_info[1]);
1775 
1776 	if (!dig_port->hdcp.mst_type1_capable && hdcp->content_type) {
1777 		drm_dbg_kms(display->drm,
1778 			    "HDCP1.x or 2.0 Legacy Device Downstream\n");
1779 		return -EINVAL;
1780 	}
1781 
1782 	/* Converting and Storing the seq_num_v to local variable as DWORD */
1783 	seq_num_v =
1784 		drm_hdcp_be24_to_cpu((const u8 *)msgs.recvid_list.seq_num_v);
1785 
1786 	if (!hdcp->hdcp2_encrypted && seq_num_v) {
1787 		drm_dbg_kms(display->drm,
1788 			    "Non zero Seq_num_v at first RecvId_List msg\n");
1789 		return -EINVAL;
1790 	}
1791 
1792 	if (seq_num_v < hdcp->seq_num_v) {
1793 		/* Roll over of the seq_num_v from repeater. Reauthenticate. */
1794 		drm_dbg_kms(display->drm, "Seq_num_v roll over.\n");
1795 		return -EINVAL;
1796 	}
1797 
1798 	device_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
1799 		      HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
1800 	if (drm_hdcp_check_ksvs_revoked(display->drm,
1801 					msgs.recvid_list.receiver_ids,
1802 					device_cnt) > 0) {
1803 		drm_err(display->drm, "Revoked receiver ID(s) is in list\n");
1804 		return -EPERM;
1805 	}
1806 
1807 	ret = hdcp2_verify_rep_topology_prepare_ack(connector,
1808 						    &msgs.recvid_list,
1809 						    &msgs.rep_ack);
1810 	if (ret < 0)
1811 		return ret;
1812 
1813 	hdcp->seq_num_v = seq_num_v;
1814 	ret = shim->write_2_2_msg(connector, &msgs.rep_ack,
1815 				  sizeof(msgs.rep_ack));
1816 	if (ret < 0)
1817 		return ret;
1818 
1819 	return 0;
1820 }
1821 
hdcp2_authenticate_sink(struct intel_connector * connector)1822 static int hdcp2_authenticate_sink(struct intel_connector *connector)
1823 {
1824 	struct intel_display *display = to_intel_display(connector);
1825 	struct intel_hdcp *hdcp = &connector->hdcp;
1826 	const struct intel_hdcp_shim *shim = hdcp->shim;
1827 	int ret;
1828 
1829 	ret = hdcp2_authentication_key_exchange(connector);
1830 	if (ret < 0) {
1831 		drm_dbg_kms(display->drm, "AKE Failed. Err : %d\n", ret);
1832 		return ret;
1833 	}
1834 
1835 	ret = hdcp2_locality_check(connector);
1836 	if (ret < 0) {
1837 		drm_dbg_kms(display->drm,
1838 			    "Locality Check failed. Err : %d\n", ret);
1839 		return ret;
1840 	}
1841 
1842 	ret = hdcp2_session_key_exchange(connector);
1843 	if (ret < 0) {
1844 		drm_dbg_kms(display->drm, "SKE Failed. Err : %d\n", ret);
1845 		return ret;
1846 	}
1847 
1848 	if (shim->config_stream_type) {
1849 		ret = shim->config_stream_type(connector,
1850 					       hdcp->is_repeater,
1851 					       hdcp->content_type);
1852 		if (ret < 0)
1853 			return ret;
1854 	}
1855 
1856 	if (hdcp->is_repeater) {
1857 		ret = hdcp2_authenticate_repeater_topology(connector);
1858 		if (ret < 0) {
1859 			drm_dbg_kms(display->drm,
1860 				    "Repeater Auth Failed. Err: %d\n", ret);
1861 			return ret;
1862 		}
1863 	}
1864 
1865 	return ret;
1866 }
1867 
hdcp2_enable_stream_encryption(struct intel_connector * connector)1868 static int hdcp2_enable_stream_encryption(struct intel_connector *connector)
1869 {
1870 	struct intel_display *display = to_intel_display(connector);
1871 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1872 	struct hdcp_port_data *data = &dig_port->hdcp.port_data;
1873 	struct intel_hdcp *hdcp = &connector->hdcp;
1874 	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1875 	enum port port = dig_port->base.port;
1876 	int ret = 0;
1877 
1878 	if (!(intel_de_read(display, HDCP2_STATUS(display, cpu_transcoder, port)) &
1879 			    LINK_ENCRYPTION_STATUS)) {
1880 		drm_err(display->drm, "[CONNECTOR:%d:%s] HDCP 2.2 Link is not encrypted\n",
1881 			connector->base.base.id, connector->base.name);
1882 		ret = -EPERM;
1883 		goto link_recover;
1884 	}
1885 
1886 	if (hdcp->shim->stream_2_2_encryption) {
1887 		ret = hdcp->shim->stream_2_2_encryption(connector, true);
1888 		if (ret) {
1889 			drm_err(display->drm, "[CONNECTOR:%d:%s] Failed to enable HDCP 2.2 stream enc\n",
1890 				connector->base.base.id, connector->base.name);
1891 			return ret;
1892 		}
1893 		drm_dbg_kms(display->drm, "HDCP 2.2 transcoder: %s stream encrypted\n",
1894 			    transcoder_name(hdcp->stream_transcoder));
1895 	}
1896 
1897 	return 0;
1898 
1899 link_recover:
1900 	if (hdcp2_deauthenticate_port(connector) < 0)
1901 		drm_dbg_kms(display->drm, "Port deauth failed.\n");
1902 
1903 	dig_port->hdcp.auth_status = false;
1904 	data->k = 0;
1905 
1906 	return ret;
1907 }
1908 
hdcp2_enable_encryption(struct intel_connector * connector)1909 static int hdcp2_enable_encryption(struct intel_connector *connector)
1910 {
1911 	struct intel_display *display = to_intel_display(connector);
1912 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1913 	struct intel_hdcp *hdcp = &connector->hdcp;
1914 	enum port port = dig_port->base.port;
1915 	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1916 	int ret;
1917 
1918 	drm_WARN_ON(display->drm,
1919 		    intel_de_read(display, HDCP2_STATUS(display, cpu_transcoder, port)) &
1920 		    LINK_ENCRYPTION_STATUS);
1921 	if (hdcp->shim->toggle_signalling) {
1922 		ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
1923 						    true);
1924 		if (ret) {
1925 			drm_err(display->drm,
1926 				"Failed to enable HDCP signalling. %d\n",
1927 				ret);
1928 			return ret;
1929 		}
1930 	}
1931 
1932 	if (intel_de_read(display, HDCP2_STATUS(display, cpu_transcoder, port)) &
1933 	    LINK_AUTH_STATUS)
1934 		/* Link is Authenticated. Now set for Encryption */
1935 		intel_de_rmw(display, HDCP2_CTL(display, cpu_transcoder, port),
1936 			     0, CTL_LINK_ENCRYPTION_REQ);
1937 
1938 	ret = intel_de_wait_for_set(display,
1939 				    HDCP2_STATUS(display, cpu_transcoder,
1940 						 port),
1941 				    LINK_ENCRYPTION_STATUS,
1942 				    HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1943 	dig_port->hdcp.auth_status = true;
1944 
1945 	return ret;
1946 }
1947 
hdcp2_disable_encryption(struct intel_connector * connector)1948 static int hdcp2_disable_encryption(struct intel_connector *connector)
1949 {
1950 	struct intel_display *display = to_intel_display(connector);
1951 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1952 	struct intel_hdcp *hdcp = &connector->hdcp;
1953 	enum port port = dig_port->base.port;
1954 	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1955 	int ret;
1956 
1957 	drm_WARN_ON(display->drm,
1958 		    !(intel_de_read(display, HDCP2_STATUS(display, cpu_transcoder, port)) &
1959 				    LINK_ENCRYPTION_STATUS));
1960 
1961 	intel_de_rmw(display, HDCP2_CTL(display, cpu_transcoder, port),
1962 		     CTL_LINK_ENCRYPTION_REQ, 0);
1963 
1964 	ret = intel_de_wait_for_clear(display,
1965 				      HDCP2_STATUS(display, cpu_transcoder,
1966 						   port),
1967 				      LINK_ENCRYPTION_STATUS,
1968 				      HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1969 	if (ret == -ETIMEDOUT)
1970 		drm_dbg_kms(display->drm, "Disable Encryption Timedout");
1971 
1972 	if (hdcp->shim->toggle_signalling) {
1973 		ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
1974 						    false);
1975 		if (ret) {
1976 			drm_err(display->drm,
1977 				"Failed to disable HDCP signalling. %d\n",
1978 				ret);
1979 			return ret;
1980 		}
1981 	}
1982 
1983 	return ret;
1984 }
1985 
1986 static int
hdcp2_propagate_stream_management_info(struct intel_connector * connector)1987 hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1988 {
1989 	struct intel_display *display = to_intel_display(connector);
1990 	int i, tries = 3, ret;
1991 
1992 	if (!connector->hdcp.is_repeater)
1993 		return 0;
1994 
1995 	for (i = 0; i < tries; i++) {
1996 		ret = _hdcp2_propagate_stream_management_info(connector);
1997 		if (!ret)
1998 			break;
1999 
2000 		/* Lets restart the auth incase of seq_num_m roll over */
2001 		if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX) {
2002 			drm_dbg_kms(display->drm,
2003 				    "seq_num_m roll over.(%d)\n", ret);
2004 			break;
2005 		}
2006 
2007 		drm_dbg_kms(display->drm,
2008 			    "HDCP2 stream management %d of %d Failed.(%d)\n",
2009 			    i + 1, tries, ret);
2010 	}
2011 
2012 	return ret;
2013 }
2014 
hdcp2_authenticate_and_encrypt(struct intel_atomic_state * state,struct intel_connector * connector)2015 static int hdcp2_authenticate_and_encrypt(struct intel_atomic_state *state,
2016 					  struct intel_connector *connector)
2017 {
2018 	struct intel_display *display = to_intel_display(connector);
2019 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2020 	int ret = 0, i, tries = 3;
2021 
2022 	for (i = 0; i < tries && !dig_port->hdcp.auth_status; i++) {
2023 		ret = hdcp2_authenticate_sink(connector);
2024 		if (!ret) {
2025 			ret = intel_hdcp_prepare_streams(state, connector);
2026 			if (ret) {
2027 				drm_dbg_kms(display->drm,
2028 					    "Prepare stream failed.(%d)\n",
2029 					    ret);
2030 				break;
2031 			}
2032 
2033 			ret = hdcp2_propagate_stream_management_info(connector);
2034 			if (ret) {
2035 				drm_dbg_kms(display->drm,
2036 					    "Stream management failed.(%d)\n",
2037 					    ret);
2038 				break;
2039 			}
2040 
2041 			ret = hdcp2_authenticate_port(connector);
2042 			if (!ret)
2043 				break;
2044 			drm_dbg_kms(display->drm, "HDCP2 port auth failed.(%d)\n",
2045 				    ret);
2046 		}
2047 
2048 		/* Clearing the mei hdcp session */
2049 		drm_dbg_kms(display->drm, "HDCP2.2 Auth %d of %d Failed.(%d)\n",
2050 			    i + 1, tries, ret);
2051 		if (hdcp2_deauthenticate_port(connector) < 0)
2052 			drm_dbg_kms(display->drm, "Port deauth failed.\n");
2053 	}
2054 
2055 	if (!ret && !dig_port->hdcp.auth_status) {
2056 		/*
2057 		 * Ensuring the required 200mSec min time interval between
2058 		 * Session Key Exchange and encryption.
2059 		 */
2060 		msleep(HDCP_2_2_DELAY_BEFORE_ENCRYPTION_EN);
2061 		ret = hdcp2_enable_encryption(connector);
2062 		if (ret < 0) {
2063 			drm_dbg_kms(display->drm,
2064 				    "Encryption Enable Failed.(%d)\n", ret);
2065 			if (hdcp2_deauthenticate_port(connector) < 0)
2066 				drm_dbg_kms(display->drm, "Port deauth failed.\n");
2067 		}
2068 	}
2069 
2070 	if (!ret)
2071 		ret = hdcp2_enable_stream_encryption(connector);
2072 
2073 	return ret;
2074 }
2075 
_intel_hdcp2_enable(struct intel_atomic_state * state,struct intel_connector * connector)2076 static int _intel_hdcp2_enable(struct intel_atomic_state *state,
2077 			       struct intel_connector *connector)
2078 {
2079 	struct intel_display *display = to_intel_display(connector);
2080 	struct intel_hdcp *hdcp = &connector->hdcp;
2081 	int ret;
2082 
2083 	drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s] HDCP2.2 is being enabled. Type: %d\n",
2084 		    connector->base.base.id, connector->base.name,
2085 		    hdcp->content_type);
2086 
2087 	intel_hdcp_adjust_hdcp_line_rekeying(connector->encoder, hdcp, false);
2088 
2089 	ret = hdcp2_authenticate_and_encrypt(state, connector);
2090 	if (ret) {
2091 		drm_dbg_kms(display->drm, "HDCP2 Type%d  Enabling Failed. (%d)\n",
2092 			    hdcp->content_type, ret);
2093 		return ret;
2094 	}
2095 
2096 	drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s] HDCP2.2 is enabled. Type %d\n",
2097 		    connector->base.base.id, connector->base.name,
2098 		    hdcp->content_type);
2099 
2100 	hdcp->hdcp2_encrypted = true;
2101 	return 0;
2102 }
2103 
2104 static int
_intel_hdcp2_disable(struct intel_connector * connector,bool hdcp2_link_recovery)2105 _intel_hdcp2_disable(struct intel_connector *connector, bool hdcp2_link_recovery)
2106 {
2107 	struct intel_display *display = to_intel_display(connector);
2108 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2109 	struct hdcp_port_data *data = &dig_port->hdcp.port_data;
2110 	struct intel_hdcp *hdcp = &connector->hdcp;
2111 	int ret;
2112 
2113 	drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s] HDCP2.2 is being Disabled\n",
2114 		    connector->base.base.id, connector->base.name);
2115 
2116 	if (hdcp->shim->stream_2_2_encryption) {
2117 		ret = hdcp->shim->stream_2_2_encryption(connector, false);
2118 		if (ret) {
2119 			drm_err(display->drm, "[CONNECTOR:%d:%s] Failed to disable HDCP 2.2 stream enc\n",
2120 				connector->base.base.id, connector->base.name);
2121 			return ret;
2122 		}
2123 		drm_dbg_kms(display->drm, "HDCP 2.2 transcoder: %s stream encryption disabled\n",
2124 			    transcoder_name(hdcp->stream_transcoder));
2125 
2126 		if (dig_port->hdcp.num_streams > 0 && !hdcp2_link_recovery)
2127 			return 0;
2128 	}
2129 
2130 	ret = hdcp2_disable_encryption(connector);
2131 
2132 	if (hdcp2_deauthenticate_port(connector) < 0)
2133 		drm_dbg_kms(display->drm, "Port deauth failed.\n");
2134 
2135 	connector->hdcp.hdcp2_encrypted = false;
2136 	dig_port->hdcp.auth_status = false;
2137 	data->k = 0;
2138 
2139 	return ret;
2140 }
2141 
2142 /* Implements the Link Integrity Check for HDCP2.2 */
intel_hdcp2_check_link(struct intel_connector * connector)2143 static int intel_hdcp2_check_link(struct intel_connector *connector)
2144 {
2145 	struct intel_display *display = to_intel_display(connector);
2146 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2147 	struct intel_hdcp *hdcp = &connector->hdcp;
2148 	enum port port = dig_port->base.port;
2149 	enum transcoder cpu_transcoder;
2150 	int ret = 0;
2151 
2152 	mutex_lock(&hdcp->mutex);
2153 	mutex_lock(&dig_port->hdcp.mutex);
2154 	cpu_transcoder = hdcp->cpu_transcoder;
2155 
2156 	/* hdcp2_check_link is expected only when HDCP2.2 is Enabled */
2157 	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
2158 	    !hdcp->hdcp2_encrypted) {
2159 		ret = -EINVAL;
2160 		goto out;
2161 	}
2162 
2163 	if (drm_WARN_ON(display->drm,
2164 			!intel_hdcp2_in_use(display, cpu_transcoder, port))) {
2165 		drm_err(display->drm,
2166 			"HDCP2.2 link stopped the encryption, %x\n",
2167 			intel_de_read(display, HDCP2_STATUS(display, cpu_transcoder, port)));
2168 		ret = -ENXIO;
2169 		_intel_hdcp2_disable(connector, true);
2170 		intel_hdcp_update_value(connector,
2171 					DRM_MODE_CONTENT_PROTECTION_DESIRED,
2172 					true);
2173 		goto out;
2174 	}
2175 
2176 	ret = hdcp->shim->check_2_2_link(dig_port, connector);
2177 	if (ret == HDCP_LINK_PROTECTED) {
2178 		if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
2179 			intel_hdcp_update_value(connector,
2180 					DRM_MODE_CONTENT_PROTECTION_ENABLED,
2181 					true);
2182 		}
2183 		goto out;
2184 	}
2185 
2186 	if (ret == HDCP_TOPOLOGY_CHANGE) {
2187 		if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
2188 			goto out;
2189 
2190 		drm_dbg_kms(display->drm,
2191 			    "HDCP2.2 Downstream topology change\n");
2192 
2193 		ret = hdcp2_authenticate_repeater_topology(connector);
2194 		if (!ret) {
2195 			intel_hdcp_update_value(connector,
2196 						DRM_MODE_CONTENT_PROTECTION_ENABLED,
2197 						true);
2198 			goto out;
2199 		}
2200 
2201 		drm_dbg_kms(display->drm,
2202 			    "[CONNECTOR:%d:%s] Repeater topology auth failed.(%d)\n",
2203 			    connector->base.base.id, connector->base.name,
2204 			    ret);
2205 	} else {
2206 		drm_dbg_kms(display->drm,
2207 			    "[CONNECTOR:%d:%s] HDCP2.2 link failed, retrying auth\n",
2208 			    connector->base.base.id, connector->base.name);
2209 	}
2210 
2211 	ret = _intel_hdcp2_disable(connector, true);
2212 	if (ret) {
2213 		drm_err(display->drm,
2214 			"[CONNECTOR:%d:%s] Failed to disable hdcp2.2 (%d)\n",
2215 			connector->base.base.id, connector->base.name, ret);
2216 		intel_hdcp_update_value(connector,
2217 				DRM_MODE_CONTENT_PROTECTION_DESIRED, true);
2218 		goto out;
2219 	}
2220 
2221 	intel_hdcp_update_value(connector,
2222 				DRM_MODE_CONTENT_PROTECTION_DESIRED, true);
2223 out:
2224 	mutex_unlock(&dig_port->hdcp.mutex);
2225 	mutex_unlock(&hdcp->mutex);
2226 	return ret;
2227 }
2228 
intel_hdcp_check_work(struct work_struct * work)2229 static void intel_hdcp_check_work(struct work_struct *work)
2230 {
2231 	struct intel_hdcp *hdcp = container_of(to_delayed_work(work),
2232 					       struct intel_hdcp,
2233 					       check_work);
2234 	struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
2235 	struct intel_display *display = to_intel_display(connector);
2236 	struct drm_i915_private *i915 = to_i915(display->drm);
2237 
2238 	if (drm_connector_is_unregistered(&connector->base))
2239 		return;
2240 
2241 	if (!intel_hdcp2_check_link(connector))
2242 		queue_delayed_work(i915->unordered_wq, &hdcp->check_work,
2243 				   DRM_HDCP2_CHECK_PERIOD_MS);
2244 	else if (!intel_hdcp_check_link(connector))
2245 		queue_delayed_work(i915->unordered_wq, &hdcp->check_work,
2246 				   DRM_HDCP_CHECK_PERIOD_MS);
2247 }
2248 
i915_hdcp_component_bind(struct device * drv_kdev,struct device * mei_kdev,void * data)2249 static int i915_hdcp_component_bind(struct device *drv_kdev,
2250 				    struct device *mei_kdev, void *data)
2251 {
2252 	struct intel_display *display = to_intel_display(drv_kdev);
2253 
2254 	drm_dbg(display->drm, "I915 HDCP comp bind\n");
2255 	mutex_lock(&display->hdcp.hdcp_mutex);
2256 	display->hdcp.arbiter = (struct i915_hdcp_arbiter *)data;
2257 	display->hdcp.arbiter->hdcp_dev = mei_kdev;
2258 	mutex_unlock(&display->hdcp.hdcp_mutex);
2259 
2260 	return 0;
2261 }
2262 
i915_hdcp_component_unbind(struct device * drv_kdev,struct device * mei_kdev,void * data)2263 static void i915_hdcp_component_unbind(struct device *drv_kdev,
2264 				       struct device *mei_kdev, void *data)
2265 {
2266 	struct intel_display *display = to_intel_display(drv_kdev);
2267 
2268 	drm_dbg(display->drm, "I915 HDCP comp unbind\n");
2269 	mutex_lock(&display->hdcp.hdcp_mutex);
2270 	display->hdcp.arbiter = NULL;
2271 	mutex_unlock(&display->hdcp.hdcp_mutex);
2272 }
2273 
2274 static const struct component_ops i915_hdcp_ops = {
2275 	.bind   = i915_hdcp_component_bind,
2276 	.unbind = i915_hdcp_component_unbind,
2277 };
2278 
intel_get_hdcp_ddi_index(enum port port)2279 static enum hdcp_ddi intel_get_hdcp_ddi_index(enum port port)
2280 {
2281 	switch (port) {
2282 	case PORT_A:
2283 		return HDCP_DDI_A;
2284 	case PORT_B ... PORT_F:
2285 		return (enum hdcp_ddi)port;
2286 	default:
2287 		return HDCP_DDI_INVALID_PORT;
2288 	}
2289 }
2290 
intel_get_hdcp_transcoder(enum transcoder cpu_transcoder)2291 static enum hdcp_transcoder intel_get_hdcp_transcoder(enum transcoder cpu_transcoder)
2292 {
2293 	switch (cpu_transcoder) {
2294 	case TRANSCODER_A ... TRANSCODER_D:
2295 		return (enum hdcp_transcoder)(cpu_transcoder | 0x10);
2296 	default: /* eDP, DSI TRANSCODERS are non HDCP capable */
2297 		return HDCP_INVALID_TRANSCODER;
2298 	}
2299 }
2300 
initialize_hdcp_port_data(struct intel_connector * connector,struct intel_digital_port * dig_port,const struct intel_hdcp_shim * shim)2301 static int initialize_hdcp_port_data(struct intel_connector *connector,
2302 				     struct intel_digital_port *dig_port,
2303 				     const struct intel_hdcp_shim *shim)
2304 {
2305 	struct intel_display *display = to_intel_display(connector);
2306 	struct hdcp_port_data *data = &dig_port->hdcp.port_data;
2307 	enum port port = dig_port->base.port;
2308 
2309 	if (DISPLAY_VER(display) < 12)
2310 		data->hdcp_ddi = intel_get_hdcp_ddi_index(port);
2311 	else
2312 		/*
2313 		 * As per ME FW API expectation, for GEN 12+, hdcp_ddi is filled
2314 		 * with zero(INVALID PORT index).
2315 		 */
2316 		data->hdcp_ddi = HDCP_DDI_INVALID_PORT;
2317 
2318 	/*
2319 	 * As associated transcoder is set and modified at modeset, here hdcp_transcoder
2320 	 * is initialized to zero (invalid transcoder index). This will be
2321 	 * retained for <Gen12 forever.
2322 	 */
2323 	data->hdcp_transcoder = HDCP_INVALID_TRANSCODER;
2324 
2325 	data->port_type = (u8)HDCP_PORT_TYPE_INTEGRATED;
2326 	data->protocol = (u8)shim->protocol;
2327 
2328 	if (!data->streams)
2329 		data->streams = kcalloc(INTEL_NUM_PIPES(display),
2330 					sizeof(struct hdcp2_streamid_type),
2331 					GFP_KERNEL);
2332 	if (!data->streams) {
2333 		drm_err(display->drm, "Out of Memory\n");
2334 		return -ENOMEM;
2335 	}
2336 
2337 	return 0;
2338 }
2339 
is_hdcp2_supported(struct intel_display * display)2340 static bool is_hdcp2_supported(struct intel_display *display)
2341 {
2342 	if (intel_hdcp_gsc_cs_required(display))
2343 		return true;
2344 
2345 	if (!IS_ENABLED(CONFIG_INTEL_MEI_HDCP))
2346 		return false;
2347 
2348 	return DISPLAY_VER(display) >= 10 ||
2349 		display->platform.kabylake ||
2350 		display->platform.coffeelake ||
2351 		display->platform.cometlake;
2352 }
2353 
intel_hdcp_component_init(struct intel_display * display)2354 void intel_hdcp_component_init(struct intel_display *display)
2355 {
2356 	int ret;
2357 
2358 	if (!is_hdcp2_supported(display))
2359 		return;
2360 
2361 	mutex_lock(&display->hdcp.hdcp_mutex);
2362 	drm_WARN_ON(display->drm, display->hdcp.comp_added);
2363 
2364 	display->hdcp.comp_added = true;
2365 	mutex_unlock(&display->hdcp.hdcp_mutex);
2366 	if (intel_hdcp_gsc_cs_required(display))
2367 		ret = intel_hdcp_gsc_init(display);
2368 	else
2369 		ret = component_add_typed(display->drm->dev, &i915_hdcp_ops,
2370 					  I915_COMPONENT_HDCP);
2371 
2372 	if (ret < 0) {
2373 		drm_dbg_kms(display->drm, "Failed at fw component add(%d)\n",
2374 			    ret);
2375 		mutex_lock(&display->hdcp.hdcp_mutex);
2376 		display->hdcp.comp_added = false;
2377 		mutex_unlock(&display->hdcp.hdcp_mutex);
2378 		return;
2379 	}
2380 }
2381 
intel_hdcp2_init(struct intel_connector * connector,struct intel_digital_port * dig_port,const struct intel_hdcp_shim * shim)2382 static void intel_hdcp2_init(struct intel_connector *connector,
2383 			     struct intel_digital_port *dig_port,
2384 			     const struct intel_hdcp_shim *shim)
2385 {
2386 	struct intel_display *display = to_intel_display(connector);
2387 	struct intel_hdcp *hdcp = &connector->hdcp;
2388 	int ret;
2389 
2390 	ret = initialize_hdcp_port_data(connector, dig_port, shim);
2391 	if (ret) {
2392 		drm_dbg_kms(display->drm, "Mei hdcp data init failed\n");
2393 		return;
2394 	}
2395 
2396 	hdcp->hdcp2_supported = true;
2397 }
2398 
intel_hdcp_init(struct intel_connector * connector,struct intel_digital_port * dig_port,const struct intel_hdcp_shim * shim)2399 int intel_hdcp_init(struct intel_connector *connector,
2400 		    struct intel_digital_port *dig_port,
2401 		    const struct intel_hdcp_shim *shim)
2402 {
2403 	struct intel_display *display = to_intel_display(connector);
2404 	struct intel_hdcp *hdcp = &connector->hdcp;
2405 	int ret;
2406 
2407 	if (!shim)
2408 		return -EINVAL;
2409 
2410 	if (is_hdcp2_supported(display))
2411 		intel_hdcp2_init(connector, dig_port, shim);
2412 
2413 	ret = drm_connector_attach_content_protection_property(&connector->base,
2414 							       hdcp->hdcp2_supported);
2415 	if (ret) {
2416 		hdcp->hdcp2_supported = false;
2417 		kfree(dig_port->hdcp.port_data.streams);
2418 		return ret;
2419 	}
2420 
2421 	hdcp->shim = shim;
2422 	mutex_init(&hdcp->mutex);
2423 	INIT_DELAYED_WORK(&hdcp->check_work, intel_hdcp_check_work);
2424 	INIT_WORK(&hdcp->prop_work, intel_hdcp_prop_work);
2425 	init_waitqueue_head(&hdcp->cp_irq_queue);
2426 
2427 	return 0;
2428 }
2429 
_intel_hdcp_enable(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config,const struct drm_connector_state * conn_state)2430 static int _intel_hdcp_enable(struct intel_atomic_state *state,
2431 			      struct intel_encoder *encoder,
2432 			      const struct intel_crtc_state *pipe_config,
2433 			      const struct drm_connector_state *conn_state)
2434 {
2435 	struct intel_display *display = to_intel_display(encoder);
2436 	struct drm_i915_private *i915 = to_i915(display->drm);
2437 	struct intel_connector *connector =
2438 		to_intel_connector(conn_state->connector);
2439 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2440 	struct intel_hdcp *hdcp = &connector->hdcp;
2441 	unsigned long check_link_interval = DRM_HDCP_CHECK_PERIOD_MS;
2442 	int ret = -EINVAL;
2443 
2444 	if (!hdcp->shim)
2445 		return -ENOENT;
2446 
2447 	if (!connector->encoder) {
2448 		drm_err(display->drm, "[CONNECTOR:%d:%s] encoder is not initialized\n",
2449 			connector->base.base.id, connector->base.name);
2450 		return -ENODEV;
2451 	}
2452 
2453 	mutex_lock(&hdcp->mutex);
2454 	mutex_lock(&dig_port->hdcp.mutex);
2455 	drm_WARN_ON(display->drm,
2456 		    hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED);
2457 	hdcp->content_type = (u8)conn_state->hdcp_content_type;
2458 
2459 	if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DP_MST)) {
2460 		hdcp->cpu_transcoder = pipe_config->mst_master_transcoder;
2461 		hdcp->stream_transcoder = pipe_config->cpu_transcoder;
2462 	} else {
2463 		hdcp->cpu_transcoder = pipe_config->cpu_transcoder;
2464 		hdcp->stream_transcoder = INVALID_TRANSCODER;
2465 	}
2466 
2467 	if (DISPLAY_VER(display) >= 12)
2468 		dig_port->hdcp.port_data.hdcp_transcoder =
2469 			intel_get_hdcp_transcoder(hdcp->cpu_transcoder);
2470 
2471 	/*
2472 	 * Considering that HDCP2.2 is more secure than HDCP1.4, If the setup
2473 	 * is capable of HDCP2.2, it is preferred to use HDCP2.2.
2474 	 */
2475 	if (!hdcp->force_hdcp14 && intel_hdcp2_get_capability(connector)) {
2476 		ret = _intel_hdcp2_enable(state, connector);
2477 		if (!ret)
2478 			check_link_interval =
2479 				DRM_HDCP2_CHECK_PERIOD_MS;
2480 	}
2481 
2482 	if (hdcp->force_hdcp14)
2483 		drm_dbg_kms(display->drm, "Forcing HDCP 1.4\n");
2484 
2485 	/*
2486 	 * When HDCP2.2 fails and Content Type is not Type1, HDCP1.4 will
2487 	 * be attempted.
2488 	 */
2489 	if (ret && intel_hdcp_get_capability(connector) &&
2490 	    hdcp->content_type != DRM_MODE_HDCP_CONTENT_TYPE1) {
2491 		ret = intel_hdcp1_enable(connector);
2492 	}
2493 
2494 	if (!ret) {
2495 		queue_delayed_work(i915->unordered_wq, &hdcp->check_work,
2496 				   check_link_interval);
2497 		intel_hdcp_update_value(connector,
2498 					DRM_MODE_CONTENT_PROTECTION_ENABLED,
2499 					true);
2500 	}
2501 
2502 	mutex_unlock(&dig_port->hdcp.mutex);
2503 	mutex_unlock(&hdcp->mutex);
2504 	return ret;
2505 }
2506 
intel_hdcp_enable(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)2507 void intel_hdcp_enable(struct intel_atomic_state *state,
2508 		       struct intel_encoder *encoder,
2509 		       const struct intel_crtc_state *crtc_state,
2510 		       const struct drm_connector_state *conn_state)
2511 {
2512 	struct intel_connector *connector =
2513 		to_intel_connector(conn_state->connector);
2514 	struct intel_hdcp *hdcp = &connector->hdcp;
2515 
2516 	/*
2517 	 * Enable hdcp if it's desired or if userspace is enabled and
2518 	 * driver set its state to undesired
2519 	 */
2520 	if (conn_state->content_protection ==
2521 	    DRM_MODE_CONTENT_PROTECTION_DESIRED ||
2522 	    (conn_state->content_protection ==
2523 	    DRM_MODE_CONTENT_PROTECTION_ENABLED && hdcp->value ==
2524 	    DRM_MODE_CONTENT_PROTECTION_UNDESIRED))
2525 		_intel_hdcp_enable(state, encoder, crtc_state, conn_state);
2526 }
2527 
intel_hdcp_disable(struct intel_connector * connector)2528 int intel_hdcp_disable(struct intel_connector *connector)
2529 {
2530 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2531 	struct intel_hdcp *hdcp = &connector->hdcp;
2532 	int ret = 0;
2533 
2534 	if (!hdcp->shim)
2535 		return -ENOENT;
2536 
2537 	mutex_lock(&hdcp->mutex);
2538 	mutex_lock(&dig_port->hdcp.mutex);
2539 
2540 	if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
2541 		goto out;
2542 
2543 	intel_hdcp_update_value(connector,
2544 				DRM_MODE_CONTENT_PROTECTION_UNDESIRED, false);
2545 	if (hdcp->hdcp2_encrypted)
2546 		ret = _intel_hdcp2_disable(connector, false);
2547 	else if (hdcp->hdcp_encrypted)
2548 		ret = _intel_hdcp_disable(connector);
2549 
2550 out:
2551 	mutex_unlock(&dig_port->hdcp.mutex);
2552 	mutex_unlock(&hdcp->mutex);
2553 	cancel_delayed_work_sync(&hdcp->check_work);
2554 	return ret;
2555 }
2556 
intel_hdcp_update_pipe(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)2557 void intel_hdcp_update_pipe(struct intel_atomic_state *state,
2558 			    struct intel_encoder *encoder,
2559 			    const struct intel_crtc_state *crtc_state,
2560 			    const struct drm_connector_state *conn_state)
2561 {
2562 	struct intel_connector *connector =
2563 				to_intel_connector(conn_state->connector);
2564 	struct intel_hdcp *hdcp = &connector->hdcp;
2565 	bool content_protection_type_changed, desired_and_not_enabled = false;
2566 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
2567 
2568 	if (!connector->hdcp.shim)
2569 		return;
2570 
2571 	content_protection_type_changed =
2572 		(conn_state->hdcp_content_type != hdcp->content_type &&
2573 		 conn_state->content_protection !=
2574 		 DRM_MODE_CONTENT_PROTECTION_UNDESIRED);
2575 
2576 	/*
2577 	 * During the HDCP encryption session if Type change is requested,
2578 	 * disable the HDCP and re-enable it with new TYPE value.
2579 	 */
2580 	if (conn_state->content_protection ==
2581 	    DRM_MODE_CONTENT_PROTECTION_UNDESIRED ||
2582 	    content_protection_type_changed)
2583 		intel_hdcp_disable(connector);
2584 
2585 	/*
2586 	 * Mark the hdcp state as DESIRED after the hdcp disable of type
2587 	 * change procedure.
2588 	 */
2589 	if (content_protection_type_changed) {
2590 		mutex_lock(&hdcp->mutex);
2591 		hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
2592 		drm_connector_get(&connector->base);
2593 		if (!queue_work(i915->unordered_wq, &hdcp->prop_work))
2594 			drm_connector_put(&connector->base);
2595 		mutex_unlock(&hdcp->mutex);
2596 	}
2597 
2598 	if (conn_state->content_protection ==
2599 	    DRM_MODE_CONTENT_PROTECTION_DESIRED) {
2600 		mutex_lock(&hdcp->mutex);
2601 		/* Avoid enabling hdcp, if it already ENABLED */
2602 		desired_and_not_enabled =
2603 			hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED;
2604 		mutex_unlock(&hdcp->mutex);
2605 		/*
2606 		 * If HDCP already ENABLED and CP property is DESIRED, schedule
2607 		 * prop_work to update correct CP property to user space.
2608 		 */
2609 		if (!desired_and_not_enabled && !content_protection_type_changed) {
2610 			drm_connector_get(&connector->base);
2611 			if (!queue_work(i915->unordered_wq, &hdcp->prop_work))
2612 				drm_connector_put(&connector->base);
2613 
2614 		}
2615 	}
2616 
2617 	if (desired_and_not_enabled || content_protection_type_changed)
2618 		_intel_hdcp_enable(state, encoder, crtc_state, conn_state);
2619 }
2620 
intel_hdcp_cancel_works(struct intel_connector * connector)2621 void intel_hdcp_cancel_works(struct intel_connector *connector)
2622 {
2623 	if (!connector->hdcp.shim)
2624 		return;
2625 
2626 	cancel_delayed_work_sync(&connector->hdcp.check_work);
2627 	cancel_work_sync(&connector->hdcp.prop_work);
2628 }
2629 
intel_hdcp_component_fini(struct intel_display * display)2630 void intel_hdcp_component_fini(struct intel_display *display)
2631 {
2632 	mutex_lock(&display->hdcp.hdcp_mutex);
2633 	if (!display->hdcp.comp_added) {
2634 		mutex_unlock(&display->hdcp.hdcp_mutex);
2635 		return;
2636 	}
2637 
2638 	display->hdcp.comp_added = false;
2639 	mutex_unlock(&display->hdcp.hdcp_mutex);
2640 
2641 	if (intel_hdcp_gsc_cs_required(display))
2642 		intel_hdcp_gsc_fini(display);
2643 	else
2644 		component_del(display->drm->dev, &i915_hdcp_ops);
2645 }
2646 
intel_hdcp_cleanup(struct intel_connector * connector)2647 void intel_hdcp_cleanup(struct intel_connector *connector)
2648 {
2649 	struct intel_hdcp *hdcp = &connector->hdcp;
2650 
2651 	if (!hdcp->shim)
2652 		return;
2653 
2654 	/*
2655 	 * If the connector is registered, it's possible userspace could kick
2656 	 * off another HDCP enable, which would re-spawn the workers.
2657 	 */
2658 	drm_WARN_ON(connector->base.dev,
2659 		connector->base.registration_state == DRM_CONNECTOR_REGISTERED);
2660 
2661 	/*
2662 	 * Now that the connector is not registered, check_work won't be run,
2663 	 * but cancel any outstanding instances of it
2664 	 */
2665 	cancel_delayed_work_sync(&hdcp->check_work);
2666 
2667 	/*
2668 	 * We don't cancel prop_work in the same way as check_work since it
2669 	 * requires connection_mutex which could be held while calling this
2670 	 * function. Instead, we rely on the connector references grabbed before
2671 	 * scheduling prop_work to ensure the connector is alive when prop_work
2672 	 * is run. So if we're in the destroy path (which is where this
2673 	 * function should be called), we're "guaranteed" that prop_work is not
2674 	 * active (tl;dr This Should Never Happen).
2675 	 */
2676 	drm_WARN_ON(connector->base.dev, work_pending(&hdcp->prop_work));
2677 
2678 	mutex_lock(&hdcp->mutex);
2679 	hdcp->shim = NULL;
2680 	mutex_unlock(&hdcp->mutex);
2681 }
2682 
intel_hdcp_atomic_check(struct drm_connector * connector,struct drm_connector_state * old_state,struct drm_connector_state * new_state)2683 void intel_hdcp_atomic_check(struct drm_connector *connector,
2684 			     struct drm_connector_state *old_state,
2685 			     struct drm_connector_state *new_state)
2686 {
2687 	u64 old_cp = old_state->content_protection;
2688 	u64 new_cp = new_state->content_protection;
2689 	struct drm_crtc_state *crtc_state;
2690 
2691 	if (!new_state->crtc) {
2692 		/*
2693 		 * If the connector is being disabled with CP enabled, mark it
2694 		 * desired so it's re-enabled when the connector is brought back
2695 		 */
2696 		if (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)
2697 			new_state->content_protection =
2698 				DRM_MODE_CONTENT_PROTECTION_DESIRED;
2699 		return;
2700 	}
2701 
2702 	crtc_state = drm_atomic_get_new_crtc_state(new_state->state,
2703 						   new_state->crtc);
2704 	/*
2705 	 * Fix the HDCP uapi content protection state in case of modeset.
2706 	 * FIXME: As per HDCP content protection property uapi doc, an uevent()
2707 	 * need to be sent if there is transition from ENABLED->DESIRED.
2708 	 */
2709 	if (drm_atomic_crtc_needs_modeset(crtc_state) &&
2710 	    (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED &&
2711 	    new_cp != DRM_MODE_CONTENT_PROTECTION_UNDESIRED))
2712 		new_state->content_protection =
2713 			DRM_MODE_CONTENT_PROTECTION_DESIRED;
2714 
2715 	/*
2716 	 * Nothing to do if the state didn't change, or HDCP was activated since
2717 	 * the last commit. And also no change in hdcp content type.
2718 	 */
2719 	if (old_cp == new_cp ||
2720 	    (old_cp == DRM_MODE_CONTENT_PROTECTION_DESIRED &&
2721 	     new_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)) {
2722 		if (old_state->hdcp_content_type ==
2723 				new_state->hdcp_content_type)
2724 			return;
2725 	}
2726 
2727 	crtc_state->mode_changed = true;
2728 }
2729 
2730 /* Handles the CP_IRQ raised from the DP HDCP sink */
intel_hdcp_handle_cp_irq(struct intel_connector * connector)2731 void intel_hdcp_handle_cp_irq(struct intel_connector *connector)
2732 {
2733 	struct intel_hdcp *hdcp = &connector->hdcp;
2734 	struct intel_display *display = to_intel_display(connector);
2735 	struct drm_i915_private *i915 = to_i915(display->drm);
2736 
2737 	if (!hdcp->shim)
2738 		return;
2739 
2740 	atomic_inc(&connector->hdcp.cp_irq_count);
2741 	wake_up_all(&connector->hdcp.cp_irq_queue);
2742 
2743 	queue_delayed_work(i915->unordered_wq, &hdcp->check_work, 0);
2744 }
2745 
__intel_hdcp_info(struct seq_file * m,struct intel_connector * connector,bool remote_req)2746 static void __intel_hdcp_info(struct seq_file *m, struct intel_connector *connector,
2747 			      bool remote_req)
2748 {
2749 	bool hdcp_cap = false, hdcp2_cap = false;
2750 
2751 	if (!connector->hdcp.shim) {
2752 		seq_puts(m, "No Connector Support");
2753 		goto out;
2754 	}
2755 
2756 	if (remote_req) {
2757 		intel_hdcp_get_remote_capability(connector, &hdcp_cap, &hdcp2_cap);
2758 	} else {
2759 		hdcp_cap = intel_hdcp_get_capability(connector);
2760 		hdcp2_cap = intel_hdcp2_get_capability(connector);
2761 	}
2762 
2763 	if (hdcp_cap)
2764 		seq_puts(m, "HDCP1.4 ");
2765 	if (hdcp2_cap)
2766 		seq_puts(m, "HDCP2.2 ");
2767 
2768 	if (!hdcp_cap && !hdcp2_cap)
2769 		seq_puts(m, "None");
2770 
2771 out:
2772 	seq_puts(m, "\n");
2773 }
2774 
intel_hdcp_info(struct seq_file * m,struct intel_connector * connector)2775 void intel_hdcp_info(struct seq_file *m, struct intel_connector *connector)
2776 {
2777 	seq_puts(m, "\tHDCP version: ");
2778 	if (connector->mst.dp) {
2779 		__intel_hdcp_info(m, connector, true);
2780 		seq_puts(m, "\tMST Hub HDCP version: ");
2781 	}
2782 	__intel_hdcp_info(m, connector, false);
2783 }
2784 
intel_hdcp_sink_capability_show(struct seq_file * m,void * data)2785 static int intel_hdcp_sink_capability_show(struct seq_file *m, void *data)
2786 {
2787 	struct intel_connector *connector = m->private;
2788 	struct intel_display *display = to_intel_display(connector);
2789 	int ret;
2790 
2791 	ret = drm_modeset_lock_single_interruptible(&display->drm->mode_config.connection_mutex);
2792 	if (ret)
2793 		return ret;
2794 
2795 	if (!connector->base.encoder ||
2796 	    connector->base.status != connector_status_connected) {
2797 		ret = -ENODEV;
2798 		goto out;
2799 	}
2800 
2801 	seq_printf(m, "%s:%d HDCP version: ", connector->base.name,
2802 		   connector->base.base.id);
2803 	__intel_hdcp_info(m, connector, false);
2804 
2805 out:
2806 	drm_modeset_unlock(&display->drm->mode_config.connection_mutex);
2807 
2808 	return ret;
2809 }
2810 DEFINE_SHOW_ATTRIBUTE(intel_hdcp_sink_capability);
2811 
intel_hdcp_force_14_write(struct file * file,const char __user * ubuf,size_t len,loff_t * offp)2812 static ssize_t intel_hdcp_force_14_write(struct file *file,
2813 					 const char __user *ubuf,
2814 					 size_t len, loff_t *offp)
2815 {
2816 	struct seq_file *m = file->private_data;
2817 	struct intel_connector *connector = m->private;
2818 	struct intel_hdcp *hdcp = &connector->hdcp;
2819 	bool force_hdcp14 = false;
2820 	int ret;
2821 
2822 	if (len == 0)
2823 		return 0;
2824 
2825 	ret = kstrtobool_from_user(ubuf, len, &force_hdcp14);
2826 	if (ret < 0)
2827 		return ret;
2828 
2829 	hdcp->force_hdcp14 = force_hdcp14;
2830 	*offp += len;
2831 
2832 	return len;
2833 }
2834 
intel_hdcp_force_14_show(struct seq_file * m,void * data)2835 static int intel_hdcp_force_14_show(struct seq_file *m, void *data)
2836 {
2837 	struct intel_connector *connector = m->private;
2838 	struct intel_display *display = to_intel_display(connector);
2839 	struct intel_encoder *encoder = intel_attached_encoder(connector);
2840 	struct intel_hdcp *hdcp = &connector->hdcp;
2841 	struct drm_crtc *crtc;
2842 	int ret;
2843 
2844 	if (!encoder)
2845 		return -ENODEV;
2846 
2847 	ret = drm_modeset_lock_single_interruptible(&display->drm->mode_config.connection_mutex);
2848 	if (ret)
2849 		return ret;
2850 
2851 	crtc = connector->base.state->crtc;
2852 	if (connector->base.status != connector_status_connected || !crtc) {
2853 		ret = -ENODEV;
2854 		goto out;
2855 	}
2856 
2857 	seq_printf(m, "%s\n",
2858 		   str_yes_no(hdcp->force_hdcp14));
2859 out:
2860 	drm_modeset_unlock(&display->drm->mode_config.connection_mutex);
2861 
2862 	return ret;
2863 }
2864 
intel_hdcp_force_14_open(struct inode * inode,struct file * file)2865 static int intel_hdcp_force_14_open(struct inode *inode,
2866 				    struct file *file)
2867 {
2868 	return single_open(file, intel_hdcp_force_14_show,
2869 			   inode->i_private);
2870 }
2871 
2872 static const struct file_operations intel_hdcp_force_14_fops = {
2873 	.owner = THIS_MODULE,
2874 	.open = intel_hdcp_force_14_open,
2875 	.read = seq_read,
2876 	.llseek = seq_lseek,
2877 	.release = single_release,
2878 	.write = intel_hdcp_force_14_write
2879 };
2880 
intel_hdcp_connector_debugfs_add(struct intel_connector * connector)2881 void intel_hdcp_connector_debugfs_add(struct intel_connector *connector)
2882 {
2883 	struct dentry *root = connector->base.debugfs_entry;
2884 	int connector_type = connector->base.connector_type;
2885 
2886 	if (connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
2887 	    connector_type == DRM_MODE_CONNECTOR_HDMIA ||
2888 	    connector_type == DRM_MODE_CONNECTOR_HDMIB) {
2889 		debugfs_create_file("i915_hdcp_sink_capability", 0444, root,
2890 				    connector, &intel_hdcp_sink_capability_fops);
2891 		debugfs_create_file("i915_force_hdcp14", 0644, root,
2892 				    connector, &intel_hdcp_force_14_fops);
2893 	}
2894 }
2895