xref: /freebsd/sys/dev/sound/pci/hda/hdac.c (revision ef083de7d472b13bbaa18a165b66b93909422b2e)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2006 Stephane E. Potvin <sepotvin@videotron.ca>
5  * Copyright (c) 2006 Ariff Abdullah <ariff@FreeBSD.org>
6  * Copyright (c) 2008-2012 Alexander Motin <mav@FreeBSD.org>
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 /*
32  * Intel High Definition Audio (Controller) driver for FreeBSD.
33  */
34 
35 #ifdef HAVE_KERNEL_OPTION_HEADERS
36 #include "opt_snd.h"
37 #endif
38 
39 #include <dev/sound/pcm/sound.h>
40 #include <dev/pci/pcireg.h>
41 #include <dev/pci/pcivar.h>
42 
43 #include <sys/ctype.h>
44 #include <sys/endian.h>
45 #include <sys/taskqueue.h>
46 
47 #include <dev/sound/pci/hda/hdac_private.h>
48 #include <dev/sound/pci/hda/hdac_reg.h>
49 #include <dev/sound/pci/hda/hda_reg.h>
50 #include <dev/sound/pci/hda/hdac.h>
51 
52 #define HDA_DRV_TEST_REV	"20120126_0002"
53 
54 #define hdac_lock(sc)		snd_mtxlock((sc)->lock)
55 #define hdac_unlock(sc)		snd_mtxunlock((sc)->lock)
56 #define hdac_lockassert(sc)	snd_mtxassert((sc)->lock)
57 
58 #define HDAC_QUIRK_64BIT	(1 << 0)
59 #define HDAC_QUIRK_DMAPOS	(1 << 1)
60 #define HDAC_QUIRK_MSI		(1 << 2)
61 
62 static const struct {
63 	const char *key;
64 	uint32_t value;
65 } hdac_quirks_tab[] = {
66 	{ "64bit", HDAC_QUIRK_64BIT },
67 	{ "dmapos", HDAC_QUIRK_DMAPOS },
68 	{ "msi", HDAC_QUIRK_MSI },
69 };
70 
71 MALLOC_DEFINE(M_HDAC, "hdac", "HDA Controller");
72 
73 static const struct {
74 	uint32_t	model;
75 	const char	*desc;
76 	char		quirks_on;
77 	char		quirks_off;
78 } hdac_devices[] = {
79 	{ HDA_INTEL_OAK,     "Intel Oaktrail",	0, 0 },
80 	{ HDA_INTEL_CMLKLP,  "Intel Comet Lake-LP",	0, 0 },
81 	{ HDA_INTEL_CMLKH,   "Intel Comet Lake-H",	0, 0 },
82 	{ HDA_INTEL_BAY,     "Intel BayTrail",	0, 0 },
83 	{ HDA_INTEL_HSW1,    "Intel Haswell",	0, 0 },
84 	{ HDA_INTEL_HSW2,    "Intel Haswell",	0, 0 },
85 	{ HDA_INTEL_HSW3,    "Intel Haswell",	0, 0 },
86 	{ HDA_INTEL_BDW1,    "Intel Broadwell",	0, 0 },
87 	{ HDA_INTEL_BDW2,    "Intel Broadwell",	0, 0 },
88 	{ HDA_INTEL_BXTNT,   "Intel Broxton-T",	0, 0 },
89 	{ HDA_INTEL_CPT,     "Intel Cougar Point",	0, 0 },
90 	{ HDA_INTEL_PATSBURG,"Intel Patsburg",  0, 0 },
91 	{ HDA_INTEL_PPT1,    "Intel Panther Point",	0, 0 },
92 	{ HDA_INTEL_BR,      "Intel Braswell",	0, 0 },
93 	{ HDA_INTEL_LPT1,    "Intel Lynx Point",	0, 0 },
94 	{ HDA_INTEL_LPT2,    "Intel Lynx Point",	0, 0 },
95 	{ HDA_INTEL_WCPT,    "Intel Wildcat Point",	0, 0 },
96 	{ HDA_INTEL_WELLS1,  "Intel Wellsburg",	0, 0 },
97 	{ HDA_INTEL_WELLS2,  "Intel Wellsburg",	0, 0 },
98 	{ HDA_INTEL_LPTLP1,  "Intel Lynx Point-LP",	0, 0 },
99 	{ HDA_INTEL_LPTLP2,  "Intel Lynx Point-LP",	0, 0 },
100 	{ HDA_INTEL_SRPTLP,  "Intel Sunrise Point-LP",	0, 0 },
101 	{ HDA_INTEL_KBLKLP,  "Intel Kaby Lake-LP",	0, 0 },
102 	{ HDA_INTEL_SRPT,    "Intel Sunrise Point",	0, 0 },
103 	{ HDA_INTEL_KBLK,    "Intel Kaby Lake",	0, 0 },
104 	{ HDA_INTEL_KBLKH,   "Intel Kaby Lake-H",	0, 0 },
105 	{ HDA_INTEL_CFLK,    "Intel Coffee Lake",	0, 0 },
106 	{ HDA_INTEL_CMLKS,   "Intel Comet Lake-S",	0, 0 },
107 	{ HDA_INTEL_CNLK,    "Intel Cannon Lake",	0, 0 },
108 	{ HDA_INTEL_ICLK,    "Intel Ice Lake",		0, 0 },
109 	{ HDA_INTEL_TGLK,    "Intel Tiger Lake",	0, 0 },
110 	{ HDA_INTEL_TGLKH,   "Intel Tiger Lake-H",	0, 0 },
111 	{ HDA_INTEL_GMLK,    "Intel Gemini Lake",	0, 0 },
112 	{ HDA_INTEL_ALLK,    "Intel Alder Lake",	0, 0 },
113 	{ HDA_INTEL_ALLKM,   "Intel Alder Lake-M",	0, 0 },
114 	{ HDA_INTEL_ALLKN,   "Intel Alder Lake-N",	0, 0 },
115 	{ HDA_INTEL_ALLKP1,  "Intel Alder Lake-P",	0, 0 },
116 	{ HDA_INTEL_ALLKP2,  "Intel Alder Lake-P",	0, 0 },
117 	{ HDA_INTEL_ALLKPS,  "Intel Alder Lake-PS",	0, 0 },
118 	{ HDA_INTEL_RPTLK1,  "Intel Raptor Lake-P",	0, 0 },
119 	{ HDA_INTEL_RPTLK2,  "Intel Raptor Lake-P",	0, 0 },
120 	{ HDA_INTEL_RPTLK3,  "Intel Raptor Lake-S",	0, 0 },
121 	{ HDA_INTEL_MTL,     "Intel Meteor Lake-P",	0, 0 },
122 	{ HDA_INTEL_ARLS,    "Intel Arrow Lake-S",	0, 0 },
123 	{ HDA_INTEL_ARL,     "Intel Arrow Lake",	0, 0 },
124 	{ HDA_INTEL_LNLP,    "Intel Lunar Lake-P",	0, 0 },
125 	{ HDA_INTEL_82801F,  "Intel 82801F",	0, 0 },
126 	{ HDA_INTEL_63XXESB, "Intel 631x/632xESB",	0, 0 },
127 	{ HDA_INTEL_82801G,  "Intel 82801G",	0, 0 },
128 	{ HDA_INTEL_82801H,  "Intel 82801H",	0, 0 },
129 	{ HDA_INTEL_82801I,  "Intel 82801I",	0, 0 },
130 	{ HDA_INTEL_JLK,     "Intel Jasper Lake",	0, 0 },
131 	{ HDA_INTEL_82801JI, "Intel 82801JI",	0, 0 },
132 	{ HDA_INTEL_82801JD, "Intel 82801JD",	0, 0 },
133 	{ HDA_INTEL_PCH,     "Intel Ibex Peak",	0, 0 },
134 	{ HDA_INTEL_PCH2,    "Intel Ibex Peak",	0, 0 },
135 	{ HDA_INTEL_ELLK,    "Intel Elkhart Lake",	0, 0 },
136 	{ HDA_INTEL_ELLK2,   "Intel Elkhart Lake",	0, 0 },
137 	{ HDA_INTEL_JLK2,    "Intel Jasper Lake",	0, 0 },
138 	{ HDA_INTEL_BXTNP,   "Intel Broxton-P",	0, 0 },
139 	{ HDA_INTEL_SCH,     "Intel SCH",	0, 0 },
140 	{ HDA_NVIDIA_MCP51,  "NVIDIA MCP51",	0, HDAC_QUIRK_MSI },
141 	{ HDA_NVIDIA_MCP55,  "NVIDIA MCP55",	0, HDAC_QUIRK_MSI },
142 	{ HDA_NVIDIA_MCP61_1, "NVIDIA MCP61",	0, 0 },
143 	{ HDA_NVIDIA_MCP61_2, "NVIDIA MCP61",	0, 0 },
144 	{ HDA_NVIDIA_MCP65_1, "NVIDIA MCP65",	0, 0 },
145 	{ HDA_NVIDIA_MCP65_2, "NVIDIA MCP65",	0, 0 },
146 	{ HDA_NVIDIA_MCP67_1, "NVIDIA MCP67",	0, 0 },
147 	{ HDA_NVIDIA_MCP67_2, "NVIDIA MCP67",	0, 0 },
148 	{ HDA_NVIDIA_MCP73_1, "NVIDIA MCP73",	0, 0 },
149 	{ HDA_NVIDIA_MCP73_2, "NVIDIA MCP73",	0, 0 },
150 	{ HDA_NVIDIA_MCP78_1, "NVIDIA MCP78",	0, HDAC_QUIRK_64BIT },
151 	{ HDA_NVIDIA_MCP78_2, "NVIDIA MCP78",	0, HDAC_QUIRK_64BIT },
152 	{ HDA_NVIDIA_MCP78_3, "NVIDIA MCP78",	0, HDAC_QUIRK_64BIT },
153 	{ HDA_NVIDIA_MCP78_4, "NVIDIA MCP78",	0, HDAC_QUIRK_64BIT },
154 	{ HDA_NVIDIA_MCP79_1, "NVIDIA MCP79",	0, 0 },
155 	{ HDA_NVIDIA_MCP79_2, "NVIDIA MCP79",	0, 0 },
156 	{ HDA_NVIDIA_MCP79_3, "NVIDIA MCP79",	0, 0 },
157 	{ HDA_NVIDIA_MCP79_4, "NVIDIA MCP79",	0, 0 },
158 	{ HDA_NVIDIA_MCP89_1, "NVIDIA MCP89",	0, 0 },
159 	{ HDA_NVIDIA_MCP89_2, "NVIDIA MCP89",	0, 0 },
160 	{ HDA_NVIDIA_MCP89_3, "NVIDIA MCP89",	0, 0 },
161 	{ HDA_NVIDIA_MCP89_4, "NVIDIA MCP89",	0, 0 },
162 	{ HDA_NVIDIA_0BE2,   "NVIDIA (0x0be2)",	0, HDAC_QUIRK_MSI },
163 	{ HDA_NVIDIA_0BE3,   "NVIDIA (0x0be3)",	0, HDAC_QUIRK_MSI },
164 	{ HDA_NVIDIA_0BE4,   "NVIDIA (0x0be4)",	0, HDAC_QUIRK_MSI },
165 	{ HDA_NVIDIA_GT100,  "NVIDIA GT100",	0, HDAC_QUIRK_MSI },
166 	{ HDA_NVIDIA_GT104,  "NVIDIA GT104",	0, HDAC_QUIRK_MSI },
167 	{ HDA_NVIDIA_GT106,  "NVIDIA GT106",	0, HDAC_QUIRK_MSI },
168 	{ HDA_NVIDIA_GT108,  "NVIDIA GT108",	0, HDAC_QUIRK_MSI },
169 	{ HDA_NVIDIA_GT116,  "NVIDIA GT116",	0, HDAC_QUIRK_MSI },
170 	{ HDA_NVIDIA_GF119,  "NVIDIA GF119",	0, 0 },
171 	{ HDA_NVIDIA_GF110_1, "NVIDIA GF110",	0, HDAC_QUIRK_MSI },
172 	{ HDA_NVIDIA_GF110_2, "NVIDIA GF110",	0, HDAC_QUIRK_MSI },
173 	{ HDA_ATI_SB450,     "ATI SB450",	0, 0 },
174 	{ HDA_ATI_SB600,     "ATI SB600",	0, 0 },
175 	{ HDA_ATI_RS600,     "ATI RS600",	0, 0 },
176 	{ HDA_ATI_RS690,     "ATI RS690",	0, 0 },
177 	{ HDA_ATI_RS780,     "ATI RS780",	0, 0 },
178 	{ HDA_ATI_RS880,     "ATI RS880",	0, 0 },
179 	{ HDA_ATI_R600,      "ATI R600",	0, 0 },
180 	{ HDA_ATI_RV610,     "ATI RV610",	0, 0 },
181 	{ HDA_ATI_RV620,     "ATI RV620",	0, 0 },
182 	{ HDA_ATI_RV630,     "ATI RV630",	0, 0 },
183 	{ HDA_ATI_RV635,     "ATI RV635",	0, 0 },
184 	{ HDA_ATI_RV710,     "ATI RV710",	0, 0 },
185 	{ HDA_ATI_RV730,     "ATI RV730",	0, 0 },
186 	{ HDA_ATI_RV740,     "ATI RV740",	0, 0 },
187 	{ HDA_ATI_RV770,     "ATI RV770",	0, 0 },
188 	{ HDA_ATI_RV810,     "ATI RV810",	0, 0 },
189 	{ HDA_ATI_RV830,     "ATI RV830",	0, 0 },
190 	{ HDA_ATI_RV840,     "ATI RV840",	0, 0 },
191 	{ HDA_ATI_RV870,     "ATI RV870",	0, 0 },
192 	{ HDA_ATI_RV910,     "ATI RV910",	0, 0 },
193 	{ HDA_ATI_RV930,     "ATI RV930",	0, 0 },
194 	{ HDA_ATI_RV940,     "ATI RV940",	0, 0 },
195 	{ HDA_ATI_RV970,     "ATI RV970",	0, 0 },
196 	{ HDA_ATI_R1000,     "ATI R1000",	0, 0 },
197 	{ HDA_ATI_OLAND,     "ATI Oland",	0, 0 },
198 	{ HDA_ATI_KABINI,    "ATI Kabini",	0, 0 },
199 	{ HDA_ATI_TRINITY,   "ATI Trinity",	0, 0 },
200 	{ HDA_AMD_X370,      "AMD X370",	0, 0 },
201 	{ HDA_AMD_X570,      "AMD X570",	0, 0 },
202 	{ HDA_AMD_STONEY,    "AMD Stoney",	0, 0 },
203 	{ HDA_AMD_RAVEN,     "AMD Raven",	0, 0 },
204 	{ HDA_AMD_HUDSON2,   "AMD Hudson-2",	0, 0 },
205 	{ HDA_RDC_M3010,     "RDC M3010",	0, 0 },
206 	{ HDA_VIA_VT82XX,    "VIA VT8251/8237A",0, 0 },
207 	{ HDA_VMWARE,        "VMware",		0, 0 },
208 	{ HDA_SIS_966,       "SiS 966/968",	0, 0 },
209 	{ HDA_ULI_M5461,     "ULI M5461",	0, 0 },
210 	{ HDA_CREATIVE_SB1570,	"Creative SB Audigy FX", 0, HDAC_QUIRK_64BIT },
211 	/* Unknown */
212 	{ HDA_INTEL_ALL,  "Intel",		0, 0 },
213 	{ HDA_NVIDIA_ALL, "NVIDIA",		0, 0 },
214 	{ HDA_ATI_ALL,    "ATI",		0, 0 },
215 	{ HDA_AMD_ALL,    "AMD",		0, 0 },
216 	{ HDA_CREATIVE_ALL,    "Creative",	0, 0 },
217 	{ HDA_VIA_ALL,    "VIA",		0, 0 },
218 	{ HDA_VMWARE_ALL, "VMware",		0, 0 },
219 	{ HDA_SIS_ALL,    "SiS",		0, 0 },
220 	{ HDA_ULI_ALL,    "ULI",		0, 0 },
221 };
222 
223 static const struct {
224 	uint16_t vendor;
225 	uint8_t reg;
226 	uint8_t mask;
227 	uint8_t enable;
228 } hdac_pcie_snoop[] = {
229 	{  INTEL_VENDORID, 0x00, 0x00, 0x00 },
230 	{    ATI_VENDORID, 0x42, 0xf8, 0x02 },
231 	{    AMD_VENDORID, 0x42, 0xf8, 0x02 },
232 	{ NVIDIA_VENDORID, 0x4e, 0xf0, 0x0f },
233 };
234 
235 /****************************************************************************
236  * Function prototypes
237  ****************************************************************************/
238 static void	hdac_intr_handler(void *);
239 static int	hdac_reset(struct hdac_softc *, bool);
240 static int	hdac_get_capabilities(struct hdac_softc *);
241 static void	hdac_dma_cb(void *, bus_dma_segment_t *, int, int);
242 static int	hdac_dma_alloc(struct hdac_softc *,
243 					struct hdac_dma *, bus_size_t);
244 static void	hdac_dma_free(struct hdac_softc *, struct hdac_dma *);
245 static int	hdac_mem_alloc(struct hdac_softc *);
246 static void	hdac_mem_free(struct hdac_softc *);
247 static int	hdac_irq_alloc(struct hdac_softc *);
248 static void	hdac_irq_free(struct hdac_softc *);
249 static void	hdac_corb_init(struct hdac_softc *);
250 static void	hdac_rirb_init(struct hdac_softc *);
251 static void	hdac_corb_start(struct hdac_softc *);
252 static void	hdac_rirb_start(struct hdac_softc *);
253 
254 static void	hdac_attach2(void *);
255 
256 static uint32_t	hdac_send_command(struct hdac_softc *, nid_t, uint32_t);
257 
258 static int	hdac_probe(device_t);
259 static int	hdac_attach(device_t);
260 static int	hdac_detach(device_t);
261 static int	hdac_suspend(device_t);
262 static int	hdac_resume(device_t);
263 
264 static int	hdac_rirb_flush(struct hdac_softc *sc);
265 static int	hdac_unsolq_flush(struct hdac_softc *sc);
266 
267 /* This function surely going to make its way into upper level someday. */
268 static void
hdac_config_fetch(struct hdac_softc * sc,uint32_t * on,uint32_t * off)269 hdac_config_fetch(struct hdac_softc *sc, uint32_t *on, uint32_t *off)
270 {
271 	const char *res = NULL;
272 	int i = 0, j, k, len, inv;
273 
274 	if (resource_string_value(device_get_name(sc->dev),
275 	    device_get_unit(sc->dev), "config", &res) != 0)
276 		return;
277 	if (!(res != NULL && strlen(res) > 0))
278 		return;
279 	HDA_BOOTVERBOSE(
280 		device_printf(sc->dev, "Config options:");
281 	);
282 	for (;;) {
283 		while (res[i] != '\0' &&
284 		    (res[i] == ',' || isspace(res[i]) != 0))
285 			i++;
286 		if (res[i] == '\0') {
287 			HDA_BOOTVERBOSE(
288 				printf("\n");
289 			);
290 			return;
291 		}
292 		j = i;
293 		while (res[j] != '\0' &&
294 		    !(res[j] == ',' || isspace(res[j]) != 0))
295 			j++;
296 		len = j - i;
297 		if (len > 2 && strncmp(res + i, "no", 2) == 0)
298 			inv = 2;
299 		else
300 			inv = 0;
301 		for (k = 0; len > inv && k < nitems(hdac_quirks_tab); k++) {
302 			if (strncmp(res + i + inv,
303 			    hdac_quirks_tab[k].key, len - inv) != 0)
304 				continue;
305 			if (len - inv != strlen(hdac_quirks_tab[k].key))
306 				continue;
307 			HDA_BOOTVERBOSE(
308 				printf(" %s%s", (inv != 0) ? "no" : "",
309 				    hdac_quirks_tab[k].key);
310 			);
311 			if (inv == 0) {
312 				*on |= hdac_quirks_tab[k].value;
313 				*off &= ~hdac_quirks_tab[k].value;
314 			} else if (inv != 0) {
315 				*off |= hdac_quirks_tab[k].value;
316 				*on &= ~hdac_quirks_tab[k].value;
317 			}
318 			break;
319 		}
320 		i = j;
321 	}
322 }
323 
324 static void
hdac_one_intr(struct hdac_softc * sc,uint32_t intsts)325 hdac_one_intr(struct hdac_softc *sc, uint32_t intsts)
326 {
327 	device_t dev;
328 	uint8_t rirbsts;
329 	int i;
330 
331 	/* Was this a controller interrupt? */
332 	if (intsts & HDAC_INTSTS_CIS) {
333 		/*
334 		 * Placeholder: if we ever enable any bits in HDAC_WAKEEN, then
335 		 * we will need to check and clear HDAC_STATESTS.
336 		 * That event is used to report codec status changes such as
337 		 * a reset or a wake-up event.
338 		 */
339 		/*
340 		 * Placeholder: if we ever enable HDAC_CORBCTL_CMEIE, then we
341 		 * will need to check and clear HDAC_CORBSTS_CMEI in
342 		 * HDAC_CORBSTS.
343 		 * That event is used to report CORB memory errors.
344 		 */
345 		/*
346 		 * Placeholder: if we ever enable HDAC_RIRBCTL_RIRBOIC, then we
347 		 * will need to check and clear HDAC_RIRBSTS_RIRBOIS in
348 		 * HDAC_RIRBSTS.
349 		 * That event is used to report response FIFO overruns.
350 		 */
351 
352 		/* Get as many responses that we can */
353 		rirbsts = HDAC_READ_1(&sc->mem, HDAC_RIRBSTS);
354 		while (rirbsts & HDAC_RIRBSTS_RINTFL) {
355 			HDAC_WRITE_1(&sc->mem,
356 			    HDAC_RIRBSTS, HDAC_RIRBSTS_RINTFL);
357 			hdac_rirb_flush(sc);
358 			rirbsts = HDAC_READ_1(&sc->mem, HDAC_RIRBSTS);
359 		}
360 		if (sc->unsolq_rp != sc->unsolq_wp)
361 			taskqueue_enqueue(taskqueue_thread, &sc->unsolq_task);
362 	}
363 
364 	if (intsts & HDAC_INTSTS_SIS_MASK) {
365 		for (i = 0; i < sc->num_ss; i++) {
366 			if ((intsts & (1 << i)) == 0)
367 				continue;
368 			HDAC_WRITE_1(&sc->mem, (i << 5) + HDAC_SDSTS,
369 			    HDAC_SDSTS_DESE | HDAC_SDSTS_FIFOE | HDAC_SDSTS_BCIS);
370 			if ((dev = sc->streams[i].dev) != NULL) {
371 				HDAC_STREAM_INTR(dev,
372 				    sc->streams[i].dir, sc->streams[i].stream);
373 			}
374 		}
375 	}
376 }
377 
378 /****************************************************************************
379  * void hdac_intr_handler(void *)
380  *
381  * Interrupt handler. Processes interrupts received from the hdac.
382  ****************************************************************************/
383 static void
hdac_intr_handler(void * context)384 hdac_intr_handler(void *context)
385 {
386 	struct hdac_softc *sc;
387 	uint32_t intsts;
388 
389 	sc = (struct hdac_softc *)context;
390 
391 	/*
392 	 * Loop until HDAC_INTSTS_GIS gets clear.
393 	 * It is plausible that hardware interrupts a host only when GIS goes
394 	 * from zero to one.  GIS is formed by OR-ing multiple hardware
395 	 * statuses, so it's possible that a previously cleared status gets set
396 	 * again while another status has not been cleared yet.  Thus, there
397 	 * will be no new interrupt as GIS always stayed set.  If we don't
398 	 * re-examine GIS then we can leave it set and never get an interrupt
399 	 * again.
400 	 */
401 	hdac_lock(sc);
402 	intsts = HDAC_READ_4(&sc->mem, HDAC_INTSTS);
403 	while (intsts != 0xffffffff && (intsts & HDAC_INTSTS_GIS) != 0) {
404 		hdac_one_intr(sc, intsts);
405 		intsts = HDAC_READ_4(&sc->mem, HDAC_INTSTS);
406 	}
407 	hdac_unlock(sc);
408 }
409 
410 static void
hdac_poll_callback(void * arg)411 hdac_poll_callback(void *arg)
412 {
413 	struct hdac_softc *sc = arg;
414 
415 	if (sc == NULL)
416 		return;
417 
418 	hdac_lock(sc);
419 	if (sc->polling == 0) {
420 		hdac_unlock(sc);
421 		return;
422 	}
423 	callout_reset(&sc->poll_callout, sc->poll_ival, hdac_poll_callback, sc);
424 	hdac_unlock(sc);
425 
426 	hdac_intr_handler(sc);
427 }
428 
429 /****************************************************************************
430  * int hdac_reset(hdac_softc *, bool)
431  *
432  * Reset the hdac to a quiescent and known state.
433  ****************************************************************************/
434 static int
hdac_reset(struct hdac_softc * sc,bool wakeup)435 hdac_reset(struct hdac_softc *sc, bool wakeup)
436 {
437 	uint32_t gctl;
438 	int count, i;
439 
440 	/*
441 	 * Stop all Streams DMA engine
442 	 */
443 	for (i = 0; i < sc->num_iss; i++)
444 		HDAC_WRITE_4(&sc->mem, HDAC_ISDCTL(sc, i), 0x0);
445 	for (i = 0; i < sc->num_oss; i++)
446 		HDAC_WRITE_4(&sc->mem, HDAC_OSDCTL(sc, i), 0x0);
447 	for (i = 0; i < sc->num_bss; i++)
448 		HDAC_WRITE_4(&sc->mem, HDAC_BSDCTL(sc, i), 0x0);
449 
450 	/*
451 	 * Stop Control DMA engines.
452 	 */
453 	HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, 0x0);
454 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, 0x0);
455 
456 	/*
457 	 * Reset DMA position buffer.
458 	 */
459 	HDAC_WRITE_4(&sc->mem, HDAC_DPIBLBASE, 0x0);
460 	HDAC_WRITE_4(&sc->mem, HDAC_DPIBUBASE, 0x0);
461 
462 	/*
463 	 * Reset the controller. The reset must remain asserted for
464 	 * a minimum of 100us.
465 	 */
466 	gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
467 	HDAC_WRITE_4(&sc->mem, HDAC_GCTL, gctl & ~HDAC_GCTL_CRST);
468 	count = 10000;
469 	do {
470 		gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
471 		if (!(gctl & HDAC_GCTL_CRST))
472 			break;
473 		DELAY(10);
474 	} while (--count);
475 	if (gctl & HDAC_GCTL_CRST) {
476 		device_printf(sc->dev, "Unable to put hdac in reset\n");
477 		return (ENXIO);
478 	}
479 
480 	/* If wakeup is not requested - leave the controller in reset state. */
481 	if (!wakeup)
482 		return (0);
483 
484 	DELAY(100);
485 	gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
486 	HDAC_WRITE_4(&sc->mem, HDAC_GCTL, gctl | HDAC_GCTL_CRST);
487 	count = 10000;
488 	do {
489 		gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
490 		if (gctl & HDAC_GCTL_CRST)
491 			break;
492 		DELAY(10);
493 	} while (--count);
494 	if (!(gctl & HDAC_GCTL_CRST)) {
495 		device_printf(sc->dev, "Device stuck in reset\n");
496 		return (ENXIO);
497 	}
498 
499 	/*
500 	 * Wait for codecs to finish their own reset sequence. The delay here
501 	 * must be at least 521us (HDA 1.0a section 4.3 Codec Discovery).
502 	 */
503 	DELAY(1000);
504 
505 	return (0);
506 }
507 
508 /****************************************************************************
509  * int hdac_get_capabilities(struct hdac_softc *);
510  *
511  * Retreive the general capabilities of the hdac;
512  *	Number of Input Streams
513  *	Number of Output Streams
514  *	Number of bidirectional Streams
515  *	64bit ready
516  *	CORB and RIRB sizes
517  ****************************************************************************/
518 static int
hdac_get_capabilities(struct hdac_softc * sc)519 hdac_get_capabilities(struct hdac_softc *sc)
520 {
521 	uint16_t gcap;
522 	uint8_t corbsize, rirbsize;
523 
524 	gcap = HDAC_READ_2(&sc->mem, HDAC_GCAP);
525 	sc->num_iss = HDAC_GCAP_ISS(gcap);
526 	sc->num_oss = HDAC_GCAP_OSS(gcap);
527 	sc->num_bss = HDAC_GCAP_BSS(gcap);
528 	sc->num_ss = sc->num_iss + sc->num_oss + sc->num_bss;
529 	sc->num_sdo = HDAC_GCAP_NSDO(gcap);
530 	sc->support_64bit = (gcap & HDAC_GCAP_64OK) != 0;
531 	if (sc->quirks_on & HDAC_QUIRK_64BIT)
532 		sc->support_64bit = 1;
533 	else if (sc->quirks_off & HDAC_QUIRK_64BIT)
534 		sc->support_64bit = 0;
535 
536 	corbsize = HDAC_READ_1(&sc->mem, HDAC_CORBSIZE);
537 	if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_256) ==
538 	    HDAC_CORBSIZE_CORBSZCAP_256)
539 		sc->corb_size = 256;
540 	else if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_16) ==
541 	    HDAC_CORBSIZE_CORBSZCAP_16)
542 		sc->corb_size = 16;
543 	else if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_2) ==
544 	    HDAC_CORBSIZE_CORBSZCAP_2)
545 		sc->corb_size = 2;
546 	else {
547 		device_printf(sc->dev, "%s: Invalid corb size (%x)\n",
548 		    __func__, corbsize);
549 		return (ENXIO);
550 	}
551 
552 	rirbsize = HDAC_READ_1(&sc->mem, HDAC_RIRBSIZE);
553 	if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_256) ==
554 	    HDAC_RIRBSIZE_RIRBSZCAP_256)
555 		sc->rirb_size = 256;
556 	else if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_16) ==
557 	    HDAC_RIRBSIZE_RIRBSZCAP_16)
558 		sc->rirb_size = 16;
559 	else if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_2) ==
560 	    HDAC_RIRBSIZE_RIRBSZCAP_2)
561 		sc->rirb_size = 2;
562 	else {
563 		device_printf(sc->dev, "%s: Invalid rirb size (%x)\n",
564 		    __func__, rirbsize);
565 		return (ENXIO);
566 	}
567 
568 	HDA_BOOTVERBOSE(
569 		device_printf(sc->dev, "Caps: OSS %d, ISS %d, BSS %d, "
570 		    "NSDO %d%s, CORB %d, RIRB %d\n",
571 		    sc->num_oss, sc->num_iss, sc->num_bss, 1 << sc->num_sdo,
572 		    sc->support_64bit ? ", 64bit" : "",
573 		    sc->corb_size, sc->rirb_size);
574 	);
575 
576 	return (0);
577 }
578 
579 /****************************************************************************
580  * void hdac_dma_cb
581  *
582  * This function is called by bus_dmamap_load when the mapping has been
583  * established. We just record the physical address of the mapping into
584  * the struct hdac_dma passed in.
585  ****************************************************************************/
586 static void
hdac_dma_cb(void * callback_arg,bus_dma_segment_t * segs,int nseg,int error)587 hdac_dma_cb(void *callback_arg, bus_dma_segment_t *segs, int nseg, int error)
588 {
589 	struct hdac_dma *dma;
590 
591 	if (error == 0) {
592 		dma = (struct hdac_dma *)callback_arg;
593 		dma->dma_paddr = segs[0].ds_addr;
594 	}
595 }
596 
597 /****************************************************************************
598  * int hdac_dma_alloc
599  *
600  * This function allocate and setup a dma region (struct hdac_dma).
601  * It must be freed by a corresponding hdac_dma_free.
602  ****************************************************************************/
603 static int
hdac_dma_alloc(struct hdac_softc * sc,struct hdac_dma * dma,bus_size_t size)604 hdac_dma_alloc(struct hdac_softc *sc, struct hdac_dma *dma, bus_size_t size)
605 {
606 	bus_size_t roundsz;
607 	int result;
608 
609 	roundsz = roundup2(size, HDA_DMA_ALIGNMENT);
610 	bzero(dma, sizeof(*dma));
611 
612 	/*
613 	 * Create a DMA tag
614 	 */
615 	result = bus_dma_tag_create(
616 	    bus_get_dma_tag(sc->dev),		/* parent */
617 	    HDA_DMA_ALIGNMENT,			/* alignment */
618 	    0,					/* boundary */
619 	    (sc->support_64bit) ? BUS_SPACE_MAXADDR :
620 		BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
621 	    BUS_SPACE_MAXADDR,			/* highaddr */
622 	    NULL,				/* filtfunc */
623 	    NULL,				/* fistfuncarg */
624 	    roundsz,				/* maxsize */
625 	    1,					/* nsegments */
626 	    roundsz,				/* maxsegsz */
627 	    0,					/* flags */
628 	    NULL,				/* lockfunc */
629 	    NULL,				/* lockfuncarg */
630 	    &dma->dma_tag);			/* dmat */
631 	if (result != 0) {
632 		device_printf(sc->dev, "%s: bus_dma_tag_create failed (%d)\n",
633 		    __func__, result);
634 		goto hdac_dma_alloc_fail;
635 	}
636 
637 	/*
638 	 * Allocate DMA memory
639 	 */
640 	result = bus_dmamem_alloc(dma->dma_tag, (void **)&dma->dma_vaddr,
641 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO |
642 	    ((sc->flags & HDAC_F_DMA_NOCACHE) ? BUS_DMA_NOCACHE :
643 	     BUS_DMA_COHERENT),
644 	    &dma->dma_map);
645 	if (result != 0) {
646 		device_printf(sc->dev, "%s: bus_dmamem_alloc failed (%d)\n",
647 		    __func__, result);
648 		goto hdac_dma_alloc_fail;
649 	}
650 
651 	dma->dma_size = roundsz;
652 
653 	/*
654 	 * Map the memory
655 	 */
656 	result = bus_dmamap_load(dma->dma_tag, dma->dma_map,
657 	    (void *)dma->dma_vaddr, roundsz, hdac_dma_cb, (void *)dma, 0);
658 	if (result != 0 || dma->dma_paddr == 0) {
659 		if (result == 0)
660 			result = ENOMEM;
661 		device_printf(sc->dev, "%s: bus_dmamem_load failed (%d)\n",
662 		    __func__, result);
663 		goto hdac_dma_alloc_fail;
664 	}
665 
666 	HDA_BOOTHVERBOSE(
667 		device_printf(sc->dev, "%s: size=%ju -> roundsz=%ju\n",
668 		    __func__, (uintmax_t)size, (uintmax_t)roundsz);
669 	);
670 
671 	return (0);
672 
673 hdac_dma_alloc_fail:
674 	hdac_dma_free(sc, dma);
675 
676 	return (result);
677 }
678 
679 /****************************************************************************
680  * void hdac_dma_free(struct hdac_softc *, struct hdac_dma *)
681  *
682  * Free a struct hdac_dma that has been previously allocated via the
683  * hdac_dma_alloc function.
684  ****************************************************************************/
685 static void
hdac_dma_free(struct hdac_softc * sc,struct hdac_dma * dma)686 hdac_dma_free(struct hdac_softc *sc, struct hdac_dma *dma)
687 {
688 	if (dma->dma_paddr != 0) {
689 		/* Flush caches */
690 		bus_dmamap_sync(dma->dma_tag, dma->dma_map,
691 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
692 		bus_dmamap_unload(dma->dma_tag, dma->dma_map);
693 		dma->dma_paddr = 0;
694 	}
695 	if (dma->dma_vaddr != NULL) {
696 		bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
697 		dma->dma_vaddr = NULL;
698 	}
699 	if (dma->dma_tag != NULL) {
700 		bus_dma_tag_destroy(dma->dma_tag);
701 		dma->dma_tag = NULL;
702 	}
703 	dma->dma_size = 0;
704 }
705 
706 /****************************************************************************
707  * int hdac_mem_alloc(struct hdac_softc *)
708  *
709  * Allocate all the bus resources necessary to speak with the physical
710  * controller.
711  ****************************************************************************/
712 static int
hdac_mem_alloc(struct hdac_softc * sc)713 hdac_mem_alloc(struct hdac_softc *sc)
714 {
715 	struct hdac_mem *mem;
716 
717 	mem = &sc->mem;
718 	mem->mem_rid = PCIR_BAR(0);
719 	mem->mem_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
720 	    &mem->mem_rid, RF_ACTIVE);
721 	if (mem->mem_res == NULL) {
722 		device_printf(sc->dev,
723 		    "%s: Unable to allocate memory resource\n", __func__);
724 		return (ENOMEM);
725 	}
726 	mem->mem_tag = rman_get_bustag(mem->mem_res);
727 	mem->mem_handle = rman_get_bushandle(mem->mem_res);
728 
729 	return (0);
730 }
731 
732 /****************************************************************************
733  * void hdac_mem_free(struct hdac_softc *)
734  *
735  * Free up resources previously allocated by hdac_mem_alloc.
736  ****************************************************************************/
737 static void
hdac_mem_free(struct hdac_softc * sc)738 hdac_mem_free(struct hdac_softc *sc)
739 {
740 	struct hdac_mem *mem;
741 
742 	mem = &sc->mem;
743 	if (mem->mem_res != NULL)
744 		bus_release_resource(sc->dev, SYS_RES_MEMORY, mem->mem_rid,
745 		    mem->mem_res);
746 	mem->mem_res = NULL;
747 }
748 
749 /****************************************************************************
750  * int hdac_irq_alloc(struct hdac_softc *)
751  *
752  * Allocate and setup the resources necessary for interrupt handling.
753  ****************************************************************************/
754 static int
hdac_irq_alloc(struct hdac_softc * sc)755 hdac_irq_alloc(struct hdac_softc *sc)
756 {
757 	struct hdac_irq *irq;
758 	int result;
759 
760 	irq = &sc->irq;
761 	irq->irq_rid = 0x0;
762 
763 	if ((sc->quirks_off & HDAC_QUIRK_MSI) == 0 &&
764 	    (result = pci_msi_count(sc->dev)) == 1 &&
765 	    pci_alloc_msi(sc->dev, &result) == 0)
766 		irq->irq_rid = 0x1;
767 
768 	irq->irq_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
769 	    &irq->irq_rid, RF_SHAREABLE | RF_ACTIVE);
770 	if (irq->irq_res == NULL) {
771 		device_printf(sc->dev, "%s: Unable to allocate irq\n",
772 		    __func__);
773 		goto hdac_irq_alloc_fail;
774 	}
775 	result = bus_setup_intr(sc->dev, irq->irq_res, INTR_MPSAFE | INTR_TYPE_AV,
776 	    NULL, hdac_intr_handler, sc, &irq->irq_handle);
777 	if (result != 0) {
778 		device_printf(sc->dev,
779 		    "%s: Unable to setup interrupt handler (%d)\n",
780 		    __func__, result);
781 		goto hdac_irq_alloc_fail;
782 	}
783 
784 	return (0);
785 
786 hdac_irq_alloc_fail:
787 	hdac_irq_free(sc);
788 
789 	return (ENXIO);
790 }
791 
792 /****************************************************************************
793  * void hdac_irq_free(struct hdac_softc *)
794  *
795  * Free up resources previously allocated by hdac_irq_alloc.
796  ****************************************************************************/
797 static void
hdac_irq_free(struct hdac_softc * sc)798 hdac_irq_free(struct hdac_softc *sc)
799 {
800 	struct hdac_irq *irq;
801 
802 	irq = &sc->irq;
803 	if (irq->irq_res != NULL && irq->irq_handle != NULL)
804 		bus_teardown_intr(sc->dev, irq->irq_res, irq->irq_handle);
805 	if (irq->irq_res != NULL)
806 		bus_release_resource(sc->dev, SYS_RES_IRQ, irq->irq_rid,
807 		    irq->irq_res);
808 	if (irq->irq_rid == 0x1)
809 		pci_release_msi(sc->dev);
810 	irq->irq_handle = NULL;
811 	irq->irq_res = NULL;
812 	irq->irq_rid = 0x0;
813 }
814 
815 /****************************************************************************
816  * void hdac_corb_init(struct hdac_softc *)
817  *
818  * Initialize the corb registers for operations but do not start it up yet.
819  * The CORB engine must not be running when this function is called.
820  ****************************************************************************/
821 static void
hdac_corb_init(struct hdac_softc * sc)822 hdac_corb_init(struct hdac_softc *sc)
823 {
824 	uint8_t corbsize;
825 	uint64_t corbpaddr;
826 
827 	/* Setup the CORB size. */
828 	switch (sc->corb_size) {
829 	case 256:
830 		corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_256);
831 		break;
832 	case 16:
833 		corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_16);
834 		break;
835 	case 2:
836 		corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_2);
837 		break;
838 	default:
839 		panic("%s: Invalid CORB size (%x)\n", __func__, sc->corb_size);
840 	}
841 	HDAC_WRITE_1(&sc->mem, HDAC_CORBSIZE, corbsize);
842 
843 	/* Setup the CORB Address in the hdac */
844 	corbpaddr = (uint64_t)sc->corb_dma.dma_paddr;
845 	HDAC_WRITE_4(&sc->mem, HDAC_CORBLBASE, (uint32_t)corbpaddr);
846 	HDAC_WRITE_4(&sc->mem, HDAC_CORBUBASE, (uint32_t)(corbpaddr >> 32));
847 
848 	/* Set the WP and RP */
849 	sc->corb_wp = 0;
850 	HDAC_WRITE_2(&sc->mem, HDAC_CORBWP, sc->corb_wp);
851 	HDAC_WRITE_2(&sc->mem, HDAC_CORBRP, HDAC_CORBRP_CORBRPRST);
852 	/*
853 	 * The HDA specification indicates that the CORBRPRST bit will always
854 	 * read as zero. Unfortunately, it seems that at least the 82801G
855 	 * doesn't reset the bit to zero, which stalls the corb engine.
856 	 * manually reset the bit to zero before continuing.
857 	 */
858 	HDAC_WRITE_2(&sc->mem, HDAC_CORBRP, 0x0);
859 
860 	/* Enable CORB error reporting */
861 #if 0
862 	HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, HDAC_CORBCTL_CMEIE);
863 #endif
864 }
865 
866 /****************************************************************************
867  * void hdac_rirb_init(struct hdac_softc *)
868  *
869  * Initialize the rirb registers for operations but do not start it up yet.
870  * The RIRB engine must not be running when this function is called.
871  ****************************************************************************/
872 static void
hdac_rirb_init(struct hdac_softc * sc)873 hdac_rirb_init(struct hdac_softc *sc)
874 {
875 	uint8_t rirbsize;
876 	uint64_t rirbpaddr;
877 
878 	/* Setup the RIRB size. */
879 	switch (sc->rirb_size) {
880 	case 256:
881 		rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_256);
882 		break;
883 	case 16:
884 		rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_16);
885 		break;
886 	case 2:
887 		rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_2);
888 		break;
889 	default:
890 		panic("%s: Invalid RIRB size (%x)\n", __func__, sc->rirb_size);
891 	}
892 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBSIZE, rirbsize);
893 
894 	/* Setup the RIRB Address in the hdac */
895 	rirbpaddr = (uint64_t)sc->rirb_dma.dma_paddr;
896 	HDAC_WRITE_4(&sc->mem, HDAC_RIRBLBASE, (uint32_t)rirbpaddr);
897 	HDAC_WRITE_4(&sc->mem, HDAC_RIRBUBASE, (uint32_t)(rirbpaddr >> 32));
898 
899 	/* Setup the WP and RP */
900 	sc->rirb_rp = 0;
901 	HDAC_WRITE_2(&sc->mem, HDAC_RIRBWP, HDAC_RIRBWP_RIRBWPRST);
902 
903 	/* Setup the interrupt threshold */
904 	HDAC_WRITE_2(&sc->mem, HDAC_RINTCNT, sc->rirb_size / 2);
905 
906 	/* Enable Overrun and response received reporting */
907 #if 0
908 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL,
909 	    HDAC_RIRBCTL_RIRBOIC | HDAC_RIRBCTL_RINTCTL);
910 #else
911 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, HDAC_RIRBCTL_RINTCTL);
912 #endif
913 
914 	/*
915 	 * Make sure that the Host CPU cache doesn't contain any dirty
916 	 * cache lines that falls in the rirb. If I understood correctly, it
917 	 * should be sufficient to do this only once as the rirb is purely
918 	 * read-only from now on.
919 	 */
920 	bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map,
921 	    BUS_DMASYNC_PREREAD);
922 }
923 
924 /****************************************************************************
925  * void hdac_corb_start(hdac_softc *)
926  *
927  * Startup the corb DMA engine
928  ****************************************************************************/
929 static void
hdac_corb_start(struct hdac_softc * sc)930 hdac_corb_start(struct hdac_softc *sc)
931 {
932 	uint32_t corbctl;
933 
934 	corbctl = HDAC_READ_1(&sc->mem, HDAC_CORBCTL);
935 	corbctl |= HDAC_CORBCTL_CORBRUN;
936 	HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, corbctl);
937 }
938 
939 /****************************************************************************
940  * void hdac_rirb_start(hdac_softc *)
941  *
942  * Startup the rirb DMA engine
943  ****************************************************************************/
944 static void
hdac_rirb_start(struct hdac_softc * sc)945 hdac_rirb_start(struct hdac_softc *sc)
946 {
947 	uint32_t rirbctl;
948 
949 	rirbctl = HDAC_READ_1(&sc->mem, HDAC_RIRBCTL);
950 	rirbctl |= HDAC_RIRBCTL_RIRBDMAEN;
951 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, rirbctl);
952 }
953 
954 static int
hdac_rirb_flush(struct hdac_softc * sc)955 hdac_rirb_flush(struct hdac_softc *sc)
956 {
957 	struct hdac_rirb *rirb_base, *rirb;
958 	nid_t cad;
959 	uint32_t resp, resp_ex;
960 	uint8_t rirbwp;
961 	int ret;
962 
963 	rirb_base = (struct hdac_rirb *)sc->rirb_dma.dma_vaddr;
964 	rirbwp = HDAC_READ_1(&sc->mem, HDAC_RIRBWP);
965 	bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map,
966 	    BUS_DMASYNC_POSTREAD);
967 
968 	ret = 0;
969 	while (sc->rirb_rp != rirbwp) {
970 		sc->rirb_rp++;
971 		sc->rirb_rp %= sc->rirb_size;
972 		rirb = &rirb_base[sc->rirb_rp];
973 		resp = le32toh(rirb->response);
974 		resp_ex = le32toh(rirb->response_ex);
975 		cad = HDAC_RIRB_RESPONSE_EX_SDATA_IN(resp_ex);
976 		if (resp_ex & HDAC_RIRB_RESPONSE_EX_UNSOLICITED) {
977 			sc->unsolq[sc->unsolq_wp++] = resp;
978 			sc->unsolq_wp %= HDAC_UNSOLQ_MAX;
979 			sc->unsolq[sc->unsolq_wp++] = cad;
980 			sc->unsolq_wp %= HDAC_UNSOLQ_MAX;
981 		} else if (sc->codecs[cad].pending <= 0) {
982 			device_printf(sc->dev, "Unexpected unsolicited "
983 			    "response from address %d: %08x\n", cad, resp);
984 		} else {
985 			sc->codecs[cad].response = resp;
986 			sc->codecs[cad].pending--;
987 		}
988 		ret++;
989 	}
990 
991 	bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map,
992 	    BUS_DMASYNC_PREREAD);
993 	return (ret);
994 }
995 
996 static int
hdac_unsolq_flush(struct hdac_softc * sc)997 hdac_unsolq_flush(struct hdac_softc *sc)
998 {
999 	device_t child;
1000 	nid_t cad;
1001 	uint32_t resp;
1002 	int ret = 0;
1003 
1004 	if (sc->unsolq_st == HDAC_UNSOLQ_READY) {
1005 		sc->unsolq_st = HDAC_UNSOLQ_BUSY;
1006 		while (sc->unsolq_rp != sc->unsolq_wp) {
1007 			resp = sc->unsolq[sc->unsolq_rp++];
1008 			sc->unsolq_rp %= HDAC_UNSOLQ_MAX;
1009 			cad = sc->unsolq[sc->unsolq_rp++];
1010 			sc->unsolq_rp %= HDAC_UNSOLQ_MAX;
1011 			if ((child = sc->codecs[cad].dev) != NULL &&
1012 			    device_is_attached(child))
1013 				HDAC_UNSOL_INTR(child, resp);
1014 			ret++;
1015 		}
1016 		sc->unsolq_st = HDAC_UNSOLQ_READY;
1017 	}
1018 
1019 	return (ret);
1020 }
1021 
1022 /****************************************************************************
1023  * uint32_t hdac_send_command
1024  *
1025  * Wrapper function that sends only one command to a given codec
1026  ****************************************************************************/
1027 static uint32_t
hdac_send_command(struct hdac_softc * sc,nid_t cad,uint32_t verb)1028 hdac_send_command(struct hdac_softc *sc, nid_t cad, uint32_t verb)
1029 {
1030 	int timeout;
1031 	uint32_t *corb;
1032 
1033 	hdac_lockassert(sc);
1034 	verb &= ~HDA_CMD_CAD_MASK;
1035 	verb |= ((uint32_t)cad) << HDA_CMD_CAD_SHIFT;
1036 	sc->codecs[cad].response = HDA_INVALID;
1037 
1038 	sc->codecs[cad].pending++;
1039 	sc->corb_wp++;
1040 	sc->corb_wp %= sc->corb_size;
1041 	corb = (uint32_t *)sc->corb_dma.dma_vaddr;
1042 	bus_dmamap_sync(sc->corb_dma.dma_tag,
1043 	    sc->corb_dma.dma_map, BUS_DMASYNC_PREWRITE);
1044 	corb[sc->corb_wp] = htole32(verb);
1045 	bus_dmamap_sync(sc->corb_dma.dma_tag,
1046 	    sc->corb_dma.dma_map, BUS_DMASYNC_POSTWRITE);
1047 	HDAC_WRITE_2(&sc->mem, HDAC_CORBWP, sc->corb_wp);
1048 
1049 	timeout = 10000;
1050 	do {
1051 		if (hdac_rirb_flush(sc) == 0)
1052 			DELAY(10);
1053 	} while (sc->codecs[cad].pending != 0 && --timeout);
1054 
1055 	if (sc->codecs[cad].pending != 0) {
1056 		device_printf(sc->dev, "Command 0x%08x timeout on address %d\n",
1057 		    verb, cad);
1058 		sc->codecs[cad].pending = 0;
1059 	}
1060 
1061 	if (sc->unsolq_rp != sc->unsolq_wp)
1062 		taskqueue_enqueue(taskqueue_thread, &sc->unsolq_task);
1063 	return (sc->codecs[cad].response);
1064 }
1065 
1066 /****************************************************************************
1067  * Device Methods
1068  ****************************************************************************/
1069 
1070 /****************************************************************************
1071  * int hdac_probe(device_t)
1072  *
1073  * Probe for the presence of an hdac. If none is found, check for a generic
1074  * match using the subclass of the device.
1075  ****************************************************************************/
1076 static int
hdac_probe(device_t dev)1077 hdac_probe(device_t dev)
1078 {
1079 	int i, result;
1080 	uint32_t model;
1081 	uint16_t class, subclass;
1082 	char desc[64];
1083 
1084 	model = (uint32_t)pci_get_device(dev) << 16;
1085 	model |= (uint32_t)pci_get_vendor(dev) & 0x0000ffff;
1086 	class = pci_get_class(dev);
1087 	subclass = pci_get_subclass(dev);
1088 
1089 	bzero(desc, sizeof(desc));
1090 	result = ENXIO;
1091 	for (i = 0; i < nitems(hdac_devices); i++) {
1092 		if (hdac_devices[i].model == model) {
1093 			strlcpy(desc, hdac_devices[i].desc, sizeof(desc));
1094 			result = BUS_PROBE_DEFAULT;
1095 			break;
1096 		}
1097 		if (HDA_DEV_MATCH(hdac_devices[i].model, model) &&
1098 		    class == PCIC_MULTIMEDIA &&
1099 		    subclass == PCIS_MULTIMEDIA_HDA) {
1100 			snprintf(desc, sizeof(desc), "%s (0x%04x)",
1101 			    hdac_devices[i].desc, pci_get_device(dev));
1102 			result = BUS_PROBE_GENERIC;
1103 			break;
1104 		}
1105 	}
1106 	if (result == ENXIO && class == PCIC_MULTIMEDIA &&
1107 	    subclass == PCIS_MULTIMEDIA_HDA) {
1108 		snprintf(desc, sizeof(desc), "Generic (0x%08x)", model);
1109 		result = BUS_PROBE_GENERIC;
1110 	}
1111 	if (result != ENXIO)
1112 		device_set_descf(dev, "%s HDA Controller", desc);
1113 
1114 	return (result);
1115 }
1116 
1117 static void
hdac_unsolq_task(void * context,int pending)1118 hdac_unsolq_task(void *context, int pending)
1119 {
1120 	struct hdac_softc *sc;
1121 
1122 	sc = (struct hdac_softc *)context;
1123 
1124 	hdac_lock(sc);
1125 	hdac_unsolq_flush(sc);
1126 	hdac_unlock(sc);
1127 }
1128 
1129 /****************************************************************************
1130  * int hdac_attach(device_t)
1131  *
1132  * Attach the device into the kernel. Interrupts usually won't be enabled
1133  * when this function is called. Setup everything that doesn't require
1134  * interrupts and defer probing of codecs until interrupts are enabled.
1135  ****************************************************************************/
1136 static int
hdac_attach(device_t dev)1137 hdac_attach(device_t dev)
1138 {
1139 	struct hdac_softc *sc;
1140 	int result;
1141 	int i, devid = -1;
1142 	uint32_t model;
1143 	uint16_t class, subclass;
1144 	uint16_t vendor;
1145 	uint8_t v;
1146 
1147 	sc = device_get_softc(dev);
1148 	HDA_BOOTVERBOSE(
1149 		device_printf(dev, "PCI card vendor: 0x%04x, device: 0x%04x\n",
1150 		    pci_get_subvendor(dev), pci_get_subdevice(dev));
1151 		device_printf(dev, "HDA Driver Revision: %s\n",
1152 		    HDA_DRV_TEST_REV);
1153 	);
1154 
1155 	model = (uint32_t)pci_get_device(dev) << 16;
1156 	model |= (uint32_t)pci_get_vendor(dev) & 0x0000ffff;
1157 	class = pci_get_class(dev);
1158 	subclass = pci_get_subclass(dev);
1159 
1160 	for (i = 0; i < nitems(hdac_devices); i++) {
1161 		if (hdac_devices[i].model == model) {
1162 			devid = i;
1163 			break;
1164 		}
1165 		if (HDA_DEV_MATCH(hdac_devices[i].model, model) &&
1166 		    class == PCIC_MULTIMEDIA &&
1167 		    subclass == PCIS_MULTIMEDIA_HDA) {
1168 			devid = i;
1169 			break;
1170 		}
1171 	}
1172 
1173 	sc->lock = snd_mtxcreate(device_get_nameunit(dev), "HDA driver mutex");
1174 	sc->dev = dev;
1175 	TASK_INIT(&sc->unsolq_task, 0, hdac_unsolq_task, sc);
1176 	callout_init(&sc->poll_callout, 1);
1177 	for (i = 0; i < HDAC_CODEC_MAX; i++)
1178 		sc->codecs[i].dev = NULL;
1179 	if (devid >= 0) {
1180 		sc->quirks_on = hdac_devices[devid].quirks_on;
1181 		sc->quirks_off = hdac_devices[devid].quirks_off;
1182 	} else {
1183 		sc->quirks_on = 0;
1184 		sc->quirks_off = 0;
1185 	}
1186 	if (resource_int_value(device_get_name(dev),
1187 	    device_get_unit(dev), "msi", &i) == 0) {
1188 		if (i == 0)
1189 			sc->quirks_off |= HDAC_QUIRK_MSI;
1190 		else {
1191 			sc->quirks_on |= HDAC_QUIRK_MSI;
1192 			sc->quirks_off |= ~HDAC_QUIRK_MSI;
1193 		}
1194 	}
1195 	hdac_config_fetch(sc, &sc->quirks_on, &sc->quirks_off);
1196 	HDA_BOOTVERBOSE(
1197 		device_printf(sc->dev,
1198 		    "Config options: on=0x%08x off=0x%08x\n",
1199 		    sc->quirks_on, sc->quirks_off);
1200 	);
1201 	sc->poll_ival = hz;
1202 	if (resource_int_value(device_get_name(dev),
1203 	    device_get_unit(dev), "polling", &i) == 0 && i != 0)
1204 		sc->polling = 1;
1205 	else
1206 		sc->polling = 0;
1207 
1208 	pci_enable_busmaster(dev);
1209 
1210 	vendor = pci_get_vendor(dev);
1211 	if (vendor == INTEL_VENDORID) {
1212 		/* TCSEL -> TC0 */
1213 		v = pci_read_config(dev, 0x44, 1);
1214 		pci_write_config(dev, 0x44, v & 0xf8, 1);
1215 		HDA_BOOTHVERBOSE(
1216 			device_printf(dev, "TCSEL: 0x%02d -> 0x%02d\n", v,
1217 			    pci_read_config(dev, 0x44, 1));
1218 		);
1219 	}
1220 
1221 #if defined(__i386__) || defined(__amd64__)
1222 	sc->flags |= HDAC_F_DMA_NOCACHE;
1223 
1224 	if (resource_int_value(device_get_name(dev),
1225 	    device_get_unit(dev), "snoop", &i) == 0 && i != 0) {
1226 #else
1227 	sc->flags &= ~HDAC_F_DMA_NOCACHE;
1228 #endif
1229 		/*
1230 		 * Try to enable PCIe snoop to avoid messing around with
1231 		 * uncacheable DMA attribute. Since PCIe snoop register
1232 		 * config is pretty much vendor specific, there are no
1233 		 * general solutions on how to enable it, forcing us (even
1234 		 * Microsoft) to enable uncacheable or write combined DMA
1235 		 * by default.
1236 		 *
1237 		 * http://msdn2.microsoft.com/en-us/library/ms790324.aspx
1238 		 */
1239 		for (i = 0; i < nitems(hdac_pcie_snoop); i++) {
1240 			if (hdac_pcie_snoop[i].vendor != vendor)
1241 				continue;
1242 			sc->flags &= ~HDAC_F_DMA_NOCACHE;
1243 			if (hdac_pcie_snoop[i].reg == 0x00)
1244 				break;
1245 			v = pci_read_config(dev, hdac_pcie_snoop[i].reg, 1);
1246 			if ((v & hdac_pcie_snoop[i].enable) ==
1247 			    hdac_pcie_snoop[i].enable)
1248 				break;
1249 			v &= hdac_pcie_snoop[i].mask;
1250 			v |= hdac_pcie_snoop[i].enable;
1251 			pci_write_config(dev, hdac_pcie_snoop[i].reg, v, 1);
1252 			v = pci_read_config(dev, hdac_pcie_snoop[i].reg, 1);
1253 			if ((v & hdac_pcie_snoop[i].enable) !=
1254 			    hdac_pcie_snoop[i].enable) {
1255 				HDA_BOOTVERBOSE(
1256 					device_printf(dev,
1257 					    "WARNING: Failed to enable PCIe "
1258 					    "snoop!\n");
1259 				);
1260 #if defined(__i386__) || defined(__amd64__)
1261 				sc->flags |= HDAC_F_DMA_NOCACHE;
1262 #endif
1263 			}
1264 			break;
1265 		}
1266 #if defined(__i386__) || defined(__amd64__)
1267 	}
1268 #endif
1269 
1270 	HDA_BOOTHVERBOSE(
1271 		device_printf(dev, "DMA Coherency: %s / vendor=0x%04x\n",
1272 		    (sc->flags & HDAC_F_DMA_NOCACHE) ?
1273 		    "Uncacheable" : "PCIe snoop", vendor);
1274 	);
1275 
1276 	/* Allocate resources */
1277 	result = hdac_mem_alloc(sc);
1278 	if (result != 0)
1279 		goto hdac_attach_fail;
1280 
1281 	/* Get Capabilities */
1282 	hdac_reset(sc, 1);
1283 	result = hdac_get_capabilities(sc);
1284 	if (result != 0)
1285 		goto hdac_attach_fail;
1286 
1287 	/* Allocate CORB, RIRB, POS and BDLs dma memory */
1288 	result = hdac_dma_alloc(sc, &sc->corb_dma,
1289 	    sc->corb_size * sizeof(uint32_t));
1290 	if (result != 0)
1291 		goto hdac_attach_fail;
1292 	result = hdac_dma_alloc(sc, &sc->rirb_dma,
1293 	    sc->rirb_size * sizeof(struct hdac_rirb));
1294 	if (result != 0)
1295 		goto hdac_attach_fail;
1296 	sc->streams = malloc(sizeof(struct hdac_stream) * sc->num_ss,
1297 	    M_HDAC, M_ZERO | M_WAITOK);
1298 	for (i = 0; i < sc->num_ss; i++) {
1299 		result = hdac_dma_alloc(sc, &sc->streams[i].bdl,
1300 		    sizeof(struct hdac_bdle) * HDA_BDL_MAX);
1301 		if (result != 0)
1302 			goto hdac_attach_fail;
1303 	}
1304 	if (sc->quirks_on & HDAC_QUIRK_DMAPOS) {
1305 		if (hdac_dma_alloc(sc, &sc->pos_dma, (sc->num_ss) * 8) != 0) {
1306 			HDA_BOOTVERBOSE(
1307 				device_printf(dev, "Failed to "
1308 				    "allocate DMA pos buffer "
1309 				    "(non-fatal)\n");
1310 			);
1311 		} else {
1312 			uint64_t addr = sc->pos_dma.dma_paddr;
1313 
1314 			HDAC_WRITE_4(&sc->mem, HDAC_DPIBUBASE, addr >> 32);
1315 			HDAC_WRITE_4(&sc->mem, HDAC_DPIBLBASE,
1316 			    (addr & HDAC_DPLBASE_DPLBASE_MASK) |
1317 			    HDAC_DPLBASE_DPLBASE_DMAPBE);
1318 		}
1319 	}
1320 
1321 	result = bus_dma_tag_create(
1322 	    bus_get_dma_tag(sc->dev),		/* parent */
1323 	    HDA_DMA_ALIGNMENT,			/* alignment */
1324 	    0,					/* boundary */
1325 	    (sc->support_64bit) ? BUS_SPACE_MAXADDR :
1326 		BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1327 	    BUS_SPACE_MAXADDR,			/* highaddr */
1328 	    NULL,				/* filtfunc */
1329 	    NULL,				/* fistfuncarg */
1330 	    HDA_BUFSZ_MAX,			/* maxsize */
1331 	    1,					/* nsegments */
1332 	    HDA_BUFSZ_MAX,			/* maxsegsz */
1333 	    0,					/* flags */
1334 	    NULL,				/* lockfunc */
1335 	    NULL,				/* lockfuncarg */
1336 	    &sc->chan_dmat);			/* dmat */
1337 	if (result != 0) {
1338 		device_printf(dev, "%s: bus_dma_tag_create failed (%d)\n",
1339 		     __func__, result);
1340 		goto hdac_attach_fail;
1341 	}
1342 
1343 	/* Quiesce everything */
1344 	HDA_BOOTHVERBOSE(
1345 		device_printf(dev, "Reset controller...\n");
1346 	);
1347 	hdac_reset(sc, true);
1348 
1349 	/* Initialize the CORB and RIRB */
1350 	hdac_corb_init(sc);
1351 	hdac_rirb_init(sc);
1352 
1353 	result = hdac_irq_alloc(sc);
1354 	if (result != 0)
1355 		goto hdac_attach_fail;
1356 
1357 	/* Defer remaining of initialization until interrupts are enabled */
1358 	sc->intrhook.ich_func = hdac_attach2;
1359 	sc->intrhook.ich_arg = (void *)sc;
1360 	if (cold == 0 || config_intrhook_establish(&sc->intrhook) != 0) {
1361 		sc->intrhook.ich_func = NULL;
1362 		hdac_attach2((void *)sc);
1363 	}
1364 
1365 	return (0);
1366 
1367 hdac_attach_fail:
1368 	hdac_irq_free(sc);
1369 	if (sc->streams != NULL)
1370 		for (i = 0; i < sc->num_ss; i++)
1371 			hdac_dma_free(sc, &sc->streams[i].bdl);
1372 	free(sc->streams, M_HDAC);
1373 	hdac_dma_free(sc, &sc->rirb_dma);
1374 	hdac_dma_free(sc, &sc->corb_dma);
1375 	hdac_mem_free(sc);
1376 	snd_mtxfree(sc->lock);
1377 
1378 	return (ENXIO);
1379 }
1380 
1381 static int
sysctl_hdac_pindump(SYSCTL_HANDLER_ARGS)1382 sysctl_hdac_pindump(SYSCTL_HANDLER_ARGS)
1383 {
1384 	struct hdac_softc *sc;
1385 	device_t *devlist;
1386 	device_t dev;
1387 	int devcount, i, err, val;
1388 
1389 	dev = oidp->oid_arg1;
1390 	sc = device_get_softc(dev);
1391 	if (sc == NULL)
1392 		return (EINVAL);
1393 	val = 0;
1394 	err = sysctl_handle_int(oidp, &val, 0, req);
1395 	if (err != 0 || req->newptr == NULL || val == 0)
1396 		return (err);
1397 
1398 	/* XXX: Temporary. For debugging. */
1399 	if (val == 100) {
1400 		hdac_suspend(dev);
1401 		return (0);
1402 	} else if (val == 101) {
1403 		hdac_resume(dev);
1404 		return (0);
1405 	}
1406 
1407 	bus_topo_lock();
1408 
1409 	if ((err = device_get_children(dev, &devlist, &devcount)) != 0) {
1410 		bus_topo_unlock();
1411 		return (err);
1412 	}
1413 
1414 	hdac_lock(sc);
1415 	for (i = 0; i < devcount; i++)
1416 		HDAC_PINDUMP(devlist[i]);
1417 	hdac_unlock(sc);
1418 
1419 	bus_topo_unlock();
1420 
1421 	free(devlist, M_TEMP);
1422 	return (0);
1423 }
1424 
1425 static int
hdac_mdata_rate(uint16_t fmt)1426 hdac_mdata_rate(uint16_t fmt)
1427 {
1428 	static const int mbits[8] = { 8, 16, 32, 32, 32, 32, 32, 32 };
1429 	int rate, bits;
1430 
1431 	if (fmt & (1 << 14))
1432 		rate = 44100;
1433 	else
1434 		rate = 48000;
1435 	rate *= ((fmt >> 11) & 0x07) + 1;
1436 	rate /= ((fmt >> 8) & 0x07) + 1;
1437 	bits = mbits[(fmt >> 4) & 0x03];
1438 	bits *= (fmt & 0x0f) + 1;
1439 	return (rate * bits);
1440 }
1441 
1442 static int
hdac_bdata_rate(uint16_t fmt,int output)1443 hdac_bdata_rate(uint16_t fmt, int output)
1444 {
1445 	static const int bbits[8] = { 8, 16, 20, 24, 32, 32, 32, 32 };
1446 	int rate, bits;
1447 
1448 	rate = 48000;
1449 	rate *= ((fmt >> 11) & 0x07) + 1;
1450 	bits = bbits[(fmt >> 4) & 0x03];
1451 	bits *= (fmt & 0x0f) + 1;
1452 	if (!output)
1453 		bits = ((bits + 7) & ~0x07) + 10;
1454 	return (rate * bits);
1455 }
1456 
1457 static void
hdac_poll_reinit(struct hdac_softc * sc)1458 hdac_poll_reinit(struct hdac_softc *sc)
1459 {
1460 	int i, pollticks, min = 1000000;
1461 	struct hdac_stream *s;
1462 
1463 	if (sc->polling == 0)
1464 		return;
1465 	if (sc->unsol_registered > 0)
1466 		min = hz / 2;
1467 	for (i = 0; i < sc->num_ss; i++) {
1468 		s = &sc->streams[i];
1469 		if (s->running == 0)
1470 			continue;
1471 		pollticks = ((uint64_t)hz * s->blksz) /
1472 		    (hdac_mdata_rate(s->format) / 8);
1473 		pollticks >>= 1;
1474 		if (pollticks > hz)
1475 			pollticks = hz;
1476 		if (pollticks < 1)
1477 			pollticks = 1;
1478 		if (min > pollticks)
1479 			min = pollticks;
1480 	}
1481 	sc->poll_ival = min;
1482 	if (min == 1000000)
1483 		callout_stop(&sc->poll_callout);
1484 	else
1485 		callout_reset(&sc->poll_callout, 1, hdac_poll_callback, sc);
1486 }
1487 
1488 static int
sysctl_hdac_polling(SYSCTL_HANDLER_ARGS)1489 sysctl_hdac_polling(SYSCTL_HANDLER_ARGS)
1490 {
1491 	struct hdac_softc *sc;
1492 	device_t dev;
1493 	uint32_t ctl;
1494 	int err, val;
1495 
1496 	dev = oidp->oid_arg1;
1497 	sc = device_get_softc(dev);
1498 	if (sc == NULL)
1499 		return (EINVAL);
1500 	hdac_lock(sc);
1501 	val = sc->polling;
1502 	hdac_unlock(sc);
1503 	err = sysctl_handle_int(oidp, &val, 0, req);
1504 
1505 	if (err != 0 || req->newptr == NULL)
1506 		return (err);
1507 	if (val < 0 || val > 1)
1508 		return (EINVAL);
1509 
1510 	hdac_lock(sc);
1511 	if (val != sc->polling) {
1512 		if (val == 0) {
1513 			callout_stop(&sc->poll_callout);
1514 			hdac_unlock(sc);
1515 			callout_drain(&sc->poll_callout);
1516 			hdac_lock(sc);
1517 			sc->polling = 0;
1518 			ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
1519 			ctl |= HDAC_INTCTL_GIE;
1520 			HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
1521 		} else {
1522 			ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
1523 			ctl &= ~HDAC_INTCTL_GIE;
1524 			HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
1525 			sc->polling = 1;
1526 			hdac_poll_reinit(sc);
1527 		}
1528 	}
1529 	hdac_unlock(sc);
1530 
1531 	return (err);
1532 }
1533 
1534 static void
hdac_attach2(void * arg)1535 hdac_attach2(void *arg)
1536 {
1537 	struct hdac_softc *sc;
1538 	device_t child;
1539 	uint32_t vendorid, revisionid;
1540 	int i;
1541 	uint16_t statests;
1542 
1543 	sc = (struct hdac_softc *)arg;
1544 
1545 	hdac_lock(sc);
1546 
1547 	/* Remove ourselves from the config hooks */
1548 	if (sc->intrhook.ich_func != NULL) {
1549 		config_intrhook_disestablish(&sc->intrhook);
1550 		sc->intrhook.ich_func = NULL;
1551 	}
1552 
1553 	HDA_BOOTHVERBOSE(
1554 		device_printf(sc->dev, "Starting CORB Engine...\n");
1555 	);
1556 	hdac_corb_start(sc);
1557 	HDA_BOOTHVERBOSE(
1558 		device_printf(sc->dev, "Starting RIRB Engine...\n");
1559 	);
1560 	hdac_rirb_start(sc);
1561 
1562 	/*
1563 	 * Clear HDAC_WAKEEN as at present we have no use for SDI wake
1564 	 * (status change) interrupts.  The documentation says that we
1565 	 * should not make any assumptions about the state of this register
1566 	 * and set it explicitly.
1567 	 * NB: this needs to be done before the interrupt is enabled as
1568 	 * the handler does not expect this interrupt source.
1569 	 */
1570 	HDAC_WRITE_2(&sc->mem, HDAC_WAKEEN, 0);
1571 
1572 	/*
1573 	 * Read and clear post-reset SDI wake status.
1574 	 * Each set bit corresponds to a codec that came out of reset.
1575 	 */
1576 	statests = HDAC_READ_2(&sc->mem, HDAC_STATESTS);
1577 	HDAC_WRITE_2(&sc->mem, HDAC_STATESTS, statests);
1578 
1579 	HDA_BOOTHVERBOSE(
1580 		device_printf(sc->dev,
1581 		    "Enabling controller interrupt...\n");
1582 	);
1583 	HDAC_WRITE_4(&sc->mem, HDAC_GCTL, HDAC_READ_4(&sc->mem, HDAC_GCTL) |
1584 	    HDAC_GCTL_UNSOL);
1585 	if (sc->polling == 0) {
1586 		HDAC_WRITE_4(&sc->mem, HDAC_INTCTL,
1587 		    HDAC_INTCTL_CIE | HDAC_INTCTL_GIE);
1588 	}
1589 	DELAY(1000);
1590 
1591 	HDA_BOOTHVERBOSE(
1592 		device_printf(sc->dev, "Scanning HDA codecs ...\n");
1593 	);
1594 	hdac_unlock(sc);
1595 	for (i = 0; i < HDAC_CODEC_MAX; i++) {
1596 		if (HDAC_STATESTS_SDIWAKE(statests, i)) {
1597 			HDA_BOOTHVERBOSE(
1598 				device_printf(sc->dev,
1599 				    "Found CODEC at address %d\n", i);
1600 			);
1601 			hdac_lock(sc);
1602 			vendorid = hdac_send_command(sc, i,
1603 			    HDA_CMD_GET_PARAMETER(0, 0x0, HDA_PARAM_VENDOR_ID));
1604 			revisionid = hdac_send_command(sc, i,
1605 			    HDA_CMD_GET_PARAMETER(0, 0x0, HDA_PARAM_REVISION_ID));
1606 			hdac_unlock(sc);
1607 			if (vendorid == HDA_INVALID &&
1608 			    revisionid == HDA_INVALID) {
1609 				device_printf(sc->dev,
1610 				    "CODEC at address %d not responding!\n", i);
1611 				continue;
1612 			}
1613 			sc->codecs[i].vendor_id =
1614 			    HDA_PARAM_VENDOR_ID_VENDOR_ID(vendorid);
1615 			sc->codecs[i].device_id =
1616 			    HDA_PARAM_VENDOR_ID_DEVICE_ID(vendorid);
1617 			sc->codecs[i].revision_id =
1618 			    HDA_PARAM_REVISION_ID_REVISION_ID(revisionid);
1619 			sc->codecs[i].stepping_id =
1620 			    HDA_PARAM_REVISION_ID_STEPPING_ID(revisionid);
1621 			child = device_add_child(sc->dev, "hdacc", DEVICE_UNIT_ANY);
1622 			if (child == NULL) {
1623 				device_printf(sc->dev,
1624 				    "Failed to add CODEC device\n");
1625 				continue;
1626 			}
1627 			device_set_ivars(child, (void *)(intptr_t)i);
1628 			sc->codecs[i].dev = child;
1629 		}
1630 	}
1631 	bus_attach_children(sc->dev);
1632 
1633 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev),
1634 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO,
1635 	    "pindump", CTLTYPE_INT | CTLFLAG_RW, sc->dev,
1636 	    sizeof(sc->dev), sysctl_hdac_pindump, "I", "Dump pin states/data");
1637 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev),
1638 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO,
1639 	    "polling", CTLTYPE_INT | CTLFLAG_RW, sc->dev,
1640 	    sizeof(sc->dev), sysctl_hdac_polling, "I", "Enable polling mode");
1641 }
1642 
1643 /****************************************************************************
1644  * int hdac_shutdown(device_t)
1645  *
1646  * Power down HDA bus and codecs.
1647  ****************************************************************************/
1648 static int
hdac_shutdown(device_t dev)1649 hdac_shutdown(device_t dev)
1650 {
1651 	struct hdac_softc *sc = device_get_softc(dev);
1652 
1653 	HDA_BOOTHVERBOSE(
1654 		device_printf(dev, "Shutdown...\n");
1655 	);
1656 	callout_drain(&sc->poll_callout);
1657 	taskqueue_drain(taskqueue_thread, &sc->unsolq_task);
1658 	bus_generic_shutdown(dev);
1659 
1660 	hdac_lock(sc);
1661 	HDA_BOOTHVERBOSE(
1662 		device_printf(dev, "Reset controller...\n");
1663 	);
1664 	hdac_reset(sc, false);
1665 	hdac_unlock(sc);
1666 	HDA_BOOTHVERBOSE(
1667 		device_printf(dev, "Shutdown done\n");
1668 	);
1669 	return (0);
1670 }
1671 
1672 /****************************************************************************
1673  * int hdac_suspend(device_t)
1674  *
1675  * Suspend and power down HDA bus and codecs.
1676  ****************************************************************************/
1677 static int
hdac_suspend(device_t dev)1678 hdac_suspend(device_t dev)
1679 {
1680 	struct hdac_softc *sc = device_get_softc(dev);
1681 
1682 	HDA_BOOTHVERBOSE(
1683 		device_printf(dev, "Suspend...\n");
1684 	);
1685 	bus_generic_suspend(dev);
1686 
1687 	hdac_lock(sc);
1688 	HDA_BOOTHVERBOSE(
1689 		device_printf(dev, "Reset controller...\n");
1690 	);
1691 	callout_stop(&sc->poll_callout);
1692 	hdac_reset(sc, false);
1693 	hdac_unlock(sc);
1694 	callout_drain(&sc->poll_callout);
1695 	taskqueue_drain(taskqueue_thread, &sc->unsolq_task);
1696 	HDA_BOOTHVERBOSE(
1697 		device_printf(dev, "Suspend done\n");
1698 	);
1699 	return (0);
1700 }
1701 
1702 /****************************************************************************
1703  * int hdac_resume(device_t)
1704  *
1705  * Powerup and restore HDA bus and codecs state.
1706  ****************************************************************************/
1707 static int
hdac_resume(device_t dev)1708 hdac_resume(device_t dev)
1709 {
1710 	struct hdac_softc *sc = device_get_softc(dev);
1711 	int error;
1712 
1713 	HDA_BOOTHVERBOSE(
1714 		device_printf(dev, "Resume...\n");
1715 	);
1716 	hdac_lock(sc);
1717 
1718 	/* Quiesce everything */
1719 	HDA_BOOTHVERBOSE(
1720 		device_printf(dev, "Reset controller...\n");
1721 	);
1722 	hdac_reset(sc, true);
1723 
1724 	/* Initialize the CORB and RIRB */
1725 	hdac_corb_init(sc);
1726 	hdac_rirb_init(sc);
1727 
1728 	HDA_BOOTHVERBOSE(
1729 		device_printf(dev, "Starting CORB Engine...\n");
1730 	);
1731 	hdac_corb_start(sc);
1732 	HDA_BOOTHVERBOSE(
1733 		device_printf(dev, "Starting RIRB Engine...\n");
1734 	);
1735 	hdac_rirb_start(sc);
1736 
1737 	/*
1738 	 * Clear HDAC_WAKEEN as at present we have no use for SDI wake
1739 	 * (status change) events.  The documentation says that we should
1740 	 * not make any assumptions about the state of this register and
1741 	 * set it explicitly.
1742 	 * Also, clear HDAC_STATESTS.
1743 	 * NB: this needs to be done before the interrupt is enabled as
1744 	 * the handler does not expect this interrupt source.
1745 	 */
1746 	HDAC_WRITE_2(&sc->mem, HDAC_WAKEEN, 0);
1747 	HDAC_WRITE_2(&sc->mem, HDAC_STATESTS, HDAC_STATESTS_SDIWAKE_MASK);
1748 
1749 	HDA_BOOTHVERBOSE(
1750 		device_printf(dev, "Enabling controller interrupt...\n");
1751 	);
1752 	HDAC_WRITE_4(&sc->mem, HDAC_GCTL, HDAC_READ_4(&sc->mem, HDAC_GCTL) |
1753 	    HDAC_GCTL_UNSOL);
1754 	HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, HDAC_INTCTL_CIE | HDAC_INTCTL_GIE);
1755 	DELAY(1000);
1756 	hdac_poll_reinit(sc);
1757 	hdac_unlock(sc);
1758 
1759 	error = bus_generic_resume(dev);
1760 	HDA_BOOTHVERBOSE(
1761 		device_printf(dev, "Resume done\n");
1762 	);
1763 	return (error);
1764 }
1765 
1766 /****************************************************************************
1767  * int hdac_detach(device_t)
1768  *
1769  * Detach and free up resources utilized by the hdac device.
1770  ****************************************************************************/
1771 static int
hdac_detach(device_t dev)1772 hdac_detach(device_t dev)
1773 {
1774 	struct hdac_softc *sc = device_get_softc(dev);
1775 	int i, error;
1776 
1777 	callout_drain(&sc->poll_callout);
1778 	hdac_irq_free(sc);
1779 	taskqueue_drain(taskqueue_thread, &sc->unsolq_task);
1780 
1781 	error = bus_generic_detach(dev);
1782 	if (error != 0)
1783 		return (error);
1784 
1785 	hdac_lock(sc);
1786 	hdac_reset(sc, false);
1787 	hdac_unlock(sc);
1788 
1789 	for (i = 0; i < sc->num_ss; i++)
1790 		hdac_dma_free(sc, &sc->streams[i].bdl);
1791 	free(sc->streams, M_HDAC);
1792 	hdac_dma_free(sc, &sc->pos_dma);
1793 	hdac_dma_free(sc, &sc->rirb_dma);
1794 	hdac_dma_free(sc, &sc->corb_dma);
1795 	if (sc->chan_dmat != NULL) {
1796 		bus_dma_tag_destroy(sc->chan_dmat);
1797 		sc->chan_dmat = NULL;
1798 	}
1799 	hdac_mem_free(sc);
1800 	snd_mtxfree(sc->lock);
1801 	return (0);
1802 }
1803 
1804 static bus_dma_tag_t
hdac_get_dma_tag(device_t dev,device_t child)1805 hdac_get_dma_tag(device_t dev, device_t child)
1806 {
1807 	struct hdac_softc *sc = device_get_softc(dev);
1808 
1809 	return (sc->chan_dmat);
1810 }
1811 
1812 static int
hdac_print_child(device_t dev,device_t child)1813 hdac_print_child(device_t dev, device_t child)
1814 {
1815 	int retval;
1816 
1817 	retval = bus_print_child_header(dev, child);
1818 	retval += printf(" at cad %d", (int)(intptr_t)device_get_ivars(child));
1819 	retval += bus_print_child_footer(dev, child);
1820 
1821 	return (retval);
1822 }
1823 
1824 static int
hdac_child_location(device_t dev,device_t child,struct sbuf * sb)1825 hdac_child_location(device_t dev, device_t child, struct sbuf *sb)
1826 {
1827 
1828 	sbuf_printf(sb, "cad=%d", (int)(intptr_t)device_get_ivars(child));
1829 	return (0);
1830 }
1831 
1832 static int
hdac_child_pnpinfo_method(device_t dev,device_t child,struct sbuf * sb)1833 hdac_child_pnpinfo_method(device_t dev, device_t child, struct sbuf *sb)
1834 {
1835 	struct hdac_softc *sc = device_get_softc(dev);
1836 	nid_t cad = (uintptr_t)device_get_ivars(child);
1837 
1838 	sbuf_printf(sb,
1839 	    "vendor=0x%04x device=0x%04x revision=0x%02x stepping=0x%02x",
1840 	    sc->codecs[cad].vendor_id, sc->codecs[cad].device_id,
1841 	    sc->codecs[cad].revision_id, sc->codecs[cad].stepping_id);
1842 	return (0);
1843 }
1844 
1845 static int
hdac_read_ivar(device_t dev,device_t child,int which,uintptr_t * result)1846 hdac_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
1847 {
1848 	struct hdac_softc *sc = device_get_softc(dev);
1849 	nid_t cad = (uintptr_t)device_get_ivars(child);
1850 
1851 	switch (which) {
1852 	case HDA_IVAR_CODEC_ID:
1853 		*result = cad;
1854 		break;
1855 	case HDA_IVAR_VENDOR_ID:
1856 		*result = sc->codecs[cad].vendor_id;
1857 		break;
1858 	case HDA_IVAR_DEVICE_ID:
1859 		*result = sc->codecs[cad].device_id;
1860 		break;
1861 	case HDA_IVAR_REVISION_ID:
1862 		*result = sc->codecs[cad].revision_id;
1863 		break;
1864 	case HDA_IVAR_STEPPING_ID:
1865 		*result = sc->codecs[cad].stepping_id;
1866 		break;
1867 	case HDA_IVAR_SUBVENDOR_ID:
1868 		*result = pci_get_subvendor(dev);
1869 		break;
1870 	case HDA_IVAR_SUBDEVICE_ID:
1871 		*result = pci_get_subdevice(dev);
1872 		break;
1873 	case HDA_IVAR_DMA_NOCACHE:
1874 		*result = (sc->flags & HDAC_F_DMA_NOCACHE) != 0;
1875 		break;
1876 	case HDA_IVAR_STRIPES_MASK:
1877 		*result = (1 << (1 << sc->num_sdo)) - 1;
1878 		break;
1879 	default:
1880 		return (ENOENT);
1881 	}
1882 	return (0);
1883 }
1884 
1885 static struct mtx *
hdac_get_mtx(device_t dev,device_t child)1886 hdac_get_mtx(device_t dev, device_t child)
1887 {
1888 	struct hdac_softc *sc = device_get_softc(dev);
1889 
1890 	return (sc->lock);
1891 }
1892 
1893 static uint32_t
hdac_codec_command(device_t dev,device_t child,uint32_t verb)1894 hdac_codec_command(device_t dev, device_t child, uint32_t verb)
1895 {
1896 
1897 	return (hdac_send_command(device_get_softc(dev),
1898 	    (intptr_t)device_get_ivars(child), verb));
1899 }
1900 
1901 static int
hdac_find_stream(struct hdac_softc * sc,int dir,int stream)1902 hdac_find_stream(struct hdac_softc *sc, int dir, int stream)
1903 {
1904 	int i, ss;
1905 
1906 	ss = -1;
1907 	/* Allocate ISS/OSS first. */
1908 	if (dir == 0) {
1909 		for (i = 0; i < sc->num_iss; i++) {
1910 			if (sc->streams[i].stream == stream) {
1911 				ss = i;
1912 				break;
1913 			}
1914 		}
1915 	} else {
1916 		for (i = 0; i < sc->num_oss; i++) {
1917 			if (sc->streams[i + sc->num_iss].stream == stream) {
1918 				ss = i + sc->num_iss;
1919 				break;
1920 			}
1921 		}
1922 	}
1923 	/* Fallback to BSS. */
1924 	if (ss == -1) {
1925 		for (i = 0; i < sc->num_bss; i++) {
1926 			if (sc->streams[i + sc->num_iss + sc->num_oss].stream
1927 			    == stream) {
1928 				ss = i + sc->num_iss + sc->num_oss;
1929 				break;
1930 			}
1931 		}
1932 	}
1933 	return (ss);
1934 }
1935 
1936 static int
hdac_stream_alloc(device_t dev,device_t child,int dir,int format,int stripe,uint32_t ** dmapos)1937 hdac_stream_alloc(device_t dev, device_t child, int dir, int format, int stripe,
1938     uint32_t **dmapos)
1939 {
1940 	struct hdac_softc *sc = device_get_softc(dev);
1941 	nid_t cad = (uintptr_t)device_get_ivars(child);
1942 	int stream, ss, bw, maxbw, prevbw;
1943 
1944 	/* Look for empty stream. */
1945 	ss = hdac_find_stream(sc, dir, 0);
1946 
1947 	/* Return if found nothing. */
1948 	if (ss < 0)
1949 		return (0);
1950 
1951 	/* Check bus bandwidth. */
1952 	bw = hdac_bdata_rate(format, dir);
1953 	if (dir == 1) {
1954 		bw *= 1 << (sc->num_sdo - stripe);
1955 		prevbw = sc->sdo_bw_used;
1956 		maxbw = 48000 * 960 * (1 << sc->num_sdo);
1957 	} else {
1958 		prevbw = sc->codecs[cad].sdi_bw_used;
1959 		maxbw = 48000 * 464;
1960 	}
1961 	HDA_BOOTHVERBOSE(
1962 		device_printf(dev, "%dKbps of %dKbps bandwidth used%s\n",
1963 		    (bw + prevbw) / 1000, maxbw / 1000,
1964 		    bw + prevbw > maxbw ? " -- OVERFLOW!" : "");
1965 	);
1966 	if (bw + prevbw > maxbw)
1967 		return (0);
1968 	if (dir == 1)
1969 		sc->sdo_bw_used += bw;
1970 	else
1971 		sc->codecs[cad].sdi_bw_used += bw;
1972 
1973 	/* Allocate stream number */
1974 	if (ss >= sc->num_iss + sc->num_oss)
1975 		stream = 15 - (ss - sc->num_iss - sc->num_oss);
1976 	else if (ss >= sc->num_iss)
1977 		stream = ss - sc->num_iss + 1;
1978 	else
1979 		stream = ss + 1;
1980 
1981 	sc->streams[ss].dev = child;
1982 	sc->streams[ss].dir = dir;
1983 	sc->streams[ss].stream = stream;
1984 	sc->streams[ss].bw = bw;
1985 	sc->streams[ss].format = format;
1986 	sc->streams[ss].stripe = stripe;
1987 	if (dmapos != NULL) {
1988 		if (sc->pos_dma.dma_vaddr != NULL)
1989 			*dmapos = (uint32_t *)(sc->pos_dma.dma_vaddr + ss * 8);
1990 		else
1991 			*dmapos = NULL;
1992 	}
1993 	return (stream);
1994 }
1995 
1996 static void
hdac_stream_free(device_t dev,device_t child,int dir,int stream)1997 hdac_stream_free(device_t dev, device_t child, int dir, int stream)
1998 {
1999 	struct hdac_softc *sc = device_get_softc(dev);
2000 	nid_t cad = (uintptr_t)device_get_ivars(child);
2001 	int ss;
2002 
2003 	ss = hdac_find_stream(sc, dir, stream);
2004 	KASSERT(ss >= 0,
2005 	    ("Free for not allocated stream (%d/%d)\n", dir, stream));
2006 	if (dir == 1)
2007 		sc->sdo_bw_used -= sc->streams[ss].bw;
2008 	else
2009 		sc->codecs[cad].sdi_bw_used -= sc->streams[ss].bw;
2010 	sc->streams[ss].stream = 0;
2011 	sc->streams[ss].dev = NULL;
2012 }
2013 
2014 static int
hdac_stream_start(device_t dev,device_t child,int dir,int stream,bus_addr_t buf,int blksz,int blkcnt)2015 hdac_stream_start(device_t dev, device_t child, int dir, int stream,
2016     bus_addr_t buf, int blksz, int blkcnt)
2017 {
2018 	struct hdac_softc *sc = device_get_softc(dev);
2019 	struct hdac_bdle *bdle;
2020 	uint64_t addr;
2021 	int i, ss, off;
2022 	uint32_t ctl;
2023 
2024 	ss = hdac_find_stream(sc, dir, stream);
2025 	KASSERT(ss >= 0,
2026 	    ("Start for not allocated stream (%d/%d)\n", dir, stream));
2027 
2028 	addr = (uint64_t)buf;
2029 	bdle = (struct hdac_bdle *)sc->streams[ss].bdl.dma_vaddr;
2030 	for (i = 0; i < blkcnt; i++, bdle++) {
2031 		bdle->addrl = htole32((uint32_t)addr);
2032 		bdle->addrh = htole32((uint32_t)(addr >> 32));
2033 		bdle->len = htole32(blksz);
2034 		bdle->ioc = htole32(1);
2035 		addr += blksz;
2036 	}
2037 
2038 	bus_dmamap_sync(sc->streams[ss].bdl.dma_tag,
2039 	    sc->streams[ss].bdl.dma_map, BUS_DMASYNC_PREWRITE);
2040 
2041 	off = ss << 5;
2042 	HDAC_WRITE_4(&sc->mem, off + HDAC_SDCBL, blksz * blkcnt);
2043 	HDAC_WRITE_2(&sc->mem, off + HDAC_SDLVI, blkcnt - 1);
2044 	addr = sc->streams[ss].bdl.dma_paddr;
2045 	HDAC_WRITE_4(&sc->mem, off + HDAC_SDBDPL, (uint32_t)addr);
2046 	HDAC_WRITE_4(&sc->mem, off + HDAC_SDBDPU, (uint32_t)(addr >> 32));
2047 
2048 	ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL2);
2049 	if (dir)
2050 		ctl |= HDAC_SDCTL2_DIR;
2051 	else
2052 		ctl &= ~HDAC_SDCTL2_DIR;
2053 	ctl &= ~HDAC_SDCTL2_STRM_MASK;
2054 	ctl |= stream << HDAC_SDCTL2_STRM_SHIFT;
2055 	ctl &= ~HDAC_SDCTL2_STRIPE_MASK;
2056 	ctl |= sc->streams[ss].stripe << HDAC_SDCTL2_STRIPE_SHIFT;
2057 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL2, ctl);
2058 
2059 	HDAC_WRITE_2(&sc->mem, off + HDAC_SDFMT, sc->streams[ss].format);
2060 
2061 	ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
2062 	ctl |= 1 << ss;
2063 	HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
2064 
2065 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDSTS,
2066 	    HDAC_SDSTS_DESE | HDAC_SDSTS_FIFOE | HDAC_SDSTS_BCIS);
2067 	ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2068 	ctl |= HDAC_SDCTL_IOCE | HDAC_SDCTL_FEIE | HDAC_SDCTL_DEIE |
2069 	    HDAC_SDCTL_RUN;
2070 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
2071 
2072 	sc->streams[ss].blksz = blksz;
2073 	sc->streams[ss].running = 1;
2074 	hdac_poll_reinit(sc);
2075 	return (0);
2076 }
2077 
2078 static void
hdac_stream_stop(device_t dev,device_t child,int dir,int stream)2079 hdac_stream_stop(device_t dev, device_t child, int dir, int stream)
2080 {
2081 	struct hdac_softc *sc = device_get_softc(dev);
2082 	int ss, off;
2083 	uint32_t ctl;
2084 
2085 	ss = hdac_find_stream(sc, dir, stream);
2086 	KASSERT(ss >= 0,
2087 	    ("Stop for not allocated stream (%d/%d)\n", dir, stream));
2088 
2089 	bus_dmamap_sync(sc->streams[ss].bdl.dma_tag,
2090 	    sc->streams[ss].bdl.dma_map, BUS_DMASYNC_POSTWRITE);
2091 
2092 	off = ss << 5;
2093 	ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2094 	ctl &= ~(HDAC_SDCTL_IOCE | HDAC_SDCTL_FEIE | HDAC_SDCTL_DEIE |
2095 	    HDAC_SDCTL_RUN);
2096 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
2097 
2098 	ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
2099 	ctl &= ~(1 << ss);
2100 	HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
2101 
2102 	sc->streams[ss].running = 0;
2103 	hdac_poll_reinit(sc);
2104 }
2105 
2106 static void
hdac_stream_reset(device_t dev,device_t child,int dir,int stream)2107 hdac_stream_reset(device_t dev, device_t child, int dir, int stream)
2108 {
2109 	struct hdac_softc *sc = device_get_softc(dev);
2110 	int timeout = 1000;
2111 	int to = timeout;
2112 	int ss, off;
2113 	uint32_t ctl;
2114 
2115 	ss = hdac_find_stream(sc, dir, stream);
2116 	KASSERT(ss >= 0,
2117 	    ("Reset for not allocated stream (%d/%d)\n", dir, stream));
2118 
2119 	off = ss << 5;
2120 	ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2121 	ctl |= HDAC_SDCTL_SRST;
2122 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
2123 	do {
2124 		ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2125 		if (ctl & HDAC_SDCTL_SRST)
2126 			break;
2127 		DELAY(10);
2128 	} while (--to);
2129 	if (!(ctl & HDAC_SDCTL_SRST))
2130 		device_printf(dev, "Reset setting timeout\n");
2131 	ctl &= ~HDAC_SDCTL_SRST;
2132 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
2133 	to = timeout;
2134 	do {
2135 		ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2136 		if (!(ctl & HDAC_SDCTL_SRST))
2137 			break;
2138 		DELAY(10);
2139 	} while (--to);
2140 	if (ctl & HDAC_SDCTL_SRST)
2141 		device_printf(dev, "Reset timeout!\n");
2142 }
2143 
2144 static uint32_t
hdac_stream_getptr(device_t dev,device_t child,int dir,int stream)2145 hdac_stream_getptr(device_t dev, device_t child, int dir, int stream)
2146 {
2147 	struct hdac_softc *sc = device_get_softc(dev);
2148 	int ss, off;
2149 
2150 	ss = hdac_find_stream(sc, dir, stream);
2151 	KASSERT(ss >= 0,
2152 	    ("Reset for not allocated stream (%d/%d)\n", dir, stream));
2153 
2154 	off = ss << 5;
2155 	return (HDAC_READ_4(&sc->mem, off + HDAC_SDLPIB));
2156 }
2157 
2158 static int
hdac_unsol_alloc(device_t dev,device_t child,int tag)2159 hdac_unsol_alloc(device_t dev, device_t child, int tag)
2160 {
2161 	struct hdac_softc *sc = device_get_softc(dev);
2162 
2163 	sc->unsol_registered++;
2164 	hdac_poll_reinit(sc);
2165 	return (tag);
2166 }
2167 
2168 static void
hdac_unsol_free(device_t dev,device_t child,int tag)2169 hdac_unsol_free(device_t dev, device_t child, int tag)
2170 {
2171 	struct hdac_softc *sc = device_get_softc(dev);
2172 
2173 	sc->unsol_registered--;
2174 	hdac_poll_reinit(sc);
2175 }
2176 
2177 static device_method_t hdac_methods[] = {
2178 	/* device interface */
2179 	DEVMETHOD(device_probe,		hdac_probe),
2180 	DEVMETHOD(device_attach,	hdac_attach),
2181 	DEVMETHOD(device_detach,	hdac_detach),
2182 	DEVMETHOD(device_shutdown,	hdac_shutdown),
2183 	DEVMETHOD(device_suspend,	hdac_suspend),
2184 	DEVMETHOD(device_resume,	hdac_resume),
2185 	/* Bus interface */
2186 	DEVMETHOD(bus_get_dma_tag,	hdac_get_dma_tag),
2187 	DEVMETHOD(bus_print_child,	hdac_print_child),
2188 	DEVMETHOD(bus_child_location,	hdac_child_location),
2189 	DEVMETHOD(bus_child_pnpinfo,	hdac_child_pnpinfo_method),
2190 	DEVMETHOD(bus_read_ivar,	hdac_read_ivar),
2191 	DEVMETHOD(hdac_get_mtx,		hdac_get_mtx),
2192 	DEVMETHOD(hdac_codec_command,	hdac_codec_command),
2193 	DEVMETHOD(hdac_stream_alloc,	hdac_stream_alloc),
2194 	DEVMETHOD(hdac_stream_free,	hdac_stream_free),
2195 	DEVMETHOD(hdac_stream_start,	hdac_stream_start),
2196 	DEVMETHOD(hdac_stream_stop,	hdac_stream_stop),
2197 	DEVMETHOD(hdac_stream_reset,	hdac_stream_reset),
2198 	DEVMETHOD(hdac_stream_getptr,	hdac_stream_getptr),
2199 	DEVMETHOD(hdac_unsol_alloc,	hdac_unsol_alloc),
2200 	DEVMETHOD(hdac_unsol_free,	hdac_unsol_free),
2201 	DEVMETHOD_END
2202 };
2203 
2204 static driver_t hdac_driver = {
2205 	"hdac",
2206 	hdac_methods,
2207 	sizeof(struct hdac_softc),
2208 };
2209 
2210 DRIVER_MODULE_ORDERED(snd_hda, pci, hdac_driver, NULL, NULL, SI_ORDER_ANY);
2211