xref: /linux/drivers/regulator/core.c (revision df02351331671abb26788bc13f6d276e26ae068f)
1  // SPDX-License-Identifier: GPL-2.0-or-later
2  //
3  // core.c  --  Voltage/Current Regulator framework.
4  //
5  // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6  // Copyright 2008 SlimLogic Ltd.
7  //
8  // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9  
10  #include <linux/kernel.h>
11  #include <linux/init.h>
12  #include <linux/debugfs.h>
13  #include <linux/device.h>
14  #include <linux/slab.h>
15  #include <linux/async.h>
16  #include <linux/err.h>
17  #include <linux/mutex.h>
18  #include <linux/suspend.h>
19  #include <linux/delay.h>
20  #include <linux/gpio/consumer.h>
21  #include <linux/of.h>
22  #include <linux/reboot.h>
23  #include <linux/regmap.h>
24  #include <linux/regulator/of_regulator.h>
25  #include <linux/regulator/consumer.h>
26  #include <linux/regulator/coupler.h>
27  #include <linux/regulator/driver.h>
28  #include <linux/regulator/machine.h>
29  #include <linux/module.h>
30  
31  #define CREATE_TRACE_POINTS
32  #include <trace/events/regulator.h>
33  
34  #include "dummy.h"
35  #include "internal.h"
36  #include "regnl.h"
37  
38  static DEFINE_WW_CLASS(regulator_ww_class);
39  static DEFINE_MUTEX(regulator_nesting_mutex);
40  static DEFINE_MUTEX(regulator_list_mutex);
41  static LIST_HEAD(regulator_map_list);
42  static LIST_HEAD(regulator_ena_gpio_list);
43  static LIST_HEAD(regulator_supply_alias_list);
44  static LIST_HEAD(regulator_coupler_list);
45  static bool has_full_constraints;
46  
47  static struct dentry *debugfs_root;
48  
49  /*
50   * struct regulator_map
51   *
52   * Used to provide symbolic supply names to devices.
53   */
54  struct regulator_map {
55  	struct list_head list;
56  	const char *dev_name;   /* The dev_name() for the consumer */
57  	const char *supply;
58  	struct regulator_dev *regulator;
59  };
60  
61  /*
62   * struct regulator_enable_gpio
63   *
64   * Management for shared enable GPIO pin
65   */
66  struct regulator_enable_gpio {
67  	struct list_head list;
68  	struct gpio_desc *gpiod;
69  	u32 enable_count;	/* a number of enabled shared GPIO */
70  	u32 request_count;	/* a number of requested shared GPIO */
71  };
72  
73  /*
74   * struct regulator_supply_alias
75   *
76   * Used to map lookups for a supply onto an alternative device.
77   */
78  struct regulator_supply_alias {
79  	struct list_head list;
80  	struct device *src_dev;
81  	const char *src_supply;
82  	struct device *alias_dev;
83  	const char *alias_supply;
84  };
85  
86  static int _regulator_is_enabled(struct regulator_dev *rdev);
87  static int _regulator_disable(struct regulator *regulator);
88  static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
89  static int _regulator_get_current_limit(struct regulator_dev *rdev);
90  static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
91  static int _notifier_call_chain(struct regulator_dev *rdev,
92  				  unsigned long event, void *data);
93  static int _regulator_do_set_voltage(struct regulator_dev *rdev,
94  				     int min_uV, int max_uV);
95  static int regulator_balance_voltage(struct regulator_dev *rdev,
96  				     suspend_state_t state);
97  static struct regulator *create_regulator(struct regulator_dev *rdev,
98  					  struct device *dev,
99  					  const char *supply_name);
100  static void destroy_regulator(struct regulator *regulator);
101  static void _regulator_put(struct regulator *regulator);
102  
rdev_get_name(struct regulator_dev * rdev)103  const char *rdev_get_name(struct regulator_dev *rdev)
104  {
105  	if (rdev->constraints && rdev->constraints->name)
106  		return rdev->constraints->name;
107  	else if (rdev->desc->name)
108  		return rdev->desc->name;
109  	else
110  		return "";
111  }
112  EXPORT_SYMBOL_GPL(rdev_get_name);
113  
have_full_constraints(void)114  static bool have_full_constraints(void)
115  {
116  	return has_full_constraints || of_have_populated_dt();
117  }
118  
regulator_ops_is_valid(struct regulator_dev * rdev,int ops)119  static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
120  {
121  	if (!rdev->constraints) {
122  		rdev_err(rdev, "no constraints\n");
123  		return false;
124  	}
125  
126  	if (rdev->constraints->valid_ops_mask & ops)
127  		return true;
128  
129  	return false;
130  }
131  
132  /**
133   * regulator_lock_nested - lock a single regulator
134   * @rdev:		regulator source
135   * @ww_ctx:		w/w mutex acquire context
136   *
137   * This function can be called many times by one task on
138   * a single regulator and its mutex will be locked only
139   * once. If a task, which is calling this function is other
140   * than the one, which initially locked the mutex, it will
141   * wait on mutex.
142   *
143   * Return: 0 on success or a negative error number on failure.
144   */
regulator_lock_nested(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)145  static inline int regulator_lock_nested(struct regulator_dev *rdev,
146  					struct ww_acquire_ctx *ww_ctx)
147  {
148  	bool lock = false;
149  	int ret = 0;
150  
151  	mutex_lock(&regulator_nesting_mutex);
152  
153  	if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
154  		if (rdev->mutex_owner == current)
155  			rdev->ref_cnt++;
156  		else
157  			lock = true;
158  
159  		if (lock) {
160  			mutex_unlock(&regulator_nesting_mutex);
161  			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
162  			mutex_lock(&regulator_nesting_mutex);
163  		}
164  	} else {
165  		lock = true;
166  	}
167  
168  	if (lock && ret != -EDEADLK) {
169  		rdev->ref_cnt++;
170  		rdev->mutex_owner = current;
171  	}
172  
173  	mutex_unlock(&regulator_nesting_mutex);
174  
175  	return ret;
176  }
177  
178  /**
179   * regulator_lock - lock a single regulator
180   * @rdev:		regulator source
181   *
182   * This function can be called many times by one task on
183   * a single regulator and its mutex will be locked only
184   * once. If a task, which is calling this function is other
185   * than the one, which initially locked the mutex, it will
186   * wait on mutex.
187   */
regulator_lock(struct regulator_dev * rdev)188  static void regulator_lock(struct regulator_dev *rdev)
189  {
190  	regulator_lock_nested(rdev, NULL);
191  }
192  
193  /**
194   * regulator_unlock - unlock a single regulator
195   * @rdev:		regulator_source
196   *
197   * This function unlocks the mutex when the
198   * reference counter reaches 0.
199   */
regulator_unlock(struct regulator_dev * rdev)200  static void regulator_unlock(struct regulator_dev *rdev)
201  {
202  	mutex_lock(&regulator_nesting_mutex);
203  
204  	if (--rdev->ref_cnt == 0) {
205  		rdev->mutex_owner = NULL;
206  		ww_mutex_unlock(&rdev->mutex);
207  	}
208  
209  	WARN_ON_ONCE(rdev->ref_cnt < 0);
210  
211  	mutex_unlock(&regulator_nesting_mutex);
212  }
213  
214  /**
215   * regulator_lock_two - lock two regulators
216   * @rdev1:		first regulator
217   * @rdev2:		second regulator
218   * @ww_ctx:		w/w mutex acquire context
219   *
220   * Locks both rdevs using the regulator_ww_class.
221   */
regulator_lock_two(struct regulator_dev * rdev1,struct regulator_dev * rdev2,struct ww_acquire_ctx * ww_ctx)222  static void regulator_lock_two(struct regulator_dev *rdev1,
223  			       struct regulator_dev *rdev2,
224  			       struct ww_acquire_ctx *ww_ctx)
225  {
226  	struct regulator_dev *held, *contended;
227  	int ret;
228  
229  	ww_acquire_init(ww_ctx, &regulator_ww_class);
230  
231  	/* Try to just grab both of them */
232  	ret = regulator_lock_nested(rdev1, ww_ctx);
233  	WARN_ON(ret);
234  	ret = regulator_lock_nested(rdev2, ww_ctx);
235  	if (ret != -EDEADLOCK) {
236  		WARN_ON(ret);
237  		goto exit;
238  	}
239  
240  	held = rdev1;
241  	contended = rdev2;
242  	while (true) {
243  		regulator_unlock(held);
244  
245  		ww_mutex_lock_slow(&contended->mutex, ww_ctx);
246  		contended->ref_cnt++;
247  		contended->mutex_owner = current;
248  		swap(held, contended);
249  		ret = regulator_lock_nested(contended, ww_ctx);
250  
251  		if (ret != -EDEADLOCK) {
252  			WARN_ON(ret);
253  			break;
254  		}
255  	}
256  
257  exit:
258  	ww_acquire_done(ww_ctx);
259  }
260  
261  /**
262   * regulator_unlock_two - unlock two regulators
263   * @rdev1:		first regulator
264   * @rdev2:		second regulator
265   * @ww_ctx:		w/w mutex acquire context
266   *
267   * The inverse of regulator_lock_two().
268   */
269  
regulator_unlock_two(struct regulator_dev * rdev1,struct regulator_dev * rdev2,struct ww_acquire_ctx * ww_ctx)270  static void regulator_unlock_two(struct regulator_dev *rdev1,
271  				 struct regulator_dev *rdev2,
272  				 struct ww_acquire_ctx *ww_ctx)
273  {
274  	regulator_unlock(rdev2);
275  	regulator_unlock(rdev1);
276  	ww_acquire_fini(ww_ctx);
277  }
278  
regulator_supply_is_couple(struct regulator_dev * rdev)279  static bool regulator_supply_is_couple(struct regulator_dev *rdev)
280  {
281  	struct regulator_dev *c_rdev;
282  	int i;
283  
284  	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
285  		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
286  
287  		if (rdev->supply->rdev == c_rdev)
288  			return true;
289  	}
290  
291  	return false;
292  }
293  
regulator_unlock_recursive(struct regulator_dev * rdev,unsigned int n_coupled)294  static void regulator_unlock_recursive(struct regulator_dev *rdev,
295  				       unsigned int n_coupled)
296  {
297  	struct regulator_dev *c_rdev, *supply_rdev;
298  	int i, supply_n_coupled;
299  
300  	for (i = n_coupled; i > 0; i--) {
301  		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
302  
303  		if (!c_rdev)
304  			continue;
305  
306  		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
307  			supply_rdev = c_rdev->supply->rdev;
308  			supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
309  
310  			regulator_unlock_recursive(supply_rdev,
311  						   supply_n_coupled);
312  		}
313  
314  		regulator_unlock(c_rdev);
315  	}
316  }
317  
regulator_lock_recursive(struct regulator_dev * rdev,struct regulator_dev ** new_contended_rdev,struct regulator_dev ** old_contended_rdev,struct ww_acquire_ctx * ww_ctx)318  static int regulator_lock_recursive(struct regulator_dev *rdev,
319  				    struct regulator_dev **new_contended_rdev,
320  				    struct regulator_dev **old_contended_rdev,
321  				    struct ww_acquire_ctx *ww_ctx)
322  {
323  	struct regulator_dev *c_rdev;
324  	int i, err;
325  
326  	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
327  		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
328  
329  		if (!c_rdev)
330  			continue;
331  
332  		if (c_rdev != *old_contended_rdev) {
333  			err = regulator_lock_nested(c_rdev, ww_ctx);
334  			if (err) {
335  				if (err == -EDEADLK) {
336  					*new_contended_rdev = c_rdev;
337  					goto err_unlock;
338  				}
339  
340  				/* shouldn't happen */
341  				WARN_ON_ONCE(err != -EALREADY);
342  			}
343  		} else {
344  			*old_contended_rdev = NULL;
345  		}
346  
347  		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
348  			err = regulator_lock_recursive(c_rdev->supply->rdev,
349  						       new_contended_rdev,
350  						       old_contended_rdev,
351  						       ww_ctx);
352  			if (err) {
353  				regulator_unlock(c_rdev);
354  				goto err_unlock;
355  			}
356  		}
357  	}
358  
359  	return 0;
360  
361  err_unlock:
362  	regulator_unlock_recursive(rdev, i);
363  
364  	return err;
365  }
366  
367  /**
368   * regulator_unlock_dependent - unlock regulator's suppliers and coupled
369   *				regulators
370   * @rdev:			regulator source
371   * @ww_ctx:			w/w mutex acquire context
372   *
373   * Unlock all regulators related with rdev by coupling or supplying.
374   */
regulator_unlock_dependent(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)375  static void regulator_unlock_dependent(struct regulator_dev *rdev,
376  				       struct ww_acquire_ctx *ww_ctx)
377  {
378  	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
379  	ww_acquire_fini(ww_ctx);
380  }
381  
382  /**
383   * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
384   * @rdev:			regulator source
385   * @ww_ctx:			w/w mutex acquire context
386   *
387   * This function as a wrapper on regulator_lock_recursive(), which locks
388   * all regulators related with rdev by coupling or supplying.
389   */
regulator_lock_dependent(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)390  static void regulator_lock_dependent(struct regulator_dev *rdev,
391  				     struct ww_acquire_ctx *ww_ctx)
392  {
393  	struct regulator_dev *new_contended_rdev = NULL;
394  	struct regulator_dev *old_contended_rdev = NULL;
395  	int err;
396  
397  	mutex_lock(&regulator_list_mutex);
398  
399  	ww_acquire_init(ww_ctx, &regulator_ww_class);
400  
401  	do {
402  		if (new_contended_rdev) {
403  			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
404  			old_contended_rdev = new_contended_rdev;
405  			old_contended_rdev->ref_cnt++;
406  			old_contended_rdev->mutex_owner = current;
407  		}
408  
409  		err = regulator_lock_recursive(rdev,
410  					       &new_contended_rdev,
411  					       &old_contended_rdev,
412  					       ww_ctx);
413  
414  		if (old_contended_rdev)
415  			regulator_unlock(old_contended_rdev);
416  
417  	} while (err == -EDEADLK);
418  
419  	ww_acquire_done(ww_ctx);
420  
421  	mutex_unlock(&regulator_list_mutex);
422  }
423  
424  /* Platform voltage constraint check */
regulator_check_voltage(struct regulator_dev * rdev,int * min_uV,int * max_uV)425  int regulator_check_voltage(struct regulator_dev *rdev,
426  			    int *min_uV, int *max_uV)
427  {
428  	BUG_ON(*min_uV > *max_uV);
429  
430  	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
431  		rdev_err(rdev, "voltage operation not allowed\n");
432  		return -EPERM;
433  	}
434  
435  	if (*max_uV > rdev->constraints->max_uV)
436  		*max_uV = rdev->constraints->max_uV;
437  	if (*min_uV < rdev->constraints->min_uV)
438  		*min_uV = rdev->constraints->min_uV;
439  
440  	if (*min_uV > *max_uV) {
441  		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
442  			 *min_uV, *max_uV);
443  		return -EINVAL;
444  	}
445  
446  	return 0;
447  }
448  
449  /* return 0 if the state is valid */
regulator_check_states(suspend_state_t state)450  static int regulator_check_states(suspend_state_t state)
451  {
452  	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
453  }
454  
455  /* Make sure we select a voltage that suits the needs of all
456   * regulator consumers
457   */
regulator_check_consumers(struct regulator_dev * rdev,int * min_uV,int * max_uV,suspend_state_t state)458  int regulator_check_consumers(struct regulator_dev *rdev,
459  			      int *min_uV, int *max_uV,
460  			      suspend_state_t state)
461  {
462  	struct regulator *regulator;
463  	struct regulator_voltage *voltage;
464  
465  	list_for_each_entry(regulator, &rdev->consumer_list, list) {
466  		voltage = &regulator->voltage[state];
467  		/*
468  		 * Assume consumers that didn't say anything are OK
469  		 * with anything in the constraint range.
470  		 */
471  		if (!voltage->min_uV && !voltage->max_uV)
472  			continue;
473  
474  		if (*max_uV > voltage->max_uV)
475  			*max_uV = voltage->max_uV;
476  		if (*min_uV < voltage->min_uV)
477  			*min_uV = voltage->min_uV;
478  	}
479  
480  	if (*min_uV > *max_uV) {
481  		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
482  			*min_uV, *max_uV);
483  		return -EINVAL;
484  	}
485  
486  	return 0;
487  }
488  
489  /* current constraint check */
regulator_check_current_limit(struct regulator_dev * rdev,int * min_uA,int * max_uA)490  static int regulator_check_current_limit(struct regulator_dev *rdev,
491  					int *min_uA, int *max_uA)
492  {
493  	BUG_ON(*min_uA > *max_uA);
494  
495  	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
496  		rdev_err(rdev, "current operation not allowed\n");
497  		return -EPERM;
498  	}
499  
500  	if (*max_uA > rdev->constraints->max_uA &&
501  	    rdev->constraints->max_uA)
502  		*max_uA = rdev->constraints->max_uA;
503  	if (*min_uA < rdev->constraints->min_uA)
504  		*min_uA = rdev->constraints->min_uA;
505  
506  	if (*min_uA > *max_uA) {
507  		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
508  			 *min_uA, *max_uA);
509  		return -EINVAL;
510  	}
511  
512  	return 0;
513  }
514  
515  /* operating mode constraint check */
regulator_mode_constrain(struct regulator_dev * rdev,unsigned int * mode)516  static int regulator_mode_constrain(struct regulator_dev *rdev,
517  				    unsigned int *mode)
518  {
519  	switch (*mode) {
520  	case REGULATOR_MODE_FAST:
521  	case REGULATOR_MODE_NORMAL:
522  	case REGULATOR_MODE_IDLE:
523  	case REGULATOR_MODE_STANDBY:
524  		break;
525  	default:
526  		rdev_err(rdev, "invalid mode %x specified\n", *mode);
527  		return -EINVAL;
528  	}
529  
530  	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
531  		rdev_err(rdev, "mode operation not allowed\n");
532  		return -EPERM;
533  	}
534  
535  	/* The modes are bitmasks, the most power hungry modes having
536  	 * the lowest values. If the requested mode isn't supported
537  	 * try higher modes.
538  	 */
539  	while (*mode) {
540  		if (rdev->constraints->valid_modes_mask & *mode)
541  			return 0;
542  		*mode /= 2;
543  	}
544  
545  	return -EINVAL;
546  }
547  
548  static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev * rdev,suspend_state_t state)549  regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
550  {
551  	if (rdev->constraints == NULL)
552  		return NULL;
553  
554  	switch (state) {
555  	case PM_SUSPEND_STANDBY:
556  		return &rdev->constraints->state_standby;
557  	case PM_SUSPEND_MEM:
558  		return &rdev->constraints->state_mem;
559  	case PM_SUSPEND_MAX:
560  		return &rdev->constraints->state_disk;
561  	default:
562  		return NULL;
563  	}
564  }
565  
566  static const struct regulator_state *
regulator_get_suspend_state_check(struct regulator_dev * rdev,suspend_state_t state)567  regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
568  {
569  	const struct regulator_state *rstate;
570  
571  	rstate = regulator_get_suspend_state(rdev, state);
572  	if (rstate == NULL)
573  		return NULL;
574  
575  	/* If we have no suspend mode configuration don't set anything;
576  	 * only warn if the driver implements set_suspend_voltage or
577  	 * set_suspend_mode callback.
578  	 */
579  	if (rstate->enabled != ENABLE_IN_SUSPEND &&
580  	    rstate->enabled != DISABLE_IN_SUSPEND) {
581  		if (rdev->desc->ops->set_suspend_voltage ||
582  		    rdev->desc->ops->set_suspend_mode)
583  			rdev_warn(rdev, "No configuration\n");
584  		return NULL;
585  	}
586  
587  	return rstate;
588  }
589  
microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)590  static ssize_t microvolts_show(struct device *dev,
591  			       struct device_attribute *attr, char *buf)
592  {
593  	struct regulator_dev *rdev = dev_get_drvdata(dev);
594  	int uV;
595  
596  	regulator_lock(rdev);
597  	uV = regulator_get_voltage_rdev(rdev);
598  	regulator_unlock(rdev);
599  
600  	if (uV < 0)
601  		return uV;
602  	return sprintf(buf, "%d\n", uV);
603  }
604  static DEVICE_ATTR_RO(microvolts);
605  
microamps_show(struct device * dev,struct device_attribute * attr,char * buf)606  static ssize_t microamps_show(struct device *dev,
607  			      struct device_attribute *attr, char *buf)
608  {
609  	struct regulator_dev *rdev = dev_get_drvdata(dev);
610  
611  	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
612  }
613  static DEVICE_ATTR_RO(microamps);
614  
name_show(struct device * dev,struct device_attribute * attr,char * buf)615  static ssize_t name_show(struct device *dev, struct device_attribute *attr,
616  			 char *buf)
617  {
618  	struct regulator_dev *rdev = dev_get_drvdata(dev);
619  
620  	return sprintf(buf, "%s\n", rdev_get_name(rdev));
621  }
622  static DEVICE_ATTR_RO(name);
623  
regulator_opmode_to_str(int mode)624  static const char *regulator_opmode_to_str(int mode)
625  {
626  	switch (mode) {
627  	case REGULATOR_MODE_FAST:
628  		return "fast";
629  	case REGULATOR_MODE_NORMAL:
630  		return "normal";
631  	case REGULATOR_MODE_IDLE:
632  		return "idle";
633  	case REGULATOR_MODE_STANDBY:
634  		return "standby";
635  	}
636  	return "unknown";
637  }
638  
regulator_print_opmode(char * buf,int mode)639  static ssize_t regulator_print_opmode(char *buf, int mode)
640  {
641  	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
642  }
643  
opmode_show(struct device * dev,struct device_attribute * attr,char * buf)644  static ssize_t opmode_show(struct device *dev,
645  			   struct device_attribute *attr, char *buf)
646  {
647  	struct regulator_dev *rdev = dev_get_drvdata(dev);
648  
649  	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
650  }
651  static DEVICE_ATTR_RO(opmode);
652  
regulator_print_state(char * buf,int state)653  static ssize_t regulator_print_state(char *buf, int state)
654  {
655  	if (state > 0)
656  		return sprintf(buf, "enabled\n");
657  	else if (state == 0)
658  		return sprintf(buf, "disabled\n");
659  	else
660  		return sprintf(buf, "unknown\n");
661  }
662  
state_show(struct device * dev,struct device_attribute * attr,char * buf)663  static ssize_t state_show(struct device *dev,
664  			  struct device_attribute *attr, char *buf)
665  {
666  	struct regulator_dev *rdev = dev_get_drvdata(dev);
667  	ssize_t ret;
668  
669  	regulator_lock(rdev);
670  	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
671  	regulator_unlock(rdev);
672  
673  	return ret;
674  }
675  static DEVICE_ATTR_RO(state);
676  
status_show(struct device * dev,struct device_attribute * attr,char * buf)677  static ssize_t status_show(struct device *dev,
678  			   struct device_attribute *attr, char *buf)
679  {
680  	struct regulator_dev *rdev = dev_get_drvdata(dev);
681  	int status;
682  	char *label;
683  
684  	status = rdev->desc->ops->get_status(rdev);
685  	if (status < 0)
686  		return status;
687  
688  	switch (status) {
689  	case REGULATOR_STATUS_OFF:
690  		label = "off";
691  		break;
692  	case REGULATOR_STATUS_ON:
693  		label = "on";
694  		break;
695  	case REGULATOR_STATUS_ERROR:
696  		label = "error";
697  		break;
698  	case REGULATOR_STATUS_FAST:
699  		label = "fast";
700  		break;
701  	case REGULATOR_STATUS_NORMAL:
702  		label = "normal";
703  		break;
704  	case REGULATOR_STATUS_IDLE:
705  		label = "idle";
706  		break;
707  	case REGULATOR_STATUS_STANDBY:
708  		label = "standby";
709  		break;
710  	case REGULATOR_STATUS_BYPASS:
711  		label = "bypass";
712  		break;
713  	case REGULATOR_STATUS_UNDEFINED:
714  		label = "undefined";
715  		break;
716  	default:
717  		return -ERANGE;
718  	}
719  
720  	return sprintf(buf, "%s\n", label);
721  }
722  static DEVICE_ATTR_RO(status);
723  
min_microamps_show(struct device * dev,struct device_attribute * attr,char * buf)724  static ssize_t min_microamps_show(struct device *dev,
725  				  struct device_attribute *attr, char *buf)
726  {
727  	struct regulator_dev *rdev = dev_get_drvdata(dev);
728  
729  	if (!rdev->constraints)
730  		return sprintf(buf, "constraint not defined\n");
731  
732  	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
733  }
734  static DEVICE_ATTR_RO(min_microamps);
735  
max_microamps_show(struct device * dev,struct device_attribute * attr,char * buf)736  static ssize_t max_microamps_show(struct device *dev,
737  				  struct device_attribute *attr, char *buf)
738  {
739  	struct regulator_dev *rdev = dev_get_drvdata(dev);
740  
741  	if (!rdev->constraints)
742  		return sprintf(buf, "constraint not defined\n");
743  
744  	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
745  }
746  static DEVICE_ATTR_RO(max_microamps);
747  
min_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)748  static ssize_t min_microvolts_show(struct device *dev,
749  				   struct device_attribute *attr, char *buf)
750  {
751  	struct regulator_dev *rdev = dev_get_drvdata(dev);
752  
753  	if (!rdev->constraints)
754  		return sprintf(buf, "constraint not defined\n");
755  
756  	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
757  }
758  static DEVICE_ATTR_RO(min_microvolts);
759  
max_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)760  static ssize_t max_microvolts_show(struct device *dev,
761  				   struct device_attribute *attr, char *buf)
762  {
763  	struct regulator_dev *rdev = dev_get_drvdata(dev);
764  
765  	if (!rdev->constraints)
766  		return sprintf(buf, "constraint not defined\n");
767  
768  	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
769  }
770  static DEVICE_ATTR_RO(max_microvolts);
771  
requested_microamps_show(struct device * dev,struct device_attribute * attr,char * buf)772  static ssize_t requested_microamps_show(struct device *dev,
773  					struct device_attribute *attr, char *buf)
774  {
775  	struct regulator_dev *rdev = dev_get_drvdata(dev);
776  	struct regulator *regulator;
777  	int uA = 0;
778  
779  	regulator_lock(rdev);
780  	list_for_each_entry(regulator, &rdev->consumer_list, list) {
781  		if (regulator->enable_count)
782  			uA += regulator->uA_load;
783  	}
784  	regulator_unlock(rdev);
785  	return sprintf(buf, "%d\n", uA);
786  }
787  static DEVICE_ATTR_RO(requested_microamps);
788  
num_users_show(struct device * dev,struct device_attribute * attr,char * buf)789  static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
790  			      char *buf)
791  {
792  	struct regulator_dev *rdev = dev_get_drvdata(dev);
793  	return sprintf(buf, "%d\n", rdev->use_count);
794  }
795  static DEVICE_ATTR_RO(num_users);
796  
type_show(struct device * dev,struct device_attribute * attr,char * buf)797  static ssize_t type_show(struct device *dev, struct device_attribute *attr,
798  			 char *buf)
799  {
800  	struct regulator_dev *rdev = dev_get_drvdata(dev);
801  
802  	switch (rdev->desc->type) {
803  	case REGULATOR_VOLTAGE:
804  		return sprintf(buf, "voltage\n");
805  	case REGULATOR_CURRENT:
806  		return sprintf(buf, "current\n");
807  	}
808  	return sprintf(buf, "unknown\n");
809  }
810  static DEVICE_ATTR_RO(type);
811  
suspend_mem_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)812  static ssize_t suspend_mem_microvolts_show(struct device *dev,
813  					   struct device_attribute *attr, char *buf)
814  {
815  	struct regulator_dev *rdev = dev_get_drvdata(dev);
816  
817  	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
818  }
819  static DEVICE_ATTR_RO(suspend_mem_microvolts);
820  
suspend_disk_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)821  static ssize_t suspend_disk_microvolts_show(struct device *dev,
822  					    struct device_attribute *attr, char *buf)
823  {
824  	struct regulator_dev *rdev = dev_get_drvdata(dev);
825  
826  	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
827  }
828  static DEVICE_ATTR_RO(suspend_disk_microvolts);
829  
suspend_standby_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)830  static ssize_t suspend_standby_microvolts_show(struct device *dev,
831  					       struct device_attribute *attr, char *buf)
832  {
833  	struct regulator_dev *rdev = dev_get_drvdata(dev);
834  
835  	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
836  }
837  static DEVICE_ATTR_RO(suspend_standby_microvolts);
838  
suspend_mem_mode_show(struct device * dev,struct device_attribute * attr,char * buf)839  static ssize_t suspend_mem_mode_show(struct device *dev,
840  				     struct device_attribute *attr, char *buf)
841  {
842  	struct regulator_dev *rdev = dev_get_drvdata(dev);
843  
844  	return regulator_print_opmode(buf,
845  		rdev->constraints->state_mem.mode);
846  }
847  static DEVICE_ATTR_RO(suspend_mem_mode);
848  
suspend_disk_mode_show(struct device * dev,struct device_attribute * attr,char * buf)849  static ssize_t suspend_disk_mode_show(struct device *dev,
850  				      struct device_attribute *attr, char *buf)
851  {
852  	struct regulator_dev *rdev = dev_get_drvdata(dev);
853  
854  	return regulator_print_opmode(buf,
855  		rdev->constraints->state_disk.mode);
856  }
857  static DEVICE_ATTR_RO(suspend_disk_mode);
858  
suspend_standby_mode_show(struct device * dev,struct device_attribute * attr,char * buf)859  static ssize_t suspend_standby_mode_show(struct device *dev,
860  					 struct device_attribute *attr, char *buf)
861  {
862  	struct regulator_dev *rdev = dev_get_drvdata(dev);
863  
864  	return regulator_print_opmode(buf,
865  		rdev->constraints->state_standby.mode);
866  }
867  static DEVICE_ATTR_RO(suspend_standby_mode);
868  
suspend_mem_state_show(struct device * dev,struct device_attribute * attr,char * buf)869  static ssize_t suspend_mem_state_show(struct device *dev,
870  				      struct device_attribute *attr, char *buf)
871  {
872  	struct regulator_dev *rdev = dev_get_drvdata(dev);
873  
874  	return regulator_print_state(buf,
875  			rdev->constraints->state_mem.enabled);
876  }
877  static DEVICE_ATTR_RO(suspend_mem_state);
878  
suspend_disk_state_show(struct device * dev,struct device_attribute * attr,char * buf)879  static ssize_t suspend_disk_state_show(struct device *dev,
880  				       struct device_attribute *attr, char *buf)
881  {
882  	struct regulator_dev *rdev = dev_get_drvdata(dev);
883  
884  	return regulator_print_state(buf,
885  			rdev->constraints->state_disk.enabled);
886  }
887  static DEVICE_ATTR_RO(suspend_disk_state);
888  
suspend_standby_state_show(struct device * dev,struct device_attribute * attr,char * buf)889  static ssize_t suspend_standby_state_show(struct device *dev,
890  					  struct device_attribute *attr, char *buf)
891  {
892  	struct regulator_dev *rdev = dev_get_drvdata(dev);
893  
894  	return regulator_print_state(buf,
895  			rdev->constraints->state_standby.enabled);
896  }
897  static DEVICE_ATTR_RO(suspend_standby_state);
898  
bypass_show(struct device * dev,struct device_attribute * attr,char * buf)899  static ssize_t bypass_show(struct device *dev,
900  			   struct device_attribute *attr, char *buf)
901  {
902  	struct regulator_dev *rdev = dev_get_drvdata(dev);
903  	const char *report;
904  	bool bypass;
905  	int ret;
906  
907  	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
908  
909  	if (ret != 0)
910  		report = "unknown";
911  	else if (bypass)
912  		report = "enabled";
913  	else
914  		report = "disabled";
915  
916  	return sprintf(buf, "%s\n", report);
917  }
918  static DEVICE_ATTR_RO(bypass);
919  
power_budget_milliwatt_show(struct device * dev,struct device_attribute * attr,char * buf)920  static ssize_t power_budget_milliwatt_show(struct device *dev,
921  					   struct device_attribute *attr,
922  					   char *buf)
923  {
924  	struct regulator_dev *rdev = dev_get_drvdata(dev);
925  
926  	return sprintf(buf, "%d\n", rdev->constraints->pw_budget_mW);
927  }
928  static DEVICE_ATTR_RO(power_budget_milliwatt);
929  
power_requested_milliwatt_show(struct device * dev,struct device_attribute * attr,char * buf)930  static ssize_t power_requested_milliwatt_show(struct device *dev,
931  					      struct device_attribute *attr,
932  					      char *buf)
933  {
934  	struct regulator_dev *rdev = dev_get_drvdata(dev);
935  
936  	return sprintf(buf, "%d\n", rdev->pw_requested_mW);
937  }
938  static DEVICE_ATTR_RO(power_requested_milliwatt);
939  
940  #define REGULATOR_ERROR_ATTR(name, bit)							\
941  	static ssize_t name##_show(struct device *dev, struct device_attribute *attr,	\
942  				   char *buf)						\
943  	{										\
944  		int ret;								\
945  		unsigned int flags;							\
946  		struct regulator_dev *rdev = dev_get_drvdata(dev);			\
947  		ret = _regulator_get_error_flags(rdev, &flags);				\
948  		if (ret)								\
949  			return ret;							\
950  		return sysfs_emit(buf, "%d\n", !!(flags & (bit)));			\
951  	}										\
952  	static DEVICE_ATTR_RO(name)
953  
954  REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
955  REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
956  REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
957  REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
958  REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
959  REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
960  REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
961  REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
962  REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
963  
964  /* Calculate the new optimum regulator operating mode based on the new total
965   * consumer load. All locks held by caller
966   */
drms_uA_update(struct regulator_dev * rdev)967  static int drms_uA_update(struct regulator_dev *rdev)
968  {
969  	struct regulator *sibling;
970  	int current_uA = 0, output_uV, input_uV, err;
971  	unsigned int mode;
972  
973  	/*
974  	 * first check to see if we can set modes at all, otherwise just
975  	 * tell the consumer everything is OK.
976  	 */
977  	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
978  		rdev_dbg(rdev, "DRMS operation not allowed\n");
979  		return 0;
980  	}
981  
982  	if (!rdev->desc->ops->get_optimum_mode &&
983  	    !rdev->desc->ops->set_load)
984  		return 0;
985  
986  	if (!rdev->desc->ops->set_mode &&
987  	    !rdev->desc->ops->set_load)
988  		return -EINVAL;
989  
990  	/* calc total requested load */
991  	list_for_each_entry(sibling, &rdev->consumer_list, list) {
992  		if (sibling->enable_count)
993  			current_uA += sibling->uA_load;
994  	}
995  
996  	current_uA += rdev->constraints->system_load;
997  
998  	if (rdev->desc->ops->set_load) {
999  		/* set the optimum mode for our new total regulator load */
1000  		err = rdev->desc->ops->set_load(rdev, current_uA);
1001  		if (err < 0)
1002  			rdev_err(rdev, "failed to set load %d: %pe\n",
1003  				 current_uA, ERR_PTR(err));
1004  	} else {
1005  		/*
1006  		 * Unfortunately in some cases the constraints->valid_ops has
1007  		 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
1008  		 * That's not really legit but we won't consider it a fatal
1009  		 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
1010  		 * wasn't set.
1011  		 */
1012  		if (!rdev->constraints->valid_modes_mask) {
1013  			rdev_dbg(rdev, "Can change modes; but no valid mode\n");
1014  			return 0;
1015  		}
1016  
1017  		/* get output voltage */
1018  		output_uV = regulator_get_voltage_rdev(rdev);
1019  
1020  		/*
1021  		 * Don't return an error; if regulator driver cares about
1022  		 * output_uV then it's up to the driver to validate.
1023  		 */
1024  		if (output_uV <= 0)
1025  			rdev_dbg(rdev, "invalid output voltage found\n");
1026  
1027  		/* get input voltage */
1028  		input_uV = 0;
1029  		if (rdev->supply)
1030  			input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1031  		if (input_uV <= 0)
1032  			input_uV = rdev->constraints->input_uV;
1033  
1034  		/*
1035  		 * Don't return an error; if regulator driver cares about
1036  		 * input_uV then it's up to the driver to validate.
1037  		 */
1038  		if (input_uV <= 0)
1039  			rdev_dbg(rdev, "invalid input voltage found\n");
1040  
1041  		/* now get the optimum mode for our new total regulator load */
1042  		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1043  							 output_uV, current_uA);
1044  
1045  		/* check the new mode is allowed */
1046  		err = regulator_mode_constrain(rdev, &mode);
1047  		if (err < 0) {
1048  			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1049  				 current_uA, input_uV, output_uV, ERR_PTR(err));
1050  			return err;
1051  		}
1052  
1053  		err = rdev->desc->ops->set_mode(rdev, mode);
1054  		if (err < 0)
1055  			rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1056  				 mode, ERR_PTR(err));
1057  	}
1058  
1059  	return err;
1060  }
1061  
__suspend_set_state(struct regulator_dev * rdev,const struct regulator_state * rstate)1062  static int __suspend_set_state(struct regulator_dev *rdev,
1063  			       const struct regulator_state *rstate)
1064  {
1065  	int ret = 0;
1066  
1067  	if (rstate->enabled == ENABLE_IN_SUSPEND &&
1068  		rdev->desc->ops->set_suspend_enable)
1069  		ret = rdev->desc->ops->set_suspend_enable(rdev);
1070  	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1071  		rdev->desc->ops->set_suspend_disable)
1072  		ret = rdev->desc->ops->set_suspend_disable(rdev);
1073  	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1074  		ret = 0;
1075  
1076  	if (ret < 0) {
1077  		rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1078  		return ret;
1079  	}
1080  
1081  	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1082  		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1083  		if (ret < 0) {
1084  			rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1085  			return ret;
1086  		}
1087  	}
1088  
1089  	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1090  		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1091  		if (ret < 0) {
1092  			rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1093  			return ret;
1094  		}
1095  	}
1096  
1097  	return ret;
1098  }
1099  
suspend_set_initial_state(struct regulator_dev * rdev)1100  static int suspend_set_initial_state(struct regulator_dev *rdev)
1101  {
1102  	const struct regulator_state *rstate;
1103  
1104  	rstate = regulator_get_suspend_state_check(rdev,
1105  			rdev->constraints->initial_state);
1106  	if (!rstate)
1107  		return 0;
1108  
1109  	return __suspend_set_state(rdev, rstate);
1110  }
1111  
1112  #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
print_constraints_debug(struct regulator_dev * rdev)1113  static void print_constraints_debug(struct regulator_dev *rdev)
1114  {
1115  	struct regulation_constraints *constraints = rdev->constraints;
1116  	char buf[160] = "";
1117  	size_t len = sizeof(buf) - 1;
1118  	int count = 0;
1119  	int ret;
1120  
1121  	if (constraints->min_uV && constraints->max_uV) {
1122  		if (constraints->min_uV == constraints->max_uV)
1123  			count += scnprintf(buf + count, len - count, "%d mV ",
1124  					   constraints->min_uV / 1000);
1125  		else
1126  			count += scnprintf(buf + count, len - count,
1127  					   "%d <--> %d mV ",
1128  					   constraints->min_uV / 1000,
1129  					   constraints->max_uV / 1000);
1130  	}
1131  
1132  	if (!constraints->min_uV ||
1133  	    constraints->min_uV != constraints->max_uV) {
1134  		ret = regulator_get_voltage_rdev(rdev);
1135  		if (ret > 0)
1136  			count += scnprintf(buf + count, len - count,
1137  					   "at %d mV ", ret / 1000);
1138  	}
1139  
1140  	if (constraints->uV_offset)
1141  		count += scnprintf(buf + count, len - count, "%dmV offset ",
1142  				   constraints->uV_offset / 1000);
1143  
1144  	if (constraints->min_uA && constraints->max_uA) {
1145  		if (constraints->min_uA == constraints->max_uA)
1146  			count += scnprintf(buf + count, len - count, "%d mA ",
1147  					   constraints->min_uA / 1000);
1148  		else
1149  			count += scnprintf(buf + count, len - count,
1150  					   "%d <--> %d mA ",
1151  					   constraints->min_uA / 1000,
1152  					   constraints->max_uA / 1000);
1153  	}
1154  
1155  	if (!constraints->min_uA ||
1156  	    constraints->min_uA != constraints->max_uA) {
1157  		ret = _regulator_get_current_limit(rdev);
1158  		if (ret > 0)
1159  			count += scnprintf(buf + count, len - count,
1160  					   "at %d mA ", ret / 1000);
1161  	}
1162  
1163  	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1164  		count += scnprintf(buf + count, len - count, "fast ");
1165  	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1166  		count += scnprintf(buf + count, len - count, "normal ");
1167  	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1168  		count += scnprintf(buf + count, len - count, "idle ");
1169  	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1170  		count += scnprintf(buf + count, len - count, "standby ");
1171  
1172  	if (constraints->pw_budget_mW)
1173  		count += scnprintf(buf + count, len - count, "%d mW budget",
1174  				   constraints->pw_budget_mW);
1175  
1176  	if (!count)
1177  		count = scnprintf(buf, len, "no parameters");
1178  	else
1179  		--count;
1180  
1181  	count += scnprintf(buf + count, len - count, ", %s",
1182  		_regulator_is_enabled(rdev) ? "enabled" : "disabled");
1183  
1184  	rdev_dbg(rdev, "%s\n", buf);
1185  }
1186  #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
print_constraints_debug(struct regulator_dev * rdev)1187  static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1188  #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1189  
print_constraints(struct regulator_dev * rdev)1190  static void print_constraints(struct regulator_dev *rdev)
1191  {
1192  	struct regulation_constraints *constraints = rdev->constraints;
1193  
1194  	print_constraints_debug(rdev);
1195  
1196  	if ((constraints->min_uV != constraints->max_uV) &&
1197  	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1198  		rdev_warn(rdev,
1199  			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1200  }
1201  
machine_constraints_voltage(struct regulator_dev * rdev,struct regulation_constraints * constraints)1202  static int machine_constraints_voltage(struct regulator_dev *rdev,
1203  	struct regulation_constraints *constraints)
1204  {
1205  	const struct regulator_ops *ops = rdev->desc->ops;
1206  	int ret;
1207  
1208  	/* do we need to apply the constraint voltage */
1209  	if (rdev->constraints->apply_uV &&
1210  	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
1211  		int target_min, target_max;
1212  		int current_uV = regulator_get_voltage_rdev(rdev);
1213  
1214  		if (current_uV == -ENOTRECOVERABLE) {
1215  			/* This regulator can't be read and must be initialized */
1216  			rdev_info(rdev, "Setting %d-%duV\n",
1217  				  rdev->constraints->min_uV,
1218  				  rdev->constraints->max_uV);
1219  			_regulator_do_set_voltage(rdev,
1220  						  rdev->constraints->min_uV,
1221  						  rdev->constraints->max_uV);
1222  			current_uV = regulator_get_voltage_rdev(rdev);
1223  		}
1224  
1225  		if (current_uV < 0) {
1226  			if (current_uV != -EPROBE_DEFER)
1227  				rdev_err(rdev,
1228  					 "failed to get the current voltage: %pe\n",
1229  					 ERR_PTR(current_uV));
1230  			return current_uV;
1231  		}
1232  
1233  		/*
1234  		 * If we're below the minimum voltage move up to the
1235  		 * minimum voltage, if we're above the maximum voltage
1236  		 * then move down to the maximum.
1237  		 */
1238  		target_min = current_uV;
1239  		target_max = current_uV;
1240  
1241  		if (current_uV < rdev->constraints->min_uV) {
1242  			target_min = rdev->constraints->min_uV;
1243  			target_max = rdev->constraints->min_uV;
1244  		}
1245  
1246  		if (current_uV > rdev->constraints->max_uV) {
1247  			target_min = rdev->constraints->max_uV;
1248  			target_max = rdev->constraints->max_uV;
1249  		}
1250  
1251  		if (target_min != current_uV || target_max != current_uV) {
1252  			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1253  				  current_uV, target_min, target_max);
1254  			ret = _regulator_do_set_voltage(
1255  				rdev, target_min, target_max);
1256  			if (ret < 0) {
1257  				rdev_err(rdev,
1258  					"failed to apply %d-%duV constraint: %pe\n",
1259  					target_min, target_max, ERR_PTR(ret));
1260  				return ret;
1261  			}
1262  		}
1263  	}
1264  
1265  	/* constrain machine-level voltage specs to fit
1266  	 * the actual range supported by this regulator.
1267  	 */
1268  	if (ops->list_voltage && rdev->desc->n_voltages) {
1269  		int	count = rdev->desc->n_voltages;
1270  		int	i;
1271  		int	min_uV = INT_MAX;
1272  		int	max_uV = INT_MIN;
1273  		int	cmin = constraints->min_uV;
1274  		int	cmax = constraints->max_uV;
1275  
1276  		/* it's safe to autoconfigure fixed-voltage supplies
1277  		 * and the constraints are used by list_voltage.
1278  		 */
1279  		if (count == 1 && !cmin) {
1280  			cmin = 1;
1281  			cmax = INT_MAX;
1282  			constraints->min_uV = cmin;
1283  			constraints->max_uV = cmax;
1284  		}
1285  
1286  		/* voltage constraints are optional */
1287  		if ((cmin == 0) && (cmax == 0))
1288  			return 0;
1289  
1290  		/* else require explicit machine-level constraints */
1291  		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1292  			rdev_err(rdev, "invalid voltage constraints\n");
1293  			return -EINVAL;
1294  		}
1295  
1296  		/* no need to loop voltages if range is continuous */
1297  		if (rdev->desc->continuous_voltage_range)
1298  			return 0;
1299  
1300  		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1301  		for (i = 0; i < count; i++) {
1302  			int	value;
1303  
1304  			value = ops->list_voltage(rdev, i);
1305  			if (value <= 0)
1306  				continue;
1307  
1308  			/* maybe adjust [min_uV..max_uV] */
1309  			if (value >= cmin && value < min_uV)
1310  				min_uV = value;
1311  			if (value <= cmax && value > max_uV)
1312  				max_uV = value;
1313  		}
1314  
1315  		/* final: [min_uV..max_uV] valid iff constraints valid */
1316  		if (max_uV < min_uV) {
1317  			rdev_err(rdev,
1318  				 "unsupportable voltage constraints %u-%uuV\n",
1319  				 min_uV, max_uV);
1320  			return -EINVAL;
1321  		}
1322  
1323  		/* use regulator's subset of machine constraints */
1324  		if (constraints->min_uV < min_uV) {
1325  			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1326  				 constraints->min_uV, min_uV);
1327  			constraints->min_uV = min_uV;
1328  		}
1329  		if (constraints->max_uV > max_uV) {
1330  			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1331  				 constraints->max_uV, max_uV);
1332  			constraints->max_uV = max_uV;
1333  		}
1334  	}
1335  
1336  	return 0;
1337  }
1338  
machine_constraints_current(struct regulator_dev * rdev,struct regulation_constraints * constraints)1339  static int machine_constraints_current(struct regulator_dev *rdev,
1340  	struct regulation_constraints *constraints)
1341  {
1342  	const struct regulator_ops *ops = rdev->desc->ops;
1343  	int ret;
1344  
1345  	if (!constraints->min_uA && !constraints->max_uA)
1346  		return 0;
1347  
1348  	if (constraints->min_uA > constraints->max_uA) {
1349  		rdev_err(rdev, "Invalid current constraints\n");
1350  		return -EINVAL;
1351  	}
1352  
1353  	if (!ops->set_current_limit || !ops->get_current_limit) {
1354  		rdev_warn(rdev, "Operation of current configuration missing\n");
1355  		return 0;
1356  	}
1357  
1358  	/* Set regulator current in constraints range */
1359  	ret = ops->set_current_limit(rdev, constraints->min_uA,
1360  			constraints->max_uA);
1361  	if (ret < 0) {
1362  		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1363  		return ret;
1364  	}
1365  
1366  	return 0;
1367  }
1368  
1369  static int _regulator_do_enable(struct regulator_dev *rdev);
1370  
notif_set_limit(struct regulator_dev * rdev,int (* set)(struct regulator_dev *,int,int,bool),int limit,int severity)1371  static int notif_set_limit(struct regulator_dev *rdev,
1372  			   int (*set)(struct regulator_dev *, int, int, bool),
1373  			   int limit, int severity)
1374  {
1375  	bool enable;
1376  
1377  	if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1378  		enable = false;
1379  		limit = 0;
1380  	} else {
1381  		enable = true;
1382  	}
1383  
1384  	if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1385  		limit = 0;
1386  
1387  	return set(rdev, limit, severity, enable);
1388  }
1389  
handle_notify_limits(struct regulator_dev * rdev,int (* set)(struct regulator_dev *,int,int,bool),struct notification_limit * limits)1390  static int handle_notify_limits(struct regulator_dev *rdev,
1391  			int (*set)(struct regulator_dev *, int, int, bool),
1392  			struct notification_limit *limits)
1393  {
1394  	int ret = 0;
1395  
1396  	if (!set)
1397  		return -EOPNOTSUPP;
1398  
1399  	if (limits->prot)
1400  		ret = notif_set_limit(rdev, set, limits->prot,
1401  				      REGULATOR_SEVERITY_PROT);
1402  	if (ret)
1403  		return ret;
1404  
1405  	if (limits->err)
1406  		ret = notif_set_limit(rdev, set, limits->err,
1407  				      REGULATOR_SEVERITY_ERR);
1408  	if (ret)
1409  		return ret;
1410  
1411  	if (limits->warn)
1412  		ret = notif_set_limit(rdev, set, limits->warn,
1413  				      REGULATOR_SEVERITY_WARN);
1414  
1415  	return ret;
1416  }
1417  /**
1418   * set_machine_constraints - sets regulator constraints
1419   * @rdev: regulator source
1420   *
1421   * Allows platform initialisation code to define and constrain
1422   * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1423   * Constraints *must* be set by platform code in order for some
1424   * regulator operations to proceed i.e. set_voltage, set_current_limit,
1425   * set_mode.
1426   *
1427   * Return: 0 on success or a negative error number on failure.
1428   */
set_machine_constraints(struct regulator_dev * rdev)1429  static int set_machine_constraints(struct regulator_dev *rdev)
1430  {
1431  	int ret = 0;
1432  	const struct regulator_ops *ops = rdev->desc->ops;
1433  
1434  	ret = machine_constraints_voltage(rdev, rdev->constraints);
1435  	if (ret != 0)
1436  		return ret;
1437  
1438  	ret = machine_constraints_current(rdev, rdev->constraints);
1439  	if (ret != 0)
1440  		return ret;
1441  
1442  	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1443  		ret = ops->set_input_current_limit(rdev,
1444  						   rdev->constraints->ilim_uA);
1445  		if (ret < 0) {
1446  			rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1447  			return ret;
1448  		}
1449  	}
1450  
1451  	/* do we need to setup our suspend state */
1452  	if (rdev->constraints->initial_state) {
1453  		ret = suspend_set_initial_state(rdev);
1454  		if (ret < 0) {
1455  			rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1456  			return ret;
1457  		}
1458  	}
1459  
1460  	if (rdev->constraints->initial_mode) {
1461  		if (!ops->set_mode) {
1462  			rdev_err(rdev, "no set_mode operation\n");
1463  			return -EINVAL;
1464  		}
1465  
1466  		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1467  		if (ret < 0) {
1468  			rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1469  			return ret;
1470  		}
1471  	} else if (rdev->constraints->system_load) {
1472  		/*
1473  		 * We'll only apply the initial system load if an
1474  		 * initial mode wasn't specified.
1475  		 */
1476  		drms_uA_update(rdev);
1477  	}
1478  
1479  	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1480  		&& ops->set_ramp_delay) {
1481  		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1482  		if (ret < 0) {
1483  			rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1484  			return ret;
1485  		}
1486  	}
1487  
1488  	if (rdev->constraints->pull_down && ops->set_pull_down) {
1489  		ret = ops->set_pull_down(rdev);
1490  		if (ret < 0) {
1491  			rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1492  			return ret;
1493  		}
1494  	}
1495  
1496  	if (rdev->constraints->soft_start && ops->set_soft_start) {
1497  		ret = ops->set_soft_start(rdev);
1498  		if (ret < 0) {
1499  			rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1500  			return ret;
1501  		}
1502  	}
1503  
1504  	/*
1505  	 * Existing logic does not warn if over_current_protection is given as
1506  	 * a constraint but driver does not support that. I think we should
1507  	 * warn about this type of issues as it is possible someone changes
1508  	 * PMIC on board to another type - and the another PMIC's driver does
1509  	 * not support setting protection. Board composer may happily believe
1510  	 * the DT limits are respected - especially if the new PMIC HW also
1511  	 * supports protection but the driver does not. I won't change the logic
1512  	 * without hearing more experienced opinion on this though.
1513  	 *
1514  	 * If warning is seen as a good idea then we can merge handling the
1515  	 * over-curret protection and detection and get rid of this special
1516  	 * handling.
1517  	 */
1518  	if (rdev->constraints->over_current_protection
1519  		&& ops->set_over_current_protection) {
1520  		int lim = rdev->constraints->over_curr_limits.prot;
1521  
1522  		ret = ops->set_over_current_protection(rdev, lim,
1523  						       REGULATOR_SEVERITY_PROT,
1524  						       true);
1525  		if (ret < 0) {
1526  			rdev_err(rdev, "failed to set over current protection: %pe\n",
1527  				 ERR_PTR(ret));
1528  			return ret;
1529  		}
1530  	}
1531  
1532  	if (rdev->constraints->over_current_detection)
1533  		ret = handle_notify_limits(rdev,
1534  					   ops->set_over_current_protection,
1535  					   &rdev->constraints->over_curr_limits);
1536  	if (ret) {
1537  		if (ret != -EOPNOTSUPP) {
1538  			rdev_err(rdev, "failed to set over current limits: %pe\n",
1539  				 ERR_PTR(ret));
1540  			return ret;
1541  		}
1542  		rdev_warn(rdev,
1543  			  "IC does not support requested over-current limits\n");
1544  	}
1545  
1546  	if (rdev->constraints->over_voltage_detection)
1547  		ret = handle_notify_limits(rdev,
1548  					   ops->set_over_voltage_protection,
1549  					   &rdev->constraints->over_voltage_limits);
1550  	if (ret) {
1551  		if (ret != -EOPNOTSUPP) {
1552  			rdev_err(rdev, "failed to set over voltage limits %pe\n",
1553  				 ERR_PTR(ret));
1554  			return ret;
1555  		}
1556  		rdev_warn(rdev,
1557  			  "IC does not support requested over voltage limits\n");
1558  	}
1559  
1560  	if (rdev->constraints->under_voltage_detection)
1561  		ret = handle_notify_limits(rdev,
1562  					   ops->set_under_voltage_protection,
1563  					   &rdev->constraints->under_voltage_limits);
1564  	if (ret) {
1565  		if (ret != -EOPNOTSUPP) {
1566  			rdev_err(rdev, "failed to set under voltage limits %pe\n",
1567  				 ERR_PTR(ret));
1568  			return ret;
1569  		}
1570  		rdev_warn(rdev,
1571  			  "IC does not support requested under voltage limits\n");
1572  	}
1573  
1574  	if (rdev->constraints->over_temp_detection)
1575  		ret = handle_notify_limits(rdev,
1576  					   ops->set_thermal_protection,
1577  					   &rdev->constraints->temp_limits);
1578  	if (ret) {
1579  		if (ret != -EOPNOTSUPP) {
1580  			rdev_err(rdev, "failed to set temperature limits %pe\n",
1581  				 ERR_PTR(ret));
1582  			return ret;
1583  		}
1584  		rdev_warn(rdev,
1585  			  "IC does not support requested temperature limits\n");
1586  	}
1587  
1588  	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1589  		bool ad_state = (rdev->constraints->active_discharge ==
1590  			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1591  
1592  		ret = ops->set_active_discharge(rdev, ad_state);
1593  		if (ret < 0) {
1594  			rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1595  			return ret;
1596  		}
1597  	}
1598  
1599  	/*
1600  	 * If there is no mechanism for controlling the regulator then
1601  	 * flag it as always_on so we don't end up duplicating checks
1602  	 * for this so much.  Note that we could control the state of
1603  	 * a supply to control the output on a regulator that has no
1604  	 * direct control.
1605  	 */
1606  	if (!rdev->ena_pin && !ops->enable) {
1607  		if (rdev->supply_name && !rdev->supply)
1608  			return -EPROBE_DEFER;
1609  
1610  		if (rdev->supply)
1611  			rdev->constraints->always_on =
1612  				rdev->supply->rdev->constraints->always_on;
1613  		else
1614  			rdev->constraints->always_on = true;
1615  	}
1616  
1617  	/* If the constraints say the regulator should be on at this point
1618  	 * and we have control then make sure it is enabled.
1619  	 */
1620  	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1621  		/* If we want to enable this regulator, make sure that we know
1622  		 * the supplying regulator.
1623  		 */
1624  		if (rdev->supply_name && !rdev->supply)
1625  			return -EPROBE_DEFER;
1626  
1627  		/* If supplying regulator has already been enabled,
1628  		 * it's not intended to have use_count increment
1629  		 * when rdev is only boot-on.
1630  		 */
1631  		if (rdev->supply &&
1632  		    (rdev->constraints->always_on ||
1633  		     !regulator_is_enabled(rdev->supply))) {
1634  			ret = regulator_enable(rdev->supply);
1635  			if (ret < 0) {
1636  				_regulator_put(rdev->supply);
1637  				rdev->supply = NULL;
1638  				return ret;
1639  			}
1640  		}
1641  
1642  		ret = _regulator_do_enable(rdev);
1643  		if (ret < 0 && ret != -EINVAL) {
1644  			rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1645  			return ret;
1646  		}
1647  
1648  		if (rdev->constraints->always_on)
1649  			rdev->use_count++;
1650  	} else if (rdev->desc->off_on_delay) {
1651  		rdev->last_off = ktime_get();
1652  	}
1653  
1654  	if (!rdev->constraints->pw_budget_mW)
1655  		rdev->constraints->pw_budget_mW = INT_MAX;
1656  
1657  	print_constraints(rdev);
1658  	return 0;
1659  }
1660  
1661  /**
1662   * set_supply - set regulator supply regulator
1663   * @rdev: regulator (locked)
1664   * @supply_rdev: supply regulator (locked))
1665   *
1666   * Called by platform initialisation code to set the supply regulator for this
1667   * regulator. This ensures that a regulators supply will also be enabled by the
1668   * core if it's child is enabled.
1669   *
1670   * Return: 0 on success or a negative error number on failure.
1671   */
set_supply(struct regulator_dev * rdev,struct regulator_dev * supply_rdev)1672  static int set_supply(struct regulator_dev *rdev,
1673  		      struct regulator_dev *supply_rdev)
1674  {
1675  	int err;
1676  
1677  	rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1678  
1679  	if (!try_module_get(supply_rdev->owner))
1680  		return -ENODEV;
1681  
1682  	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1683  	if (rdev->supply == NULL) {
1684  		module_put(supply_rdev->owner);
1685  		err = -ENOMEM;
1686  		return err;
1687  	}
1688  	supply_rdev->open_count++;
1689  
1690  	return 0;
1691  }
1692  
1693  /**
1694   * set_consumer_device_supply - Bind a regulator to a symbolic supply
1695   * @rdev:         regulator source
1696   * @consumer_dev_name: dev_name() string for device supply applies to
1697   * @supply:       symbolic name for supply
1698   *
1699   * Allows platform initialisation code to map physical regulator
1700   * sources to symbolic names for supplies for use by devices.  Devices
1701   * should use these symbolic names to request regulators, avoiding the
1702   * need to provide board-specific regulator names as platform data.
1703   *
1704   * Return: 0 on success or a negative error number on failure.
1705   */
set_consumer_device_supply(struct regulator_dev * rdev,const char * consumer_dev_name,const char * supply)1706  static int set_consumer_device_supply(struct regulator_dev *rdev,
1707  				      const char *consumer_dev_name,
1708  				      const char *supply)
1709  {
1710  	struct regulator_map *node, *new_node;
1711  	int has_dev;
1712  
1713  	if (supply == NULL)
1714  		return -EINVAL;
1715  
1716  	if (consumer_dev_name != NULL)
1717  		has_dev = 1;
1718  	else
1719  		has_dev = 0;
1720  
1721  	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1722  	if (new_node == NULL)
1723  		return -ENOMEM;
1724  
1725  	new_node->regulator = rdev;
1726  	new_node->supply = supply;
1727  
1728  	if (has_dev) {
1729  		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1730  		if (new_node->dev_name == NULL) {
1731  			kfree(new_node);
1732  			return -ENOMEM;
1733  		}
1734  	}
1735  
1736  	mutex_lock(&regulator_list_mutex);
1737  	list_for_each_entry(node, &regulator_map_list, list) {
1738  		if (node->dev_name && consumer_dev_name) {
1739  			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1740  				continue;
1741  		} else if (node->dev_name || consumer_dev_name) {
1742  			continue;
1743  		}
1744  
1745  		if (strcmp(node->supply, supply) != 0)
1746  			continue;
1747  
1748  		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1749  			 consumer_dev_name,
1750  			 dev_name(&node->regulator->dev),
1751  			 node->regulator->desc->name,
1752  			 supply,
1753  			 dev_name(&rdev->dev), rdev_get_name(rdev));
1754  		goto fail;
1755  	}
1756  
1757  	list_add(&new_node->list, &regulator_map_list);
1758  	mutex_unlock(&regulator_list_mutex);
1759  
1760  	return 0;
1761  
1762  fail:
1763  	mutex_unlock(&regulator_list_mutex);
1764  	kfree(new_node->dev_name);
1765  	kfree(new_node);
1766  	return -EBUSY;
1767  }
1768  
unset_regulator_supplies(struct regulator_dev * rdev)1769  static void unset_regulator_supplies(struct regulator_dev *rdev)
1770  {
1771  	struct regulator_map *node, *n;
1772  
1773  	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1774  		if (rdev == node->regulator) {
1775  			list_del(&node->list);
1776  			kfree(node->dev_name);
1777  			kfree(node);
1778  		}
1779  	}
1780  }
1781  
1782  #ifdef CONFIG_DEBUG_FS
constraint_flags_read_file(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)1783  static ssize_t constraint_flags_read_file(struct file *file,
1784  					  char __user *user_buf,
1785  					  size_t count, loff_t *ppos)
1786  {
1787  	const struct regulator *regulator = file->private_data;
1788  	const struct regulation_constraints *c = regulator->rdev->constraints;
1789  	char *buf;
1790  	ssize_t ret;
1791  
1792  	if (!c)
1793  		return 0;
1794  
1795  	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1796  	if (!buf)
1797  		return -ENOMEM;
1798  
1799  	ret = snprintf(buf, PAGE_SIZE,
1800  			"always_on: %u\n"
1801  			"boot_on: %u\n"
1802  			"apply_uV: %u\n"
1803  			"ramp_disable: %u\n"
1804  			"soft_start: %u\n"
1805  			"pull_down: %u\n"
1806  			"over_current_protection: %u\n",
1807  			c->always_on,
1808  			c->boot_on,
1809  			c->apply_uV,
1810  			c->ramp_disable,
1811  			c->soft_start,
1812  			c->pull_down,
1813  			c->over_current_protection);
1814  
1815  	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1816  	kfree(buf);
1817  
1818  	return ret;
1819  }
1820  
1821  #endif
1822  
1823  static const struct file_operations constraint_flags_fops = {
1824  #ifdef CONFIG_DEBUG_FS
1825  	.open = simple_open,
1826  	.read = constraint_flags_read_file,
1827  	.llseek = default_llseek,
1828  #endif
1829  };
1830  
1831  #define REG_STR_SIZE	64
1832  
link_and_create_debugfs(struct regulator * regulator,struct regulator_dev * rdev,struct device * dev)1833  static void link_and_create_debugfs(struct regulator *regulator, struct regulator_dev *rdev,
1834  				    struct device *dev)
1835  {
1836  	int err = 0;
1837  
1838  	if (dev) {
1839  		regulator->dev = dev;
1840  
1841  		/* Add a link to the device sysfs entry */
1842  		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1843  					       regulator->supply_name);
1844  		if (err) {
1845  			rdev_dbg(rdev, "could not add device link %s: %pe\n",
1846  				 dev->kobj.name, ERR_PTR(err));
1847  			/* non-fatal */
1848  		}
1849  	}
1850  
1851  	if (err != -EEXIST) {
1852  		regulator->debugfs = debugfs_create_dir(regulator->supply_name, rdev->debugfs);
1853  		if (IS_ERR(regulator->debugfs)) {
1854  			rdev_dbg(rdev, "Failed to create debugfs directory\n");
1855  			regulator->debugfs = NULL;
1856  		}
1857  	}
1858  
1859  	if (regulator->debugfs) {
1860  		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1861  				   &regulator->uA_load);
1862  		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1863  				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1864  		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1865  				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1866  		debugfs_create_file("constraint_flags", 0444, regulator->debugfs,
1867  				    regulator, &constraint_flags_fops);
1868  	}
1869  }
1870  
create_regulator(struct regulator_dev * rdev,struct device * dev,const char * supply_name)1871  static struct regulator *create_regulator(struct regulator_dev *rdev,
1872  					  struct device *dev,
1873  					  const char *supply_name)
1874  {
1875  	struct regulator *regulator;
1876  
1877  	lockdep_assert_held_once(&rdev->mutex.base);
1878  
1879  	if (dev) {
1880  		char buf[REG_STR_SIZE];
1881  		int size;
1882  
1883  		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1884  				dev->kobj.name, supply_name);
1885  		if (size >= REG_STR_SIZE)
1886  			return NULL;
1887  
1888  		supply_name = kstrdup(buf, GFP_KERNEL);
1889  		if (supply_name == NULL)
1890  			return NULL;
1891  	} else {
1892  		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1893  		if (supply_name == NULL)
1894  			return NULL;
1895  	}
1896  
1897  	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1898  	if (regulator == NULL) {
1899  		kfree_const(supply_name);
1900  		return NULL;
1901  	}
1902  
1903  	regulator->rdev = rdev;
1904  	regulator->supply_name = supply_name;
1905  
1906  	list_add(&regulator->list, &rdev->consumer_list);
1907  
1908  	/*
1909  	 * Check now if the regulator is an always on regulator - if
1910  	 * it is then we don't need to do nearly so much work for
1911  	 * enable/disable calls.
1912  	 */
1913  	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1914  	    _regulator_is_enabled(rdev))
1915  		regulator->always_on = true;
1916  
1917  	return regulator;
1918  }
1919  
_regulator_get_enable_time(struct regulator_dev * rdev)1920  static int _regulator_get_enable_time(struct regulator_dev *rdev)
1921  {
1922  	if (rdev->constraints && rdev->constraints->enable_time)
1923  		return rdev->constraints->enable_time;
1924  	if (rdev->desc->ops->enable_time)
1925  		return rdev->desc->ops->enable_time(rdev);
1926  	return rdev->desc->enable_time;
1927  }
1928  
regulator_find_supply_alias(struct device * dev,const char * supply)1929  static struct regulator_supply_alias *regulator_find_supply_alias(
1930  		struct device *dev, const char *supply)
1931  {
1932  	struct regulator_supply_alias *map;
1933  
1934  	list_for_each_entry(map, &regulator_supply_alias_list, list)
1935  		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1936  			return map;
1937  
1938  	return NULL;
1939  }
1940  
regulator_supply_alias(struct device ** dev,const char ** supply)1941  static void regulator_supply_alias(struct device **dev, const char **supply)
1942  {
1943  	struct regulator_supply_alias *map;
1944  
1945  	map = regulator_find_supply_alias(*dev, *supply);
1946  	if (map) {
1947  		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1948  				*supply, map->alias_supply,
1949  				dev_name(map->alias_dev));
1950  		*dev = map->alias_dev;
1951  		*supply = map->alias_supply;
1952  	}
1953  }
1954  
regulator_match(struct device * dev,const void * data)1955  static int regulator_match(struct device *dev, const void *data)
1956  {
1957  	struct regulator_dev *r = dev_to_rdev(dev);
1958  
1959  	return strcmp(rdev_get_name(r), data) == 0;
1960  }
1961  
regulator_lookup_by_name(const char * name)1962  static struct regulator_dev *regulator_lookup_by_name(const char *name)
1963  {
1964  	struct device *dev;
1965  
1966  	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1967  
1968  	return dev ? dev_to_rdev(dev) : NULL;
1969  }
1970  
regulator_dt_lookup(struct device * dev,const char * supply)1971  static struct regulator_dev *regulator_dt_lookup(struct device *dev,
1972  						 const char *supply)
1973  {
1974  	struct regulator_dev *r = NULL;
1975  
1976  	if (dev_of_node(dev)) {
1977  		r = of_regulator_dev_lookup(dev, dev_of_node(dev), supply);
1978  		if (PTR_ERR(r) == -ENODEV)
1979  			r = NULL;
1980  	}
1981  
1982  	return r;
1983  }
1984  
1985  /**
1986   * regulator_dev_lookup - lookup a regulator device.
1987   * @dev: device for regulator "consumer".
1988   * @supply: Supply name or regulator ID.
1989   *
1990   * Return: pointer to &struct regulator_dev or ERR_PTR() encoded negative error number.
1991   *
1992   * If successful, returns a struct regulator_dev that corresponds to the name
1993   * @supply and with the embedded struct device refcount incremented by one.
1994   * The refcount must be dropped by calling put_device().
1995   * On failure one of the following ERR_PTR() encoded values is returned:
1996   * -%ENODEV if lookup fails permanently, -%EPROBE_DEFER if lookup could succeed
1997   * in the future.
1998   */
regulator_dev_lookup(struct device * dev,const char * supply)1999  static struct regulator_dev *regulator_dev_lookup(struct device *dev,
2000  						  const char *supply)
2001  {
2002  	struct regulator_dev *r = NULL;
2003  	struct regulator_map *map;
2004  	const char *devname = NULL;
2005  
2006  	regulator_supply_alias(&dev, &supply);
2007  
2008  	/* first do a dt based lookup */
2009  	r = regulator_dt_lookup(dev, supply);
2010  	if (r)
2011  		return r;
2012  
2013  	/* if not found, try doing it non-dt way */
2014  	if (dev)
2015  		devname = dev_name(dev);
2016  
2017  	mutex_lock(&regulator_list_mutex);
2018  	list_for_each_entry(map, &regulator_map_list, list) {
2019  		/* If the mapping has a device set up it must match */
2020  		if (map->dev_name &&
2021  		    (!devname || strcmp(map->dev_name, devname)))
2022  			continue;
2023  
2024  		if (strcmp(map->supply, supply) == 0 &&
2025  		    get_device(&map->regulator->dev)) {
2026  			r = map->regulator;
2027  			break;
2028  		}
2029  	}
2030  	mutex_unlock(&regulator_list_mutex);
2031  
2032  	if (r)
2033  		return r;
2034  
2035  	r = regulator_lookup_by_name(supply);
2036  	if (r)
2037  		return r;
2038  
2039  	return ERR_PTR(-ENODEV);
2040  }
2041  
regulator_resolve_supply(struct regulator_dev * rdev)2042  static int regulator_resolve_supply(struct regulator_dev *rdev)
2043  {
2044  	struct regulator_dev *r;
2045  	struct device *dev = rdev->dev.parent;
2046  	struct ww_acquire_ctx ww_ctx;
2047  	int ret = 0;
2048  
2049  	/* No supply to resolve? */
2050  	if (!rdev->supply_name)
2051  		return 0;
2052  
2053  	/* Supply already resolved? (fast-path without locking contention) */
2054  	if (rdev->supply)
2055  		return 0;
2056  
2057  	/* first do a dt based lookup on the node described in the virtual
2058  	 * device.
2059  	 */
2060  	r = regulator_dt_lookup(&rdev->dev, rdev->supply_name);
2061  
2062  	/* If regulator not found use usual search path in the parent
2063  	 * device.
2064  	 */
2065  	if (!r)
2066  		r = regulator_dev_lookup(dev, rdev->supply_name);
2067  
2068  	if (IS_ERR(r)) {
2069  		ret = PTR_ERR(r);
2070  
2071  		/* Did the lookup explicitly defer for us? */
2072  		if (ret == -EPROBE_DEFER)
2073  			goto out;
2074  
2075  		if (have_full_constraints()) {
2076  			r = dummy_regulator_rdev;
2077  			if (!r) {
2078  				ret = -EPROBE_DEFER;
2079  				goto out;
2080  			}
2081  			get_device(&r->dev);
2082  		} else {
2083  			dev_err(dev, "Failed to resolve %s-supply for %s\n",
2084  				rdev->supply_name, rdev->desc->name);
2085  			ret = -EPROBE_DEFER;
2086  			goto out;
2087  		}
2088  	}
2089  
2090  	if (r == rdev) {
2091  		dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2092  			rdev->desc->name, rdev->supply_name);
2093  		if (!have_full_constraints()) {
2094  			ret = -EINVAL;
2095  			goto out;
2096  		}
2097  		r = dummy_regulator_rdev;
2098  		if (!r) {
2099  			ret = -EPROBE_DEFER;
2100  			goto out;
2101  		}
2102  		get_device(&r->dev);
2103  	}
2104  
2105  	/*
2106  	 * If the supply's parent device is not the same as the
2107  	 * regulator's parent device, then ensure the parent device
2108  	 * is bound before we resolve the supply, in case the parent
2109  	 * device get probe deferred and unregisters the supply.
2110  	 */
2111  	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2112  		if (!device_is_bound(r->dev.parent)) {
2113  			put_device(&r->dev);
2114  			ret = -EPROBE_DEFER;
2115  			goto out;
2116  		}
2117  	}
2118  
2119  	/* Recursively resolve the supply of the supply */
2120  	ret = regulator_resolve_supply(r);
2121  	if (ret < 0) {
2122  		put_device(&r->dev);
2123  		goto out;
2124  	}
2125  
2126  	/*
2127  	 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2128  	 * between rdev->supply null check and setting rdev->supply in
2129  	 * set_supply() from concurrent tasks.
2130  	 */
2131  	regulator_lock_two(rdev, r, &ww_ctx);
2132  
2133  	/* Supply just resolved by a concurrent task? */
2134  	if (rdev->supply) {
2135  		regulator_unlock_two(rdev, r, &ww_ctx);
2136  		put_device(&r->dev);
2137  		goto out;
2138  	}
2139  
2140  	ret = set_supply(rdev, r);
2141  	if (ret < 0) {
2142  		regulator_unlock_two(rdev, r, &ww_ctx);
2143  		put_device(&r->dev);
2144  		goto out;
2145  	}
2146  
2147  	regulator_unlock_two(rdev, r, &ww_ctx);
2148  
2149  	/* rdev->supply was created in set_supply() */
2150  	link_and_create_debugfs(rdev->supply, r, &rdev->dev);
2151  
2152  	/*
2153  	 * In set_machine_constraints() we may have turned this regulator on
2154  	 * but we couldn't propagate to the supply if it hadn't been resolved
2155  	 * yet.  Do it now.
2156  	 */
2157  	if (rdev->use_count) {
2158  		ret = regulator_enable(rdev->supply);
2159  		if (ret < 0) {
2160  			_regulator_put(rdev->supply);
2161  			rdev->supply = NULL;
2162  			goto out;
2163  		}
2164  	}
2165  
2166  out:
2167  	return ret;
2168  }
2169  
2170  /* common pre-checks for regulator requests */
_regulator_get_common_check(struct device * dev,const char * id,enum regulator_get_type get_type)2171  int _regulator_get_common_check(struct device *dev, const char *id,
2172  				enum regulator_get_type get_type)
2173  {
2174  	if (get_type >= MAX_GET_TYPE) {
2175  		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2176  		return -EINVAL;
2177  	}
2178  
2179  	if (id == NULL) {
2180  		dev_err(dev, "regulator request with no identifier\n");
2181  		return -EINVAL;
2182  	}
2183  
2184  	return 0;
2185  }
2186  
2187  /**
2188   * _regulator_get_common - Common code for regulator requests
2189   * @rdev: regulator device pointer as returned by *regulator_dev_lookup()
2190   *       Its reference count is expected to have been incremented.
2191   * @dev: device used for dev_printk messages
2192   * @id: Supply name or regulator ID
2193   * @get_type: enum regulator_get_type value corresponding to type of request
2194   *
2195   * Returns: pointer to struct regulator corresponding to @rdev, or ERR_PTR()
2196   *	    encoded error.
2197   *
2198   * This function should be chained with *regulator_dev_lookup() functions.
2199   */
_regulator_get_common(struct regulator_dev * rdev,struct device * dev,const char * id,enum regulator_get_type get_type)2200  struct regulator *_regulator_get_common(struct regulator_dev *rdev, struct device *dev,
2201  					const char *id, enum regulator_get_type get_type)
2202  {
2203  	struct regulator *regulator;
2204  	struct device_link *link;
2205  	int ret;
2206  
2207  	if (IS_ERR(rdev)) {
2208  		ret = PTR_ERR(rdev);
2209  
2210  		/*
2211  		 * If regulator_dev_lookup() fails with error other
2212  		 * than -ENODEV our job here is done, we simply return it.
2213  		 */
2214  		if (ret != -ENODEV)
2215  			return ERR_PTR(ret);
2216  
2217  		if (!have_full_constraints()) {
2218  			dev_warn(dev,
2219  				 "incomplete constraints, dummy supplies not allowed (id=%s)\n", id);
2220  			return ERR_PTR(-ENODEV);
2221  		}
2222  
2223  		switch (get_type) {
2224  		case NORMAL_GET:
2225  			/*
2226  			 * Assume that a regulator is physically present and
2227  			 * enabled, even if it isn't hooked up, and just
2228  			 * provide a dummy.
2229  			 */
2230  			rdev = dummy_regulator_rdev;
2231  			if (!rdev)
2232  				return ERR_PTR(-EPROBE_DEFER);
2233  			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2234  			get_device(&rdev->dev);
2235  			break;
2236  
2237  		case EXCLUSIVE_GET:
2238  			dev_warn(dev,
2239  				 "dummy supplies not allowed for exclusive requests (id=%s)\n", id);
2240  			fallthrough;
2241  
2242  		default:
2243  			return ERR_PTR(-ENODEV);
2244  		}
2245  	}
2246  
2247  	if (rdev->exclusive) {
2248  		regulator = ERR_PTR(-EPERM);
2249  		put_device(&rdev->dev);
2250  		return regulator;
2251  	}
2252  
2253  	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2254  		regulator = ERR_PTR(-EBUSY);
2255  		put_device(&rdev->dev);
2256  		return regulator;
2257  	}
2258  
2259  	mutex_lock(&regulator_list_mutex);
2260  	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2261  	mutex_unlock(&regulator_list_mutex);
2262  
2263  	if (ret != 0) {
2264  		regulator = ERR_PTR(-EPROBE_DEFER);
2265  		put_device(&rdev->dev);
2266  		return regulator;
2267  	}
2268  
2269  	ret = regulator_resolve_supply(rdev);
2270  	if (ret < 0) {
2271  		regulator = ERR_PTR(ret);
2272  		put_device(&rdev->dev);
2273  		return regulator;
2274  	}
2275  
2276  	if (!try_module_get(rdev->owner)) {
2277  		regulator = ERR_PTR(-EPROBE_DEFER);
2278  		put_device(&rdev->dev);
2279  		return regulator;
2280  	}
2281  
2282  	regulator_lock(rdev);
2283  	regulator = create_regulator(rdev, dev, id);
2284  	regulator_unlock(rdev);
2285  	if (regulator == NULL) {
2286  		regulator = ERR_PTR(-ENOMEM);
2287  		module_put(rdev->owner);
2288  		put_device(&rdev->dev);
2289  		return regulator;
2290  	}
2291  
2292  	link_and_create_debugfs(regulator, rdev, dev);
2293  
2294  	rdev->open_count++;
2295  	if (get_type == EXCLUSIVE_GET) {
2296  		rdev->exclusive = 1;
2297  
2298  		ret = _regulator_is_enabled(rdev);
2299  		if (ret > 0) {
2300  			rdev->use_count = 1;
2301  			regulator->enable_count = 1;
2302  
2303  			/* Propagate the regulator state to its supply */
2304  			if (rdev->supply) {
2305  				ret = regulator_enable(rdev->supply);
2306  				if (ret < 0) {
2307  					destroy_regulator(regulator);
2308  					module_put(rdev->owner);
2309  					put_device(&rdev->dev);
2310  					return ERR_PTR(ret);
2311  				}
2312  			}
2313  		} else {
2314  			rdev->use_count = 0;
2315  			regulator->enable_count = 0;
2316  		}
2317  	}
2318  
2319  	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2320  	if (!IS_ERR_OR_NULL(link))
2321  		regulator->device_link = true;
2322  
2323  	return regulator;
2324  }
2325  
2326  /* Internal regulator request function */
_regulator_get(struct device * dev,const char * id,enum regulator_get_type get_type)2327  struct regulator *_regulator_get(struct device *dev, const char *id,
2328  				 enum regulator_get_type get_type)
2329  {
2330  	struct regulator_dev *rdev;
2331  	int ret;
2332  
2333  	ret = _regulator_get_common_check(dev, id, get_type);
2334  	if (ret)
2335  		return ERR_PTR(ret);
2336  
2337  	rdev = regulator_dev_lookup(dev, id);
2338  	return _regulator_get_common(rdev, dev, id, get_type);
2339  }
2340  
2341  /**
2342   * regulator_get - lookup and obtain a reference to a regulator.
2343   * @dev: device for regulator "consumer"
2344   * @id: Supply name or regulator ID.
2345   *
2346   * Use of supply names configured via set_consumer_device_supply() is
2347   * strongly encouraged.  It is recommended that the supply name used
2348   * should match the name used for the supply and/or the relevant
2349   * device pins in the datasheet.
2350   *
2351   * Return: Pointer to a &struct regulator corresponding to the regulator
2352   *	   producer, or an ERR_PTR() encoded negative error number.
2353   */
regulator_get(struct device * dev,const char * id)2354  struct regulator *regulator_get(struct device *dev, const char *id)
2355  {
2356  	return _regulator_get(dev, id, NORMAL_GET);
2357  }
2358  EXPORT_SYMBOL_GPL(regulator_get);
2359  
2360  /**
2361   * regulator_get_exclusive - obtain exclusive access to a regulator.
2362   * @dev: device for regulator "consumer"
2363   * @id: Supply name or regulator ID.
2364   *
2365   * Other consumers will be unable to obtain this regulator while this
2366   * reference is held and the use count for the regulator will be
2367   * initialised to reflect the current state of the regulator.
2368   *
2369   * This is intended for use by consumers which cannot tolerate shared
2370   * use of the regulator such as those which need to force the
2371   * regulator off for correct operation of the hardware they are
2372   * controlling.
2373   *
2374   * Use of supply names configured via set_consumer_device_supply() is
2375   * strongly encouraged.  It is recommended that the supply name used
2376   * should match the name used for the supply and/or the relevant
2377   * device pins in the datasheet.
2378   *
2379   * Return: Pointer to a &struct regulator corresponding to the regulator
2380   *	   producer, or an ERR_PTR() encoded negative error number.
2381   */
regulator_get_exclusive(struct device * dev,const char * id)2382  struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2383  {
2384  	return _regulator_get(dev, id, EXCLUSIVE_GET);
2385  }
2386  EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2387  
2388  /**
2389   * regulator_get_optional - obtain optional access to a regulator.
2390   * @dev: device for regulator "consumer"
2391   * @id: Supply name or regulator ID.
2392   *
2393   * This is intended for use by consumers for devices which can have
2394   * some supplies unconnected in normal use, such as some MMC devices.
2395   * It can allow the regulator core to provide stub supplies for other
2396   * supplies requested using normal regulator_get() calls without
2397   * disrupting the operation of drivers that can handle absent
2398   * supplies.
2399   *
2400   * Use of supply names configured via set_consumer_device_supply() is
2401   * strongly encouraged.  It is recommended that the supply name used
2402   * should match the name used for the supply and/or the relevant
2403   * device pins in the datasheet.
2404   *
2405   * Return: Pointer to a &struct regulator corresponding to the regulator
2406   *	   producer, or an ERR_PTR() encoded negative error number.
2407   */
regulator_get_optional(struct device * dev,const char * id)2408  struct regulator *regulator_get_optional(struct device *dev, const char *id)
2409  {
2410  	return _regulator_get(dev, id, OPTIONAL_GET);
2411  }
2412  EXPORT_SYMBOL_GPL(regulator_get_optional);
2413  
destroy_regulator(struct regulator * regulator)2414  static void destroy_regulator(struct regulator *regulator)
2415  {
2416  	struct regulator_dev *rdev = regulator->rdev;
2417  
2418  	debugfs_remove_recursive(regulator->debugfs);
2419  
2420  	if (regulator->dev) {
2421  		if (regulator->device_link)
2422  			device_link_remove(regulator->dev, &rdev->dev);
2423  
2424  		/* remove any sysfs entries */
2425  		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2426  	}
2427  
2428  	regulator_lock(rdev);
2429  	list_del(&regulator->list);
2430  
2431  	rdev->open_count--;
2432  	rdev->exclusive = 0;
2433  	regulator_unlock(rdev);
2434  
2435  	kfree_const(regulator->supply_name);
2436  	kfree(regulator);
2437  }
2438  
2439  /* regulator_list_mutex lock held by regulator_put() */
_regulator_put(struct regulator * regulator)2440  static void _regulator_put(struct regulator *regulator)
2441  {
2442  	struct regulator_dev *rdev;
2443  
2444  	if (IS_ERR_OR_NULL(regulator))
2445  		return;
2446  
2447  	lockdep_assert_held_once(&regulator_list_mutex);
2448  
2449  	/* Docs say you must disable before calling regulator_put() */
2450  	WARN_ON(regulator->enable_count);
2451  
2452  	rdev = regulator->rdev;
2453  
2454  	destroy_regulator(regulator);
2455  
2456  	module_put(rdev->owner);
2457  	put_device(&rdev->dev);
2458  }
2459  
2460  /**
2461   * regulator_put - "free" the regulator source
2462   * @regulator: regulator source
2463   *
2464   * Note: drivers must ensure that all regulator_enable calls made on this
2465   * regulator source are balanced by regulator_disable calls prior to calling
2466   * this function.
2467   */
regulator_put(struct regulator * regulator)2468  void regulator_put(struct regulator *regulator)
2469  {
2470  	mutex_lock(&regulator_list_mutex);
2471  	_regulator_put(regulator);
2472  	mutex_unlock(&regulator_list_mutex);
2473  }
2474  EXPORT_SYMBOL_GPL(regulator_put);
2475  
2476  /**
2477   * regulator_register_supply_alias - Provide device alias for supply lookup
2478   *
2479   * @dev: device that will be given as the regulator "consumer"
2480   * @id: Supply name or regulator ID
2481   * @alias_dev: device that should be used to lookup the supply
2482   * @alias_id: Supply name or regulator ID that should be used to lookup the
2483   * supply
2484   *
2485   * All lookups for id on dev will instead be conducted for alias_id on
2486   * alias_dev.
2487   *
2488   * Return: 0 on success or a negative error number on failure.
2489   */
regulator_register_supply_alias(struct device * dev,const char * id,struct device * alias_dev,const char * alias_id)2490  int regulator_register_supply_alias(struct device *dev, const char *id,
2491  				    struct device *alias_dev,
2492  				    const char *alias_id)
2493  {
2494  	struct regulator_supply_alias *map;
2495  
2496  	map = regulator_find_supply_alias(dev, id);
2497  	if (map)
2498  		return -EEXIST;
2499  
2500  	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2501  	if (!map)
2502  		return -ENOMEM;
2503  
2504  	map->src_dev = dev;
2505  	map->src_supply = id;
2506  	map->alias_dev = alias_dev;
2507  	map->alias_supply = alias_id;
2508  
2509  	list_add(&map->list, &regulator_supply_alias_list);
2510  
2511  	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2512  		id, dev_name(dev), alias_id, dev_name(alias_dev));
2513  
2514  	return 0;
2515  }
2516  EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2517  
2518  /**
2519   * regulator_unregister_supply_alias - Remove device alias
2520   *
2521   * @dev: device that will be given as the regulator "consumer"
2522   * @id: Supply name or regulator ID
2523   *
2524   * Remove a lookup alias if one exists for id on dev.
2525   */
regulator_unregister_supply_alias(struct device * dev,const char * id)2526  void regulator_unregister_supply_alias(struct device *dev, const char *id)
2527  {
2528  	struct regulator_supply_alias *map;
2529  
2530  	map = regulator_find_supply_alias(dev, id);
2531  	if (map) {
2532  		list_del(&map->list);
2533  		kfree(map);
2534  	}
2535  }
2536  EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2537  
2538  /**
2539   * regulator_bulk_register_supply_alias - register multiple aliases
2540   *
2541   * @dev: device that will be given as the regulator "consumer"
2542   * @id: List of supply names or regulator IDs
2543   * @alias_dev: device that should be used to lookup the supply
2544   * @alias_id: List of supply names or regulator IDs that should be used to
2545   * lookup the supply
2546   * @num_id: Number of aliases to register
2547   *
2548   * This helper function allows drivers to register several supply
2549   * aliases in one operation.  If any of the aliases cannot be
2550   * registered any aliases that were registered will be removed
2551   * before returning to the caller.
2552   *
2553   * Return: 0 on success or a negative error number on failure.
2554   */
regulator_bulk_register_supply_alias(struct device * dev,const char * const * id,struct device * alias_dev,const char * const * alias_id,int num_id)2555  int regulator_bulk_register_supply_alias(struct device *dev,
2556  					 const char *const *id,
2557  					 struct device *alias_dev,
2558  					 const char *const *alias_id,
2559  					 int num_id)
2560  {
2561  	int i;
2562  	int ret;
2563  
2564  	for (i = 0; i < num_id; ++i) {
2565  		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2566  						      alias_id[i]);
2567  		if (ret < 0)
2568  			goto err;
2569  	}
2570  
2571  	return 0;
2572  
2573  err:
2574  	dev_err(dev,
2575  		"Failed to create supply alias %s,%s -> %s,%s\n",
2576  		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2577  
2578  	while (--i >= 0)
2579  		regulator_unregister_supply_alias(dev, id[i]);
2580  
2581  	return ret;
2582  }
2583  EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2584  
2585  /**
2586   * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2587   *
2588   * @dev: device that will be given as the regulator "consumer"
2589   * @id: List of supply names or regulator IDs
2590   * @num_id: Number of aliases to unregister
2591   *
2592   * This helper function allows drivers to unregister several supply
2593   * aliases in one operation.
2594   */
regulator_bulk_unregister_supply_alias(struct device * dev,const char * const * id,int num_id)2595  void regulator_bulk_unregister_supply_alias(struct device *dev,
2596  					    const char *const *id,
2597  					    int num_id)
2598  {
2599  	int i;
2600  
2601  	for (i = 0; i < num_id; ++i)
2602  		regulator_unregister_supply_alias(dev, id[i]);
2603  }
2604  EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2605  
2606  
2607  /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
regulator_ena_gpio_request(struct regulator_dev * rdev,const struct regulator_config * config)2608  static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2609  				const struct regulator_config *config)
2610  {
2611  	struct regulator_enable_gpio *pin, *new_pin;
2612  	struct gpio_desc *gpiod;
2613  
2614  	gpiod = config->ena_gpiod;
2615  	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2616  
2617  	mutex_lock(&regulator_list_mutex);
2618  
2619  	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2620  		if (pin->gpiod == gpiod) {
2621  			rdev_dbg(rdev, "GPIO is already used\n");
2622  			goto update_ena_gpio_to_rdev;
2623  		}
2624  	}
2625  
2626  	if (new_pin == NULL) {
2627  		mutex_unlock(&regulator_list_mutex);
2628  		return -ENOMEM;
2629  	}
2630  
2631  	pin = new_pin;
2632  	new_pin = NULL;
2633  
2634  	pin->gpiod = gpiod;
2635  	list_add(&pin->list, &regulator_ena_gpio_list);
2636  
2637  update_ena_gpio_to_rdev:
2638  	pin->request_count++;
2639  	rdev->ena_pin = pin;
2640  
2641  	mutex_unlock(&regulator_list_mutex);
2642  	kfree(new_pin);
2643  
2644  	return 0;
2645  }
2646  
regulator_ena_gpio_free(struct regulator_dev * rdev)2647  static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2648  {
2649  	struct regulator_enable_gpio *pin, *n;
2650  
2651  	if (!rdev->ena_pin)
2652  		return;
2653  
2654  	/* Free the GPIO only in case of no use */
2655  	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2656  		if (pin != rdev->ena_pin)
2657  			continue;
2658  
2659  		if (--pin->request_count)
2660  			break;
2661  
2662  		gpiod_put(pin->gpiod);
2663  		list_del(&pin->list);
2664  		kfree(pin);
2665  		break;
2666  	}
2667  
2668  	rdev->ena_pin = NULL;
2669  }
2670  
2671  /**
2672   * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2673   * @rdev: regulator_dev structure
2674   * @enable: enable GPIO at initial use?
2675   *
2676   * GPIO is enabled in case of initial use. (enable_count is 0)
2677   * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2678   *
2679   * Return: 0 on success or a negative error number on failure.
2680   */
regulator_ena_gpio_ctrl(struct regulator_dev * rdev,bool enable)2681  static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2682  {
2683  	struct regulator_enable_gpio *pin = rdev->ena_pin;
2684  
2685  	if (!pin)
2686  		return -EINVAL;
2687  
2688  	if (enable) {
2689  		/* Enable GPIO at initial use */
2690  		if (pin->enable_count == 0)
2691  			gpiod_set_value_cansleep(pin->gpiod, 1);
2692  
2693  		pin->enable_count++;
2694  	} else {
2695  		if (pin->enable_count > 1) {
2696  			pin->enable_count--;
2697  			return 0;
2698  		}
2699  
2700  		/* Disable GPIO if not used */
2701  		if (pin->enable_count <= 1) {
2702  			gpiod_set_value_cansleep(pin->gpiod, 0);
2703  			pin->enable_count = 0;
2704  		}
2705  	}
2706  
2707  	return 0;
2708  }
2709  
2710  /**
2711   * _regulator_check_status_enabled - check if regulator status can be
2712   *				     interpreted as "regulator is enabled"
2713   * @rdev: the regulator device to check
2714   *
2715   * Return:
2716   * * 1			- if status shows regulator is in enabled state
2717   * * 0			- if not enabled state
2718   * * Error Value	- as received from ops->get_status()
2719   */
_regulator_check_status_enabled(struct regulator_dev * rdev)2720  static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2721  {
2722  	int ret = rdev->desc->ops->get_status(rdev);
2723  
2724  	if (ret < 0) {
2725  		rdev_info(rdev, "get_status returned error: %d\n", ret);
2726  		return ret;
2727  	}
2728  
2729  	switch (ret) {
2730  	case REGULATOR_STATUS_OFF:
2731  	case REGULATOR_STATUS_ERROR:
2732  	case REGULATOR_STATUS_UNDEFINED:
2733  		return 0;
2734  	default:
2735  		return 1;
2736  	}
2737  }
2738  
_regulator_do_enable(struct regulator_dev * rdev)2739  static int _regulator_do_enable(struct regulator_dev *rdev)
2740  {
2741  	int ret, delay;
2742  
2743  	/* Query before enabling in case configuration dependent.  */
2744  	ret = _regulator_get_enable_time(rdev);
2745  	if (ret >= 0) {
2746  		delay = ret;
2747  	} else {
2748  		rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2749  		delay = 0;
2750  	}
2751  
2752  	trace_regulator_enable(rdev_get_name(rdev));
2753  
2754  	if (rdev->desc->off_on_delay) {
2755  		/* if needed, keep a distance of off_on_delay from last time
2756  		 * this regulator was disabled.
2757  		 */
2758  		ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2759  		s64 remaining = ktime_us_delta(end, ktime_get_boottime());
2760  
2761  		if (remaining > 0)
2762  			fsleep(remaining);
2763  	}
2764  
2765  	if (rdev->ena_pin) {
2766  		if (!rdev->ena_gpio_state) {
2767  			ret = regulator_ena_gpio_ctrl(rdev, true);
2768  			if (ret < 0)
2769  				return ret;
2770  			rdev->ena_gpio_state = 1;
2771  		}
2772  	} else if (rdev->desc->ops->enable) {
2773  		ret = rdev->desc->ops->enable(rdev);
2774  		if (ret < 0)
2775  			return ret;
2776  	} else {
2777  		return -EINVAL;
2778  	}
2779  
2780  	/* Allow the regulator to ramp; it would be useful to extend
2781  	 * this for bulk operations so that the regulators can ramp
2782  	 * together.
2783  	 */
2784  	trace_regulator_enable_delay(rdev_get_name(rdev));
2785  
2786  	/* If poll_enabled_time is set, poll upto the delay calculated
2787  	 * above, delaying poll_enabled_time uS to check if the regulator
2788  	 * actually got enabled.
2789  	 * If the regulator isn't enabled after our delay helper has expired,
2790  	 * return -ETIMEDOUT.
2791  	 */
2792  	if (rdev->desc->poll_enabled_time) {
2793  		int time_remaining = delay;
2794  
2795  		while (time_remaining > 0) {
2796  			fsleep(rdev->desc->poll_enabled_time);
2797  
2798  			if (rdev->desc->ops->get_status) {
2799  				ret = _regulator_check_status_enabled(rdev);
2800  				if (ret < 0)
2801  					return ret;
2802  				else if (ret)
2803  					break;
2804  			} else if (rdev->desc->ops->is_enabled(rdev))
2805  				break;
2806  
2807  			time_remaining -= rdev->desc->poll_enabled_time;
2808  		}
2809  
2810  		if (time_remaining <= 0) {
2811  			rdev_err(rdev, "Enabled check timed out\n");
2812  			return -ETIMEDOUT;
2813  		}
2814  	} else {
2815  		fsleep(delay);
2816  	}
2817  
2818  	trace_regulator_enable_complete(rdev_get_name(rdev));
2819  
2820  	return 0;
2821  }
2822  
2823  /**
2824   * _regulator_handle_consumer_enable - handle that a consumer enabled
2825   * @regulator: regulator source
2826   *
2827   * Some things on a regulator consumer (like the contribution towards total
2828   * load on the regulator) only have an effect when the consumer wants the
2829   * regulator enabled.  Explained in example with two consumers of the same
2830   * regulator:
2831   *   consumer A: set_load(100);       => total load = 0
2832   *   consumer A: regulator_enable();  => total load = 100
2833   *   consumer B: set_load(1000);      => total load = 100
2834   *   consumer B: regulator_enable();  => total load = 1100
2835   *   consumer A: regulator_disable(); => total_load = 1000
2836   *
2837   * This function (together with _regulator_handle_consumer_disable) is
2838   * responsible for keeping track of the refcount for a given regulator consumer
2839   * and applying / unapplying these things.
2840   *
2841   * Return: 0 on success or negative error number on failure.
2842   */
_regulator_handle_consumer_enable(struct regulator * regulator)2843  static int _regulator_handle_consumer_enable(struct regulator *regulator)
2844  {
2845  	int ret;
2846  	struct regulator_dev *rdev = regulator->rdev;
2847  
2848  	lockdep_assert_held_once(&rdev->mutex.base);
2849  
2850  	regulator->enable_count++;
2851  	if (regulator->uA_load && regulator->enable_count == 1) {
2852  		ret = drms_uA_update(rdev);
2853  		if (ret)
2854  			regulator->enable_count--;
2855  		return ret;
2856  	}
2857  
2858  	return 0;
2859  }
2860  
2861  /**
2862   * _regulator_handle_consumer_disable - handle that a consumer disabled
2863   * @regulator: regulator source
2864   *
2865   * The opposite of _regulator_handle_consumer_enable().
2866   *
2867   * Return: 0 on success or a negative error number on failure.
2868   */
_regulator_handle_consumer_disable(struct regulator * regulator)2869  static int _regulator_handle_consumer_disable(struct regulator *regulator)
2870  {
2871  	struct regulator_dev *rdev = regulator->rdev;
2872  
2873  	lockdep_assert_held_once(&rdev->mutex.base);
2874  
2875  	if (!regulator->enable_count) {
2876  		rdev_err(rdev, "Underflow of regulator enable count\n");
2877  		return -EINVAL;
2878  	}
2879  
2880  	regulator->enable_count--;
2881  	if (regulator->uA_load && regulator->enable_count == 0)
2882  		return drms_uA_update(rdev);
2883  
2884  	return 0;
2885  }
2886  
2887  /* locks held by regulator_enable() */
_regulator_enable(struct regulator * regulator)2888  static int _regulator_enable(struct regulator *regulator)
2889  {
2890  	struct regulator_dev *rdev = regulator->rdev;
2891  	int ret;
2892  
2893  	lockdep_assert_held_once(&rdev->mutex.base);
2894  
2895  	if (rdev->use_count == 0 && rdev->supply) {
2896  		ret = _regulator_enable(rdev->supply);
2897  		if (ret < 0)
2898  			return ret;
2899  	}
2900  
2901  	/* balance only if there are regulators coupled */
2902  	if (rdev->coupling_desc.n_coupled > 1) {
2903  		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2904  		if (ret < 0)
2905  			goto err_disable_supply;
2906  	}
2907  
2908  	ret = _regulator_handle_consumer_enable(regulator);
2909  	if (ret < 0)
2910  		goto err_disable_supply;
2911  
2912  	if (rdev->use_count == 0) {
2913  		/*
2914  		 * The regulator may already be enabled if it's not switchable
2915  		 * or was left on
2916  		 */
2917  		ret = _regulator_is_enabled(rdev);
2918  		if (ret == -EINVAL || ret == 0) {
2919  			if (!regulator_ops_is_valid(rdev,
2920  					REGULATOR_CHANGE_STATUS)) {
2921  				ret = -EPERM;
2922  				goto err_consumer_disable;
2923  			}
2924  
2925  			ret = _regulator_do_enable(rdev);
2926  			if (ret < 0)
2927  				goto err_consumer_disable;
2928  
2929  			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2930  					     NULL);
2931  		} else if (ret < 0) {
2932  			rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2933  			goto err_consumer_disable;
2934  		}
2935  		/* Fallthrough on positive return values - already enabled */
2936  	}
2937  
2938  	if (regulator->enable_count == 1)
2939  		rdev->use_count++;
2940  
2941  	return 0;
2942  
2943  err_consumer_disable:
2944  	_regulator_handle_consumer_disable(regulator);
2945  
2946  err_disable_supply:
2947  	if (rdev->use_count == 0 && rdev->supply)
2948  		_regulator_disable(rdev->supply);
2949  
2950  	return ret;
2951  }
2952  
2953  /**
2954   * regulator_enable - enable regulator output
2955   * @regulator: regulator source
2956   *
2957   * Request that the regulator be enabled with the regulator output at
2958   * the predefined voltage or current value.  Calls to regulator_enable()
2959   * must be balanced with calls to regulator_disable().
2960   *
2961   * NOTE: the output value can be set by other drivers, boot loader or may be
2962   * hardwired in the regulator.
2963   *
2964   * Return: 0 on success or a negative error number on failure.
2965   */
regulator_enable(struct regulator * regulator)2966  int regulator_enable(struct regulator *regulator)
2967  {
2968  	struct regulator_dev *rdev = regulator->rdev;
2969  	struct ww_acquire_ctx ww_ctx;
2970  	int ret;
2971  
2972  	regulator_lock_dependent(rdev, &ww_ctx);
2973  	ret = _regulator_enable(regulator);
2974  	regulator_unlock_dependent(rdev, &ww_ctx);
2975  
2976  	return ret;
2977  }
2978  EXPORT_SYMBOL_GPL(regulator_enable);
2979  
_regulator_do_disable(struct regulator_dev * rdev)2980  static int _regulator_do_disable(struct regulator_dev *rdev)
2981  {
2982  	int ret;
2983  
2984  	trace_regulator_disable(rdev_get_name(rdev));
2985  
2986  	if (rdev->ena_pin) {
2987  		if (rdev->ena_gpio_state) {
2988  			ret = regulator_ena_gpio_ctrl(rdev, false);
2989  			if (ret < 0)
2990  				return ret;
2991  			rdev->ena_gpio_state = 0;
2992  		}
2993  
2994  	} else if (rdev->desc->ops->disable) {
2995  		ret = rdev->desc->ops->disable(rdev);
2996  		if (ret != 0)
2997  			return ret;
2998  	}
2999  
3000  	if (rdev->desc->off_on_delay)
3001  		rdev->last_off = ktime_get_boottime();
3002  
3003  	trace_regulator_disable_complete(rdev_get_name(rdev));
3004  
3005  	return 0;
3006  }
3007  
3008  /* locks held by regulator_disable() */
_regulator_disable(struct regulator * regulator)3009  static int _regulator_disable(struct regulator *regulator)
3010  {
3011  	struct regulator_dev *rdev = regulator->rdev;
3012  	int ret = 0;
3013  
3014  	lockdep_assert_held_once(&rdev->mutex.base);
3015  
3016  	if (WARN(regulator->enable_count == 0,
3017  		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
3018  		return -EIO;
3019  
3020  	if (regulator->enable_count == 1) {
3021  	/* disabling last enable_count from this regulator */
3022  		/* are we the last user and permitted to disable ? */
3023  		if (rdev->use_count == 1 &&
3024  		    (rdev->constraints && !rdev->constraints->always_on)) {
3025  
3026  			/* we are last user */
3027  			if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
3028  				ret = _notifier_call_chain(rdev,
3029  							   REGULATOR_EVENT_PRE_DISABLE,
3030  							   NULL);
3031  				if (ret & NOTIFY_STOP_MASK)
3032  					return -EINVAL;
3033  
3034  				ret = _regulator_do_disable(rdev);
3035  				if (ret < 0) {
3036  					rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
3037  					_notifier_call_chain(rdev,
3038  							REGULATOR_EVENT_ABORT_DISABLE,
3039  							NULL);
3040  					return ret;
3041  				}
3042  				_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
3043  						NULL);
3044  			}
3045  
3046  			rdev->use_count = 0;
3047  		} else if (rdev->use_count > 1) {
3048  			rdev->use_count--;
3049  		}
3050  	}
3051  
3052  	if (ret == 0)
3053  		ret = _regulator_handle_consumer_disable(regulator);
3054  
3055  	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
3056  		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3057  
3058  	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
3059  		ret = _regulator_disable(rdev->supply);
3060  
3061  	return ret;
3062  }
3063  
3064  /**
3065   * regulator_disable - disable regulator output
3066   * @regulator: regulator source
3067   *
3068   * Disable the regulator output voltage or current.  Calls to
3069   * regulator_enable() must be balanced with calls to
3070   * regulator_disable().
3071   *
3072   * NOTE: this will only disable the regulator output if no other consumer
3073   * devices have it enabled, the regulator device supports disabling and
3074   * machine constraints permit this operation.
3075   *
3076   * Return: 0 on success or a negative error number on failure.
3077   */
regulator_disable(struct regulator * regulator)3078  int regulator_disable(struct regulator *regulator)
3079  {
3080  	struct regulator_dev *rdev = regulator->rdev;
3081  	struct ww_acquire_ctx ww_ctx;
3082  	int ret;
3083  
3084  	regulator_lock_dependent(rdev, &ww_ctx);
3085  	ret = _regulator_disable(regulator);
3086  	regulator_unlock_dependent(rdev, &ww_ctx);
3087  
3088  	return ret;
3089  }
3090  EXPORT_SYMBOL_GPL(regulator_disable);
3091  
3092  /* locks held by regulator_force_disable() */
_regulator_force_disable(struct regulator_dev * rdev)3093  static int _regulator_force_disable(struct regulator_dev *rdev)
3094  {
3095  	int ret = 0;
3096  
3097  	lockdep_assert_held_once(&rdev->mutex.base);
3098  
3099  	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3100  			REGULATOR_EVENT_PRE_DISABLE, NULL);
3101  	if (ret & NOTIFY_STOP_MASK)
3102  		return -EINVAL;
3103  
3104  	ret = _regulator_do_disable(rdev);
3105  	if (ret < 0) {
3106  		rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3107  		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3108  				REGULATOR_EVENT_ABORT_DISABLE, NULL);
3109  		return ret;
3110  	}
3111  
3112  	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3113  			REGULATOR_EVENT_DISABLE, NULL);
3114  
3115  	return 0;
3116  }
3117  
3118  /**
3119   * regulator_force_disable - force disable regulator output
3120   * @regulator: regulator source
3121   *
3122   * Forcibly disable the regulator output voltage or current.
3123   * NOTE: this *will* disable the regulator output even if other consumer
3124   * devices have it enabled. This should be used for situations when device
3125   * damage will likely occur if the regulator is not disabled (e.g. over temp).
3126   *
3127   * Return: 0 on success or a negative error number on failure.
3128   */
regulator_force_disable(struct regulator * regulator)3129  int regulator_force_disable(struct regulator *regulator)
3130  {
3131  	struct regulator_dev *rdev = regulator->rdev;
3132  	struct ww_acquire_ctx ww_ctx;
3133  	int ret;
3134  
3135  	regulator_lock_dependent(rdev, &ww_ctx);
3136  
3137  	ret = _regulator_force_disable(regulator->rdev);
3138  
3139  	if (rdev->coupling_desc.n_coupled > 1)
3140  		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3141  
3142  	if (regulator->uA_load) {
3143  		regulator->uA_load = 0;
3144  		ret = drms_uA_update(rdev);
3145  	}
3146  
3147  	if (rdev->use_count != 0 && rdev->supply)
3148  		_regulator_disable(rdev->supply);
3149  
3150  	regulator_unlock_dependent(rdev, &ww_ctx);
3151  
3152  	return ret;
3153  }
3154  EXPORT_SYMBOL_GPL(regulator_force_disable);
3155  
regulator_disable_work(struct work_struct * work)3156  static void regulator_disable_work(struct work_struct *work)
3157  {
3158  	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3159  						  disable_work.work);
3160  	struct ww_acquire_ctx ww_ctx;
3161  	int count, i, ret;
3162  	struct regulator *regulator;
3163  	int total_count = 0;
3164  
3165  	regulator_lock_dependent(rdev, &ww_ctx);
3166  
3167  	/*
3168  	 * Workqueue functions queue the new work instance while the previous
3169  	 * work instance is being processed. Cancel the queued work instance
3170  	 * as the work instance under processing does the job of the queued
3171  	 * work instance.
3172  	 */
3173  	cancel_delayed_work(&rdev->disable_work);
3174  
3175  	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3176  		count = regulator->deferred_disables;
3177  
3178  		if (!count)
3179  			continue;
3180  
3181  		total_count += count;
3182  		regulator->deferred_disables = 0;
3183  
3184  		for (i = 0; i < count; i++) {
3185  			ret = _regulator_disable(regulator);
3186  			if (ret != 0)
3187  				rdev_err(rdev, "Deferred disable failed: %pe\n",
3188  					 ERR_PTR(ret));
3189  		}
3190  	}
3191  	WARN_ON(!total_count);
3192  
3193  	if (rdev->coupling_desc.n_coupled > 1)
3194  		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3195  
3196  	regulator_unlock_dependent(rdev, &ww_ctx);
3197  }
3198  
3199  /**
3200   * regulator_disable_deferred - disable regulator output with delay
3201   * @regulator: regulator source
3202   * @ms: milliseconds until the regulator is disabled
3203   *
3204   * Execute regulator_disable() on the regulator after a delay.  This
3205   * is intended for use with devices that require some time to quiesce.
3206   *
3207   * NOTE: this will only disable the regulator output if no other consumer
3208   * devices have it enabled, the regulator device supports disabling and
3209   * machine constraints permit this operation.
3210   *
3211   * Return: 0 on success or a negative error number on failure.
3212   */
regulator_disable_deferred(struct regulator * regulator,int ms)3213  int regulator_disable_deferred(struct regulator *regulator, int ms)
3214  {
3215  	struct regulator_dev *rdev = regulator->rdev;
3216  
3217  	if (!ms)
3218  		return regulator_disable(regulator);
3219  
3220  	regulator_lock(rdev);
3221  	regulator->deferred_disables++;
3222  	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3223  			 msecs_to_jiffies(ms));
3224  	regulator_unlock(rdev);
3225  
3226  	return 0;
3227  }
3228  EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3229  
_regulator_is_enabled(struct regulator_dev * rdev)3230  static int _regulator_is_enabled(struct regulator_dev *rdev)
3231  {
3232  	/* A GPIO control always takes precedence */
3233  	if (rdev->ena_pin)
3234  		return rdev->ena_gpio_state;
3235  
3236  	/* If we don't know then assume that the regulator is always on */
3237  	if (!rdev->desc->ops->is_enabled)
3238  		return 1;
3239  
3240  	return rdev->desc->ops->is_enabled(rdev);
3241  }
3242  
_regulator_list_voltage(struct regulator_dev * rdev,unsigned selector,int lock)3243  static int _regulator_list_voltage(struct regulator_dev *rdev,
3244  				   unsigned selector, int lock)
3245  {
3246  	const struct regulator_ops *ops = rdev->desc->ops;
3247  	int ret;
3248  
3249  	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3250  		return rdev->desc->fixed_uV;
3251  
3252  	if (ops->list_voltage) {
3253  		if (selector >= rdev->desc->n_voltages)
3254  			return -EINVAL;
3255  		if (selector < rdev->desc->linear_min_sel)
3256  			return 0;
3257  		if (lock)
3258  			regulator_lock(rdev);
3259  		ret = ops->list_voltage(rdev, selector);
3260  		if (lock)
3261  			regulator_unlock(rdev);
3262  	} else if (rdev->is_switch && rdev->supply) {
3263  		ret = _regulator_list_voltage(rdev->supply->rdev,
3264  					      selector, lock);
3265  	} else {
3266  		return -EINVAL;
3267  	}
3268  
3269  	if (ret > 0) {
3270  		if (ret < rdev->constraints->min_uV)
3271  			ret = 0;
3272  		else if (ret > rdev->constraints->max_uV)
3273  			ret = 0;
3274  	}
3275  
3276  	return ret;
3277  }
3278  
3279  /**
3280   * regulator_is_enabled - is the regulator output enabled
3281   * @regulator: regulator source
3282   *
3283   * Note that the device backing this regulator handle can have multiple
3284   * users, so it might be enabled even if regulator_enable() was never
3285   * called for this particular source.
3286   *
3287   * Return: Positive if the regulator driver backing the source/client
3288   *	   has requested that the device be enabled, zero if it hasn't,
3289   *	   else a negative error number.
3290   */
regulator_is_enabled(struct regulator * regulator)3291  int regulator_is_enabled(struct regulator *regulator)
3292  {
3293  	int ret;
3294  
3295  	if (regulator->always_on)
3296  		return 1;
3297  
3298  	regulator_lock(regulator->rdev);
3299  	ret = _regulator_is_enabled(regulator->rdev);
3300  	regulator_unlock(regulator->rdev);
3301  
3302  	return ret;
3303  }
3304  EXPORT_SYMBOL_GPL(regulator_is_enabled);
3305  
3306  /**
3307   * regulator_count_voltages - count regulator_list_voltage() selectors
3308   * @regulator: regulator source
3309   *
3310   * Return: Number of selectors for @regulator, or negative error number.
3311   *
3312   * Selectors are numbered starting at zero, and typically correspond to
3313   * bitfields in hardware registers.
3314   */
regulator_count_voltages(struct regulator * regulator)3315  int regulator_count_voltages(struct regulator *regulator)
3316  {
3317  	struct regulator_dev	*rdev = regulator->rdev;
3318  
3319  	if (rdev->desc->n_voltages)
3320  		return rdev->desc->n_voltages;
3321  
3322  	if (!rdev->is_switch || !rdev->supply)
3323  		return -EINVAL;
3324  
3325  	return regulator_count_voltages(rdev->supply);
3326  }
3327  EXPORT_SYMBOL_GPL(regulator_count_voltages);
3328  
3329  /**
3330   * regulator_list_voltage - enumerate supported voltages
3331   * @regulator: regulator source
3332   * @selector: identify voltage to list
3333   * Context: can sleep
3334   *
3335   * Return: Voltage for @selector that can be passed to regulator_set_voltage(),
3336   *	   0 if @selector can't be used on this system, or a negative error
3337   *	   number on failure.
3338   */
regulator_list_voltage(struct regulator * regulator,unsigned selector)3339  int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3340  {
3341  	return _regulator_list_voltage(regulator->rdev, selector, 1);
3342  }
3343  EXPORT_SYMBOL_GPL(regulator_list_voltage);
3344  
3345  /**
3346   * regulator_get_regmap - get the regulator's register map
3347   * @regulator: regulator source
3348   *
3349   * Return: Pointer to the &struct regmap for @regulator, or ERR_PTR()
3350   *	   encoded -%EOPNOTSUPP if @regulator doesn't use regmap.
3351   */
regulator_get_regmap(struct regulator * regulator)3352  struct regmap *regulator_get_regmap(struct regulator *regulator)
3353  {
3354  	struct regmap *map = regulator->rdev->regmap;
3355  
3356  	return map ? map : ERR_PTR(-EOPNOTSUPP);
3357  }
3358  EXPORT_SYMBOL_GPL(regulator_get_regmap);
3359  
3360  /**
3361   * regulator_get_hardware_vsel_register - get the HW voltage selector register
3362   * @regulator: regulator source
3363   * @vsel_reg: voltage selector register, output parameter
3364   * @vsel_mask: mask for voltage selector bitfield, output parameter
3365   *
3366   * Returns the hardware register offset and bitmask used for setting the
3367   * regulator voltage. This might be useful when configuring voltage-scaling
3368   * hardware or firmware that can make I2C requests behind the kernel's back,
3369   * for example.
3370   *
3371   * Return: 0 on success, or -%EOPNOTSUPP if the regulator does not support
3372   *         voltage selectors.
3373   *
3374   * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3375   * and 0 is returned, otherwise a negative error number is returned.
3376   */
regulator_get_hardware_vsel_register(struct regulator * regulator,unsigned * vsel_reg,unsigned * vsel_mask)3377  int regulator_get_hardware_vsel_register(struct regulator *regulator,
3378  					 unsigned *vsel_reg,
3379  					 unsigned *vsel_mask)
3380  {
3381  	struct regulator_dev *rdev = regulator->rdev;
3382  	const struct regulator_ops *ops = rdev->desc->ops;
3383  
3384  	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3385  		return -EOPNOTSUPP;
3386  
3387  	*vsel_reg = rdev->desc->vsel_reg;
3388  	*vsel_mask = rdev->desc->vsel_mask;
3389  
3390  	return 0;
3391  }
3392  EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3393  
3394  /**
3395   * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3396   * @regulator: regulator source
3397   * @selector: identify voltage to list
3398   *
3399   * Converts the selector to a hardware-specific voltage selector that can be
3400   * directly written to the regulator registers. The address of the voltage
3401   * register can be determined by calling @regulator_get_hardware_vsel_register.
3402   *
3403   * Return: 0 on success, -%EINVAL if the selector is outside the supported
3404   *	   range, or -%EOPNOTSUPP if the regulator does not support voltage
3405   *	   selectors.
3406   */
regulator_list_hardware_vsel(struct regulator * regulator,unsigned selector)3407  int regulator_list_hardware_vsel(struct regulator *regulator,
3408  				 unsigned selector)
3409  {
3410  	struct regulator_dev *rdev = regulator->rdev;
3411  	const struct regulator_ops *ops = rdev->desc->ops;
3412  
3413  	if (selector >= rdev->desc->n_voltages)
3414  		return -EINVAL;
3415  	if (selector < rdev->desc->linear_min_sel)
3416  		return 0;
3417  	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3418  		return -EOPNOTSUPP;
3419  
3420  	return selector;
3421  }
3422  EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3423  
3424  /**
3425   * regulator_hardware_enable - access the HW for enable/disable regulator
3426   * @regulator: regulator source
3427   * @enable: true for enable, false for disable
3428   *
3429   * Request that the regulator be enabled/disabled with the regulator output at
3430   * the predefined voltage or current value.
3431   *
3432   * Return: 0 on success or a negative error number on failure.
3433   */
regulator_hardware_enable(struct regulator * regulator,bool enable)3434  int regulator_hardware_enable(struct regulator *regulator, bool enable)
3435  {
3436  	struct regulator_dev *rdev = regulator->rdev;
3437  	const struct regulator_ops *ops = rdev->desc->ops;
3438  	int ret = -EOPNOTSUPP;
3439  
3440  	if (!rdev->exclusive || !ops || !ops->enable || !ops->disable)
3441  		return ret;
3442  
3443  	if (enable)
3444  		ret = ops->enable(rdev);
3445  	else
3446  		ret = ops->disable(rdev);
3447  
3448  	return ret;
3449  }
3450  EXPORT_SYMBOL_GPL(regulator_hardware_enable);
3451  
3452  /**
3453   * regulator_get_linear_step - return the voltage step size between VSEL values
3454   * @regulator: regulator source
3455   *
3456   * Return: The voltage step size between VSEL values for linear regulators,
3457   *	   or 0 if the regulator isn't a linear regulator.
3458   */
regulator_get_linear_step(struct regulator * regulator)3459  unsigned int regulator_get_linear_step(struct regulator *regulator)
3460  {
3461  	struct regulator_dev *rdev = regulator->rdev;
3462  
3463  	return rdev->desc->uV_step;
3464  }
3465  EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3466  
3467  /**
3468   * regulator_is_supported_voltage - check if a voltage range can be supported
3469   *
3470   * @regulator: Regulator to check.
3471   * @min_uV: Minimum required voltage in uV.
3472   * @max_uV: Maximum required voltage in uV.
3473   *
3474   * Return: 1 if the voltage range is supported, 0 if not, or a negative error
3475   *	   number if @regulator's voltage can't be changed and voltage readback
3476   *	   failed.
3477   */
regulator_is_supported_voltage(struct regulator * regulator,int min_uV,int max_uV)3478  int regulator_is_supported_voltage(struct regulator *regulator,
3479  				   int min_uV, int max_uV)
3480  {
3481  	struct regulator_dev *rdev = regulator->rdev;
3482  	int i, voltages, ret;
3483  
3484  	/* If we can't change voltage check the current voltage */
3485  	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3486  		ret = regulator_get_voltage(regulator);
3487  		if (ret >= 0)
3488  			return min_uV <= ret && ret <= max_uV;
3489  		else
3490  			return ret;
3491  	}
3492  
3493  	/* Any voltage within constrains range is fine? */
3494  	if (rdev->desc->continuous_voltage_range)
3495  		return min_uV >= rdev->constraints->min_uV &&
3496  				max_uV <= rdev->constraints->max_uV;
3497  
3498  	ret = regulator_count_voltages(regulator);
3499  	if (ret < 0)
3500  		return 0;
3501  	voltages = ret;
3502  
3503  	for (i = 0; i < voltages; i++) {
3504  		ret = regulator_list_voltage(regulator, i);
3505  
3506  		if (ret >= min_uV && ret <= max_uV)
3507  			return 1;
3508  	}
3509  
3510  	return 0;
3511  }
3512  EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3513  
regulator_map_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)3514  static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3515  				 int max_uV)
3516  {
3517  	const struct regulator_desc *desc = rdev->desc;
3518  
3519  	if (desc->ops->map_voltage)
3520  		return desc->ops->map_voltage(rdev, min_uV, max_uV);
3521  
3522  	if (desc->ops->list_voltage == regulator_list_voltage_linear)
3523  		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3524  
3525  	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3526  		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3527  
3528  	if (desc->ops->list_voltage ==
3529  		regulator_list_voltage_pickable_linear_range)
3530  		return regulator_map_voltage_pickable_linear_range(rdev,
3531  							min_uV, max_uV);
3532  
3533  	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3534  }
3535  
_regulator_call_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV,unsigned * selector)3536  static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3537  				       int min_uV, int max_uV,
3538  				       unsigned *selector)
3539  {
3540  	struct pre_voltage_change_data data;
3541  	int ret;
3542  
3543  	data.old_uV = regulator_get_voltage_rdev(rdev);
3544  	data.min_uV = min_uV;
3545  	data.max_uV = max_uV;
3546  	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3547  				   &data);
3548  	if (ret & NOTIFY_STOP_MASK)
3549  		return -EINVAL;
3550  
3551  	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3552  	if (ret >= 0)
3553  		return ret;
3554  
3555  	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3556  			     (void *)data.old_uV);
3557  
3558  	return ret;
3559  }
3560  
_regulator_call_set_voltage_sel(struct regulator_dev * rdev,int uV,unsigned selector)3561  static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3562  					   int uV, unsigned selector)
3563  {
3564  	struct pre_voltage_change_data data;
3565  	int ret;
3566  
3567  	data.old_uV = regulator_get_voltage_rdev(rdev);
3568  	data.min_uV = uV;
3569  	data.max_uV = uV;
3570  	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3571  				   &data);
3572  	if (ret & NOTIFY_STOP_MASK)
3573  		return -EINVAL;
3574  
3575  	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3576  	if (ret >= 0)
3577  		return ret;
3578  
3579  	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3580  			     (void *)data.old_uV);
3581  
3582  	return ret;
3583  }
3584  
_regulator_set_voltage_sel_step(struct regulator_dev * rdev,int uV,int new_selector)3585  static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3586  					   int uV, int new_selector)
3587  {
3588  	const struct regulator_ops *ops = rdev->desc->ops;
3589  	int diff, old_sel, curr_sel, ret;
3590  
3591  	/* Stepping is only needed if the regulator is enabled. */
3592  	if (!_regulator_is_enabled(rdev))
3593  		goto final_set;
3594  
3595  	if (!ops->get_voltage_sel)
3596  		return -EINVAL;
3597  
3598  	old_sel = ops->get_voltage_sel(rdev);
3599  	if (old_sel < 0)
3600  		return old_sel;
3601  
3602  	diff = new_selector - old_sel;
3603  	if (diff == 0)
3604  		return 0; /* No change needed. */
3605  
3606  	if (diff > 0) {
3607  		/* Stepping up. */
3608  		for (curr_sel = old_sel + rdev->desc->vsel_step;
3609  		     curr_sel < new_selector;
3610  		     curr_sel += rdev->desc->vsel_step) {
3611  			/*
3612  			 * Call the callback directly instead of using
3613  			 * _regulator_call_set_voltage_sel() as we don't
3614  			 * want to notify anyone yet. Same in the branch
3615  			 * below.
3616  			 */
3617  			ret = ops->set_voltage_sel(rdev, curr_sel);
3618  			if (ret)
3619  				goto try_revert;
3620  		}
3621  	} else {
3622  		/* Stepping down. */
3623  		for (curr_sel = old_sel - rdev->desc->vsel_step;
3624  		     curr_sel > new_selector;
3625  		     curr_sel -= rdev->desc->vsel_step) {
3626  			ret = ops->set_voltage_sel(rdev, curr_sel);
3627  			if (ret)
3628  				goto try_revert;
3629  		}
3630  	}
3631  
3632  final_set:
3633  	/* The final selector will trigger the notifiers. */
3634  	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3635  
3636  try_revert:
3637  	/*
3638  	 * At least try to return to the previous voltage if setting a new
3639  	 * one failed.
3640  	 */
3641  	(void)ops->set_voltage_sel(rdev, old_sel);
3642  	return ret;
3643  }
3644  
_regulator_set_voltage_time(struct regulator_dev * rdev,int old_uV,int new_uV)3645  static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3646  				       int old_uV, int new_uV)
3647  {
3648  	unsigned int ramp_delay = 0;
3649  
3650  	if (rdev->constraints->ramp_delay)
3651  		ramp_delay = rdev->constraints->ramp_delay;
3652  	else if (rdev->desc->ramp_delay)
3653  		ramp_delay = rdev->desc->ramp_delay;
3654  	else if (rdev->constraints->settling_time)
3655  		return rdev->constraints->settling_time;
3656  	else if (rdev->constraints->settling_time_up &&
3657  		 (new_uV > old_uV))
3658  		return rdev->constraints->settling_time_up;
3659  	else if (rdev->constraints->settling_time_down &&
3660  		 (new_uV < old_uV))
3661  		return rdev->constraints->settling_time_down;
3662  
3663  	if (ramp_delay == 0)
3664  		return 0;
3665  
3666  	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3667  }
3668  
_regulator_do_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)3669  static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3670  				     int min_uV, int max_uV)
3671  {
3672  	int ret;
3673  	int delay = 0;
3674  	int best_val = 0;
3675  	unsigned int selector;
3676  	int old_selector = -1;
3677  	const struct regulator_ops *ops = rdev->desc->ops;
3678  	int old_uV = regulator_get_voltage_rdev(rdev);
3679  
3680  	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3681  
3682  	min_uV += rdev->constraints->uV_offset;
3683  	max_uV += rdev->constraints->uV_offset;
3684  
3685  	/*
3686  	 * If we can't obtain the old selector there is not enough
3687  	 * info to call set_voltage_time_sel().
3688  	 */
3689  	if (_regulator_is_enabled(rdev) &&
3690  	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
3691  		old_selector = ops->get_voltage_sel(rdev);
3692  		if (old_selector < 0)
3693  			return old_selector;
3694  	}
3695  
3696  	if (ops->set_voltage) {
3697  		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3698  						  &selector);
3699  
3700  		if (ret >= 0) {
3701  			if (ops->list_voltage)
3702  				best_val = ops->list_voltage(rdev,
3703  							     selector);
3704  			else
3705  				best_val = regulator_get_voltage_rdev(rdev);
3706  		}
3707  
3708  	} else if (ops->set_voltage_sel) {
3709  		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3710  		if (ret >= 0) {
3711  			best_val = ops->list_voltage(rdev, ret);
3712  			if (min_uV <= best_val && max_uV >= best_val) {
3713  				selector = ret;
3714  				if (old_selector == selector)
3715  					ret = 0;
3716  				else if (rdev->desc->vsel_step)
3717  					ret = _regulator_set_voltage_sel_step(
3718  						rdev, best_val, selector);
3719  				else
3720  					ret = _regulator_call_set_voltage_sel(
3721  						rdev, best_val, selector);
3722  			} else {
3723  				ret = -EINVAL;
3724  			}
3725  		}
3726  	} else {
3727  		ret = -EINVAL;
3728  	}
3729  
3730  	if (ret)
3731  		goto out;
3732  
3733  	if (ops->set_voltage_time_sel) {
3734  		/*
3735  		 * Call set_voltage_time_sel if successfully obtained
3736  		 * old_selector
3737  		 */
3738  		if (old_selector >= 0 && old_selector != selector)
3739  			delay = ops->set_voltage_time_sel(rdev, old_selector,
3740  							  selector);
3741  	} else {
3742  		if (old_uV != best_val) {
3743  			if (ops->set_voltage_time)
3744  				delay = ops->set_voltage_time(rdev, old_uV,
3745  							      best_val);
3746  			else
3747  				delay = _regulator_set_voltage_time(rdev,
3748  								    old_uV,
3749  								    best_val);
3750  		}
3751  	}
3752  
3753  	if (delay < 0) {
3754  		rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3755  		delay = 0;
3756  	}
3757  
3758  	/* Insert any necessary delays */
3759  	fsleep(delay);
3760  
3761  	if (best_val >= 0) {
3762  		unsigned long data = best_val;
3763  
3764  		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3765  				     (void *)data);
3766  	}
3767  
3768  out:
3769  	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3770  
3771  	return ret;
3772  }
3773  
_regulator_do_set_suspend_voltage(struct regulator_dev * rdev,int min_uV,int max_uV,suspend_state_t state)3774  static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3775  				  int min_uV, int max_uV, suspend_state_t state)
3776  {
3777  	struct regulator_state *rstate;
3778  	int uV, sel;
3779  
3780  	rstate = regulator_get_suspend_state(rdev, state);
3781  	if (rstate == NULL)
3782  		return -EINVAL;
3783  
3784  	if (min_uV < rstate->min_uV)
3785  		min_uV = rstate->min_uV;
3786  	if (max_uV > rstate->max_uV)
3787  		max_uV = rstate->max_uV;
3788  
3789  	sel = regulator_map_voltage(rdev, min_uV, max_uV);
3790  	if (sel < 0)
3791  		return sel;
3792  
3793  	uV = rdev->desc->ops->list_voltage(rdev, sel);
3794  	if (uV >= min_uV && uV <= max_uV)
3795  		rstate->uV = uV;
3796  
3797  	return 0;
3798  }
3799  
regulator_set_voltage_unlocked(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)3800  static int regulator_set_voltage_unlocked(struct regulator *regulator,
3801  					  int min_uV, int max_uV,
3802  					  suspend_state_t state)
3803  {
3804  	struct regulator_dev *rdev = regulator->rdev;
3805  	struct regulator_voltage *voltage = &regulator->voltage[state];
3806  	int ret = 0;
3807  	int old_min_uV, old_max_uV;
3808  	int current_uV;
3809  
3810  	/* If we're setting the same range as last time the change
3811  	 * should be a noop (some cpufreq implementations use the same
3812  	 * voltage for multiple frequencies, for example).
3813  	 */
3814  	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3815  		goto out;
3816  
3817  	/* If we're trying to set a range that overlaps the current voltage,
3818  	 * return successfully even though the regulator does not support
3819  	 * changing the voltage.
3820  	 */
3821  	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3822  		current_uV = regulator_get_voltage_rdev(rdev);
3823  		if (min_uV <= current_uV && current_uV <= max_uV) {
3824  			voltage->min_uV = min_uV;
3825  			voltage->max_uV = max_uV;
3826  			goto out;
3827  		}
3828  	}
3829  
3830  	/* sanity check */
3831  	if (!rdev->desc->ops->set_voltage &&
3832  	    !rdev->desc->ops->set_voltage_sel) {
3833  		ret = -EINVAL;
3834  		goto out;
3835  	}
3836  
3837  	/* constraints check */
3838  	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3839  	if (ret < 0)
3840  		goto out;
3841  
3842  	/* restore original values in case of error */
3843  	old_min_uV = voltage->min_uV;
3844  	old_max_uV = voltage->max_uV;
3845  	voltage->min_uV = min_uV;
3846  	voltage->max_uV = max_uV;
3847  
3848  	/* for not coupled regulators this will just set the voltage */
3849  	ret = regulator_balance_voltage(rdev, state);
3850  	if (ret < 0) {
3851  		voltage->min_uV = old_min_uV;
3852  		voltage->max_uV = old_max_uV;
3853  	}
3854  
3855  out:
3856  	return ret;
3857  }
3858  
regulator_set_voltage_rdev(struct regulator_dev * rdev,int min_uV,int max_uV,suspend_state_t state)3859  int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3860  			       int max_uV, suspend_state_t state)
3861  {
3862  	int best_supply_uV = 0;
3863  	int supply_change_uV = 0;
3864  	int ret;
3865  
3866  	if (rdev->supply &&
3867  	    regulator_ops_is_valid(rdev->supply->rdev,
3868  				   REGULATOR_CHANGE_VOLTAGE) &&
3869  	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3870  					   rdev->desc->ops->get_voltage_sel))) {
3871  		int current_supply_uV;
3872  		int selector;
3873  
3874  		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3875  		if (selector < 0) {
3876  			ret = selector;
3877  			goto out;
3878  		}
3879  
3880  		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3881  		if (best_supply_uV < 0) {
3882  			ret = best_supply_uV;
3883  			goto out;
3884  		}
3885  
3886  		best_supply_uV += rdev->desc->min_dropout_uV;
3887  
3888  		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3889  		if (current_supply_uV < 0) {
3890  			ret = current_supply_uV;
3891  			goto out;
3892  		}
3893  
3894  		supply_change_uV = best_supply_uV - current_supply_uV;
3895  	}
3896  
3897  	if (supply_change_uV > 0) {
3898  		ret = regulator_set_voltage_unlocked(rdev->supply,
3899  				best_supply_uV, INT_MAX, state);
3900  		if (ret) {
3901  			dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3902  				ERR_PTR(ret));
3903  			goto out;
3904  		}
3905  	}
3906  
3907  	if (state == PM_SUSPEND_ON)
3908  		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3909  	else
3910  		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3911  							max_uV, state);
3912  	if (ret < 0)
3913  		goto out;
3914  
3915  	if (supply_change_uV < 0) {
3916  		ret = regulator_set_voltage_unlocked(rdev->supply,
3917  				best_supply_uV, INT_MAX, state);
3918  		if (ret)
3919  			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3920  				 ERR_PTR(ret));
3921  		/* No need to fail here */
3922  		ret = 0;
3923  	}
3924  
3925  out:
3926  	return ret;
3927  }
3928  EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3929  
regulator_limit_voltage_step(struct regulator_dev * rdev,int * current_uV,int * min_uV)3930  static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3931  					int *current_uV, int *min_uV)
3932  {
3933  	struct regulation_constraints *constraints = rdev->constraints;
3934  
3935  	/* Limit voltage change only if necessary */
3936  	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3937  		return 1;
3938  
3939  	if (*current_uV < 0) {
3940  		*current_uV = regulator_get_voltage_rdev(rdev);
3941  
3942  		if (*current_uV < 0)
3943  			return *current_uV;
3944  	}
3945  
3946  	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3947  		return 1;
3948  
3949  	/* Clamp target voltage within the given step */
3950  	if (*current_uV < *min_uV)
3951  		*min_uV = min(*current_uV + constraints->max_uV_step,
3952  			      *min_uV);
3953  	else
3954  		*min_uV = max(*current_uV - constraints->max_uV_step,
3955  			      *min_uV);
3956  
3957  	return 0;
3958  }
3959  
regulator_get_optimal_voltage(struct regulator_dev * rdev,int * current_uV,int * min_uV,int * max_uV,suspend_state_t state,int n_coupled)3960  static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3961  					 int *current_uV,
3962  					 int *min_uV, int *max_uV,
3963  					 suspend_state_t state,
3964  					 int n_coupled)
3965  {
3966  	struct coupling_desc *c_desc = &rdev->coupling_desc;
3967  	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3968  	struct regulation_constraints *constraints = rdev->constraints;
3969  	int desired_min_uV = 0, desired_max_uV = INT_MAX;
3970  	int max_current_uV = 0, min_current_uV = INT_MAX;
3971  	int highest_min_uV = 0, target_uV, possible_uV;
3972  	int i, ret, max_spread;
3973  	bool done;
3974  
3975  	*current_uV = -1;
3976  
3977  	/*
3978  	 * If there are no coupled regulators, simply set the voltage
3979  	 * demanded by consumers.
3980  	 */
3981  	if (n_coupled == 1) {
3982  		/*
3983  		 * If consumers don't provide any demands, set voltage
3984  		 * to min_uV
3985  		 */
3986  		desired_min_uV = constraints->min_uV;
3987  		desired_max_uV = constraints->max_uV;
3988  
3989  		ret = regulator_check_consumers(rdev,
3990  						&desired_min_uV,
3991  						&desired_max_uV, state);
3992  		if (ret < 0)
3993  			return ret;
3994  
3995  		done = true;
3996  
3997  		goto finish;
3998  	}
3999  
4000  	/* Find highest min desired voltage */
4001  	for (i = 0; i < n_coupled; i++) {
4002  		int tmp_min = 0;
4003  		int tmp_max = INT_MAX;
4004  
4005  		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
4006  
4007  		ret = regulator_check_consumers(c_rdevs[i],
4008  						&tmp_min,
4009  						&tmp_max, state);
4010  		if (ret < 0)
4011  			return ret;
4012  
4013  		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
4014  		if (ret < 0)
4015  			return ret;
4016  
4017  		highest_min_uV = max(highest_min_uV, tmp_min);
4018  
4019  		if (i == 0) {
4020  			desired_min_uV = tmp_min;
4021  			desired_max_uV = tmp_max;
4022  		}
4023  	}
4024  
4025  	max_spread = constraints->max_spread[0];
4026  
4027  	/*
4028  	 * Let target_uV be equal to the desired one if possible.
4029  	 * If not, set it to minimum voltage, allowed by other coupled
4030  	 * regulators.
4031  	 */
4032  	target_uV = max(desired_min_uV, highest_min_uV - max_spread);
4033  
4034  	/*
4035  	 * Find min and max voltages, which currently aren't violating
4036  	 * max_spread.
4037  	 */
4038  	for (i = 1; i < n_coupled; i++) {
4039  		int tmp_act;
4040  
4041  		if (!_regulator_is_enabled(c_rdevs[i]))
4042  			continue;
4043  
4044  		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
4045  		if (tmp_act < 0)
4046  			return tmp_act;
4047  
4048  		min_current_uV = min(tmp_act, min_current_uV);
4049  		max_current_uV = max(tmp_act, max_current_uV);
4050  	}
4051  
4052  	/* There aren't any other regulators enabled */
4053  	if (max_current_uV == 0) {
4054  		possible_uV = target_uV;
4055  	} else {
4056  		/*
4057  		 * Correct target voltage, so as it currently isn't
4058  		 * violating max_spread
4059  		 */
4060  		possible_uV = max(target_uV, max_current_uV - max_spread);
4061  		possible_uV = min(possible_uV, min_current_uV + max_spread);
4062  	}
4063  
4064  	if (possible_uV > desired_max_uV)
4065  		return -EINVAL;
4066  
4067  	done = (possible_uV == target_uV);
4068  	desired_min_uV = possible_uV;
4069  
4070  finish:
4071  	/* Apply max_uV_step constraint if necessary */
4072  	if (state == PM_SUSPEND_ON) {
4073  		ret = regulator_limit_voltage_step(rdev, current_uV,
4074  						   &desired_min_uV);
4075  		if (ret < 0)
4076  			return ret;
4077  
4078  		if (ret == 0)
4079  			done = false;
4080  	}
4081  
4082  	/* Set current_uV if wasn't done earlier in the code and if necessary */
4083  	if (n_coupled > 1 && *current_uV == -1) {
4084  
4085  		if (_regulator_is_enabled(rdev)) {
4086  			ret = regulator_get_voltage_rdev(rdev);
4087  			if (ret < 0)
4088  				return ret;
4089  
4090  			*current_uV = ret;
4091  		} else {
4092  			*current_uV = desired_min_uV;
4093  		}
4094  	}
4095  
4096  	*min_uV = desired_min_uV;
4097  	*max_uV = desired_max_uV;
4098  
4099  	return done;
4100  }
4101  
regulator_do_balance_voltage(struct regulator_dev * rdev,suspend_state_t state,bool skip_coupled)4102  int regulator_do_balance_voltage(struct regulator_dev *rdev,
4103  				 suspend_state_t state, bool skip_coupled)
4104  {
4105  	struct regulator_dev **c_rdevs;
4106  	struct regulator_dev *best_rdev;
4107  	struct coupling_desc *c_desc = &rdev->coupling_desc;
4108  	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
4109  	unsigned int delta, best_delta;
4110  	unsigned long c_rdev_done = 0;
4111  	bool best_c_rdev_done;
4112  
4113  	c_rdevs = c_desc->coupled_rdevs;
4114  	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
4115  
4116  	/*
4117  	 * Find the best possible voltage change on each loop. Leave the loop
4118  	 * if there isn't any possible change.
4119  	 */
4120  	do {
4121  		best_c_rdev_done = false;
4122  		best_delta = 0;
4123  		best_min_uV = 0;
4124  		best_max_uV = 0;
4125  		best_c_rdev = 0;
4126  		best_rdev = NULL;
4127  
4128  		/*
4129  		 * Find highest difference between optimal voltage
4130  		 * and current voltage.
4131  		 */
4132  		for (i = 0; i < n_coupled; i++) {
4133  			/*
4134  			 * optimal_uV is the best voltage that can be set for
4135  			 * i-th regulator at the moment without violating
4136  			 * max_spread constraint in order to balance
4137  			 * the coupled voltages.
4138  			 */
4139  			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
4140  
4141  			if (test_bit(i, &c_rdev_done))
4142  				continue;
4143  
4144  			ret = regulator_get_optimal_voltage(c_rdevs[i],
4145  							    &current_uV,
4146  							    &optimal_uV,
4147  							    &optimal_max_uV,
4148  							    state, n_coupled);
4149  			if (ret < 0)
4150  				goto out;
4151  
4152  			delta = abs(optimal_uV - current_uV);
4153  
4154  			if (delta && best_delta <= delta) {
4155  				best_c_rdev_done = ret;
4156  				best_delta = delta;
4157  				best_rdev = c_rdevs[i];
4158  				best_min_uV = optimal_uV;
4159  				best_max_uV = optimal_max_uV;
4160  				best_c_rdev = i;
4161  			}
4162  		}
4163  
4164  		/* Nothing to change, return successfully */
4165  		if (!best_rdev) {
4166  			ret = 0;
4167  			goto out;
4168  		}
4169  
4170  		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4171  						 best_max_uV, state);
4172  
4173  		if (ret < 0)
4174  			goto out;
4175  
4176  		if (best_c_rdev_done)
4177  			set_bit(best_c_rdev, &c_rdev_done);
4178  
4179  	} while (n_coupled > 1);
4180  
4181  out:
4182  	return ret;
4183  }
4184  
regulator_balance_voltage(struct regulator_dev * rdev,suspend_state_t state)4185  static int regulator_balance_voltage(struct regulator_dev *rdev,
4186  				     suspend_state_t state)
4187  {
4188  	struct coupling_desc *c_desc = &rdev->coupling_desc;
4189  	struct regulator_coupler *coupler = c_desc->coupler;
4190  	bool skip_coupled = false;
4191  
4192  	/*
4193  	 * If system is in a state other than PM_SUSPEND_ON, don't check
4194  	 * other coupled regulators.
4195  	 */
4196  	if (state != PM_SUSPEND_ON)
4197  		skip_coupled = true;
4198  
4199  	if (c_desc->n_resolved < c_desc->n_coupled) {
4200  		rdev_err(rdev, "Not all coupled regulators registered\n");
4201  		return -EPERM;
4202  	}
4203  
4204  	/* Invoke custom balancer for customized couplers */
4205  	if (coupler && coupler->balance_voltage)
4206  		return coupler->balance_voltage(coupler, rdev, state);
4207  
4208  	return regulator_do_balance_voltage(rdev, state, skip_coupled);
4209  }
4210  
4211  /**
4212   * regulator_set_voltage - set regulator output voltage
4213   * @regulator: regulator source
4214   * @min_uV: Minimum required voltage in uV
4215   * @max_uV: Maximum acceptable voltage in uV
4216   *
4217   * Sets a voltage regulator to the desired output voltage. This can be set
4218   * during any regulator state. IOW, regulator can be disabled or enabled.
4219   *
4220   * If the regulator is enabled then the voltage will change to the new value
4221   * immediately otherwise if the regulator is disabled the regulator will
4222   * output at the new voltage when enabled.
4223   *
4224   * NOTE: If the regulator is shared between several devices then the lowest
4225   * request voltage that meets the system constraints will be used.
4226   * Regulator system constraints must be set for this regulator before
4227   * calling this function otherwise this call will fail.
4228   *
4229   * Return: 0 on success or a negative error number on failure.
4230   */
regulator_set_voltage(struct regulator * regulator,int min_uV,int max_uV)4231  int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4232  {
4233  	struct ww_acquire_ctx ww_ctx;
4234  	int ret;
4235  
4236  	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4237  
4238  	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4239  					     PM_SUSPEND_ON);
4240  
4241  	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4242  
4243  	return ret;
4244  }
4245  EXPORT_SYMBOL_GPL(regulator_set_voltage);
4246  
regulator_suspend_toggle(struct regulator_dev * rdev,suspend_state_t state,bool en)4247  static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4248  					   suspend_state_t state, bool en)
4249  {
4250  	struct regulator_state *rstate;
4251  
4252  	rstate = regulator_get_suspend_state(rdev, state);
4253  	if (rstate == NULL)
4254  		return -EINVAL;
4255  
4256  	if (!rstate->changeable)
4257  		return -EPERM;
4258  
4259  	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4260  
4261  	return 0;
4262  }
4263  
regulator_suspend_enable(struct regulator_dev * rdev,suspend_state_t state)4264  int regulator_suspend_enable(struct regulator_dev *rdev,
4265  				    suspend_state_t state)
4266  {
4267  	return regulator_suspend_toggle(rdev, state, true);
4268  }
4269  EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4270  
regulator_suspend_disable(struct regulator_dev * rdev,suspend_state_t state)4271  int regulator_suspend_disable(struct regulator_dev *rdev,
4272  				     suspend_state_t state)
4273  {
4274  	struct regulator *regulator;
4275  	struct regulator_voltage *voltage;
4276  
4277  	/*
4278  	 * if any consumer wants this regulator device keeping on in
4279  	 * suspend states, don't set it as disabled.
4280  	 */
4281  	list_for_each_entry(regulator, &rdev->consumer_list, list) {
4282  		voltage = &regulator->voltage[state];
4283  		if (voltage->min_uV || voltage->max_uV)
4284  			return 0;
4285  	}
4286  
4287  	return regulator_suspend_toggle(rdev, state, false);
4288  }
4289  EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4290  
_regulator_set_suspend_voltage(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)4291  static int _regulator_set_suspend_voltage(struct regulator *regulator,
4292  					  int min_uV, int max_uV,
4293  					  suspend_state_t state)
4294  {
4295  	struct regulator_dev *rdev = regulator->rdev;
4296  	struct regulator_state *rstate;
4297  
4298  	rstate = regulator_get_suspend_state(rdev, state);
4299  	if (rstate == NULL)
4300  		return -EINVAL;
4301  
4302  	if (rstate->min_uV == rstate->max_uV) {
4303  		rdev_err(rdev, "The suspend voltage can't be changed!\n");
4304  		return -EPERM;
4305  	}
4306  
4307  	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4308  }
4309  
regulator_set_suspend_voltage(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)4310  int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4311  				  int max_uV, suspend_state_t state)
4312  {
4313  	struct ww_acquire_ctx ww_ctx;
4314  	int ret;
4315  
4316  	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4317  	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4318  		return -EINVAL;
4319  
4320  	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4321  
4322  	ret = _regulator_set_suspend_voltage(regulator, min_uV,
4323  					     max_uV, state);
4324  
4325  	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4326  
4327  	return ret;
4328  }
4329  EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4330  
4331  /**
4332   * regulator_set_voltage_time - get raise/fall time
4333   * @regulator: regulator source
4334   * @old_uV: starting voltage in microvolts
4335   * @new_uV: target voltage in microvolts
4336   *
4337   * Provided with the starting and ending voltage, this function attempts to
4338   * calculate the time in microseconds required to rise or fall to this new
4339   * voltage.
4340   *
4341   * Return: ramp time in microseconds, or a negative error number if calculation failed.
4342   */
regulator_set_voltage_time(struct regulator * regulator,int old_uV,int new_uV)4343  int regulator_set_voltage_time(struct regulator *regulator,
4344  			       int old_uV, int new_uV)
4345  {
4346  	struct regulator_dev *rdev = regulator->rdev;
4347  	const struct regulator_ops *ops = rdev->desc->ops;
4348  	int old_sel = -1;
4349  	int new_sel = -1;
4350  	int voltage;
4351  	int i;
4352  
4353  	if (ops->set_voltage_time)
4354  		return ops->set_voltage_time(rdev, old_uV, new_uV);
4355  	else if (!ops->set_voltage_time_sel)
4356  		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4357  
4358  	/* Currently requires operations to do this */
4359  	if (!ops->list_voltage || !rdev->desc->n_voltages)
4360  		return -EINVAL;
4361  
4362  	for (i = 0; i < rdev->desc->n_voltages; i++) {
4363  		/* We only look for exact voltage matches here */
4364  		if (i < rdev->desc->linear_min_sel)
4365  			continue;
4366  
4367  		if (old_sel >= 0 && new_sel >= 0)
4368  			break;
4369  
4370  		voltage = regulator_list_voltage(regulator, i);
4371  		if (voltage < 0)
4372  			return -EINVAL;
4373  		if (voltage == 0)
4374  			continue;
4375  		if (voltage == old_uV)
4376  			old_sel = i;
4377  		if (voltage == new_uV)
4378  			new_sel = i;
4379  	}
4380  
4381  	if (old_sel < 0 || new_sel < 0)
4382  		return -EINVAL;
4383  
4384  	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4385  }
4386  EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4387  
4388  /**
4389   * regulator_set_voltage_time_sel - get raise/fall time
4390   * @rdev: regulator source device
4391   * @old_selector: selector for starting voltage
4392   * @new_selector: selector for target voltage
4393   *
4394   * Provided with the starting and target voltage selectors, this function
4395   * returns time in microseconds required to rise or fall to this new voltage
4396   *
4397   * Drivers providing ramp_delay in regulation_constraints can use this as their
4398   * set_voltage_time_sel() operation.
4399   *
4400   * Return: ramp time in microseconds, or a negative error number if calculation failed.
4401   */
regulator_set_voltage_time_sel(struct regulator_dev * rdev,unsigned int old_selector,unsigned int new_selector)4402  int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4403  				   unsigned int old_selector,
4404  				   unsigned int new_selector)
4405  {
4406  	int old_volt, new_volt;
4407  
4408  	/* sanity check */
4409  	if (!rdev->desc->ops->list_voltage)
4410  		return -EINVAL;
4411  
4412  	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4413  	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4414  
4415  	if (rdev->desc->ops->set_voltage_time)
4416  		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4417  							 new_volt);
4418  	else
4419  		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4420  }
4421  EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4422  
regulator_sync_voltage_rdev(struct regulator_dev * rdev)4423  int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4424  {
4425  	int ret;
4426  
4427  	regulator_lock(rdev);
4428  
4429  	if (!rdev->desc->ops->set_voltage &&
4430  	    !rdev->desc->ops->set_voltage_sel) {
4431  		ret = -EINVAL;
4432  		goto out;
4433  	}
4434  
4435  	/* balance only, if regulator is coupled */
4436  	if (rdev->coupling_desc.n_coupled > 1)
4437  		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4438  	else
4439  		ret = -EOPNOTSUPP;
4440  
4441  out:
4442  	regulator_unlock(rdev);
4443  	return ret;
4444  }
4445  
4446  /**
4447   * regulator_sync_voltage - re-apply last regulator output voltage
4448   * @regulator: regulator source
4449   *
4450   * Re-apply the last configured voltage.  This is intended to be used
4451   * where some external control source the consumer is cooperating with
4452   * has caused the configured voltage to change.
4453   *
4454   * Return: 0 on success or a negative error number on failure.
4455   */
regulator_sync_voltage(struct regulator * regulator)4456  int regulator_sync_voltage(struct regulator *regulator)
4457  {
4458  	struct regulator_dev *rdev = regulator->rdev;
4459  	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4460  	int ret, min_uV, max_uV;
4461  
4462  	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4463  		return 0;
4464  
4465  	regulator_lock(rdev);
4466  
4467  	if (!rdev->desc->ops->set_voltage &&
4468  	    !rdev->desc->ops->set_voltage_sel) {
4469  		ret = -EINVAL;
4470  		goto out;
4471  	}
4472  
4473  	/* This is only going to work if we've had a voltage configured. */
4474  	if (!voltage->min_uV && !voltage->max_uV) {
4475  		ret = -EINVAL;
4476  		goto out;
4477  	}
4478  
4479  	min_uV = voltage->min_uV;
4480  	max_uV = voltage->max_uV;
4481  
4482  	/* This should be a paranoia check... */
4483  	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4484  	if (ret < 0)
4485  		goto out;
4486  
4487  	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4488  	if (ret < 0)
4489  		goto out;
4490  
4491  	/* balance only, if regulator is coupled */
4492  	if (rdev->coupling_desc.n_coupled > 1)
4493  		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4494  	else
4495  		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4496  
4497  out:
4498  	regulator_unlock(rdev);
4499  	return ret;
4500  }
4501  EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4502  
regulator_get_voltage_rdev(struct regulator_dev * rdev)4503  int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4504  {
4505  	int sel, ret;
4506  	bool bypassed;
4507  
4508  	if (rdev->desc->ops->get_bypass) {
4509  		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4510  		if (ret < 0)
4511  			return ret;
4512  		if (bypassed) {
4513  			/* if bypassed the regulator must have a supply */
4514  			if (!rdev->supply) {
4515  				rdev_err(rdev,
4516  					 "bypassed regulator has no supply!\n");
4517  				return -EPROBE_DEFER;
4518  			}
4519  
4520  			return regulator_get_voltage_rdev(rdev->supply->rdev);
4521  		}
4522  	}
4523  
4524  	if (rdev->desc->ops->get_voltage_sel) {
4525  		sel = rdev->desc->ops->get_voltage_sel(rdev);
4526  		if (sel < 0)
4527  			return sel;
4528  		ret = rdev->desc->ops->list_voltage(rdev, sel);
4529  	} else if (rdev->desc->ops->get_voltage) {
4530  		ret = rdev->desc->ops->get_voltage(rdev);
4531  	} else if (rdev->desc->ops->list_voltage) {
4532  		ret = rdev->desc->ops->list_voltage(rdev, 0);
4533  	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4534  		ret = rdev->desc->fixed_uV;
4535  	} else if (rdev->supply) {
4536  		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4537  	} else if (rdev->supply_name) {
4538  		return -EPROBE_DEFER;
4539  	} else {
4540  		return -EINVAL;
4541  	}
4542  
4543  	if (ret < 0)
4544  		return ret;
4545  	return ret - rdev->constraints->uV_offset;
4546  }
4547  EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4548  
4549  /**
4550   * regulator_get_voltage - get regulator output voltage
4551   * @regulator: regulator source
4552   *
4553   * Return: Current regulator voltage in uV, or a negative error number on failure.
4554   *
4555   * NOTE: If the regulator is disabled it will return the voltage value. This
4556   * function should not be used to determine regulator state.
4557   */
regulator_get_voltage(struct regulator * regulator)4558  int regulator_get_voltage(struct regulator *regulator)
4559  {
4560  	struct ww_acquire_ctx ww_ctx;
4561  	int ret;
4562  
4563  	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4564  	ret = regulator_get_voltage_rdev(regulator->rdev);
4565  	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4566  
4567  	return ret;
4568  }
4569  EXPORT_SYMBOL_GPL(regulator_get_voltage);
4570  
4571  /**
4572   * regulator_set_current_limit - set regulator output current limit
4573   * @regulator: regulator source
4574   * @min_uA: Minimum supported current in uA
4575   * @max_uA: Maximum supported current in uA
4576   *
4577   * Sets current sink to the desired output current. This can be set during
4578   * any regulator state. IOW, regulator can be disabled or enabled.
4579   *
4580   * If the regulator is enabled then the current will change to the new value
4581   * immediately otherwise if the regulator is disabled the regulator will
4582   * output at the new current when enabled.
4583   *
4584   * NOTE: Regulator system constraints must be set for this regulator before
4585   * calling this function otherwise this call will fail.
4586   *
4587   * Return: 0 on success or a negative error number on failure.
4588   */
regulator_set_current_limit(struct regulator * regulator,int min_uA,int max_uA)4589  int regulator_set_current_limit(struct regulator *regulator,
4590  			       int min_uA, int max_uA)
4591  {
4592  	struct regulator_dev *rdev = regulator->rdev;
4593  	int ret;
4594  
4595  	regulator_lock(rdev);
4596  
4597  	/* sanity check */
4598  	if (!rdev->desc->ops->set_current_limit) {
4599  		ret = -EINVAL;
4600  		goto out;
4601  	}
4602  
4603  	/* constraints check */
4604  	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4605  	if (ret < 0)
4606  		goto out;
4607  
4608  	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4609  out:
4610  	regulator_unlock(rdev);
4611  	return ret;
4612  }
4613  EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4614  
_regulator_get_current_limit_unlocked(struct regulator_dev * rdev)4615  static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4616  {
4617  	/* sanity check */
4618  	if (!rdev->desc->ops->get_current_limit)
4619  		return -EINVAL;
4620  
4621  	return rdev->desc->ops->get_current_limit(rdev);
4622  }
4623  
_regulator_get_current_limit(struct regulator_dev * rdev)4624  static int _regulator_get_current_limit(struct regulator_dev *rdev)
4625  {
4626  	int ret;
4627  
4628  	regulator_lock(rdev);
4629  	ret = _regulator_get_current_limit_unlocked(rdev);
4630  	regulator_unlock(rdev);
4631  
4632  	return ret;
4633  }
4634  
4635  /**
4636   * regulator_get_current_limit - get regulator output current
4637   * @regulator: regulator source
4638   *
4639   * Return: Current supplied by the specified current sink in uA,
4640   *	   or a negative error number on failure.
4641   *
4642   * NOTE: If the regulator is disabled it will return the current value. This
4643   * function should not be used to determine regulator state.
4644   */
regulator_get_current_limit(struct regulator * regulator)4645  int regulator_get_current_limit(struct regulator *regulator)
4646  {
4647  	return _regulator_get_current_limit(regulator->rdev);
4648  }
4649  EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4650  
4651  /**
4652   * regulator_get_unclaimed_power_budget - get regulator unclaimed power budget
4653   * @regulator: regulator source
4654   *
4655   * Return: Unclaimed power budget of the regulator in mW.
4656   */
regulator_get_unclaimed_power_budget(struct regulator * regulator)4657  int regulator_get_unclaimed_power_budget(struct regulator *regulator)
4658  {
4659  	return regulator->rdev->constraints->pw_budget_mW -
4660  	       regulator->rdev->pw_requested_mW;
4661  }
4662  EXPORT_SYMBOL_GPL(regulator_get_unclaimed_power_budget);
4663  
4664  /**
4665   * regulator_request_power_budget - request power budget on a regulator
4666   * @regulator: regulator source
4667   * @pw_req: Power requested
4668   *
4669   * Return: 0 on success or a negative error number on failure.
4670   */
regulator_request_power_budget(struct regulator * regulator,unsigned int pw_req)4671  int regulator_request_power_budget(struct regulator *regulator,
4672  				   unsigned int pw_req)
4673  {
4674  	struct regulator_dev *rdev = regulator->rdev;
4675  	int ret = 0, pw_tot_req;
4676  
4677  	regulator_lock(rdev);
4678  	if (rdev->supply) {
4679  		ret = regulator_request_power_budget(rdev->supply, pw_req);
4680  		if (ret < 0)
4681  			goto out;
4682  	}
4683  
4684  	pw_tot_req = rdev->pw_requested_mW + pw_req;
4685  	if (pw_tot_req > rdev->constraints->pw_budget_mW) {
4686  		rdev_warn(rdev, "power requested %d mW out of budget %d mW",
4687  			  pw_req,
4688  			  rdev->constraints->pw_budget_mW - rdev->pw_requested_mW);
4689  		regulator_notifier_call_chain(rdev,
4690  					      REGULATOR_EVENT_OVER_CURRENT_WARN,
4691  					      NULL);
4692  		ret = -ERANGE;
4693  		goto out;
4694  	}
4695  
4696  	rdev->pw_requested_mW = pw_tot_req;
4697  out:
4698  	regulator_unlock(rdev);
4699  	return ret;
4700  }
4701  EXPORT_SYMBOL_GPL(regulator_request_power_budget);
4702  
4703  /**
4704   * regulator_free_power_budget - free power budget on a regulator
4705   * @regulator: regulator source
4706   * @pw: Power to be released.
4707   *
4708   * Return: Power budget of the regulator in mW.
4709   */
regulator_free_power_budget(struct regulator * regulator,unsigned int pw)4710  void regulator_free_power_budget(struct regulator *regulator,
4711  				 unsigned int pw)
4712  {
4713  	struct regulator_dev *rdev = regulator->rdev;
4714  	int pw_tot_req;
4715  
4716  	regulator_lock(rdev);
4717  	if (rdev->supply)
4718  		regulator_free_power_budget(rdev->supply, pw);
4719  
4720  	pw_tot_req = rdev->pw_requested_mW - pw;
4721  	if (pw_tot_req >= 0)
4722  		rdev->pw_requested_mW = pw_tot_req;
4723  	else
4724  		rdev_warn(rdev,
4725  			  "too much power freed %d mW (already requested %d mW)",
4726  			  pw, rdev->pw_requested_mW);
4727  
4728  	regulator_unlock(rdev);
4729  }
4730  EXPORT_SYMBOL_GPL(regulator_free_power_budget);
4731  
4732  /**
4733   * regulator_set_mode - set regulator operating mode
4734   * @regulator: regulator source
4735   * @mode: operating mode - one of the REGULATOR_MODE constants
4736   *
4737   * Set regulator operating mode to increase regulator efficiency or improve
4738   * regulation performance.
4739   *
4740   * NOTE: Regulator system constraints must be set for this regulator before
4741   * calling this function otherwise this call will fail.
4742   *
4743   * Return: 0 on success or a negative error number on failure.
4744   */
regulator_set_mode(struct regulator * regulator,unsigned int mode)4745  int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4746  {
4747  	struct regulator_dev *rdev = regulator->rdev;
4748  	int ret;
4749  	int regulator_curr_mode;
4750  
4751  	regulator_lock(rdev);
4752  
4753  	/* sanity check */
4754  	if (!rdev->desc->ops->set_mode) {
4755  		ret = -EINVAL;
4756  		goto out;
4757  	}
4758  
4759  	/* return if the same mode is requested */
4760  	if (rdev->desc->ops->get_mode) {
4761  		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4762  		if (regulator_curr_mode == mode) {
4763  			ret = 0;
4764  			goto out;
4765  		}
4766  	}
4767  
4768  	/* constraints check */
4769  	ret = regulator_mode_constrain(rdev, &mode);
4770  	if (ret < 0)
4771  		goto out;
4772  
4773  	ret = rdev->desc->ops->set_mode(rdev, mode);
4774  out:
4775  	regulator_unlock(rdev);
4776  	return ret;
4777  }
4778  EXPORT_SYMBOL_GPL(regulator_set_mode);
4779  
_regulator_get_mode_unlocked(struct regulator_dev * rdev)4780  static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4781  {
4782  	/* sanity check */
4783  	if (!rdev->desc->ops->get_mode)
4784  		return -EINVAL;
4785  
4786  	return rdev->desc->ops->get_mode(rdev);
4787  }
4788  
_regulator_get_mode(struct regulator_dev * rdev)4789  static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4790  {
4791  	int ret;
4792  
4793  	regulator_lock(rdev);
4794  	ret = _regulator_get_mode_unlocked(rdev);
4795  	regulator_unlock(rdev);
4796  
4797  	return ret;
4798  }
4799  
4800  /**
4801   * regulator_get_mode - get regulator operating mode
4802   * @regulator: regulator source
4803   *
4804   * Get the current regulator operating mode.
4805   *
4806   * Return: Current operating mode as %REGULATOR_MODE_* values,
4807   *	   or a negative error number on failure.
4808   */
regulator_get_mode(struct regulator * regulator)4809  unsigned int regulator_get_mode(struct regulator *regulator)
4810  {
4811  	return _regulator_get_mode(regulator->rdev);
4812  }
4813  EXPORT_SYMBOL_GPL(regulator_get_mode);
4814  
rdev_get_cached_err_flags(struct regulator_dev * rdev)4815  static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4816  {
4817  	int ret = 0;
4818  
4819  	if (rdev->use_cached_err) {
4820  		spin_lock(&rdev->err_lock);
4821  		ret = rdev->cached_err;
4822  		spin_unlock(&rdev->err_lock);
4823  	}
4824  	return ret;
4825  }
4826  
_regulator_get_error_flags(struct regulator_dev * rdev,unsigned int * flags)4827  static int _regulator_get_error_flags(struct regulator_dev *rdev,
4828  					unsigned int *flags)
4829  {
4830  	int cached_flags, ret = 0;
4831  
4832  	regulator_lock(rdev);
4833  
4834  	cached_flags = rdev_get_cached_err_flags(rdev);
4835  
4836  	if (rdev->desc->ops->get_error_flags)
4837  		ret = rdev->desc->ops->get_error_flags(rdev, flags);
4838  	else if (!rdev->use_cached_err)
4839  		ret = -EINVAL;
4840  
4841  	*flags |= cached_flags;
4842  
4843  	regulator_unlock(rdev);
4844  
4845  	return ret;
4846  }
4847  
4848  /**
4849   * regulator_get_error_flags - get regulator error information
4850   * @regulator: regulator source
4851   * @flags: pointer to store error flags
4852   *
4853   * Get the current regulator error information.
4854   *
4855   * Return: 0 on success or a negative error number on failure.
4856   */
regulator_get_error_flags(struct regulator * regulator,unsigned int * flags)4857  int regulator_get_error_flags(struct regulator *regulator,
4858  				unsigned int *flags)
4859  {
4860  	return _regulator_get_error_flags(regulator->rdev, flags);
4861  }
4862  EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4863  
4864  /**
4865   * regulator_set_load - set regulator load
4866   * @regulator: regulator source
4867   * @uA_load: load current
4868   *
4869   * Notifies the regulator core of a new device load. This is then used by
4870   * DRMS (if enabled by constraints) to set the most efficient regulator
4871   * operating mode for the new regulator loading.
4872   *
4873   * Consumer devices notify their supply regulator of the maximum power
4874   * they will require (can be taken from device datasheet in the power
4875   * consumption tables) when they change operational status and hence power
4876   * state. Examples of operational state changes that can affect power
4877   * consumption are :-
4878   *
4879   *    o Device is opened / closed.
4880   *    o Device I/O is about to begin or has just finished.
4881   *    o Device is idling in between work.
4882   *
4883   * This information is also exported via sysfs to userspace.
4884   *
4885   * DRMS will sum the total requested load on the regulator and change
4886   * to the most efficient operating mode if platform constraints allow.
4887   *
4888   * NOTE: when a regulator consumer requests to have a regulator
4889   * disabled then any load that consumer requested no longer counts
4890   * toward the total requested load.  If the regulator is re-enabled
4891   * then the previously requested load will start counting again.
4892   *
4893   * If a regulator is an always-on regulator then an individual consumer's
4894   * load will still be removed if that consumer is fully disabled.
4895   *
4896   * Return: 0 on success or a negative error number on failure.
4897   */
regulator_set_load(struct regulator * regulator,int uA_load)4898  int regulator_set_load(struct regulator *regulator, int uA_load)
4899  {
4900  	struct regulator_dev *rdev = regulator->rdev;
4901  	int old_uA_load;
4902  	int ret = 0;
4903  
4904  	regulator_lock(rdev);
4905  	old_uA_load = regulator->uA_load;
4906  	regulator->uA_load = uA_load;
4907  	if (regulator->enable_count && old_uA_load != uA_load) {
4908  		ret = drms_uA_update(rdev);
4909  		if (ret < 0)
4910  			regulator->uA_load = old_uA_load;
4911  	}
4912  	regulator_unlock(rdev);
4913  
4914  	return ret;
4915  }
4916  EXPORT_SYMBOL_GPL(regulator_set_load);
4917  
4918  /**
4919   * regulator_allow_bypass - allow the regulator to go into bypass mode
4920   *
4921   * @regulator: Regulator to configure
4922   * @enable: enable or disable bypass mode
4923   *
4924   * Allow the regulator to go into bypass mode if all other consumers
4925   * for the regulator also enable bypass mode and the machine
4926   * constraints allow this.  Bypass mode means that the regulator is
4927   * simply passing the input directly to the output with no regulation.
4928   *
4929   * Return: 0 on success or if changing bypass is not possible, or
4930   *	   a negative error number on failure.
4931   */
regulator_allow_bypass(struct regulator * regulator,bool enable)4932  int regulator_allow_bypass(struct regulator *regulator, bool enable)
4933  {
4934  	struct regulator_dev *rdev = regulator->rdev;
4935  	const char *name = rdev_get_name(rdev);
4936  	int ret = 0;
4937  
4938  	if (!rdev->desc->ops->set_bypass)
4939  		return 0;
4940  
4941  	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4942  		return 0;
4943  
4944  	regulator_lock(rdev);
4945  
4946  	if (enable && !regulator->bypass) {
4947  		rdev->bypass_count++;
4948  
4949  		if (rdev->bypass_count == rdev->open_count) {
4950  			trace_regulator_bypass_enable(name);
4951  
4952  			ret = rdev->desc->ops->set_bypass(rdev, enable);
4953  			if (ret != 0)
4954  				rdev->bypass_count--;
4955  			else
4956  				trace_regulator_bypass_enable_complete(name);
4957  		}
4958  
4959  	} else if (!enable && regulator->bypass) {
4960  		rdev->bypass_count--;
4961  
4962  		if (rdev->bypass_count != rdev->open_count) {
4963  			trace_regulator_bypass_disable(name);
4964  
4965  			ret = rdev->desc->ops->set_bypass(rdev, enable);
4966  			if (ret != 0)
4967  				rdev->bypass_count++;
4968  			else
4969  				trace_regulator_bypass_disable_complete(name);
4970  		}
4971  	}
4972  
4973  	if (ret == 0)
4974  		regulator->bypass = enable;
4975  
4976  	regulator_unlock(rdev);
4977  
4978  	return ret;
4979  }
4980  EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4981  
4982  /**
4983   * regulator_register_notifier - register regulator event notifier
4984   * @regulator: regulator source
4985   * @nb: notifier block
4986   *
4987   * Register notifier block to receive regulator events.
4988   *
4989   * Return: 0 on success or a negative error number on failure.
4990   */
regulator_register_notifier(struct regulator * regulator,struct notifier_block * nb)4991  int regulator_register_notifier(struct regulator *regulator,
4992  			      struct notifier_block *nb)
4993  {
4994  	return blocking_notifier_chain_register(&regulator->rdev->notifier,
4995  						nb);
4996  }
4997  EXPORT_SYMBOL_GPL(regulator_register_notifier);
4998  
4999  /**
5000   * regulator_unregister_notifier - unregister regulator event notifier
5001   * @regulator: regulator source
5002   * @nb: notifier block
5003   *
5004   * Unregister regulator event notifier block.
5005   *
5006   * Return: 0 on success or a negative error number on failure.
5007   */
regulator_unregister_notifier(struct regulator * regulator,struct notifier_block * nb)5008  int regulator_unregister_notifier(struct regulator *regulator,
5009  				struct notifier_block *nb)
5010  {
5011  	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
5012  						  nb);
5013  }
5014  EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
5015  
5016  /* notify regulator consumers and downstream regulator consumers.
5017   * Note mutex must be held by caller.
5018   */
_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)5019  static int _notifier_call_chain(struct regulator_dev *rdev,
5020  				  unsigned long event, void *data)
5021  {
5022  	/* call rdev chain first */
5023  	int ret =  blocking_notifier_call_chain(&rdev->notifier, event, data);
5024  
5025  	if (IS_REACHABLE(CONFIG_REGULATOR_NETLINK_EVENTS)) {
5026  		struct device *parent = rdev->dev.parent;
5027  		const char *rname = rdev_get_name(rdev);
5028  		char name[32];
5029  
5030  		/* Avoid duplicate debugfs directory names */
5031  		if (parent && rname == rdev->desc->name) {
5032  			snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5033  				 rname);
5034  			rname = name;
5035  		}
5036  		reg_generate_netlink_event(rname, event);
5037  	}
5038  
5039  	return ret;
5040  }
5041  
_regulator_bulk_get(struct device * dev,int num_consumers,struct regulator_bulk_data * consumers,enum regulator_get_type get_type)5042  int _regulator_bulk_get(struct device *dev, int num_consumers,
5043  			struct regulator_bulk_data *consumers, enum regulator_get_type get_type)
5044  {
5045  	int i;
5046  	int ret;
5047  
5048  	for (i = 0; i < num_consumers; i++)
5049  		consumers[i].consumer = NULL;
5050  
5051  	for (i = 0; i < num_consumers; i++) {
5052  		consumers[i].consumer = _regulator_get(dev,
5053  						       consumers[i].supply, get_type);
5054  		if (IS_ERR(consumers[i].consumer)) {
5055  			ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
5056  					    "Failed to get supply '%s'\n",
5057  					    consumers[i].supply);
5058  			consumers[i].consumer = NULL;
5059  			goto err;
5060  		}
5061  
5062  		if (consumers[i].init_load_uA > 0) {
5063  			ret = regulator_set_load(consumers[i].consumer,
5064  						 consumers[i].init_load_uA);
5065  			if (ret) {
5066  				i++;
5067  				goto err;
5068  			}
5069  		}
5070  	}
5071  
5072  	return 0;
5073  
5074  err:
5075  	while (--i >= 0)
5076  		regulator_put(consumers[i].consumer);
5077  
5078  	return ret;
5079  }
5080  
5081  /**
5082   * regulator_bulk_get - get multiple regulator consumers
5083   *
5084   * @dev:           Device to supply
5085   * @num_consumers: Number of consumers to register
5086   * @consumers:     Configuration of consumers; clients are stored here.
5087   *
5088   * This helper function allows drivers to get several regulator
5089   * consumers in one operation.  If any of the regulators cannot be
5090   * acquired then any regulators that were allocated will be freed
5091   * before returning to the caller.
5092   *
5093   * Return: 0 on success or a negative error number on failure.
5094   */
regulator_bulk_get(struct device * dev,int num_consumers,struct regulator_bulk_data * consumers)5095  int regulator_bulk_get(struct device *dev, int num_consumers,
5096  		       struct regulator_bulk_data *consumers)
5097  {
5098  	return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET);
5099  }
5100  EXPORT_SYMBOL_GPL(regulator_bulk_get);
5101  
regulator_bulk_enable_async(void * data,async_cookie_t cookie)5102  static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
5103  {
5104  	struct regulator_bulk_data *bulk = data;
5105  
5106  	bulk->ret = regulator_enable(bulk->consumer);
5107  }
5108  
5109  /**
5110   * regulator_bulk_enable - enable multiple regulator consumers
5111   *
5112   * @num_consumers: Number of consumers
5113   * @consumers:     Consumer data; clients are stored here.
5114   *
5115   * This convenience API allows consumers to enable multiple regulator
5116   * clients in a single API call.  If any consumers cannot be enabled
5117   * then any others that were enabled will be disabled again prior to
5118   * return.
5119   *
5120   * Return: 0 on success or a negative error number on failure.
5121   */
regulator_bulk_enable(int num_consumers,struct regulator_bulk_data * consumers)5122  int regulator_bulk_enable(int num_consumers,
5123  			  struct regulator_bulk_data *consumers)
5124  {
5125  	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
5126  	int i;
5127  	int ret = 0;
5128  
5129  	for (i = 0; i < num_consumers; i++) {
5130  		async_schedule_domain(regulator_bulk_enable_async,
5131  				      &consumers[i], &async_domain);
5132  	}
5133  
5134  	async_synchronize_full_domain(&async_domain);
5135  
5136  	/* If any consumer failed we need to unwind any that succeeded */
5137  	for (i = 0; i < num_consumers; i++) {
5138  		if (consumers[i].ret != 0) {
5139  			ret = consumers[i].ret;
5140  			goto err;
5141  		}
5142  	}
5143  
5144  	return 0;
5145  
5146  err:
5147  	for (i = 0; i < num_consumers; i++) {
5148  		if (consumers[i].ret < 0)
5149  			pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
5150  			       ERR_PTR(consumers[i].ret));
5151  		else
5152  			regulator_disable(consumers[i].consumer);
5153  	}
5154  
5155  	return ret;
5156  }
5157  EXPORT_SYMBOL_GPL(regulator_bulk_enable);
5158  
5159  /**
5160   * regulator_bulk_disable - disable multiple regulator consumers
5161   *
5162   * @num_consumers: Number of consumers
5163   * @consumers:     Consumer data; clients are stored here.
5164   *
5165   * This convenience API allows consumers to disable multiple regulator
5166   * clients in a single API call.  If any consumers cannot be disabled
5167   * then any others that were disabled will be enabled again prior to
5168   * return.
5169   *
5170   * Return: 0 on success or a negative error number on failure.
5171   */
regulator_bulk_disable(int num_consumers,struct regulator_bulk_data * consumers)5172  int regulator_bulk_disable(int num_consumers,
5173  			   struct regulator_bulk_data *consumers)
5174  {
5175  	int i;
5176  	int ret, r;
5177  
5178  	for (i = num_consumers - 1; i >= 0; --i) {
5179  		ret = regulator_disable(consumers[i].consumer);
5180  		if (ret != 0)
5181  			goto err;
5182  	}
5183  
5184  	return 0;
5185  
5186  err:
5187  	pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
5188  	for (++i; i < num_consumers; ++i) {
5189  		r = regulator_enable(consumers[i].consumer);
5190  		if (r != 0)
5191  			pr_err("Failed to re-enable %s: %pe\n",
5192  			       consumers[i].supply, ERR_PTR(r));
5193  	}
5194  
5195  	return ret;
5196  }
5197  EXPORT_SYMBOL_GPL(regulator_bulk_disable);
5198  
5199  /**
5200   * regulator_bulk_force_disable - force disable multiple regulator consumers
5201   *
5202   * @num_consumers: Number of consumers
5203   * @consumers:     Consumer data; clients are stored here.
5204   *
5205   * This convenience API allows consumers to forcibly disable multiple regulator
5206   * clients in a single API call.
5207   * NOTE: This should be used for situations when device damage will
5208   * likely occur if the regulators are not disabled (e.g. over temp).
5209   * Although regulator_force_disable function call for some consumers can
5210   * return error numbers, the function is called for all consumers.
5211   *
5212   * Return: 0 on success or a negative error number on failure.
5213   */
regulator_bulk_force_disable(int num_consumers,struct regulator_bulk_data * consumers)5214  int regulator_bulk_force_disable(int num_consumers,
5215  			   struct regulator_bulk_data *consumers)
5216  {
5217  	int i;
5218  	int ret = 0;
5219  
5220  	for (i = 0; i < num_consumers; i++) {
5221  		consumers[i].ret =
5222  			    regulator_force_disable(consumers[i].consumer);
5223  
5224  		/* Store first error for reporting */
5225  		if (consumers[i].ret && !ret)
5226  			ret = consumers[i].ret;
5227  	}
5228  
5229  	return ret;
5230  }
5231  EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
5232  
5233  /**
5234   * regulator_bulk_free - free multiple regulator consumers
5235   *
5236   * @num_consumers: Number of consumers
5237   * @consumers:     Consumer data; clients are stored here.
5238   *
5239   * This convenience API allows consumers to free multiple regulator
5240   * clients in a single API call.
5241   */
regulator_bulk_free(int num_consumers,struct regulator_bulk_data * consumers)5242  void regulator_bulk_free(int num_consumers,
5243  			 struct regulator_bulk_data *consumers)
5244  {
5245  	int i;
5246  
5247  	for (i = 0; i < num_consumers; i++) {
5248  		regulator_put(consumers[i].consumer);
5249  		consumers[i].consumer = NULL;
5250  	}
5251  }
5252  EXPORT_SYMBOL_GPL(regulator_bulk_free);
5253  
5254  /**
5255   * regulator_handle_critical - Handle events for system-critical regulators.
5256   * @rdev: The regulator device.
5257   * @event: The event being handled.
5258   *
5259   * This function handles critical events such as under-voltage, over-current,
5260   * and unknown errors for regulators deemed system-critical. On detecting such
5261   * events, it triggers a hardware protection shutdown with a defined timeout.
5262   */
regulator_handle_critical(struct regulator_dev * rdev,unsigned long event)5263  static void regulator_handle_critical(struct regulator_dev *rdev,
5264  				      unsigned long event)
5265  {
5266  	const char *reason = NULL;
5267  
5268  	if (!rdev->constraints->system_critical)
5269  		return;
5270  
5271  	switch (event) {
5272  	case REGULATOR_EVENT_UNDER_VOLTAGE:
5273  		reason = "System critical regulator: voltage drop detected";
5274  		break;
5275  	case REGULATOR_EVENT_OVER_CURRENT:
5276  		reason = "System critical regulator: over-current detected";
5277  		break;
5278  	case REGULATOR_EVENT_FAIL:
5279  		reason = "System critical regulator: unknown error";
5280  	}
5281  
5282  	if (!reason)
5283  		return;
5284  
5285  	hw_protection_trigger(reason,
5286  			      rdev->constraints->uv_less_critical_window_ms);
5287  }
5288  
5289  /**
5290   * regulator_notifier_call_chain - call regulator event notifier
5291   * @rdev: regulator source
5292   * @event: notifier block
5293   * @data: callback-specific data.
5294   *
5295   * Called by regulator drivers to notify clients a regulator event has
5296   * occurred.
5297   *
5298   * Return: %NOTIFY_DONE.
5299   */
regulator_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)5300  int regulator_notifier_call_chain(struct regulator_dev *rdev,
5301  				  unsigned long event, void *data)
5302  {
5303  	regulator_handle_critical(rdev, event);
5304  
5305  	_notifier_call_chain(rdev, event, data);
5306  	return NOTIFY_DONE;
5307  
5308  }
5309  EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
5310  
5311  /**
5312   * regulator_mode_to_status - convert a regulator mode into a status
5313   *
5314   * @mode: Mode to convert
5315   *
5316   * Convert a regulator mode into a status.
5317   *
5318   * Return: %REGULATOR_STATUS_* value corresponding to given mode.
5319   */
regulator_mode_to_status(unsigned int mode)5320  int regulator_mode_to_status(unsigned int mode)
5321  {
5322  	switch (mode) {
5323  	case REGULATOR_MODE_FAST:
5324  		return REGULATOR_STATUS_FAST;
5325  	case REGULATOR_MODE_NORMAL:
5326  		return REGULATOR_STATUS_NORMAL;
5327  	case REGULATOR_MODE_IDLE:
5328  		return REGULATOR_STATUS_IDLE;
5329  	case REGULATOR_MODE_STANDBY:
5330  		return REGULATOR_STATUS_STANDBY;
5331  	default:
5332  		return REGULATOR_STATUS_UNDEFINED;
5333  	}
5334  }
5335  EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5336  
5337  static struct attribute *regulator_dev_attrs[] = {
5338  	&dev_attr_name.attr,
5339  	&dev_attr_num_users.attr,
5340  	&dev_attr_type.attr,
5341  	&dev_attr_microvolts.attr,
5342  	&dev_attr_microamps.attr,
5343  	&dev_attr_opmode.attr,
5344  	&dev_attr_state.attr,
5345  	&dev_attr_status.attr,
5346  	&dev_attr_bypass.attr,
5347  	&dev_attr_requested_microamps.attr,
5348  	&dev_attr_min_microvolts.attr,
5349  	&dev_attr_max_microvolts.attr,
5350  	&dev_attr_min_microamps.attr,
5351  	&dev_attr_max_microamps.attr,
5352  	&dev_attr_under_voltage.attr,
5353  	&dev_attr_over_current.attr,
5354  	&dev_attr_regulation_out.attr,
5355  	&dev_attr_fail.attr,
5356  	&dev_attr_over_temp.attr,
5357  	&dev_attr_under_voltage_warn.attr,
5358  	&dev_attr_over_current_warn.attr,
5359  	&dev_attr_over_voltage_warn.attr,
5360  	&dev_attr_over_temp_warn.attr,
5361  	&dev_attr_suspend_standby_state.attr,
5362  	&dev_attr_suspend_mem_state.attr,
5363  	&dev_attr_suspend_disk_state.attr,
5364  	&dev_attr_suspend_standby_microvolts.attr,
5365  	&dev_attr_suspend_mem_microvolts.attr,
5366  	&dev_attr_suspend_disk_microvolts.attr,
5367  	&dev_attr_suspend_standby_mode.attr,
5368  	&dev_attr_suspend_mem_mode.attr,
5369  	&dev_attr_suspend_disk_mode.attr,
5370  	&dev_attr_power_budget_milliwatt.attr,
5371  	&dev_attr_power_requested_milliwatt.attr,
5372  	NULL
5373  };
5374  
5375  /*
5376   * To avoid cluttering sysfs (and memory) with useless state, only
5377   * create attributes that can be meaningfully displayed.
5378   */
regulator_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)5379  static umode_t regulator_attr_is_visible(struct kobject *kobj,
5380  					 struct attribute *attr, int idx)
5381  {
5382  	struct device *dev = kobj_to_dev(kobj);
5383  	struct regulator_dev *rdev = dev_to_rdev(dev);
5384  	const struct regulator_ops *ops = rdev->desc->ops;
5385  	umode_t mode = attr->mode;
5386  
5387  	/* these three are always present */
5388  	if (attr == &dev_attr_name.attr ||
5389  	    attr == &dev_attr_num_users.attr ||
5390  	    attr == &dev_attr_type.attr)
5391  		return mode;
5392  
5393  	/* some attributes need specific methods to be displayed */
5394  	if (attr == &dev_attr_microvolts.attr) {
5395  		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5396  		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5397  		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5398  		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5399  			return mode;
5400  		return 0;
5401  	}
5402  
5403  	if (attr == &dev_attr_microamps.attr)
5404  		return ops->get_current_limit ? mode : 0;
5405  
5406  	if (attr == &dev_attr_opmode.attr)
5407  		return ops->get_mode ? mode : 0;
5408  
5409  	if (attr == &dev_attr_state.attr)
5410  		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5411  
5412  	if (attr == &dev_attr_status.attr)
5413  		return ops->get_status ? mode : 0;
5414  
5415  	if (attr == &dev_attr_bypass.attr)
5416  		return ops->get_bypass ? mode : 0;
5417  
5418  	if (attr == &dev_attr_under_voltage.attr ||
5419  	    attr == &dev_attr_over_current.attr ||
5420  	    attr == &dev_attr_regulation_out.attr ||
5421  	    attr == &dev_attr_fail.attr ||
5422  	    attr == &dev_attr_over_temp.attr ||
5423  	    attr == &dev_attr_under_voltage_warn.attr ||
5424  	    attr == &dev_attr_over_current_warn.attr ||
5425  	    attr == &dev_attr_over_voltage_warn.attr ||
5426  	    attr == &dev_attr_over_temp_warn.attr)
5427  		return ops->get_error_flags ? mode : 0;
5428  
5429  	/* constraints need specific supporting methods */
5430  	if (attr == &dev_attr_min_microvolts.attr ||
5431  	    attr == &dev_attr_max_microvolts.attr)
5432  		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5433  
5434  	if (attr == &dev_attr_min_microamps.attr ||
5435  	    attr == &dev_attr_max_microamps.attr)
5436  		return ops->set_current_limit ? mode : 0;
5437  
5438  	if (attr == &dev_attr_suspend_standby_state.attr ||
5439  	    attr == &dev_attr_suspend_mem_state.attr ||
5440  	    attr == &dev_attr_suspend_disk_state.attr)
5441  		return mode;
5442  
5443  	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5444  	    attr == &dev_attr_suspend_mem_microvolts.attr ||
5445  	    attr == &dev_attr_suspend_disk_microvolts.attr)
5446  		return ops->set_suspend_voltage ? mode : 0;
5447  
5448  	if (attr == &dev_attr_suspend_standby_mode.attr ||
5449  	    attr == &dev_attr_suspend_mem_mode.attr ||
5450  	    attr == &dev_attr_suspend_disk_mode.attr)
5451  		return ops->set_suspend_mode ? mode : 0;
5452  
5453  	if (attr == &dev_attr_power_budget_milliwatt.attr ||
5454  	    attr == &dev_attr_power_requested_milliwatt.attr)
5455  		return rdev->constraints->pw_budget_mW != INT_MAX ? mode : 0;
5456  
5457  	return mode;
5458  }
5459  
5460  static const struct attribute_group regulator_dev_group = {
5461  	.attrs = regulator_dev_attrs,
5462  	.is_visible = regulator_attr_is_visible,
5463  };
5464  
5465  static const struct attribute_group *regulator_dev_groups[] = {
5466  	&regulator_dev_group,
5467  	NULL
5468  };
5469  
regulator_dev_release(struct device * dev)5470  static void regulator_dev_release(struct device *dev)
5471  {
5472  	struct regulator_dev *rdev = dev_get_drvdata(dev);
5473  
5474  	debugfs_remove_recursive(rdev->debugfs);
5475  	kfree(rdev->constraints);
5476  	of_node_put(rdev->dev.of_node);
5477  	kfree(rdev);
5478  }
5479  
rdev_init_debugfs(struct regulator_dev * rdev)5480  static void rdev_init_debugfs(struct regulator_dev *rdev)
5481  {
5482  	struct device *parent = rdev->dev.parent;
5483  	const char *rname = rdev_get_name(rdev);
5484  	char name[NAME_MAX];
5485  
5486  	/* Avoid duplicate debugfs directory names */
5487  	if (parent && rname == rdev->desc->name) {
5488  		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5489  			 rname);
5490  		rname = name;
5491  	}
5492  
5493  	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5494  	if (IS_ERR(rdev->debugfs))
5495  		rdev_dbg(rdev, "Failed to create debugfs directory\n");
5496  
5497  	debugfs_create_u32("use_count", 0444, rdev->debugfs,
5498  			   &rdev->use_count);
5499  	debugfs_create_u32("open_count", 0444, rdev->debugfs,
5500  			   &rdev->open_count);
5501  	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5502  			   &rdev->bypass_count);
5503  }
5504  
regulator_register_resolve_supply(struct device * dev,void * data)5505  static int regulator_register_resolve_supply(struct device *dev, void *data)
5506  {
5507  	struct regulator_dev *rdev = dev_to_rdev(dev);
5508  
5509  	if (regulator_resolve_supply(rdev))
5510  		rdev_dbg(rdev, "unable to resolve supply\n");
5511  
5512  	return 0;
5513  }
5514  
regulator_coupler_register(struct regulator_coupler * coupler)5515  int regulator_coupler_register(struct regulator_coupler *coupler)
5516  {
5517  	mutex_lock(&regulator_list_mutex);
5518  	list_add_tail(&coupler->list, &regulator_coupler_list);
5519  	mutex_unlock(&regulator_list_mutex);
5520  
5521  	return 0;
5522  }
5523  
5524  static struct regulator_coupler *
regulator_find_coupler(struct regulator_dev * rdev)5525  regulator_find_coupler(struct regulator_dev *rdev)
5526  {
5527  	struct regulator_coupler *coupler;
5528  	int err;
5529  
5530  	/*
5531  	 * Note that regulators are appended to the list and the generic
5532  	 * coupler is registered first, hence it will be attached at last
5533  	 * if nobody cared.
5534  	 */
5535  	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
5536  		err = coupler->attach_regulator(coupler, rdev);
5537  		if (!err) {
5538  			if (!coupler->balance_voltage &&
5539  			    rdev->coupling_desc.n_coupled > 2)
5540  				goto err_unsupported;
5541  
5542  			return coupler;
5543  		}
5544  
5545  		if (err < 0)
5546  			return ERR_PTR(err);
5547  
5548  		if (err == 1)
5549  			continue;
5550  
5551  		break;
5552  	}
5553  
5554  	return ERR_PTR(-EINVAL);
5555  
5556  err_unsupported:
5557  	if (coupler->detach_regulator)
5558  		coupler->detach_regulator(coupler, rdev);
5559  
5560  	rdev_err(rdev,
5561  		"Voltage balancing for multiple regulator couples is unimplemented\n");
5562  
5563  	return ERR_PTR(-EPERM);
5564  }
5565  
regulator_resolve_coupling(struct regulator_dev * rdev)5566  static void regulator_resolve_coupling(struct regulator_dev *rdev)
5567  {
5568  	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5569  	struct coupling_desc *c_desc = &rdev->coupling_desc;
5570  	int n_coupled = c_desc->n_coupled;
5571  	struct regulator_dev *c_rdev;
5572  	int i;
5573  
5574  	for (i = 1; i < n_coupled; i++) {
5575  		/* already resolved */
5576  		if (c_desc->coupled_rdevs[i])
5577  			continue;
5578  
5579  		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5580  
5581  		if (!c_rdev)
5582  			continue;
5583  
5584  		if (c_rdev->coupling_desc.coupler != coupler) {
5585  			rdev_err(rdev, "coupler mismatch with %s\n",
5586  				 rdev_get_name(c_rdev));
5587  			return;
5588  		}
5589  
5590  		c_desc->coupled_rdevs[i] = c_rdev;
5591  		c_desc->n_resolved++;
5592  
5593  		regulator_resolve_coupling(c_rdev);
5594  	}
5595  }
5596  
regulator_remove_coupling(struct regulator_dev * rdev)5597  static void regulator_remove_coupling(struct regulator_dev *rdev)
5598  {
5599  	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5600  	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5601  	struct regulator_dev *__c_rdev, *c_rdev;
5602  	unsigned int __n_coupled, n_coupled;
5603  	int i, k;
5604  	int err;
5605  
5606  	n_coupled = c_desc->n_coupled;
5607  
5608  	for (i = 1; i < n_coupled; i++) {
5609  		c_rdev = c_desc->coupled_rdevs[i];
5610  
5611  		if (!c_rdev)
5612  			continue;
5613  
5614  		regulator_lock(c_rdev);
5615  
5616  		__c_desc = &c_rdev->coupling_desc;
5617  		__n_coupled = __c_desc->n_coupled;
5618  
5619  		for (k = 1; k < __n_coupled; k++) {
5620  			__c_rdev = __c_desc->coupled_rdevs[k];
5621  
5622  			if (__c_rdev == rdev) {
5623  				__c_desc->coupled_rdevs[k] = NULL;
5624  				__c_desc->n_resolved--;
5625  				break;
5626  			}
5627  		}
5628  
5629  		regulator_unlock(c_rdev);
5630  
5631  		c_desc->coupled_rdevs[i] = NULL;
5632  		c_desc->n_resolved--;
5633  	}
5634  
5635  	if (coupler && coupler->detach_regulator) {
5636  		err = coupler->detach_regulator(coupler, rdev);
5637  		if (err)
5638  			rdev_err(rdev, "failed to detach from coupler: %pe\n",
5639  				 ERR_PTR(err));
5640  	}
5641  
5642  	kfree(rdev->coupling_desc.coupled_rdevs);
5643  	rdev->coupling_desc.coupled_rdevs = NULL;
5644  }
5645  
regulator_init_coupling(struct regulator_dev * rdev)5646  static int regulator_init_coupling(struct regulator_dev *rdev)
5647  {
5648  	struct regulator_dev **coupled;
5649  	int err, n_phandles;
5650  
5651  	if (!IS_ENABLED(CONFIG_OF))
5652  		n_phandles = 0;
5653  	else
5654  		n_phandles = of_get_n_coupled(rdev);
5655  
5656  	coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5657  	if (!coupled)
5658  		return -ENOMEM;
5659  
5660  	rdev->coupling_desc.coupled_rdevs = coupled;
5661  
5662  	/*
5663  	 * Every regulator should always have coupling descriptor filled with
5664  	 * at least pointer to itself.
5665  	 */
5666  	rdev->coupling_desc.coupled_rdevs[0] = rdev;
5667  	rdev->coupling_desc.n_coupled = n_phandles + 1;
5668  	rdev->coupling_desc.n_resolved++;
5669  
5670  	/* regulator isn't coupled */
5671  	if (n_phandles == 0)
5672  		return 0;
5673  
5674  	if (!of_check_coupling_data(rdev))
5675  		return -EPERM;
5676  
5677  	mutex_lock(&regulator_list_mutex);
5678  	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5679  	mutex_unlock(&regulator_list_mutex);
5680  
5681  	if (IS_ERR(rdev->coupling_desc.coupler)) {
5682  		err = PTR_ERR(rdev->coupling_desc.coupler);
5683  		rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5684  		return err;
5685  	}
5686  
5687  	return 0;
5688  }
5689  
generic_coupler_attach(struct regulator_coupler * coupler,struct regulator_dev * rdev)5690  static int generic_coupler_attach(struct regulator_coupler *coupler,
5691  				  struct regulator_dev *rdev)
5692  {
5693  	if (rdev->coupling_desc.n_coupled > 2) {
5694  		rdev_err(rdev,
5695  			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5696  		return -EPERM;
5697  	}
5698  
5699  	if (!rdev->constraints->always_on) {
5700  		rdev_err(rdev,
5701  			 "Coupling of a non always-on regulator is unimplemented\n");
5702  		return -ENOTSUPP;
5703  	}
5704  
5705  	return 0;
5706  }
5707  
5708  static struct regulator_coupler generic_regulator_coupler = {
5709  	.attach_regulator = generic_coupler_attach,
5710  };
5711  
5712  /**
5713   * regulator_register - register regulator
5714   * @dev: the device that drive the regulator
5715   * @regulator_desc: regulator to register
5716   * @cfg: runtime configuration for regulator
5717   *
5718   * Called by regulator drivers to register a regulator.
5719   *
5720   * Return: Pointer to a valid &struct regulator_dev on success or
5721   *	   an ERR_PTR() encoded negative error number on failure.
5722   */
5723  struct regulator_dev *
regulator_register(struct device * dev,const struct regulator_desc * regulator_desc,const struct regulator_config * cfg)5724  regulator_register(struct device *dev,
5725  		   const struct regulator_desc *regulator_desc,
5726  		   const struct regulator_config *cfg)
5727  {
5728  	const struct regulator_init_data *init_data;
5729  	struct regulator_config *config = NULL;
5730  	static atomic_t regulator_no = ATOMIC_INIT(-1);
5731  	struct regulator_dev *rdev;
5732  	bool dangling_cfg_gpiod = false;
5733  	bool dangling_of_gpiod = false;
5734  	int ret, i;
5735  	bool resolved_early = false;
5736  
5737  	if (cfg == NULL)
5738  		return ERR_PTR(-EINVAL);
5739  	if (cfg->ena_gpiod)
5740  		dangling_cfg_gpiod = true;
5741  	if (regulator_desc == NULL) {
5742  		ret = -EINVAL;
5743  		goto rinse;
5744  	}
5745  
5746  	WARN_ON(!dev || !cfg->dev);
5747  
5748  	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5749  		ret = -EINVAL;
5750  		goto rinse;
5751  	}
5752  
5753  	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5754  	    regulator_desc->type != REGULATOR_CURRENT) {
5755  		ret = -EINVAL;
5756  		goto rinse;
5757  	}
5758  
5759  	/* Only one of each should be implemented */
5760  	WARN_ON(regulator_desc->ops->get_voltage &&
5761  		regulator_desc->ops->get_voltage_sel);
5762  	WARN_ON(regulator_desc->ops->set_voltage &&
5763  		regulator_desc->ops->set_voltage_sel);
5764  
5765  	/* If we're using selectors we must implement list_voltage. */
5766  	if (regulator_desc->ops->get_voltage_sel &&
5767  	    !regulator_desc->ops->list_voltage) {
5768  		ret = -EINVAL;
5769  		goto rinse;
5770  	}
5771  	if (regulator_desc->ops->set_voltage_sel &&
5772  	    !regulator_desc->ops->list_voltage) {
5773  		ret = -EINVAL;
5774  		goto rinse;
5775  	}
5776  
5777  	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5778  	if (rdev == NULL) {
5779  		ret = -ENOMEM;
5780  		goto rinse;
5781  	}
5782  	device_initialize(&rdev->dev);
5783  	dev_set_drvdata(&rdev->dev, rdev);
5784  	rdev->dev.class = &regulator_class;
5785  	spin_lock_init(&rdev->err_lock);
5786  
5787  	/*
5788  	 * Duplicate the config so the driver could override it after
5789  	 * parsing init data.
5790  	 */
5791  	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5792  	if (config == NULL) {
5793  		ret = -ENOMEM;
5794  		goto clean;
5795  	}
5796  
5797  	/*
5798  	 * DT may override the config->init_data provided if the platform
5799  	 * needs to do so. If so, config->init_data is completely ignored.
5800  	 */
5801  	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5802  					       &rdev->dev.of_node);
5803  
5804  	/*
5805  	 * Sometimes not all resources are probed already so we need to take
5806  	 * that into account. This happens most the time if the ena_gpiod comes
5807  	 * from a gpio extender or something else.
5808  	 */
5809  	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5810  		ret = -EPROBE_DEFER;
5811  		goto clean;
5812  	}
5813  
5814  	/*
5815  	 * We need to keep track of any GPIO descriptor coming from the
5816  	 * device tree until we have handled it over to the core. If the
5817  	 * config that was passed in to this function DOES NOT contain
5818  	 * a descriptor, and the config after this call DOES contain
5819  	 * a descriptor, we definitely got one from parsing the device
5820  	 * tree.
5821  	 */
5822  	if (!cfg->ena_gpiod && config->ena_gpiod)
5823  		dangling_of_gpiod = true;
5824  	if (!init_data) {
5825  		init_data = config->init_data;
5826  		rdev->dev.of_node = of_node_get(config->of_node);
5827  	}
5828  
5829  	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5830  	rdev->reg_data = config->driver_data;
5831  	rdev->owner = regulator_desc->owner;
5832  	rdev->desc = regulator_desc;
5833  	if (config->regmap)
5834  		rdev->regmap = config->regmap;
5835  	else if (dev_get_regmap(dev, NULL))
5836  		rdev->regmap = dev_get_regmap(dev, NULL);
5837  	else if (dev->parent)
5838  		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5839  	INIT_LIST_HEAD(&rdev->consumer_list);
5840  	INIT_LIST_HEAD(&rdev->list);
5841  	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5842  	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5843  
5844  	if (init_data && init_data->supply_regulator)
5845  		rdev->supply_name = init_data->supply_regulator;
5846  	else if (regulator_desc->supply_name)
5847  		rdev->supply_name = regulator_desc->supply_name;
5848  
5849  	/* register with sysfs */
5850  	rdev->dev.parent = config->dev;
5851  	dev_set_name(&rdev->dev, "regulator.%lu",
5852  		    (unsigned long) atomic_inc_return(&regulator_no));
5853  
5854  	/* set regulator constraints */
5855  	if (init_data)
5856  		rdev->constraints = kmemdup(&init_data->constraints,
5857  					    sizeof(*rdev->constraints),
5858  					    GFP_KERNEL);
5859  	else
5860  		rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5861  					    GFP_KERNEL);
5862  	if (!rdev->constraints) {
5863  		ret = -ENOMEM;
5864  		goto wash;
5865  	}
5866  
5867  	if (regulator_desc->init_cb) {
5868  		ret = regulator_desc->init_cb(rdev, config);
5869  		if (ret < 0)
5870  			goto wash;
5871  	}
5872  
5873  	if ((rdev->supply_name && !rdev->supply) &&
5874  		(rdev->constraints->always_on ||
5875  		 rdev->constraints->boot_on)) {
5876  		ret = regulator_resolve_supply(rdev);
5877  		if (ret)
5878  			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5879  					 ERR_PTR(ret));
5880  
5881  		resolved_early = true;
5882  	}
5883  
5884  	if (config->ena_gpiod) {
5885  		ret = regulator_ena_gpio_request(rdev, config);
5886  		if (ret != 0) {
5887  			rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5888  				 ERR_PTR(ret));
5889  			goto wash;
5890  		}
5891  		/* The regulator core took over the GPIO descriptor */
5892  		dangling_cfg_gpiod = false;
5893  		dangling_of_gpiod = false;
5894  	}
5895  
5896  	ret = set_machine_constraints(rdev);
5897  	if (ret == -EPROBE_DEFER && !resolved_early) {
5898  		/* Regulator might be in bypass mode and so needs its supply
5899  		 * to set the constraints
5900  		 */
5901  		/* FIXME: this currently triggers a chicken-and-egg problem
5902  		 * when creating -SUPPLY symlink in sysfs to a regulator
5903  		 * that is just being created
5904  		 */
5905  		rdev_dbg(rdev, "will resolve supply early: %s\n",
5906  			 rdev->supply_name);
5907  		ret = regulator_resolve_supply(rdev);
5908  		if (!ret)
5909  			ret = set_machine_constraints(rdev);
5910  		else
5911  			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5912  				 ERR_PTR(ret));
5913  	}
5914  	if (ret < 0)
5915  		goto wash;
5916  
5917  	ret = regulator_init_coupling(rdev);
5918  	if (ret < 0)
5919  		goto wash;
5920  
5921  	/* add consumers devices */
5922  	if (init_data) {
5923  		for (i = 0; i < init_data->num_consumer_supplies; i++) {
5924  			ret = set_consumer_device_supply(rdev,
5925  				init_data->consumer_supplies[i].dev_name,
5926  				init_data->consumer_supplies[i].supply);
5927  			if (ret < 0) {
5928  				dev_err(dev, "Failed to set supply %s\n",
5929  					init_data->consumer_supplies[i].supply);
5930  				goto unset_supplies;
5931  			}
5932  		}
5933  	}
5934  
5935  	if (!rdev->desc->ops->get_voltage &&
5936  	    !rdev->desc->ops->list_voltage &&
5937  	    !rdev->desc->fixed_uV)
5938  		rdev->is_switch = true;
5939  
5940  	ret = device_add(&rdev->dev);
5941  	if (ret != 0)
5942  		goto unset_supplies;
5943  
5944  	rdev_init_debugfs(rdev);
5945  
5946  	/* try to resolve regulators coupling since a new one was registered */
5947  	mutex_lock(&regulator_list_mutex);
5948  	regulator_resolve_coupling(rdev);
5949  	mutex_unlock(&regulator_list_mutex);
5950  
5951  	/* try to resolve regulators supply since a new one was registered */
5952  	class_for_each_device(&regulator_class, NULL, NULL,
5953  			      regulator_register_resolve_supply);
5954  	kfree(config);
5955  	return rdev;
5956  
5957  unset_supplies:
5958  	mutex_lock(&regulator_list_mutex);
5959  	unset_regulator_supplies(rdev);
5960  	regulator_remove_coupling(rdev);
5961  	mutex_unlock(&regulator_list_mutex);
5962  wash:
5963  	regulator_put(rdev->supply);
5964  	kfree(rdev->coupling_desc.coupled_rdevs);
5965  	mutex_lock(&regulator_list_mutex);
5966  	regulator_ena_gpio_free(rdev);
5967  	mutex_unlock(&regulator_list_mutex);
5968  clean:
5969  	if (dangling_of_gpiod)
5970  		gpiod_put(config->ena_gpiod);
5971  	kfree(config);
5972  	put_device(&rdev->dev);
5973  rinse:
5974  	if (dangling_cfg_gpiod)
5975  		gpiod_put(cfg->ena_gpiod);
5976  	return ERR_PTR(ret);
5977  }
5978  EXPORT_SYMBOL_GPL(regulator_register);
5979  
5980  /**
5981   * regulator_unregister - unregister regulator
5982   * @rdev: regulator to unregister
5983   *
5984   * Called by regulator drivers to unregister a regulator.
5985   */
regulator_unregister(struct regulator_dev * rdev)5986  void regulator_unregister(struct regulator_dev *rdev)
5987  {
5988  	if (rdev == NULL)
5989  		return;
5990  
5991  	if (rdev->supply) {
5992  		while (rdev->use_count--)
5993  			regulator_disable(rdev->supply);
5994  		regulator_put(rdev->supply);
5995  	}
5996  
5997  	flush_work(&rdev->disable_work.work);
5998  
5999  	mutex_lock(&regulator_list_mutex);
6000  
6001  	WARN_ON(rdev->open_count);
6002  	regulator_remove_coupling(rdev);
6003  	unset_regulator_supplies(rdev);
6004  	list_del(&rdev->list);
6005  	regulator_ena_gpio_free(rdev);
6006  	device_unregister(&rdev->dev);
6007  
6008  	mutex_unlock(&regulator_list_mutex);
6009  }
6010  EXPORT_SYMBOL_GPL(regulator_unregister);
6011  
6012  #ifdef CONFIG_SUSPEND
6013  /**
6014   * regulator_suspend - prepare regulators for system wide suspend
6015   * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
6016   *
6017   * Configure each regulator with it's suspend operating parameters for state.
6018   *
6019   * Return: 0 on success or a negative error number on failure.
6020   */
regulator_suspend(struct device * dev)6021  static int regulator_suspend(struct device *dev)
6022  {
6023  	struct regulator_dev *rdev = dev_to_rdev(dev);
6024  	suspend_state_t state = pm_suspend_target_state;
6025  	int ret;
6026  	const struct regulator_state *rstate;
6027  
6028  	rstate = regulator_get_suspend_state_check(rdev, state);
6029  	if (!rstate)
6030  		return 0;
6031  
6032  	regulator_lock(rdev);
6033  	ret = __suspend_set_state(rdev, rstate);
6034  	regulator_unlock(rdev);
6035  
6036  	return ret;
6037  }
6038  
regulator_resume(struct device * dev)6039  static int regulator_resume(struct device *dev)
6040  {
6041  	suspend_state_t state = pm_suspend_target_state;
6042  	struct regulator_dev *rdev = dev_to_rdev(dev);
6043  	struct regulator_state *rstate;
6044  	int ret = 0;
6045  
6046  	rstate = regulator_get_suspend_state(rdev, state);
6047  	if (rstate == NULL)
6048  		return 0;
6049  
6050  	/* Avoid grabbing the lock if we don't need to */
6051  	if (!rdev->desc->ops->resume)
6052  		return 0;
6053  
6054  	regulator_lock(rdev);
6055  
6056  	if (rstate->enabled == ENABLE_IN_SUSPEND ||
6057  	    rstate->enabled == DISABLE_IN_SUSPEND)
6058  		ret = rdev->desc->ops->resume(rdev);
6059  
6060  	regulator_unlock(rdev);
6061  
6062  	return ret;
6063  }
6064  #else /* !CONFIG_SUSPEND */
6065  
6066  #define regulator_suspend	NULL
6067  #define regulator_resume	NULL
6068  
6069  #endif /* !CONFIG_SUSPEND */
6070  
6071  #ifdef CONFIG_PM
6072  static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
6073  	.suspend	= regulator_suspend,
6074  	.resume		= regulator_resume,
6075  };
6076  #endif
6077  
6078  const struct class regulator_class = {
6079  	.name = "regulator",
6080  	.dev_release = regulator_dev_release,
6081  	.dev_groups = regulator_dev_groups,
6082  #ifdef CONFIG_PM
6083  	.pm = &regulator_pm_ops,
6084  #endif
6085  };
6086  /**
6087   * regulator_has_full_constraints - the system has fully specified constraints
6088   *
6089   * Calling this function will cause the regulator API to disable all
6090   * regulators which have a zero use count and don't have an always_on
6091   * constraint in a late_initcall.
6092   *
6093   * The intention is that this will become the default behaviour in a
6094   * future kernel release so users are encouraged to use this facility
6095   * now.
6096   */
regulator_has_full_constraints(void)6097  void regulator_has_full_constraints(void)
6098  {
6099  	has_full_constraints = 1;
6100  }
6101  EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
6102  
6103  /**
6104   * rdev_get_drvdata - get rdev regulator driver data
6105   * @rdev: regulator
6106   *
6107   * Get rdev regulator driver private data. This call can be used in the
6108   * regulator driver context.
6109   *
6110   * Return: Pointer to regulator driver private data.
6111   */
rdev_get_drvdata(struct regulator_dev * rdev)6112  void *rdev_get_drvdata(struct regulator_dev *rdev)
6113  {
6114  	return rdev->reg_data;
6115  }
6116  EXPORT_SYMBOL_GPL(rdev_get_drvdata);
6117  
6118  /**
6119   * regulator_get_drvdata - get regulator driver data
6120   * @regulator: regulator
6121   *
6122   * Get regulator driver private data. This call can be used in the consumer
6123   * driver context when non API regulator specific functions need to be called.
6124   *
6125   * Return: Pointer to regulator driver private data.
6126   */
regulator_get_drvdata(struct regulator * regulator)6127  void *regulator_get_drvdata(struct regulator *regulator)
6128  {
6129  	return regulator->rdev->reg_data;
6130  }
6131  EXPORT_SYMBOL_GPL(regulator_get_drvdata);
6132  
6133  /**
6134   * regulator_set_drvdata - set regulator driver data
6135   * @regulator: regulator
6136   * @data: data
6137   */
regulator_set_drvdata(struct regulator * regulator,void * data)6138  void regulator_set_drvdata(struct regulator *regulator, void *data)
6139  {
6140  	regulator->rdev->reg_data = data;
6141  }
6142  EXPORT_SYMBOL_GPL(regulator_set_drvdata);
6143  
6144  /**
6145   * rdev_get_id - get regulator ID
6146   * @rdev: regulator
6147   *
6148   * Return: Regulator ID for @rdev.
6149   */
rdev_get_id(struct regulator_dev * rdev)6150  int rdev_get_id(struct regulator_dev *rdev)
6151  {
6152  	return rdev->desc->id;
6153  }
6154  EXPORT_SYMBOL_GPL(rdev_get_id);
6155  
rdev_get_dev(struct regulator_dev * rdev)6156  struct device *rdev_get_dev(struct regulator_dev *rdev)
6157  {
6158  	return &rdev->dev;
6159  }
6160  EXPORT_SYMBOL_GPL(rdev_get_dev);
6161  
rdev_get_regmap(struct regulator_dev * rdev)6162  struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
6163  {
6164  	return rdev->regmap;
6165  }
6166  EXPORT_SYMBOL_GPL(rdev_get_regmap);
6167  
regulator_get_init_drvdata(struct regulator_init_data * reg_init_data)6168  void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
6169  {
6170  	return reg_init_data->driver_data;
6171  }
6172  EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
6173  
6174  #ifdef CONFIG_DEBUG_FS
supply_map_show(struct seq_file * sf,void * data)6175  static int supply_map_show(struct seq_file *sf, void *data)
6176  {
6177  	struct regulator_map *map;
6178  
6179  	list_for_each_entry(map, &regulator_map_list, list) {
6180  		seq_printf(sf, "%s -> %s.%s\n",
6181  				rdev_get_name(map->regulator), map->dev_name,
6182  				map->supply);
6183  	}
6184  
6185  	return 0;
6186  }
6187  DEFINE_SHOW_ATTRIBUTE(supply_map);
6188  
6189  struct summary_data {
6190  	struct seq_file *s;
6191  	struct regulator_dev *parent;
6192  	int level;
6193  };
6194  
6195  static void regulator_summary_show_subtree(struct seq_file *s,
6196  					   struct regulator_dev *rdev,
6197  					   int level);
6198  
regulator_summary_show_children(struct device * dev,void * data)6199  static int regulator_summary_show_children(struct device *dev, void *data)
6200  {
6201  	struct regulator_dev *rdev = dev_to_rdev(dev);
6202  	struct summary_data *summary_data = data;
6203  
6204  	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
6205  		regulator_summary_show_subtree(summary_data->s, rdev,
6206  					       summary_data->level + 1);
6207  
6208  	return 0;
6209  }
6210  
regulator_summary_show_subtree(struct seq_file * s,struct regulator_dev * rdev,int level)6211  static void regulator_summary_show_subtree(struct seq_file *s,
6212  					   struct regulator_dev *rdev,
6213  					   int level)
6214  {
6215  	struct regulation_constraints *c;
6216  	struct regulator *consumer;
6217  	struct summary_data summary_data;
6218  	unsigned int opmode;
6219  
6220  	if (!rdev)
6221  		return;
6222  
6223  	opmode = _regulator_get_mode_unlocked(rdev);
6224  	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
6225  		   level * 3 + 1, "",
6226  		   30 - level * 3, rdev_get_name(rdev),
6227  		   rdev->use_count, rdev->open_count, rdev->bypass_count,
6228  		   regulator_opmode_to_str(opmode));
6229  
6230  	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
6231  	seq_printf(s, "%5dmA ",
6232  		   _regulator_get_current_limit_unlocked(rdev) / 1000);
6233  
6234  	c = rdev->constraints;
6235  	if (c) {
6236  		switch (rdev->desc->type) {
6237  		case REGULATOR_VOLTAGE:
6238  			seq_printf(s, "%5dmV %5dmV ",
6239  				   c->min_uV / 1000, c->max_uV / 1000);
6240  			break;
6241  		case REGULATOR_CURRENT:
6242  			seq_printf(s, "%5dmA %5dmA ",
6243  				   c->min_uA / 1000, c->max_uA / 1000);
6244  			break;
6245  		}
6246  	}
6247  
6248  	seq_puts(s, "\n");
6249  
6250  	list_for_each_entry(consumer, &rdev->consumer_list, list) {
6251  		if (consumer->dev && consumer->dev->class == &regulator_class)
6252  			continue;
6253  
6254  		seq_printf(s, "%*s%-*s ",
6255  			   (level + 1) * 3 + 1, "",
6256  			   30 - (level + 1) * 3,
6257  			   consumer->supply_name ? consumer->supply_name :
6258  			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
6259  
6260  		switch (rdev->desc->type) {
6261  		case REGULATOR_VOLTAGE:
6262  			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
6263  				   consumer->enable_count,
6264  				   consumer->uA_load / 1000,
6265  				   consumer->uA_load && !consumer->enable_count ?
6266  				   '*' : ' ',
6267  				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
6268  				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
6269  			break;
6270  		case REGULATOR_CURRENT:
6271  			break;
6272  		}
6273  
6274  		seq_puts(s, "\n");
6275  	}
6276  
6277  	summary_data.s = s;
6278  	summary_data.level = level;
6279  	summary_data.parent = rdev;
6280  
6281  	class_for_each_device(&regulator_class, NULL, &summary_data,
6282  			      regulator_summary_show_children);
6283  }
6284  
6285  struct summary_lock_data {
6286  	struct ww_acquire_ctx *ww_ctx;
6287  	struct regulator_dev **new_contended_rdev;
6288  	struct regulator_dev **old_contended_rdev;
6289  };
6290  
regulator_summary_lock_one(struct device * dev,void * data)6291  static int regulator_summary_lock_one(struct device *dev, void *data)
6292  {
6293  	struct regulator_dev *rdev = dev_to_rdev(dev);
6294  	struct summary_lock_data *lock_data = data;
6295  	int ret = 0;
6296  
6297  	if (rdev != *lock_data->old_contended_rdev) {
6298  		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
6299  
6300  		if (ret == -EDEADLK)
6301  			*lock_data->new_contended_rdev = rdev;
6302  		else
6303  			WARN_ON_ONCE(ret);
6304  	} else {
6305  		*lock_data->old_contended_rdev = NULL;
6306  	}
6307  
6308  	return ret;
6309  }
6310  
regulator_summary_unlock_one(struct device * dev,void * data)6311  static int regulator_summary_unlock_one(struct device *dev, void *data)
6312  {
6313  	struct regulator_dev *rdev = dev_to_rdev(dev);
6314  	struct summary_lock_data *lock_data = data;
6315  
6316  	if (lock_data) {
6317  		if (rdev == *lock_data->new_contended_rdev)
6318  			return -EDEADLK;
6319  	}
6320  
6321  	regulator_unlock(rdev);
6322  
6323  	return 0;
6324  }
6325  
regulator_summary_lock_all(struct ww_acquire_ctx * ww_ctx,struct regulator_dev ** new_contended_rdev,struct regulator_dev ** old_contended_rdev)6326  static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
6327  				      struct regulator_dev **new_contended_rdev,
6328  				      struct regulator_dev **old_contended_rdev)
6329  {
6330  	struct summary_lock_data lock_data;
6331  	int ret;
6332  
6333  	lock_data.ww_ctx = ww_ctx;
6334  	lock_data.new_contended_rdev = new_contended_rdev;
6335  	lock_data.old_contended_rdev = old_contended_rdev;
6336  
6337  	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
6338  				    regulator_summary_lock_one);
6339  	if (ret)
6340  		class_for_each_device(&regulator_class, NULL, &lock_data,
6341  				      regulator_summary_unlock_one);
6342  
6343  	return ret;
6344  }
6345  
regulator_summary_lock(struct ww_acquire_ctx * ww_ctx)6346  static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6347  {
6348  	struct regulator_dev *new_contended_rdev = NULL;
6349  	struct regulator_dev *old_contended_rdev = NULL;
6350  	int err;
6351  
6352  	mutex_lock(&regulator_list_mutex);
6353  
6354  	ww_acquire_init(ww_ctx, &regulator_ww_class);
6355  
6356  	do {
6357  		if (new_contended_rdev) {
6358  			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
6359  			old_contended_rdev = new_contended_rdev;
6360  			old_contended_rdev->ref_cnt++;
6361  			old_contended_rdev->mutex_owner = current;
6362  		}
6363  
6364  		err = regulator_summary_lock_all(ww_ctx,
6365  						 &new_contended_rdev,
6366  						 &old_contended_rdev);
6367  
6368  		if (old_contended_rdev)
6369  			regulator_unlock(old_contended_rdev);
6370  
6371  	} while (err == -EDEADLK);
6372  
6373  	ww_acquire_done(ww_ctx);
6374  }
6375  
regulator_summary_unlock(struct ww_acquire_ctx * ww_ctx)6376  static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6377  {
6378  	class_for_each_device(&regulator_class, NULL, NULL,
6379  			      regulator_summary_unlock_one);
6380  	ww_acquire_fini(ww_ctx);
6381  
6382  	mutex_unlock(&regulator_list_mutex);
6383  }
6384  
regulator_summary_show_roots(struct device * dev,void * data)6385  static int regulator_summary_show_roots(struct device *dev, void *data)
6386  {
6387  	struct regulator_dev *rdev = dev_to_rdev(dev);
6388  	struct seq_file *s = data;
6389  
6390  	if (!rdev->supply)
6391  		regulator_summary_show_subtree(s, rdev, 0);
6392  
6393  	return 0;
6394  }
6395  
regulator_summary_show(struct seq_file * s,void * data)6396  static int regulator_summary_show(struct seq_file *s, void *data)
6397  {
6398  	struct ww_acquire_ctx ww_ctx;
6399  
6400  	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
6401  	seq_puts(s, "---------------------------------------------------------------------------------------\n");
6402  
6403  	regulator_summary_lock(&ww_ctx);
6404  
6405  	class_for_each_device(&regulator_class, NULL, s,
6406  			      regulator_summary_show_roots);
6407  
6408  	regulator_summary_unlock(&ww_ctx);
6409  
6410  	return 0;
6411  }
6412  DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6413  #endif /* CONFIG_DEBUG_FS */
6414  
regulator_init(void)6415  static int __init regulator_init(void)
6416  {
6417  	int ret;
6418  
6419  	ret = class_register(&regulator_class);
6420  
6421  	debugfs_root = debugfs_create_dir("regulator", NULL);
6422  	if (IS_ERR(debugfs_root))
6423  		pr_debug("regulator: Failed to create debugfs directory\n");
6424  
6425  #ifdef CONFIG_DEBUG_FS
6426  	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6427  			    &supply_map_fops);
6428  
6429  	debugfs_create_file("regulator_summary", 0444, debugfs_root,
6430  			    NULL, &regulator_summary_fops);
6431  #endif
6432  	regulator_dummy_init();
6433  
6434  	regulator_coupler_register(&generic_regulator_coupler);
6435  
6436  	return ret;
6437  }
6438  
6439  /* init early to allow our consumers to complete system booting */
6440  core_initcall(regulator_init);
6441  
regulator_late_cleanup(struct device * dev,void * data)6442  static int regulator_late_cleanup(struct device *dev, void *data)
6443  {
6444  	struct regulator_dev *rdev = dev_to_rdev(dev);
6445  	struct regulation_constraints *c = rdev->constraints;
6446  	int ret;
6447  
6448  	if (c && c->always_on)
6449  		return 0;
6450  
6451  	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6452  		return 0;
6453  
6454  	regulator_lock(rdev);
6455  
6456  	if (rdev->use_count)
6457  		goto unlock;
6458  
6459  	/* If reading the status failed, assume that it's off. */
6460  	if (_regulator_is_enabled(rdev) <= 0)
6461  		goto unlock;
6462  
6463  	if (have_full_constraints()) {
6464  		/* We log since this may kill the system if it goes
6465  		 * wrong.
6466  		 */
6467  		rdev_info(rdev, "disabling\n");
6468  		ret = _regulator_do_disable(rdev);
6469  		if (ret != 0)
6470  			rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6471  	} else {
6472  		/* The intention is that in future we will
6473  		 * assume that full constraints are provided
6474  		 * so warn even if we aren't going to do
6475  		 * anything here.
6476  		 */
6477  		rdev_warn(rdev, "incomplete constraints, leaving on\n");
6478  	}
6479  
6480  unlock:
6481  	regulator_unlock(rdev);
6482  
6483  	return 0;
6484  }
6485  
6486  static bool regulator_ignore_unused;
regulator_ignore_unused_setup(char * __unused)6487  static int __init regulator_ignore_unused_setup(char *__unused)
6488  {
6489  	regulator_ignore_unused = true;
6490  	return 1;
6491  }
6492  __setup("regulator_ignore_unused", regulator_ignore_unused_setup);
6493  
regulator_init_complete_work_function(struct work_struct * work)6494  static void regulator_init_complete_work_function(struct work_struct *work)
6495  {
6496  	/*
6497  	 * Regulators may had failed to resolve their input supplies
6498  	 * when were registered, either because the input supply was
6499  	 * not registered yet or because its parent device was not
6500  	 * bound yet. So attempt to resolve the input supplies for
6501  	 * pending regulators before trying to disable unused ones.
6502  	 */
6503  	class_for_each_device(&regulator_class, NULL, NULL,
6504  			      regulator_register_resolve_supply);
6505  
6506  	/*
6507  	 * For debugging purposes, it may be useful to prevent unused
6508  	 * regulators from being disabled.
6509  	 */
6510  	if (regulator_ignore_unused) {
6511  		pr_warn("regulator: Not disabling unused regulators\n");
6512  		return;
6513  	}
6514  
6515  	/* If we have a full configuration then disable any regulators
6516  	 * we have permission to change the status for and which are
6517  	 * not in use or always_on.  This is effectively the default
6518  	 * for DT and ACPI as they have full constraints.
6519  	 */
6520  	class_for_each_device(&regulator_class, NULL, NULL,
6521  			      regulator_late_cleanup);
6522  }
6523  
6524  static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6525  			    regulator_init_complete_work_function);
6526  
regulator_init_complete(void)6527  static int __init regulator_init_complete(void)
6528  {
6529  	/*
6530  	 * Since DT doesn't provide an idiomatic mechanism for
6531  	 * enabling full constraints and since it's much more natural
6532  	 * with DT to provide them just assume that a DT enabled
6533  	 * system has full constraints.
6534  	 */
6535  	if (of_have_populated_dt())
6536  		has_full_constraints = true;
6537  
6538  	/*
6539  	 * We punt completion for an arbitrary amount of time since
6540  	 * systems like distros will load many drivers from userspace
6541  	 * so consumers might not always be ready yet, this is
6542  	 * particularly an issue with laptops where this might bounce
6543  	 * the display off then on.  Ideally we'd get a notification
6544  	 * from userspace when this happens but we don't so just wait
6545  	 * a bit and hope we waited long enough.  It'd be better if
6546  	 * we'd only do this on systems that need it, and a kernel
6547  	 * command line option might be useful.
6548  	 */
6549  	schedule_delayed_work(&regulator_init_complete_work,
6550  			      msecs_to_jiffies(30000));
6551  
6552  	return 0;
6553  }
6554  late_initcall_sync(regulator_init_complete);
6555