1 /* SPDX-License-Identifier: MIT */
2 /*
3 * Copyright (C) 2017 Google, Inc.
4 * Copyright _ 2017-2019, Intel Corporation.
5 *
6 * Authors:
7 * Sean Paul <seanpaul@chromium.org>
8 * Ramalingam C <ramalingam.c@intel.com>
9 */
10
11 #include <linux/component.h>
12 #include <linux/i2c.h>
13 #include <linux/random.h>
14
15 #include <drm/display/drm_hdcp_helper.h>
16 #include <drm/intel/i915_component.h>
17
18 #include "i915_drv.h"
19 #include "i915_reg.h"
20 #include "intel_connector.h"
21 #include "intel_de.h"
22 #include "intel_display_power.h"
23 #include "intel_display_power_well.h"
24 #include "intel_display_types.h"
25 #include "intel_hdcp.h"
26 #include "intel_hdcp_gsc.h"
27 #include "intel_hdcp_regs.h"
28 #include "intel_hdcp_shim.h"
29 #include "intel_pcode.h"
30
31 #define KEY_LOAD_TRIES 5
32 #define HDCP2_LC_RETRY_CNT 3
33
34 /* WA: 16022217614 */
35 static void
intel_hdcp_disable_hdcp_line_rekeying(struct intel_encoder * encoder,struct intel_hdcp * hdcp)36 intel_hdcp_disable_hdcp_line_rekeying(struct intel_encoder *encoder,
37 struct intel_hdcp *hdcp)
38 {
39 struct intel_display *display = to_intel_display(encoder);
40
41 /* Here we assume HDMI is in TMDS mode of operation */
42 if (encoder->type != INTEL_OUTPUT_HDMI)
43 return;
44
45 if (DISPLAY_VER(display) >= 14) {
46 if (IS_DISPLAY_VERx100_STEP(display, 1400, STEP_D0, STEP_FOREVER))
47 intel_de_rmw(display, MTL_CHICKEN_TRANS(hdcp->cpu_transcoder),
48 0, HDCP_LINE_REKEY_DISABLE);
49 else if (IS_DISPLAY_VERx100_STEP(display, 1401, STEP_B0, STEP_FOREVER) ||
50 IS_DISPLAY_VERx100_STEP(display, 2000, STEP_B0, STEP_FOREVER))
51 intel_de_rmw(display,
52 TRANS_DDI_FUNC_CTL(display, hdcp->cpu_transcoder),
53 0, TRANS_DDI_HDCP_LINE_REKEY_DISABLE);
54 }
55 }
56
intel_conn_to_vcpi(struct intel_atomic_state * state,struct intel_connector * connector)57 static int intel_conn_to_vcpi(struct intel_atomic_state *state,
58 struct intel_connector *connector)
59 {
60 struct drm_dp_mst_topology_mgr *mgr;
61 struct drm_dp_mst_atomic_payload *payload;
62 struct drm_dp_mst_topology_state *mst_state;
63 int vcpi = 0;
64
65 /* For HDMI this is forced to be 0x0. For DP SST also this is 0x0. */
66 if (!connector->port)
67 return 0;
68 mgr = connector->port->mgr;
69
70 drm_modeset_lock(&mgr->base.lock, state->base.acquire_ctx);
71 mst_state = to_drm_dp_mst_topology_state(mgr->base.state);
72 payload = drm_atomic_get_mst_payload_state(mst_state, connector->port);
73 if (drm_WARN_ON(mgr->dev, !payload))
74 goto out;
75
76 vcpi = payload->vcpi;
77 if (drm_WARN_ON(mgr->dev, vcpi < 0)) {
78 vcpi = 0;
79 goto out;
80 }
81 out:
82 return vcpi;
83 }
84
85 /*
86 * intel_hdcp_required_content_stream selects the most highest common possible HDCP
87 * content_type for all streams in DP MST topology because security f/w doesn't
88 * have any provision to mark content_type for each stream separately, it marks
89 * all available streams with the content_type proivided at the time of port
90 * authentication. This may prohibit the userspace to use type1 content on
91 * HDCP 2.2 capable sink because of other sink are not capable of HDCP 2.2 in
92 * DP MST topology. Though it is not compulsory, security fw should change its
93 * policy to mark different content_types for different streams.
94 */
95 static int
intel_hdcp_required_content_stream(struct intel_atomic_state * state,struct intel_digital_port * dig_port)96 intel_hdcp_required_content_stream(struct intel_atomic_state *state,
97 struct intel_digital_port *dig_port)
98 {
99 struct intel_display *display = to_intel_display(state);
100 struct drm_connector_list_iter conn_iter;
101 struct intel_digital_port *conn_dig_port;
102 struct intel_connector *connector;
103 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
104 bool enforce_type0 = false;
105 int k;
106
107 if (dig_port->hdcp_auth_status)
108 return 0;
109
110 data->k = 0;
111
112 if (!dig_port->hdcp_mst_type1_capable)
113 enforce_type0 = true;
114
115 drm_connector_list_iter_begin(display->drm, &conn_iter);
116 for_each_intel_connector_iter(connector, &conn_iter) {
117 if (connector->base.status == connector_status_disconnected)
118 continue;
119
120 if (!intel_encoder_is_mst(intel_attached_encoder(connector)))
121 continue;
122
123 conn_dig_port = intel_attached_dig_port(connector);
124 if (conn_dig_port != dig_port)
125 continue;
126
127 data->streams[data->k].stream_id =
128 intel_conn_to_vcpi(state, connector);
129 data->k++;
130
131 /* if there is only one active stream */
132 if (dig_port->dp.active_mst_links <= 1)
133 break;
134 }
135 drm_connector_list_iter_end(&conn_iter);
136
137 if (drm_WARN_ON(display->drm, data->k > INTEL_NUM_PIPES(display) || data->k == 0))
138 return -EINVAL;
139
140 /*
141 * Apply common protection level across all streams in DP MST Topology.
142 * Use highest supported content type for all streams in DP MST Topology.
143 */
144 for (k = 0; k < data->k; k++)
145 data->streams[k].stream_type =
146 enforce_type0 ? DRM_MODE_HDCP_CONTENT_TYPE0 : DRM_MODE_HDCP_CONTENT_TYPE1;
147
148 return 0;
149 }
150
intel_hdcp_prepare_streams(struct intel_atomic_state * state,struct intel_connector * connector)151 static int intel_hdcp_prepare_streams(struct intel_atomic_state *state,
152 struct intel_connector *connector)
153 {
154 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
155 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
156 struct intel_hdcp *hdcp = &connector->hdcp;
157
158 if (intel_encoder_is_mst(intel_attached_encoder(connector)))
159 return intel_hdcp_required_content_stream(state, dig_port);
160
161 data->k = 1;
162 data->streams[0].stream_id = 0;
163 data->streams[0].stream_type = hdcp->content_type;
164
165 return 0;
166 }
167
168 static
intel_hdcp_is_ksv_valid(u8 * ksv)169 bool intel_hdcp_is_ksv_valid(u8 *ksv)
170 {
171 int i, ones = 0;
172 /* KSV has 20 1's and 20 0's */
173 for (i = 0; i < DRM_HDCP_KSV_LEN; i++)
174 ones += hweight8(ksv[i]);
175 if (ones != 20)
176 return false;
177
178 return true;
179 }
180
181 static
intel_hdcp_read_valid_bksv(struct intel_digital_port * dig_port,const struct intel_hdcp_shim * shim,u8 * bksv)182 int intel_hdcp_read_valid_bksv(struct intel_digital_port *dig_port,
183 const struct intel_hdcp_shim *shim, u8 *bksv)
184 {
185 struct intel_display *display = to_intel_display(dig_port);
186 int ret, i, tries = 2;
187
188 /* HDCP spec states that we must retry the bksv if it is invalid */
189 for (i = 0; i < tries; i++) {
190 ret = shim->read_bksv(dig_port, bksv);
191 if (ret)
192 return ret;
193 if (intel_hdcp_is_ksv_valid(bksv))
194 break;
195 }
196 if (i == tries) {
197 drm_dbg_kms(display->drm, "Bksv is invalid\n");
198 return -ENODEV;
199 }
200
201 return 0;
202 }
203
204 /* Is HDCP1.4 capable on Platform and Sink */
intel_hdcp_get_capability(struct intel_connector * connector)205 bool intel_hdcp_get_capability(struct intel_connector *connector)
206 {
207 struct intel_digital_port *dig_port;
208 const struct intel_hdcp_shim *shim = connector->hdcp.shim;
209 bool capable = false;
210 u8 bksv[5];
211
212 if (!intel_attached_encoder(connector))
213 return capable;
214
215 dig_port = intel_attached_dig_port(connector);
216
217 if (!shim)
218 return capable;
219
220 if (shim->hdcp_get_capability) {
221 shim->hdcp_get_capability(dig_port, &capable);
222 } else {
223 if (!intel_hdcp_read_valid_bksv(dig_port, shim, bksv))
224 capable = true;
225 }
226
227 return capable;
228 }
229
230 /*
231 * Check if the source has all the building blocks ready to make
232 * HDCP 2.2 work
233 */
intel_hdcp2_prerequisite(struct intel_connector * connector)234 static bool intel_hdcp2_prerequisite(struct intel_connector *connector)
235 {
236 struct intel_display *display = to_intel_display(connector);
237 struct intel_hdcp *hdcp = &connector->hdcp;
238
239 /* I915 support for HDCP2.2 */
240 if (!hdcp->hdcp2_supported)
241 return false;
242
243 /* If MTL+ make sure gsc is loaded and proxy is setup */
244 if (intel_hdcp_gsc_cs_required(display)) {
245 if (!intel_hdcp_gsc_check_status(display))
246 return false;
247 }
248
249 /* MEI/GSC interface is solid depending on which is used */
250 mutex_lock(&display->hdcp.hdcp_mutex);
251 if (!display->hdcp.comp_added || !display->hdcp.arbiter) {
252 mutex_unlock(&display->hdcp.hdcp_mutex);
253 return false;
254 }
255 mutex_unlock(&display->hdcp.hdcp_mutex);
256
257 return true;
258 }
259
260 /* Is HDCP2.2 capable on Platform and Sink */
intel_hdcp2_get_capability(struct intel_connector * connector)261 bool intel_hdcp2_get_capability(struct intel_connector *connector)
262 {
263 struct intel_hdcp *hdcp = &connector->hdcp;
264 bool capable = false;
265
266 if (!intel_hdcp2_prerequisite(connector))
267 return false;
268
269 /* Sink's capability for HDCP2.2 */
270 hdcp->shim->hdcp_2_2_get_capability(connector, &capable);
271
272 return capable;
273 }
274
intel_hdcp_get_remote_capability(struct intel_connector * connector,bool * hdcp_capable,bool * hdcp2_capable)275 void intel_hdcp_get_remote_capability(struct intel_connector *connector,
276 bool *hdcp_capable,
277 bool *hdcp2_capable)
278 {
279 struct intel_hdcp *hdcp = &connector->hdcp;
280
281 if (!hdcp->shim->get_remote_hdcp_capability)
282 return;
283
284 hdcp->shim->get_remote_hdcp_capability(connector, hdcp_capable,
285 hdcp2_capable);
286
287 if (!intel_hdcp2_prerequisite(connector))
288 *hdcp2_capable = false;
289 }
290
intel_hdcp_in_use(struct intel_display * display,enum transcoder cpu_transcoder,enum port port)291 static bool intel_hdcp_in_use(struct intel_display *display,
292 enum transcoder cpu_transcoder, enum port port)
293 {
294 return intel_de_read(display,
295 HDCP_STATUS(display, cpu_transcoder, port)) &
296 HDCP_STATUS_ENC;
297 }
298
intel_hdcp2_in_use(struct intel_display * display,enum transcoder cpu_transcoder,enum port port)299 static bool intel_hdcp2_in_use(struct intel_display *display,
300 enum transcoder cpu_transcoder, enum port port)
301 {
302 return intel_de_read(display,
303 HDCP2_STATUS(display, cpu_transcoder, port)) &
304 LINK_ENCRYPTION_STATUS;
305 }
306
intel_hdcp_poll_ksv_fifo(struct intel_digital_port * dig_port,const struct intel_hdcp_shim * shim)307 static int intel_hdcp_poll_ksv_fifo(struct intel_digital_port *dig_port,
308 const struct intel_hdcp_shim *shim)
309 {
310 int ret, read_ret;
311 bool ksv_ready;
312
313 /* Poll for ksv list ready (spec says max time allowed is 5s) */
314 ret = __wait_for(read_ret = shim->read_ksv_ready(dig_port,
315 &ksv_ready),
316 read_ret || ksv_ready, 5 * 1000 * 1000, 1000,
317 100 * 1000);
318 if (ret)
319 return ret;
320 if (read_ret)
321 return read_ret;
322 if (!ksv_ready)
323 return -ETIMEDOUT;
324
325 return 0;
326 }
327
hdcp_key_loadable(struct intel_display * display)328 static bool hdcp_key_loadable(struct intel_display *display)
329 {
330 struct drm_i915_private *i915 = to_i915(display->drm);
331 enum i915_power_well_id id;
332 intel_wakeref_t wakeref;
333 bool enabled = false;
334
335 /*
336 * On HSW and BDW, Display HW loads the Key as soon as Display resumes.
337 * On all BXT+, SW can load the keys only when the PW#1 is turned on.
338 */
339 if (IS_HASWELL(i915) || IS_BROADWELL(i915))
340 id = HSW_DISP_PW_GLOBAL;
341 else
342 id = SKL_DISP_PW_1;
343
344 /* PG1 (power well #1) needs to be enabled */
345 with_intel_runtime_pm(&i915->runtime_pm, wakeref)
346 enabled = intel_display_power_well_is_enabled(i915, id);
347
348 /*
349 * Another req for hdcp key loadability is enabled state of pll for
350 * cdclk. Without active crtc we wont land here. So we are assuming that
351 * cdclk is already on.
352 */
353
354 return enabled;
355 }
356
intel_hdcp_clear_keys(struct intel_display * display)357 static void intel_hdcp_clear_keys(struct intel_display *display)
358 {
359 intel_de_write(display, HDCP_KEY_CONF, HDCP_CLEAR_KEYS_TRIGGER);
360 intel_de_write(display, HDCP_KEY_STATUS,
361 HDCP_KEY_LOAD_DONE | HDCP_KEY_LOAD_STATUS | HDCP_FUSE_IN_PROGRESS | HDCP_FUSE_ERROR | HDCP_FUSE_DONE);
362 }
363
intel_hdcp_load_keys(struct intel_display * display)364 static int intel_hdcp_load_keys(struct intel_display *display)
365 {
366 struct drm_i915_private *i915 = to_i915(display->drm);
367 int ret;
368 u32 val;
369
370 val = intel_de_read(display, HDCP_KEY_STATUS);
371 if ((val & HDCP_KEY_LOAD_DONE) && (val & HDCP_KEY_LOAD_STATUS))
372 return 0;
373
374 /*
375 * On HSW and BDW HW loads the HDCP1.4 Key when Display comes
376 * out of reset. So if Key is not already loaded, its an error state.
377 */
378 if (IS_HASWELL(i915) || IS_BROADWELL(i915))
379 if (!(intel_de_read(display, HDCP_KEY_STATUS) & HDCP_KEY_LOAD_DONE))
380 return -ENXIO;
381
382 /*
383 * Initiate loading the HDCP key from fuses.
384 *
385 * BXT+ platforms, HDCP key needs to be loaded by SW. Only display
386 * version 9 platforms (minus BXT) differ in the key load trigger
387 * process from other platforms. These platforms use the GT Driver
388 * Mailbox interface.
389 */
390 if (DISPLAY_VER(display) == 9 && !IS_BROXTON(i915)) {
391 ret = snb_pcode_write(&i915->uncore, SKL_PCODE_LOAD_HDCP_KEYS, 1);
392 if (ret) {
393 drm_err(display->drm,
394 "Failed to initiate HDCP key load (%d)\n",
395 ret);
396 return ret;
397 }
398 } else {
399 intel_de_write(display, HDCP_KEY_CONF, HDCP_KEY_LOAD_TRIGGER);
400 }
401
402 /* Wait for the keys to load (500us) */
403 ret = intel_de_wait_custom(display, HDCP_KEY_STATUS,
404 HDCP_KEY_LOAD_DONE, HDCP_KEY_LOAD_DONE,
405 10, 1, &val);
406 if (ret)
407 return ret;
408 else if (!(val & HDCP_KEY_LOAD_STATUS))
409 return -ENXIO;
410
411 /* Send Aksv over to PCH display for use in authentication */
412 intel_de_write(display, HDCP_KEY_CONF, HDCP_AKSV_SEND_TRIGGER);
413
414 return 0;
415 }
416
417 /* Returns updated SHA-1 index */
intel_write_sha_text(struct intel_display * display,u32 sha_text)418 static int intel_write_sha_text(struct intel_display *display, u32 sha_text)
419 {
420 intel_de_write(display, HDCP_SHA_TEXT, sha_text);
421 if (intel_de_wait_for_set(display, HDCP_REP_CTL, HDCP_SHA1_READY, 1)) {
422 drm_err(display->drm, "Timed out waiting for SHA1 ready\n");
423 return -ETIMEDOUT;
424 }
425 return 0;
426 }
427
428 static
intel_hdcp_get_repeater_ctl(struct intel_display * display,enum transcoder cpu_transcoder,enum port port)429 u32 intel_hdcp_get_repeater_ctl(struct intel_display *display,
430 enum transcoder cpu_transcoder, enum port port)
431 {
432 if (DISPLAY_VER(display) >= 12) {
433 switch (cpu_transcoder) {
434 case TRANSCODER_A:
435 return HDCP_TRANSA_REP_PRESENT |
436 HDCP_TRANSA_SHA1_M0;
437 case TRANSCODER_B:
438 return HDCP_TRANSB_REP_PRESENT |
439 HDCP_TRANSB_SHA1_M0;
440 case TRANSCODER_C:
441 return HDCP_TRANSC_REP_PRESENT |
442 HDCP_TRANSC_SHA1_M0;
443 case TRANSCODER_D:
444 return HDCP_TRANSD_REP_PRESENT |
445 HDCP_TRANSD_SHA1_M0;
446 default:
447 drm_err(display->drm, "Unknown transcoder %d\n",
448 cpu_transcoder);
449 return 0;
450 }
451 }
452
453 switch (port) {
454 case PORT_A:
455 return HDCP_DDIA_REP_PRESENT | HDCP_DDIA_SHA1_M0;
456 case PORT_B:
457 return HDCP_DDIB_REP_PRESENT | HDCP_DDIB_SHA1_M0;
458 case PORT_C:
459 return HDCP_DDIC_REP_PRESENT | HDCP_DDIC_SHA1_M0;
460 case PORT_D:
461 return HDCP_DDID_REP_PRESENT | HDCP_DDID_SHA1_M0;
462 case PORT_E:
463 return HDCP_DDIE_REP_PRESENT | HDCP_DDIE_SHA1_M0;
464 default:
465 drm_err(display->drm, "Unknown port %d\n", port);
466 return 0;
467 }
468 }
469
470 static
intel_hdcp_validate_v_prime(struct intel_connector * connector,const struct intel_hdcp_shim * shim,u8 * ksv_fifo,u8 num_downstream,u8 * bstatus)471 int intel_hdcp_validate_v_prime(struct intel_connector *connector,
472 const struct intel_hdcp_shim *shim,
473 u8 *ksv_fifo, u8 num_downstream, u8 *bstatus)
474 {
475 struct intel_display *display = to_intel_display(connector);
476 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
477 enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
478 enum port port = dig_port->base.port;
479 u32 vprime, sha_text, sha_leftovers, rep_ctl;
480 int ret, i, j, sha_idx;
481
482 /* Process V' values from the receiver */
483 for (i = 0; i < DRM_HDCP_V_PRIME_NUM_PARTS; i++) {
484 ret = shim->read_v_prime_part(dig_port, i, &vprime);
485 if (ret)
486 return ret;
487 intel_de_write(display, HDCP_SHA_V_PRIME(i), vprime);
488 }
489
490 /*
491 * We need to write the concatenation of all device KSVs, BINFO (DP) ||
492 * BSTATUS (HDMI), and M0 (which is added via HDCP_REP_CTL). This byte
493 * stream is written via the HDCP_SHA_TEXT register in 32-bit
494 * increments. Every 64 bytes, we need to write HDCP_REP_CTL again. This
495 * index will keep track of our progress through the 64 bytes as well as
496 * helping us work the 40-bit KSVs through our 32-bit register.
497 *
498 * NOTE: data passed via HDCP_SHA_TEXT should be big-endian
499 */
500 sha_idx = 0;
501 sha_text = 0;
502 sha_leftovers = 0;
503 rep_ctl = intel_hdcp_get_repeater_ctl(display, cpu_transcoder, port);
504 intel_de_write(display, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
505 for (i = 0; i < num_downstream; i++) {
506 unsigned int sha_empty;
507 u8 *ksv = &ksv_fifo[i * DRM_HDCP_KSV_LEN];
508
509 /* Fill up the empty slots in sha_text and write it out */
510 sha_empty = sizeof(sha_text) - sha_leftovers;
511 for (j = 0; j < sha_empty; j++) {
512 u8 off = ((sizeof(sha_text) - j - 1 - sha_leftovers) * 8);
513 sha_text |= ksv[j] << off;
514 }
515
516 ret = intel_write_sha_text(display, sha_text);
517 if (ret < 0)
518 return ret;
519
520 /* Programming guide writes this every 64 bytes */
521 sha_idx += sizeof(sha_text);
522 if (!(sha_idx % 64))
523 intel_de_write(display, HDCP_REP_CTL,
524 rep_ctl | HDCP_SHA1_TEXT_32);
525
526 /* Store the leftover bytes from the ksv in sha_text */
527 sha_leftovers = DRM_HDCP_KSV_LEN - sha_empty;
528 sha_text = 0;
529 for (j = 0; j < sha_leftovers; j++)
530 sha_text |= ksv[sha_empty + j] <<
531 ((sizeof(sha_text) - j - 1) * 8);
532
533 /*
534 * If we still have room in sha_text for more data, continue.
535 * Otherwise, write it out immediately.
536 */
537 if (sizeof(sha_text) > sha_leftovers)
538 continue;
539
540 ret = intel_write_sha_text(display, sha_text);
541 if (ret < 0)
542 return ret;
543 sha_leftovers = 0;
544 sha_text = 0;
545 sha_idx += sizeof(sha_text);
546 }
547
548 /*
549 * We need to write BINFO/BSTATUS, and M0 now. Depending on how many
550 * bytes are leftover from the last ksv, we might be able to fit them
551 * all in sha_text (first 2 cases), or we might need to split them up
552 * into 2 writes (last 2 cases).
553 */
554 if (sha_leftovers == 0) {
555 /* Write 16 bits of text, 16 bits of M0 */
556 intel_de_write(display, HDCP_REP_CTL,
557 rep_ctl | HDCP_SHA1_TEXT_16);
558 ret = intel_write_sha_text(display,
559 bstatus[0] << 8 | bstatus[1]);
560 if (ret < 0)
561 return ret;
562 sha_idx += sizeof(sha_text);
563
564 /* Write 32 bits of M0 */
565 intel_de_write(display, HDCP_REP_CTL,
566 rep_ctl | HDCP_SHA1_TEXT_0);
567 ret = intel_write_sha_text(display, 0);
568 if (ret < 0)
569 return ret;
570 sha_idx += sizeof(sha_text);
571
572 /* Write 16 bits of M0 */
573 intel_de_write(display, HDCP_REP_CTL,
574 rep_ctl | HDCP_SHA1_TEXT_16);
575 ret = intel_write_sha_text(display, 0);
576 if (ret < 0)
577 return ret;
578 sha_idx += sizeof(sha_text);
579
580 } else if (sha_leftovers == 1) {
581 /* Write 24 bits of text, 8 bits of M0 */
582 intel_de_write(display, HDCP_REP_CTL,
583 rep_ctl | HDCP_SHA1_TEXT_24);
584 sha_text |= bstatus[0] << 16 | bstatus[1] << 8;
585 /* Only 24-bits of data, must be in the LSB */
586 sha_text = (sha_text & 0xffffff00) >> 8;
587 ret = intel_write_sha_text(display, sha_text);
588 if (ret < 0)
589 return ret;
590 sha_idx += sizeof(sha_text);
591
592 /* Write 32 bits of M0 */
593 intel_de_write(display, HDCP_REP_CTL,
594 rep_ctl | HDCP_SHA1_TEXT_0);
595 ret = intel_write_sha_text(display, 0);
596 if (ret < 0)
597 return ret;
598 sha_idx += sizeof(sha_text);
599
600 /* Write 24 bits of M0 */
601 intel_de_write(display, HDCP_REP_CTL,
602 rep_ctl | HDCP_SHA1_TEXT_8);
603 ret = intel_write_sha_text(display, 0);
604 if (ret < 0)
605 return ret;
606 sha_idx += sizeof(sha_text);
607
608 } else if (sha_leftovers == 2) {
609 /* Write 32 bits of text */
610 intel_de_write(display, HDCP_REP_CTL,
611 rep_ctl | HDCP_SHA1_TEXT_32);
612 sha_text |= bstatus[0] << 8 | bstatus[1];
613 ret = intel_write_sha_text(display, sha_text);
614 if (ret < 0)
615 return ret;
616 sha_idx += sizeof(sha_text);
617
618 /* Write 64 bits of M0 */
619 intel_de_write(display, HDCP_REP_CTL,
620 rep_ctl | HDCP_SHA1_TEXT_0);
621 for (i = 0; i < 2; i++) {
622 ret = intel_write_sha_text(display, 0);
623 if (ret < 0)
624 return ret;
625 sha_idx += sizeof(sha_text);
626 }
627
628 /*
629 * Terminate the SHA-1 stream by hand. For the other leftover
630 * cases this is appended by the hardware.
631 */
632 intel_de_write(display, HDCP_REP_CTL,
633 rep_ctl | HDCP_SHA1_TEXT_32);
634 sha_text = DRM_HDCP_SHA1_TERMINATOR << 24;
635 ret = intel_write_sha_text(display, sha_text);
636 if (ret < 0)
637 return ret;
638 sha_idx += sizeof(sha_text);
639 } else if (sha_leftovers == 3) {
640 /* Write 32 bits of text (filled from LSB) */
641 intel_de_write(display, HDCP_REP_CTL,
642 rep_ctl | HDCP_SHA1_TEXT_32);
643 sha_text |= bstatus[0];
644 ret = intel_write_sha_text(display, sha_text);
645 if (ret < 0)
646 return ret;
647 sha_idx += sizeof(sha_text);
648
649 /* Write 8 bits of text (filled from LSB), 24 bits of M0 */
650 intel_de_write(display, HDCP_REP_CTL,
651 rep_ctl | HDCP_SHA1_TEXT_8);
652 ret = intel_write_sha_text(display, bstatus[1]);
653 if (ret < 0)
654 return ret;
655 sha_idx += sizeof(sha_text);
656
657 /* Write 32 bits of M0 */
658 intel_de_write(display, HDCP_REP_CTL,
659 rep_ctl | HDCP_SHA1_TEXT_0);
660 ret = intel_write_sha_text(display, 0);
661 if (ret < 0)
662 return ret;
663 sha_idx += sizeof(sha_text);
664
665 /* Write 8 bits of M0 */
666 intel_de_write(display, HDCP_REP_CTL,
667 rep_ctl | HDCP_SHA1_TEXT_24);
668 ret = intel_write_sha_text(display, 0);
669 if (ret < 0)
670 return ret;
671 sha_idx += sizeof(sha_text);
672 } else {
673 drm_dbg_kms(display->drm, "Invalid number of leftovers %d\n",
674 sha_leftovers);
675 return -EINVAL;
676 }
677
678 intel_de_write(display, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
679 /* Fill up to 64-4 bytes with zeros (leave the last write for length) */
680 while ((sha_idx % 64) < (64 - sizeof(sha_text))) {
681 ret = intel_write_sha_text(display, 0);
682 if (ret < 0)
683 return ret;
684 sha_idx += sizeof(sha_text);
685 }
686
687 /*
688 * Last write gets the length of the concatenation in bits. That is:
689 * - 5 bytes per device
690 * - 10 bytes for BINFO/BSTATUS(2), M0(8)
691 */
692 sha_text = (num_downstream * 5 + 10) * 8;
693 ret = intel_write_sha_text(display, sha_text);
694 if (ret < 0)
695 return ret;
696
697 /* Tell the HW we're done with the hash and wait for it to ACK */
698 intel_de_write(display, HDCP_REP_CTL,
699 rep_ctl | HDCP_SHA1_COMPLETE_HASH);
700 if (intel_de_wait_for_set(display, HDCP_REP_CTL,
701 HDCP_SHA1_COMPLETE, 1)) {
702 drm_err(display->drm, "Timed out waiting for SHA1 complete\n");
703 return -ETIMEDOUT;
704 }
705 if (!(intel_de_read(display, HDCP_REP_CTL) & HDCP_SHA1_V_MATCH)) {
706 drm_dbg_kms(display->drm, "SHA-1 mismatch, HDCP failed\n");
707 return -ENXIO;
708 }
709
710 return 0;
711 }
712
713 /* Implements Part 2 of the HDCP authorization procedure */
714 static
intel_hdcp_auth_downstream(struct intel_connector * connector)715 int intel_hdcp_auth_downstream(struct intel_connector *connector)
716 {
717 struct intel_display *display = to_intel_display(connector);
718 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
719 const struct intel_hdcp_shim *shim = connector->hdcp.shim;
720 u8 bstatus[2], num_downstream, *ksv_fifo;
721 int ret, i, tries = 3;
722
723 ret = intel_hdcp_poll_ksv_fifo(dig_port, shim);
724 if (ret) {
725 drm_dbg_kms(display->drm,
726 "KSV list failed to become ready (%d)\n", ret);
727 return ret;
728 }
729
730 ret = shim->read_bstatus(dig_port, bstatus);
731 if (ret)
732 return ret;
733
734 if (DRM_HDCP_MAX_DEVICE_EXCEEDED(bstatus[0]) ||
735 DRM_HDCP_MAX_CASCADE_EXCEEDED(bstatus[1])) {
736 drm_dbg_kms(display->drm, "Max Topology Limit Exceeded\n");
737 return -EPERM;
738 }
739
740 /*
741 * When repeater reports 0 device count, HDCP1.4 spec allows disabling
742 * the HDCP encryption. That implies that repeater can't have its own
743 * display. As there is no consumption of encrypted content in the
744 * repeater with 0 downstream devices, we are failing the
745 * authentication.
746 */
747 num_downstream = DRM_HDCP_NUM_DOWNSTREAM(bstatus[0]);
748 if (num_downstream == 0) {
749 drm_dbg_kms(display->drm,
750 "Repeater with zero downstream devices\n");
751 return -EINVAL;
752 }
753
754 ksv_fifo = kcalloc(DRM_HDCP_KSV_LEN, num_downstream, GFP_KERNEL);
755 if (!ksv_fifo) {
756 drm_dbg_kms(display->drm, "Out of mem: ksv_fifo\n");
757 return -ENOMEM;
758 }
759
760 ret = shim->read_ksv_fifo(dig_port, num_downstream, ksv_fifo);
761 if (ret)
762 goto err;
763
764 if (drm_hdcp_check_ksvs_revoked(display->drm, ksv_fifo,
765 num_downstream) > 0) {
766 drm_err(display->drm, "Revoked Ksv(s) in ksv_fifo\n");
767 ret = -EPERM;
768 goto err;
769 }
770
771 /*
772 * When V prime mismatches, DP Spec mandates re-read of
773 * V prime atleast twice.
774 */
775 for (i = 0; i < tries; i++) {
776 ret = intel_hdcp_validate_v_prime(connector, shim,
777 ksv_fifo, num_downstream,
778 bstatus);
779 if (!ret)
780 break;
781 }
782
783 if (i == tries) {
784 drm_dbg_kms(display->drm,
785 "V Prime validation failed.(%d)\n", ret);
786 goto err;
787 }
788
789 drm_dbg_kms(display->drm, "HDCP is enabled (%d downstream devices)\n",
790 num_downstream);
791 ret = 0;
792 err:
793 kfree(ksv_fifo);
794 return ret;
795 }
796
797 /* Implements Part 1 of the HDCP authorization procedure */
intel_hdcp_auth(struct intel_connector * connector)798 static int intel_hdcp_auth(struct intel_connector *connector)
799 {
800 struct intel_display *display = to_intel_display(connector);
801 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
802 struct intel_hdcp *hdcp = &connector->hdcp;
803 const struct intel_hdcp_shim *shim = hdcp->shim;
804 enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
805 enum port port = dig_port->base.port;
806 unsigned long r0_prime_gen_start;
807 int ret, i, tries = 2;
808 union {
809 u32 reg[2];
810 u8 shim[DRM_HDCP_AN_LEN];
811 } an;
812 union {
813 u32 reg[2];
814 u8 shim[DRM_HDCP_KSV_LEN];
815 } bksv;
816 union {
817 u32 reg;
818 u8 shim[DRM_HDCP_RI_LEN];
819 } ri;
820 bool repeater_present, hdcp_capable;
821
822 /*
823 * Detects whether the display is HDCP capable. Although we check for
824 * valid Bksv below, the HDCP over DP spec requires that we check
825 * whether the display supports HDCP before we write An. For HDMI
826 * displays, this is not necessary.
827 */
828 if (shim->hdcp_get_capability) {
829 ret = shim->hdcp_get_capability(dig_port, &hdcp_capable);
830 if (ret)
831 return ret;
832 if (!hdcp_capable) {
833 drm_dbg_kms(display->drm,
834 "Panel is not HDCP capable\n");
835 return -EINVAL;
836 }
837 }
838
839 /* Initialize An with 2 random values and acquire it */
840 for (i = 0; i < 2; i++)
841 intel_de_write(display,
842 HDCP_ANINIT(display, cpu_transcoder, port),
843 get_random_u32());
844 intel_de_write(display, HDCP_CONF(display, cpu_transcoder, port),
845 HDCP_CONF_CAPTURE_AN);
846
847 /* Wait for An to be acquired */
848 if (intel_de_wait_for_set(display,
849 HDCP_STATUS(display, cpu_transcoder, port),
850 HDCP_STATUS_AN_READY, 1)) {
851 drm_err(display->drm, "Timed out waiting for An\n");
852 return -ETIMEDOUT;
853 }
854
855 an.reg[0] = intel_de_read(display,
856 HDCP_ANLO(display, cpu_transcoder, port));
857 an.reg[1] = intel_de_read(display,
858 HDCP_ANHI(display, cpu_transcoder, port));
859 ret = shim->write_an_aksv(dig_port, an.shim);
860 if (ret)
861 return ret;
862
863 r0_prime_gen_start = jiffies;
864
865 memset(&bksv, 0, sizeof(bksv));
866
867 ret = intel_hdcp_read_valid_bksv(dig_port, shim, bksv.shim);
868 if (ret < 0)
869 return ret;
870
871 if (drm_hdcp_check_ksvs_revoked(display->drm, bksv.shim, 1) > 0) {
872 drm_err(display->drm, "BKSV is revoked\n");
873 return -EPERM;
874 }
875
876 intel_de_write(display, HDCP_BKSVLO(display, cpu_transcoder, port),
877 bksv.reg[0]);
878 intel_de_write(display, HDCP_BKSVHI(display, cpu_transcoder, port),
879 bksv.reg[1]);
880
881 ret = shim->repeater_present(dig_port, &repeater_present);
882 if (ret)
883 return ret;
884 if (repeater_present)
885 intel_de_write(display, HDCP_REP_CTL,
886 intel_hdcp_get_repeater_ctl(display, cpu_transcoder, port));
887
888 ret = shim->toggle_signalling(dig_port, cpu_transcoder, true);
889 if (ret)
890 return ret;
891
892 intel_de_write(display, HDCP_CONF(display, cpu_transcoder, port),
893 HDCP_CONF_AUTH_AND_ENC);
894
895 /* Wait for R0 ready */
896 if (wait_for(intel_de_read(display, HDCP_STATUS(display, cpu_transcoder, port)) &
897 (HDCP_STATUS_R0_READY | HDCP_STATUS_ENC), 1)) {
898 drm_err(display->drm, "Timed out waiting for R0 ready\n");
899 return -ETIMEDOUT;
900 }
901
902 /*
903 * Wait for R0' to become available. The spec says 100ms from Aksv, but
904 * some monitors can take longer than this. We'll set the timeout at
905 * 300ms just to be sure.
906 *
907 * On DP, there's an R0_READY bit available but no such bit
908 * exists on HDMI. Since the upper-bound is the same, we'll just do
909 * the stupid thing instead of polling on one and not the other.
910 */
911 wait_remaining_ms_from_jiffies(r0_prime_gen_start, 300);
912
913 tries = 3;
914
915 /*
916 * DP HDCP Spec mandates the two more reattempt to read R0, incase
917 * of R0 mismatch.
918 */
919 for (i = 0; i < tries; i++) {
920 ri.reg = 0;
921 ret = shim->read_ri_prime(dig_port, ri.shim);
922 if (ret)
923 return ret;
924 intel_de_write(display,
925 HDCP_RPRIME(display, cpu_transcoder, port),
926 ri.reg);
927
928 /* Wait for Ri prime match */
929 if (!wait_for(intel_de_read(display, HDCP_STATUS(display, cpu_transcoder, port)) &
930 (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1))
931 break;
932 }
933
934 if (i == tries) {
935 drm_dbg_kms(display->drm,
936 "Timed out waiting for Ri prime match (%x)\n",
937 intel_de_read(display,
938 HDCP_STATUS(display, cpu_transcoder, port)));
939 return -ETIMEDOUT;
940 }
941
942 /* Wait for encryption confirmation */
943 if (intel_de_wait_for_set(display,
944 HDCP_STATUS(display, cpu_transcoder, port),
945 HDCP_STATUS_ENC,
946 HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
947 drm_err(display->drm, "Timed out waiting for encryption\n");
948 return -ETIMEDOUT;
949 }
950
951 /* DP MST Auth Part 1 Step 2.a and Step 2.b */
952 if (shim->stream_encryption) {
953 ret = shim->stream_encryption(connector, true);
954 if (ret) {
955 drm_err(display->drm, "[CONNECTOR:%d:%s] Failed to enable HDCP 1.4 stream enc\n",
956 connector->base.base.id, connector->base.name);
957 return ret;
958 }
959 drm_dbg_kms(display->drm, "HDCP 1.4 transcoder: %s stream encrypted\n",
960 transcoder_name(hdcp->stream_transcoder));
961 }
962
963 if (repeater_present)
964 return intel_hdcp_auth_downstream(connector);
965
966 drm_dbg_kms(display->drm, "HDCP is enabled (no repeater present)\n");
967 return 0;
968 }
969
_intel_hdcp_disable(struct intel_connector * connector)970 static int _intel_hdcp_disable(struct intel_connector *connector)
971 {
972 struct intel_display *display = to_intel_display(connector);
973 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
974 struct intel_hdcp *hdcp = &connector->hdcp;
975 enum port port = dig_port->base.port;
976 enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
977 u32 repeater_ctl;
978 int ret;
979
980 drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s] HDCP is being disabled...\n",
981 connector->base.base.id, connector->base.name);
982
983 if (hdcp->shim->stream_encryption) {
984 ret = hdcp->shim->stream_encryption(connector, false);
985 if (ret) {
986 drm_err(display->drm, "[CONNECTOR:%d:%s] Failed to disable HDCP 1.4 stream enc\n",
987 connector->base.base.id, connector->base.name);
988 return ret;
989 }
990 drm_dbg_kms(display->drm, "HDCP 1.4 transcoder: %s stream encryption disabled\n",
991 transcoder_name(hdcp->stream_transcoder));
992 /*
993 * If there are other connectors on this port using HDCP,
994 * don't disable it until it disabled HDCP encryption for
995 * all connectors in MST topology.
996 */
997 if (dig_port->num_hdcp_streams > 0)
998 return 0;
999 }
1000
1001 hdcp->hdcp_encrypted = false;
1002 intel_de_write(display, HDCP_CONF(display, cpu_transcoder, port), 0);
1003 if (intel_de_wait_for_clear(display,
1004 HDCP_STATUS(display, cpu_transcoder, port),
1005 ~0, HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
1006 drm_err(display->drm,
1007 "Failed to disable HDCP, timeout clearing status\n");
1008 return -ETIMEDOUT;
1009 }
1010
1011 repeater_ctl = intel_hdcp_get_repeater_ctl(display, cpu_transcoder,
1012 port);
1013 intel_de_rmw(display, HDCP_REP_CTL, repeater_ctl, 0);
1014
1015 ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder, false);
1016 if (ret) {
1017 drm_err(display->drm, "Failed to disable HDCP signalling\n");
1018 return ret;
1019 }
1020
1021 drm_dbg_kms(display->drm, "HDCP is disabled\n");
1022 return 0;
1023 }
1024
intel_hdcp1_enable(struct intel_connector * connector)1025 static int intel_hdcp1_enable(struct intel_connector *connector)
1026 {
1027 struct intel_display *display = to_intel_display(connector);
1028 struct intel_hdcp *hdcp = &connector->hdcp;
1029 int i, ret, tries = 3;
1030
1031 drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s] HDCP is being enabled...\n",
1032 connector->base.base.id, connector->base.name);
1033
1034 if (!hdcp_key_loadable(display)) {
1035 drm_err(display->drm, "HDCP key Load is not possible\n");
1036 return -ENXIO;
1037 }
1038
1039 for (i = 0; i < KEY_LOAD_TRIES; i++) {
1040 ret = intel_hdcp_load_keys(display);
1041 if (!ret)
1042 break;
1043 intel_hdcp_clear_keys(display);
1044 }
1045 if (ret) {
1046 drm_err(display->drm, "Could not load HDCP keys, (%d)\n",
1047 ret);
1048 return ret;
1049 }
1050
1051 /* Incase of authentication failures, HDCP spec expects reauth. */
1052 for (i = 0; i < tries; i++) {
1053 ret = intel_hdcp_auth(connector);
1054 if (!ret) {
1055 hdcp->hdcp_encrypted = true;
1056 return 0;
1057 }
1058
1059 drm_dbg_kms(display->drm, "HDCP Auth failure (%d)\n", ret);
1060
1061 /* Ensuring HDCP encryption and signalling are stopped. */
1062 _intel_hdcp_disable(connector);
1063 }
1064
1065 drm_dbg_kms(display->drm,
1066 "HDCP authentication failed (%d tries/%d)\n", tries, ret);
1067 return ret;
1068 }
1069
intel_hdcp_to_connector(struct intel_hdcp * hdcp)1070 static struct intel_connector *intel_hdcp_to_connector(struct intel_hdcp *hdcp)
1071 {
1072 return container_of(hdcp, struct intel_connector, hdcp);
1073 }
1074
intel_hdcp_update_value(struct intel_connector * connector,u64 value,bool update_property)1075 static void intel_hdcp_update_value(struct intel_connector *connector,
1076 u64 value, bool update_property)
1077 {
1078 struct intel_display *display = to_intel_display(connector);
1079 struct drm_i915_private *i915 = to_i915(display->drm);
1080 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1081 struct intel_hdcp *hdcp = &connector->hdcp;
1082
1083 drm_WARN_ON(display->drm, !mutex_is_locked(&hdcp->mutex));
1084
1085 if (hdcp->value == value)
1086 return;
1087
1088 drm_WARN_ON(display->drm, !mutex_is_locked(&dig_port->hdcp_mutex));
1089
1090 if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
1091 if (!drm_WARN_ON(display->drm, dig_port->num_hdcp_streams == 0))
1092 dig_port->num_hdcp_streams--;
1093 } else if (value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
1094 dig_port->num_hdcp_streams++;
1095 }
1096
1097 hdcp->value = value;
1098 if (update_property) {
1099 drm_connector_get(&connector->base);
1100 if (!queue_work(i915->unordered_wq, &hdcp->prop_work))
1101 drm_connector_put(&connector->base);
1102 }
1103 }
1104
1105 /* Implements Part 3 of the HDCP authorization procedure */
intel_hdcp_check_link(struct intel_connector * connector)1106 static int intel_hdcp_check_link(struct intel_connector *connector)
1107 {
1108 struct intel_display *display = to_intel_display(connector);
1109 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1110 struct intel_hdcp *hdcp = &connector->hdcp;
1111 enum port port = dig_port->base.port;
1112 enum transcoder cpu_transcoder;
1113 int ret = 0;
1114
1115 mutex_lock(&hdcp->mutex);
1116 mutex_lock(&dig_port->hdcp_mutex);
1117
1118 cpu_transcoder = hdcp->cpu_transcoder;
1119
1120 /* Check_link valid only when HDCP1.4 is enabled */
1121 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
1122 !hdcp->hdcp_encrypted) {
1123 ret = -EINVAL;
1124 goto out;
1125 }
1126
1127 if (drm_WARN_ON(display->drm,
1128 !intel_hdcp_in_use(display, cpu_transcoder, port))) {
1129 drm_err(display->drm,
1130 "[CONNECTOR:%d:%s] HDCP link stopped encryption,%x\n",
1131 connector->base.base.id, connector->base.name,
1132 intel_de_read(display, HDCP_STATUS(display, cpu_transcoder, port)));
1133 ret = -ENXIO;
1134 intel_hdcp_update_value(connector,
1135 DRM_MODE_CONTENT_PROTECTION_DESIRED,
1136 true);
1137 goto out;
1138 }
1139
1140 if (hdcp->shim->check_link(dig_port, connector)) {
1141 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
1142 intel_hdcp_update_value(connector,
1143 DRM_MODE_CONTENT_PROTECTION_ENABLED, true);
1144 }
1145 goto out;
1146 }
1147
1148 drm_dbg_kms(display->drm,
1149 "[CONNECTOR:%d:%s] HDCP link failed, retrying authentication\n",
1150 connector->base.base.id, connector->base.name);
1151
1152 ret = _intel_hdcp_disable(connector);
1153 if (ret) {
1154 drm_err(display->drm, "Failed to disable hdcp (%d)\n", ret);
1155 intel_hdcp_update_value(connector,
1156 DRM_MODE_CONTENT_PROTECTION_DESIRED,
1157 true);
1158 goto out;
1159 }
1160
1161 intel_hdcp_update_value(connector,
1162 DRM_MODE_CONTENT_PROTECTION_DESIRED,
1163 true);
1164 out:
1165 mutex_unlock(&dig_port->hdcp_mutex);
1166 mutex_unlock(&hdcp->mutex);
1167 return ret;
1168 }
1169
intel_hdcp_prop_work(struct work_struct * work)1170 static void intel_hdcp_prop_work(struct work_struct *work)
1171 {
1172 struct intel_hdcp *hdcp = container_of(work, struct intel_hdcp,
1173 prop_work);
1174 struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
1175 struct intel_display *display = to_intel_display(connector);
1176
1177 drm_modeset_lock(&display->drm->mode_config.connection_mutex, NULL);
1178 mutex_lock(&hdcp->mutex);
1179
1180 /*
1181 * This worker is only used to flip between ENABLED/DESIRED. Either of
1182 * those to UNDESIRED is handled by core. If value == UNDESIRED,
1183 * we're running just after hdcp has been disabled, so just exit
1184 */
1185 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
1186 drm_hdcp_update_content_protection(&connector->base,
1187 hdcp->value);
1188
1189 mutex_unlock(&hdcp->mutex);
1190 drm_modeset_unlock(&display->drm->mode_config.connection_mutex);
1191
1192 drm_connector_put(&connector->base);
1193 }
1194
is_hdcp_supported(struct intel_display * display,enum port port)1195 bool is_hdcp_supported(struct intel_display *display, enum port port)
1196 {
1197 return DISPLAY_RUNTIME_INFO(display)->has_hdcp &&
1198 (DISPLAY_VER(display) >= 12 || port < PORT_E);
1199 }
1200
1201 static int
hdcp2_prepare_ake_init(struct intel_connector * connector,struct hdcp2_ake_init * ake_data)1202 hdcp2_prepare_ake_init(struct intel_connector *connector,
1203 struct hdcp2_ake_init *ake_data)
1204 {
1205 struct intel_display *display = to_intel_display(connector);
1206 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1207 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1208 struct i915_hdcp_arbiter *arbiter;
1209 int ret;
1210
1211 mutex_lock(&display->hdcp.hdcp_mutex);
1212 arbiter = display->hdcp.arbiter;
1213
1214 if (!arbiter || !arbiter->ops) {
1215 mutex_unlock(&display->hdcp.hdcp_mutex);
1216 return -EINVAL;
1217 }
1218
1219 ret = arbiter->ops->initiate_hdcp2_session(arbiter->hdcp_dev, data, ake_data);
1220 if (ret)
1221 drm_dbg_kms(display->drm, "Prepare_ake_init failed. %d\n",
1222 ret);
1223 mutex_unlock(&display->hdcp.hdcp_mutex);
1224
1225 return ret;
1226 }
1227
1228 static int
hdcp2_verify_rx_cert_prepare_km(struct intel_connector * connector,struct hdcp2_ake_send_cert * rx_cert,bool * paired,struct hdcp2_ake_no_stored_km * ek_pub_km,size_t * msg_sz)1229 hdcp2_verify_rx_cert_prepare_km(struct intel_connector *connector,
1230 struct hdcp2_ake_send_cert *rx_cert,
1231 bool *paired,
1232 struct hdcp2_ake_no_stored_km *ek_pub_km,
1233 size_t *msg_sz)
1234 {
1235 struct intel_display *display = to_intel_display(connector);
1236 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1237 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1238 struct i915_hdcp_arbiter *arbiter;
1239 int ret;
1240
1241 mutex_lock(&display->hdcp.hdcp_mutex);
1242 arbiter = display->hdcp.arbiter;
1243
1244 if (!arbiter || !arbiter->ops) {
1245 mutex_unlock(&display->hdcp.hdcp_mutex);
1246 return -EINVAL;
1247 }
1248
1249 ret = arbiter->ops->verify_receiver_cert_prepare_km(arbiter->hdcp_dev, data,
1250 rx_cert, paired,
1251 ek_pub_km, msg_sz);
1252 if (ret < 0)
1253 drm_dbg_kms(display->drm, "Verify rx_cert failed. %d\n",
1254 ret);
1255 mutex_unlock(&display->hdcp.hdcp_mutex);
1256
1257 return ret;
1258 }
1259
hdcp2_verify_hprime(struct intel_connector * connector,struct hdcp2_ake_send_hprime * rx_hprime)1260 static int hdcp2_verify_hprime(struct intel_connector *connector,
1261 struct hdcp2_ake_send_hprime *rx_hprime)
1262 {
1263 struct intel_display *display = to_intel_display(connector);
1264 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1265 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1266 struct i915_hdcp_arbiter *arbiter;
1267 int ret;
1268
1269 mutex_lock(&display->hdcp.hdcp_mutex);
1270 arbiter = display->hdcp.arbiter;
1271
1272 if (!arbiter || !arbiter->ops) {
1273 mutex_unlock(&display->hdcp.hdcp_mutex);
1274 return -EINVAL;
1275 }
1276
1277 ret = arbiter->ops->verify_hprime(arbiter->hdcp_dev, data, rx_hprime);
1278 if (ret < 0)
1279 drm_dbg_kms(display->drm, "Verify hprime failed. %d\n", ret);
1280 mutex_unlock(&display->hdcp.hdcp_mutex);
1281
1282 return ret;
1283 }
1284
1285 static int
hdcp2_store_pairing_info(struct intel_connector * connector,struct hdcp2_ake_send_pairing_info * pairing_info)1286 hdcp2_store_pairing_info(struct intel_connector *connector,
1287 struct hdcp2_ake_send_pairing_info *pairing_info)
1288 {
1289 struct intel_display *display = to_intel_display(connector);
1290 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1291 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1292 struct i915_hdcp_arbiter *arbiter;
1293 int ret;
1294
1295 mutex_lock(&display->hdcp.hdcp_mutex);
1296 arbiter = display->hdcp.arbiter;
1297
1298 if (!arbiter || !arbiter->ops) {
1299 mutex_unlock(&display->hdcp.hdcp_mutex);
1300 return -EINVAL;
1301 }
1302
1303 ret = arbiter->ops->store_pairing_info(arbiter->hdcp_dev, data, pairing_info);
1304 if (ret < 0)
1305 drm_dbg_kms(display->drm, "Store pairing info failed. %d\n",
1306 ret);
1307 mutex_unlock(&display->hdcp.hdcp_mutex);
1308
1309 return ret;
1310 }
1311
1312 static int
hdcp2_prepare_lc_init(struct intel_connector * connector,struct hdcp2_lc_init * lc_init)1313 hdcp2_prepare_lc_init(struct intel_connector *connector,
1314 struct hdcp2_lc_init *lc_init)
1315 {
1316 struct intel_display *display = to_intel_display(connector);
1317 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1318 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1319 struct i915_hdcp_arbiter *arbiter;
1320 int ret;
1321
1322 mutex_lock(&display->hdcp.hdcp_mutex);
1323 arbiter = display->hdcp.arbiter;
1324
1325 if (!arbiter || !arbiter->ops) {
1326 mutex_unlock(&display->hdcp.hdcp_mutex);
1327 return -EINVAL;
1328 }
1329
1330 ret = arbiter->ops->initiate_locality_check(arbiter->hdcp_dev, data, lc_init);
1331 if (ret < 0)
1332 drm_dbg_kms(display->drm, "Prepare lc_init failed. %d\n",
1333 ret);
1334 mutex_unlock(&display->hdcp.hdcp_mutex);
1335
1336 return ret;
1337 }
1338
1339 static int
hdcp2_verify_lprime(struct intel_connector * connector,struct hdcp2_lc_send_lprime * rx_lprime)1340 hdcp2_verify_lprime(struct intel_connector *connector,
1341 struct hdcp2_lc_send_lprime *rx_lprime)
1342 {
1343 struct intel_display *display = to_intel_display(connector);
1344 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1345 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1346 struct i915_hdcp_arbiter *arbiter;
1347 int ret;
1348
1349 mutex_lock(&display->hdcp.hdcp_mutex);
1350 arbiter = display->hdcp.arbiter;
1351
1352 if (!arbiter || !arbiter->ops) {
1353 mutex_unlock(&display->hdcp.hdcp_mutex);
1354 return -EINVAL;
1355 }
1356
1357 ret = arbiter->ops->verify_lprime(arbiter->hdcp_dev, data, rx_lprime);
1358 if (ret < 0)
1359 drm_dbg_kms(display->drm, "Verify L_Prime failed. %d\n",
1360 ret);
1361 mutex_unlock(&display->hdcp.hdcp_mutex);
1362
1363 return ret;
1364 }
1365
hdcp2_prepare_skey(struct intel_connector * connector,struct hdcp2_ske_send_eks * ske_data)1366 static int hdcp2_prepare_skey(struct intel_connector *connector,
1367 struct hdcp2_ske_send_eks *ske_data)
1368 {
1369 struct intel_display *display = to_intel_display(connector);
1370 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1371 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1372 struct i915_hdcp_arbiter *arbiter;
1373 int ret;
1374
1375 mutex_lock(&display->hdcp.hdcp_mutex);
1376 arbiter = display->hdcp.arbiter;
1377
1378 if (!arbiter || !arbiter->ops) {
1379 mutex_unlock(&display->hdcp.hdcp_mutex);
1380 return -EINVAL;
1381 }
1382
1383 ret = arbiter->ops->get_session_key(arbiter->hdcp_dev, data, ske_data);
1384 if (ret < 0)
1385 drm_dbg_kms(display->drm, "Get session key failed. %d\n",
1386 ret);
1387 mutex_unlock(&display->hdcp.hdcp_mutex);
1388
1389 return ret;
1390 }
1391
1392 static int
hdcp2_verify_rep_topology_prepare_ack(struct intel_connector * connector,struct hdcp2_rep_send_receiverid_list * rep_topology,struct hdcp2_rep_send_ack * rep_send_ack)1393 hdcp2_verify_rep_topology_prepare_ack(struct intel_connector *connector,
1394 struct hdcp2_rep_send_receiverid_list
1395 *rep_topology,
1396 struct hdcp2_rep_send_ack *rep_send_ack)
1397 {
1398 struct intel_display *display = to_intel_display(connector);
1399 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1400 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1401 struct i915_hdcp_arbiter *arbiter;
1402 int ret;
1403
1404 mutex_lock(&display->hdcp.hdcp_mutex);
1405 arbiter = display->hdcp.arbiter;
1406
1407 if (!arbiter || !arbiter->ops) {
1408 mutex_unlock(&display->hdcp.hdcp_mutex);
1409 return -EINVAL;
1410 }
1411
1412 ret = arbiter->ops->repeater_check_flow_prepare_ack(arbiter->hdcp_dev,
1413 data,
1414 rep_topology,
1415 rep_send_ack);
1416 if (ret < 0)
1417 drm_dbg_kms(display->drm,
1418 "Verify rep topology failed. %d\n", ret);
1419 mutex_unlock(&display->hdcp.hdcp_mutex);
1420
1421 return ret;
1422 }
1423
1424 static int
hdcp2_verify_mprime(struct intel_connector * connector,struct hdcp2_rep_stream_ready * stream_ready)1425 hdcp2_verify_mprime(struct intel_connector *connector,
1426 struct hdcp2_rep_stream_ready *stream_ready)
1427 {
1428 struct intel_display *display = to_intel_display(connector);
1429 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1430 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1431 struct i915_hdcp_arbiter *arbiter;
1432 int ret;
1433
1434 mutex_lock(&display->hdcp.hdcp_mutex);
1435 arbiter = display->hdcp.arbiter;
1436
1437 if (!arbiter || !arbiter->ops) {
1438 mutex_unlock(&display->hdcp.hdcp_mutex);
1439 return -EINVAL;
1440 }
1441
1442 ret = arbiter->ops->verify_mprime(arbiter->hdcp_dev, data, stream_ready);
1443 if (ret < 0)
1444 drm_dbg_kms(display->drm, "Verify mprime failed. %d\n", ret);
1445 mutex_unlock(&display->hdcp.hdcp_mutex);
1446
1447 return ret;
1448 }
1449
hdcp2_authenticate_port(struct intel_connector * connector)1450 static int hdcp2_authenticate_port(struct intel_connector *connector)
1451 {
1452 struct intel_display *display = to_intel_display(connector);
1453 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1454 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1455 struct i915_hdcp_arbiter *arbiter;
1456 int ret;
1457
1458 mutex_lock(&display->hdcp.hdcp_mutex);
1459 arbiter = display->hdcp.arbiter;
1460
1461 if (!arbiter || !arbiter->ops) {
1462 mutex_unlock(&display->hdcp.hdcp_mutex);
1463 return -EINVAL;
1464 }
1465
1466 ret = arbiter->ops->enable_hdcp_authentication(arbiter->hdcp_dev, data);
1467 if (ret < 0)
1468 drm_dbg_kms(display->drm, "Enable hdcp auth failed. %d\n",
1469 ret);
1470 mutex_unlock(&display->hdcp.hdcp_mutex);
1471
1472 return ret;
1473 }
1474
hdcp2_close_session(struct intel_connector * connector)1475 static int hdcp2_close_session(struct intel_connector *connector)
1476 {
1477 struct intel_display *display = to_intel_display(connector);
1478 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1479 struct i915_hdcp_arbiter *arbiter;
1480 int ret;
1481
1482 mutex_lock(&display->hdcp.hdcp_mutex);
1483 arbiter = display->hdcp.arbiter;
1484
1485 if (!arbiter || !arbiter->ops) {
1486 mutex_unlock(&display->hdcp.hdcp_mutex);
1487 return -EINVAL;
1488 }
1489
1490 ret = arbiter->ops->close_hdcp_session(arbiter->hdcp_dev,
1491 &dig_port->hdcp_port_data);
1492 mutex_unlock(&display->hdcp.hdcp_mutex);
1493
1494 return ret;
1495 }
1496
hdcp2_deauthenticate_port(struct intel_connector * connector)1497 static int hdcp2_deauthenticate_port(struct intel_connector *connector)
1498 {
1499 return hdcp2_close_session(connector);
1500 }
1501
1502 /* Authentication flow starts from here */
hdcp2_authentication_key_exchange(struct intel_connector * connector)1503 static int hdcp2_authentication_key_exchange(struct intel_connector *connector)
1504 {
1505 struct intel_display *display = to_intel_display(connector);
1506 struct intel_digital_port *dig_port =
1507 intel_attached_dig_port(connector);
1508 struct intel_hdcp *hdcp = &connector->hdcp;
1509 union {
1510 struct hdcp2_ake_init ake_init;
1511 struct hdcp2_ake_send_cert send_cert;
1512 struct hdcp2_ake_no_stored_km no_stored_km;
1513 struct hdcp2_ake_send_hprime send_hprime;
1514 struct hdcp2_ake_send_pairing_info pairing_info;
1515 } msgs;
1516 const struct intel_hdcp_shim *shim = hdcp->shim;
1517 size_t size;
1518 int ret, i, max_retries;
1519
1520 /* Init for seq_num */
1521 hdcp->seq_num_v = 0;
1522 hdcp->seq_num_m = 0;
1523
1524 if (intel_encoder_is_dp(&dig_port->base) ||
1525 intel_encoder_is_mst(&dig_port->base))
1526 max_retries = 10;
1527 else
1528 max_retries = 1;
1529
1530 ret = hdcp2_prepare_ake_init(connector, &msgs.ake_init);
1531 if (ret < 0)
1532 return ret;
1533
1534 /*
1535 * Retry the first read and write to downstream at least 10 times
1536 * with a 50ms delay if not hdcp2 capable for DP/DPMST encoders
1537 * (dock decides to stop advertising hdcp2 capability for some reason).
1538 * The reason being that during suspend resume dock usually keeps the
1539 * HDCP2 registers inaccesible causing AUX error. This wouldn't be a
1540 * big problem if the userspace just kept retrying with some delay while
1541 * it continues to play low value content but most userpace applications
1542 * end up throwing an error when it receives one from KMD. This makes
1543 * sure we give the dock and the sink devices to complete its power cycle
1544 * and then try HDCP authentication. The values of 10 and delay of 50ms
1545 * was decided based on multiple trial and errors.
1546 */
1547 for (i = 0; i < max_retries; i++) {
1548 if (!intel_hdcp2_get_capability(connector)) {
1549 msleep(50);
1550 continue;
1551 }
1552
1553 ret = shim->write_2_2_msg(connector, &msgs.ake_init,
1554 sizeof(msgs.ake_init));
1555 if (ret < 0)
1556 continue;
1557
1558 ret = shim->read_2_2_msg(connector, HDCP_2_2_AKE_SEND_CERT,
1559 &msgs.send_cert, sizeof(msgs.send_cert));
1560 if (ret > 0)
1561 break;
1562 }
1563
1564 if (ret < 0)
1565 return ret;
1566
1567 if (msgs.send_cert.rx_caps[0] != HDCP_2_2_RX_CAPS_VERSION_VAL) {
1568 drm_dbg_kms(display->drm, "cert.rx_caps dont claim HDCP2.2\n");
1569 return -EINVAL;
1570 }
1571
1572 hdcp->is_repeater = HDCP_2_2_RX_REPEATER(msgs.send_cert.rx_caps[2]);
1573
1574 if (drm_hdcp_check_ksvs_revoked(display->drm,
1575 msgs.send_cert.cert_rx.receiver_id,
1576 1) > 0) {
1577 drm_err(display->drm, "Receiver ID is revoked\n");
1578 return -EPERM;
1579 }
1580
1581 /*
1582 * Here msgs.no_stored_km will hold msgs corresponding to the km
1583 * stored also.
1584 */
1585 ret = hdcp2_verify_rx_cert_prepare_km(connector, &msgs.send_cert,
1586 &hdcp->is_paired,
1587 &msgs.no_stored_km, &size);
1588 if (ret < 0)
1589 return ret;
1590
1591 ret = shim->write_2_2_msg(connector, &msgs.no_stored_km, size);
1592 if (ret < 0)
1593 return ret;
1594
1595 ret = shim->read_2_2_msg(connector, HDCP_2_2_AKE_SEND_HPRIME,
1596 &msgs.send_hprime, sizeof(msgs.send_hprime));
1597 if (ret < 0)
1598 return ret;
1599
1600 ret = hdcp2_verify_hprime(connector, &msgs.send_hprime);
1601 if (ret < 0)
1602 return ret;
1603
1604 if (!hdcp->is_paired) {
1605 /* Pairing is required */
1606 ret = shim->read_2_2_msg(connector,
1607 HDCP_2_2_AKE_SEND_PAIRING_INFO,
1608 &msgs.pairing_info,
1609 sizeof(msgs.pairing_info));
1610 if (ret < 0)
1611 return ret;
1612
1613 ret = hdcp2_store_pairing_info(connector, &msgs.pairing_info);
1614 if (ret < 0)
1615 return ret;
1616 hdcp->is_paired = true;
1617 }
1618
1619 return 0;
1620 }
1621
hdcp2_locality_check(struct intel_connector * connector)1622 static int hdcp2_locality_check(struct intel_connector *connector)
1623 {
1624 struct intel_hdcp *hdcp = &connector->hdcp;
1625 union {
1626 struct hdcp2_lc_init lc_init;
1627 struct hdcp2_lc_send_lprime send_lprime;
1628 } msgs;
1629 const struct intel_hdcp_shim *shim = hdcp->shim;
1630 int tries = HDCP2_LC_RETRY_CNT, ret, i;
1631
1632 for (i = 0; i < tries; i++) {
1633 ret = hdcp2_prepare_lc_init(connector, &msgs.lc_init);
1634 if (ret < 0)
1635 continue;
1636
1637 ret = shim->write_2_2_msg(connector, &msgs.lc_init,
1638 sizeof(msgs.lc_init));
1639 if (ret < 0)
1640 continue;
1641
1642 ret = shim->read_2_2_msg(connector,
1643 HDCP_2_2_LC_SEND_LPRIME,
1644 &msgs.send_lprime,
1645 sizeof(msgs.send_lprime));
1646 if (ret < 0)
1647 continue;
1648
1649 ret = hdcp2_verify_lprime(connector, &msgs.send_lprime);
1650 if (!ret)
1651 break;
1652 }
1653
1654 return ret;
1655 }
1656
hdcp2_session_key_exchange(struct intel_connector * connector)1657 static int hdcp2_session_key_exchange(struct intel_connector *connector)
1658 {
1659 struct intel_hdcp *hdcp = &connector->hdcp;
1660 struct hdcp2_ske_send_eks send_eks;
1661 int ret;
1662
1663 ret = hdcp2_prepare_skey(connector, &send_eks);
1664 if (ret < 0)
1665 return ret;
1666
1667 ret = hdcp->shim->write_2_2_msg(connector, &send_eks,
1668 sizeof(send_eks));
1669 if (ret < 0)
1670 return ret;
1671
1672 return 0;
1673 }
1674
1675 static
_hdcp2_propagate_stream_management_info(struct intel_connector * connector)1676 int _hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1677 {
1678 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1679 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1680 struct intel_hdcp *hdcp = &connector->hdcp;
1681 union {
1682 struct hdcp2_rep_stream_manage stream_manage;
1683 struct hdcp2_rep_stream_ready stream_ready;
1684 } msgs;
1685 const struct intel_hdcp_shim *shim = hdcp->shim;
1686 int ret, streams_size_delta, i;
1687
1688 if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX)
1689 return -ERANGE;
1690
1691 /* Prepare RepeaterAuth_Stream_Manage msg */
1692 msgs.stream_manage.msg_id = HDCP_2_2_REP_STREAM_MANAGE;
1693 drm_hdcp_cpu_to_be24(msgs.stream_manage.seq_num_m, hdcp->seq_num_m);
1694
1695 msgs.stream_manage.k = cpu_to_be16(data->k);
1696
1697 for (i = 0; i < data->k; i++) {
1698 msgs.stream_manage.streams[i].stream_id = data->streams[i].stream_id;
1699 msgs.stream_manage.streams[i].stream_type = data->streams[i].stream_type;
1700 }
1701
1702 streams_size_delta = (HDCP_2_2_MAX_CONTENT_STREAMS_CNT - data->k) *
1703 sizeof(struct hdcp2_streamid_type);
1704 /* Send it to Repeater */
1705 ret = shim->write_2_2_msg(connector, &msgs.stream_manage,
1706 sizeof(msgs.stream_manage) - streams_size_delta);
1707 if (ret < 0)
1708 goto out;
1709
1710 ret = shim->read_2_2_msg(connector, HDCP_2_2_REP_STREAM_READY,
1711 &msgs.stream_ready, sizeof(msgs.stream_ready));
1712 if (ret < 0)
1713 goto out;
1714
1715 data->seq_num_m = hdcp->seq_num_m;
1716
1717 ret = hdcp2_verify_mprime(connector, &msgs.stream_ready);
1718
1719 out:
1720 hdcp->seq_num_m++;
1721
1722 return ret;
1723 }
1724
1725 static
hdcp2_authenticate_repeater_topology(struct intel_connector * connector)1726 int hdcp2_authenticate_repeater_topology(struct intel_connector *connector)
1727 {
1728 struct intel_display *display = to_intel_display(connector);
1729 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1730 struct intel_hdcp *hdcp = &connector->hdcp;
1731 union {
1732 struct hdcp2_rep_send_receiverid_list recvid_list;
1733 struct hdcp2_rep_send_ack rep_ack;
1734 } msgs;
1735 const struct intel_hdcp_shim *shim = hdcp->shim;
1736 u32 seq_num_v, device_cnt;
1737 u8 *rx_info;
1738 int ret;
1739
1740 ret = shim->read_2_2_msg(connector, HDCP_2_2_REP_SEND_RECVID_LIST,
1741 &msgs.recvid_list, sizeof(msgs.recvid_list));
1742 if (ret < 0)
1743 return ret;
1744
1745 rx_info = msgs.recvid_list.rx_info;
1746
1747 if (HDCP_2_2_MAX_CASCADE_EXCEEDED(rx_info[1]) ||
1748 HDCP_2_2_MAX_DEVS_EXCEEDED(rx_info[1])) {
1749 drm_dbg_kms(display->drm, "Topology Max Size Exceeded\n");
1750 return -EINVAL;
1751 }
1752
1753 /*
1754 * MST topology is not Type 1 capable if it contains a downstream
1755 * device that is only HDCP 1.x or Legacy HDCP 2.0/2.1 compliant.
1756 */
1757 dig_port->hdcp_mst_type1_capable =
1758 !HDCP_2_2_HDCP1_DEVICE_CONNECTED(rx_info[1]) &&
1759 !HDCP_2_2_HDCP_2_0_REP_CONNECTED(rx_info[1]);
1760
1761 if (!dig_port->hdcp_mst_type1_capable && hdcp->content_type) {
1762 drm_dbg_kms(display->drm,
1763 "HDCP1.x or 2.0 Legacy Device Downstream\n");
1764 return -EINVAL;
1765 }
1766
1767 /* Converting and Storing the seq_num_v to local variable as DWORD */
1768 seq_num_v =
1769 drm_hdcp_be24_to_cpu((const u8 *)msgs.recvid_list.seq_num_v);
1770
1771 if (!hdcp->hdcp2_encrypted && seq_num_v) {
1772 drm_dbg_kms(display->drm,
1773 "Non zero Seq_num_v at first RecvId_List msg\n");
1774 return -EINVAL;
1775 }
1776
1777 if (seq_num_v < hdcp->seq_num_v) {
1778 /* Roll over of the seq_num_v from repeater. Reauthenticate. */
1779 drm_dbg_kms(display->drm, "Seq_num_v roll over.\n");
1780 return -EINVAL;
1781 }
1782
1783 device_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
1784 HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
1785 if (drm_hdcp_check_ksvs_revoked(display->drm,
1786 msgs.recvid_list.receiver_ids,
1787 device_cnt) > 0) {
1788 drm_err(display->drm, "Revoked receiver ID(s) is in list\n");
1789 return -EPERM;
1790 }
1791
1792 ret = hdcp2_verify_rep_topology_prepare_ack(connector,
1793 &msgs.recvid_list,
1794 &msgs.rep_ack);
1795 if (ret < 0)
1796 return ret;
1797
1798 hdcp->seq_num_v = seq_num_v;
1799 ret = shim->write_2_2_msg(connector, &msgs.rep_ack,
1800 sizeof(msgs.rep_ack));
1801 if (ret < 0)
1802 return ret;
1803
1804 return 0;
1805 }
1806
hdcp2_authenticate_sink(struct intel_connector * connector)1807 static int hdcp2_authenticate_sink(struct intel_connector *connector)
1808 {
1809 struct intel_display *display = to_intel_display(connector);
1810 struct intel_hdcp *hdcp = &connector->hdcp;
1811 const struct intel_hdcp_shim *shim = hdcp->shim;
1812 int ret;
1813
1814 ret = hdcp2_authentication_key_exchange(connector);
1815 if (ret < 0) {
1816 drm_dbg_kms(display->drm, "AKE Failed. Err : %d\n", ret);
1817 return ret;
1818 }
1819
1820 ret = hdcp2_locality_check(connector);
1821 if (ret < 0) {
1822 drm_dbg_kms(display->drm,
1823 "Locality Check failed. Err : %d\n", ret);
1824 return ret;
1825 }
1826
1827 ret = hdcp2_session_key_exchange(connector);
1828 if (ret < 0) {
1829 drm_dbg_kms(display->drm, "SKE Failed. Err : %d\n", ret);
1830 return ret;
1831 }
1832
1833 if (shim->config_stream_type) {
1834 ret = shim->config_stream_type(connector,
1835 hdcp->is_repeater,
1836 hdcp->content_type);
1837 if (ret < 0)
1838 return ret;
1839 }
1840
1841 if (hdcp->is_repeater) {
1842 ret = hdcp2_authenticate_repeater_topology(connector);
1843 if (ret < 0) {
1844 drm_dbg_kms(display->drm,
1845 "Repeater Auth Failed. Err: %d\n", ret);
1846 return ret;
1847 }
1848 }
1849
1850 return ret;
1851 }
1852
hdcp2_enable_stream_encryption(struct intel_connector * connector)1853 static int hdcp2_enable_stream_encryption(struct intel_connector *connector)
1854 {
1855 struct intel_display *display = to_intel_display(connector);
1856 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1857 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1858 struct intel_hdcp *hdcp = &connector->hdcp;
1859 enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1860 enum port port = dig_port->base.port;
1861 int ret = 0;
1862
1863 if (!(intel_de_read(display, HDCP2_STATUS(display, cpu_transcoder, port)) &
1864 LINK_ENCRYPTION_STATUS)) {
1865 drm_err(display->drm, "[CONNECTOR:%d:%s] HDCP 2.2 Link is not encrypted\n",
1866 connector->base.base.id, connector->base.name);
1867 ret = -EPERM;
1868 goto link_recover;
1869 }
1870
1871 if (hdcp->shim->stream_2_2_encryption) {
1872 ret = hdcp->shim->stream_2_2_encryption(connector, true);
1873 if (ret) {
1874 drm_err(display->drm, "[CONNECTOR:%d:%s] Failed to enable HDCP 2.2 stream enc\n",
1875 connector->base.base.id, connector->base.name);
1876 return ret;
1877 }
1878 drm_dbg_kms(display->drm, "HDCP 2.2 transcoder: %s stream encrypted\n",
1879 transcoder_name(hdcp->stream_transcoder));
1880 }
1881
1882 return 0;
1883
1884 link_recover:
1885 if (hdcp2_deauthenticate_port(connector) < 0)
1886 drm_dbg_kms(display->drm, "Port deauth failed.\n");
1887
1888 dig_port->hdcp_auth_status = false;
1889 data->k = 0;
1890
1891 return ret;
1892 }
1893
hdcp2_enable_encryption(struct intel_connector * connector)1894 static int hdcp2_enable_encryption(struct intel_connector *connector)
1895 {
1896 struct intel_display *display = to_intel_display(connector);
1897 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1898 struct intel_hdcp *hdcp = &connector->hdcp;
1899 enum port port = dig_port->base.port;
1900 enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1901 int ret;
1902
1903 drm_WARN_ON(display->drm,
1904 intel_de_read(display, HDCP2_STATUS(display, cpu_transcoder, port)) &
1905 LINK_ENCRYPTION_STATUS);
1906 if (hdcp->shim->toggle_signalling) {
1907 ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
1908 true);
1909 if (ret) {
1910 drm_err(display->drm,
1911 "Failed to enable HDCP signalling. %d\n",
1912 ret);
1913 return ret;
1914 }
1915 }
1916
1917 if (intel_de_read(display, HDCP2_STATUS(display, cpu_transcoder, port)) &
1918 LINK_AUTH_STATUS)
1919 /* Link is Authenticated. Now set for Encryption */
1920 intel_de_rmw(display, HDCP2_CTL(display, cpu_transcoder, port),
1921 0, CTL_LINK_ENCRYPTION_REQ);
1922
1923 ret = intel_de_wait_for_set(display,
1924 HDCP2_STATUS(display, cpu_transcoder,
1925 port),
1926 LINK_ENCRYPTION_STATUS,
1927 HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1928 dig_port->hdcp_auth_status = true;
1929
1930 return ret;
1931 }
1932
hdcp2_disable_encryption(struct intel_connector * connector)1933 static int hdcp2_disable_encryption(struct intel_connector *connector)
1934 {
1935 struct intel_display *display = to_intel_display(connector);
1936 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1937 struct intel_hdcp *hdcp = &connector->hdcp;
1938 enum port port = dig_port->base.port;
1939 enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1940 int ret;
1941
1942 drm_WARN_ON(display->drm,
1943 !(intel_de_read(display, HDCP2_STATUS(display, cpu_transcoder, port)) &
1944 LINK_ENCRYPTION_STATUS));
1945
1946 intel_de_rmw(display, HDCP2_CTL(display, cpu_transcoder, port),
1947 CTL_LINK_ENCRYPTION_REQ, 0);
1948
1949 ret = intel_de_wait_for_clear(display,
1950 HDCP2_STATUS(display, cpu_transcoder,
1951 port),
1952 LINK_ENCRYPTION_STATUS,
1953 HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1954 if (ret == -ETIMEDOUT)
1955 drm_dbg_kms(display->drm, "Disable Encryption Timedout");
1956
1957 if (hdcp->shim->toggle_signalling) {
1958 ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
1959 false);
1960 if (ret) {
1961 drm_err(display->drm,
1962 "Failed to disable HDCP signalling. %d\n",
1963 ret);
1964 return ret;
1965 }
1966 }
1967
1968 return ret;
1969 }
1970
1971 static int
hdcp2_propagate_stream_management_info(struct intel_connector * connector)1972 hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1973 {
1974 struct intel_display *display = to_intel_display(connector);
1975 int i, tries = 3, ret;
1976
1977 if (!connector->hdcp.is_repeater)
1978 return 0;
1979
1980 for (i = 0; i < tries; i++) {
1981 ret = _hdcp2_propagate_stream_management_info(connector);
1982 if (!ret)
1983 break;
1984
1985 /* Lets restart the auth incase of seq_num_m roll over */
1986 if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX) {
1987 drm_dbg_kms(display->drm,
1988 "seq_num_m roll over.(%d)\n", ret);
1989 break;
1990 }
1991
1992 drm_dbg_kms(display->drm,
1993 "HDCP2 stream management %d of %d Failed.(%d)\n",
1994 i + 1, tries, ret);
1995 }
1996
1997 return ret;
1998 }
1999
hdcp2_authenticate_and_encrypt(struct intel_atomic_state * state,struct intel_connector * connector)2000 static int hdcp2_authenticate_and_encrypt(struct intel_atomic_state *state,
2001 struct intel_connector *connector)
2002 {
2003 struct intel_display *display = to_intel_display(connector);
2004 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2005 int ret = 0, i, tries = 3;
2006
2007 for (i = 0; i < tries && !dig_port->hdcp_auth_status; i++) {
2008 ret = hdcp2_authenticate_sink(connector);
2009 if (!ret) {
2010 ret = intel_hdcp_prepare_streams(state, connector);
2011 if (ret) {
2012 drm_dbg_kms(display->drm,
2013 "Prepare stream failed.(%d)\n",
2014 ret);
2015 break;
2016 }
2017
2018 ret = hdcp2_propagate_stream_management_info(connector);
2019 if (ret) {
2020 drm_dbg_kms(display->drm,
2021 "Stream management failed.(%d)\n",
2022 ret);
2023 break;
2024 }
2025
2026 ret = hdcp2_authenticate_port(connector);
2027 if (!ret)
2028 break;
2029 drm_dbg_kms(display->drm, "HDCP2 port auth failed.(%d)\n",
2030 ret);
2031 }
2032
2033 /* Clearing the mei hdcp session */
2034 drm_dbg_kms(display->drm, "HDCP2.2 Auth %d of %d Failed.(%d)\n",
2035 i + 1, tries, ret);
2036 if (hdcp2_deauthenticate_port(connector) < 0)
2037 drm_dbg_kms(display->drm, "Port deauth failed.\n");
2038 }
2039
2040 if (!ret && !dig_port->hdcp_auth_status) {
2041 /*
2042 * Ensuring the required 200mSec min time interval between
2043 * Session Key Exchange and encryption.
2044 */
2045 msleep(HDCP_2_2_DELAY_BEFORE_ENCRYPTION_EN);
2046 ret = hdcp2_enable_encryption(connector);
2047 if (ret < 0) {
2048 drm_dbg_kms(display->drm,
2049 "Encryption Enable Failed.(%d)\n", ret);
2050 if (hdcp2_deauthenticate_port(connector) < 0)
2051 drm_dbg_kms(display->drm, "Port deauth failed.\n");
2052 }
2053 }
2054
2055 if (!ret)
2056 ret = hdcp2_enable_stream_encryption(connector);
2057
2058 return ret;
2059 }
2060
_intel_hdcp2_enable(struct intel_atomic_state * state,struct intel_connector * connector)2061 static int _intel_hdcp2_enable(struct intel_atomic_state *state,
2062 struct intel_connector *connector)
2063 {
2064 struct intel_display *display = to_intel_display(connector);
2065 struct intel_hdcp *hdcp = &connector->hdcp;
2066 int ret;
2067
2068 drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s] HDCP2.2 is being enabled. Type: %d\n",
2069 connector->base.base.id, connector->base.name,
2070 hdcp->content_type);
2071
2072 intel_hdcp_disable_hdcp_line_rekeying(connector->encoder, hdcp);
2073
2074 ret = hdcp2_authenticate_and_encrypt(state, connector);
2075 if (ret) {
2076 drm_dbg_kms(display->drm, "HDCP2 Type%d Enabling Failed. (%d)\n",
2077 hdcp->content_type, ret);
2078 return ret;
2079 }
2080
2081 drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s] HDCP2.2 is enabled. Type %d\n",
2082 connector->base.base.id, connector->base.name,
2083 hdcp->content_type);
2084
2085 hdcp->hdcp2_encrypted = true;
2086 return 0;
2087 }
2088
2089 static int
_intel_hdcp2_disable(struct intel_connector * connector,bool hdcp2_link_recovery)2090 _intel_hdcp2_disable(struct intel_connector *connector, bool hdcp2_link_recovery)
2091 {
2092 struct intel_display *display = to_intel_display(connector);
2093 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2094 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
2095 struct intel_hdcp *hdcp = &connector->hdcp;
2096 int ret;
2097
2098 drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s] HDCP2.2 is being Disabled\n",
2099 connector->base.base.id, connector->base.name);
2100
2101 if (hdcp->shim->stream_2_2_encryption) {
2102 ret = hdcp->shim->stream_2_2_encryption(connector, false);
2103 if (ret) {
2104 drm_err(display->drm, "[CONNECTOR:%d:%s] Failed to disable HDCP 2.2 stream enc\n",
2105 connector->base.base.id, connector->base.name);
2106 return ret;
2107 }
2108 drm_dbg_kms(display->drm, "HDCP 2.2 transcoder: %s stream encryption disabled\n",
2109 transcoder_name(hdcp->stream_transcoder));
2110
2111 if (dig_port->num_hdcp_streams > 0 && !hdcp2_link_recovery)
2112 return 0;
2113 }
2114
2115 ret = hdcp2_disable_encryption(connector);
2116
2117 if (hdcp2_deauthenticate_port(connector) < 0)
2118 drm_dbg_kms(display->drm, "Port deauth failed.\n");
2119
2120 connector->hdcp.hdcp2_encrypted = false;
2121 dig_port->hdcp_auth_status = false;
2122 data->k = 0;
2123
2124 return ret;
2125 }
2126
2127 /* Implements the Link Integrity Check for HDCP2.2 */
intel_hdcp2_check_link(struct intel_connector * connector)2128 static int intel_hdcp2_check_link(struct intel_connector *connector)
2129 {
2130 struct intel_display *display = to_intel_display(connector);
2131 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2132 struct intel_hdcp *hdcp = &connector->hdcp;
2133 enum port port = dig_port->base.port;
2134 enum transcoder cpu_transcoder;
2135 int ret = 0;
2136
2137 mutex_lock(&hdcp->mutex);
2138 mutex_lock(&dig_port->hdcp_mutex);
2139 cpu_transcoder = hdcp->cpu_transcoder;
2140
2141 /* hdcp2_check_link is expected only when HDCP2.2 is Enabled */
2142 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
2143 !hdcp->hdcp2_encrypted) {
2144 ret = -EINVAL;
2145 goto out;
2146 }
2147
2148 if (drm_WARN_ON(display->drm,
2149 !intel_hdcp2_in_use(display, cpu_transcoder, port))) {
2150 drm_err(display->drm,
2151 "HDCP2.2 link stopped the encryption, %x\n",
2152 intel_de_read(display, HDCP2_STATUS(display, cpu_transcoder, port)));
2153 ret = -ENXIO;
2154 _intel_hdcp2_disable(connector, true);
2155 intel_hdcp_update_value(connector,
2156 DRM_MODE_CONTENT_PROTECTION_DESIRED,
2157 true);
2158 goto out;
2159 }
2160
2161 ret = hdcp->shim->check_2_2_link(dig_port, connector);
2162 if (ret == HDCP_LINK_PROTECTED) {
2163 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
2164 intel_hdcp_update_value(connector,
2165 DRM_MODE_CONTENT_PROTECTION_ENABLED,
2166 true);
2167 }
2168 goto out;
2169 }
2170
2171 if (ret == HDCP_TOPOLOGY_CHANGE) {
2172 if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
2173 goto out;
2174
2175 drm_dbg_kms(display->drm,
2176 "HDCP2.2 Downstream topology change\n");
2177 } else {
2178 drm_dbg_kms(display->drm,
2179 "[CONNECTOR:%d:%s] HDCP2.2 link failed, retrying auth\n",
2180 connector->base.base.id, connector->base.name);
2181 }
2182
2183 ret = _intel_hdcp2_disable(connector, true);
2184 if (ret) {
2185 drm_err(display->drm,
2186 "[CONNECTOR:%d:%s] Failed to disable hdcp2.2 (%d)\n",
2187 connector->base.base.id, connector->base.name, ret);
2188 intel_hdcp_update_value(connector,
2189 DRM_MODE_CONTENT_PROTECTION_DESIRED, true);
2190 goto out;
2191 }
2192
2193 intel_hdcp_update_value(connector,
2194 DRM_MODE_CONTENT_PROTECTION_DESIRED, true);
2195 out:
2196 mutex_unlock(&dig_port->hdcp_mutex);
2197 mutex_unlock(&hdcp->mutex);
2198 return ret;
2199 }
2200
intel_hdcp_check_work(struct work_struct * work)2201 static void intel_hdcp_check_work(struct work_struct *work)
2202 {
2203 struct intel_hdcp *hdcp = container_of(to_delayed_work(work),
2204 struct intel_hdcp,
2205 check_work);
2206 struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
2207 struct intel_display *display = to_intel_display(connector);
2208 struct drm_i915_private *i915 = to_i915(display->drm);
2209
2210 if (drm_connector_is_unregistered(&connector->base))
2211 return;
2212
2213 if (!intel_hdcp2_check_link(connector))
2214 queue_delayed_work(i915->unordered_wq, &hdcp->check_work,
2215 DRM_HDCP2_CHECK_PERIOD_MS);
2216 else if (!intel_hdcp_check_link(connector))
2217 queue_delayed_work(i915->unordered_wq, &hdcp->check_work,
2218 DRM_HDCP_CHECK_PERIOD_MS);
2219 }
2220
i915_hdcp_component_bind(struct device * drv_kdev,struct device * mei_kdev,void * data)2221 static int i915_hdcp_component_bind(struct device *drv_kdev,
2222 struct device *mei_kdev, void *data)
2223 {
2224 struct intel_display *display = to_intel_display(drv_kdev);
2225
2226 drm_dbg(display->drm, "I915 HDCP comp bind\n");
2227 mutex_lock(&display->hdcp.hdcp_mutex);
2228 display->hdcp.arbiter = (struct i915_hdcp_arbiter *)data;
2229 display->hdcp.arbiter->hdcp_dev = mei_kdev;
2230 mutex_unlock(&display->hdcp.hdcp_mutex);
2231
2232 return 0;
2233 }
2234
i915_hdcp_component_unbind(struct device * drv_kdev,struct device * mei_kdev,void * data)2235 static void i915_hdcp_component_unbind(struct device *drv_kdev,
2236 struct device *mei_kdev, void *data)
2237 {
2238 struct intel_display *display = to_intel_display(drv_kdev);
2239
2240 drm_dbg(display->drm, "I915 HDCP comp unbind\n");
2241 mutex_lock(&display->hdcp.hdcp_mutex);
2242 display->hdcp.arbiter = NULL;
2243 mutex_unlock(&display->hdcp.hdcp_mutex);
2244 }
2245
2246 static const struct component_ops i915_hdcp_ops = {
2247 .bind = i915_hdcp_component_bind,
2248 .unbind = i915_hdcp_component_unbind,
2249 };
2250
intel_get_hdcp_ddi_index(enum port port)2251 static enum hdcp_ddi intel_get_hdcp_ddi_index(enum port port)
2252 {
2253 switch (port) {
2254 case PORT_A:
2255 return HDCP_DDI_A;
2256 case PORT_B ... PORT_F:
2257 return (enum hdcp_ddi)port;
2258 default:
2259 return HDCP_DDI_INVALID_PORT;
2260 }
2261 }
2262
intel_get_hdcp_transcoder(enum transcoder cpu_transcoder)2263 static enum hdcp_transcoder intel_get_hdcp_transcoder(enum transcoder cpu_transcoder)
2264 {
2265 switch (cpu_transcoder) {
2266 case TRANSCODER_A ... TRANSCODER_D:
2267 return (enum hdcp_transcoder)(cpu_transcoder | 0x10);
2268 default: /* eDP, DSI TRANSCODERS are non HDCP capable */
2269 return HDCP_INVALID_TRANSCODER;
2270 }
2271 }
2272
initialize_hdcp_port_data(struct intel_connector * connector,struct intel_digital_port * dig_port,const struct intel_hdcp_shim * shim)2273 static int initialize_hdcp_port_data(struct intel_connector *connector,
2274 struct intel_digital_port *dig_port,
2275 const struct intel_hdcp_shim *shim)
2276 {
2277 struct intel_display *display = to_intel_display(connector);
2278 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
2279 enum port port = dig_port->base.port;
2280
2281 if (DISPLAY_VER(display) < 12)
2282 data->hdcp_ddi = intel_get_hdcp_ddi_index(port);
2283 else
2284 /*
2285 * As per ME FW API expectation, for GEN 12+, hdcp_ddi is filled
2286 * with zero(INVALID PORT index).
2287 */
2288 data->hdcp_ddi = HDCP_DDI_INVALID_PORT;
2289
2290 /*
2291 * As associated transcoder is set and modified at modeset, here hdcp_transcoder
2292 * is initialized to zero (invalid transcoder index). This will be
2293 * retained for <Gen12 forever.
2294 */
2295 data->hdcp_transcoder = HDCP_INVALID_TRANSCODER;
2296
2297 data->port_type = (u8)HDCP_PORT_TYPE_INTEGRATED;
2298 data->protocol = (u8)shim->protocol;
2299
2300 if (!data->streams)
2301 data->streams = kcalloc(INTEL_NUM_PIPES(display),
2302 sizeof(struct hdcp2_streamid_type),
2303 GFP_KERNEL);
2304 if (!data->streams) {
2305 drm_err(display->drm, "Out of Memory\n");
2306 return -ENOMEM;
2307 }
2308
2309 return 0;
2310 }
2311
is_hdcp2_supported(struct intel_display * display)2312 static bool is_hdcp2_supported(struct intel_display *display)
2313 {
2314 struct drm_i915_private *i915 = to_i915(display->drm);
2315
2316 if (intel_hdcp_gsc_cs_required(display))
2317 return true;
2318
2319 if (!IS_ENABLED(CONFIG_INTEL_MEI_HDCP))
2320 return false;
2321
2322 return (DISPLAY_VER(display) >= 10 ||
2323 IS_KABYLAKE(i915) ||
2324 IS_COFFEELAKE(i915) ||
2325 IS_COMETLAKE(i915));
2326 }
2327
intel_hdcp_component_init(struct intel_display * display)2328 void intel_hdcp_component_init(struct intel_display *display)
2329 {
2330 int ret;
2331
2332 if (!is_hdcp2_supported(display))
2333 return;
2334
2335 mutex_lock(&display->hdcp.hdcp_mutex);
2336 drm_WARN_ON(display->drm, display->hdcp.comp_added);
2337
2338 display->hdcp.comp_added = true;
2339 mutex_unlock(&display->hdcp.hdcp_mutex);
2340 if (intel_hdcp_gsc_cs_required(display))
2341 ret = intel_hdcp_gsc_init(display);
2342 else
2343 ret = component_add_typed(display->drm->dev, &i915_hdcp_ops,
2344 I915_COMPONENT_HDCP);
2345
2346 if (ret < 0) {
2347 drm_dbg_kms(display->drm, "Failed at fw component add(%d)\n",
2348 ret);
2349 mutex_lock(&display->hdcp.hdcp_mutex);
2350 display->hdcp.comp_added = false;
2351 mutex_unlock(&display->hdcp.hdcp_mutex);
2352 return;
2353 }
2354 }
2355
intel_hdcp2_init(struct intel_connector * connector,struct intel_digital_port * dig_port,const struct intel_hdcp_shim * shim)2356 static void intel_hdcp2_init(struct intel_connector *connector,
2357 struct intel_digital_port *dig_port,
2358 const struct intel_hdcp_shim *shim)
2359 {
2360 struct intel_display *display = to_intel_display(connector);
2361 struct intel_hdcp *hdcp = &connector->hdcp;
2362 int ret;
2363
2364 ret = initialize_hdcp_port_data(connector, dig_port, shim);
2365 if (ret) {
2366 drm_dbg_kms(display->drm, "Mei hdcp data init failed\n");
2367 return;
2368 }
2369
2370 hdcp->hdcp2_supported = true;
2371 }
2372
intel_hdcp_init(struct intel_connector * connector,struct intel_digital_port * dig_port,const struct intel_hdcp_shim * shim)2373 int intel_hdcp_init(struct intel_connector *connector,
2374 struct intel_digital_port *dig_port,
2375 const struct intel_hdcp_shim *shim)
2376 {
2377 struct intel_display *display = to_intel_display(connector);
2378 struct intel_hdcp *hdcp = &connector->hdcp;
2379 int ret;
2380
2381 if (!shim)
2382 return -EINVAL;
2383
2384 if (is_hdcp2_supported(display))
2385 intel_hdcp2_init(connector, dig_port, shim);
2386
2387 ret = drm_connector_attach_content_protection_property(&connector->base,
2388 hdcp->hdcp2_supported);
2389 if (ret) {
2390 hdcp->hdcp2_supported = false;
2391 kfree(dig_port->hdcp_port_data.streams);
2392 return ret;
2393 }
2394
2395 hdcp->shim = shim;
2396 mutex_init(&hdcp->mutex);
2397 INIT_DELAYED_WORK(&hdcp->check_work, intel_hdcp_check_work);
2398 INIT_WORK(&hdcp->prop_work, intel_hdcp_prop_work);
2399 init_waitqueue_head(&hdcp->cp_irq_queue);
2400
2401 return 0;
2402 }
2403
_intel_hdcp_enable(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config,const struct drm_connector_state * conn_state)2404 static int _intel_hdcp_enable(struct intel_atomic_state *state,
2405 struct intel_encoder *encoder,
2406 const struct intel_crtc_state *pipe_config,
2407 const struct drm_connector_state *conn_state)
2408 {
2409 struct intel_display *display = to_intel_display(encoder);
2410 struct drm_i915_private *i915 = to_i915(display->drm);
2411 struct intel_connector *connector =
2412 to_intel_connector(conn_state->connector);
2413 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2414 struct intel_hdcp *hdcp = &connector->hdcp;
2415 unsigned long check_link_interval = DRM_HDCP_CHECK_PERIOD_MS;
2416 int ret = -EINVAL;
2417
2418 if (!hdcp->shim)
2419 return -ENOENT;
2420
2421 if (!connector->encoder) {
2422 drm_err(display->drm, "[CONNECTOR:%d:%s] encoder is not initialized\n",
2423 connector->base.base.id, connector->base.name);
2424 return -ENODEV;
2425 }
2426
2427 mutex_lock(&hdcp->mutex);
2428 mutex_lock(&dig_port->hdcp_mutex);
2429 drm_WARN_ON(display->drm,
2430 hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED);
2431 hdcp->content_type = (u8)conn_state->hdcp_content_type;
2432
2433 if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DP_MST)) {
2434 hdcp->cpu_transcoder = pipe_config->mst_master_transcoder;
2435 hdcp->stream_transcoder = pipe_config->cpu_transcoder;
2436 } else {
2437 hdcp->cpu_transcoder = pipe_config->cpu_transcoder;
2438 hdcp->stream_transcoder = INVALID_TRANSCODER;
2439 }
2440
2441 if (DISPLAY_VER(display) >= 12)
2442 dig_port->hdcp_port_data.hdcp_transcoder =
2443 intel_get_hdcp_transcoder(hdcp->cpu_transcoder);
2444
2445 /*
2446 * Considering that HDCP2.2 is more secure than HDCP1.4, If the setup
2447 * is capable of HDCP2.2, it is preferred to use HDCP2.2.
2448 */
2449 if (intel_hdcp2_get_capability(connector)) {
2450 ret = _intel_hdcp2_enable(state, connector);
2451 if (!ret)
2452 check_link_interval =
2453 DRM_HDCP2_CHECK_PERIOD_MS;
2454 }
2455
2456 /*
2457 * When HDCP2.2 fails and Content Type is not Type1, HDCP1.4 will
2458 * be attempted.
2459 */
2460 if (ret && intel_hdcp_get_capability(connector) &&
2461 hdcp->content_type != DRM_MODE_HDCP_CONTENT_TYPE1) {
2462 ret = intel_hdcp1_enable(connector);
2463 }
2464
2465 if (!ret) {
2466 queue_delayed_work(i915->unordered_wq, &hdcp->check_work,
2467 check_link_interval);
2468 intel_hdcp_update_value(connector,
2469 DRM_MODE_CONTENT_PROTECTION_ENABLED,
2470 true);
2471 }
2472
2473 mutex_unlock(&dig_port->hdcp_mutex);
2474 mutex_unlock(&hdcp->mutex);
2475 return ret;
2476 }
2477
intel_hdcp_enable(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)2478 void intel_hdcp_enable(struct intel_atomic_state *state,
2479 struct intel_encoder *encoder,
2480 const struct intel_crtc_state *crtc_state,
2481 const struct drm_connector_state *conn_state)
2482 {
2483 struct intel_connector *connector =
2484 to_intel_connector(conn_state->connector);
2485 struct intel_hdcp *hdcp = &connector->hdcp;
2486
2487 /*
2488 * Enable hdcp if it's desired or if userspace is enabled and
2489 * driver set its state to undesired
2490 */
2491 if (conn_state->content_protection ==
2492 DRM_MODE_CONTENT_PROTECTION_DESIRED ||
2493 (conn_state->content_protection ==
2494 DRM_MODE_CONTENT_PROTECTION_ENABLED && hdcp->value ==
2495 DRM_MODE_CONTENT_PROTECTION_UNDESIRED))
2496 _intel_hdcp_enable(state, encoder, crtc_state, conn_state);
2497 }
2498
intel_hdcp_disable(struct intel_connector * connector)2499 int intel_hdcp_disable(struct intel_connector *connector)
2500 {
2501 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2502 struct intel_hdcp *hdcp = &connector->hdcp;
2503 int ret = 0;
2504
2505 if (!hdcp->shim)
2506 return -ENOENT;
2507
2508 mutex_lock(&hdcp->mutex);
2509 mutex_lock(&dig_port->hdcp_mutex);
2510
2511 if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
2512 goto out;
2513
2514 intel_hdcp_update_value(connector,
2515 DRM_MODE_CONTENT_PROTECTION_UNDESIRED, false);
2516 if (hdcp->hdcp2_encrypted)
2517 ret = _intel_hdcp2_disable(connector, false);
2518 else if (hdcp->hdcp_encrypted)
2519 ret = _intel_hdcp_disable(connector);
2520
2521 out:
2522 mutex_unlock(&dig_port->hdcp_mutex);
2523 mutex_unlock(&hdcp->mutex);
2524 cancel_delayed_work_sync(&hdcp->check_work);
2525 return ret;
2526 }
2527
intel_hdcp_update_pipe(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)2528 void intel_hdcp_update_pipe(struct intel_atomic_state *state,
2529 struct intel_encoder *encoder,
2530 const struct intel_crtc_state *crtc_state,
2531 const struct drm_connector_state *conn_state)
2532 {
2533 struct intel_connector *connector =
2534 to_intel_connector(conn_state->connector);
2535 struct intel_hdcp *hdcp = &connector->hdcp;
2536 bool content_protection_type_changed, desired_and_not_enabled = false;
2537 struct drm_i915_private *i915 = to_i915(connector->base.dev);
2538
2539 if (!connector->hdcp.shim)
2540 return;
2541
2542 content_protection_type_changed =
2543 (conn_state->hdcp_content_type != hdcp->content_type &&
2544 conn_state->content_protection !=
2545 DRM_MODE_CONTENT_PROTECTION_UNDESIRED);
2546
2547 /*
2548 * During the HDCP encryption session if Type change is requested,
2549 * disable the HDCP and reenable it with new TYPE value.
2550 */
2551 if (conn_state->content_protection ==
2552 DRM_MODE_CONTENT_PROTECTION_UNDESIRED ||
2553 content_protection_type_changed)
2554 intel_hdcp_disable(connector);
2555
2556 /*
2557 * Mark the hdcp state as DESIRED after the hdcp disable of type
2558 * change procedure.
2559 */
2560 if (content_protection_type_changed) {
2561 mutex_lock(&hdcp->mutex);
2562 hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
2563 drm_connector_get(&connector->base);
2564 if (!queue_work(i915->unordered_wq, &hdcp->prop_work))
2565 drm_connector_put(&connector->base);
2566 mutex_unlock(&hdcp->mutex);
2567 }
2568
2569 if (conn_state->content_protection ==
2570 DRM_MODE_CONTENT_PROTECTION_DESIRED) {
2571 mutex_lock(&hdcp->mutex);
2572 /* Avoid enabling hdcp, if it already ENABLED */
2573 desired_and_not_enabled =
2574 hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED;
2575 mutex_unlock(&hdcp->mutex);
2576 /*
2577 * If HDCP already ENABLED and CP property is DESIRED, schedule
2578 * prop_work to update correct CP property to user space.
2579 */
2580 if (!desired_and_not_enabled && !content_protection_type_changed) {
2581 drm_connector_get(&connector->base);
2582 if (!queue_work(i915->unordered_wq, &hdcp->prop_work))
2583 drm_connector_put(&connector->base);
2584
2585 }
2586 }
2587
2588 if (desired_and_not_enabled || content_protection_type_changed)
2589 _intel_hdcp_enable(state, encoder, crtc_state, conn_state);
2590 }
2591
intel_hdcp_component_fini(struct intel_display * display)2592 void intel_hdcp_component_fini(struct intel_display *display)
2593 {
2594 mutex_lock(&display->hdcp.hdcp_mutex);
2595 if (!display->hdcp.comp_added) {
2596 mutex_unlock(&display->hdcp.hdcp_mutex);
2597 return;
2598 }
2599
2600 display->hdcp.comp_added = false;
2601 mutex_unlock(&display->hdcp.hdcp_mutex);
2602
2603 if (intel_hdcp_gsc_cs_required(display))
2604 intel_hdcp_gsc_fini(display);
2605 else
2606 component_del(display->drm->dev, &i915_hdcp_ops);
2607 }
2608
intel_hdcp_cleanup(struct intel_connector * connector)2609 void intel_hdcp_cleanup(struct intel_connector *connector)
2610 {
2611 struct intel_hdcp *hdcp = &connector->hdcp;
2612
2613 if (!hdcp->shim)
2614 return;
2615
2616 /*
2617 * If the connector is registered, it's possible userspace could kick
2618 * off another HDCP enable, which would re-spawn the workers.
2619 */
2620 drm_WARN_ON(connector->base.dev,
2621 connector->base.registration_state == DRM_CONNECTOR_REGISTERED);
2622
2623 /*
2624 * Now that the connector is not registered, check_work won't be run,
2625 * but cancel any outstanding instances of it
2626 */
2627 cancel_delayed_work_sync(&hdcp->check_work);
2628
2629 /*
2630 * We don't cancel prop_work in the same way as check_work since it
2631 * requires connection_mutex which could be held while calling this
2632 * function. Instead, we rely on the connector references grabbed before
2633 * scheduling prop_work to ensure the connector is alive when prop_work
2634 * is run. So if we're in the destroy path (which is where this
2635 * function should be called), we're "guaranteed" that prop_work is not
2636 * active (tl;dr This Should Never Happen).
2637 */
2638 drm_WARN_ON(connector->base.dev, work_pending(&hdcp->prop_work));
2639
2640 mutex_lock(&hdcp->mutex);
2641 hdcp->shim = NULL;
2642 mutex_unlock(&hdcp->mutex);
2643 }
2644
intel_hdcp_atomic_check(struct drm_connector * connector,struct drm_connector_state * old_state,struct drm_connector_state * new_state)2645 void intel_hdcp_atomic_check(struct drm_connector *connector,
2646 struct drm_connector_state *old_state,
2647 struct drm_connector_state *new_state)
2648 {
2649 u64 old_cp = old_state->content_protection;
2650 u64 new_cp = new_state->content_protection;
2651 struct drm_crtc_state *crtc_state;
2652
2653 if (!new_state->crtc) {
2654 /*
2655 * If the connector is being disabled with CP enabled, mark it
2656 * desired so it's re-enabled when the connector is brought back
2657 */
2658 if (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)
2659 new_state->content_protection =
2660 DRM_MODE_CONTENT_PROTECTION_DESIRED;
2661 return;
2662 }
2663
2664 crtc_state = drm_atomic_get_new_crtc_state(new_state->state,
2665 new_state->crtc);
2666 /*
2667 * Fix the HDCP uapi content protection state in case of modeset.
2668 * FIXME: As per HDCP content protection property uapi doc, an uevent()
2669 * need to be sent if there is transition from ENABLED->DESIRED.
2670 */
2671 if (drm_atomic_crtc_needs_modeset(crtc_state) &&
2672 (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED &&
2673 new_cp != DRM_MODE_CONTENT_PROTECTION_UNDESIRED))
2674 new_state->content_protection =
2675 DRM_MODE_CONTENT_PROTECTION_DESIRED;
2676
2677 /*
2678 * Nothing to do if the state didn't change, or HDCP was activated since
2679 * the last commit. And also no change in hdcp content type.
2680 */
2681 if (old_cp == new_cp ||
2682 (old_cp == DRM_MODE_CONTENT_PROTECTION_DESIRED &&
2683 new_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)) {
2684 if (old_state->hdcp_content_type ==
2685 new_state->hdcp_content_type)
2686 return;
2687 }
2688
2689 crtc_state->mode_changed = true;
2690 }
2691
2692 /* Handles the CP_IRQ raised from the DP HDCP sink */
intel_hdcp_handle_cp_irq(struct intel_connector * connector)2693 void intel_hdcp_handle_cp_irq(struct intel_connector *connector)
2694 {
2695 struct intel_hdcp *hdcp = &connector->hdcp;
2696 struct intel_display *display = to_intel_display(connector);
2697 struct drm_i915_private *i915 = to_i915(display->drm);
2698
2699 if (!hdcp->shim)
2700 return;
2701
2702 atomic_inc(&connector->hdcp.cp_irq_count);
2703 wake_up_all(&connector->hdcp.cp_irq_queue);
2704
2705 queue_delayed_work(i915->unordered_wq, &hdcp->check_work, 0);
2706 }
2707