1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 */
36
37 #include "opt_capsicum.h"
38 #include "opt_ddb.h"
39 #include "opt_ktrace.h"
40
41 #define EXTERR_CATEGORY EXTERR_CAT_FILEDESC
42 #include <sys/systm.h>
43 #include <sys/capsicum.h>
44 #include <sys/conf.h>
45 #include <sys/exterrvar.h>
46 #include <sys/fcntl.h>
47 #include <sys/file.h>
48 #include <sys/filedesc.h>
49 #include <sys/filio.h>
50 #include <sys/jail.h>
51 #include <sys/kernel.h>
52 #include <sys/limits.h>
53 #include <sys/lock.h>
54 #include <sys/malloc.h>
55 #include <sys/mount.h>
56 #include <sys/mutex.h>
57 #include <sys/namei.h>
58 #include <sys/selinfo.h>
59 #include <sys/poll.h>
60 #include <sys/priv.h>
61 #include <sys/proc.h>
62 #include <sys/protosw.h>
63 #include <sys/racct.h>
64 #include <sys/resourcevar.h>
65 #include <sys/sbuf.h>
66 #include <sys/signalvar.h>
67 #include <sys/kdb.h>
68 #include <sys/smr.h>
69 #include <sys/stat.h>
70 #include <sys/sx.h>
71 #include <sys/syscallsubr.h>
72 #include <sys/sysctl.h>
73 #include <sys/sysproto.h>
74 #include <sys/unistd.h>
75 #include <sys/user.h>
76 #include <sys/vnode.h>
77 #include <sys/ktrace.h>
78
79 #include <net/vnet.h>
80
81 #include <security/audit/audit.h>
82
83 #include <vm/uma.h>
84 #include <vm/vm.h>
85
86 #include <ddb/ddb.h>
87
88 static MALLOC_DEFINE(M_FILEDESC, "filedesc", "Open file descriptor table");
89 static MALLOC_DEFINE(M_PWD, "pwd", "Descriptor table vnodes");
90 static MALLOC_DEFINE(M_PWDDESC, "pwddesc", "Pwd descriptors");
91 static MALLOC_DEFINE(M_FILEDESC_TO_LEADER, "filedesc_to_leader",
92 "file desc to leader structures");
93 static MALLOC_DEFINE(M_SIGIO, "sigio", "sigio structures");
94 MALLOC_DEFINE(M_FILECAPS, "filecaps", "descriptor capabilities");
95
96 MALLOC_DECLARE(M_FADVISE);
97
98 static __read_mostly uma_zone_t file_zone;
99 static __read_mostly uma_zone_t filedesc0_zone;
100 __read_mostly uma_zone_t pwd_zone;
101 VFS_SMR_DECLARE;
102
103 static int closefp(struct filedesc *fdp, int fd, struct file *fp,
104 struct thread *td, bool holdleaders, bool audit);
105 static void export_file_to_kinfo(struct file *fp, int fd,
106 cap_rights_t *rightsp, struct kinfo_file *kif,
107 struct filedesc *fdp, int flags);
108 static int fd_first_free(struct filedesc *fdp, int low, int size);
109 static void fdgrowtable(struct filedesc *fdp, int nfd);
110 static void fdgrowtable_exp(struct filedesc *fdp, int nfd);
111 static void fdunused(struct filedesc *fdp, int fd);
112 static void fdused(struct filedesc *fdp, int fd);
113 static int fget_unlocked_seq(struct thread *td, int fd,
114 const cap_rights_t *needrightsp, uint8_t *flagsp,
115 struct file **fpp, seqc_t *seqp);
116 static int getmaxfd(struct thread *td);
117 static u_long *filecaps_copy_prep(const struct filecaps *src);
118 static void filecaps_copy_finish(const struct filecaps *src,
119 struct filecaps *dst, u_long *ioctls);
120 static u_long *filecaps_free_prep(struct filecaps *fcaps);
121 static void filecaps_free_finish(u_long *ioctls);
122
123 static struct pwd *pwd_alloc(void);
124
125 /*
126 * Each process has:
127 *
128 * - An array of open file descriptors (fd_ofiles)
129 * - An array of file flags (fd_ofileflags)
130 * - A bitmap recording which descriptors are in use (fd_map)
131 *
132 * A process starts out with NDFILE descriptors. The value of NDFILE has
133 * been selected based the historical limit of 20 open files, and an
134 * assumption that the majority of processes, especially short-lived
135 * processes like shells, will never need more.
136 *
137 * If this initial allocation is exhausted, a larger descriptor table and
138 * map are allocated dynamically, and the pointers in the process's struct
139 * filedesc are updated to point to those. This is repeated every time
140 * the process runs out of file descriptors (provided it hasn't hit its
141 * resource limit).
142 *
143 * Since threads may hold references to individual descriptor table
144 * entries, the tables are never freed. Instead, they are placed on a
145 * linked list and freed only when the struct filedesc is released.
146 */
147 #define NDFILE 20
148 #define NDSLOTSIZE sizeof(NDSLOTTYPE)
149 #define NDENTRIES (NDSLOTSIZE * __CHAR_BIT)
150 #define NDSLOT(x) ((x) / NDENTRIES)
151 #define NDBIT(x) ((NDSLOTTYPE)1 << ((x) % NDENTRIES))
152 #define NDSLOTS(x) (((x) + NDENTRIES - 1) / NDENTRIES)
153
154 #define FILEDESC_FOREACH_FDE(fdp, _iterator, _fde) \
155 struct filedesc *_fdp = (fdp); \
156 int _lastfile = fdlastfile_single(_fdp); \
157 for (_iterator = 0; _iterator <= _lastfile; _iterator++) \
158 if ((_fde = &_fdp->fd_ofiles[_iterator])->fde_file != NULL)
159
160 #define FILEDESC_FOREACH_FP(fdp, _iterator, _fp) \
161 struct filedesc *_fdp = (fdp); \
162 int _lastfile = fdlastfile_single(_fdp); \
163 for (_iterator = 0; _iterator <= _lastfile; _iterator++) \
164 if ((_fp = _fdp->fd_ofiles[_iterator].fde_file) != NULL)
165
166 /*
167 * SLIST entry used to keep track of ofiles which must be reclaimed when
168 * the process exits.
169 */
170 struct freetable {
171 struct fdescenttbl *ft_table;
172 SLIST_ENTRY(freetable) ft_next;
173 };
174
175 /*
176 * Initial allocation: a filedesc structure + the head of SLIST used to
177 * keep track of old ofiles + enough space for NDFILE descriptors.
178 */
179
180 struct fdescenttbl0 {
181 int fdt_nfiles;
182 struct filedescent fdt_ofiles[NDFILE];
183 };
184
185 struct filedesc0 {
186 struct filedesc fd_fd;
187 SLIST_HEAD(, freetable) fd_free;
188 struct fdescenttbl0 fd_dfiles;
189 NDSLOTTYPE fd_dmap[NDSLOTS(NDFILE)];
190 };
191
192 /*
193 * Descriptor management.
194 */
195 static int __exclusive_cache_line openfiles; /* actual number of open files */
196 struct mtx sigio_lock; /* mtx to protect pointers to sigio */
197 void __read_mostly (*mq_fdclose)(struct thread *td, int fd, struct file *fp);
198
199 /*
200 * If low >= size, just return low. Otherwise find the first zero bit in the
201 * given bitmap, starting at low and not exceeding size - 1. Return size if
202 * not found.
203 */
204 static int
fd_first_free(struct filedesc * fdp,int low,int size)205 fd_first_free(struct filedesc *fdp, int low, int size)
206 {
207 NDSLOTTYPE *map = fdp->fd_map;
208 NDSLOTTYPE mask;
209 int off, maxoff;
210
211 if (low >= size)
212 return (low);
213
214 off = NDSLOT(low);
215 if (low % NDENTRIES) {
216 mask = ~(~(NDSLOTTYPE)0 >> (NDENTRIES - (low % NDENTRIES)));
217 if ((mask &= ~map[off]) != 0UL)
218 return (off * NDENTRIES + ffsl(mask) - 1);
219 ++off;
220 }
221 for (maxoff = NDSLOTS(size); off < maxoff; ++off)
222 if (map[off] != ~0UL)
223 return (off * NDENTRIES + ffsl(~map[off]) - 1);
224 return (size);
225 }
226
227 /*
228 * Find the last used fd.
229 *
230 * Call this variant if fdp can't be modified by anyone else (e.g, during exec).
231 * Otherwise use fdlastfile.
232 */
233 int
fdlastfile_single(struct filedesc * fdp)234 fdlastfile_single(struct filedesc *fdp)
235 {
236 NDSLOTTYPE *map = fdp->fd_map;
237 int off, minoff;
238
239 off = NDSLOT(fdp->fd_nfiles - 1);
240 for (minoff = NDSLOT(0); off >= minoff; --off)
241 if (map[off] != 0)
242 return (off * NDENTRIES + flsl(map[off]) - 1);
243 return (-1);
244 }
245
246 int
fdlastfile(struct filedesc * fdp)247 fdlastfile(struct filedesc *fdp)
248 {
249
250 FILEDESC_LOCK_ASSERT(fdp);
251 return (fdlastfile_single(fdp));
252 }
253
254 static int
fdisused(struct filedesc * fdp,int fd)255 fdisused(struct filedesc *fdp, int fd)
256 {
257
258 KASSERT(fd >= 0 && fd < fdp->fd_nfiles,
259 ("file descriptor %d out of range (0, %d)", fd, fdp->fd_nfiles));
260
261 return ((fdp->fd_map[NDSLOT(fd)] & NDBIT(fd)) != 0);
262 }
263
264 /*
265 * Mark a file descriptor as used.
266 */
267 static void
fdused_init(struct filedesc * fdp,int fd)268 fdused_init(struct filedesc *fdp, int fd)
269 {
270
271 KASSERT(!fdisused(fdp, fd), ("fd=%d is already used", fd));
272
273 fdp->fd_map[NDSLOT(fd)] |= NDBIT(fd);
274 }
275
276 static void
fdused(struct filedesc * fdp,int fd)277 fdused(struct filedesc *fdp, int fd)
278 {
279
280 FILEDESC_XLOCK_ASSERT(fdp);
281
282 fdused_init(fdp, fd);
283 if (fd == fdp->fd_freefile)
284 fdp->fd_freefile++;
285 }
286
287 /*
288 * Mark a file descriptor as unused.
289 */
290 static void
fdunused(struct filedesc * fdp,int fd)291 fdunused(struct filedesc *fdp, int fd)
292 {
293
294 FILEDESC_XLOCK_ASSERT(fdp);
295
296 KASSERT(fdisused(fdp, fd), ("fd=%d is already unused", fd));
297 KASSERT(fdp->fd_ofiles[fd].fde_file == NULL,
298 ("fd=%d is still in use", fd));
299
300 fdp->fd_map[NDSLOT(fd)] &= ~NDBIT(fd);
301 if (fd < fdp->fd_freefile)
302 fdp->fd_freefile = fd;
303 }
304
305 /*
306 * Free a file descriptor.
307 *
308 * Avoid some work if fdp is about to be destroyed.
309 */
310 static inline void
fdefree_last(struct filedescent * fde)311 fdefree_last(struct filedescent *fde)
312 {
313
314 filecaps_free(&fde->fde_caps);
315 }
316
317 static inline void
fdfree(struct filedesc * fdp,int fd)318 fdfree(struct filedesc *fdp, int fd)
319 {
320 struct filedescent *fde;
321
322 FILEDESC_XLOCK_ASSERT(fdp);
323 fde = &fdp->fd_ofiles[fd];
324 #ifdef CAPABILITIES
325 seqc_write_begin(&fde->fde_seqc);
326 #endif
327 fde->fde_file = NULL;
328 #ifdef CAPABILITIES
329 seqc_write_end(&fde->fde_seqc);
330 #endif
331 fdefree_last(fde);
332 fdunused(fdp, fd);
333 }
334
335 /*
336 * System calls on descriptors.
337 */
338 #ifndef _SYS_SYSPROTO_H_
339 struct getdtablesize_args {
340 int dummy;
341 };
342 #endif
343 /* ARGSUSED */
344 int
sys_getdtablesize(struct thread * td,struct getdtablesize_args * uap)345 sys_getdtablesize(struct thread *td, struct getdtablesize_args *uap)
346 {
347 #ifdef RACCT
348 uint64_t lim;
349 #endif
350
351 td->td_retval[0] = getmaxfd(td);
352 #ifdef RACCT
353 PROC_LOCK(td->td_proc);
354 lim = racct_get_limit(td->td_proc, RACCT_NOFILE);
355 PROC_UNLOCK(td->td_proc);
356 if (lim < td->td_retval[0])
357 td->td_retval[0] = lim;
358 #endif
359 return (0);
360 }
361
362 /*
363 * Duplicate a file descriptor to a particular value.
364 *
365 * Note: keep in mind that a potential race condition exists when closing
366 * descriptors from a shared descriptor table (via rfork).
367 */
368 #ifndef _SYS_SYSPROTO_H_
369 struct dup2_args {
370 u_int from;
371 u_int to;
372 };
373 #endif
374 /* ARGSUSED */
375 int
sys_dup2(struct thread * td,struct dup2_args * uap)376 sys_dup2(struct thread *td, struct dup2_args *uap)
377 {
378
379 return (kern_dup(td, FDDUP_FIXED, 0, (int)uap->from, (int)uap->to));
380 }
381
382 /*
383 * Duplicate a file descriptor.
384 */
385 #ifndef _SYS_SYSPROTO_H_
386 struct dup_args {
387 u_int fd;
388 };
389 #endif
390 /* ARGSUSED */
391 int
sys_dup(struct thread * td,struct dup_args * uap)392 sys_dup(struct thread *td, struct dup_args *uap)
393 {
394
395 return (kern_dup(td, FDDUP_NORMAL, 0, (int)uap->fd, 0));
396 }
397
398 /*
399 * The file control system call.
400 */
401 #ifndef _SYS_SYSPROTO_H_
402 struct fcntl_args {
403 int fd;
404 int cmd;
405 long arg;
406 };
407 #endif
408 /* ARGSUSED */
409 int
sys_fcntl(struct thread * td,struct fcntl_args * uap)410 sys_fcntl(struct thread *td, struct fcntl_args *uap)
411 {
412
413 return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, uap->arg));
414 }
415
416 int
kern_fcntl_freebsd(struct thread * td,int fd,int cmd,intptr_t arg)417 kern_fcntl_freebsd(struct thread *td, int fd, int cmd, intptr_t arg)
418 {
419 struct flock fl;
420 struct __oflock ofl;
421 intptr_t arg1;
422 int error, newcmd;
423
424 error = 0;
425 newcmd = cmd;
426 switch (cmd) {
427 case F_OGETLK:
428 case F_OSETLK:
429 case F_OSETLKW:
430 /*
431 * Convert old flock structure to new.
432 */
433 error = copyin((void *)arg, &ofl, sizeof(ofl));
434 fl.l_start = ofl.l_start;
435 fl.l_len = ofl.l_len;
436 fl.l_pid = ofl.l_pid;
437 fl.l_type = ofl.l_type;
438 fl.l_whence = ofl.l_whence;
439 fl.l_sysid = 0;
440
441 switch (cmd) {
442 case F_OGETLK:
443 newcmd = F_GETLK;
444 break;
445 case F_OSETLK:
446 newcmd = F_SETLK;
447 break;
448 case F_OSETLKW:
449 newcmd = F_SETLKW;
450 break;
451 }
452 arg1 = (intptr_t)&fl;
453 break;
454 case F_GETLK:
455 case F_SETLK:
456 case F_SETLKW:
457 case F_SETLK_REMOTE:
458 error = copyin((void *)arg, &fl, sizeof(fl));
459 arg1 = (intptr_t)&fl;
460 break;
461 default:
462 arg1 = arg;
463 break;
464 }
465 if (error)
466 return (error);
467 error = kern_fcntl(td, fd, newcmd, arg1);
468 if (error)
469 return (error);
470 if (cmd == F_OGETLK) {
471 ofl.l_start = fl.l_start;
472 ofl.l_len = fl.l_len;
473 ofl.l_pid = fl.l_pid;
474 ofl.l_type = fl.l_type;
475 ofl.l_whence = fl.l_whence;
476 error = copyout(&ofl, (void *)arg, sizeof(ofl));
477 } else if (cmd == F_GETLK) {
478 error = copyout(&fl, (void *)arg, sizeof(fl));
479 }
480 return (error);
481 }
482
483 int
kern_fcntl(struct thread * td,int fd,int cmd,intptr_t arg)484 kern_fcntl(struct thread *td, int fd, int cmd, intptr_t arg)
485 {
486 struct filedesc *fdp;
487 struct flock *flp;
488 struct file *fp, *fp2;
489 struct filedescent *fde;
490 struct proc *p;
491 struct vnode *vp;
492 struct mount *mp;
493 struct kinfo_file *kif;
494 int error, flg, kif_sz, seals, tmp, got_set, got_cleared;
495 uint64_t bsize;
496 off_t foffset;
497 int flags;
498
499 error = 0;
500 flg = F_POSIX;
501 p = td->td_proc;
502 fdp = p->p_fd;
503
504 AUDIT_ARG_FD(cmd);
505 AUDIT_ARG_CMD(cmd);
506 switch (cmd) {
507 case F_DUPFD:
508 tmp = arg;
509 error = kern_dup(td, FDDUP_FCNTL, 0, fd, tmp);
510 break;
511
512 case F_DUPFD_CLOEXEC:
513 tmp = arg;
514 error = kern_dup(td, FDDUP_FCNTL, FDDUP_FLAG_CLOEXEC, fd, tmp);
515 break;
516
517 case F_DUPFD_CLOFORK:
518 tmp = arg;
519 error = kern_dup(td, FDDUP_FCNTL, FDDUP_FLAG_CLOFORK, fd, tmp);
520 break;
521
522 case F_DUP2FD:
523 tmp = arg;
524 error = kern_dup(td, FDDUP_FIXED, 0, fd, tmp);
525 break;
526
527 case F_DUP2FD_CLOEXEC:
528 tmp = arg;
529 error = kern_dup(td, FDDUP_FIXED, FDDUP_FLAG_CLOEXEC, fd, tmp);
530 break;
531
532 case F_GETFD:
533 error = EBADF;
534 FILEDESC_SLOCK(fdp);
535 fde = fdeget_noref(fdp, fd);
536 if (fde != NULL) {
537 td->td_retval[0] =
538 ((fde->fde_flags & UF_EXCLOSE) ? FD_CLOEXEC : 0) |
539 ((fde->fde_flags & UF_FOCLOSE) ? FD_CLOFORK : 0) |
540 ((fde->fde_flags & UF_RESOLVE_BENEATH) ?
541 FD_RESOLVE_BENEATH : 0);
542 error = 0;
543 }
544 FILEDESC_SUNLOCK(fdp);
545 break;
546
547 case F_SETFD:
548 error = EBADF;
549 FILEDESC_XLOCK(fdp);
550 fde = fdeget_noref(fdp, fd);
551 if (fde != NULL) {
552 /*
553 * UF_RESOLVE_BENEATH is sticky and cannot be cleared.
554 */
555 fde->fde_flags = (fde->fde_flags & ~UF_EXCLOSE) |
556 ((arg & FD_CLOEXEC) != 0 ? UF_EXCLOSE : 0) |
557 ((arg & FD_CLOFORK) != 0 ? UF_FOCLOSE : 0) |
558 ((arg & FD_RESOLVE_BENEATH) != 0 ?
559 UF_RESOLVE_BENEATH : 0);
560 error = 0;
561 }
562 FILEDESC_XUNLOCK(fdp);
563 break;
564
565 case F_GETFL:
566 error = fget_fcntl(td, fd, &cap_fcntl_rights, F_GETFL, &fp);
567 if (error != 0)
568 break;
569 td->td_retval[0] = OFLAGS(fp->f_flag);
570 fdrop(fp, td);
571 break;
572
573 case F_SETFL:
574 error = fget_fcntl(td, fd, &cap_fcntl_rights, F_SETFL, &fp);
575 if (error != 0)
576 break;
577 if (fp->f_ops == &path_fileops) {
578 fdrop(fp, td);
579 error = EBADF;
580 break;
581 }
582 do {
583 tmp = flg = fp->f_flag;
584 tmp &= ~FCNTLFLAGS;
585 tmp |= FFLAGS(arg & ~O_ACCMODE) & FCNTLFLAGS;
586 } while (atomic_cmpset_int(&fp->f_flag, flg, tmp) == 0);
587 got_set = tmp & ~flg;
588 got_cleared = flg & ~tmp;
589 tmp = fp->f_flag & FNONBLOCK;
590 error = fo_ioctl(fp, FIONBIO, &tmp, td->td_ucred, td);
591 if (error != 0)
592 goto revert_f_setfl;
593 tmp = fp->f_flag & FASYNC;
594 error = fo_ioctl(fp, FIOASYNC, &tmp, td->td_ucred, td);
595 if (error == 0) {
596 fdrop(fp, td);
597 break;
598 }
599 atomic_clear_int(&fp->f_flag, FNONBLOCK);
600 tmp = 0;
601 (void)fo_ioctl(fp, FIONBIO, &tmp, td->td_ucred, td);
602 revert_f_setfl:
603 do {
604 tmp = flg = fp->f_flag;
605 tmp &= ~FCNTLFLAGS;
606 tmp |= got_cleared;
607 tmp &= ~got_set;
608 } while (atomic_cmpset_int(&fp->f_flag, flg, tmp) == 0);
609 fdrop(fp, td);
610 break;
611
612 case F_GETOWN:
613 error = fget_fcntl(td, fd, &cap_fcntl_rights, F_GETOWN, &fp);
614 if (error != 0)
615 break;
616 error = fo_ioctl(fp, FIOGETOWN, &tmp, td->td_ucred, td);
617 if (error == 0)
618 td->td_retval[0] = tmp;
619 fdrop(fp, td);
620 break;
621
622 case F_SETOWN:
623 error = fget_fcntl(td, fd, &cap_fcntl_rights, F_SETOWN, &fp);
624 if (error != 0)
625 break;
626 tmp = arg;
627 error = fo_ioctl(fp, FIOSETOWN, &tmp, td->td_ucred, td);
628 fdrop(fp, td);
629 break;
630
631 case F_SETLK_REMOTE:
632 error = priv_check(td, PRIV_NFS_LOCKD);
633 if (error != 0)
634 return (error);
635 flg = F_REMOTE;
636 goto do_setlk;
637
638 case F_SETLKW:
639 flg |= F_WAIT;
640 /* FALLTHROUGH F_SETLK */
641
642 case F_SETLK:
643 do_setlk:
644 flp = (struct flock *)arg;
645 if ((flg & F_REMOTE) != 0 && flp->l_sysid == 0) {
646 error = EINVAL;
647 break;
648 }
649
650 error = fget_unlocked(td, fd, &cap_flock_rights, &fp);
651 if (error != 0)
652 break;
653 if (fp->f_type != DTYPE_VNODE || fp->f_ops == &path_fileops) {
654 error = EBADF;
655 fdrop(fp, td);
656 break;
657 }
658
659 if (flp->l_whence == SEEK_CUR) {
660 foffset = foffset_get(fp);
661 if (foffset < 0 ||
662 (flp->l_start > 0 &&
663 foffset > OFF_MAX - flp->l_start)) {
664 error = EOVERFLOW;
665 fdrop(fp, td);
666 break;
667 }
668 flp->l_start += foffset;
669 }
670
671 vp = fp->f_vnode;
672 switch (flp->l_type) {
673 case F_RDLCK:
674 if ((fp->f_flag & FREAD) == 0) {
675 error = EBADF;
676 break;
677 }
678 if ((p->p_leader->p_flag & P_ADVLOCK) == 0) {
679 PROC_LOCK(p->p_leader);
680 p->p_leader->p_flag |= P_ADVLOCK;
681 PROC_UNLOCK(p->p_leader);
682 }
683 error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
684 flp, flg);
685 break;
686 case F_WRLCK:
687 if ((fp->f_flag & FWRITE) == 0) {
688 error = EBADF;
689 break;
690 }
691 if ((p->p_leader->p_flag & P_ADVLOCK) == 0) {
692 PROC_LOCK(p->p_leader);
693 p->p_leader->p_flag |= P_ADVLOCK;
694 PROC_UNLOCK(p->p_leader);
695 }
696 error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
697 flp, flg);
698 break;
699 case F_UNLCK:
700 error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_UNLCK,
701 flp, flg);
702 break;
703 case F_UNLCKSYS:
704 if (flg != F_REMOTE) {
705 error = EINVAL;
706 break;
707 }
708 error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader,
709 F_UNLCKSYS, flp, flg);
710 break;
711 default:
712 error = EINVAL;
713 break;
714 }
715 if (error != 0 || flp->l_type == F_UNLCK ||
716 flp->l_type == F_UNLCKSYS) {
717 fdrop(fp, td);
718 break;
719 }
720
721 /*
722 * Check for a race with close.
723 *
724 * The vnode is now advisory locked (or unlocked, but this case
725 * is not really important) as the caller requested.
726 * We had to drop the filedesc lock, so we need to recheck if
727 * the descriptor is still valid, because if it was closed
728 * in the meantime we need to remove advisory lock from the
729 * vnode - close on any descriptor leading to an advisory
730 * locked vnode, removes that lock.
731 * We will return 0 on purpose in that case, as the result of
732 * successful advisory lock might have been externally visible
733 * already. This is fine - effectively we pretend to the caller
734 * that the closing thread was a bit slower and that the
735 * advisory lock succeeded before the close.
736 */
737 error = fget_unlocked(td, fd, &cap_no_rights, &fp2);
738 if (error != 0) {
739 fdrop(fp, td);
740 break;
741 }
742 if (fp != fp2) {
743 flp->l_whence = SEEK_SET;
744 flp->l_start = 0;
745 flp->l_len = 0;
746 flp->l_type = F_UNLCK;
747 (void) VOP_ADVLOCK(vp, (caddr_t)p->p_leader,
748 F_UNLCK, flp, F_POSIX);
749 }
750 fdrop(fp, td);
751 fdrop(fp2, td);
752 break;
753
754 case F_GETLK:
755 error = fget_unlocked(td, fd, &cap_flock_rights, &fp);
756 if (error != 0)
757 break;
758 if (fp->f_type != DTYPE_VNODE || fp->f_ops == &path_fileops) {
759 error = EBADF;
760 fdrop(fp, td);
761 break;
762 }
763 flp = (struct flock *)arg;
764 if (flp->l_type != F_RDLCK && flp->l_type != F_WRLCK &&
765 flp->l_type != F_UNLCK) {
766 error = EINVAL;
767 fdrop(fp, td);
768 break;
769 }
770 if (flp->l_whence == SEEK_CUR) {
771 foffset = foffset_get(fp);
772 if ((flp->l_start > 0 &&
773 foffset > OFF_MAX - flp->l_start) ||
774 (flp->l_start < 0 &&
775 foffset < OFF_MIN - flp->l_start)) {
776 error = EOVERFLOW;
777 fdrop(fp, td);
778 break;
779 }
780 flp->l_start += foffset;
781 }
782 vp = fp->f_vnode;
783 error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_GETLK, flp,
784 F_POSIX);
785 fdrop(fp, td);
786 break;
787
788 case F_ADD_SEALS:
789 error = fget_unlocked(td, fd, &cap_no_rights, &fp);
790 if (error != 0)
791 break;
792 error = fo_add_seals(fp, arg);
793 fdrop(fp, td);
794 break;
795
796 case F_GET_SEALS:
797 error = fget_unlocked(td, fd, &cap_no_rights, &fp);
798 if (error != 0)
799 break;
800 if (fo_get_seals(fp, &seals) == 0)
801 td->td_retval[0] = seals;
802 else
803 error = EINVAL;
804 fdrop(fp, td);
805 break;
806
807 case F_RDAHEAD:
808 arg = arg ? 128 * 1024: 0;
809 /* FALLTHROUGH */
810 case F_READAHEAD:
811 error = fget_unlocked(td, fd, &cap_no_rights, &fp);
812 if (error != 0)
813 break;
814 if (fp->f_type != DTYPE_VNODE || fp->f_ops == &path_fileops) {
815 fdrop(fp, td);
816 error = EBADF;
817 break;
818 }
819 vp = fp->f_vnode;
820 if (vp->v_type != VREG) {
821 fdrop(fp, td);
822 error = ENOTTY;
823 break;
824 }
825
826 /*
827 * Exclusive lock synchronizes against f_seqcount reads and
828 * writes in sequential_heuristic().
829 */
830 error = vn_lock(vp, LK_EXCLUSIVE);
831 if (error != 0) {
832 fdrop(fp, td);
833 break;
834 }
835 if (arg >= 0) {
836 bsize = fp->f_vnode->v_mount->mnt_stat.f_iosize;
837 arg = MIN(arg, INT_MAX - bsize + 1);
838 fp->f_seqcount[UIO_READ] = MIN(IO_SEQMAX,
839 (arg + bsize - 1) / bsize);
840 atomic_set_int(&fp->f_flag, FRDAHEAD);
841 } else {
842 atomic_clear_int(&fp->f_flag, FRDAHEAD);
843 }
844 VOP_UNLOCK(vp);
845 fdrop(fp, td);
846 break;
847
848 case F_ISUNIONSTACK:
849 /*
850 * Check if the vnode is part of a union stack (either the
851 * "union" flag from mount(2) or unionfs).
852 *
853 * Prior to introduction of this op libc's readdir would call
854 * fstatfs(2), in effect unnecessarily copying kilobytes of
855 * data just to check fs name and a mount flag.
856 *
857 * Fixing the code to handle everything in the kernel instead
858 * is a non-trivial endeavor and has low priority, thus this
859 * horrible kludge facilitates the current behavior in a much
860 * cheaper manner until someone(tm) sorts this out.
861 */
862 error = fget_unlocked(td, fd, &cap_no_rights, &fp);
863 if (error != 0)
864 break;
865 if (fp->f_type != DTYPE_VNODE) {
866 fdrop(fp, td);
867 error = EBADF;
868 break;
869 }
870 vp = fp->f_vnode;
871 /*
872 * Since we don't prevent dooming the vnode even non-null mp
873 * found can become immediately stale. This is tolerable since
874 * mount points are type-stable (providing safe memory access)
875 * and any vfs op on this vnode going forward will return an
876 * error (meaning return value in this case is meaningless).
877 */
878 mp = atomic_load_ptr(&vp->v_mount);
879 if (__predict_false(mp == NULL)) {
880 fdrop(fp, td);
881 error = EBADF;
882 break;
883 }
884 td->td_retval[0] = 0;
885 if (mp->mnt_kern_flag & MNTK_UNIONFS ||
886 mp->mnt_flag & MNT_UNION)
887 td->td_retval[0] = 1;
888 fdrop(fp, td);
889 break;
890
891 case F_KINFO:
892 #ifdef CAPABILITY_MODE
893 if (CAP_TRACING(td))
894 ktrcapfail(CAPFAIL_SYSCALL, &cmd);
895 if (IN_CAPABILITY_MODE(td)) {
896 error = ECAPMODE;
897 break;
898 }
899 #endif
900 error = copyin((void *)arg, &kif_sz, sizeof(kif_sz));
901 if (error != 0)
902 break;
903 if (kif_sz != sizeof(*kif)) {
904 error = EINVAL;
905 break;
906 }
907 kif = malloc(sizeof(*kif), M_TEMP, M_WAITOK | M_ZERO);
908 FILEDESC_SLOCK(fdp);
909 error = fget_cap_noref(fdp, fd, &cap_fcntl_rights, &fp, NULL);
910 if (error == 0 && fhold(fp)) {
911 export_file_to_kinfo(fp, fd, NULL, kif, fdp, 0);
912 FILEDESC_SUNLOCK(fdp);
913 fdrop(fp, td);
914 if ((kif->kf_status & KF_ATTR_VALID) != 0) {
915 kif->kf_structsize = sizeof(*kif);
916 error = copyout(kif, (void *)arg, sizeof(*kif));
917 } else {
918 error = EBADF;
919 }
920 } else {
921 FILEDESC_SUNLOCK(fdp);
922 if (error == 0)
923 error = EBADF;
924 }
925 free(kif, M_TEMP);
926 break;
927
928 default:
929 if ((cmd & ((1u << F_DUP3FD_SHIFT) - 1)) != F_DUP3FD)
930 return (EXTERROR(EINVAL, "invalid fcntl cmd"));
931 /* Handle F_DUP3FD */
932 flags = (cmd >> F_DUP3FD_SHIFT);
933 if ((flags & ~(FD_CLOEXEC | FD_CLOFORK)) != 0)
934 return (EXTERROR(EINVAL, "invalid flags for F_DUP3FD"));
935 tmp = arg;
936 error = kern_dup(td, FDDUP_FIXED,
937 ((flags & FD_CLOEXEC) != 0 ? FDDUP_FLAG_CLOEXEC : 0) |
938 ((flags & FD_CLOFORK) != 0 ? FDDUP_FLAG_CLOFORK : 0),
939 fd, tmp);
940 break;
941 }
942 return (error);
943 }
944
945 static int
getmaxfd(struct thread * td)946 getmaxfd(struct thread *td)
947 {
948
949 return (min((int)lim_cur(td, RLIMIT_NOFILE), maxfilesperproc));
950 }
951
952 /*
953 * Common code for dup, dup2, fcntl(F_DUPFD) and fcntl(F_DUP2FD).
954 */
955 int
kern_dup(struct thread * td,u_int mode,int flags,int old,int new)956 kern_dup(struct thread *td, u_int mode, int flags, int old, int new)
957 {
958 struct filedesc *fdp;
959 struct filedescent *oldfde, *newfde;
960 struct proc *p;
961 struct file *delfp, *oldfp;
962 u_long *oioctls, *nioctls;
963 int error, maxfd;
964
965 p = td->td_proc;
966 fdp = p->p_fd;
967 oioctls = NULL;
968
969 MPASS((flags & ~(FDDUP_FLAG_CLOEXEC | FDDUP_FLAG_CLOFORK)) == 0);
970 MPASS(mode < FDDUP_LASTMODE);
971
972 AUDIT_ARG_FD(old);
973 /* XXXRW: if (flags & FDDUP_FIXED) AUDIT_ARG_FD2(new); */
974
975 /*
976 * Verify we have a valid descriptor to dup from and possibly to
977 * dup to. Unlike dup() and dup2(), fcntl()'s F_DUPFD should
978 * return EINVAL when the new descriptor is out of bounds.
979 */
980 if (old < 0)
981 return (EBADF);
982 if (new < 0)
983 return (mode == FDDUP_FCNTL ? EINVAL : EBADF);
984 maxfd = getmaxfd(td);
985 if (new >= maxfd)
986 return (mode == FDDUP_FCNTL ? EINVAL : EBADF);
987
988 error = EBADF;
989 FILEDESC_XLOCK(fdp);
990 if (fget_noref(fdp, old) == NULL)
991 goto unlock;
992 if (mode == FDDUP_FIXED && old == new) {
993 td->td_retval[0] = new;
994 if ((flags & FDDUP_FLAG_CLOEXEC) != 0)
995 fdp->fd_ofiles[new].fde_flags |= UF_EXCLOSE;
996 if ((flags & FDDUP_FLAG_CLOFORK) != 0)
997 fdp->fd_ofiles[new].fde_flags |= UF_FOCLOSE;
998 error = 0;
999 goto unlock;
1000 }
1001
1002 oldfde = &fdp->fd_ofiles[old];
1003 oldfp = oldfde->fde_file;
1004 if (!fhold(oldfp))
1005 goto unlock;
1006
1007 /*
1008 * If the caller specified a file descriptor, make sure the file
1009 * table is large enough to hold it, and grab it. Otherwise, just
1010 * allocate a new descriptor the usual way.
1011 */
1012 switch (mode) {
1013 case FDDUP_NORMAL:
1014 case FDDUP_FCNTL:
1015 if ((error = fdalloc(td, new, &new)) != 0) {
1016 fdrop(oldfp, td);
1017 goto unlock;
1018 }
1019 break;
1020 case FDDUP_FIXED:
1021 if (new >= fdp->fd_nfiles) {
1022 /*
1023 * The resource limits are here instead of e.g.
1024 * fdalloc(), because the file descriptor table may be
1025 * shared between processes, so we can't really use
1026 * racct_add()/racct_sub(). Instead of counting the
1027 * number of actually allocated descriptors, just put
1028 * the limit on the size of the file descriptor table.
1029 */
1030 #ifdef RACCT
1031 if (RACCT_ENABLED()) {
1032 error = racct_set_unlocked(p, RACCT_NOFILE, new + 1);
1033 if (error != 0) {
1034 error = EMFILE;
1035 fdrop(oldfp, td);
1036 goto unlock;
1037 }
1038 }
1039 #endif
1040 fdgrowtable_exp(fdp, new + 1);
1041 }
1042 if (!fdisused(fdp, new))
1043 fdused(fdp, new);
1044 break;
1045 default:
1046 KASSERT(0, ("%s unsupported mode %d", __func__, mode));
1047 }
1048
1049 KASSERT(old != new, ("new fd is same as old"));
1050
1051 /* Refetch oldfde because the table may have grown and old one freed. */
1052 oldfde = &fdp->fd_ofiles[old];
1053 KASSERT(oldfp == oldfde->fde_file,
1054 ("fdt_ofiles shift from growth observed at fd %d",
1055 old));
1056
1057 newfde = &fdp->fd_ofiles[new];
1058 delfp = newfde->fde_file;
1059
1060 nioctls = filecaps_copy_prep(&oldfde->fde_caps);
1061
1062 /*
1063 * Duplicate the source descriptor.
1064 */
1065 #ifdef CAPABILITIES
1066 seqc_write_begin(&newfde->fde_seqc);
1067 #endif
1068 oioctls = filecaps_free_prep(&newfde->fde_caps);
1069 fde_copy(oldfde, newfde);
1070 filecaps_copy_finish(&oldfde->fde_caps, &newfde->fde_caps,
1071 nioctls);
1072 newfde->fde_flags = (oldfde->fde_flags & ~(UF_EXCLOSE | UF_FOCLOSE)) |
1073 ((flags & FDDUP_FLAG_CLOEXEC) != 0 ? UF_EXCLOSE : 0) |
1074 ((flags & FDDUP_FLAG_CLOFORK) != 0 ? UF_FOCLOSE : 0);
1075 #ifdef CAPABILITIES
1076 seqc_write_end(&newfde->fde_seqc);
1077 #endif
1078 td->td_retval[0] = new;
1079
1080 error = 0;
1081
1082 if (delfp != NULL) {
1083 (void) closefp(fdp, new, delfp, td, true, false);
1084 FILEDESC_UNLOCK_ASSERT(fdp);
1085 } else {
1086 unlock:
1087 FILEDESC_XUNLOCK(fdp);
1088 }
1089
1090 filecaps_free_finish(oioctls);
1091 return (error);
1092 }
1093
1094 static void
sigiofree(struct sigio * sigio)1095 sigiofree(struct sigio *sigio)
1096 {
1097 crfree(sigio->sio_ucred);
1098 free(sigio, M_SIGIO);
1099 }
1100
1101 static struct sigio *
funsetown_locked(struct sigio * sigio)1102 funsetown_locked(struct sigio *sigio)
1103 {
1104 struct proc *p;
1105 struct pgrp *pg;
1106
1107 SIGIO_ASSERT_LOCKED();
1108
1109 if (sigio == NULL)
1110 return (NULL);
1111 *sigio->sio_myref = NULL;
1112 if (sigio->sio_pgid < 0) {
1113 pg = sigio->sio_pgrp;
1114 PGRP_LOCK(pg);
1115 SLIST_REMOVE(&pg->pg_sigiolst, sigio, sigio, sio_pgsigio);
1116 PGRP_UNLOCK(pg);
1117 } else {
1118 p = sigio->sio_proc;
1119 PROC_LOCK(p);
1120 SLIST_REMOVE(&p->p_sigiolst, sigio, sigio, sio_pgsigio);
1121 PROC_UNLOCK(p);
1122 }
1123 return (sigio);
1124 }
1125
1126 /*
1127 * If sigio is on the list associated with a process or process group,
1128 * disable signalling from the device, remove sigio from the list and
1129 * free sigio.
1130 */
1131 void
funsetown(struct sigio ** sigiop)1132 funsetown(struct sigio **sigiop)
1133 {
1134 struct sigio *sigio;
1135
1136 /* Racy check, consumers must provide synchronization. */
1137 if (*sigiop == NULL)
1138 return;
1139
1140 SIGIO_LOCK();
1141 sigio = funsetown_locked(*sigiop);
1142 SIGIO_UNLOCK();
1143 if (sigio != NULL)
1144 sigiofree(sigio);
1145 }
1146
1147 /*
1148 * Free a list of sigio structures. The caller must ensure that new sigio
1149 * structures cannot be added after this point. For process groups this is
1150 * guaranteed using the proctree lock; for processes, the P_WEXIT flag serves
1151 * as an interlock.
1152 */
1153 void
funsetownlst(struct sigiolst * sigiolst)1154 funsetownlst(struct sigiolst *sigiolst)
1155 {
1156 struct proc *p;
1157 struct pgrp *pg;
1158 struct sigio *sigio, *tmp;
1159
1160 /* Racy check. */
1161 sigio = SLIST_FIRST(sigiolst);
1162 if (sigio == NULL)
1163 return;
1164
1165 p = NULL;
1166 pg = NULL;
1167
1168 SIGIO_LOCK();
1169 sigio = SLIST_FIRST(sigiolst);
1170 if (sigio == NULL) {
1171 SIGIO_UNLOCK();
1172 return;
1173 }
1174
1175 /*
1176 * Every entry of the list should belong to a single proc or pgrp.
1177 */
1178 if (sigio->sio_pgid < 0) {
1179 pg = sigio->sio_pgrp;
1180 sx_assert(&proctree_lock, SX_XLOCKED);
1181 PGRP_LOCK(pg);
1182 } else /* if (sigio->sio_pgid > 0) */ {
1183 p = sigio->sio_proc;
1184 PROC_LOCK(p);
1185 KASSERT((p->p_flag & P_WEXIT) != 0,
1186 ("%s: process %p is not exiting", __func__, p));
1187 }
1188
1189 SLIST_FOREACH(sigio, sigiolst, sio_pgsigio) {
1190 *sigio->sio_myref = NULL;
1191 if (pg != NULL) {
1192 KASSERT(sigio->sio_pgid < 0,
1193 ("Proc sigio in pgrp sigio list"));
1194 KASSERT(sigio->sio_pgrp == pg,
1195 ("Bogus pgrp in sigio list"));
1196 } else /* if (p != NULL) */ {
1197 KASSERT(sigio->sio_pgid > 0,
1198 ("Pgrp sigio in proc sigio list"));
1199 KASSERT(sigio->sio_proc == p,
1200 ("Bogus proc in sigio list"));
1201 }
1202 }
1203
1204 if (pg != NULL)
1205 PGRP_UNLOCK(pg);
1206 else
1207 PROC_UNLOCK(p);
1208 SIGIO_UNLOCK();
1209
1210 SLIST_FOREACH_SAFE(sigio, sigiolst, sio_pgsigio, tmp)
1211 sigiofree(sigio);
1212 }
1213
1214 /*
1215 * This is common code for FIOSETOWN ioctl called by fcntl(fd, F_SETOWN, arg).
1216 *
1217 * After permission checking, add a sigio structure to the sigio list for
1218 * the process or process group.
1219 */
1220 int
fsetown(pid_t pgid,struct sigio ** sigiop)1221 fsetown(pid_t pgid, struct sigio **sigiop)
1222 {
1223 struct proc *proc;
1224 struct pgrp *pgrp;
1225 struct sigio *osigio, *sigio;
1226 int ret;
1227
1228 if (pgid == 0) {
1229 funsetown(sigiop);
1230 return (0);
1231 }
1232
1233 sigio = malloc(sizeof(struct sigio), M_SIGIO, M_WAITOK);
1234 sigio->sio_pgid = pgid;
1235 sigio->sio_ucred = crhold(curthread->td_ucred);
1236 sigio->sio_myref = sigiop;
1237
1238 ret = 0;
1239 if (pgid > 0) {
1240 ret = pget(pgid, PGET_NOTWEXIT | PGET_NOTID | PGET_HOLD, &proc);
1241 SIGIO_LOCK();
1242 osigio = funsetown_locked(*sigiop);
1243 if (ret == 0) {
1244 PROC_LOCK(proc);
1245 _PRELE(proc);
1246 if ((proc->p_flag & P_WEXIT) != 0) {
1247 ret = ESRCH;
1248 } else if (proc->p_session !=
1249 curthread->td_proc->p_session) {
1250 /*
1251 * Policy - Don't allow a process to FSETOWN a
1252 * process in another session.
1253 *
1254 * Remove this test to allow maximum flexibility
1255 * or restrict FSETOWN to the current process or
1256 * process group for maximum safety.
1257 */
1258 ret = EPERM;
1259 } else {
1260 sigio->sio_proc = proc;
1261 SLIST_INSERT_HEAD(&proc->p_sigiolst, sigio,
1262 sio_pgsigio);
1263 }
1264 PROC_UNLOCK(proc);
1265 }
1266 } else /* if (pgid < 0) */ {
1267 sx_slock(&proctree_lock);
1268 SIGIO_LOCK();
1269 osigio = funsetown_locked(*sigiop);
1270 pgrp = pgfind(-pgid);
1271 if (pgrp == NULL) {
1272 ret = ESRCH;
1273 } else {
1274 if (pgrp->pg_session != curthread->td_proc->p_session) {
1275 /*
1276 * Policy - Don't allow a process to FSETOWN a
1277 * process in another session.
1278 *
1279 * Remove this test to allow maximum flexibility
1280 * or restrict FSETOWN to the current process or
1281 * process group for maximum safety.
1282 */
1283 ret = EPERM;
1284 } else {
1285 sigio->sio_pgrp = pgrp;
1286 SLIST_INSERT_HEAD(&pgrp->pg_sigiolst, sigio,
1287 sio_pgsigio);
1288 }
1289 PGRP_UNLOCK(pgrp);
1290 }
1291 sx_sunlock(&proctree_lock);
1292 }
1293 if (ret == 0)
1294 *sigiop = sigio;
1295 SIGIO_UNLOCK();
1296 if (osigio != NULL)
1297 sigiofree(osigio);
1298 return (ret);
1299 }
1300
1301 /*
1302 * This is common code for FIOGETOWN ioctl called by fcntl(fd, F_GETOWN, arg).
1303 */
1304 pid_t
fgetown(struct sigio ** sigiop)1305 fgetown(struct sigio **sigiop)
1306 {
1307 pid_t pgid;
1308
1309 SIGIO_LOCK();
1310 pgid = (*sigiop != NULL) ? (*sigiop)->sio_pgid : 0;
1311 SIGIO_UNLOCK();
1312 return (pgid);
1313 }
1314
1315 static int
closefp_impl(struct filedesc * fdp,int fd,struct file * fp,struct thread * td,bool audit)1316 closefp_impl(struct filedesc *fdp, int fd, struct file *fp, struct thread *td,
1317 bool audit)
1318 {
1319 int error;
1320
1321 FILEDESC_XLOCK_ASSERT(fdp);
1322
1323 /*
1324 * We now hold the fp reference that used to be owned by the
1325 * descriptor array. We have to unlock the FILEDESC *AFTER*
1326 * knote_fdclose to prevent a race of the fd getting opened, a knote
1327 * added, and deleteing a knote for the new fd.
1328 */
1329 if (__predict_false(!TAILQ_EMPTY(&fdp->fd_kqlist)))
1330 knote_fdclose(td, fd);
1331
1332 /*
1333 * We need to notify mqueue if the object is of type mqueue.
1334 */
1335 if (__predict_false(fp->f_type == DTYPE_MQUEUE))
1336 mq_fdclose(td, fd, fp);
1337 FILEDESC_XUNLOCK(fdp);
1338
1339 #ifdef AUDIT
1340 if (AUDITING_TD(td) && audit)
1341 audit_sysclose(td, fd, fp);
1342 #endif
1343 error = closef(fp, td);
1344
1345 /*
1346 * All paths leading up to closefp() will have already removed or
1347 * replaced the fd in the filedesc table, so a restart would not
1348 * operate on the same file.
1349 */
1350 if (error == ERESTART)
1351 error = EINTR;
1352
1353 return (error);
1354 }
1355
1356 static int
closefp_hl(struct filedesc * fdp,int fd,struct file * fp,struct thread * td,bool holdleaders,bool audit)1357 closefp_hl(struct filedesc *fdp, int fd, struct file *fp, struct thread *td,
1358 bool holdleaders, bool audit)
1359 {
1360 int error;
1361
1362 FILEDESC_XLOCK_ASSERT(fdp);
1363
1364 if (holdleaders) {
1365 if (td->td_proc->p_fdtol != NULL) {
1366 /*
1367 * Ask fdfree() to sleep to ensure that all relevant
1368 * process leaders can be traversed in closef().
1369 */
1370 fdp->fd_holdleaderscount++;
1371 } else {
1372 holdleaders = false;
1373 }
1374 }
1375
1376 error = closefp_impl(fdp, fd, fp, td, audit);
1377 if (holdleaders) {
1378 FILEDESC_XLOCK(fdp);
1379 fdp->fd_holdleaderscount--;
1380 if (fdp->fd_holdleaderscount == 0 &&
1381 fdp->fd_holdleaderswakeup != 0) {
1382 fdp->fd_holdleaderswakeup = 0;
1383 wakeup(&fdp->fd_holdleaderscount);
1384 }
1385 FILEDESC_XUNLOCK(fdp);
1386 }
1387 return (error);
1388 }
1389
1390 static int
closefp(struct filedesc * fdp,int fd,struct file * fp,struct thread * td,bool holdleaders,bool audit)1391 closefp(struct filedesc *fdp, int fd, struct file *fp, struct thread *td,
1392 bool holdleaders, bool audit)
1393 {
1394
1395 FILEDESC_XLOCK_ASSERT(fdp);
1396
1397 if (__predict_false(td->td_proc->p_fdtol != NULL)) {
1398 return (closefp_hl(fdp, fd, fp, td, holdleaders, audit));
1399 } else {
1400 return (closefp_impl(fdp, fd, fp, td, audit));
1401 }
1402 }
1403
1404 /*
1405 * Close a file descriptor.
1406 */
1407 #ifndef _SYS_SYSPROTO_H_
1408 struct close_args {
1409 int fd;
1410 };
1411 #endif
1412 /* ARGSUSED */
1413 int
sys_close(struct thread * td,struct close_args * uap)1414 sys_close(struct thread *td, struct close_args *uap)
1415 {
1416
1417 return (kern_close(td, uap->fd));
1418 }
1419
1420 int
kern_close(struct thread * td,int fd)1421 kern_close(struct thread *td, int fd)
1422 {
1423 struct filedesc *fdp;
1424 struct file *fp;
1425
1426 fdp = td->td_proc->p_fd;
1427
1428 FILEDESC_XLOCK(fdp);
1429 if ((fp = fget_noref(fdp, fd)) == NULL) {
1430 FILEDESC_XUNLOCK(fdp);
1431 return (EBADF);
1432 }
1433 fdfree(fdp, fd);
1434
1435 /* closefp() drops the FILEDESC lock for us. */
1436 return (closefp(fdp, fd, fp, td, true, true));
1437 }
1438
1439 static int
close_range_flags(struct thread * td,u_int lowfd,u_int highfd,int flags)1440 close_range_flags(struct thread *td, u_int lowfd, u_int highfd, int flags)
1441 {
1442 struct filedesc *fdp;
1443 struct fdescenttbl *fdt;
1444 struct filedescent *fde;
1445 int fd, fde_flags;
1446
1447 fde_flags = ((flags & CLOSE_RANGE_CLOEXEC) != 0 ? UF_EXCLOSE : 0) |
1448 ((flags & CLOSE_RANGE_CLOFORK) != 0 ? UF_FOCLOSE : 0);
1449 fdp = td->td_proc->p_fd;
1450 FILEDESC_XLOCK(fdp);
1451 fdt = atomic_load_ptr(&fdp->fd_files);
1452 highfd = MIN(highfd, fdt->fdt_nfiles - 1);
1453 fd = lowfd;
1454 if (__predict_false(fd > highfd)) {
1455 goto out_locked;
1456 }
1457 for (; fd <= highfd; fd++) {
1458 fde = &fdt->fdt_ofiles[fd];
1459 if (fde->fde_file != NULL)
1460 fde->fde_flags |= fde_flags;
1461 }
1462 out_locked:
1463 FILEDESC_XUNLOCK(fdp);
1464 return (0);
1465 }
1466
1467 static int
close_range_impl(struct thread * td,u_int lowfd,u_int highfd)1468 close_range_impl(struct thread *td, u_int lowfd, u_int highfd)
1469 {
1470 struct filedesc *fdp;
1471 const struct fdescenttbl *fdt;
1472 struct file *fp;
1473 int fd;
1474
1475 fdp = td->td_proc->p_fd;
1476 FILEDESC_XLOCK(fdp);
1477 fdt = atomic_load_ptr(&fdp->fd_files);
1478 highfd = MIN(highfd, fdt->fdt_nfiles - 1);
1479 fd = lowfd;
1480 if (__predict_false(fd > highfd)) {
1481 goto out_locked;
1482 }
1483 for (;;) {
1484 fp = fdt->fdt_ofiles[fd].fde_file;
1485 if (fp == NULL) {
1486 if (fd == highfd)
1487 goto out_locked;
1488 } else {
1489 fdfree(fdp, fd);
1490 (void) closefp(fdp, fd, fp, td, true, true);
1491 if (fd == highfd)
1492 goto out_unlocked;
1493 FILEDESC_XLOCK(fdp);
1494 fdt = atomic_load_ptr(&fdp->fd_files);
1495 }
1496 fd++;
1497 }
1498 out_locked:
1499 FILEDESC_XUNLOCK(fdp);
1500 out_unlocked:
1501 return (0);
1502 }
1503
1504 int
kern_close_range(struct thread * td,int flags,u_int lowfd,u_int highfd)1505 kern_close_range(struct thread *td, int flags, u_int lowfd, u_int highfd)
1506 {
1507
1508 /*
1509 * Check this prior to clamping; closefrom(3) with only fd 0, 1, and 2
1510 * open should not be a usage error. From a close_range() perspective,
1511 * close_range(3, ~0U, 0) in the same scenario should also likely not
1512 * be a usage error as all fd above 3 are in-fact already closed.
1513 */
1514 if (highfd < lowfd) {
1515 return (EINVAL);
1516 }
1517
1518 if ((flags & (CLOSE_RANGE_CLOEXEC | CLOSE_RANGE_CLOFORK)) != 0)
1519 return (close_range_flags(td, lowfd, highfd, flags));
1520
1521 return (close_range_impl(td, lowfd, highfd));
1522 }
1523
1524 #ifndef _SYS_SYSPROTO_H_
1525 struct close_range_args {
1526 u_int lowfd;
1527 u_int highfd;
1528 int flags;
1529 };
1530 #endif
1531 int
sys_close_range(struct thread * td,struct close_range_args * uap)1532 sys_close_range(struct thread *td, struct close_range_args *uap)
1533 {
1534
1535 AUDIT_ARG_FD(uap->lowfd);
1536 AUDIT_ARG_CMD(uap->highfd);
1537 AUDIT_ARG_FFLAGS(uap->flags);
1538
1539 if ((uap->flags & ~(CLOSE_RANGE_CLOEXEC | CLOSE_RANGE_CLOFORK)) != 0)
1540 return (EINVAL);
1541 return (kern_close_range(td, uap->flags, uap->lowfd, uap->highfd));
1542 }
1543
1544 #ifdef COMPAT_FREEBSD12
1545 /*
1546 * Close open file descriptors.
1547 */
1548 #ifndef _SYS_SYSPROTO_H_
1549 struct freebsd12_closefrom_args {
1550 int lowfd;
1551 };
1552 #endif
1553 /* ARGSUSED */
1554 int
freebsd12_closefrom(struct thread * td,struct freebsd12_closefrom_args * uap)1555 freebsd12_closefrom(struct thread *td, struct freebsd12_closefrom_args *uap)
1556 {
1557 u_int lowfd;
1558
1559 AUDIT_ARG_FD(uap->lowfd);
1560
1561 /*
1562 * Treat negative starting file descriptor values identical to
1563 * closefrom(0) which closes all files.
1564 */
1565 lowfd = MAX(0, uap->lowfd);
1566 return (kern_close_range(td, 0, lowfd, ~0U));
1567 }
1568 #endif /* COMPAT_FREEBSD12 */
1569
1570 #if defined(COMPAT_43)
1571 /*
1572 * Return status information about a file descriptor.
1573 */
1574 #ifndef _SYS_SYSPROTO_H_
1575 struct ofstat_args {
1576 int fd;
1577 struct ostat *sb;
1578 };
1579 #endif
1580 /* ARGSUSED */
1581 int
ofstat(struct thread * td,struct ofstat_args * uap)1582 ofstat(struct thread *td, struct ofstat_args *uap)
1583 {
1584 struct ostat oub;
1585 struct stat ub;
1586 int error;
1587
1588 error = kern_fstat(td, uap->fd, &ub);
1589 if (error == 0) {
1590 cvtstat(&ub, &oub);
1591 error = copyout(&oub, uap->sb, sizeof(oub));
1592 }
1593 return (error);
1594 }
1595 #endif /* COMPAT_43 */
1596
1597 #if defined(COMPAT_FREEBSD11)
1598 int
freebsd11_fstat(struct thread * td,struct freebsd11_fstat_args * uap)1599 freebsd11_fstat(struct thread *td, struct freebsd11_fstat_args *uap)
1600 {
1601 struct stat sb;
1602 struct freebsd11_stat osb;
1603 int error;
1604
1605 error = kern_fstat(td, uap->fd, &sb);
1606 if (error != 0)
1607 return (error);
1608 error = freebsd11_cvtstat(&sb, &osb);
1609 if (error == 0)
1610 error = copyout(&osb, uap->sb, sizeof(osb));
1611 return (error);
1612 }
1613 #endif /* COMPAT_FREEBSD11 */
1614
1615 /*
1616 * Return status information about a file descriptor.
1617 */
1618 #ifndef _SYS_SYSPROTO_H_
1619 struct fstat_args {
1620 int fd;
1621 struct stat *sb;
1622 };
1623 #endif
1624 /* ARGSUSED */
1625 int
sys_fstat(struct thread * td,struct fstat_args * uap)1626 sys_fstat(struct thread *td, struct fstat_args *uap)
1627 {
1628 struct stat ub;
1629 int error;
1630
1631 error = kern_fstat(td, uap->fd, &ub);
1632 if (error == 0)
1633 error = copyout(&ub, uap->sb, sizeof(ub));
1634 return (error);
1635 }
1636
1637 int
kern_fstat(struct thread * td,int fd,struct stat * sbp)1638 kern_fstat(struct thread *td, int fd, struct stat *sbp)
1639 {
1640 struct file *fp;
1641 int error;
1642
1643 AUDIT_ARG_FD(fd);
1644
1645 error = fget(td, fd, &cap_fstat_rights, &fp);
1646 if (__predict_false(error != 0))
1647 return (error);
1648
1649 AUDIT_ARG_FILE(td->td_proc, fp);
1650
1651 sbp->st_filerev = 0;
1652 sbp->st_bsdflags = 0;
1653 error = fo_stat(fp, sbp, td->td_ucred);
1654 fdrop(fp, td);
1655 #ifdef __STAT_TIME_T_EXT
1656 sbp->st_atim_ext = 0;
1657 sbp->st_mtim_ext = 0;
1658 sbp->st_ctim_ext = 0;
1659 sbp->st_btim_ext = 0;
1660 #endif
1661 #ifdef KTRACE
1662 if (KTRPOINT(td, KTR_STRUCT))
1663 ktrstat_error(sbp, error);
1664 #endif
1665 return (error);
1666 }
1667
1668 #if defined(COMPAT_FREEBSD11)
1669 /*
1670 * Return status information about a file descriptor.
1671 */
1672 #ifndef _SYS_SYSPROTO_H_
1673 struct freebsd11_nfstat_args {
1674 int fd;
1675 struct nstat *sb;
1676 };
1677 #endif
1678 /* ARGSUSED */
1679 int
freebsd11_nfstat(struct thread * td,struct freebsd11_nfstat_args * uap)1680 freebsd11_nfstat(struct thread *td, struct freebsd11_nfstat_args *uap)
1681 {
1682 struct nstat nub;
1683 struct stat ub;
1684 int error;
1685
1686 error = kern_fstat(td, uap->fd, &ub);
1687 if (error != 0)
1688 return (error);
1689 error = freebsd11_cvtnstat(&ub, &nub);
1690 if (error != 0)
1691 error = copyout(&nub, uap->sb, sizeof(nub));
1692 return (error);
1693 }
1694 #endif /* COMPAT_FREEBSD11 */
1695
1696 /*
1697 * Return pathconf information about a file descriptor.
1698 */
1699 #ifndef _SYS_SYSPROTO_H_
1700 struct fpathconf_args {
1701 int fd;
1702 int name;
1703 };
1704 #endif
1705 /* ARGSUSED */
1706 int
sys_fpathconf(struct thread * td,struct fpathconf_args * uap)1707 sys_fpathconf(struct thread *td, struct fpathconf_args *uap)
1708 {
1709 long value;
1710 int error;
1711
1712 error = kern_fpathconf(td, uap->fd, uap->name, &value);
1713 if (error == 0)
1714 td->td_retval[0] = value;
1715 return (error);
1716 }
1717
1718 int
kern_fpathconf(struct thread * td,int fd,int name,long * valuep)1719 kern_fpathconf(struct thread *td, int fd, int name, long *valuep)
1720 {
1721 struct file *fp;
1722 struct vnode *vp;
1723 int error;
1724
1725 error = fget(td, fd, &cap_fpathconf_rights, &fp);
1726 if (error != 0)
1727 return (error);
1728
1729 if (name == _PC_ASYNC_IO) {
1730 *valuep = _POSIX_ASYNCHRONOUS_IO;
1731 goto out;
1732 }
1733 vp = fp->f_vnode;
1734 if (vp != NULL) {
1735 vn_lock(vp, LK_SHARED | LK_RETRY);
1736 error = VOP_PATHCONF(vp, name, valuep);
1737 VOP_UNLOCK(vp);
1738 } else if (fp->f_type == DTYPE_PIPE || fp->f_type == DTYPE_SOCKET) {
1739 if (name != _PC_PIPE_BUF) {
1740 error = EINVAL;
1741 } else {
1742 *valuep = PIPE_BUF;
1743 error = 0;
1744 }
1745 } else {
1746 error = EOPNOTSUPP;
1747 }
1748 out:
1749 fdrop(fp, td);
1750 return (error);
1751 }
1752
1753 /*
1754 * Copy filecaps structure allocating memory for ioctls array if needed.
1755 *
1756 * The last parameter indicates whether the fdtable is locked. If it is not and
1757 * ioctls are encountered, copying fails and the caller must lock the table.
1758 *
1759 * Note that if the table was not locked, the caller has to check the relevant
1760 * sequence counter to determine whether the operation was successful.
1761 */
1762 bool
filecaps_copy(const struct filecaps * src,struct filecaps * dst,bool locked)1763 filecaps_copy(const struct filecaps *src, struct filecaps *dst, bool locked)
1764 {
1765 size_t size;
1766
1767 if (src->fc_ioctls != NULL && !locked)
1768 return (false);
1769 memcpy(dst, src, sizeof(*src));
1770 if (src->fc_ioctls == NULL)
1771 return (true);
1772
1773 KASSERT(src->fc_nioctls > 0,
1774 ("fc_ioctls != NULL, but fc_nioctls=%hd", src->fc_nioctls));
1775
1776 size = sizeof(src->fc_ioctls[0]) * src->fc_nioctls;
1777 dst->fc_ioctls = malloc(size, M_FILECAPS, M_WAITOK);
1778 memcpy(dst->fc_ioctls, src->fc_ioctls, size);
1779 return (true);
1780 }
1781
1782 static u_long *
filecaps_copy_prep(const struct filecaps * src)1783 filecaps_copy_prep(const struct filecaps *src)
1784 {
1785 u_long *ioctls;
1786 size_t size;
1787
1788 if (__predict_true(src->fc_ioctls == NULL))
1789 return (NULL);
1790
1791 KASSERT(src->fc_nioctls > 0,
1792 ("fc_ioctls != NULL, but fc_nioctls=%hd", src->fc_nioctls));
1793
1794 size = sizeof(src->fc_ioctls[0]) * src->fc_nioctls;
1795 ioctls = malloc(size, M_FILECAPS, M_WAITOK);
1796 return (ioctls);
1797 }
1798
1799 static void
filecaps_copy_finish(const struct filecaps * src,struct filecaps * dst,u_long * ioctls)1800 filecaps_copy_finish(const struct filecaps *src, struct filecaps *dst,
1801 u_long *ioctls)
1802 {
1803 size_t size;
1804
1805 *dst = *src;
1806 if (__predict_true(src->fc_ioctls == NULL)) {
1807 MPASS(ioctls == NULL);
1808 return;
1809 }
1810
1811 size = sizeof(src->fc_ioctls[0]) * src->fc_nioctls;
1812 dst->fc_ioctls = ioctls;
1813 bcopy(src->fc_ioctls, dst->fc_ioctls, size);
1814 }
1815
1816 /*
1817 * Move filecaps structure to the new place and clear the old place.
1818 */
1819 void
filecaps_move(struct filecaps * src,struct filecaps * dst)1820 filecaps_move(struct filecaps *src, struct filecaps *dst)
1821 {
1822
1823 *dst = *src;
1824 bzero(src, sizeof(*src));
1825 }
1826
1827 /*
1828 * Fill the given filecaps structure with full rights.
1829 */
1830 static void
filecaps_fill(struct filecaps * fcaps)1831 filecaps_fill(struct filecaps *fcaps)
1832 {
1833
1834 CAP_ALL(&fcaps->fc_rights);
1835 fcaps->fc_ioctls = NULL;
1836 fcaps->fc_nioctls = -1;
1837 fcaps->fc_fcntls = CAP_FCNTL_ALL;
1838 }
1839
1840 /*
1841 * Free memory allocated within filecaps structure.
1842 */
1843 static void
filecaps_free_ioctl(struct filecaps * fcaps)1844 filecaps_free_ioctl(struct filecaps *fcaps)
1845 {
1846
1847 free(fcaps->fc_ioctls, M_FILECAPS);
1848 fcaps->fc_ioctls = NULL;
1849 }
1850
1851 void
filecaps_free(struct filecaps * fcaps)1852 filecaps_free(struct filecaps *fcaps)
1853 {
1854
1855 filecaps_free_ioctl(fcaps);
1856 bzero(fcaps, sizeof(*fcaps));
1857 }
1858
1859 static u_long *
filecaps_free_prep(struct filecaps * fcaps)1860 filecaps_free_prep(struct filecaps *fcaps)
1861 {
1862 u_long *ioctls;
1863
1864 ioctls = fcaps->fc_ioctls;
1865 bzero(fcaps, sizeof(*fcaps));
1866 return (ioctls);
1867 }
1868
1869 static void
filecaps_free_finish(u_long * ioctls)1870 filecaps_free_finish(u_long *ioctls)
1871 {
1872
1873 free(ioctls, M_FILECAPS);
1874 }
1875
1876 /*
1877 * Validate the given filecaps structure.
1878 */
1879 static void
filecaps_validate(const struct filecaps * fcaps,const char * func)1880 filecaps_validate(const struct filecaps *fcaps, const char *func)
1881 {
1882
1883 KASSERT(cap_rights_is_valid(&fcaps->fc_rights),
1884 ("%s: invalid rights", func));
1885 KASSERT((fcaps->fc_fcntls & ~CAP_FCNTL_ALL) == 0,
1886 ("%s: invalid fcntls", func));
1887 KASSERT(fcaps->fc_fcntls == 0 ||
1888 cap_rights_is_set(&fcaps->fc_rights, CAP_FCNTL),
1889 ("%s: fcntls without CAP_FCNTL", func));
1890 /*
1891 * open calls without WANTIOCTLCAPS free caps but leave the counter
1892 */
1893 #if 0
1894 KASSERT(fcaps->fc_ioctls != NULL ? fcaps->fc_nioctls > 0 :
1895 (fcaps->fc_nioctls == -1 || fcaps->fc_nioctls == 0),
1896 ("%s: invalid ioctls", func));
1897 #endif
1898 KASSERT(fcaps->fc_nioctls == 0 ||
1899 cap_rights_is_set(&fcaps->fc_rights, CAP_IOCTL),
1900 ("%s: ioctls without CAP_IOCTL", func));
1901 }
1902
1903 static void
fdgrowtable_exp(struct filedesc * fdp,int nfd)1904 fdgrowtable_exp(struct filedesc *fdp, int nfd)
1905 {
1906 int nfd1;
1907
1908 FILEDESC_XLOCK_ASSERT(fdp);
1909
1910 nfd1 = fdp->fd_nfiles * 2;
1911 if (nfd1 < nfd)
1912 nfd1 = nfd;
1913 fdgrowtable(fdp, nfd1);
1914 }
1915
1916 /*
1917 * Grow the file table to accommodate (at least) nfd descriptors.
1918 */
1919 static void
fdgrowtable(struct filedesc * fdp,int nfd)1920 fdgrowtable(struct filedesc *fdp, int nfd)
1921 {
1922 struct filedesc0 *fdp0;
1923 struct freetable *ft;
1924 struct fdescenttbl *ntable;
1925 struct fdescenttbl *otable;
1926 int nnfiles, onfiles;
1927 NDSLOTTYPE *nmap, *omap;
1928
1929 KASSERT(fdp->fd_nfiles > 0, ("zero-length file table"));
1930
1931 /* save old values */
1932 onfiles = fdp->fd_nfiles;
1933 otable = fdp->fd_files;
1934 omap = fdp->fd_map;
1935
1936 /* compute the size of the new table */
1937 nnfiles = NDSLOTS(nfd) * NDENTRIES; /* round up */
1938 if (nnfiles <= onfiles)
1939 /* the table is already large enough */
1940 return;
1941
1942 /*
1943 * Allocate a new table. We need enough space for the number of
1944 * entries, file entries themselves and the struct freetable we will use
1945 * when we decommission the table and place it on the freelist.
1946 * We place the struct freetable in the middle so we don't have
1947 * to worry about padding.
1948 */
1949 ntable = malloc(offsetof(struct fdescenttbl, fdt_ofiles) +
1950 nnfiles * sizeof(ntable->fdt_ofiles[0]) +
1951 sizeof(struct freetable),
1952 M_FILEDESC, M_ZERO | M_WAITOK);
1953 /* copy the old data */
1954 ntable->fdt_nfiles = nnfiles;
1955 memcpy(ntable->fdt_ofiles, otable->fdt_ofiles,
1956 onfiles * sizeof(ntable->fdt_ofiles[0]));
1957
1958 /*
1959 * Allocate a new map only if the old is not large enough. It will
1960 * grow at a slower rate than the table as it can map more
1961 * entries than the table can hold.
1962 */
1963 if (NDSLOTS(nnfiles) > NDSLOTS(onfiles)) {
1964 nmap = malloc(NDSLOTS(nnfiles) * NDSLOTSIZE, M_FILEDESC,
1965 M_ZERO | M_WAITOK);
1966 /* copy over the old data and update the pointer */
1967 memcpy(nmap, omap, NDSLOTS(onfiles) * sizeof(*omap));
1968 fdp->fd_map = nmap;
1969 }
1970
1971 /*
1972 * Make sure that ntable is correctly initialized before we replace
1973 * fd_files poiner. Otherwise fget_unlocked() may see inconsistent
1974 * data.
1975 */
1976 atomic_store_rel_ptr((volatile void *)&fdp->fd_files, (uintptr_t)ntable);
1977
1978 /*
1979 * Free the old file table when not shared by other threads or processes.
1980 * The old file table is considered to be shared when either are true:
1981 * - The process has more than one thread.
1982 * - The file descriptor table has been shared via fdshare().
1983 *
1984 * When shared, the old file table will be placed on a freelist
1985 * which will be processed when the struct filedesc is released.
1986 *
1987 * Note that if onfiles == NDFILE, we're dealing with the original
1988 * static allocation contained within (struct filedesc0 *)fdp,
1989 * which must not be freed.
1990 */
1991 if (onfiles > NDFILE) {
1992 /*
1993 * Note we may be called here from fdinit while allocating a
1994 * table for a new process in which case ->p_fd points
1995 * elsewhere.
1996 */
1997 if (curproc->p_fd != fdp || FILEDESC_IS_ONLY_USER(fdp)) {
1998 free(otable, M_FILEDESC);
1999 } else {
2000 ft = (struct freetable *)&otable->fdt_ofiles[onfiles];
2001 fdp0 = (struct filedesc0 *)fdp;
2002 ft->ft_table = otable;
2003 SLIST_INSERT_HEAD(&fdp0->fd_free, ft, ft_next);
2004 }
2005 }
2006 /*
2007 * The map does not have the same possibility of threads still
2008 * holding references to it. So always free it as long as it
2009 * does not reference the original static allocation.
2010 */
2011 if (NDSLOTS(onfiles) > NDSLOTS(NDFILE))
2012 free(omap, M_FILEDESC);
2013 }
2014
2015 /*
2016 * Allocate a file descriptor for the process.
2017 */
2018 int
fdalloc(struct thread * td,int minfd,int * result)2019 fdalloc(struct thread *td, int minfd, int *result)
2020 {
2021 struct proc *p = td->td_proc;
2022 struct filedesc *fdp = p->p_fd;
2023 int fd, maxfd, allocfd;
2024 #ifdef RACCT
2025 int error;
2026 #endif
2027
2028 FILEDESC_XLOCK_ASSERT(fdp);
2029
2030 if (fdp->fd_freefile > minfd)
2031 minfd = fdp->fd_freefile;
2032
2033 maxfd = getmaxfd(td);
2034
2035 /*
2036 * Search the bitmap for a free descriptor starting at minfd.
2037 * If none is found, grow the file table.
2038 */
2039 fd = fd_first_free(fdp, minfd, fdp->fd_nfiles);
2040 if (__predict_false(fd >= maxfd))
2041 return (EMFILE);
2042 if (__predict_false(fd >= fdp->fd_nfiles)) {
2043 allocfd = min(fd * 2, maxfd);
2044 #ifdef RACCT
2045 if (RACCT_ENABLED()) {
2046 error = racct_set_unlocked(p, RACCT_NOFILE, allocfd);
2047 if (error != 0)
2048 return (EMFILE);
2049 }
2050 #endif
2051 /*
2052 * fd is already equal to first free descriptor >= minfd, so
2053 * we only need to grow the table and we are done.
2054 */
2055 fdgrowtable_exp(fdp, allocfd);
2056 }
2057
2058 /*
2059 * Perform some sanity checks, then mark the file descriptor as
2060 * used and return it to the caller.
2061 */
2062 KASSERT(fd >= 0 && fd < min(maxfd, fdp->fd_nfiles),
2063 ("invalid descriptor %d", fd));
2064 KASSERT(!fdisused(fdp, fd),
2065 ("fd_first_free() returned non-free descriptor"));
2066 KASSERT(fdp->fd_ofiles[fd].fde_file == NULL,
2067 ("file descriptor isn't free"));
2068 fdused(fdp, fd);
2069 *result = fd;
2070 return (0);
2071 }
2072
2073 /*
2074 * Allocate n file descriptors for the process.
2075 */
2076 int
fdallocn(struct thread * td,int minfd,int * fds,int n)2077 fdallocn(struct thread *td, int minfd, int *fds, int n)
2078 {
2079 struct proc *p = td->td_proc;
2080 struct filedesc *fdp = p->p_fd;
2081 int i;
2082
2083 FILEDESC_XLOCK_ASSERT(fdp);
2084
2085 for (i = 0; i < n; i++)
2086 if (fdalloc(td, 0, &fds[i]) != 0)
2087 break;
2088
2089 if (i < n) {
2090 for (i--; i >= 0; i--)
2091 fdunused(fdp, fds[i]);
2092 return (EMFILE);
2093 }
2094
2095 return (0);
2096 }
2097
2098 /*
2099 * Create a new open file structure and allocate a file descriptor for the
2100 * process that refers to it. We add one reference to the file for the
2101 * descriptor table and one reference for resultfp. This is to prevent us
2102 * being preempted and the entry in the descriptor table closed after we
2103 * release the FILEDESC lock.
2104 */
2105 int
falloc_caps(struct thread * td,struct file ** resultfp,int * resultfd,int flags,struct filecaps * fcaps)2106 falloc_caps(struct thread *td, struct file **resultfp, int *resultfd, int flags,
2107 struct filecaps *fcaps)
2108 {
2109 struct file *fp;
2110 int error, fd;
2111
2112 MPASS(resultfp != NULL);
2113 MPASS(resultfd != NULL);
2114
2115 error = _falloc_noinstall(td, &fp, 2);
2116 if (__predict_false(error != 0)) {
2117 return (error);
2118 }
2119
2120 error = finstall_refed(td, fp, &fd, flags, fcaps);
2121 if (__predict_false(error != 0)) {
2122 falloc_abort(td, fp);
2123 return (error);
2124 }
2125
2126 *resultfp = fp;
2127 *resultfd = fd;
2128
2129 return (0);
2130 }
2131
2132 /*
2133 * Create a new open file structure without allocating a file descriptor.
2134 */
2135 int
_falloc_noinstall(struct thread * td,struct file ** resultfp,u_int n)2136 _falloc_noinstall(struct thread *td, struct file **resultfp, u_int n)
2137 {
2138 struct file *fp;
2139 int maxuserfiles = maxfiles - (maxfiles / 20);
2140 int openfiles_new;
2141 static struct timeval lastfail;
2142 static int curfail;
2143
2144 KASSERT(resultfp != NULL, ("%s: resultfp == NULL", __func__));
2145 MPASS(n > 0);
2146
2147 openfiles_new = atomic_fetchadd_int(&openfiles, 1) + 1;
2148 if ((openfiles_new >= maxuserfiles &&
2149 priv_check(td, PRIV_MAXFILES) != 0) ||
2150 openfiles_new >= maxfiles) {
2151 atomic_subtract_int(&openfiles, 1);
2152 if (ppsratecheck(&lastfail, &curfail, 1)) {
2153 printf("kern.maxfiles limit exceeded by uid %i, (%s) "
2154 "please see tuning(7).\n", td->td_ucred->cr_ruid, td->td_proc->p_comm);
2155 }
2156 return (ENFILE);
2157 }
2158 fp = uma_zalloc(file_zone, M_WAITOK);
2159 bzero(fp, sizeof(*fp));
2160 refcount_init(&fp->f_count, n);
2161 fp->f_cred = crhold(td->td_ucred);
2162 fp->f_ops = &badfileops;
2163 *resultfp = fp;
2164 return (0);
2165 }
2166
2167 void
falloc_abort(struct thread * td,struct file * fp)2168 falloc_abort(struct thread *td, struct file *fp)
2169 {
2170
2171 /*
2172 * For assertion purposes.
2173 */
2174 refcount_init(&fp->f_count, 0);
2175 _fdrop(fp, td);
2176 }
2177
2178 /*
2179 * Install a file in a file descriptor table.
2180 */
2181 void
_finstall(struct filedesc * fdp,struct file * fp,int fd,int flags,struct filecaps * fcaps)2182 _finstall(struct filedesc *fdp, struct file *fp, int fd, int flags,
2183 struct filecaps *fcaps)
2184 {
2185 struct filedescent *fde;
2186
2187 MPASS(fp != NULL);
2188 if (fcaps != NULL)
2189 filecaps_validate(fcaps, __func__);
2190 FILEDESC_XLOCK_ASSERT(fdp);
2191
2192 fde = &fdp->fd_ofiles[fd];
2193 #ifdef CAPABILITIES
2194 seqc_write_begin(&fde->fde_seqc);
2195 #endif
2196 fde->fde_file = fp;
2197 fde->fde_flags = ((flags & O_CLOEXEC) != 0 ? UF_EXCLOSE : 0) |
2198 ((flags & O_CLOFORK) != 0 ? UF_FOCLOSE : 0) |
2199 ((flags & O_RESOLVE_BENEATH) != 0 ? UF_RESOLVE_BENEATH : 0);
2200 if (fcaps != NULL)
2201 filecaps_move(fcaps, &fde->fde_caps);
2202 else
2203 filecaps_fill(&fde->fde_caps);
2204 #ifdef CAPABILITIES
2205 seqc_write_end(&fde->fde_seqc);
2206 #endif
2207 }
2208
2209 int
finstall_refed(struct thread * td,struct file * fp,int * fd,int flags,struct filecaps * fcaps)2210 finstall_refed(struct thread *td, struct file *fp, int *fd, int flags,
2211 struct filecaps *fcaps)
2212 {
2213 struct filedesc *fdp = td->td_proc->p_fd;
2214 int error;
2215
2216 MPASS(fd != NULL);
2217
2218 FILEDESC_XLOCK(fdp);
2219 error = fdalloc(td, 0, fd);
2220 if (__predict_true(error == 0)) {
2221 _finstall(fdp, fp, *fd, flags, fcaps);
2222 }
2223 FILEDESC_XUNLOCK(fdp);
2224 return (error);
2225 }
2226
2227 int
finstall(struct thread * td,struct file * fp,int * fd,int flags,struct filecaps * fcaps)2228 finstall(struct thread *td, struct file *fp, int *fd, int flags,
2229 struct filecaps *fcaps)
2230 {
2231 int error;
2232
2233 MPASS(fd != NULL);
2234
2235 if (!fhold(fp))
2236 return (EBADF);
2237 error = finstall_refed(td, fp, fd, flags, fcaps);
2238 if (__predict_false(error != 0)) {
2239 fdrop(fp, td);
2240 }
2241 return (error);
2242 }
2243
2244 /*
2245 * Build a new filedesc structure from another.
2246 *
2247 * If fdp is not NULL, return with it shared locked.
2248 */
2249 struct filedesc *
fdinit(void)2250 fdinit(void)
2251 {
2252 struct filedesc0 *newfdp0;
2253 struct filedesc *newfdp;
2254
2255 newfdp0 = uma_zalloc(filedesc0_zone, M_WAITOK | M_ZERO);
2256 newfdp = &newfdp0->fd_fd;
2257
2258 /* Create the file descriptor table. */
2259 FILEDESC_LOCK_INIT(newfdp);
2260 refcount_init(&newfdp->fd_refcnt, 1);
2261 refcount_init(&newfdp->fd_holdcnt, 1);
2262 newfdp->fd_map = newfdp0->fd_dmap;
2263 newfdp->fd_files = (struct fdescenttbl *)&newfdp0->fd_dfiles;
2264 newfdp->fd_files->fdt_nfiles = NDFILE;
2265
2266 return (newfdp);
2267 }
2268
2269 /*
2270 * Build a pwddesc structure from another.
2271 * Copy the current, root, and jail root vnode references.
2272 *
2273 * If pdp is not NULL and keeplock is true, return with it (exclusively) locked.
2274 */
2275 struct pwddesc *
pdinit(struct pwddesc * pdp,bool keeplock)2276 pdinit(struct pwddesc *pdp, bool keeplock)
2277 {
2278 struct pwddesc *newpdp;
2279 struct pwd *newpwd;
2280
2281 newpdp = malloc(sizeof(*newpdp), M_PWDDESC, M_WAITOK | M_ZERO);
2282
2283 PWDDESC_LOCK_INIT(newpdp);
2284 refcount_init(&newpdp->pd_refcount, 1);
2285 newpdp->pd_cmask = CMASK;
2286
2287 if (pdp == NULL) {
2288 newpwd = pwd_alloc();
2289 smr_serialized_store(&newpdp->pd_pwd, newpwd, true);
2290 return (newpdp);
2291 }
2292
2293 PWDDESC_XLOCK(pdp);
2294 newpwd = pwd_hold_pwddesc(pdp);
2295 smr_serialized_store(&newpdp->pd_pwd, newpwd, true);
2296 if (!keeplock)
2297 PWDDESC_XUNLOCK(pdp);
2298 return (newpdp);
2299 }
2300
2301 /*
2302 * Hold either filedesc or pwddesc of the passed process.
2303 *
2304 * The process lock is used to synchronize against the target exiting and
2305 * freeing the data.
2306 *
2307 * Clearing can be ilustrated in 3 steps:
2308 * 1. set the pointer to NULL. Either routine can race against it, hence
2309 * atomic_load_ptr.
2310 * 2. observe the process lock as not taken. Until then fdhold/pdhold can
2311 * race to either still see the pointer or find NULL. It is still safe to
2312 * grab a reference as clearing is stalled.
2313 * 3. after the lock is observed as not taken, any fdhold/pdhold calls are
2314 * guaranteed to see NULL, making it safe to finish clearing
2315 */
2316 static struct filedesc *
fdhold(struct proc * p)2317 fdhold(struct proc *p)
2318 {
2319 struct filedesc *fdp;
2320
2321 PROC_LOCK_ASSERT(p, MA_OWNED);
2322 fdp = atomic_load_ptr(&p->p_fd);
2323 if (fdp != NULL)
2324 refcount_acquire(&fdp->fd_holdcnt);
2325 return (fdp);
2326 }
2327
2328 static struct pwddesc *
pdhold(struct proc * p)2329 pdhold(struct proc *p)
2330 {
2331 struct pwddesc *pdp;
2332
2333 PROC_LOCK_ASSERT(p, MA_OWNED);
2334 pdp = atomic_load_ptr(&p->p_pd);
2335 if (pdp != NULL)
2336 refcount_acquire(&pdp->pd_refcount);
2337 return (pdp);
2338 }
2339
2340 static void
fddrop(struct filedesc * fdp)2341 fddrop(struct filedesc *fdp)
2342 {
2343
2344 if (refcount_load(&fdp->fd_holdcnt) > 1) {
2345 if (refcount_release(&fdp->fd_holdcnt) == 0)
2346 return;
2347 }
2348
2349 FILEDESC_LOCK_DESTROY(fdp);
2350 uma_zfree(filedesc0_zone, fdp);
2351 }
2352
2353 static void
pddrop(struct pwddesc * pdp)2354 pddrop(struct pwddesc *pdp)
2355 {
2356 struct pwd *pwd;
2357
2358 if (refcount_release_if_not_last(&pdp->pd_refcount))
2359 return;
2360
2361 PWDDESC_XLOCK(pdp);
2362 if (refcount_release(&pdp->pd_refcount) == 0) {
2363 PWDDESC_XUNLOCK(pdp);
2364 return;
2365 }
2366 pwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
2367 pwd_set(pdp, NULL);
2368 PWDDESC_XUNLOCK(pdp);
2369 pwd_drop(pwd);
2370
2371 PWDDESC_LOCK_DESTROY(pdp);
2372 free(pdp, M_PWDDESC);
2373 }
2374
2375 /*
2376 * Share a filedesc structure.
2377 */
2378 struct filedesc *
fdshare(struct filedesc * fdp)2379 fdshare(struct filedesc *fdp)
2380 {
2381
2382 refcount_acquire(&fdp->fd_refcnt);
2383 return (fdp);
2384 }
2385
2386 /*
2387 * Share a pwddesc structure.
2388 */
2389 struct pwddesc *
pdshare(struct pwddesc * pdp)2390 pdshare(struct pwddesc *pdp)
2391 {
2392 refcount_acquire(&pdp->pd_refcount);
2393 return (pdp);
2394 }
2395
2396 /*
2397 * Unshare a filedesc structure, if necessary by making a copy
2398 */
2399 void
fdunshare(struct thread * td)2400 fdunshare(struct thread *td)
2401 {
2402 struct filedesc *tmp;
2403 struct proc *p = td->td_proc;
2404
2405 if (refcount_load(&p->p_fd->fd_refcnt) == 1)
2406 return;
2407
2408 tmp = fdcopy(p->p_fd);
2409 fdescfree(td);
2410 p->p_fd = tmp;
2411 }
2412
2413 /*
2414 * Unshare a pwddesc structure.
2415 */
2416 void
pdunshare(struct thread * td)2417 pdunshare(struct thread *td)
2418 {
2419 struct pwddesc *pdp;
2420 struct proc *p;
2421
2422 p = td->td_proc;
2423 /* Not shared. */
2424 if (refcount_load(&p->p_pd->pd_refcount) == 1)
2425 return;
2426
2427 pdp = pdcopy(p->p_pd);
2428 pdescfree(td);
2429 p->p_pd = pdp;
2430 }
2431
2432 /*
2433 * Copy a filedesc structure. A NULL pointer in returns a NULL reference,
2434 * this is to ease callers, not catch errors.
2435 */
2436 struct filedesc *
fdcopy(struct filedesc * fdp)2437 fdcopy(struct filedesc *fdp)
2438 {
2439 struct filedesc *newfdp;
2440 struct filedescent *nfde, *ofde;
2441 int i, lastfile;
2442
2443 MPASS(fdp != NULL);
2444
2445 newfdp = fdinit();
2446 FILEDESC_SLOCK(fdp);
2447 for (;;) {
2448 lastfile = fdlastfile(fdp);
2449 if (lastfile < newfdp->fd_nfiles)
2450 break;
2451 FILEDESC_SUNLOCK(fdp);
2452 fdgrowtable(newfdp, lastfile + 1);
2453 FILEDESC_SLOCK(fdp);
2454 }
2455 /* copy all passable descriptors (i.e. not kqueue) */
2456 newfdp->fd_freefile = fdp->fd_freefile;
2457 FILEDESC_FOREACH_FDE(fdp, i, ofde) {
2458 if ((ofde->fde_file->f_ops->fo_flags & DFLAG_PASSABLE) == 0 ||
2459 (ofde->fde_flags & UF_FOCLOSE) != 0 ||
2460 !fhold(ofde->fde_file)) {
2461 if (newfdp->fd_freefile == fdp->fd_freefile)
2462 newfdp->fd_freefile = i;
2463 continue;
2464 }
2465 nfde = &newfdp->fd_ofiles[i];
2466 *nfde = *ofde;
2467 filecaps_copy(&ofde->fde_caps, &nfde->fde_caps, true);
2468 fdused_init(newfdp, i);
2469 }
2470 MPASS(newfdp->fd_freefile != -1);
2471 FILEDESC_SUNLOCK(fdp);
2472 return (newfdp);
2473 }
2474
2475 /*
2476 * Copy a pwddesc structure.
2477 */
2478 struct pwddesc *
pdcopy(struct pwddesc * pdp)2479 pdcopy(struct pwddesc *pdp)
2480 {
2481 struct pwddesc *newpdp;
2482
2483 MPASS(pdp != NULL);
2484
2485 newpdp = pdinit(pdp, true);
2486 newpdp->pd_cmask = pdp->pd_cmask;
2487 PWDDESC_XUNLOCK(pdp);
2488 return (newpdp);
2489 }
2490
2491 /*
2492 * Clear POSIX style locks. This is only used when fdp looses a reference (i.e.
2493 * one of processes using it exits) and the table used to be shared.
2494 */
2495 static void
fdclearlocks(struct thread * td)2496 fdclearlocks(struct thread *td)
2497 {
2498 struct filedesc *fdp;
2499 struct filedesc_to_leader *fdtol;
2500 struct flock lf;
2501 struct file *fp;
2502 struct proc *p;
2503 struct vnode *vp;
2504 int i;
2505
2506 p = td->td_proc;
2507 fdp = p->p_fd;
2508 fdtol = p->p_fdtol;
2509 MPASS(fdtol != NULL);
2510
2511 FILEDESC_XLOCK(fdp);
2512 KASSERT(fdtol->fdl_refcount > 0,
2513 ("filedesc_to_refcount botch: fdl_refcount=%d",
2514 fdtol->fdl_refcount));
2515 if (fdtol->fdl_refcount == 1 &&
2516 (p->p_leader->p_flag & P_ADVLOCK) != 0) {
2517 FILEDESC_FOREACH_FP(fdp, i, fp) {
2518 if (fp->f_type != DTYPE_VNODE ||
2519 !fhold(fp))
2520 continue;
2521 FILEDESC_XUNLOCK(fdp);
2522 lf.l_whence = SEEK_SET;
2523 lf.l_start = 0;
2524 lf.l_len = 0;
2525 lf.l_type = F_UNLCK;
2526 vp = fp->f_vnode;
2527 (void) VOP_ADVLOCK(vp,
2528 (caddr_t)p->p_leader, F_UNLCK,
2529 &lf, F_POSIX);
2530 FILEDESC_XLOCK(fdp);
2531 fdrop(fp, td);
2532 }
2533 }
2534 retry:
2535 if (fdtol->fdl_refcount == 1) {
2536 if (fdp->fd_holdleaderscount > 0 &&
2537 (p->p_leader->p_flag & P_ADVLOCK) != 0) {
2538 /*
2539 * close() or kern_dup() has cleared a reference
2540 * in a shared file descriptor table.
2541 */
2542 fdp->fd_holdleaderswakeup = 1;
2543 sx_sleep(&fdp->fd_holdleaderscount,
2544 FILEDESC_LOCK(fdp), PLOCK, "fdlhold", 0);
2545 goto retry;
2546 }
2547 if (fdtol->fdl_holdcount > 0) {
2548 /*
2549 * Ensure that fdtol->fdl_leader remains
2550 * valid in closef().
2551 */
2552 fdtol->fdl_wakeup = 1;
2553 sx_sleep(fdtol, FILEDESC_LOCK(fdp), PLOCK,
2554 "fdlhold", 0);
2555 goto retry;
2556 }
2557 }
2558 fdtol->fdl_refcount--;
2559 if (fdtol->fdl_refcount == 0 &&
2560 fdtol->fdl_holdcount == 0) {
2561 fdtol->fdl_next->fdl_prev = fdtol->fdl_prev;
2562 fdtol->fdl_prev->fdl_next = fdtol->fdl_next;
2563 } else
2564 fdtol = NULL;
2565 p->p_fdtol = NULL;
2566 FILEDESC_XUNLOCK(fdp);
2567 if (fdtol != NULL)
2568 free(fdtol, M_FILEDESC_TO_LEADER);
2569 }
2570
2571 /*
2572 * Release a filedesc structure.
2573 */
2574 static void
fdescfree_fds(struct thread * td,struct filedesc * fdp)2575 fdescfree_fds(struct thread *td, struct filedesc *fdp)
2576 {
2577 struct filedesc0 *fdp0;
2578 struct freetable *ft, *tft;
2579 struct filedescent *fde;
2580 struct file *fp;
2581 int i;
2582
2583 KASSERT(refcount_load(&fdp->fd_refcnt) == 0,
2584 ("%s: fd table %p carries references", __func__, fdp));
2585
2586 /*
2587 * Serialize with threads iterating over the table, if any.
2588 */
2589 if (refcount_load(&fdp->fd_holdcnt) > 1) {
2590 FILEDESC_XLOCK(fdp);
2591 FILEDESC_XUNLOCK(fdp);
2592 }
2593
2594 FILEDESC_FOREACH_FDE(fdp, i, fde) {
2595 fp = fde->fde_file;
2596 fdefree_last(fde);
2597 (void) closef(fp, td);
2598 }
2599
2600 if (NDSLOTS(fdp->fd_nfiles) > NDSLOTS(NDFILE))
2601 free(fdp->fd_map, M_FILEDESC);
2602 if (fdp->fd_nfiles > NDFILE)
2603 free(fdp->fd_files, M_FILEDESC);
2604
2605 fdp0 = (struct filedesc0 *)fdp;
2606 SLIST_FOREACH_SAFE(ft, &fdp0->fd_free, ft_next, tft)
2607 free(ft->ft_table, M_FILEDESC);
2608
2609 fddrop(fdp);
2610 }
2611
2612 void
fdescfree(struct thread * td)2613 fdescfree(struct thread *td)
2614 {
2615 struct proc *p;
2616 struct filedesc *fdp;
2617
2618 p = td->td_proc;
2619 fdp = p->p_fd;
2620 MPASS(fdp != NULL);
2621
2622 #ifdef RACCT
2623 if (RACCT_ENABLED())
2624 racct_set_unlocked(p, RACCT_NOFILE, 0);
2625 #endif
2626
2627 if (p->p_fdtol != NULL)
2628 fdclearlocks(td);
2629
2630 /*
2631 * Check fdhold for an explanation.
2632 */
2633 atomic_store_ptr(&p->p_fd, NULL);
2634 atomic_thread_fence_seq_cst();
2635 PROC_WAIT_UNLOCKED(p);
2636
2637 if (refcount_release(&fdp->fd_refcnt) == 0)
2638 return;
2639
2640 fdescfree_fds(td, fdp);
2641 }
2642
2643 void
pdescfree(struct thread * td)2644 pdescfree(struct thread *td)
2645 {
2646 struct proc *p;
2647 struct pwddesc *pdp;
2648
2649 p = td->td_proc;
2650 pdp = p->p_pd;
2651 MPASS(pdp != NULL);
2652
2653 /*
2654 * Check pdhold for an explanation.
2655 */
2656 atomic_store_ptr(&p->p_pd, NULL);
2657 atomic_thread_fence_seq_cst();
2658 PROC_WAIT_UNLOCKED(p);
2659
2660 pddrop(pdp);
2661 }
2662
2663 /*
2664 * For setugid programs, we don't want to people to use that setugidness
2665 * to generate error messages which write to a file which otherwise would
2666 * otherwise be off-limits to the process. We check for filesystems where
2667 * the vnode can change out from under us after execve (like [lin]procfs).
2668 *
2669 * Since fdsetugidsafety calls this only for fd 0, 1 and 2, this check is
2670 * sufficient. We also don't check for setugidness since we know we are.
2671 */
2672 static bool
is_unsafe(struct file * fp)2673 is_unsafe(struct file *fp)
2674 {
2675 struct vnode *vp;
2676
2677 if (fp->f_type != DTYPE_VNODE)
2678 return (false);
2679
2680 vp = fp->f_vnode;
2681 return ((vp->v_vflag & VV_PROCDEP) != 0);
2682 }
2683
2684 /*
2685 * Make this setguid thing safe, if at all possible.
2686 */
2687 void
fdsetugidsafety(struct thread * td)2688 fdsetugidsafety(struct thread *td)
2689 {
2690 struct filedesc *fdp;
2691 struct file *fp;
2692 int i;
2693
2694 fdp = td->td_proc->p_fd;
2695 KASSERT(refcount_load(&fdp->fd_refcnt) == 1,
2696 ("the fdtable should not be shared"));
2697 MPASS(fdp->fd_nfiles >= 3);
2698 for (i = 0; i <= 2; i++) {
2699 fp = fdp->fd_ofiles[i].fde_file;
2700 if (fp != NULL && is_unsafe(fp)) {
2701 FILEDESC_XLOCK(fdp);
2702 knote_fdclose(td, i);
2703 /*
2704 * NULL-out descriptor prior to close to avoid
2705 * a race while close blocks.
2706 */
2707 fdfree(fdp, i);
2708 FILEDESC_XUNLOCK(fdp);
2709 (void) closef(fp, td);
2710 }
2711 }
2712 }
2713
2714 /*
2715 * If a specific file object occupies a specific file descriptor, close the
2716 * file descriptor entry and drop a reference on the file object. This is a
2717 * convenience function to handle a subsequent error in a function that calls
2718 * falloc() that handles the race that another thread might have closed the
2719 * file descriptor out from under the thread creating the file object.
2720 */
2721 void
fdclose(struct thread * td,struct file * fp,int idx)2722 fdclose(struct thread *td, struct file *fp, int idx)
2723 {
2724 struct filedesc *fdp = td->td_proc->p_fd;
2725
2726 FILEDESC_XLOCK(fdp);
2727 if (fdp->fd_ofiles[idx].fde_file == fp) {
2728 fdfree(fdp, idx);
2729 FILEDESC_XUNLOCK(fdp);
2730 fdrop(fp, td);
2731 } else
2732 FILEDESC_XUNLOCK(fdp);
2733 }
2734
2735 /*
2736 * Close any files on exec?
2737 */
2738 void
fdcloseexec(struct thread * td)2739 fdcloseexec(struct thread *td)
2740 {
2741 struct filedesc *fdp;
2742 struct filedescent *fde;
2743 struct file *fp;
2744 int i;
2745
2746 fdp = td->td_proc->p_fd;
2747 KASSERT(refcount_load(&fdp->fd_refcnt) == 1,
2748 ("the fdtable should not be shared"));
2749 FILEDESC_FOREACH_FDE(fdp, i, fde) {
2750 fp = fde->fde_file;
2751 if (fp->f_type == DTYPE_MQUEUE ||
2752 (fde->fde_flags & UF_EXCLOSE)) {
2753 FILEDESC_XLOCK(fdp);
2754 fdfree(fdp, i);
2755 (void) closefp(fdp, i, fp, td, false, false);
2756 FILEDESC_UNLOCK_ASSERT(fdp);
2757 } else if (fde->fde_flags & UF_FOCLOSE) {
2758 /*
2759 * https://austingroupbugs.net/view.php?id=1851
2760 * FD_CLOFORK should not be preserved across exec
2761 */
2762 fde->fde_flags &= ~UF_FOCLOSE;
2763 }
2764 }
2765 }
2766
2767 /*
2768 * It is unsafe for set[ug]id processes to be started with file
2769 * descriptors 0..2 closed, as these descriptors are given implicit
2770 * significance in the Standard C library. fdcheckstd() will create a
2771 * descriptor referencing /dev/null for each of stdin, stdout, and
2772 * stderr that is not already open.
2773 */
2774 int
fdcheckstd(struct thread * td)2775 fdcheckstd(struct thread *td)
2776 {
2777 struct filedesc *fdp;
2778 register_t save;
2779 int i, error, devnull;
2780
2781 fdp = td->td_proc->p_fd;
2782 KASSERT(refcount_load(&fdp->fd_refcnt) == 1,
2783 ("the fdtable should not be shared"));
2784 MPASS(fdp->fd_nfiles >= 3);
2785 devnull = -1;
2786 for (i = 0; i <= 2; i++) {
2787 if (fdp->fd_ofiles[i].fde_file != NULL)
2788 continue;
2789
2790 save = td->td_retval[0];
2791 if (devnull != -1) {
2792 error = kern_dup(td, FDDUP_FIXED, 0, devnull, i);
2793 } else {
2794 error = kern_openat(td, AT_FDCWD, "/dev/null",
2795 UIO_SYSSPACE, O_RDWR, 0);
2796 if (error == 0) {
2797 devnull = td->td_retval[0];
2798 KASSERT(devnull == i, ("we didn't get our fd"));
2799 }
2800 }
2801 td->td_retval[0] = save;
2802 if (error != 0)
2803 return (error);
2804 }
2805 return (0);
2806 }
2807
2808 /*
2809 * Internal form of close. Decrement reference count on file structure.
2810 * Note: td may be NULL when closing a file that was being passed in a
2811 * message.
2812 */
2813 int
closef(struct file * fp,struct thread * td)2814 closef(struct file *fp, struct thread *td)
2815 {
2816 struct vnode *vp;
2817 struct flock lf;
2818 struct filedesc_to_leader *fdtol;
2819 struct filedesc *fdp;
2820
2821 MPASS(td != NULL);
2822
2823 /*
2824 * POSIX record locking dictates that any close releases ALL
2825 * locks owned by this process. This is handled by setting
2826 * a flag in the unlock to free ONLY locks obeying POSIX
2827 * semantics, and not to free BSD-style file locks.
2828 * If the descriptor was in a message, POSIX-style locks
2829 * aren't passed with the descriptor, and the thread pointer
2830 * will be NULL. Callers should be careful only to pass a
2831 * NULL thread pointer when there really is no owning
2832 * context that might have locks, or the locks will be
2833 * leaked.
2834 */
2835 if (fp->f_type == DTYPE_VNODE) {
2836 vp = fp->f_vnode;
2837 if ((td->td_proc->p_leader->p_flag & P_ADVLOCK) != 0) {
2838 lf.l_whence = SEEK_SET;
2839 lf.l_start = 0;
2840 lf.l_len = 0;
2841 lf.l_type = F_UNLCK;
2842 (void) VOP_ADVLOCK(vp, (caddr_t)td->td_proc->p_leader,
2843 F_UNLCK, &lf, F_POSIX);
2844 }
2845 fdtol = td->td_proc->p_fdtol;
2846 if (fdtol != NULL) {
2847 /*
2848 * Handle special case where file descriptor table is
2849 * shared between multiple process leaders.
2850 */
2851 fdp = td->td_proc->p_fd;
2852 FILEDESC_XLOCK(fdp);
2853 for (fdtol = fdtol->fdl_next;
2854 fdtol != td->td_proc->p_fdtol;
2855 fdtol = fdtol->fdl_next) {
2856 if ((fdtol->fdl_leader->p_flag &
2857 P_ADVLOCK) == 0)
2858 continue;
2859 fdtol->fdl_holdcount++;
2860 FILEDESC_XUNLOCK(fdp);
2861 lf.l_whence = SEEK_SET;
2862 lf.l_start = 0;
2863 lf.l_len = 0;
2864 lf.l_type = F_UNLCK;
2865 vp = fp->f_vnode;
2866 (void) VOP_ADVLOCK(vp,
2867 (caddr_t)fdtol->fdl_leader, F_UNLCK, &lf,
2868 F_POSIX);
2869 FILEDESC_XLOCK(fdp);
2870 fdtol->fdl_holdcount--;
2871 if (fdtol->fdl_holdcount == 0 &&
2872 fdtol->fdl_wakeup != 0) {
2873 fdtol->fdl_wakeup = 0;
2874 wakeup(fdtol);
2875 }
2876 }
2877 FILEDESC_XUNLOCK(fdp);
2878 }
2879 }
2880 return (fdrop_close(fp, td));
2881 }
2882
2883 /*
2884 * Hack for file descriptor passing code.
2885 */
2886 void
closef_nothread(struct file * fp)2887 closef_nothread(struct file *fp)
2888 {
2889
2890 fdrop(fp, NULL);
2891 }
2892
2893 /*
2894 * Initialize the file pointer with the specified properties.
2895 *
2896 * The ops are set with release semantics to be certain that the flags, type,
2897 * and data are visible when ops is. This is to prevent ops methods from being
2898 * called with bad data.
2899 */
2900 void
finit(struct file * fp,u_int flag,short type,void * data,const struct fileops * ops)2901 finit(struct file *fp, u_int flag, short type, void *data,
2902 const struct fileops *ops)
2903 {
2904 fp->f_data = data;
2905 fp->f_flag = flag;
2906 fp->f_type = type;
2907 atomic_store_rel_ptr((volatile uintptr_t *)&fp->f_ops, (uintptr_t)ops);
2908 }
2909
2910 void
finit_vnode(struct file * fp,u_int flag,void * data,const struct fileops * ops)2911 finit_vnode(struct file *fp, u_int flag, void *data, const struct fileops *ops)
2912 {
2913 fp->f_seqcount[UIO_READ] = 1;
2914 fp->f_seqcount[UIO_WRITE] = 1;
2915 finit(fp, (flag & FMASK) | (fp->f_flag & FHASLOCK), DTYPE_VNODE,
2916 data, ops);
2917 }
2918
2919 int
fget_cap_noref(struct filedesc * fdp,int fd,const cap_rights_t * needrightsp,struct file ** fpp,struct filecaps * havecapsp)2920 fget_cap_noref(struct filedesc *fdp, int fd, const cap_rights_t *needrightsp,
2921 struct file **fpp, struct filecaps *havecapsp)
2922 {
2923 struct filedescent *fde;
2924 int error;
2925
2926 FILEDESC_LOCK_ASSERT(fdp);
2927
2928 *fpp = NULL;
2929 fde = fdeget_noref(fdp, fd);
2930 if (fde == NULL) {
2931 error = EBADF;
2932 goto out;
2933 }
2934
2935 #ifdef CAPABILITIES
2936 error = cap_check(cap_rights_fde_inline(fde), needrightsp);
2937 if (error != 0)
2938 goto out;
2939 #endif
2940
2941 if (havecapsp != NULL)
2942 filecaps_copy(&fde->fde_caps, havecapsp, true);
2943
2944 *fpp = fde->fde_file;
2945
2946 error = 0;
2947 out:
2948 return (error);
2949 }
2950
2951 #ifdef CAPABILITIES
2952 int
fget_cap(struct thread * td,int fd,const cap_rights_t * needrightsp,uint8_t * flagsp,struct file ** fpp,struct filecaps * havecapsp)2953 fget_cap(struct thread *td, int fd, const cap_rights_t *needrightsp,
2954 uint8_t *flagsp, struct file **fpp, struct filecaps *havecapsp)
2955 {
2956 struct filedesc *fdp = td->td_proc->p_fd;
2957 int error;
2958 struct file *fp;
2959 seqc_t seq;
2960
2961 *fpp = NULL;
2962 for (;;) {
2963 error = fget_unlocked_seq(td, fd, needrightsp, flagsp, &fp,
2964 &seq);
2965 if (error != 0)
2966 return (error);
2967
2968 if (havecapsp != NULL) {
2969 if (!filecaps_copy(&fdp->fd_ofiles[fd].fde_caps,
2970 havecapsp, false)) {
2971 fdrop(fp, td);
2972 goto get_locked;
2973 }
2974 }
2975
2976 if (!fd_modified(fdp, fd, seq))
2977 break;
2978 fdrop(fp, td);
2979 }
2980
2981 *fpp = fp;
2982 return (0);
2983
2984 get_locked:
2985 FILEDESC_SLOCK(fdp);
2986 error = fget_cap_noref(fdp, fd, needrightsp, fpp, havecapsp);
2987 if (error == 0 && !fhold(*fpp))
2988 error = EBADF;
2989 FILEDESC_SUNLOCK(fdp);
2990 return (error);
2991 }
2992 #else
2993 int
fget_cap(struct thread * td,int fd,const cap_rights_t * needrightsp,uint8_t * flagsp,struct file ** fpp,struct filecaps * havecapsp)2994 fget_cap(struct thread *td, int fd, const cap_rights_t *needrightsp,
2995 uint8_t *flagsp, struct file **fpp, struct filecaps *havecapsp)
2996 {
2997 int error;
2998 error = fget_unlocked_flags(td, fd, needrightsp, flagsp, fpp);
2999 if (havecapsp != NULL && error == 0)
3000 filecaps_fill(havecapsp);
3001
3002 return (error);
3003 }
3004 #endif
3005
3006 int
fget_remote(struct thread * td,struct proc * p,int fd,struct file ** fpp)3007 fget_remote(struct thread *td, struct proc *p, int fd, struct file **fpp)
3008 {
3009 struct filedesc *fdp;
3010 struct file *fp;
3011 int error;
3012
3013 if (p == td->td_proc) /* curproc */
3014 return (fget_unlocked(td, fd, &cap_no_rights, fpp));
3015
3016 PROC_LOCK(p);
3017 fdp = fdhold(p);
3018 PROC_UNLOCK(p);
3019 if (fdp == NULL)
3020 return (ENOENT);
3021 FILEDESC_SLOCK(fdp);
3022 if (refcount_load(&fdp->fd_refcnt) != 0) {
3023 fp = fget_noref(fdp, fd);
3024 if (fp != NULL && fhold(fp)) {
3025 *fpp = fp;
3026 error = 0;
3027 } else {
3028 error = EBADF;
3029 }
3030 } else {
3031 error = ENOENT;
3032 }
3033 FILEDESC_SUNLOCK(fdp);
3034 fddrop(fdp);
3035 return (error);
3036 }
3037
3038 int
fget_remote_foreach(struct thread * td,struct proc * p,int (* fn)(struct proc *,int,struct file *,void *),void * arg)3039 fget_remote_foreach(struct thread *td, struct proc *p,
3040 int (*fn)(struct proc *, int, struct file *, void *), void *arg)
3041 {
3042 struct filedesc *fdp;
3043 struct fdescenttbl *fdt;
3044 struct file *fp;
3045 int error, error1, fd, highfd;
3046
3047 error = 0;
3048 PROC_LOCK(p);
3049 fdp = fdhold(p);
3050 PROC_UNLOCK(p);
3051 if (fdp == NULL)
3052 return (ENOENT);
3053
3054 FILEDESC_SLOCK(fdp);
3055 if (refcount_load(&fdp->fd_refcnt) != 0) {
3056 fdt = atomic_load_ptr(&fdp->fd_files);
3057 highfd = fdt->fdt_nfiles - 1;
3058 FILEDESC_SUNLOCK(fdp);
3059 } else {
3060 error = ENOENT;
3061 FILEDESC_SUNLOCK(fdp);
3062 goto out;
3063 }
3064
3065 for (fd = 0; fd <= highfd; fd++) {
3066 error1 = fget_remote(td, p, fd, &fp);
3067 if (error1 != 0)
3068 continue;
3069 error = fn(p, fd, fp, arg);
3070 fdrop(fp, td);
3071 if (error != 0)
3072 break;
3073 }
3074 out:
3075 fddrop(fdp);
3076 return (error);
3077 }
3078
3079 #ifdef CAPABILITIES
3080 int
fgetvp_lookup_smr(struct nameidata * ndp,struct vnode ** vpp,int * flagsp)3081 fgetvp_lookup_smr(struct nameidata *ndp, struct vnode **vpp, int *flagsp)
3082 {
3083 const struct filedescent *fde;
3084 const struct fdescenttbl *fdt;
3085 struct filedesc *fdp;
3086 struct file *fp;
3087 struct vnode *vp;
3088 const cap_rights_t *haverights;
3089 cap_rights_t rights;
3090 seqc_t seq;
3091 int fd, flags;
3092
3093 VFS_SMR_ASSERT_ENTERED();
3094
3095 fd = ndp->ni_dirfd;
3096 rights = *ndp->ni_rightsneeded;
3097 cap_rights_set_one(&rights, CAP_LOOKUP);
3098
3099 fdp = curproc->p_fd;
3100 fdt = fdp->fd_files;
3101 if (__predict_false((u_int)fd >= fdt->fdt_nfiles))
3102 return (EBADF);
3103 seq = seqc_read_notmodify(fd_seqc(fdt, fd));
3104 fde = &fdt->fdt_ofiles[fd];
3105 haverights = cap_rights_fde_inline(fde);
3106 fp = fde->fde_file;
3107 if (__predict_false(fp == NULL))
3108 return (EAGAIN);
3109 if (__predict_false(cap_check_inline_transient(haverights, &rights)))
3110 return (EAGAIN);
3111 flags = fp->f_flag & FSEARCH;
3112 flags |= (fde->fde_flags & UF_RESOLVE_BENEATH) != 0 ?
3113 O_RESOLVE_BENEATH : 0;
3114 vp = fp->f_vnode;
3115 if (__predict_false(vp == NULL)) {
3116 return (EAGAIN);
3117 }
3118 if (!filecaps_copy(&fde->fde_caps, &ndp->ni_filecaps, false)) {
3119 return (EAGAIN);
3120 }
3121 /*
3122 * Use an acquire barrier to force re-reading of fdt so it is
3123 * refreshed for verification.
3124 */
3125 atomic_thread_fence_acq();
3126 fdt = fdp->fd_files;
3127 if (__predict_false(!seqc_consistent_no_fence(fd_seqc(fdt, fd), seq)))
3128 return (EAGAIN);
3129 /*
3130 * If file descriptor doesn't have all rights,
3131 * all lookups relative to it must also be
3132 * strictly relative.
3133 *
3134 * Not yet supported by fast path.
3135 */
3136 CAP_ALL(&rights);
3137 if (!cap_rights_contains(&ndp->ni_filecaps.fc_rights, &rights) ||
3138 ndp->ni_filecaps.fc_fcntls != CAP_FCNTL_ALL ||
3139 ndp->ni_filecaps.fc_nioctls != -1) {
3140 #ifdef notyet
3141 ndp->ni_lcf |= NI_LCF_STRICTREL;
3142 #else
3143 return (EAGAIN);
3144 #endif
3145 }
3146 *vpp = vp;
3147 *flagsp = flags;
3148 return (0);
3149 }
3150 #else
3151 int
fgetvp_lookup_smr(struct nameidata * ndp,struct vnode ** vpp,int * flagsp)3152 fgetvp_lookup_smr(struct nameidata *ndp, struct vnode **vpp, int *flagsp)
3153 {
3154 const struct filedescent *fde;
3155 const struct fdescenttbl *fdt;
3156 struct filedesc *fdp;
3157 struct file *fp;
3158 struct vnode *vp;
3159 int fd, flags;
3160
3161 VFS_SMR_ASSERT_ENTERED();
3162
3163 fd = ndp->ni_dirfd;
3164 fdp = curproc->p_fd;
3165 fdt = fdp->fd_files;
3166 if (__predict_false((u_int)fd >= fdt->fdt_nfiles))
3167 return (EBADF);
3168 fde = &fdt->fdt_ofiles[fd];
3169 fp = fde->fde_file;
3170 if (__predict_false(fp == NULL))
3171 return (EAGAIN);
3172 flags = fp->f_flag & FSEARCH;
3173 flags |= (fde->fde_flags & UF_RESOLVE_BENEATH) != 0 ?
3174 O_RESOLVE_BENEATH : 0;
3175 vp = fp->f_vnode;
3176 if (__predict_false(vp == NULL || vp->v_type != VDIR)) {
3177 return (EAGAIN);
3178 }
3179 /*
3180 * Use an acquire barrier to force re-reading of fdt so it is
3181 * refreshed for verification.
3182 */
3183 atomic_thread_fence_acq();
3184 fdt = fdp->fd_files;
3185 if (__predict_false(fp != fdt->fdt_ofiles[fd].fde_file))
3186 return (EAGAIN);
3187 filecaps_fill(&ndp->ni_filecaps);
3188 *vpp = vp;
3189 *flagsp = flags;
3190 return (0);
3191 }
3192 #endif
3193
3194 int
fgetvp_lookup(struct nameidata * ndp,struct vnode ** vpp)3195 fgetvp_lookup(struct nameidata *ndp, struct vnode **vpp)
3196 {
3197 struct thread *td;
3198 struct file *fp;
3199 struct vnode *vp;
3200 struct componentname *cnp;
3201 cap_rights_t rights;
3202 int error;
3203 uint8_t flags;
3204
3205 td = curthread;
3206 rights = *ndp->ni_rightsneeded;
3207 cap_rights_set_one(&rights, CAP_LOOKUP);
3208 cnp = &ndp->ni_cnd;
3209
3210 error = fget_cap(td, ndp->ni_dirfd, &rights, &flags, &fp,
3211 &ndp->ni_filecaps);
3212 if (__predict_false(error != 0))
3213 return (error);
3214 if (__predict_false(fp->f_ops == &badfileops)) {
3215 error = EBADF;
3216 goto out_free;
3217 }
3218 vp = fp->f_vnode;
3219 if (__predict_false(vp == NULL)) {
3220 error = ENOTDIR;
3221 goto out_free;
3222 }
3223 vrefact(vp);
3224 /*
3225 * XXX does not check for VDIR, handled by namei_setup
3226 */
3227 if ((fp->f_flag & FSEARCH) != 0)
3228 cnp->cn_flags |= NOEXECCHECK;
3229 if ((flags & UF_RESOLVE_BENEATH) != 0) {
3230 cnp->cn_flags |= RBENEATH;
3231 ndp->ni_resflags |= NIRES_BENEATH;
3232 }
3233 fdrop(fp, td);
3234
3235 #ifdef CAPABILITIES
3236 /*
3237 * If file descriptor doesn't have all rights,
3238 * all lookups relative to it must also be
3239 * strictly relative.
3240 */
3241 CAP_ALL(&rights);
3242 if (!cap_rights_contains(&ndp->ni_filecaps.fc_rights, &rights) ||
3243 ndp->ni_filecaps.fc_fcntls != CAP_FCNTL_ALL ||
3244 ndp->ni_filecaps.fc_nioctls != -1) {
3245 ndp->ni_lcf |= NI_LCF_STRICTREL;
3246 ndp->ni_resflags |= NIRES_STRICTREL;
3247 }
3248 #endif
3249
3250 /*
3251 * TODO: avoid copying ioctl caps if it can be helped to begin with
3252 */
3253 if ((cnp->cn_flags & WANTIOCTLCAPS) == 0)
3254 filecaps_free_ioctl(&ndp->ni_filecaps);
3255
3256 *vpp = vp;
3257 return (0);
3258
3259 out_free:
3260 filecaps_free(&ndp->ni_filecaps);
3261 fdrop(fp, td);
3262 return (error);
3263 }
3264
3265 /*
3266 * Fetch the descriptor locklessly.
3267 *
3268 * We avoid fdrop() races by never raising a refcount above 0. To accomplish
3269 * this we have to use a cmpset loop rather than an atomic_add. The descriptor
3270 * must be re-verified once we acquire a reference to be certain that the
3271 * identity is still correct and we did not lose a race due to preemption.
3272 *
3273 * Force a reload of fdt when looping. Another thread could reallocate
3274 * the table before this fd was closed, so it is possible that there is
3275 * a stale fp pointer in cached version.
3276 */
3277 #ifdef CAPABILITIES
3278 static int
fget_unlocked_seq(struct thread * td,int fd,const cap_rights_t * needrightsp,uint8_t * flagsp,struct file ** fpp,seqc_t * seqp)3279 fget_unlocked_seq(struct thread *td, int fd, const cap_rights_t *needrightsp,
3280 uint8_t *flagsp, struct file **fpp, seqc_t *seqp)
3281 {
3282 struct filedesc *fdp;
3283 const struct filedescent *fde;
3284 const struct fdescenttbl *fdt;
3285 struct file *fp;
3286 seqc_t seq;
3287 cap_rights_t haverights;
3288 int error;
3289 uint8_t flags;
3290
3291 fdp = td->td_proc->p_fd;
3292 fdt = fdp->fd_files;
3293 if (__predict_false((u_int)fd >= fdt->fdt_nfiles))
3294 return (EBADF);
3295
3296 for (;;) {
3297 seq = seqc_read_notmodify(fd_seqc(fdt, fd));
3298 fde = &fdt->fdt_ofiles[fd];
3299 haverights = *cap_rights_fde_inline(fde);
3300 fp = fde->fde_file;
3301 flags = fde->fde_flags;
3302 if (__predict_false(fp == NULL)) {
3303 if (seqc_consistent(fd_seqc(fdt, fd), seq))
3304 return (EBADF);
3305 fdt = atomic_load_ptr(&fdp->fd_files);
3306 continue;
3307 }
3308 error = cap_check_inline(&haverights, needrightsp);
3309 if (__predict_false(error != 0)) {
3310 if (seqc_consistent(fd_seqc(fdt, fd), seq))
3311 return (error);
3312 fdt = atomic_load_ptr(&fdp->fd_files);
3313 continue;
3314 }
3315 if (__predict_false(!refcount_acquire_if_not_zero(&fp->f_count))) {
3316 fdt = atomic_load_ptr(&fdp->fd_files);
3317 continue;
3318 }
3319 /*
3320 * Use an acquire barrier to force re-reading of fdt so it is
3321 * refreshed for verification.
3322 */
3323 atomic_thread_fence_acq();
3324 fdt = fdp->fd_files;
3325 if (seqc_consistent_no_fence(fd_seqc(fdt, fd), seq))
3326 break;
3327 fdrop(fp, td);
3328 }
3329 *fpp = fp;
3330 if (flagsp != NULL)
3331 *flagsp = flags;
3332 if (seqp != NULL)
3333 *seqp = seq;
3334 return (0);
3335 }
3336 #else
3337 static int
fget_unlocked_seq(struct thread * td,int fd,const cap_rights_t * needrightsp,uint8_t * flagsp,struct file ** fpp,seqc_t * seqp __unused)3338 fget_unlocked_seq(struct thread *td, int fd, const cap_rights_t *needrightsp,
3339 uint8_t *flagsp, struct file **fpp, seqc_t *seqp __unused)
3340 {
3341 struct filedesc *fdp;
3342 const struct fdescenttbl *fdt;
3343 struct file *fp;
3344 uint8_t flags;
3345
3346 fdp = td->td_proc->p_fd;
3347 fdt = fdp->fd_files;
3348 if (__predict_false((u_int)fd >= fdt->fdt_nfiles))
3349 return (EBADF);
3350
3351 for (;;) {
3352 fp = fdt->fdt_ofiles[fd].fde_file;
3353 flags = fdt->fdt_ofiles[fd].fde_flags;
3354 if (__predict_false(fp == NULL))
3355 return (EBADF);
3356 if (__predict_false(!refcount_acquire_if_not_zero(&fp->f_count))) {
3357 fdt = atomic_load_ptr(&fdp->fd_files);
3358 continue;
3359 }
3360 /*
3361 * Use an acquire barrier to force re-reading of fdt so it is
3362 * refreshed for verification.
3363 */
3364 atomic_thread_fence_acq();
3365 fdt = fdp->fd_files;
3366 if (__predict_true(fp == fdt->fdt_ofiles[fd].fde_file))
3367 break;
3368 fdrop(fp, td);
3369 }
3370 if (flagsp != NULL)
3371 *flagsp = flags;
3372 *fpp = fp;
3373 return (0);
3374 }
3375 #endif
3376
3377 /*
3378 * See the comments in fget_unlocked_seq for an explanation of how this works.
3379 *
3380 * This is a simplified variant which bails out to the aforementioned routine
3381 * if anything goes wrong. In practice this only happens when userspace is
3382 * racing with itself.
3383 */
3384 int
fget_unlocked_flags(struct thread * td,int fd,const cap_rights_t * needrightsp,uint8_t * flagsp,struct file ** fpp)3385 fget_unlocked_flags(struct thread *td, int fd, const cap_rights_t *needrightsp,
3386 uint8_t *flagsp, struct file **fpp)
3387 {
3388 struct filedesc *fdp;
3389 #ifdef CAPABILITIES
3390 const struct filedescent *fde;
3391 #endif
3392 const struct fdescenttbl *fdt;
3393 struct file *fp;
3394 #ifdef CAPABILITIES
3395 seqc_t seq;
3396 const cap_rights_t *haverights;
3397 #endif
3398 uint8_t flags;
3399
3400 fdp = td->td_proc->p_fd;
3401 fdt = fdp->fd_files;
3402 if (__predict_false((u_int)fd >= fdt->fdt_nfiles)) {
3403 *fpp = NULL;
3404 return (EBADF);
3405 }
3406 #ifdef CAPABILITIES
3407 seq = seqc_read_notmodify(fd_seqc(fdt, fd));
3408 fde = &fdt->fdt_ofiles[fd];
3409 haverights = cap_rights_fde_inline(fde);
3410 fp = fde->fde_file;
3411 flags = fde->fde_flags;
3412 #else
3413 fp = fdt->fdt_ofiles[fd].fde_file;
3414 flags = fdt->fdt_ofiles[fd].fde_flags;
3415 #endif
3416 if (__predict_false(fp == NULL))
3417 goto out_fallback;
3418 #ifdef CAPABILITIES
3419 if (__predict_false(cap_check_inline_transient(haverights, needrightsp)))
3420 goto out_fallback;
3421 #endif
3422 if (__predict_false(!refcount_acquire_if_not_zero(&fp->f_count)))
3423 goto out_fallback;
3424
3425 /*
3426 * Use an acquire barrier to force re-reading of fdt so it is
3427 * refreshed for verification.
3428 */
3429 atomic_thread_fence_acq();
3430 fdt = fdp->fd_files;
3431 #ifdef CAPABILITIES
3432 if (__predict_false(!seqc_consistent_no_fence(fd_seqc(fdt, fd), seq)))
3433 #else
3434 if (__predict_false(fp != fdt->fdt_ofiles[fd].fde_file))
3435 #endif
3436 goto out_fdrop;
3437 *fpp = fp;
3438 if (flagsp != NULL)
3439 *flagsp = flags;
3440 return (0);
3441 out_fdrop:
3442 fdrop(fp, td);
3443 out_fallback:
3444 *fpp = NULL;
3445 return (fget_unlocked_seq(td, fd, needrightsp, flagsp, fpp, NULL));
3446 }
3447
3448 int
fget_unlocked(struct thread * td,int fd,const cap_rights_t * needrightsp,struct file ** fpp)3449 fget_unlocked(struct thread *td, int fd, const cap_rights_t *needrightsp,
3450 struct file **fpp)
3451 {
3452 return (fget_unlocked_flags(td, fd, needrightsp, NULL, fpp));
3453 }
3454
3455 /*
3456 * Translate fd -> file when the caller guarantees the file descriptor table
3457 * can't be changed by others.
3458 *
3459 * Note this does not mean the file object itself is only visible to the caller,
3460 * merely that it wont disappear without having to be referenced.
3461 *
3462 * Must be paired with fput_only_user.
3463 */
3464 #ifdef CAPABILITIES
3465 int
fget_only_user(struct filedesc * fdp,int fd,const cap_rights_t * needrightsp,struct file ** fpp)3466 fget_only_user(struct filedesc *fdp, int fd, const cap_rights_t *needrightsp,
3467 struct file **fpp)
3468 {
3469 const struct filedescent *fde;
3470 const struct fdescenttbl *fdt;
3471 const cap_rights_t *haverights;
3472 struct file *fp;
3473 int error;
3474
3475 MPASS(FILEDESC_IS_ONLY_USER(fdp));
3476
3477 *fpp = NULL;
3478 if (__predict_false(fd >= fdp->fd_nfiles))
3479 return (EBADF);
3480
3481 fdt = fdp->fd_files;
3482 fde = &fdt->fdt_ofiles[fd];
3483 fp = fde->fde_file;
3484 if (__predict_false(fp == NULL))
3485 return (EBADF);
3486 MPASS(refcount_load(&fp->f_count) > 0);
3487 haverights = cap_rights_fde_inline(fde);
3488 error = cap_check_inline(haverights, needrightsp);
3489 if (__predict_false(error != 0))
3490 return (error);
3491 *fpp = fp;
3492 return (0);
3493 }
3494 #else
3495 int
fget_only_user(struct filedesc * fdp,int fd,const cap_rights_t * needrightsp,struct file ** fpp)3496 fget_only_user(struct filedesc *fdp, int fd, const cap_rights_t *needrightsp,
3497 struct file **fpp)
3498 {
3499 struct file *fp;
3500
3501 MPASS(FILEDESC_IS_ONLY_USER(fdp));
3502
3503 *fpp = NULL;
3504 if (__predict_false(fd >= fdp->fd_nfiles))
3505 return (EBADF);
3506
3507 fp = fdp->fd_ofiles[fd].fde_file;
3508 if (__predict_false(fp == NULL))
3509 return (EBADF);
3510
3511 MPASS(refcount_load(&fp->f_count) > 0);
3512 *fpp = fp;
3513 return (0);
3514 }
3515 #endif
3516
3517 /*
3518 * Extract the file pointer associated with the specified descriptor for the
3519 * current user process.
3520 *
3521 * If the descriptor doesn't exist or doesn't match 'flags', EBADF is
3522 * returned.
3523 *
3524 * File's rights will be checked against the capability rights mask.
3525 *
3526 * If an error occurred the non-zero error is returned and *fpp is set to
3527 * NULL. Otherwise *fpp is held and set and zero is returned. Caller is
3528 * responsible for fdrop().
3529 */
3530 static __inline int
_fget(struct thread * td,int fd,struct file ** fpp,int flags,const cap_rights_t * needrightsp)3531 _fget(struct thread *td, int fd, struct file **fpp, int flags,
3532 const cap_rights_t *needrightsp)
3533 {
3534 struct file *fp;
3535 int error;
3536
3537 *fpp = NULL;
3538 error = fget_unlocked(td, fd, needrightsp, &fp);
3539 if (__predict_false(error != 0))
3540 return (error);
3541 if (__predict_false(fp->f_ops == &badfileops)) {
3542 fdrop(fp, td);
3543 return (EBADF);
3544 }
3545
3546 /*
3547 * FREAD and FWRITE failure return EBADF as per POSIX.
3548 */
3549 error = 0;
3550 switch (flags) {
3551 case FREAD:
3552 case FWRITE:
3553 if ((fp->f_flag & flags) == 0)
3554 error = EBADF;
3555 break;
3556 case FEXEC:
3557 if (fp->f_ops != &path_fileops &&
3558 ((fp->f_flag & (FREAD | FEXEC)) == 0 ||
3559 (fp->f_flag & FWRITE) != 0))
3560 error = EBADF;
3561 break;
3562 case 0:
3563 break;
3564 default:
3565 KASSERT(0, ("wrong flags"));
3566 }
3567
3568 if (error != 0) {
3569 fdrop(fp, td);
3570 return (error);
3571 }
3572
3573 *fpp = fp;
3574 return (0);
3575 }
3576
3577 int
fget(struct thread * td,int fd,const cap_rights_t * rightsp,struct file ** fpp)3578 fget(struct thread *td, int fd, const cap_rights_t *rightsp, struct file **fpp)
3579 {
3580
3581 return (_fget(td, fd, fpp, 0, rightsp));
3582 }
3583
3584 int
fget_mmap(struct thread * td,int fd,const cap_rights_t * rightsp,vm_prot_t * maxprotp,struct file ** fpp)3585 fget_mmap(struct thread *td, int fd, const cap_rights_t *rightsp,
3586 vm_prot_t *maxprotp, struct file **fpp)
3587 {
3588 int error;
3589 #ifndef CAPABILITIES
3590 error = _fget(td, fd, fpp, 0, rightsp);
3591 if (maxprotp != NULL)
3592 *maxprotp = VM_PROT_ALL;
3593 return (error);
3594 #else
3595 cap_rights_t fdrights;
3596 struct filedesc *fdp;
3597 struct file *fp;
3598 seqc_t seq;
3599
3600 *fpp = NULL;
3601 fdp = td->td_proc->p_fd;
3602 MPASS(cap_rights_is_set(rightsp, CAP_MMAP));
3603 for (;;) {
3604 error = fget_unlocked_seq(td, fd, rightsp, NULL, &fp, &seq);
3605 if (__predict_false(error != 0))
3606 return (error);
3607 if (__predict_false(fp->f_ops == &badfileops)) {
3608 fdrop(fp, td);
3609 return (EBADF);
3610 }
3611 if (maxprotp != NULL)
3612 fdrights = *cap_rights(fdp, fd);
3613 if (!fd_modified(fdp, fd, seq))
3614 break;
3615 fdrop(fp, td);
3616 }
3617
3618 /*
3619 * If requested, convert capability rights to access flags.
3620 */
3621 if (maxprotp != NULL)
3622 *maxprotp = cap_rights_to_vmprot(&fdrights);
3623 *fpp = fp;
3624 return (0);
3625 #endif
3626 }
3627
3628 int
fget_read(struct thread * td,int fd,const cap_rights_t * rightsp,struct file ** fpp)3629 fget_read(struct thread *td, int fd, const cap_rights_t *rightsp,
3630 struct file **fpp)
3631 {
3632
3633 return (_fget(td, fd, fpp, FREAD, rightsp));
3634 }
3635
3636 int
fget_write(struct thread * td,int fd,const cap_rights_t * rightsp,struct file ** fpp)3637 fget_write(struct thread *td, int fd, const cap_rights_t *rightsp,
3638 struct file **fpp)
3639 {
3640
3641 return (_fget(td, fd, fpp, FWRITE, rightsp));
3642 }
3643
3644 int
fget_fcntl(struct thread * td,int fd,const cap_rights_t * rightsp,int needfcntl,struct file ** fpp)3645 fget_fcntl(struct thread *td, int fd, const cap_rights_t *rightsp,
3646 int needfcntl, struct file **fpp)
3647 {
3648 #ifndef CAPABILITIES
3649 return (fget_unlocked(td, fd, rightsp, fpp));
3650 #else
3651 struct filedesc *fdp = td->td_proc->p_fd;
3652 struct file *fp;
3653 int error;
3654 seqc_t seq;
3655
3656 *fpp = NULL;
3657 MPASS(cap_rights_is_set(rightsp, CAP_FCNTL));
3658 for (;;) {
3659 error = fget_unlocked_seq(td, fd, rightsp, NULL, &fp, &seq);
3660 if (error != 0)
3661 return (error);
3662 error = cap_fcntl_check(fdp, fd, needfcntl);
3663 if (!fd_modified(fdp, fd, seq))
3664 break;
3665 fdrop(fp, td);
3666 }
3667 if (error != 0) {
3668 fdrop(fp, td);
3669 return (error);
3670 }
3671 *fpp = fp;
3672 return (0);
3673 #endif
3674 }
3675
3676 /*
3677 * Like fget() but loads the underlying vnode, or returns an error if the
3678 * descriptor does not represent a vnode. Note that pipes use vnodes but
3679 * never have VM objects. The returned vnode will be vref()'d.
3680 *
3681 * XXX: what about the unused flags ?
3682 */
3683 static __inline int
_fgetvp(struct thread * td,int fd,int flags,const cap_rights_t * needrightsp,struct vnode ** vpp)3684 _fgetvp(struct thread *td, int fd, int flags, const cap_rights_t *needrightsp,
3685 struct vnode **vpp)
3686 {
3687 struct file *fp;
3688 int error;
3689
3690 *vpp = NULL;
3691 error = _fget(td, fd, &fp, flags, needrightsp);
3692 if (error != 0)
3693 return (error);
3694 if (fp->f_vnode == NULL) {
3695 error = EINVAL;
3696 } else {
3697 *vpp = fp->f_vnode;
3698 vrefact(*vpp);
3699 }
3700 fdrop(fp, td);
3701
3702 return (error);
3703 }
3704
3705 int
fgetvp(struct thread * td,int fd,const cap_rights_t * rightsp,struct vnode ** vpp)3706 fgetvp(struct thread *td, int fd, const cap_rights_t *rightsp,
3707 struct vnode **vpp)
3708 {
3709
3710 return (_fgetvp(td, fd, 0, rightsp, vpp));
3711 }
3712
3713 int
fgetvp_rights(struct thread * td,int fd,const cap_rights_t * needrightsp,struct filecaps * havecaps,struct vnode ** vpp)3714 fgetvp_rights(struct thread *td, int fd, const cap_rights_t *needrightsp,
3715 struct filecaps *havecaps, struct vnode **vpp)
3716 {
3717 struct filecaps caps;
3718 struct file *fp;
3719 int error;
3720
3721 error = fget_cap(td, fd, needrightsp, NULL, &fp, &caps);
3722 if (error != 0)
3723 return (error);
3724 if (fp->f_ops == &badfileops) {
3725 error = EBADF;
3726 goto out;
3727 }
3728 if (fp->f_vnode == NULL) {
3729 error = EINVAL;
3730 goto out;
3731 }
3732
3733 *havecaps = caps;
3734 *vpp = fp->f_vnode;
3735 vrefact(*vpp);
3736 fdrop(fp, td);
3737
3738 return (0);
3739 out:
3740 filecaps_free(&caps);
3741 fdrop(fp, td);
3742 return (error);
3743 }
3744
3745 int
fgetvp_read(struct thread * td,int fd,const cap_rights_t * rightsp,struct vnode ** vpp)3746 fgetvp_read(struct thread *td, int fd, const cap_rights_t *rightsp,
3747 struct vnode **vpp)
3748 {
3749
3750 return (_fgetvp(td, fd, FREAD, rightsp, vpp));
3751 }
3752
3753 int
fgetvp_exec(struct thread * td,int fd,const cap_rights_t * rightsp,struct vnode ** vpp)3754 fgetvp_exec(struct thread *td, int fd, const cap_rights_t *rightsp,
3755 struct vnode **vpp)
3756 {
3757
3758 return (_fgetvp(td, fd, FEXEC, rightsp, vpp));
3759 }
3760
3761 #ifdef notyet
3762 int
fgetvp_write(struct thread * td,int fd,const cap_rights_t * rightsp,struct vnode ** vpp)3763 fgetvp_write(struct thread *td, int fd, const cap_rights_t *rightsp,
3764 struct vnode **vpp)
3765 {
3766
3767 return (_fgetvp(td, fd, FWRITE, rightsp, vpp));
3768 }
3769 #endif
3770
3771 /*
3772 * Handle the last reference to a file being closed.
3773 *
3774 * Without the noinline attribute clang keeps inlining the func thorough this
3775 * file when fdrop is used.
3776 */
3777 int __noinline
_fdrop(struct file * fp,struct thread * td)3778 _fdrop(struct file *fp, struct thread *td)
3779 {
3780 int error;
3781
3782 KASSERT(refcount_load(&fp->f_count) == 0,
3783 ("fdrop: fp %p count %d", fp, refcount_load(&fp->f_count)));
3784
3785 error = fo_close(fp, td);
3786 atomic_subtract_int(&openfiles, 1);
3787 crfree(fp->f_cred);
3788 free(fp->f_advice, M_FADVISE);
3789 uma_zfree(file_zone, fp);
3790
3791 return (error);
3792 }
3793
3794 /*
3795 * Apply an advisory lock on a file descriptor.
3796 *
3797 * Just attempt to get a record lock of the requested type on the entire file
3798 * (l_whence = SEEK_SET, l_start = 0, l_len = 0).
3799 */
3800 #ifndef _SYS_SYSPROTO_H_
3801 struct flock_args {
3802 int fd;
3803 int how;
3804 };
3805 #endif
3806 /* ARGSUSED */
3807 int
sys_flock(struct thread * td,struct flock_args * uap)3808 sys_flock(struct thread *td, struct flock_args *uap)
3809 {
3810 struct file *fp;
3811 struct vnode *vp;
3812 struct flock lf;
3813 int error;
3814
3815 error = fget(td, uap->fd, &cap_flock_rights, &fp);
3816 if (error != 0)
3817 return (error);
3818 error = EOPNOTSUPP;
3819 if (fp->f_type != DTYPE_VNODE && fp->f_type != DTYPE_FIFO) {
3820 goto done;
3821 }
3822 if (fp->f_ops == &path_fileops) {
3823 goto done;
3824 }
3825
3826 error = 0;
3827 vp = fp->f_vnode;
3828 lf.l_whence = SEEK_SET;
3829 lf.l_start = 0;
3830 lf.l_len = 0;
3831 if (uap->how & LOCK_UN) {
3832 lf.l_type = F_UNLCK;
3833 atomic_clear_int(&fp->f_flag, FHASLOCK);
3834 error = VOP_ADVLOCK(vp, (caddr_t)fp, F_UNLCK, &lf, F_FLOCK);
3835 goto done;
3836 }
3837 if (uap->how & LOCK_EX)
3838 lf.l_type = F_WRLCK;
3839 else if (uap->how & LOCK_SH)
3840 lf.l_type = F_RDLCK;
3841 else {
3842 error = EBADF;
3843 goto done;
3844 }
3845 atomic_set_int(&fp->f_flag, FHASLOCK);
3846 error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf,
3847 (uap->how & LOCK_NB) ? F_FLOCK : F_FLOCK | F_WAIT);
3848 done:
3849 fdrop(fp, td);
3850 return (error);
3851 }
3852 /*
3853 * Duplicate the specified descriptor to a free descriptor.
3854 */
3855 int
dupfdopen(struct thread * td,struct filedesc * fdp,int dfd,int mode,int openerror,int * indxp)3856 dupfdopen(struct thread *td, struct filedesc *fdp, int dfd, int mode,
3857 int openerror, int *indxp)
3858 {
3859 struct filedescent *newfde, *oldfde;
3860 struct file *fp;
3861 u_long *ioctls;
3862 int error, indx;
3863
3864 KASSERT(openerror == ENODEV || openerror == ENXIO,
3865 ("unexpected error %d in %s", openerror, __func__));
3866
3867 /*
3868 * If the to-be-dup'd fd number is greater than the allowed number
3869 * of file descriptors, or the fd to be dup'd has already been
3870 * closed, then reject.
3871 */
3872 FILEDESC_XLOCK(fdp);
3873 if ((fp = fget_noref(fdp, dfd)) == NULL) {
3874 FILEDESC_XUNLOCK(fdp);
3875 return (EBADF);
3876 }
3877
3878 error = fdalloc(td, 0, &indx);
3879 if (error != 0) {
3880 FILEDESC_XUNLOCK(fdp);
3881 return (error);
3882 }
3883
3884 /*
3885 * There are two cases of interest here.
3886 *
3887 * For ENODEV simply dup (dfd) to file descriptor (indx) and return.
3888 *
3889 * For ENXIO steal away the file structure from (dfd) and store it in
3890 * (indx). (dfd) is effectively closed by this operation.
3891 */
3892 switch (openerror) {
3893 case ENODEV:
3894 /*
3895 * Check that the mode the file is being opened for is a
3896 * subset of the mode of the existing descriptor.
3897 */
3898 if (((mode & (FREAD|FWRITE)) | fp->f_flag) != fp->f_flag) {
3899 fdunused(fdp, indx);
3900 FILEDESC_XUNLOCK(fdp);
3901 return (EACCES);
3902 }
3903 if (!fhold(fp)) {
3904 fdunused(fdp, indx);
3905 FILEDESC_XUNLOCK(fdp);
3906 return (EBADF);
3907 }
3908 newfde = &fdp->fd_ofiles[indx];
3909 oldfde = &fdp->fd_ofiles[dfd];
3910 ioctls = filecaps_copy_prep(&oldfde->fde_caps);
3911 #ifdef CAPABILITIES
3912 seqc_write_begin(&newfde->fde_seqc);
3913 #endif
3914 fde_copy(oldfde, newfde);
3915 filecaps_copy_finish(&oldfde->fde_caps, &newfde->fde_caps,
3916 ioctls);
3917 #ifdef CAPABILITIES
3918 seqc_write_end(&newfde->fde_seqc);
3919 #endif
3920 break;
3921 case ENXIO:
3922 /*
3923 * Steal away the file pointer from dfd and stuff it into indx.
3924 */
3925 newfde = &fdp->fd_ofiles[indx];
3926 oldfde = &fdp->fd_ofiles[dfd];
3927 #ifdef CAPABILITIES
3928 seqc_write_begin(&oldfde->fde_seqc);
3929 seqc_write_begin(&newfde->fde_seqc);
3930 #endif
3931 fde_copy(oldfde, newfde);
3932 oldfde->fde_file = NULL;
3933 fdunused(fdp, dfd);
3934 #ifdef CAPABILITIES
3935 seqc_write_end(&newfde->fde_seqc);
3936 seqc_write_end(&oldfde->fde_seqc);
3937 #endif
3938 break;
3939 }
3940 FILEDESC_XUNLOCK(fdp);
3941 *indxp = indx;
3942 return (0);
3943 }
3944
3945 /*
3946 * This sysctl determines if we will allow a process to chroot(2) if it
3947 * has a directory open:
3948 * 0: disallowed for all processes.
3949 * 1: allowed for processes that were not already chroot(2)'ed.
3950 * 2: allowed for all processes.
3951 */
3952
3953 static int chroot_allow_open_directories = 1;
3954
3955 SYSCTL_INT(_kern, OID_AUTO, chroot_allow_open_directories, CTLFLAG_RW,
3956 &chroot_allow_open_directories, 0,
3957 "Allow a process to chroot(2) if it has a directory open");
3958
3959 /*
3960 * Helper function for raised chroot(2) security function: Refuse if
3961 * any filedescriptors are open directories.
3962 */
3963 static int
chroot_refuse_vdir_fds(struct filedesc * fdp)3964 chroot_refuse_vdir_fds(struct filedesc *fdp)
3965 {
3966 struct vnode *vp;
3967 struct file *fp;
3968 int i;
3969
3970 FILEDESC_LOCK_ASSERT(fdp);
3971
3972 FILEDESC_FOREACH_FP(fdp, i, fp) {
3973 if (fp->f_type == DTYPE_VNODE) {
3974 vp = fp->f_vnode;
3975 if (vp->v_type == VDIR)
3976 return (EPERM);
3977 }
3978 }
3979 return (0);
3980 }
3981
3982 static void
pwd_fill(struct pwd * oldpwd,struct pwd * newpwd)3983 pwd_fill(struct pwd *oldpwd, struct pwd *newpwd)
3984 {
3985
3986 if (newpwd->pwd_cdir == NULL && oldpwd->pwd_cdir != NULL) {
3987 vrefact(oldpwd->pwd_cdir);
3988 newpwd->pwd_cdir = oldpwd->pwd_cdir;
3989 }
3990
3991 if (newpwd->pwd_rdir == NULL && oldpwd->pwd_rdir != NULL) {
3992 vrefact(oldpwd->pwd_rdir);
3993 newpwd->pwd_rdir = oldpwd->pwd_rdir;
3994 }
3995
3996 if (newpwd->pwd_jdir == NULL && oldpwd->pwd_jdir != NULL) {
3997 vrefact(oldpwd->pwd_jdir);
3998 newpwd->pwd_jdir = oldpwd->pwd_jdir;
3999 }
4000
4001 if (newpwd->pwd_adir == NULL && oldpwd->pwd_adir != NULL) {
4002 vrefact(oldpwd->pwd_adir);
4003 newpwd->pwd_adir = oldpwd->pwd_adir;
4004 }
4005 }
4006
4007 struct pwd *
pwd_hold_pwddesc(struct pwddesc * pdp)4008 pwd_hold_pwddesc(struct pwddesc *pdp)
4009 {
4010 struct pwd *pwd;
4011
4012 PWDDESC_ASSERT_XLOCKED(pdp);
4013 pwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4014 if (pwd != NULL)
4015 refcount_acquire(&pwd->pwd_refcount);
4016 return (pwd);
4017 }
4018
4019 bool
pwd_hold_smr(struct pwd * pwd)4020 pwd_hold_smr(struct pwd *pwd)
4021 {
4022
4023 MPASS(pwd != NULL);
4024 if (__predict_true(refcount_acquire_if_not_zero(&pwd->pwd_refcount))) {
4025 return (true);
4026 }
4027 return (false);
4028 }
4029
4030 struct pwd *
pwd_hold(struct thread * td)4031 pwd_hold(struct thread *td)
4032 {
4033 struct pwddesc *pdp;
4034 struct pwd *pwd;
4035
4036 pdp = td->td_proc->p_pd;
4037
4038 vfs_smr_enter();
4039 pwd = vfs_smr_entered_load(&pdp->pd_pwd);
4040 if (pwd_hold_smr(pwd)) {
4041 vfs_smr_exit();
4042 return (pwd);
4043 }
4044 vfs_smr_exit();
4045 PWDDESC_XLOCK(pdp);
4046 pwd = pwd_hold_pwddesc(pdp);
4047 MPASS(pwd != NULL);
4048 PWDDESC_XUNLOCK(pdp);
4049 return (pwd);
4050 }
4051
4052 struct pwd *
pwd_hold_proc(struct proc * p)4053 pwd_hold_proc(struct proc *p)
4054 {
4055 struct pwddesc *pdp;
4056 struct pwd *pwd;
4057
4058 PROC_ASSERT_HELD(p);
4059 PROC_LOCK(p);
4060 pdp = pdhold(p);
4061 MPASS(pdp != NULL);
4062 PROC_UNLOCK(p);
4063
4064 PWDDESC_XLOCK(pdp);
4065 pwd = pwd_hold_pwddesc(pdp);
4066 MPASS(pwd != NULL);
4067 PWDDESC_XUNLOCK(pdp);
4068 pddrop(pdp);
4069 return (pwd);
4070 }
4071
4072 static struct pwd *
pwd_alloc(void)4073 pwd_alloc(void)
4074 {
4075 struct pwd *pwd;
4076
4077 pwd = uma_zalloc_smr(pwd_zone, M_WAITOK);
4078 bzero(pwd, sizeof(*pwd));
4079 refcount_init(&pwd->pwd_refcount, 1);
4080 return (pwd);
4081 }
4082
4083 void
pwd_drop(struct pwd * pwd)4084 pwd_drop(struct pwd *pwd)
4085 {
4086
4087 if (!refcount_release(&pwd->pwd_refcount))
4088 return;
4089
4090 if (pwd->pwd_cdir != NULL)
4091 vrele(pwd->pwd_cdir);
4092 if (pwd->pwd_rdir != NULL)
4093 vrele(pwd->pwd_rdir);
4094 if (pwd->pwd_jdir != NULL)
4095 vrele(pwd->pwd_jdir);
4096 if (pwd->pwd_adir != NULL)
4097 vrele(pwd->pwd_adir);
4098 uma_zfree_smr(pwd_zone, pwd);
4099 }
4100
4101 /*
4102 * The caller is responsible for invoking priv_check() and
4103 * mac_vnode_check_chroot() to authorize this operation.
4104 */
4105 int
pwd_chroot(struct thread * td,struct vnode * vp)4106 pwd_chroot(struct thread *td, struct vnode *vp)
4107 {
4108 struct pwddesc *pdp;
4109 struct filedesc *fdp;
4110 struct pwd *newpwd, *oldpwd;
4111 int error;
4112
4113 fdp = td->td_proc->p_fd;
4114 pdp = td->td_proc->p_pd;
4115 newpwd = pwd_alloc();
4116 FILEDESC_SLOCK(fdp);
4117 PWDDESC_XLOCK(pdp);
4118 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4119 if (chroot_allow_open_directories == 0 ||
4120 (chroot_allow_open_directories == 1 &&
4121 oldpwd->pwd_rdir != rootvnode)) {
4122 error = chroot_refuse_vdir_fds(fdp);
4123 FILEDESC_SUNLOCK(fdp);
4124 if (error != 0) {
4125 PWDDESC_XUNLOCK(pdp);
4126 pwd_drop(newpwd);
4127 return (error);
4128 }
4129 } else {
4130 FILEDESC_SUNLOCK(fdp);
4131 }
4132
4133 vrefact(vp);
4134 newpwd->pwd_rdir = vp;
4135 vrefact(vp);
4136 newpwd->pwd_adir = vp;
4137 if (oldpwd->pwd_jdir == NULL) {
4138 vrefact(vp);
4139 newpwd->pwd_jdir = vp;
4140 }
4141 pwd_fill(oldpwd, newpwd);
4142 pwd_set(pdp, newpwd);
4143 PWDDESC_XUNLOCK(pdp);
4144 pwd_drop(oldpwd);
4145 return (0);
4146 }
4147
4148 void
pwd_chdir(struct thread * td,struct vnode * vp)4149 pwd_chdir(struct thread *td, struct vnode *vp)
4150 {
4151 struct pwddesc *pdp;
4152 struct pwd *newpwd, *oldpwd;
4153
4154 VNPASS(vp->v_usecount > 0, vp);
4155
4156 newpwd = pwd_alloc();
4157 pdp = td->td_proc->p_pd;
4158 PWDDESC_XLOCK(pdp);
4159 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4160 newpwd->pwd_cdir = vp;
4161 pwd_fill(oldpwd, newpwd);
4162 pwd_set(pdp, newpwd);
4163 PWDDESC_XUNLOCK(pdp);
4164 pwd_drop(oldpwd);
4165 }
4166
4167 /*
4168 * Process is transitioning to/from a non-native ABI.
4169 */
4170 void
pwd_altroot(struct thread * td,struct vnode * altroot_vp)4171 pwd_altroot(struct thread *td, struct vnode *altroot_vp)
4172 {
4173 struct pwddesc *pdp;
4174 struct pwd *newpwd, *oldpwd;
4175
4176 newpwd = pwd_alloc();
4177 pdp = td->td_proc->p_pd;
4178 PWDDESC_XLOCK(pdp);
4179 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4180 if (altroot_vp != NULL) {
4181 /*
4182 * Native process to a non-native ABI.
4183 */
4184
4185 vrefact(altroot_vp);
4186 newpwd->pwd_adir = altroot_vp;
4187 } else {
4188 /*
4189 * Non-native process to the native ABI.
4190 */
4191
4192 vrefact(oldpwd->pwd_rdir);
4193 newpwd->pwd_adir = oldpwd->pwd_rdir;
4194 }
4195 pwd_fill(oldpwd, newpwd);
4196 pwd_set(pdp, newpwd);
4197 PWDDESC_XUNLOCK(pdp);
4198 pwd_drop(oldpwd);
4199 }
4200
4201 /*
4202 * jail_attach(2) changes both root and working directories.
4203 */
4204 int
pwd_chroot_chdir(struct thread * td,struct vnode * vp)4205 pwd_chroot_chdir(struct thread *td, struct vnode *vp)
4206 {
4207 struct pwddesc *pdp;
4208 struct filedesc *fdp;
4209 struct pwd *newpwd, *oldpwd;
4210 int error;
4211
4212 fdp = td->td_proc->p_fd;
4213 pdp = td->td_proc->p_pd;
4214 newpwd = pwd_alloc();
4215 FILEDESC_SLOCK(fdp);
4216 PWDDESC_XLOCK(pdp);
4217 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4218 error = chroot_refuse_vdir_fds(fdp);
4219 FILEDESC_SUNLOCK(fdp);
4220 if (error != 0) {
4221 PWDDESC_XUNLOCK(pdp);
4222 pwd_drop(newpwd);
4223 return (error);
4224 }
4225
4226 vrefact(vp);
4227 newpwd->pwd_rdir = vp;
4228 vrefact(vp);
4229 newpwd->pwd_cdir = vp;
4230 if (oldpwd->pwd_jdir == NULL) {
4231 vrefact(vp);
4232 newpwd->pwd_jdir = vp;
4233 }
4234 vrefact(vp);
4235 newpwd->pwd_adir = vp;
4236 pwd_fill(oldpwd, newpwd);
4237 pwd_set(pdp, newpwd);
4238 PWDDESC_XUNLOCK(pdp);
4239 pwd_drop(oldpwd);
4240 return (0);
4241 }
4242
4243 void
pwd_ensure_dirs(void)4244 pwd_ensure_dirs(void)
4245 {
4246 struct pwddesc *pdp;
4247 struct pwd *oldpwd, *newpwd;
4248
4249 pdp = curproc->p_pd;
4250 PWDDESC_XLOCK(pdp);
4251 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4252 if (oldpwd->pwd_cdir != NULL && oldpwd->pwd_rdir != NULL &&
4253 oldpwd->pwd_adir != NULL) {
4254 PWDDESC_XUNLOCK(pdp);
4255 return;
4256 }
4257 PWDDESC_XUNLOCK(pdp);
4258
4259 newpwd = pwd_alloc();
4260 PWDDESC_XLOCK(pdp);
4261 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4262 pwd_fill(oldpwd, newpwd);
4263 if (newpwd->pwd_cdir == NULL) {
4264 vrefact(rootvnode);
4265 newpwd->pwd_cdir = rootvnode;
4266 }
4267 if (newpwd->pwd_rdir == NULL) {
4268 vrefact(rootvnode);
4269 newpwd->pwd_rdir = rootvnode;
4270 }
4271 if (newpwd->pwd_adir == NULL) {
4272 vrefact(rootvnode);
4273 newpwd->pwd_adir = rootvnode;
4274 }
4275 pwd_set(pdp, newpwd);
4276 PWDDESC_XUNLOCK(pdp);
4277 pwd_drop(oldpwd);
4278 }
4279
4280 void
pwd_set_rootvnode(void)4281 pwd_set_rootvnode(void)
4282 {
4283 struct pwddesc *pdp;
4284 struct pwd *oldpwd, *newpwd;
4285
4286 pdp = curproc->p_pd;
4287
4288 newpwd = pwd_alloc();
4289 PWDDESC_XLOCK(pdp);
4290 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4291 vrefact(rootvnode);
4292 newpwd->pwd_cdir = rootvnode;
4293 vrefact(rootvnode);
4294 newpwd->pwd_rdir = rootvnode;
4295 vrefact(rootvnode);
4296 newpwd->pwd_adir = rootvnode;
4297 pwd_fill(oldpwd, newpwd);
4298 pwd_set(pdp, newpwd);
4299 PWDDESC_XUNLOCK(pdp);
4300 pwd_drop(oldpwd);
4301 }
4302
4303 /*
4304 * Scan all active processes and prisons to see if any of them have a current
4305 * or root directory of `olddp'. If so, replace them with the new mount point.
4306 */
4307 void
mountcheckdirs(struct vnode * olddp,struct vnode * newdp)4308 mountcheckdirs(struct vnode *olddp, struct vnode *newdp)
4309 {
4310 struct pwddesc *pdp;
4311 struct pwd *newpwd, *oldpwd;
4312 struct prison *pr;
4313 struct proc *p;
4314 int nrele;
4315
4316 if (vrefcnt(olddp) == 1)
4317 return;
4318 nrele = 0;
4319 newpwd = pwd_alloc();
4320 sx_slock(&allproc_lock);
4321 FOREACH_PROC_IN_SYSTEM(p) {
4322 PROC_LOCK(p);
4323 pdp = pdhold(p);
4324 PROC_UNLOCK(p);
4325 if (pdp == NULL)
4326 continue;
4327 PWDDESC_XLOCK(pdp);
4328 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4329 if (oldpwd == NULL ||
4330 (oldpwd->pwd_cdir != olddp &&
4331 oldpwd->pwd_rdir != olddp &&
4332 oldpwd->pwd_jdir != olddp &&
4333 oldpwd->pwd_adir != olddp)) {
4334 PWDDESC_XUNLOCK(pdp);
4335 pddrop(pdp);
4336 continue;
4337 }
4338 if (oldpwd->pwd_cdir == olddp) {
4339 vrefact(newdp);
4340 newpwd->pwd_cdir = newdp;
4341 }
4342 if (oldpwd->pwd_rdir == olddp) {
4343 vrefact(newdp);
4344 newpwd->pwd_rdir = newdp;
4345 }
4346 if (oldpwd->pwd_jdir == olddp) {
4347 vrefact(newdp);
4348 newpwd->pwd_jdir = newdp;
4349 }
4350 if (oldpwd->pwd_adir == olddp) {
4351 vrefact(newdp);
4352 newpwd->pwd_adir = newdp;
4353 }
4354 pwd_fill(oldpwd, newpwd);
4355 pwd_set(pdp, newpwd);
4356 PWDDESC_XUNLOCK(pdp);
4357 pwd_drop(oldpwd);
4358 pddrop(pdp);
4359 newpwd = pwd_alloc();
4360 }
4361 sx_sunlock(&allproc_lock);
4362 pwd_drop(newpwd);
4363 if (rootvnode == olddp) {
4364 vrefact(newdp);
4365 rootvnode = newdp;
4366 nrele++;
4367 }
4368 mtx_lock(&prison0.pr_mtx);
4369 if (prison0.pr_root == olddp) {
4370 vrefact(newdp);
4371 prison0.pr_root = newdp;
4372 nrele++;
4373 }
4374 mtx_unlock(&prison0.pr_mtx);
4375 sx_slock(&allprison_lock);
4376 TAILQ_FOREACH(pr, &allprison, pr_list) {
4377 mtx_lock(&pr->pr_mtx);
4378 if (pr->pr_root == olddp) {
4379 vrefact(newdp);
4380 pr->pr_root = newdp;
4381 nrele++;
4382 }
4383 mtx_unlock(&pr->pr_mtx);
4384 }
4385 sx_sunlock(&allprison_lock);
4386 while (nrele--)
4387 vrele(olddp);
4388 }
4389
4390 int
descrip_check_write_mp(struct filedesc * fdp,struct mount * mp)4391 descrip_check_write_mp(struct filedesc *fdp, struct mount *mp)
4392 {
4393 struct file *fp;
4394 struct vnode *vp;
4395 int error, i;
4396
4397 error = 0;
4398 FILEDESC_SLOCK(fdp);
4399 FILEDESC_FOREACH_FP(fdp, i, fp) {
4400 if (fp->f_type != DTYPE_VNODE ||
4401 (atomic_load_int(&fp->f_flag) & FWRITE) == 0)
4402 continue;
4403 vp = fp->f_vnode;
4404 if (vp->v_mount == mp) {
4405 error = EDEADLK;
4406 break;
4407 }
4408 }
4409 FILEDESC_SUNLOCK(fdp);
4410 return (error);
4411 }
4412
4413 struct filedesc_to_leader *
filedesc_to_leader_alloc(struct filedesc_to_leader * old,struct filedesc * fdp,struct proc * leader)4414 filedesc_to_leader_alloc(struct filedesc_to_leader *old, struct filedesc *fdp,
4415 struct proc *leader)
4416 {
4417 struct filedesc_to_leader *fdtol;
4418
4419 fdtol = malloc(sizeof(struct filedesc_to_leader),
4420 M_FILEDESC_TO_LEADER, M_WAITOK);
4421 fdtol->fdl_refcount = 1;
4422 fdtol->fdl_holdcount = 0;
4423 fdtol->fdl_wakeup = 0;
4424 fdtol->fdl_leader = leader;
4425 if (old != NULL) {
4426 FILEDESC_XLOCK(fdp);
4427 fdtol->fdl_next = old->fdl_next;
4428 fdtol->fdl_prev = old;
4429 old->fdl_next = fdtol;
4430 fdtol->fdl_next->fdl_prev = fdtol;
4431 FILEDESC_XUNLOCK(fdp);
4432 } else {
4433 fdtol->fdl_next = fdtol;
4434 fdtol->fdl_prev = fdtol;
4435 }
4436 return (fdtol);
4437 }
4438
4439 struct filedesc_to_leader *
filedesc_to_leader_share(struct filedesc_to_leader * fdtol,struct filedesc * fdp)4440 filedesc_to_leader_share(struct filedesc_to_leader *fdtol, struct filedesc *fdp)
4441 {
4442 FILEDESC_XLOCK(fdp);
4443 fdtol->fdl_refcount++;
4444 FILEDESC_XUNLOCK(fdp);
4445 return (fdtol);
4446 }
4447
4448 static int
filedesc_nfiles(struct filedesc * fdp)4449 filedesc_nfiles(struct filedesc *fdp)
4450 {
4451 NDSLOTTYPE *map;
4452 int count, off, minoff;
4453
4454 if (fdp == NULL)
4455 return (0);
4456 count = 0;
4457 FILEDESC_SLOCK(fdp);
4458 map = fdp->fd_map;
4459 off = NDSLOT(fdp->fd_nfiles - 1);
4460 for (minoff = NDSLOT(0); off >= minoff; --off)
4461 count += bitcountl(map[off]);
4462 FILEDESC_SUNLOCK(fdp);
4463 return (count);
4464 }
4465
4466 int
proc_nfiles(struct proc * p)4467 proc_nfiles(struct proc *p)
4468 {
4469 struct filedesc *fdp;
4470 int res;
4471
4472 PROC_LOCK(p);
4473 fdp = fdhold(p);
4474 PROC_UNLOCK(p);
4475 res = filedesc_nfiles(fdp);
4476 fddrop(fdp);
4477 return (res);
4478 }
4479
4480 static int
sysctl_kern_proc_nfds(SYSCTL_HANDLER_ARGS)4481 sysctl_kern_proc_nfds(SYSCTL_HANDLER_ARGS)
4482 {
4483 u_int namelen;
4484 int count;
4485
4486 namelen = arg2;
4487 if (namelen != 1)
4488 return (EINVAL);
4489
4490 if (*(int *)arg1 != 0)
4491 return (EINVAL);
4492
4493 count = filedesc_nfiles(curproc->p_fd);
4494 return (SYSCTL_OUT(req, &count, sizeof(count)));
4495 }
4496
4497 static SYSCTL_NODE(_kern_proc, KERN_PROC_NFDS, nfds,
4498 CTLFLAG_RD|CTLFLAG_CAPRD|CTLFLAG_MPSAFE, sysctl_kern_proc_nfds,
4499 "Number of open file descriptors");
4500
4501 /*
4502 * Get file structures globally.
4503 */
4504 static int
sysctl_kern_file(SYSCTL_HANDLER_ARGS)4505 sysctl_kern_file(SYSCTL_HANDLER_ARGS)
4506 {
4507 struct xfile xf;
4508 struct filedesc *fdp;
4509 struct file *fp;
4510 struct proc *p;
4511 int error, n;
4512
4513 error = sysctl_wire_old_buffer(req, 0);
4514 if (error != 0)
4515 return (error);
4516 if (req->oldptr == NULL) {
4517 n = 0;
4518 sx_slock(&allproc_lock);
4519 FOREACH_PROC_IN_SYSTEM(p) {
4520 PROC_LOCK(p);
4521 if (p->p_state == PRS_NEW) {
4522 PROC_UNLOCK(p);
4523 continue;
4524 }
4525 fdp = fdhold(p);
4526 PROC_UNLOCK(p);
4527 if (fdp == NULL)
4528 continue;
4529 /* overestimates sparse tables. */
4530 n += fdp->fd_nfiles;
4531 fddrop(fdp);
4532 }
4533 sx_sunlock(&allproc_lock);
4534 return (SYSCTL_OUT(req, 0, n * sizeof(xf)));
4535 }
4536 error = 0;
4537 bzero(&xf, sizeof(xf));
4538 xf.xf_size = sizeof(xf);
4539 sx_slock(&allproc_lock);
4540 FOREACH_PROC_IN_SYSTEM(p) {
4541 PROC_LOCK(p);
4542 if (p->p_state == PRS_NEW) {
4543 PROC_UNLOCK(p);
4544 continue;
4545 }
4546 if (p_cansee(req->td, p) != 0) {
4547 PROC_UNLOCK(p);
4548 continue;
4549 }
4550 xf.xf_pid = p->p_pid;
4551 xf.xf_uid = p->p_ucred->cr_uid;
4552 fdp = fdhold(p);
4553 PROC_UNLOCK(p);
4554 if (fdp == NULL)
4555 continue;
4556 FILEDESC_SLOCK(fdp);
4557 if (refcount_load(&fdp->fd_refcnt) == 0)
4558 goto nextproc;
4559 FILEDESC_FOREACH_FP(fdp, n, fp) {
4560 xf.xf_fd = n;
4561 xf.xf_file = (uintptr_t)fp;
4562 xf.xf_data = (uintptr_t)fp->f_data;
4563 xf.xf_vnode = (uintptr_t)fp->f_vnode;
4564 xf.xf_type = (uintptr_t)fp->f_type;
4565 xf.xf_count = refcount_load(&fp->f_count);
4566 xf.xf_msgcount = 0;
4567 xf.xf_offset = foffset_get(fp);
4568 xf.xf_flag = fp->f_flag;
4569 error = SYSCTL_OUT(req, &xf, sizeof(xf));
4570
4571 /*
4572 * There is no need to re-check the fdtable refcount
4573 * here since the filedesc lock is not dropped in the
4574 * loop body.
4575 */
4576 if (error != 0)
4577 break;
4578 }
4579 nextproc:
4580 FILEDESC_SUNLOCK(fdp);
4581 fddrop(fdp);
4582 if (error)
4583 break;
4584 }
4585 sx_sunlock(&allproc_lock);
4586 return (error);
4587 }
4588
4589 SYSCTL_PROC(_kern, KERN_FILE, file, CTLTYPE_OPAQUE|CTLFLAG_RD|CTLFLAG_MPSAFE,
4590 0, 0, sysctl_kern_file, "S,xfile", "Entire file table");
4591
4592 #ifdef KINFO_FILE_SIZE
4593 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE);
4594 #endif
4595
4596 static int
xlate_fflags(int fflags)4597 xlate_fflags(int fflags)
4598 {
4599 static const struct {
4600 int fflag;
4601 int kf_fflag;
4602 } fflags_table[] = {
4603 { FAPPEND, KF_FLAG_APPEND },
4604 { FASYNC, KF_FLAG_ASYNC },
4605 { FFSYNC, KF_FLAG_FSYNC },
4606 { FHASLOCK, KF_FLAG_HASLOCK },
4607 { FNONBLOCK, KF_FLAG_NONBLOCK },
4608 { FREAD, KF_FLAG_READ },
4609 { FWRITE, KF_FLAG_WRITE },
4610 { O_CREAT, KF_FLAG_CREAT },
4611 { O_DIRECT, KF_FLAG_DIRECT },
4612 { O_EXCL, KF_FLAG_EXCL },
4613 { O_EXEC, KF_FLAG_EXEC },
4614 { O_EXLOCK, KF_FLAG_EXLOCK },
4615 { O_NOFOLLOW, KF_FLAG_NOFOLLOW },
4616 { O_SHLOCK, KF_FLAG_SHLOCK },
4617 { O_TRUNC, KF_FLAG_TRUNC }
4618 };
4619 unsigned int i;
4620 int kflags;
4621
4622 kflags = 0;
4623 for (i = 0; i < nitems(fflags_table); i++)
4624 if (fflags & fflags_table[i].fflag)
4625 kflags |= fflags_table[i].kf_fflag;
4626 return (kflags);
4627 }
4628
4629 /* Trim unused data from kf_path by truncating the structure size. */
4630 void
pack_kinfo(struct kinfo_file * kif)4631 pack_kinfo(struct kinfo_file *kif)
4632 {
4633
4634 kif->kf_structsize = offsetof(struct kinfo_file, kf_path) +
4635 strlen(kif->kf_path) + 1;
4636 kif->kf_structsize = roundup(kif->kf_structsize, sizeof(uint64_t));
4637 }
4638
4639 static void
export_file_to_kinfo(struct file * fp,int fd,cap_rights_t * rightsp,struct kinfo_file * kif,struct filedesc * fdp,int flags)4640 export_file_to_kinfo(struct file *fp, int fd, cap_rights_t *rightsp,
4641 struct kinfo_file *kif, struct filedesc *fdp, int flags)
4642 {
4643 int error;
4644
4645 bzero(kif, sizeof(*kif));
4646
4647 /* Set a default type to allow for empty fill_kinfo() methods. */
4648 kif->kf_type = KF_TYPE_UNKNOWN;
4649 kif->kf_flags = xlate_fflags(fp->f_flag);
4650 if (rightsp != NULL)
4651 kif->kf_cap_rights = *rightsp;
4652 else
4653 cap_rights_init_zero(&kif->kf_cap_rights);
4654 kif->kf_fd = fd;
4655 kif->kf_ref_count = refcount_load(&fp->f_count);
4656 kif->kf_offset = foffset_get(fp);
4657
4658 /*
4659 * This may drop the filedesc lock, so the 'fp' cannot be
4660 * accessed after this call.
4661 */
4662 error = fo_fill_kinfo(fp, kif, fdp);
4663 if (error == 0)
4664 kif->kf_status |= KF_ATTR_VALID;
4665 if ((flags & KERN_FILEDESC_PACK_KINFO) != 0)
4666 pack_kinfo(kif);
4667 else
4668 kif->kf_structsize = roundup2(sizeof(*kif), sizeof(uint64_t));
4669 }
4670
4671 static void
export_vnode_to_kinfo(struct vnode * vp,int fd,int fflags,struct kinfo_file * kif,int flags)4672 export_vnode_to_kinfo(struct vnode *vp, int fd, int fflags,
4673 struct kinfo_file *kif, int flags)
4674 {
4675 int error;
4676
4677 bzero(kif, sizeof(*kif));
4678
4679 kif->kf_type = KF_TYPE_VNODE;
4680 error = vn_fill_kinfo_vnode(vp, kif);
4681 if (error == 0)
4682 kif->kf_status |= KF_ATTR_VALID;
4683 kif->kf_flags = xlate_fflags(fflags);
4684 cap_rights_init_zero(&kif->kf_cap_rights);
4685 kif->kf_fd = fd;
4686 kif->kf_ref_count = -1;
4687 kif->kf_offset = -1;
4688 if ((flags & KERN_FILEDESC_PACK_KINFO) != 0)
4689 pack_kinfo(kif);
4690 else
4691 kif->kf_structsize = roundup2(sizeof(*kif), sizeof(uint64_t));
4692 vrele(vp);
4693 }
4694
4695 struct export_fd_buf {
4696 struct filedesc *fdp;
4697 struct pwddesc *pdp;
4698 struct sbuf *sb;
4699 ssize_t remainder;
4700 struct kinfo_file kif;
4701 int flags;
4702 };
4703
4704 static int
export_kinfo_to_sb(struct export_fd_buf * efbuf)4705 export_kinfo_to_sb(struct export_fd_buf *efbuf)
4706 {
4707 struct kinfo_file *kif;
4708
4709 kif = &efbuf->kif;
4710 if (efbuf->remainder != -1) {
4711 if (efbuf->remainder < kif->kf_structsize)
4712 return (ENOMEM);
4713 efbuf->remainder -= kif->kf_structsize;
4714 }
4715 if (sbuf_bcat(efbuf->sb, kif, kif->kf_structsize) != 0)
4716 return (sbuf_error(efbuf->sb));
4717 return (0);
4718 }
4719
4720 static int
export_file_to_sb(struct file * fp,int fd,cap_rights_t * rightsp,struct export_fd_buf * efbuf)4721 export_file_to_sb(struct file *fp, int fd, cap_rights_t *rightsp,
4722 struct export_fd_buf *efbuf)
4723 {
4724 int error;
4725
4726 if (efbuf->remainder == 0)
4727 return (ENOMEM);
4728 export_file_to_kinfo(fp, fd, rightsp, &efbuf->kif, efbuf->fdp,
4729 efbuf->flags);
4730 FILEDESC_SUNLOCK(efbuf->fdp);
4731 error = export_kinfo_to_sb(efbuf);
4732 FILEDESC_SLOCK(efbuf->fdp);
4733 return (error);
4734 }
4735
4736 static int
export_vnode_to_sb(struct vnode * vp,int fd,int fflags,struct export_fd_buf * efbuf)4737 export_vnode_to_sb(struct vnode *vp, int fd, int fflags,
4738 struct export_fd_buf *efbuf)
4739 {
4740 int error;
4741
4742 if (efbuf->remainder == 0)
4743 return (ENOMEM);
4744 if (efbuf->pdp != NULL)
4745 PWDDESC_XUNLOCK(efbuf->pdp);
4746 export_vnode_to_kinfo(vp, fd, fflags, &efbuf->kif, efbuf->flags);
4747 error = export_kinfo_to_sb(efbuf);
4748 if (efbuf->pdp != NULL)
4749 PWDDESC_XLOCK(efbuf->pdp);
4750 return (error);
4751 }
4752
4753 /*
4754 * Store a process file descriptor information to sbuf.
4755 *
4756 * Takes a locked proc as argument, and returns with the proc unlocked.
4757 */
4758 int
kern_proc_filedesc_out(struct proc * p,struct sbuf * sb,ssize_t maxlen,int flags)4759 kern_proc_filedesc_out(struct proc *p, struct sbuf *sb, ssize_t maxlen,
4760 int flags)
4761 {
4762 struct file *fp;
4763 struct filedesc *fdp;
4764 struct pwddesc *pdp;
4765 struct export_fd_buf *efbuf;
4766 struct vnode *cttyvp, *textvp, *tracevp;
4767 struct pwd *pwd;
4768 int error, i;
4769 cap_rights_t rights;
4770
4771 PROC_LOCK_ASSERT(p, MA_OWNED);
4772
4773 /* ktrace vnode */
4774 tracevp = ktr_get_tracevp(p, true);
4775 /* text vnode */
4776 textvp = p->p_textvp;
4777 if (textvp != NULL)
4778 vrefact(textvp);
4779 /* Controlling tty. */
4780 cttyvp = NULL;
4781 if (p->p_pgrp != NULL && p->p_pgrp->pg_session != NULL) {
4782 cttyvp = p->p_pgrp->pg_session->s_ttyvp;
4783 if (cttyvp != NULL)
4784 vrefact(cttyvp);
4785 }
4786 fdp = fdhold(p);
4787 pdp = pdhold(p);
4788 PROC_UNLOCK(p);
4789
4790 efbuf = malloc(sizeof(*efbuf), M_TEMP, M_WAITOK);
4791 efbuf->fdp = NULL;
4792 efbuf->pdp = NULL;
4793 efbuf->sb = sb;
4794 efbuf->remainder = maxlen;
4795 efbuf->flags = flags;
4796
4797 error = 0;
4798 if (tracevp != NULL)
4799 error = export_vnode_to_sb(tracevp, KF_FD_TYPE_TRACE,
4800 FREAD | FWRITE, efbuf);
4801 if (error == 0 && textvp != NULL)
4802 error = export_vnode_to_sb(textvp, KF_FD_TYPE_TEXT, FREAD,
4803 efbuf);
4804 if (error == 0 && cttyvp != NULL)
4805 error = export_vnode_to_sb(cttyvp, KF_FD_TYPE_CTTY,
4806 FREAD | FWRITE, efbuf);
4807 if (error != 0 || pdp == NULL || fdp == NULL)
4808 goto fail;
4809 efbuf->fdp = fdp;
4810 efbuf->pdp = pdp;
4811 PWDDESC_XLOCK(pdp);
4812 pwd = pwd_hold_pwddesc(pdp);
4813 if (pwd != NULL) {
4814 /* working directory */
4815 if (pwd->pwd_cdir != NULL) {
4816 vrefact(pwd->pwd_cdir);
4817 error = export_vnode_to_sb(pwd->pwd_cdir,
4818 KF_FD_TYPE_CWD, FREAD, efbuf);
4819 }
4820 /* root directory */
4821 if (error == 0 && pwd->pwd_rdir != NULL) {
4822 vrefact(pwd->pwd_rdir);
4823 error = export_vnode_to_sb(pwd->pwd_rdir,
4824 KF_FD_TYPE_ROOT, FREAD, efbuf);
4825 }
4826 /* jail directory */
4827 if (error == 0 && pwd->pwd_jdir != NULL) {
4828 vrefact(pwd->pwd_jdir);
4829 error = export_vnode_to_sb(pwd->pwd_jdir,
4830 KF_FD_TYPE_JAIL, FREAD, efbuf);
4831 }
4832 }
4833 PWDDESC_XUNLOCK(pdp);
4834 if (error != 0)
4835 goto fail;
4836 if (pwd != NULL)
4837 pwd_drop(pwd);
4838 FILEDESC_SLOCK(fdp);
4839 if (refcount_load(&fdp->fd_refcnt) == 0)
4840 goto skip;
4841 FILEDESC_FOREACH_FP(fdp, i, fp) {
4842 #ifdef CAPABILITIES
4843 rights = *cap_rights(fdp, i);
4844 #else /* !CAPABILITIES */
4845 rights = cap_no_rights;
4846 #endif
4847 /*
4848 * Create sysctl entry. It is OK to drop the filedesc
4849 * lock inside of export_file_to_sb() as we will
4850 * re-validate and re-evaluate its properties when the
4851 * loop continues.
4852 */
4853 error = export_file_to_sb(fp, i, &rights, efbuf);
4854 if (error != 0 || refcount_load(&fdp->fd_refcnt) == 0)
4855 break;
4856 }
4857 skip:
4858 FILEDESC_SUNLOCK(fdp);
4859 fail:
4860 if (fdp != NULL)
4861 fddrop(fdp);
4862 if (pdp != NULL)
4863 pddrop(pdp);
4864 free(efbuf, M_TEMP);
4865 return (error);
4866 }
4867
4868 #define FILEDESC_SBUF_SIZE (sizeof(struct kinfo_file) * 5)
4869
4870 /*
4871 * Get per-process file descriptors for use by procstat(1), et al.
4872 */
4873 static int
sysctl_kern_proc_filedesc(SYSCTL_HANDLER_ARGS)4874 sysctl_kern_proc_filedesc(SYSCTL_HANDLER_ARGS)
4875 {
4876 struct sbuf sb;
4877 struct proc *p;
4878 ssize_t maxlen;
4879 u_int namelen;
4880 int error, error2, *name;
4881
4882 namelen = arg2;
4883 if (namelen != 1)
4884 return (EINVAL);
4885
4886 name = (int *)arg1;
4887
4888 sbuf_new_for_sysctl(&sb, NULL, FILEDESC_SBUF_SIZE, req);
4889 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
4890 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
4891 if (error != 0) {
4892 sbuf_delete(&sb);
4893 return (error);
4894 }
4895 maxlen = req->oldptr != NULL ? req->oldlen : -1;
4896 error = kern_proc_filedesc_out(p, &sb, maxlen,
4897 KERN_FILEDESC_PACK_KINFO);
4898 error2 = sbuf_finish(&sb);
4899 sbuf_delete(&sb);
4900 return (error != 0 ? error : error2);
4901 }
4902
4903 #ifdef COMPAT_FREEBSD7
4904 #ifdef KINFO_OFILE_SIZE
4905 CTASSERT(sizeof(struct kinfo_ofile) == KINFO_OFILE_SIZE);
4906 #endif
4907
4908 static void
kinfo_to_okinfo(struct kinfo_file * kif,struct kinfo_ofile * okif)4909 kinfo_to_okinfo(struct kinfo_file *kif, struct kinfo_ofile *okif)
4910 {
4911
4912 okif->kf_structsize = sizeof(*okif);
4913 okif->kf_type = kif->kf_type;
4914 okif->kf_fd = kif->kf_fd;
4915 okif->kf_ref_count = kif->kf_ref_count;
4916 okif->kf_flags = kif->kf_flags & (KF_FLAG_READ | KF_FLAG_WRITE |
4917 KF_FLAG_APPEND | KF_FLAG_ASYNC | KF_FLAG_FSYNC | KF_FLAG_NONBLOCK |
4918 KF_FLAG_DIRECT | KF_FLAG_HASLOCK);
4919 okif->kf_offset = kif->kf_offset;
4920 if (kif->kf_type == KF_TYPE_VNODE)
4921 okif->kf_vnode_type = kif->kf_un.kf_file.kf_file_type;
4922 else
4923 okif->kf_vnode_type = KF_VTYPE_VNON;
4924 strlcpy(okif->kf_path, kif->kf_path, sizeof(okif->kf_path));
4925 if (kif->kf_type == KF_TYPE_SOCKET) {
4926 okif->kf_sock_domain = kif->kf_un.kf_sock.kf_sock_domain0;
4927 okif->kf_sock_type = kif->kf_un.kf_sock.kf_sock_type0;
4928 okif->kf_sock_protocol = kif->kf_un.kf_sock.kf_sock_protocol0;
4929 okif->kf_sa_local = kif->kf_un.kf_sock.kf_sa_local;
4930 okif->kf_sa_peer = kif->kf_un.kf_sock.kf_sa_peer;
4931 } else {
4932 okif->kf_sa_local.ss_family = AF_UNSPEC;
4933 okif->kf_sa_peer.ss_family = AF_UNSPEC;
4934 }
4935 }
4936
4937 static int
export_vnode_for_osysctl(struct vnode * vp,int type,struct kinfo_file * kif,struct kinfo_ofile * okif,struct pwddesc * pdp,struct sysctl_req * req)4938 export_vnode_for_osysctl(struct vnode *vp, int type, struct kinfo_file *kif,
4939 struct kinfo_ofile *okif, struct pwddesc *pdp, struct sysctl_req *req)
4940 {
4941 int error;
4942
4943 vrefact(vp);
4944 PWDDESC_XUNLOCK(pdp);
4945 export_vnode_to_kinfo(vp, type, 0, kif, KERN_FILEDESC_PACK_KINFO);
4946 kinfo_to_okinfo(kif, okif);
4947 error = SYSCTL_OUT(req, okif, sizeof(*okif));
4948 PWDDESC_XLOCK(pdp);
4949 return (error);
4950 }
4951
4952 /*
4953 * Get per-process file descriptors for use by procstat(1), et al.
4954 */
4955 static int
sysctl_kern_proc_ofiledesc(SYSCTL_HANDLER_ARGS)4956 sysctl_kern_proc_ofiledesc(SYSCTL_HANDLER_ARGS)
4957 {
4958 struct kinfo_ofile *okif;
4959 struct kinfo_file *kif;
4960 struct filedesc *fdp;
4961 struct pwddesc *pdp;
4962 struct pwd *pwd;
4963 u_int namelen;
4964 int error, i, *name;
4965 struct file *fp;
4966 struct proc *p;
4967
4968 namelen = arg2;
4969 if (namelen != 1)
4970 return (EINVAL);
4971
4972 name = (int *)arg1;
4973 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
4974 if (error != 0)
4975 return (error);
4976 fdp = fdhold(p);
4977 if (fdp != NULL)
4978 pdp = pdhold(p);
4979 PROC_UNLOCK(p);
4980 if (fdp == NULL || pdp == NULL) {
4981 if (fdp != NULL)
4982 fddrop(fdp);
4983 return (ENOENT);
4984 }
4985 kif = malloc(sizeof(*kif), M_TEMP, M_WAITOK);
4986 okif = malloc(sizeof(*okif), M_TEMP, M_WAITOK);
4987 PWDDESC_XLOCK(pdp);
4988 pwd = pwd_hold_pwddesc(pdp);
4989 if (pwd != NULL) {
4990 if (pwd->pwd_cdir != NULL)
4991 export_vnode_for_osysctl(pwd->pwd_cdir, KF_FD_TYPE_CWD, kif,
4992 okif, pdp, req);
4993 if (pwd->pwd_rdir != NULL)
4994 export_vnode_for_osysctl(pwd->pwd_rdir, KF_FD_TYPE_ROOT, kif,
4995 okif, pdp, req);
4996 if (pwd->pwd_jdir != NULL)
4997 export_vnode_for_osysctl(pwd->pwd_jdir, KF_FD_TYPE_JAIL, kif,
4998 okif, pdp, req);
4999 }
5000 PWDDESC_XUNLOCK(pdp);
5001 if (pwd != NULL)
5002 pwd_drop(pwd);
5003 FILEDESC_SLOCK(fdp);
5004 if (refcount_load(&fdp->fd_refcnt) == 0)
5005 goto skip;
5006 FILEDESC_FOREACH_FP(fdp, i, fp) {
5007 export_file_to_kinfo(fp, i, NULL, kif, fdp,
5008 KERN_FILEDESC_PACK_KINFO);
5009 FILEDESC_SUNLOCK(fdp);
5010 kinfo_to_okinfo(kif, okif);
5011 error = SYSCTL_OUT(req, okif, sizeof(*okif));
5012 FILEDESC_SLOCK(fdp);
5013 if (error != 0 || refcount_load(&fdp->fd_refcnt) == 0)
5014 break;
5015 }
5016 skip:
5017 FILEDESC_SUNLOCK(fdp);
5018 fddrop(fdp);
5019 pddrop(pdp);
5020 free(kif, M_TEMP);
5021 free(okif, M_TEMP);
5022 return (0);
5023 }
5024
5025 static SYSCTL_NODE(_kern_proc, KERN_PROC_OFILEDESC, ofiledesc,
5026 CTLFLAG_RD|CTLFLAG_MPSAFE, sysctl_kern_proc_ofiledesc,
5027 "Process ofiledesc entries");
5028 #endif /* COMPAT_FREEBSD7 */
5029
5030 int
vntype_to_kinfo(int vtype)5031 vntype_to_kinfo(int vtype)
5032 {
5033 struct {
5034 int vtype;
5035 int kf_vtype;
5036 } vtypes_table[] = {
5037 { VBAD, KF_VTYPE_VBAD },
5038 { VBLK, KF_VTYPE_VBLK },
5039 { VCHR, KF_VTYPE_VCHR },
5040 { VDIR, KF_VTYPE_VDIR },
5041 { VFIFO, KF_VTYPE_VFIFO },
5042 { VLNK, KF_VTYPE_VLNK },
5043 { VNON, KF_VTYPE_VNON },
5044 { VREG, KF_VTYPE_VREG },
5045 { VSOCK, KF_VTYPE_VSOCK }
5046 };
5047 unsigned int i;
5048
5049 /*
5050 * Perform vtype translation.
5051 */
5052 for (i = 0; i < nitems(vtypes_table); i++)
5053 if (vtypes_table[i].vtype == vtype)
5054 return (vtypes_table[i].kf_vtype);
5055
5056 return (KF_VTYPE_UNKNOWN);
5057 }
5058
5059 static SYSCTL_NODE(_kern_proc, KERN_PROC_FILEDESC, filedesc,
5060 CTLFLAG_RD|CTLFLAG_MPSAFE, sysctl_kern_proc_filedesc,
5061 "Process filedesc entries");
5062
5063 /*
5064 * Store a process current working directory information to sbuf.
5065 *
5066 * Takes a locked proc as argument, and returns with the proc unlocked.
5067 */
5068 int
kern_proc_cwd_out(struct proc * p,struct sbuf * sb,ssize_t maxlen)5069 kern_proc_cwd_out(struct proc *p, struct sbuf *sb, ssize_t maxlen)
5070 {
5071 struct pwddesc *pdp;
5072 struct pwd *pwd;
5073 struct export_fd_buf *efbuf;
5074 struct vnode *cdir;
5075 int error;
5076
5077 PROC_LOCK_ASSERT(p, MA_OWNED);
5078
5079 pdp = pdhold(p);
5080 PROC_UNLOCK(p);
5081 if (pdp == NULL)
5082 return (EINVAL);
5083
5084 efbuf = malloc(sizeof(*efbuf), M_TEMP, M_WAITOK);
5085 efbuf->fdp = NULL;
5086 efbuf->pdp = pdp;
5087 efbuf->sb = sb;
5088 efbuf->remainder = maxlen;
5089 efbuf->flags = 0;
5090
5091 PWDDESC_XLOCK(pdp);
5092 pwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
5093 cdir = pwd->pwd_cdir;
5094 if (cdir == NULL) {
5095 error = EINVAL;
5096 } else {
5097 vrefact(cdir);
5098 error = export_vnode_to_sb(cdir, KF_FD_TYPE_CWD, FREAD, efbuf);
5099 }
5100 PWDDESC_XUNLOCK(pdp);
5101 pddrop(pdp);
5102 free(efbuf, M_TEMP);
5103 return (error);
5104 }
5105
5106 /*
5107 * Get per-process current working directory.
5108 */
5109 static int
sysctl_kern_proc_cwd(SYSCTL_HANDLER_ARGS)5110 sysctl_kern_proc_cwd(SYSCTL_HANDLER_ARGS)
5111 {
5112 struct sbuf sb;
5113 struct proc *p;
5114 ssize_t maxlen;
5115 u_int namelen;
5116 int error, error2, *name;
5117
5118 namelen = arg2;
5119 if (namelen != 1)
5120 return (EINVAL);
5121
5122 name = (int *)arg1;
5123
5124 sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_file), req);
5125 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
5126 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
5127 if (error != 0) {
5128 sbuf_delete(&sb);
5129 return (error);
5130 }
5131 maxlen = req->oldptr != NULL ? req->oldlen : -1;
5132 error = kern_proc_cwd_out(p, &sb, maxlen);
5133 error2 = sbuf_finish(&sb);
5134 sbuf_delete(&sb);
5135 return (error != 0 ? error : error2);
5136 }
5137
5138 static SYSCTL_NODE(_kern_proc, KERN_PROC_CWD, cwd, CTLFLAG_RD|CTLFLAG_MPSAFE,
5139 sysctl_kern_proc_cwd, "Process current working directory");
5140
5141 #ifdef DDB
5142 /*
5143 * For the purposes of debugging, generate a human-readable string for the
5144 * file type.
5145 */
5146 static const char *
file_type_to_name(short type)5147 file_type_to_name(short type)
5148 {
5149
5150 switch (type) {
5151 case 0:
5152 return ("zero");
5153 case DTYPE_VNODE:
5154 return ("vnode");
5155 case DTYPE_SOCKET:
5156 return ("socket");
5157 case DTYPE_PIPE:
5158 return ("pipe");
5159 case DTYPE_FIFO:
5160 return ("fifo");
5161 case DTYPE_KQUEUE:
5162 return ("kqueue");
5163 case DTYPE_CRYPTO:
5164 return ("crypto");
5165 case DTYPE_MQUEUE:
5166 return ("mqueue");
5167 case DTYPE_SHM:
5168 return ("shm");
5169 case DTYPE_SEM:
5170 return ("ksem");
5171 case DTYPE_PTS:
5172 return ("pts");
5173 case DTYPE_DEV:
5174 return ("dev");
5175 case DTYPE_PROCDESC:
5176 return ("proc");
5177 case DTYPE_EVENTFD:
5178 return ("eventfd");
5179 case DTYPE_TIMERFD:
5180 return ("timerfd");
5181 default:
5182 return ("unkn");
5183 }
5184 }
5185
5186 /*
5187 * For the purposes of debugging, identify a process (if any, perhaps one of
5188 * many) that references the passed file in its file descriptor array. Return
5189 * NULL if none.
5190 */
5191 static struct proc *
file_to_first_proc(struct file * fp)5192 file_to_first_proc(struct file *fp)
5193 {
5194 struct filedesc *fdp;
5195 struct proc *p;
5196 int n;
5197
5198 FOREACH_PROC_IN_SYSTEM(p) {
5199 if (p->p_state == PRS_NEW)
5200 continue;
5201 fdp = p->p_fd;
5202 if (fdp == NULL)
5203 continue;
5204 for (n = 0; n < fdp->fd_nfiles; n++) {
5205 if (fp == fdp->fd_ofiles[n].fde_file)
5206 return (p);
5207 }
5208 }
5209 return (NULL);
5210 }
5211
5212 static void
db_print_file(struct file * fp,int header)5213 db_print_file(struct file *fp, int header)
5214 {
5215 #define XPTRWIDTH ((int)howmany(sizeof(void *) * NBBY, 4))
5216 struct proc *p;
5217
5218 if (header)
5219 db_printf("%*s %6s %*s %8s %4s %5s %6s %*s %5s %s\n",
5220 XPTRWIDTH, "File", "Type", XPTRWIDTH, "Data", "Flag",
5221 "GCFl", "Count", "MCount", XPTRWIDTH, "Vnode", "FPID",
5222 "FCmd");
5223 p = file_to_first_proc(fp);
5224 db_printf("%*p %6s %*p %08x %04x %5d %6d %*p %5d %s\n", XPTRWIDTH,
5225 fp, file_type_to_name(fp->f_type), XPTRWIDTH, fp->f_data,
5226 fp->f_flag, 0, refcount_load(&fp->f_count), 0, XPTRWIDTH, fp->f_vnode,
5227 p != NULL ? p->p_pid : -1, p != NULL ? p->p_comm : "-");
5228
5229 #undef XPTRWIDTH
5230 }
5231
DB_SHOW_COMMAND(file,db_show_file)5232 DB_SHOW_COMMAND(file, db_show_file)
5233 {
5234 struct file *fp;
5235
5236 if (!have_addr) {
5237 db_printf("usage: show file <addr>\n");
5238 return;
5239 }
5240 fp = (struct file *)addr;
5241 db_print_file(fp, 1);
5242 }
5243
DB_SHOW_COMMAND_FLAGS(files,db_show_files,DB_CMD_MEMSAFE)5244 DB_SHOW_COMMAND_FLAGS(files, db_show_files, DB_CMD_MEMSAFE)
5245 {
5246 struct filedesc *fdp;
5247 struct file *fp;
5248 struct proc *p;
5249 int header;
5250 int n;
5251
5252 header = 1;
5253 FOREACH_PROC_IN_SYSTEM(p) {
5254 if (p->p_state == PRS_NEW)
5255 continue;
5256 if ((fdp = p->p_fd) == NULL)
5257 continue;
5258 for (n = 0; n < fdp->fd_nfiles; ++n) {
5259 if ((fp = fdp->fd_ofiles[n].fde_file) == NULL)
5260 continue;
5261 db_print_file(fp, header);
5262 header = 0;
5263 }
5264 }
5265 }
5266 #endif
5267
5268 SYSCTL_INT(_kern, KERN_MAXFILESPERPROC, maxfilesperproc,
5269 CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
5270 &maxfilesperproc, 0, "Maximum files allowed open per process");
5271
5272 SYSCTL_INT(_kern, KERN_MAXFILES, maxfiles, CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
5273 &maxfiles, 0, "Maximum number of files");
5274
5275 SYSCTL_INT(_kern, OID_AUTO, openfiles, CTLFLAG_RD,
5276 &openfiles, 0, "System-wide number of open files");
5277
5278 /* ARGSUSED*/
5279 static void
filelistinit(void * dummy)5280 filelistinit(void *dummy)
5281 {
5282
5283 file_zone = uma_zcreate("Files", sizeof(struct file), NULL, NULL,
5284 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
5285 filedesc0_zone = uma_zcreate("filedesc0", sizeof(struct filedesc0),
5286 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
5287 pwd_zone = uma_zcreate("PWD", sizeof(struct pwd), NULL, NULL,
5288 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_SMR);
5289 /*
5290 * XXXMJG this is a temporary hack due to boot ordering issues against
5291 * the vnode zone.
5292 */
5293 vfs_smr = uma_zone_get_smr(pwd_zone);
5294 mtx_init(&sigio_lock, "sigio lock", NULL, MTX_DEF);
5295 }
5296 SYSINIT(select, SI_SUB_LOCK, SI_ORDER_FIRST, filelistinit, NULL);
5297
5298 /*-------------------------------------------------------------------*/
5299
5300 static int
badfo_readwrite(struct file * fp,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)5301 badfo_readwrite(struct file *fp, struct uio *uio, struct ucred *active_cred,
5302 int flags, struct thread *td)
5303 {
5304
5305 return (EBADF);
5306 }
5307
5308 static int
badfo_truncate(struct file * fp,off_t length,struct ucred * active_cred,struct thread * td)5309 badfo_truncate(struct file *fp, off_t length, struct ucred *active_cred,
5310 struct thread *td)
5311 {
5312
5313 return (EINVAL);
5314 }
5315
5316 static int
badfo_ioctl(struct file * fp,u_long com,void * data,struct ucred * active_cred,struct thread * td)5317 badfo_ioctl(struct file *fp, u_long com, void *data, struct ucred *active_cred,
5318 struct thread *td)
5319 {
5320
5321 return (EBADF);
5322 }
5323
5324 static int
badfo_poll(struct file * fp,int events,struct ucred * active_cred,struct thread * td)5325 badfo_poll(struct file *fp, int events, struct ucred *active_cred,
5326 struct thread *td)
5327 {
5328
5329 return (0);
5330 }
5331
5332 static int
badfo_kqfilter(struct file * fp,struct knote * kn)5333 badfo_kqfilter(struct file *fp, struct knote *kn)
5334 {
5335
5336 return (EBADF);
5337 }
5338
5339 static int
badfo_stat(struct file * fp,struct stat * sb,struct ucred * active_cred)5340 badfo_stat(struct file *fp, struct stat *sb, struct ucred *active_cred)
5341 {
5342
5343 return (EBADF);
5344 }
5345
5346 static int
badfo_close(struct file * fp,struct thread * td)5347 badfo_close(struct file *fp, struct thread *td)
5348 {
5349
5350 return (0);
5351 }
5352
5353 static int
badfo_chmod(struct file * fp,mode_t mode,struct ucred * active_cred,struct thread * td)5354 badfo_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
5355 struct thread *td)
5356 {
5357
5358 return (EBADF);
5359 }
5360
5361 static int
badfo_chown(struct file * fp,uid_t uid,gid_t gid,struct ucred * active_cred,struct thread * td)5362 badfo_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
5363 struct thread *td)
5364 {
5365
5366 return (EBADF);
5367 }
5368
5369 static int
badfo_sendfile(struct file * fp,int sockfd,struct uio * hdr_uio,struct uio * trl_uio,off_t offset,size_t nbytes,off_t * sent,int flags,struct thread * td)5370 badfo_sendfile(struct file *fp, int sockfd, struct uio *hdr_uio,
5371 struct uio *trl_uio, off_t offset, size_t nbytes, off_t *sent, int flags,
5372 struct thread *td)
5373 {
5374
5375 return (EBADF);
5376 }
5377
5378 static int
badfo_fill_kinfo(struct file * fp,struct kinfo_file * kif,struct filedesc * fdp)5379 badfo_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
5380 {
5381
5382 return (0);
5383 }
5384
5385 const struct fileops badfileops = {
5386 .fo_read = badfo_readwrite,
5387 .fo_write = badfo_readwrite,
5388 .fo_truncate = badfo_truncate,
5389 .fo_ioctl = badfo_ioctl,
5390 .fo_poll = badfo_poll,
5391 .fo_kqfilter = badfo_kqfilter,
5392 .fo_stat = badfo_stat,
5393 .fo_close = badfo_close,
5394 .fo_chmod = badfo_chmod,
5395 .fo_chown = badfo_chown,
5396 .fo_sendfile = badfo_sendfile,
5397 .fo_fill_kinfo = badfo_fill_kinfo,
5398 };
5399
5400 static int
path_poll(struct file * fp,int events,struct ucred * active_cred,struct thread * td)5401 path_poll(struct file *fp, int events, struct ucred *active_cred,
5402 struct thread *td)
5403 {
5404 return (POLLNVAL);
5405 }
5406
5407 static int
path_close(struct file * fp,struct thread * td)5408 path_close(struct file *fp, struct thread *td)
5409 {
5410 MPASS(fp->f_type == DTYPE_VNODE);
5411 fp->f_ops = &badfileops;
5412 vrele(fp->f_vnode);
5413 return (0);
5414 }
5415
5416 const struct fileops path_fileops = {
5417 .fo_read = badfo_readwrite,
5418 .fo_write = badfo_readwrite,
5419 .fo_truncate = badfo_truncate,
5420 .fo_ioctl = badfo_ioctl,
5421 .fo_poll = path_poll,
5422 .fo_kqfilter = vn_kqfilter_opath,
5423 .fo_stat = vn_statfile,
5424 .fo_close = path_close,
5425 .fo_chmod = badfo_chmod,
5426 .fo_chown = badfo_chown,
5427 .fo_sendfile = badfo_sendfile,
5428 .fo_fill_kinfo = vn_fill_kinfo,
5429 .fo_cmp = vn_cmp,
5430 .fo_flags = DFLAG_PASSABLE,
5431 };
5432
5433 int
invfo_rdwr(struct file * fp,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)5434 invfo_rdwr(struct file *fp, struct uio *uio, struct ucred *active_cred,
5435 int flags, struct thread *td)
5436 {
5437
5438 return (EOPNOTSUPP);
5439 }
5440
5441 int
invfo_truncate(struct file * fp,off_t length,struct ucred * active_cred,struct thread * td)5442 invfo_truncate(struct file *fp, off_t length, struct ucred *active_cred,
5443 struct thread *td)
5444 {
5445
5446 return (EINVAL);
5447 }
5448
5449 int
invfo_ioctl(struct file * fp,u_long com,void * data,struct ucred * active_cred,struct thread * td)5450 invfo_ioctl(struct file *fp, u_long com, void *data,
5451 struct ucred *active_cred, struct thread *td)
5452 {
5453
5454 return (ENOTTY);
5455 }
5456
5457 int
invfo_poll(struct file * fp,int events,struct ucred * active_cred,struct thread * td)5458 invfo_poll(struct file *fp, int events, struct ucred *active_cred,
5459 struct thread *td)
5460 {
5461
5462 return (poll_no_poll(events));
5463 }
5464
5465 int
invfo_kqfilter(struct file * fp,struct knote * kn)5466 invfo_kqfilter(struct file *fp, struct knote *kn)
5467 {
5468
5469 return (EINVAL);
5470 }
5471
5472 int
invfo_chmod(struct file * fp,mode_t mode,struct ucred * active_cred,struct thread * td)5473 invfo_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
5474 struct thread *td)
5475 {
5476
5477 return (EINVAL);
5478 }
5479
5480 int
invfo_chown(struct file * fp,uid_t uid,gid_t gid,struct ucred * active_cred,struct thread * td)5481 invfo_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
5482 struct thread *td)
5483 {
5484
5485 return (EINVAL);
5486 }
5487
5488 int
invfo_sendfile(struct file * fp,int sockfd,struct uio * hdr_uio,struct uio * trl_uio,off_t offset,size_t nbytes,off_t * sent,int flags,struct thread * td)5489 invfo_sendfile(struct file *fp, int sockfd, struct uio *hdr_uio,
5490 struct uio *trl_uio, off_t offset, size_t nbytes, off_t *sent, int flags,
5491 struct thread *td)
5492 {
5493
5494 return (EINVAL);
5495 }
5496
5497 /*-------------------------------------------------------------------*/
5498
5499 /*
5500 * File Descriptor pseudo-device driver (/dev/fd/).
5501 *
5502 * Opening minor device N dup()s the file (if any) connected to file
5503 * descriptor N belonging to the calling process. Note that this driver
5504 * consists of only the ``open()'' routine, because all subsequent
5505 * references to this file will be direct to the other driver.
5506 *
5507 * XXX: we could give this one a cloning event handler if necessary.
5508 */
5509
5510 /* ARGSUSED */
5511 static int
fdopen(struct cdev * dev,int mode,int type,struct thread * td)5512 fdopen(struct cdev *dev, int mode, int type, struct thread *td)
5513 {
5514
5515 /*
5516 * XXX Kludge: set curthread->td_dupfd to contain the value of the
5517 * the file descriptor being sought for duplication. The error
5518 * return ensures that the vnode for this device will be released
5519 * by vn_open. Open will detect this special error and take the
5520 * actions in dupfdopen below. Other callers of vn_open or VOP_OPEN
5521 * will simply report the error.
5522 */
5523 td->td_dupfd = dev2unit(dev);
5524 return (ENODEV);
5525 }
5526
5527 static struct cdevsw fildesc_cdevsw = {
5528 .d_version = D_VERSION,
5529 .d_open = fdopen,
5530 .d_name = "FD",
5531 };
5532
5533 static void
fildesc_drvinit(void * unused)5534 fildesc_drvinit(void *unused)
5535 {
5536 struct cdev *dev;
5537
5538 dev = make_dev_credf(MAKEDEV_ETERNAL, &fildesc_cdevsw, 0, NULL,
5539 UID_ROOT, GID_WHEEL, 0666, "fd/0");
5540 make_dev_alias(dev, "stdin");
5541 dev = make_dev_credf(MAKEDEV_ETERNAL, &fildesc_cdevsw, 1, NULL,
5542 UID_ROOT, GID_WHEEL, 0666, "fd/1");
5543 make_dev_alias(dev, "stdout");
5544 dev = make_dev_credf(MAKEDEV_ETERNAL, &fildesc_cdevsw, 2, NULL,
5545 UID_ROOT, GID_WHEEL, 0666, "fd/2");
5546 make_dev_alias(dev, "stderr");
5547 }
5548
5549 SYSINIT(fildescdev, SI_SUB_DRIVERS, SI_ORDER_MIDDLE, fildesc_drvinit, NULL);
5550