1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // 3 // core.c -- Voltage/Current Regulator framework. 4 // 5 // Copyright 2007, 2008 Wolfson Microelectronics PLC. 6 // Copyright 2008 SlimLogic Ltd. 7 // 8 // Author: Liam Girdwood <lrg@slimlogic.co.uk> 9 10 #include <linux/kernel.h> 11 #include <linux/init.h> 12 #include <linux/debugfs.h> 13 #include <linux/device.h> 14 #include <linux/slab.h> 15 #include <linux/async.h> 16 #include <linux/err.h> 17 #include <linux/mutex.h> 18 #include <linux/suspend.h> 19 #include <linux/delay.h> 20 #include <linux/gpio/consumer.h> 21 #include <linux/of.h> 22 #include <linux/reboot.h> 23 #include <linux/regmap.h> 24 #include <linux/regulator/of_regulator.h> 25 #include <linux/regulator/consumer.h> 26 #include <linux/regulator/coupler.h> 27 #include <linux/regulator/driver.h> 28 #include <linux/regulator/machine.h> 29 #include <linux/module.h> 30 31 #define CREATE_TRACE_POINTS 32 #include <trace/events/regulator.h> 33 34 #include "dummy.h" 35 #include "internal.h" 36 #include "regnl.h" 37 38 static DEFINE_WW_CLASS(regulator_ww_class); 39 static DEFINE_MUTEX(regulator_nesting_mutex); 40 static DEFINE_MUTEX(regulator_list_mutex); 41 static LIST_HEAD(regulator_map_list); 42 static LIST_HEAD(regulator_ena_gpio_list); 43 static LIST_HEAD(regulator_supply_alias_list); 44 static LIST_HEAD(regulator_coupler_list); 45 static bool has_full_constraints; 46 47 static struct dentry *debugfs_root; 48 49 /* 50 * struct regulator_map 51 * 52 * Used to provide symbolic supply names to devices. 53 */ 54 struct regulator_map { 55 struct list_head list; 56 const char *dev_name; /* The dev_name() for the consumer */ 57 const char *supply; 58 struct regulator_dev *regulator; 59 }; 60 61 /* 62 * struct regulator_enable_gpio 63 * 64 * Management for shared enable GPIO pin 65 */ 66 struct regulator_enable_gpio { 67 struct list_head list; 68 struct gpio_desc *gpiod; 69 u32 enable_count; /* a number of enabled shared GPIO */ 70 u32 request_count; /* a number of requested shared GPIO */ 71 }; 72 73 /* 74 * struct regulator_supply_alias 75 * 76 * Used to map lookups for a supply onto an alternative device. 77 */ 78 struct regulator_supply_alias { 79 struct list_head list; 80 struct device *src_dev; 81 const char *src_supply; 82 struct device *alias_dev; 83 const char *alias_supply; 84 }; 85 86 static int _regulator_is_enabled(struct regulator_dev *rdev); 87 static int _regulator_disable(struct regulator *regulator); 88 static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags); 89 static int _regulator_get_current_limit(struct regulator_dev *rdev); 90 static unsigned int _regulator_get_mode(struct regulator_dev *rdev); 91 static int _notifier_call_chain(struct regulator_dev *rdev, 92 unsigned long event, void *data); 93 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 94 int min_uV, int max_uV); 95 static int regulator_balance_voltage(struct regulator_dev *rdev, 96 suspend_state_t state); 97 static struct regulator *create_regulator(struct regulator_dev *rdev, 98 struct device *dev, 99 const char *supply_name); 100 static void destroy_regulator(struct regulator *regulator); 101 static void _regulator_put(struct regulator *regulator); 102 rdev_get_name(struct regulator_dev * rdev)103 const char *rdev_get_name(struct regulator_dev *rdev) 104 { 105 if (rdev->constraints && rdev->constraints->name) 106 return rdev->constraints->name; 107 else if (rdev->desc->name) 108 return rdev->desc->name; 109 else 110 return ""; 111 } 112 EXPORT_SYMBOL_GPL(rdev_get_name); 113 have_full_constraints(void)114 static bool have_full_constraints(void) 115 { 116 return has_full_constraints || of_have_populated_dt(); 117 } 118 regulator_ops_is_valid(struct regulator_dev * rdev,int ops)119 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops) 120 { 121 if (!rdev->constraints) { 122 rdev_err(rdev, "no constraints\n"); 123 return false; 124 } 125 126 if (rdev->constraints->valid_ops_mask & ops) 127 return true; 128 129 return false; 130 } 131 132 /** 133 * regulator_lock_nested - lock a single regulator 134 * @rdev: regulator source 135 * @ww_ctx: w/w mutex acquire context 136 * 137 * This function can be called many times by one task on 138 * a single regulator and its mutex will be locked only 139 * once. If a task, which is calling this function is other 140 * than the one, which initially locked the mutex, it will 141 * wait on mutex. 142 * 143 * Return: 0 on success or a negative error number on failure. 144 */ regulator_lock_nested(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)145 static inline int regulator_lock_nested(struct regulator_dev *rdev, 146 struct ww_acquire_ctx *ww_ctx) 147 { 148 bool lock = false; 149 int ret = 0; 150 151 mutex_lock(®ulator_nesting_mutex); 152 153 if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) { 154 if (rdev->mutex_owner == current) 155 rdev->ref_cnt++; 156 else 157 lock = true; 158 159 if (lock) { 160 mutex_unlock(®ulator_nesting_mutex); 161 ret = ww_mutex_lock(&rdev->mutex, ww_ctx); 162 mutex_lock(®ulator_nesting_mutex); 163 } 164 } else { 165 lock = true; 166 } 167 168 if (lock && ret != -EDEADLK) { 169 rdev->ref_cnt++; 170 rdev->mutex_owner = current; 171 } 172 173 mutex_unlock(®ulator_nesting_mutex); 174 175 return ret; 176 } 177 178 /** 179 * regulator_lock - lock a single regulator 180 * @rdev: regulator source 181 * 182 * This function can be called many times by one task on 183 * a single regulator and its mutex will be locked only 184 * once. If a task, which is calling this function is other 185 * than the one, which initially locked the mutex, it will 186 * wait on mutex. 187 */ regulator_lock(struct regulator_dev * rdev)188 static void regulator_lock(struct regulator_dev *rdev) 189 { 190 regulator_lock_nested(rdev, NULL); 191 } 192 193 /** 194 * regulator_unlock - unlock a single regulator 195 * @rdev: regulator_source 196 * 197 * This function unlocks the mutex when the 198 * reference counter reaches 0. 199 */ regulator_unlock(struct regulator_dev * rdev)200 static void regulator_unlock(struct regulator_dev *rdev) 201 { 202 mutex_lock(®ulator_nesting_mutex); 203 204 if (--rdev->ref_cnt == 0) { 205 rdev->mutex_owner = NULL; 206 ww_mutex_unlock(&rdev->mutex); 207 } 208 209 WARN_ON_ONCE(rdev->ref_cnt < 0); 210 211 mutex_unlock(®ulator_nesting_mutex); 212 } 213 214 /** 215 * regulator_lock_two - lock two regulators 216 * @rdev1: first regulator 217 * @rdev2: second regulator 218 * @ww_ctx: w/w mutex acquire context 219 * 220 * Locks both rdevs using the regulator_ww_class. 221 */ regulator_lock_two(struct regulator_dev * rdev1,struct regulator_dev * rdev2,struct ww_acquire_ctx * ww_ctx)222 static void regulator_lock_two(struct regulator_dev *rdev1, 223 struct regulator_dev *rdev2, 224 struct ww_acquire_ctx *ww_ctx) 225 { 226 struct regulator_dev *held, *contended; 227 int ret; 228 229 ww_acquire_init(ww_ctx, ®ulator_ww_class); 230 231 /* Try to just grab both of them */ 232 ret = regulator_lock_nested(rdev1, ww_ctx); 233 WARN_ON(ret); 234 ret = regulator_lock_nested(rdev2, ww_ctx); 235 if (ret != -EDEADLOCK) { 236 WARN_ON(ret); 237 goto exit; 238 } 239 240 held = rdev1; 241 contended = rdev2; 242 while (true) { 243 regulator_unlock(held); 244 245 ww_mutex_lock_slow(&contended->mutex, ww_ctx); 246 contended->ref_cnt++; 247 contended->mutex_owner = current; 248 swap(held, contended); 249 ret = regulator_lock_nested(contended, ww_ctx); 250 251 if (ret != -EDEADLOCK) { 252 WARN_ON(ret); 253 break; 254 } 255 } 256 257 exit: 258 ww_acquire_done(ww_ctx); 259 } 260 261 /** 262 * regulator_unlock_two - unlock two regulators 263 * @rdev1: first regulator 264 * @rdev2: second regulator 265 * @ww_ctx: w/w mutex acquire context 266 * 267 * The inverse of regulator_lock_two(). 268 */ 269 regulator_unlock_two(struct regulator_dev * rdev1,struct regulator_dev * rdev2,struct ww_acquire_ctx * ww_ctx)270 static void regulator_unlock_two(struct regulator_dev *rdev1, 271 struct regulator_dev *rdev2, 272 struct ww_acquire_ctx *ww_ctx) 273 { 274 regulator_unlock(rdev2); 275 regulator_unlock(rdev1); 276 ww_acquire_fini(ww_ctx); 277 } 278 regulator_supply_is_couple(struct regulator_dev * rdev)279 static bool regulator_supply_is_couple(struct regulator_dev *rdev) 280 { 281 struct regulator_dev *c_rdev; 282 int i; 283 284 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) { 285 c_rdev = rdev->coupling_desc.coupled_rdevs[i]; 286 287 if (rdev->supply->rdev == c_rdev) 288 return true; 289 } 290 291 return false; 292 } 293 regulator_unlock_recursive(struct regulator_dev * rdev,unsigned int n_coupled)294 static void regulator_unlock_recursive(struct regulator_dev *rdev, 295 unsigned int n_coupled) 296 { 297 struct regulator_dev *c_rdev, *supply_rdev; 298 int i, supply_n_coupled; 299 300 for (i = n_coupled; i > 0; i--) { 301 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1]; 302 303 if (!c_rdev) 304 continue; 305 306 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) { 307 supply_rdev = c_rdev->supply->rdev; 308 supply_n_coupled = supply_rdev->coupling_desc.n_coupled; 309 310 regulator_unlock_recursive(supply_rdev, 311 supply_n_coupled); 312 } 313 314 regulator_unlock(c_rdev); 315 } 316 } 317 regulator_lock_recursive(struct regulator_dev * rdev,struct regulator_dev ** new_contended_rdev,struct regulator_dev ** old_contended_rdev,struct ww_acquire_ctx * ww_ctx)318 static int regulator_lock_recursive(struct regulator_dev *rdev, 319 struct regulator_dev **new_contended_rdev, 320 struct regulator_dev **old_contended_rdev, 321 struct ww_acquire_ctx *ww_ctx) 322 { 323 struct regulator_dev *c_rdev; 324 int i, err; 325 326 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) { 327 c_rdev = rdev->coupling_desc.coupled_rdevs[i]; 328 329 if (!c_rdev) 330 continue; 331 332 if (c_rdev != *old_contended_rdev) { 333 err = regulator_lock_nested(c_rdev, ww_ctx); 334 if (err) { 335 if (err == -EDEADLK) { 336 *new_contended_rdev = c_rdev; 337 goto err_unlock; 338 } 339 340 /* shouldn't happen */ 341 WARN_ON_ONCE(err != -EALREADY); 342 } 343 } else { 344 *old_contended_rdev = NULL; 345 } 346 347 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) { 348 err = regulator_lock_recursive(c_rdev->supply->rdev, 349 new_contended_rdev, 350 old_contended_rdev, 351 ww_ctx); 352 if (err) { 353 regulator_unlock(c_rdev); 354 goto err_unlock; 355 } 356 } 357 } 358 359 return 0; 360 361 err_unlock: 362 regulator_unlock_recursive(rdev, i); 363 364 return err; 365 } 366 367 /** 368 * regulator_unlock_dependent - unlock regulator's suppliers and coupled 369 * regulators 370 * @rdev: regulator source 371 * @ww_ctx: w/w mutex acquire context 372 * 373 * Unlock all regulators related with rdev by coupling or supplying. 374 */ regulator_unlock_dependent(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)375 static void regulator_unlock_dependent(struct regulator_dev *rdev, 376 struct ww_acquire_ctx *ww_ctx) 377 { 378 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled); 379 ww_acquire_fini(ww_ctx); 380 } 381 382 /** 383 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators 384 * @rdev: regulator source 385 * @ww_ctx: w/w mutex acquire context 386 * 387 * This function as a wrapper on regulator_lock_recursive(), which locks 388 * all regulators related with rdev by coupling or supplying. 389 */ regulator_lock_dependent(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)390 static void regulator_lock_dependent(struct regulator_dev *rdev, 391 struct ww_acquire_ctx *ww_ctx) 392 { 393 struct regulator_dev *new_contended_rdev = NULL; 394 struct regulator_dev *old_contended_rdev = NULL; 395 int err; 396 397 mutex_lock(®ulator_list_mutex); 398 399 ww_acquire_init(ww_ctx, ®ulator_ww_class); 400 401 do { 402 if (new_contended_rdev) { 403 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx); 404 old_contended_rdev = new_contended_rdev; 405 old_contended_rdev->ref_cnt++; 406 old_contended_rdev->mutex_owner = current; 407 } 408 409 err = regulator_lock_recursive(rdev, 410 &new_contended_rdev, 411 &old_contended_rdev, 412 ww_ctx); 413 414 if (old_contended_rdev) 415 regulator_unlock(old_contended_rdev); 416 417 } while (err == -EDEADLK); 418 419 ww_acquire_done(ww_ctx); 420 421 mutex_unlock(®ulator_list_mutex); 422 } 423 424 /* Platform voltage constraint check */ regulator_check_voltage(struct regulator_dev * rdev,int * min_uV,int * max_uV)425 int regulator_check_voltage(struct regulator_dev *rdev, 426 int *min_uV, int *max_uV) 427 { 428 BUG_ON(*min_uV > *max_uV); 429 430 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 431 rdev_err(rdev, "voltage operation not allowed\n"); 432 return -EPERM; 433 } 434 435 if (*max_uV > rdev->constraints->max_uV) 436 *max_uV = rdev->constraints->max_uV; 437 if (*min_uV < rdev->constraints->min_uV) 438 *min_uV = rdev->constraints->min_uV; 439 440 if (*min_uV > *max_uV) { 441 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n", 442 *min_uV, *max_uV); 443 return -EINVAL; 444 } 445 446 return 0; 447 } 448 449 /* return 0 if the state is valid */ regulator_check_states(suspend_state_t state)450 static int regulator_check_states(suspend_state_t state) 451 { 452 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE); 453 } 454 455 /* Make sure we select a voltage that suits the needs of all 456 * regulator consumers 457 */ regulator_check_consumers(struct regulator_dev * rdev,int * min_uV,int * max_uV,suspend_state_t state)458 int regulator_check_consumers(struct regulator_dev *rdev, 459 int *min_uV, int *max_uV, 460 suspend_state_t state) 461 { 462 struct regulator *regulator; 463 struct regulator_voltage *voltage; 464 465 list_for_each_entry(regulator, &rdev->consumer_list, list) { 466 voltage = ®ulator->voltage[state]; 467 /* 468 * Assume consumers that didn't say anything are OK 469 * with anything in the constraint range. 470 */ 471 if (!voltage->min_uV && !voltage->max_uV) 472 continue; 473 474 if (*max_uV > voltage->max_uV) 475 *max_uV = voltage->max_uV; 476 if (*min_uV < voltage->min_uV) 477 *min_uV = voltage->min_uV; 478 } 479 480 if (*min_uV > *max_uV) { 481 rdev_err(rdev, "Restricting voltage, %u-%uuV\n", 482 *min_uV, *max_uV); 483 return -EINVAL; 484 } 485 486 return 0; 487 } 488 489 /* current constraint check */ regulator_check_current_limit(struct regulator_dev * rdev,int * min_uA,int * max_uA)490 static int regulator_check_current_limit(struct regulator_dev *rdev, 491 int *min_uA, int *max_uA) 492 { 493 BUG_ON(*min_uA > *max_uA); 494 495 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) { 496 rdev_err(rdev, "current operation not allowed\n"); 497 return -EPERM; 498 } 499 500 if (*max_uA > rdev->constraints->max_uA && 501 rdev->constraints->max_uA) 502 *max_uA = rdev->constraints->max_uA; 503 if (*min_uA < rdev->constraints->min_uA) 504 *min_uA = rdev->constraints->min_uA; 505 506 if (*min_uA > *max_uA) { 507 rdev_err(rdev, "unsupportable current range: %d-%duA\n", 508 *min_uA, *max_uA); 509 return -EINVAL; 510 } 511 512 return 0; 513 } 514 515 /* operating mode constraint check */ regulator_mode_constrain(struct regulator_dev * rdev,unsigned int * mode)516 static int regulator_mode_constrain(struct regulator_dev *rdev, 517 unsigned int *mode) 518 { 519 switch (*mode) { 520 case REGULATOR_MODE_FAST: 521 case REGULATOR_MODE_NORMAL: 522 case REGULATOR_MODE_IDLE: 523 case REGULATOR_MODE_STANDBY: 524 break; 525 default: 526 rdev_err(rdev, "invalid mode %x specified\n", *mode); 527 return -EINVAL; 528 } 529 530 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) { 531 rdev_err(rdev, "mode operation not allowed\n"); 532 return -EPERM; 533 } 534 535 /* The modes are bitmasks, the most power hungry modes having 536 * the lowest values. If the requested mode isn't supported 537 * try higher modes. 538 */ 539 while (*mode) { 540 if (rdev->constraints->valid_modes_mask & *mode) 541 return 0; 542 *mode /= 2; 543 } 544 545 return -EINVAL; 546 } 547 548 static inline struct regulator_state * regulator_get_suspend_state(struct regulator_dev * rdev,suspend_state_t state)549 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state) 550 { 551 if (rdev->constraints == NULL) 552 return NULL; 553 554 switch (state) { 555 case PM_SUSPEND_STANDBY: 556 return &rdev->constraints->state_standby; 557 case PM_SUSPEND_MEM: 558 return &rdev->constraints->state_mem; 559 case PM_SUSPEND_MAX: 560 return &rdev->constraints->state_disk; 561 default: 562 return NULL; 563 } 564 } 565 566 static const struct regulator_state * regulator_get_suspend_state_check(struct regulator_dev * rdev,suspend_state_t state)567 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state) 568 { 569 const struct regulator_state *rstate; 570 571 rstate = regulator_get_suspend_state(rdev, state); 572 if (rstate == NULL) 573 return NULL; 574 575 /* If we have no suspend mode configuration don't set anything; 576 * only warn if the driver implements set_suspend_voltage or 577 * set_suspend_mode callback. 578 */ 579 if (rstate->enabled != ENABLE_IN_SUSPEND && 580 rstate->enabled != DISABLE_IN_SUSPEND) { 581 if (rdev->desc->ops->set_suspend_voltage || 582 rdev->desc->ops->set_suspend_mode) 583 rdev_warn(rdev, "No configuration\n"); 584 return NULL; 585 } 586 587 return rstate; 588 } 589 microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)590 static ssize_t microvolts_show(struct device *dev, 591 struct device_attribute *attr, char *buf) 592 { 593 struct regulator_dev *rdev = dev_get_drvdata(dev); 594 int uV; 595 596 regulator_lock(rdev); 597 uV = regulator_get_voltage_rdev(rdev); 598 regulator_unlock(rdev); 599 600 if (uV < 0) 601 return uV; 602 return sprintf(buf, "%d\n", uV); 603 } 604 static DEVICE_ATTR_RO(microvolts); 605 microamps_show(struct device * dev,struct device_attribute * attr,char * buf)606 static ssize_t microamps_show(struct device *dev, 607 struct device_attribute *attr, char *buf) 608 { 609 struct regulator_dev *rdev = dev_get_drvdata(dev); 610 611 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); 612 } 613 static DEVICE_ATTR_RO(microamps); 614 name_show(struct device * dev,struct device_attribute * attr,char * buf)615 static ssize_t name_show(struct device *dev, struct device_attribute *attr, 616 char *buf) 617 { 618 struct regulator_dev *rdev = dev_get_drvdata(dev); 619 620 return sprintf(buf, "%s\n", rdev_get_name(rdev)); 621 } 622 static DEVICE_ATTR_RO(name); 623 regulator_opmode_to_str(int mode)624 static const char *regulator_opmode_to_str(int mode) 625 { 626 switch (mode) { 627 case REGULATOR_MODE_FAST: 628 return "fast"; 629 case REGULATOR_MODE_NORMAL: 630 return "normal"; 631 case REGULATOR_MODE_IDLE: 632 return "idle"; 633 case REGULATOR_MODE_STANDBY: 634 return "standby"; 635 } 636 return "unknown"; 637 } 638 regulator_print_opmode(char * buf,int mode)639 static ssize_t regulator_print_opmode(char *buf, int mode) 640 { 641 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode)); 642 } 643 opmode_show(struct device * dev,struct device_attribute * attr,char * buf)644 static ssize_t opmode_show(struct device *dev, 645 struct device_attribute *attr, char *buf) 646 { 647 struct regulator_dev *rdev = dev_get_drvdata(dev); 648 649 return regulator_print_opmode(buf, _regulator_get_mode(rdev)); 650 } 651 static DEVICE_ATTR_RO(opmode); 652 regulator_print_state(char * buf,int state)653 static ssize_t regulator_print_state(char *buf, int state) 654 { 655 if (state > 0) 656 return sprintf(buf, "enabled\n"); 657 else if (state == 0) 658 return sprintf(buf, "disabled\n"); 659 else 660 return sprintf(buf, "unknown\n"); 661 } 662 state_show(struct device * dev,struct device_attribute * attr,char * buf)663 static ssize_t state_show(struct device *dev, 664 struct device_attribute *attr, char *buf) 665 { 666 struct regulator_dev *rdev = dev_get_drvdata(dev); 667 ssize_t ret; 668 669 regulator_lock(rdev); 670 ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); 671 regulator_unlock(rdev); 672 673 return ret; 674 } 675 static DEVICE_ATTR_RO(state); 676 status_show(struct device * dev,struct device_attribute * attr,char * buf)677 static ssize_t status_show(struct device *dev, 678 struct device_attribute *attr, char *buf) 679 { 680 struct regulator_dev *rdev = dev_get_drvdata(dev); 681 int status; 682 char *label; 683 684 status = rdev->desc->ops->get_status(rdev); 685 if (status < 0) 686 return status; 687 688 switch (status) { 689 case REGULATOR_STATUS_OFF: 690 label = "off"; 691 break; 692 case REGULATOR_STATUS_ON: 693 label = "on"; 694 break; 695 case REGULATOR_STATUS_ERROR: 696 label = "error"; 697 break; 698 case REGULATOR_STATUS_FAST: 699 label = "fast"; 700 break; 701 case REGULATOR_STATUS_NORMAL: 702 label = "normal"; 703 break; 704 case REGULATOR_STATUS_IDLE: 705 label = "idle"; 706 break; 707 case REGULATOR_STATUS_STANDBY: 708 label = "standby"; 709 break; 710 case REGULATOR_STATUS_BYPASS: 711 label = "bypass"; 712 break; 713 case REGULATOR_STATUS_UNDEFINED: 714 label = "undefined"; 715 break; 716 default: 717 return -ERANGE; 718 } 719 720 return sprintf(buf, "%s\n", label); 721 } 722 static DEVICE_ATTR_RO(status); 723 min_microamps_show(struct device * dev,struct device_attribute * attr,char * buf)724 static ssize_t min_microamps_show(struct device *dev, 725 struct device_attribute *attr, char *buf) 726 { 727 struct regulator_dev *rdev = dev_get_drvdata(dev); 728 729 if (!rdev->constraints) 730 return sprintf(buf, "constraint not defined\n"); 731 732 return sprintf(buf, "%d\n", rdev->constraints->min_uA); 733 } 734 static DEVICE_ATTR_RO(min_microamps); 735 max_microamps_show(struct device * dev,struct device_attribute * attr,char * buf)736 static ssize_t max_microamps_show(struct device *dev, 737 struct device_attribute *attr, char *buf) 738 { 739 struct regulator_dev *rdev = dev_get_drvdata(dev); 740 741 if (!rdev->constraints) 742 return sprintf(buf, "constraint not defined\n"); 743 744 return sprintf(buf, "%d\n", rdev->constraints->max_uA); 745 } 746 static DEVICE_ATTR_RO(max_microamps); 747 min_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)748 static ssize_t min_microvolts_show(struct device *dev, 749 struct device_attribute *attr, char *buf) 750 { 751 struct regulator_dev *rdev = dev_get_drvdata(dev); 752 753 if (!rdev->constraints) 754 return sprintf(buf, "constraint not defined\n"); 755 756 return sprintf(buf, "%d\n", rdev->constraints->min_uV); 757 } 758 static DEVICE_ATTR_RO(min_microvolts); 759 max_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)760 static ssize_t max_microvolts_show(struct device *dev, 761 struct device_attribute *attr, char *buf) 762 { 763 struct regulator_dev *rdev = dev_get_drvdata(dev); 764 765 if (!rdev->constraints) 766 return sprintf(buf, "constraint not defined\n"); 767 768 return sprintf(buf, "%d\n", rdev->constraints->max_uV); 769 } 770 static DEVICE_ATTR_RO(max_microvolts); 771 requested_microamps_show(struct device * dev,struct device_attribute * attr,char * buf)772 static ssize_t requested_microamps_show(struct device *dev, 773 struct device_attribute *attr, char *buf) 774 { 775 struct regulator_dev *rdev = dev_get_drvdata(dev); 776 struct regulator *regulator; 777 int uA = 0; 778 779 regulator_lock(rdev); 780 list_for_each_entry(regulator, &rdev->consumer_list, list) { 781 if (regulator->enable_count) 782 uA += regulator->uA_load; 783 } 784 regulator_unlock(rdev); 785 return sprintf(buf, "%d\n", uA); 786 } 787 static DEVICE_ATTR_RO(requested_microamps); 788 num_users_show(struct device * dev,struct device_attribute * attr,char * buf)789 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr, 790 char *buf) 791 { 792 struct regulator_dev *rdev = dev_get_drvdata(dev); 793 return sprintf(buf, "%d\n", rdev->use_count); 794 } 795 static DEVICE_ATTR_RO(num_users); 796 type_show(struct device * dev,struct device_attribute * attr,char * buf)797 static ssize_t type_show(struct device *dev, struct device_attribute *attr, 798 char *buf) 799 { 800 struct regulator_dev *rdev = dev_get_drvdata(dev); 801 802 switch (rdev->desc->type) { 803 case REGULATOR_VOLTAGE: 804 return sprintf(buf, "voltage\n"); 805 case REGULATOR_CURRENT: 806 return sprintf(buf, "current\n"); 807 } 808 return sprintf(buf, "unknown\n"); 809 } 810 static DEVICE_ATTR_RO(type); 811 suspend_mem_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)812 static ssize_t suspend_mem_microvolts_show(struct device *dev, 813 struct device_attribute *attr, char *buf) 814 { 815 struct regulator_dev *rdev = dev_get_drvdata(dev); 816 817 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); 818 } 819 static DEVICE_ATTR_RO(suspend_mem_microvolts); 820 suspend_disk_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)821 static ssize_t suspend_disk_microvolts_show(struct device *dev, 822 struct device_attribute *attr, char *buf) 823 { 824 struct regulator_dev *rdev = dev_get_drvdata(dev); 825 826 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); 827 } 828 static DEVICE_ATTR_RO(suspend_disk_microvolts); 829 suspend_standby_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)830 static ssize_t suspend_standby_microvolts_show(struct device *dev, 831 struct device_attribute *attr, char *buf) 832 { 833 struct regulator_dev *rdev = dev_get_drvdata(dev); 834 835 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); 836 } 837 static DEVICE_ATTR_RO(suspend_standby_microvolts); 838 suspend_mem_mode_show(struct device * dev,struct device_attribute * attr,char * buf)839 static ssize_t suspend_mem_mode_show(struct device *dev, 840 struct device_attribute *attr, char *buf) 841 { 842 struct regulator_dev *rdev = dev_get_drvdata(dev); 843 844 return regulator_print_opmode(buf, 845 rdev->constraints->state_mem.mode); 846 } 847 static DEVICE_ATTR_RO(suspend_mem_mode); 848 suspend_disk_mode_show(struct device * dev,struct device_attribute * attr,char * buf)849 static ssize_t suspend_disk_mode_show(struct device *dev, 850 struct device_attribute *attr, char *buf) 851 { 852 struct regulator_dev *rdev = dev_get_drvdata(dev); 853 854 return regulator_print_opmode(buf, 855 rdev->constraints->state_disk.mode); 856 } 857 static DEVICE_ATTR_RO(suspend_disk_mode); 858 suspend_standby_mode_show(struct device * dev,struct device_attribute * attr,char * buf)859 static ssize_t suspend_standby_mode_show(struct device *dev, 860 struct device_attribute *attr, char *buf) 861 { 862 struct regulator_dev *rdev = dev_get_drvdata(dev); 863 864 return regulator_print_opmode(buf, 865 rdev->constraints->state_standby.mode); 866 } 867 static DEVICE_ATTR_RO(suspend_standby_mode); 868 suspend_mem_state_show(struct device * dev,struct device_attribute * attr,char * buf)869 static ssize_t suspend_mem_state_show(struct device *dev, 870 struct device_attribute *attr, char *buf) 871 { 872 struct regulator_dev *rdev = dev_get_drvdata(dev); 873 874 return regulator_print_state(buf, 875 rdev->constraints->state_mem.enabled); 876 } 877 static DEVICE_ATTR_RO(suspend_mem_state); 878 suspend_disk_state_show(struct device * dev,struct device_attribute * attr,char * buf)879 static ssize_t suspend_disk_state_show(struct device *dev, 880 struct device_attribute *attr, char *buf) 881 { 882 struct regulator_dev *rdev = dev_get_drvdata(dev); 883 884 return regulator_print_state(buf, 885 rdev->constraints->state_disk.enabled); 886 } 887 static DEVICE_ATTR_RO(suspend_disk_state); 888 suspend_standby_state_show(struct device * dev,struct device_attribute * attr,char * buf)889 static ssize_t suspend_standby_state_show(struct device *dev, 890 struct device_attribute *attr, char *buf) 891 { 892 struct regulator_dev *rdev = dev_get_drvdata(dev); 893 894 return regulator_print_state(buf, 895 rdev->constraints->state_standby.enabled); 896 } 897 static DEVICE_ATTR_RO(suspend_standby_state); 898 bypass_show(struct device * dev,struct device_attribute * attr,char * buf)899 static ssize_t bypass_show(struct device *dev, 900 struct device_attribute *attr, char *buf) 901 { 902 struct regulator_dev *rdev = dev_get_drvdata(dev); 903 const char *report; 904 bool bypass; 905 int ret; 906 907 ret = rdev->desc->ops->get_bypass(rdev, &bypass); 908 909 if (ret != 0) 910 report = "unknown"; 911 else if (bypass) 912 report = "enabled"; 913 else 914 report = "disabled"; 915 916 return sprintf(buf, "%s\n", report); 917 } 918 static DEVICE_ATTR_RO(bypass); 919 power_budget_milliwatt_show(struct device * dev,struct device_attribute * attr,char * buf)920 static ssize_t power_budget_milliwatt_show(struct device *dev, 921 struct device_attribute *attr, 922 char *buf) 923 { 924 struct regulator_dev *rdev = dev_get_drvdata(dev); 925 926 return sprintf(buf, "%d\n", rdev->constraints->pw_budget_mW); 927 } 928 static DEVICE_ATTR_RO(power_budget_milliwatt); 929 power_requested_milliwatt_show(struct device * dev,struct device_attribute * attr,char * buf)930 static ssize_t power_requested_milliwatt_show(struct device *dev, 931 struct device_attribute *attr, 932 char *buf) 933 { 934 struct regulator_dev *rdev = dev_get_drvdata(dev); 935 936 return sprintf(buf, "%d\n", rdev->pw_requested_mW); 937 } 938 static DEVICE_ATTR_RO(power_requested_milliwatt); 939 940 #define REGULATOR_ERROR_ATTR(name, bit) \ 941 static ssize_t name##_show(struct device *dev, struct device_attribute *attr, \ 942 char *buf) \ 943 { \ 944 int ret; \ 945 unsigned int flags; \ 946 struct regulator_dev *rdev = dev_get_drvdata(dev); \ 947 ret = _regulator_get_error_flags(rdev, &flags); \ 948 if (ret) \ 949 return ret; \ 950 return sysfs_emit(buf, "%d\n", !!(flags & (bit))); \ 951 } \ 952 static DEVICE_ATTR_RO(name) 953 954 REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE); 955 REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT); 956 REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT); 957 REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL); 958 REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP); 959 REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN); 960 REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN); 961 REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN); 962 REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN); 963 964 /* Calculate the new optimum regulator operating mode based on the new total 965 * consumer load. All locks held by caller 966 */ drms_uA_update(struct regulator_dev * rdev)967 static int drms_uA_update(struct regulator_dev *rdev) 968 { 969 struct regulator *sibling; 970 int current_uA = 0, output_uV, input_uV, err; 971 unsigned int mode; 972 973 /* 974 * first check to see if we can set modes at all, otherwise just 975 * tell the consumer everything is OK. 976 */ 977 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) { 978 rdev_dbg(rdev, "DRMS operation not allowed\n"); 979 return 0; 980 } 981 982 if (!rdev->desc->ops->get_optimum_mode && 983 !rdev->desc->ops->set_load) 984 return 0; 985 986 if (!rdev->desc->ops->set_mode && 987 !rdev->desc->ops->set_load) 988 return -EINVAL; 989 990 /* calc total requested load */ 991 list_for_each_entry(sibling, &rdev->consumer_list, list) { 992 if (sibling->enable_count) 993 current_uA += sibling->uA_load; 994 } 995 996 current_uA += rdev->constraints->system_load; 997 998 if (rdev->desc->ops->set_load) { 999 /* set the optimum mode for our new total regulator load */ 1000 err = rdev->desc->ops->set_load(rdev, current_uA); 1001 if (err < 0) 1002 rdev_err(rdev, "failed to set load %d: %pe\n", 1003 current_uA, ERR_PTR(err)); 1004 } else { 1005 /* 1006 * Unfortunately in some cases the constraints->valid_ops has 1007 * REGULATOR_CHANGE_DRMS but there are no valid modes listed. 1008 * That's not really legit but we won't consider it a fatal 1009 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS 1010 * wasn't set. 1011 */ 1012 if (!rdev->constraints->valid_modes_mask) { 1013 rdev_dbg(rdev, "Can change modes; but no valid mode\n"); 1014 return 0; 1015 } 1016 1017 /* get output voltage */ 1018 output_uV = regulator_get_voltage_rdev(rdev); 1019 1020 /* 1021 * Don't return an error; if regulator driver cares about 1022 * output_uV then it's up to the driver to validate. 1023 */ 1024 if (output_uV <= 0) 1025 rdev_dbg(rdev, "invalid output voltage found\n"); 1026 1027 /* get input voltage */ 1028 input_uV = 0; 1029 if (rdev->supply) 1030 input_uV = regulator_get_voltage_rdev(rdev->supply->rdev); 1031 if (input_uV <= 0) 1032 input_uV = rdev->constraints->input_uV; 1033 1034 /* 1035 * Don't return an error; if regulator driver cares about 1036 * input_uV then it's up to the driver to validate. 1037 */ 1038 if (input_uV <= 0) 1039 rdev_dbg(rdev, "invalid input voltage found\n"); 1040 1041 /* now get the optimum mode for our new total regulator load */ 1042 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, 1043 output_uV, current_uA); 1044 1045 /* check the new mode is allowed */ 1046 err = regulator_mode_constrain(rdev, &mode); 1047 if (err < 0) { 1048 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n", 1049 current_uA, input_uV, output_uV, ERR_PTR(err)); 1050 return err; 1051 } 1052 1053 err = rdev->desc->ops->set_mode(rdev, mode); 1054 if (err < 0) 1055 rdev_err(rdev, "failed to set optimum mode %x: %pe\n", 1056 mode, ERR_PTR(err)); 1057 } 1058 1059 return err; 1060 } 1061 __suspend_set_state(struct regulator_dev * rdev,const struct regulator_state * rstate)1062 static int __suspend_set_state(struct regulator_dev *rdev, 1063 const struct regulator_state *rstate) 1064 { 1065 int ret = 0; 1066 1067 if (rstate->enabled == ENABLE_IN_SUSPEND && 1068 rdev->desc->ops->set_suspend_enable) 1069 ret = rdev->desc->ops->set_suspend_enable(rdev); 1070 else if (rstate->enabled == DISABLE_IN_SUSPEND && 1071 rdev->desc->ops->set_suspend_disable) 1072 ret = rdev->desc->ops->set_suspend_disable(rdev); 1073 else /* OK if set_suspend_enable or set_suspend_disable is NULL */ 1074 ret = 0; 1075 1076 if (ret < 0) { 1077 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret)); 1078 return ret; 1079 } 1080 1081 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { 1082 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); 1083 if (ret < 0) { 1084 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret)); 1085 return ret; 1086 } 1087 } 1088 1089 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { 1090 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); 1091 if (ret < 0) { 1092 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret)); 1093 return ret; 1094 } 1095 } 1096 1097 return ret; 1098 } 1099 suspend_set_initial_state(struct regulator_dev * rdev)1100 static int suspend_set_initial_state(struct regulator_dev *rdev) 1101 { 1102 const struct regulator_state *rstate; 1103 1104 rstate = regulator_get_suspend_state_check(rdev, 1105 rdev->constraints->initial_state); 1106 if (!rstate) 1107 return 0; 1108 1109 return __suspend_set_state(rdev, rstate); 1110 } 1111 1112 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG) print_constraints_debug(struct regulator_dev * rdev)1113 static void print_constraints_debug(struct regulator_dev *rdev) 1114 { 1115 struct regulation_constraints *constraints = rdev->constraints; 1116 char buf[160] = ""; 1117 size_t len = sizeof(buf) - 1; 1118 int count = 0; 1119 int ret; 1120 1121 if (constraints->min_uV && constraints->max_uV) { 1122 if (constraints->min_uV == constraints->max_uV) 1123 count += scnprintf(buf + count, len - count, "%d mV ", 1124 constraints->min_uV / 1000); 1125 else 1126 count += scnprintf(buf + count, len - count, 1127 "%d <--> %d mV ", 1128 constraints->min_uV / 1000, 1129 constraints->max_uV / 1000); 1130 } 1131 1132 if (!constraints->min_uV || 1133 constraints->min_uV != constraints->max_uV) { 1134 ret = regulator_get_voltage_rdev(rdev); 1135 if (ret > 0) 1136 count += scnprintf(buf + count, len - count, 1137 "at %d mV ", ret / 1000); 1138 } 1139 1140 if (constraints->uV_offset) 1141 count += scnprintf(buf + count, len - count, "%dmV offset ", 1142 constraints->uV_offset / 1000); 1143 1144 if (constraints->min_uA && constraints->max_uA) { 1145 if (constraints->min_uA == constraints->max_uA) 1146 count += scnprintf(buf + count, len - count, "%d mA ", 1147 constraints->min_uA / 1000); 1148 else 1149 count += scnprintf(buf + count, len - count, 1150 "%d <--> %d mA ", 1151 constraints->min_uA / 1000, 1152 constraints->max_uA / 1000); 1153 } 1154 1155 if (!constraints->min_uA || 1156 constraints->min_uA != constraints->max_uA) { 1157 ret = _regulator_get_current_limit(rdev); 1158 if (ret > 0) 1159 count += scnprintf(buf + count, len - count, 1160 "at %d mA ", ret / 1000); 1161 } 1162 1163 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) 1164 count += scnprintf(buf + count, len - count, "fast "); 1165 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) 1166 count += scnprintf(buf + count, len - count, "normal "); 1167 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) 1168 count += scnprintf(buf + count, len - count, "idle "); 1169 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) 1170 count += scnprintf(buf + count, len - count, "standby "); 1171 1172 if (constraints->pw_budget_mW) 1173 count += scnprintf(buf + count, len - count, "%d mW budget", 1174 constraints->pw_budget_mW); 1175 1176 if (!count) 1177 count = scnprintf(buf, len, "no parameters"); 1178 else 1179 --count; 1180 1181 count += scnprintf(buf + count, len - count, ", %s", 1182 _regulator_is_enabled(rdev) ? "enabled" : "disabled"); 1183 1184 rdev_dbg(rdev, "%s\n", buf); 1185 } 1186 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */ print_constraints_debug(struct regulator_dev * rdev)1187 static inline void print_constraints_debug(struct regulator_dev *rdev) {} 1188 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */ 1189 print_constraints(struct regulator_dev * rdev)1190 static void print_constraints(struct regulator_dev *rdev) 1191 { 1192 struct regulation_constraints *constraints = rdev->constraints; 1193 1194 print_constraints_debug(rdev); 1195 1196 if ((constraints->min_uV != constraints->max_uV) && 1197 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) 1198 rdev_warn(rdev, 1199 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); 1200 } 1201 machine_constraints_voltage(struct regulator_dev * rdev,struct regulation_constraints * constraints)1202 static int machine_constraints_voltage(struct regulator_dev *rdev, 1203 struct regulation_constraints *constraints) 1204 { 1205 const struct regulator_ops *ops = rdev->desc->ops; 1206 int ret; 1207 1208 /* do we need to apply the constraint voltage */ 1209 if (rdev->constraints->apply_uV && 1210 rdev->constraints->min_uV && rdev->constraints->max_uV) { 1211 int target_min, target_max; 1212 int current_uV = regulator_get_voltage_rdev(rdev); 1213 1214 if (current_uV == -ENOTRECOVERABLE) { 1215 /* This regulator can't be read and must be initialized */ 1216 rdev_info(rdev, "Setting %d-%duV\n", 1217 rdev->constraints->min_uV, 1218 rdev->constraints->max_uV); 1219 _regulator_do_set_voltage(rdev, 1220 rdev->constraints->min_uV, 1221 rdev->constraints->max_uV); 1222 current_uV = regulator_get_voltage_rdev(rdev); 1223 } 1224 1225 if (current_uV < 0) { 1226 if (current_uV != -EPROBE_DEFER) 1227 rdev_err(rdev, 1228 "failed to get the current voltage: %pe\n", 1229 ERR_PTR(current_uV)); 1230 return current_uV; 1231 } 1232 1233 /* 1234 * If we're below the minimum voltage move up to the 1235 * minimum voltage, if we're above the maximum voltage 1236 * then move down to the maximum. 1237 */ 1238 target_min = current_uV; 1239 target_max = current_uV; 1240 1241 if (current_uV < rdev->constraints->min_uV) { 1242 target_min = rdev->constraints->min_uV; 1243 target_max = rdev->constraints->min_uV; 1244 } 1245 1246 if (current_uV > rdev->constraints->max_uV) { 1247 target_min = rdev->constraints->max_uV; 1248 target_max = rdev->constraints->max_uV; 1249 } 1250 1251 if (target_min != current_uV || target_max != current_uV) { 1252 rdev_info(rdev, "Bringing %duV into %d-%duV\n", 1253 current_uV, target_min, target_max); 1254 ret = _regulator_do_set_voltage( 1255 rdev, target_min, target_max); 1256 if (ret < 0) { 1257 rdev_err(rdev, 1258 "failed to apply %d-%duV constraint: %pe\n", 1259 target_min, target_max, ERR_PTR(ret)); 1260 return ret; 1261 } 1262 } 1263 } 1264 1265 /* constrain machine-level voltage specs to fit 1266 * the actual range supported by this regulator. 1267 */ 1268 if (ops->list_voltage && rdev->desc->n_voltages) { 1269 int count = rdev->desc->n_voltages; 1270 int i; 1271 int min_uV = INT_MAX; 1272 int max_uV = INT_MIN; 1273 int cmin = constraints->min_uV; 1274 int cmax = constraints->max_uV; 1275 1276 /* it's safe to autoconfigure fixed-voltage supplies 1277 * and the constraints are used by list_voltage. 1278 */ 1279 if (count == 1 && !cmin) { 1280 cmin = 1; 1281 cmax = INT_MAX; 1282 constraints->min_uV = cmin; 1283 constraints->max_uV = cmax; 1284 } 1285 1286 /* voltage constraints are optional */ 1287 if ((cmin == 0) && (cmax == 0)) 1288 return 0; 1289 1290 /* else require explicit machine-level constraints */ 1291 if (cmin <= 0 || cmax <= 0 || cmax < cmin) { 1292 rdev_err(rdev, "invalid voltage constraints\n"); 1293 return -EINVAL; 1294 } 1295 1296 /* no need to loop voltages if range is continuous */ 1297 if (rdev->desc->continuous_voltage_range) 1298 return 0; 1299 1300 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ 1301 for (i = 0; i < count; i++) { 1302 int value; 1303 1304 value = ops->list_voltage(rdev, i); 1305 if (value <= 0) 1306 continue; 1307 1308 /* maybe adjust [min_uV..max_uV] */ 1309 if (value >= cmin && value < min_uV) 1310 min_uV = value; 1311 if (value <= cmax && value > max_uV) 1312 max_uV = value; 1313 } 1314 1315 /* final: [min_uV..max_uV] valid iff constraints valid */ 1316 if (max_uV < min_uV) { 1317 rdev_err(rdev, 1318 "unsupportable voltage constraints %u-%uuV\n", 1319 min_uV, max_uV); 1320 return -EINVAL; 1321 } 1322 1323 /* use regulator's subset of machine constraints */ 1324 if (constraints->min_uV < min_uV) { 1325 rdev_dbg(rdev, "override min_uV, %d -> %d\n", 1326 constraints->min_uV, min_uV); 1327 constraints->min_uV = min_uV; 1328 } 1329 if (constraints->max_uV > max_uV) { 1330 rdev_dbg(rdev, "override max_uV, %d -> %d\n", 1331 constraints->max_uV, max_uV); 1332 constraints->max_uV = max_uV; 1333 } 1334 } 1335 1336 return 0; 1337 } 1338 machine_constraints_current(struct regulator_dev * rdev,struct regulation_constraints * constraints)1339 static int machine_constraints_current(struct regulator_dev *rdev, 1340 struct regulation_constraints *constraints) 1341 { 1342 const struct regulator_ops *ops = rdev->desc->ops; 1343 int ret; 1344 1345 if (!constraints->min_uA && !constraints->max_uA) 1346 return 0; 1347 1348 if (constraints->min_uA > constraints->max_uA) { 1349 rdev_err(rdev, "Invalid current constraints\n"); 1350 return -EINVAL; 1351 } 1352 1353 if (!ops->set_current_limit || !ops->get_current_limit) { 1354 rdev_warn(rdev, "Operation of current configuration missing\n"); 1355 return 0; 1356 } 1357 1358 /* Set regulator current in constraints range */ 1359 ret = ops->set_current_limit(rdev, constraints->min_uA, 1360 constraints->max_uA); 1361 if (ret < 0) { 1362 rdev_err(rdev, "Failed to set current constraint, %d\n", ret); 1363 return ret; 1364 } 1365 1366 return 0; 1367 } 1368 1369 static int _regulator_do_enable(struct regulator_dev *rdev); 1370 notif_set_limit(struct regulator_dev * rdev,int (* set)(struct regulator_dev *,int,int,bool),int limit,int severity)1371 static int notif_set_limit(struct regulator_dev *rdev, 1372 int (*set)(struct regulator_dev *, int, int, bool), 1373 int limit, int severity) 1374 { 1375 bool enable; 1376 1377 if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) { 1378 enable = false; 1379 limit = 0; 1380 } else { 1381 enable = true; 1382 } 1383 1384 if (limit == REGULATOR_NOTIF_LIMIT_ENABLE) 1385 limit = 0; 1386 1387 return set(rdev, limit, severity, enable); 1388 } 1389 handle_notify_limits(struct regulator_dev * rdev,int (* set)(struct regulator_dev *,int,int,bool),struct notification_limit * limits)1390 static int handle_notify_limits(struct regulator_dev *rdev, 1391 int (*set)(struct regulator_dev *, int, int, bool), 1392 struct notification_limit *limits) 1393 { 1394 int ret = 0; 1395 1396 if (!set) 1397 return -EOPNOTSUPP; 1398 1399 if (limits->prot) 1400 ret = notif_set_limit(rdev, set, limits->prot, 1401 REGULATOR_SEVERITY_PROT); 1402 if (ret) 1403 return ret; 1404 1405 if (limits->err) 1406 ret = notif_set_limit(rdev, set, limits->err, 1407 REGULATOR_SEVERITY_ERR); 1408 if (ret) 1409 return ret; 1410 1411 if (limits->warn) 1412 ret = notif_set_limit(rdev, set, limits->warn, 1413 REGULATOR_SEVERITY_WARN); 1414 1415 return ret; 1416 } 1417 /** 1418 * set_machine_constraints - sets regulator constraints 1419 * @rdev: regulator source 1420 * 1421 * Allows platform initialisation code to define and constrain 1422 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: 1423 * Constraints *must* be set by platform code in order for some 1424 * regulator operations to proceed i.e. set_voltage, set_current_limit, 1425 * set_mode. 1426 * 1427 * Return: 0 on success or a negative error number on failure. 1428 */ set_machine_constraints(struct regulator_dev * rdev)1429 static int set_machine_constraints(struct regulator_dev *rdev) 1430 { 1431 int ret = 0; 1432 const struct regulator_ops *ops = rdev->desc->ops; 1433 1434 ret = machine_constraints_voltage(rdev, rdev->constraints); 1435 if (ret != 0) 1436 return ret; 1437 1438 ret = machine_constraints_current(rdev, rdev->constraints); 1439 if (ret != 0) 1440 return ret; 1441 1442 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) { 1443 ret = ops->set_input_current_limit(rdev, 1444 rdev->constraints->ilim_uA); 1445 if (ret < 0) { 1446 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret)); 1447 return ret; 1448 } 1449 } 1450 1451 /* do we need to setup our suspend state */ 1452 if (rdev->constraints->initial_state) { 1453 ret = suspend_set_initial_state(rdev); 1454 if (ret < 0) { 1455 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret)); 1456 return ret; 1457 } 1458 } 1459 1460 if (rdev->constraints->initial_mode) { 1461 if (!ops->set_mode) { 1462 rdev_err(rdev, "no set_mode operation\n"); 1463 return -EINVAL; 1464 } 1465 1466 ret = ops->set_mode(rdev, rdev->constraints->initial_mode); 1467 if (ret < 0) { 1468 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret)); 1469 return ret; 1470 } 1471 } else if (rdev->constraints->system_load) { 1472 /* 1473 * We'll only apply the initial system load if an 1474 * initial mode wasn't specified. 1475 */ 1476 drms_uA_update(rdev); 1477 } 1478 1479 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable) 1480 && ops->set_ramp_delay) { 1481 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay); 1482 if (ret < 0) { 1483 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret)); 1484 return ret; 1485 } 1486 } 1487 1488 if (rdev->constraints->pull_down && ops->set_pull_down) { 1489 ret = ops->set_pull_down(rdev); 1490 if (ret < 0) { 1491 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret)); 1492 return ret; 1493 } 1494 } 1495 1496 if (rdev->constraints->soft_start && ops->set_soft_start) { 1497 ret = ops->set_soft_start(rdev); 1498 if (ret < 0) { 1499 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret)); 1500 return ret; 1501 } 1502 } 1503 1504 /* 1505 * Existing logic does not warn if over_current_protection is given as 1506 * a constraint but driver does not support that. I think we should 1507 * warn about this type of issues as it is possible someone changes 1508 * PMIC on board to another type - and the another PMIC's driver does 1509 * not support setting protection. Board composer may happily believe 1510 * the DT limits are respected - especially if the new PMIC HW also 1511 * supports protection but the driver does not. I won't change the logic 1512 * without hearing more experienced opinion on this though. 1513 * 1514 * If warning is seen as a good idea then we can merge handling the 1515 * over-curret protection and detection and get rid of this special 1516 * handling. 1517 */ 1518 if (rdev->constraints->over_current_protection 1519 && ops->set_over_current_protection) { 1520 int lim = rdev->constraints->over_curr_limits.prot; 1521 1522 ret = ops->set_over_current_protection(rdev, lim, 1523 REGULATOR_SEVERITY_PROT, 1524 true); 1525 if (ret < 0) { 1526 rdev_err(rdev, "failed to set over current protection: %pe\n", 1527 ERR_PTR(ret)); 1528 return ret; 1529 } 1530 } 1531 1532 if (rdev->constraints->over_current_detection) 1533 ret = handle_notify_limits(rdev, 1534 ops->set_over_current_protection, 1535 &rdev->constraints->over_curr_limits); 1536 if (ret) { 1537 if (ret != -EOPNOTSUPP) { 1538 rdev_err(rdev, "failed to set over current limits: %pe\n", 1539 ERR_PTR(ret)); 1540 return ret; 1541 } 1542 rdev_warn(rdev, 1543 "IC does not support requested over-current limits\n"); 1544 } 1545 1546 if (rdev->constraints->over_voltage_detection) 1547 ret = handle_notify_limits(rdev, 1548 ops->set_over_voltage_protection, 1549 &rdev->constraints->over_voltage_limits); 1550 if (ret) { 1551 if (ret != -EOPNOTSUPP) { 1552 rdev_err(rdev, "failed to set over voltage limits %pe\n", 1553 ERR_PTR(ret)); 1554 return ret; 1555 } 1556 rdev_warn(rdev, 1557 "IC does not support requested over voltage limits\n"); 1558 } 1559 1560 if (rdev->constraints->under_voltage_detection) 1561 ret = handle_notify_limits(rdev, 1562 ops->set_under_voltage_protection, 1563 &rdev->constraints->under_voltage_limits); 1564 if (ret) { 1565 if (ret != -EOPNOTSUPP) { 1566 rdev_err(rdev, "failed to set under voltage limits %pe\n", 1567 ERR_PTR(ret)); 1568 return ret; 1569 } 1570 rdev_warn(rdev, 1571 "IC does not support requested under voltage limits\n"); 1572 } 1573 1574 if (rdev->constraints->over_temp_detection) 1575 ret = handle_notify_limits(rdev, 1576 ops->set_thermal_protection, 1577 &rdev->constraints->temp_limits); 1578 if (ret) { 1579 if (ret != -EOPNOTSUPP) { 1580 rdev_err(rdev, "failed to set temperature limits %pe\n", 1581 ERR_PTR(ret)); 1582 return ret; 1583 } 1584 rdev_warn(rdev, 1585 "IC does not support requested temperature limits\n"); 1586 } 1587 1588 if (rdev->constraints->active_discharge && ops->set_active_discharge) { 1589 bool ad_state = (rdev->constraints->active_discharge == 1590 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false; 1591 1592 ret = ops->set_active_discharge(rdev, ad_state); 1593 if (ret < 0) { 1594 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret)); 1595 return ret; 1596 } 1597 } 1598 1599 /* 1600 * If there is no mechanism for controlling the regulator then 1601 * flag it as always_on so we don't end up duplicating checks 1602 * for this so much. Note that we could control the state of 1603 * a supply to control the output on a regulator that has no 1604 * direct control. 1605 */ 1606 if (!rdev->ena_pin && !ops->enable) { 1607 if (rdev->supply_name && !rdev->supply) 1608 return -EPROBE_DEFER; 1609 1610 if (rdev->supply) 1611 rdev->constraints->always_on = 1612 rdev->supply->rdev->constraints->always_on; 1613 else 1614 rdev->constraints->always_on = true; 1615 } 1616 1617 /* If the constraints say the regulator should be on at this point 1618 * and we have control then make sure it is enabled. 1619 */ 1620 if (rdev->constraints->always_on || rdev->constraints->boot_on) { 1621 /* If we want to enable this regulator, make sure that we know 1622 * the supplying regulator. 1623 */ 1624 if (rdev->supply_name && !rdev->supply) 1625 return -EPROBE_DEFER; 1626 1627 /* If supplying regulator has already been enabled, 1628 * it's not intended to have use_count increment 1629 * when rdev is only boot-on. 1630 */ 1631 if (rdev->supply && 1632 (rdev->constraints->always_on || 1633 !regulator_is_enabled(rdev->supply))) { 1634 ret = regulator_enable(rdev->supply); 1635 if (ret < 0) { 1636 _regulator_put(rdev->supply); 1637 rdev->supply = NULL; 1638 return ret; 1639 } 1640 } 1641 1642 ret = _regulator_do_enable(rdev); 1643 if (ret < 0 && ret != -EINVAL) { 1644 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret)); 1645 return ret; 1646 } 1647 1648 if (rdev->constraints->always_on) 1649 rdev->use_count++; 1650 } else if (rdev->desc->off_on_delay) { 1651 rdev->last_off = ktime_get(); 1652 } 1653 1654 if (!rdev->constraints->pw_budget_mW) 1655 rdev->constraints->pw_budget_mW = INT_MAX; 1656 1657 print_constraints(rdev); 1658 return 0; 1659 } 1660 1661 /** 1662 * set_supply - set regulator supply regulator 1663 * @rdev: regulator (locked) 1664 * @supply_rdev: supply regulator (locked)) 1665 * 1666 * Called by platform initialisation code to set the supply regulator for this 1667 * regulator. This ensures that a regulators supply will also be enabled by the 1668 * core if it's child is enabled. 1669 * 1670 * Return: 0 on success or a negative error number on failure. 1671 */ set_supply(struct regulator_dev * rdev,struct regulator_dev * supply_rdev)1672 static int set_supply(struct regulator_dev *rdev, 1673 struct regulator_dev *supply_rdev) 1674 { 1675 int err; 1676 1677 rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); 1678 1679 if (!try_module_get(supply_rdev->owner)) 1680 return -ENODEV; 1681 1682 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); 1683 if (rdev->supply == NULL) { 1684 module_put(supply_rdev->owner); 1685 err = -ENOMEM; 1686 return err; 1687 } 1688 supply_rdev->open_count++; 1689 1690 return 0; 1691 } 1692 1693 /** 1694 * set_consumer_device_supply - Bind a regulator to a symbolic supply 1695 * @rdev: regulator source 1696 * @consumer_dev_name: dev_name() string for device supply applies to 1697 * @supply: symbolic name for supply 1698 * 1699 * Allows platform initialisation code to map physical regulator 1700 * sources to symbolic names for supplies for use by devices. Devices 1701 * should use these symbolic names to request regulators, avoiding the 1702 * need to provide board-specific regulator names as platform data. 1703 * 1704 * Return: 0 on success or a negative error number on failure. 1705 */ set_consumer_device_supply(struct regulator_dev * rdev,const char * consumer_dev_name,const char * supply)1706 static int set_consumer_device_supply(struct regulator_dev *rdev, 1707 const char *consumer_dev_name, 1708 const char *supply) 1709 { 1710 struct regulator_map *node, *new_node; 1711 int has_dev; 1712 1713 if (supply == NULL) 1714 return -EINVAL; 1715 1716 if (consumer_dev_name != NULL) 1717 has_dev = 1; 1718 else 1719 has_dev = 0; 1720 1721 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); 1722 if (new_node == NULL) 1723 return -ENOMEM; 1724 1725 new_node->regulator = rdev; 1726 new_node->supply = supply; 1727 1728 if (has_dev) { 1729 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); 1730 if (new_node->dev_name == NULL) { 1731 kfree(new_node); 1732 return -ENOMEM; 1733 } 1734 } 1735 1736 mutex_lock(®ulator_list_mutex); 1737 list_for_each_entry(node, ®ulator_map_list, list) { 1738 if (node->dev_name && consumer_dev_name) { 1739 if (strcmp(node->dev_name, consumer_dev_name) != 0) 1740 continue; 1741 } else if (node->dev_name || consumer_dev_name) { 1742 continue; 1743 } 1744 1745 if (strcmp(node->supply, supply) != 0) 1746 continue; 1747 1748 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n", 1749 consumer_dev_name, 1750 dev_name(&node->regulator->dev), 1751 node->regulator->desc->name, 1752 supply, 1753 dev_name(&rdev->dev), rdev_get_name(rdev)); 1754 goto fail; 1755 } 1756 1757 list_add(&new_node->list, ®ulator_map_list); 1758 mutex_unlock(®ulator_list_mutex); 1759 1760 return 0; 1761 1762 fail: 1763 mutex_unlock(®ulator_list_mutex); 1764 kfree(new_node->dev_name); 1765 kfree(new_node); 1766 return -EBUSY; 1767 } 1768 unset_regulator_supplies(struct regulator_dev * rdev)1769 static void unset_regulator_supplies(struct regulator_dev *rdev) 1770 { 1771 struct regulator_map *node, *n; 1772 1773 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 1774 if (rdev == node->regulator) { 1775 list_del(&node->list); 1776 kfree(node->dev_name); 1777 kfree(node); 1778 } 1779 } 1780 } 1781 1782 #ifdef CONFIG_DEBUG_FS constraint_flags_read_file(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)1783 static ssize_t constraint_flags_read_file(struct file *file, 1784 char __user *user_buf, 1785 size_t count, loff_t *ppos) 1786 { 1787 const struct regulator *regulator = file->private_data; 1788 const struct regulation_constraints *c = regulator->rdev->constraints; 1789 char *buf; 1790 ssize_t ret; 1791 1792 if (!c) 1793 return 0; 1794 1795 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1796 if (!buf) 1797 return -ENOMEM; 1798 1799 ret = snprintf(buf, PAGE_SIZE, 1800 "always_on: %u\n" 1801 "boot_on: %u\n" 1802 "apply_uV: %u\n" 1803 "ramp_disable: %u\n" 1804 "soft_start: %u\n" 1805 "pull_down: %u\n" 1806 "over_current_protection: %u\n", 1807 c->always_on, 1808 c->boot_on, 1809 c->apply_uV, 1810 c->ramp_disable, 1811 c->soft_start, 1812 c->pull_down, 1813 c->over_current_protection); 1814 1815 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 1816 kfree(buf); 1817 1818 return ret; 1819 } 1820 1821 #endif 1822 1823 static const struct file_operations constraint_flags_fops = { 1824 #ifdef CONFIG_DEBUG_FS 1825 .open = simple_open, 1826 .read = constraint_flags_read_file, 1827 .llseek = default_llseek, 1828 #endif 1829 }; 1830 1831 #define REG_STR_SIZE 64 1832 link_and_create_debugfs(struct regulator * regulator,struct regulator_dev * rdev,struct device * dev)1833 static void link_and_create_debugfs(struct regulator *regulator, struct regulator_dev *rdev, 1834 struct device *dev) 1835 { 1836 int err = 0; 1837 1838 if (dev) { 1839 regulator->dev = dev; 1840 1841 /* Add a link to the device sysfs entry */ 1842 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj, 1843 regulator->supply_name); 1844 if (err) { 1845 rdev_dbg(rdev, "could not add device link %s: %pe\n", 1846 dev->kobj.name, ERR_PTR(err)); 1847 /* non-fatal */ 1848 } 1849 } 1850 1851 if (err != -EEXIST) { 1852 regulator->debugfs = debugfs_create_dir(regulator->supply_name, rdev->debugfs); 1853 if (IS_ERR(regulator->debugfs)) { 1854 rdev_dbg(rdev, "Failed to create debugfs directory\n"); 1855 regulator->debugfs = NULL; 1856 } 1857 } 1858 1859 if (regulator->debugfs) { 1860 debugfs_create_u32("uA_load", 0444, regulator->debugfs, 1861 ®ulator->uA_load); 1862 debugfs_create_u32("min_uV", 0444, regulator->debugfs, 1863 ®ulator->voltage[PM_SUSPEND_ON].min_uV); 1864 debugfs_create_u32("max_uV", 0444, regulator->debugfs, 1865 ®ulator->voltage[PM_SUSPEND_ON].max_uV); 1866 debugfs_create_file("constraint_flags", 0444, regulator->debugfs, 1867 regulator, &constraint_flags_fops); 1868 } 1869 } 1870 create_regulator(struct regulator_dev * rdev,struct device * dev,const char * supply_name)1871 static struct regulator *create_regulator(struct regulator_dev *rdev, 1872 struct device *dev, 1873 const char *supply_name) 1874 { 1875 struct regulator *regulator; 1876 1877 lockdep_assert_held_once(&rdev->mutex.base); 1878 1879 if (dev) { 1880 char buf[REG_STR_SIZE]; 1881 int size; 1882 1883 size = snprintf(buf, REG_STR_SIZE, "%s-%s", 1884 dev->kobj.name, supply_name); 1885 if (size >= REG_STR_SIZE) 1886 return NULL; 1887 1888 supply_name = kstrdup(buf, GFP_KERNEL); 1889 if (supply_name == NULL) 1890 return NULL; 1891 } else { 1892 supply_name = kstrdup_const(supply_name, GFP_KERNEL); 1893 if (supply_name == NULL) 1894 return NULL; 1895 } 1896 1897 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); 1898 if (regulator == NULL) { 1899 kfree_const(supply_name); 1900 return NULL; 1901 } 1902 1903 regulator->rdev = rdev; 1904 regulator->supply_name = supply_name; 1905 1906 list_add(®ulator->list, &rdev->consumer_list); 1907 1908 /* 1909 * Check now if the regulator is an always on regulator - if 1910 * it is then we don't need to do nearly so much work for 1911 * enable/disable calls. 1912 */ 1913 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) && 1914 _regulator_is_enabled(rdev)) 1915 regulator->always_on = true; 1916 1917 return regulator; 1918 } 1919 _regulator_get_enable_time(struct regulator_dev * rdev)1920 static int _regulator_get_enable_time(struct regulator_dev *rdev) 1921 { 1922 if (rdev->constraints && rdev->constraints->enable_time) 1923 return rdev->constraints->enable_time; 1924 if (rdev->desc->ops->enable_time) 1925 return rdev->desc->ops->enable_time(rdev); 1926 return rdev->desc->enable_time; 1927 } 1928 regulator_find_supply_alias(struct device * dev,const char * supply)1929 static struct regulator_supply_alias *regulator_find_supply_alias( 1930 struct device *dev, const char *supply) 1931 { 1932 struct regulator_supply_alias *map; 1933 1934 list_for_each_entry(map, ®ulator_supply_alias_list, list) 1935 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0) 1936 return map; 1937 1938 return NULL; 1939 } 1940 regulator_supply_alias(struct device ** dev,const char ** supply)1941 static void regulator_supply_alias(struct device **dev, const char **supply) 1942 { 1943 struct regulator_supply_alias *map; 1944 1945 map = regulator_find_supply_alias(*dev, *supply); 1946 if (map) { 1947 dev_dbg(*dev, "Mapping supply %s to %s,%s\n", 1948 *supply, map->alias_supply, 1949 dev_name(map->alias_dev)); 1950 *dev = map->alias_dev; 1951 *supply = map->alias_supply; 1952 } 1953 } 1954 regulator_match(struct device * dev,const void * data)1955 static int regulator_match(struct device *dev, const void *data) 1956 { 1957 struct regulator_dev *r = dev_to_rdev(dev); 1958 1959 return strcmp(rdev_get_name(r), data) == 0; 1960 } 1961 regulator_lookup_by_name(const char * name)1962 static struct regulator_dev *regulator_lookup_by_name(const char *name) 1963 { 1964 struct device *dev; 1965 1966 dev = class_find_device(®ulator_class, NULL, name, regulator_match); 1967 1968 return dev ? dev_to_rdev(dev) : NULL; 1969 } 1970 regulator_dt_lookup(struct device * dev,const char * supply)1971 static struct regulator_dev *regulator_dt_lookup(struct device *dev, 1972 const char *supply) 1973 { 1974 struct regulator_dev *r = NULL; 1975 1976 if (dev_of_node(dev)) { 1977 r = of_regulator_dev_lookup(dev, dev_of_node(dev), supply); 1978 if (PTR_ERR(r) == -ENODEV) 1979 r = NULL; 1980 } 1981 1982 return r; 1983 } 1984 1985 /** 1986 * regulator_dev_lookup - lookup a regulator device. 1987 * @dev: device for regulator "consumer". 1988 * @supply: Supply name or regulator ID. 1989 * 1990 * Return: pointer to &struct regulator_dev or ERR_PTR() encoded negative error number. 1991 * 1992 * If successful, returns a struct regulator_dev that corresponds to the name 1993 * @supply and with the embedded struct device refcount incremented by one. 1994 * The refcount must be dropped by calling put_device(). 1995 * On failure one of the following ERR_PTR() encoded values is returned: 1996 * -%ENODEV if lookup fails permanently, -%EPROBE_DEFER if lookup could succeed 1997 * in the future. 1998 */ regulator_dev_lookup(struct device * dev,const char * supply)1999 static struct regulator_dev *regulator_dev_lookup(struct device *dev, 2000 const char *supply) 2001 { 2002 struct regulator_dev *r = NULL; 2003 struct regulator_map *map; 2004 const char *devname = NULL; 2005 2006 regulator_supply_alias(&dev, &supply); 2007 2008 /* first do a dt based lookup */ 2009 r = regulator_dt_lookup(dev, supply); 2010 if (r) 2011 return r; 2012 2013 /* if not found, try doing it non-dt way */ 2014 if (dev) 2015 devname = dev_name(dev); 2016 2017 mutex_lock(®ulator_list_mutex); 2018 list_for_each_entry(map, ®ulator_map_list, list) { 2019 /* If the mapping has a device set up it must match */ 2020 if (map->dev_name && 2021 (!devname || strcmp(map->dev_name, devname))) 2022 continue; 2023 2024 if (strcmp(map->supply, supply) == 0 && 2025 get_device(&map->regulator->dev)) { 2026 r = map->regulator; 2027 break; 2028 } 2029 } 2030 mutex_unlock(®ulator_list_mutex); 2031 2032 if (r) 2033 return r; 2034 2035 r = regulator_lookup_by_name(supply); 2036 if (r) 2037 return r; 2038 2039 return ERR_PTR(-ENODEV); 2040 } 2041 regulator_resolve_supply(struct regulator_dev * rdev)2042 static int regulator_resolve_supply(struct regulator_dev *rdev) 2043 { 2044 struct regulator_dev *r; 2045 struct device *dev = rdev->dev.parent; 2046 struct ww_acquire_ctx ww_ctx; 2047 int ret = 0; 2048 2049 /* No supply to resolve? */ 2050 if (!rdev->supply_name) 2051 return 0; 2052 2053 /* Supply already resolved? (fast-path without locking contention) */ 2054 if (rdev->supply) 2055 return 0; 2056 2057 /* first do a dt based lookup on the node described in the virtual 2058 * device. 2059 */ 2060 r = regulator_dt_lookup(&rdev->dev, rdev->supply_name); 2061 2062 /* If regulator not found use usual search path in the parent 2063 * device. 2064 */ 2065 if (!r) 2066 r = regulator_dev_lookup(dev, rdev->supply_name); 2067 2068 if (IS_ERR(r)) { 2069 ret = PTR_ERR(r); 2070 2071 /* Did the lookup explicitly defer for us? */ 2072 if (ret == -EPROBE_DEFER) 2073 goto out; 2074 2075 if (have_full_constraints()) { 2076 r = dummy_regulator_rdev; 2077 if (!r) { 2078 ret = -EPROBE_DEFER; 2079 goto out; 2080 } 2081 get_device(&r->dev); 2082 } else { 2083 dev_err(dev, "Failed to resolve %s-supply for %s\n", 2084 rdev->supply_name, rdev->desc->name); 2085 ret = -EPROBE_DEFER; 2086 goto out; 2087 } 2088 } 2089 2090 if (r == rdev) { 2091 dev_err(dev, "Supply for %s (%s) resolved to itself\n", 2092 rdev->desc->name, rdev->supply_name); 2093 if (!have_full_constraints()) { 2094 ret = -EINVAL; 2095 goto out; 2096 } 2097 r = dummy_regulator_rdev; 2098 if (!r) { 2099 ret = -EPROBE_DEFER; 2100 goto out; 2101 } 2102 get_device(&r->dev); 2103 } 2104 2105 /* 2106 * If the supply's parent device is not the same as the 2107 * regulator's parent device, then ensure the parent device 2108 * is bound before we resolve the supply, in case the parent 2109 * device get probe deferred and unregisters the supply. 2110 */ 2111 if (r->dev.parent && r->dev.parent != rdev->dev.parent) { 2112 if (!device_is_bound(r->dev.parent)) { 2113 put_device(&r->dev); 2114 ret = -EPROBE_DEFER; 2115 goto out; 2116 } 2117 } 2118 2119 /* Recursively resolve the supply of the supply */ 2120 ret = regulator_resolve_supply(r); 2121 if (ret < 0) { 2122 put_device(&r->dev); 2123 goto out; 2124 } 2125 2126 /* 2127 * Recheck rdev->supply with rdev->mutex lock held to avoid a race 2128 * between rdev->supply null check and setting rdev->supply in 2129 * set_supply() from concurrent tasks. 2130 */ 2131 regulator_lock_two(rdev, r, &ww_ctx); 2132 2133 /* Supply just resolved by a concurrent task? */ 2134 if (rdev->supply) { 2135 regulator_unlock_two(rdev, r, &ww_ctx); 2136 put_device(&r->dev); 2137 goto out; 2138 } 2139 2140 ret = set_supply(rdev, r); 2141 if (ret < 0) { 2142 regulator_unlock_two(rdev, r, &ww_ctx); 2143 put_device(&r->dev); 2144 goto out; 2145 } 2146 2147 regulator_unlock_two(rdev, r, &ww_ctx); 2148 2149 /* rdev->supply was created in set_supply() */ 2150 link_and_create_debugfs(rdev->supply, r, &rdev->dev); 2151 2152 /* 2153 * In set_machine_constraints() we may have turned this regulator on 2154 * but we couldn't propagate to the supply if it hadn't been resolved 2155 * yet. Do it now. 2156 */ 2157 if (rdev->use_count) { 2158 ret = regulator_enable(rdev->supply); 2159 if (ret < 0) { 2160 _regulator_put(rdev->supply); 2161 rdev->supply = NULL; 2162 goto out; 2163 } 2164 } 2165 2166 out: 2167 return ret; 2168 } 2169 2170 /* common pre-checks for regulator requests */ _regulator_get_common_check(struct device * dev,const char * id,enum regulator_get_type get_type)2171 int _regulator_get_common_check(struct device *dev, const char *id, 2172 enum regulator_get_type get_type) 2173 { 2174 if (get_type >= MAX_GET_TYPE) { 2175 dev_err(dev, "invalid type %d in %s\n", get_type, __func__); 2176 return -EINVAL; 2177 } 2178 2179 if (id == NULL) { 2180 dev_err(dev, "regulator request with no identifier\n"); 2181 return -EINVAL; 2182 } 2183 2184 return 0; 2185 } 2186 2187 /** 2188 * _regulator_get_common - Common code for regulator requests 2189 * @rdev: regulator device pointer as returned by *regulator_dev_lookup() 2190 * Its reference count is expected to have been incremented. 2191 * @dev: device used for dev_printk messages 2192 * @id: Supply name or regulator ID 2193 * @get_type: enum regulator_get_type value corresponding to type of request 2194 * 2195 * Returns: pointer to struct regulator corresponding to @rdev, or ERR_PTR() 2196 * encoded error. 2197 * 2198 * This function should be chained with *regulator_dev_lookup() functions. 2199 */ _regulator_get_common(struct regulator_dev * rdev,struct device * dev,const char * id,enum regulator_get_type get_type)2200 struct regulator *_regulator_get_common(struct regulator_dev *rdev, struct device *dev, 2201 const char *id, enum regulator_get_type get_type) 2202 { 2203 struct regulator *regulator; 2204 struct device_link *link; 2205 int ret; 2206 2207 if (IS_ERR(rdev)) { 2208 ret = PTR_ERR(rdev); 2209 2210 /* 2211 * If regulator_dev_lookup() fails with error other 2212 * than -ENODEV our job here is done, we simply return it. 2213 */ 2214 if (ret != -ENODEV) 2215 return ERR_PTR(ret); 2216 2217 if (!have_full_constraints()) { 2218 dev_warn(dev, 2219 "incomplete constraints, dummy supplies not allowed (id=%s)\n", id); 2220 return ERR_PTR(-ENODEV); 2221 } 2222 2223 switch (get_type) { 2224 case NORMAL_GET: 2225 /* 2226 * Assume that a regulator is physically present and 2227 * enabled, even if it isn't hooked up, and just 2228 * provide a dummy. 2229 */ 2230 rdev = dummy_regulator_rdev; 2231 if (!rdev) 2232 return ERR_PTR(-EPROBE_DEFER); 2233 dev_warn(dev, "supply %s not found, using dummy regulator\n", id); 2234 get_device(&rdev->dev); 2235 break; 2236 2237 case EXCLUSIVE_GET: 2238 dev_warn(dev, 2239 "dummy supplies not allowed for exclusive requests (id=%s)\n", id); 2240 fallthrough; 2241 2242 default: 2243 return ERR_PTR(-ENODEV); 2244 } 2245 } 2246 2247 if (rdev->exclusive) { 2248 regulator = ERR_PTR(-EPERM); 2249 put_device(&rdev->dev); 2250 return regulator; 2251 } 2252 2253 if (get_type == EXCLUSIVE_GET && rdev->open_count) { 2254 regulator = ERR_PTR(-EBUSY); 2255 put_device(&rdev->dev); 2256 return regulator; 2257 } 2258 2259 mutex_lock(®ulator_list_mutex); 2260 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled); 2261 mutex_unlock(®ulator_list_mutex); 2262 2263 if (ret != 0) { 2264 regulator = ERR_PTR(-EPROBE_DEFER); 2265 put_device(&rdev->dev); 2266 return regulator; 2267 } 2268 2269 ret = regulator_resolve_supply(rdev); 2270 if (ret < 0) { 2271 regulator = ERR_PTR(ret); 2272 put_device(&rdev->dev); 2273 return regulator; 2274 } 2275 2276 if (!try_module_get(rdev->owner)) { 2277 regulator = ERR_PTR(-EPROBE_DEFER); 2278 put_device(&rdev->dev); 2279 return regulator; 2280 } 2281 2282 regulator_lock(rdev); 2283 regulator = create_regulator(rdev, dev, id); 2284 regulator_unlock(rdev); 2285 if (regulator == NULL) { 2286 regulator = ERR_PTR(-ENOMEM); 2287 module_put(rdev->owner); 2288 put_device(&rdev->dev); 2289 return regulator; 2290 } 2291 2292 link_and_create_debugfs(regulator, rdev, dev); 2293 2294 rdev->open_count++; 2295 if (get_type == EXCLUSIVE_GET) { 2296 rdev->exclusive = 1; 2297 2298 ret = _regulator_is_enabled(rdev); 2299 if (ret > 0) { 2300 rdev->use_count = 1; 2301 regulator->enable_count = 1; 2302 2303 /* Propagate the regulator state to its supply */ 2304 if (rdev->supply) { 2305 ret = regulator_enable(rdev->supply); 2306 if (ret < 0) { 2307 destroy_regulator(regulator); 2308 module_put(rdev->owner); 2309 put_device(&rdev->dev); 2310 return ERR_PTR(ret); 2311 } 2312 } 2313 } else { 2314 rdev->use_count = 0; 2315 regulator->enable_count = 0; 2316 } 2317 } 2318 2319 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS); 2320 if (!IS_ERR_OR_NULL(link)) 2321 regulator->device_link = true; 2322 2323 return regulator; 2324 } 2325 2326 /* Internal regulator request function */ _regulator_get(struct device * dev,const char * id,enum regulator_get_type get_type)2327 struct regulator *_regulator_get(struct device *dev, const char *id, 2328 enum regulator_get_type get_type) 2329 { 2330 struct regulator_dev *rdev; 2331 int ret; 2332 2333 ret = _regulator_get_common_check(dev, id, get_type); 2334 if (ret) 2335 return ERR_PTR(ret); 2336 2337 rdev = regulator_dev_lookup(dev, id); 2338 return _regulator_get_common(rdev, dev, id, get_type); 2339 } 2340 2341 /** 2342 * regulator_get - lookup and obtain a reference to a regulator. 2343 * @dev: device for regulator "consumer" 2344 * @id: Supply name or regulator ID. 2345 * 2346 * Use of supply names configured via set_consumer_device_supply() is 2347 * strongly encouraged. It is recommended that the supply name used 2348 * should match the name used for the supply and/or the relevant 2349 * device pins in the datasheet. 2350 * 2351 * Return: Pointer to a &struct regulator corresponding to the regulator 2352 * producer, or an ERR_PTR() encoded negative error number. 2353 */ regulator_get(struct device * dev,const char * id)2354 struct regulator *regulator_get(struct device *dev, const char *id) 2355 { 2356 return _regulator_get(dev, id, NORMAL_GET); 2357 } 2358 EXPORT_SYMBOL_GPL(regulator_get); 2359 2360 /** 2361 * regulator_get_exclusive - obtain exclusive access to a regulator. 2362 * @dev: device for regulator "consumer" 2363 * @id: Supply name or regulator ID. 2364 * 2365 * Other consumers will be unable to obtain this regulator while this 2366 * reference is held and the use count for the regulator will be 2367 * initialised to reflect the current state of the regulator. 2368 * 2369 * This is intended for use by consumers which cannot tolerate shared 2370 * use of the regulator such as those which need to force the 2371 * regulator off for correct operation of the hardware they are 2372 * controlling. 2373 * 2374 * Use of supply names configured via set_consumer_device_supply() is 2375 * strongly encouraged. It is recommended that the supply name used 2376 * should match the name used for the supply and/or the relevant 2377 * device pins in the datasheet. 2378 * 2379 * Return: Pointer to a &struct regulator corresponding to the regulator 2380 * producer, or an ERR_PTR() encoded negative error number. 2381 */ regulator_get_exclusive(struct device * dev,const char * id)2382 struct regulator *regulator_get_exclusive(struct device *dev, const char *id) 2383 { 2384 return _regulator_get(dev, id, EXCLUSIVE_GET); 2385 } 2386 EXPORT_SYMBOL_GPL(regulator_get_exclusive); 2387 2388 /** 2389 * regulator_get_optional - obtain optional access to a regulator. 2390 * @dev: device for regulator "consumer" 2391 * @id: Supply name or regulator ID. 2392 * 2393 * This is intended for use by consumers for devices which can have 2394 * some supplies unconnected in normal use, such as some MMC devices. 2395 * It can allow the regulator core to provide stub supplies for other 2396 * supplies requested using normal regulator_get() calls without 2397 * disrupting the operation of drivers that can handle absent 2398 * supplies. 2399 * 2400 * Use of supply names configured via set_consumer_device_supply() is 2401 * strongly encouraged. It is recommended that the supply name used 2402 * should match the name used for the supply and/or the relevant 2403 * device pins in the datasheet. 2404 * 2405 * Return: Pointer to a &struct regulator corresponding to the regulator 2406 * producer, or an ERR_PTR() encoded negative error number. 2407 */ regulator_get_optional(struct device * dev,const char * id)2408 struct regulator *regulator_get_optional(struct device *dev, const char *id) 2409 { 2410 return _regulator_get(dev, id, OPTIONAL_GET); 2411 } 2412 EXPORT_SYMBOL_GPL(regulator_get_optional); 2413 destroy_regulator(struct regulator * regulator)2414 static void destroy_regulator(struct regulator *regulator) 2415 { 2416 struct regulator_dev *rdev = regulator->rdev; 2417 2418 debugfs_remove_recursive(regulator->debugfs); 2419 2420 if (regulator->dev) { 2421 if (regulator->device_link) 2422 device_link_remove(regulator->dev, &rdev->dev); 2423 2424 /* remove any sysfs entries */ 2425 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); 2426 } 2427 2428 regulator_lock(rdev); 2429 list_del(®ulator->list); 2430 2431 rdev->open_count--; 2432 rdev->exclusive = 0; 2433 regulator_unlock(rdev); 2434 2435 kfree_const(regulator->supply_name); 2436 kfree(regulator); 2437 } 2438 2439 /* regulator_list_mutex lock held by regulator_put() */ _regulator_put(struct regulator * regulator)2440 static void _regulator_put(struct regulator *regulator) 2441 { 2442 struct regulator_dev *rdev; 2443 2444 if (IS_ERR_OR_NULL(regulator)) 2445 return; 2446 2447 lockdep_assert_held_once(®ulator_list_mutex); 2448 2449 /* Docs say you must disable before calling regulator_put() */ 2450 WARN_ON(regulator->enable_count); 2451 2452 rdev = regulator->rdev; 2453 2454 destroy_regulator(regulator); 2455 2456 module_put(rdev->owner); 2457 put_device(&rdev->dev); 2458 } 2459 2460 /** 2461 * regulator_put - "free" the regulator source 2462 * @regulator: regulator source 2463 * 2464 * Note: drivers must ensure that all regulator_enable calls made on this 2465 * regulator source are balanced by regulator_disable calls prior to calling 2466 * this function. 2467 */ regulator_put(struct regulator * regulator)2468 void regulator_put(struct regulator *regulator) 2469 { 2470 mutex_lock(®ulator_list_mutex); 2471 _regulator_put(regulator); 2472 mutex_unlock(®ulator_list_mutex); 2473 } 2474 EXPORT_SYMBOL_GPL(regulator_put); 2475 2476 /** 2477 * regulator_register_supply_alias - Provide device alias for supply lookup 2478 * 2479 * @dev: device that will be given as the regulator "consumer" 2480 * @id: Supply name or regulator ID 2481 * @alias_dev: device that should be used to lookup the supply 2482 * @alias_id: Supply name or regulator ID that should be used to lookup the 2483 * supply 2484 * 2485 * All lookups for id on dev will instead be conducted for alias_id on 2486 * alias_dev. 2487 * 2488 * Return: 0 on success or a negative error number on failure. 2489 */ regulator_register_supply_alias(struct device * dev,const char * id,struct device * alias_dev,const char * alias_id)2490 int regulator_register_supply_alias(struct device *dev, const char *id, 2491 struct device *alias_dev, 2492 const char *alias_id) 2493 { 2494 struct regulator_supply_alias *map; 2495 2496 map = regulator_find_supply_alias(dev, id); 2497 if (map) 2498 return -EEXIST; 2499 2500 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL); 2501 if (!map) 2502 return -ENOMEM; 2503 2504 map->src_dev = dev; 2505 map->src_supply = id; 2506 map->alias_dev = alias_dev; 2507 map->alias_supply = alias_id; 2508 2509 list_add(&map->list, ®ulator_supply_alias_list); 2510 2511 pr_info("Adding alias for supply %s,%s -> %s,%s\n", 2512 id, dev_name(dev), alias_id, dev_name(alias_dev)); 2513 2514 return 0; 2515 } 2516 EXPORT_SYMBOL_GPL(regulator_register_supply_alias); 2517 2518 /** 2519 * regulator_unregister_supply_alias - Remove device alias 2520 * 2521 * @dev: device that will be given as the regulator "consumer" 2522 * @id: Supply name or regulator ID 2523 * 2524 * Remove a lookup alias if one exists for id on dev. 2525 */ regulator_unregister_supply_alias(struct device * dev,const char * id)2526 void regulator_unregister_supply_alias(struct device *dev, const char *id) 2527 { 2528 struct regulator_supply_alias *map; 2529 2530 map = regulator_find_supply_alias(dev, id); 2531 if (map) { 2532 list_del(&map->list); 2533 kfree(map); 2534 } 2535 } 2536 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias); 2537 2538 /** 2539 * regulator_bulk_register_supply_alias - register multiple aliases 2540 * 2541 * @dev: device that will be given as the regulator "consumer" 2542 * @id: List of supply names or regulator IDs 2543 * @alias_dev: device that should be used to lookup the supply 2544 * @alias_id: List of supply names or regulator IDs that should be used to 2545 * lookup the supply 2546 * @num_id: Number of aliases to register 2547 * 2548 * This helper function allows drivers to register several supply 2549 * aliases in one operation. If any of the aliases cannot be 2550 * registered any aliases that were registered will be removed 2551 * before returning to the caller. 2552 * 2553 * Return: 0 on success or a negative error number on failure. 2554 */ regulator_bulk_register_supply_alias(struct device * dev,const char * const * id,struct device * alias_dev,const char * const * alias_id,int num_id)2555 int regulator_bulk_register_supply_alias(struct device *dev, 2556 const char *const *id, 2557 struct device *alias_dev, 2558 const char *const *alias_id, 2559 int num_id) 2560 { 2561 int i; 2562 int ret; 2563 2564 for (i = 0; i < num_id; ++i) { 2565 ret = regulator_register_supply_alias(dev, id[i], alias_dev, 2566 alias_id[i]); 2567 if (ret < 0) 2568 goto err; 2569 } 2570 2571 return 0; 2572 2573 err: 2574 dev_err(dev, 2575 "Failed to create supply alias %s,%s -> %s,%s\n", 2576 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev)); 2577 2578 while (--i >= 0) 2579 regulator_unregister_supply_alias(dev, id[i]); 2580 2581 return ret; 2582 } 2583 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias); 2584 2585 /** 2586 * regulator_bulk_unregister_supply_alias - unregister multiple aliases 2587 * 2588 * @dev: device that will be given as the regulator "consumer" 2589 * @id: List of supply names or regulator IDs 2590 * @num_id: Number of aliases to unregister 2591 * 2592 * This helper function allows drivers to unregister several supply 2593 * aliases in one operation. 2594 */ regulator_bulk_unregister_supply_alias(struct device * dev,const char * const * id,int num_id)2595 void regulator_bulk_unregister_supply_alias(struct device *dev, 2596 const char *const *id, 2597 int num_id) 2598 { 2599 int i; 2600 2601 for (i = 0; i < num_id; ++i) 2602 regulator_unregister_supply_alias(dev, id[i]); 2603 } 2604 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias); 2605 2606 2607 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */ regulator_ena_gpio_request(struct regulator_dev * rdev,const struct regulator_config * config)2608 static int regulator_ena_gpio_request(struct regulator_dev *rdev, 2609 const struct regulator_config *config) 2610 { 2611 struct regulator_enable_gpio *pin, *new_pin; 2612 struct gpio_desc *gpiod; 2613 2614 gpiod = config->ena_gpiod; 2615 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL); 2616 2617 mutex_lock(®ulator_list_mutex); 2618 2619 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) { 2620 if (pin->gpiod == gpiod) { 2621 rdev_dbg(rdev, "GPIO is already used\n"); 2622 goto update_ena_gpio_to_rdev; 2623 } 2624 } 2625 2626 if (new_pin == NULL) { 2627 mutex_unlock(®ulator_list_mutex); 2628 return -ENOMEM; 2629 } 2630 2631 pin = new_pin; 2632 new_pin = NULL; 2633 2634 pin->gpiod = gpiod; 2635 list_add(&pin->list, ®ulator_ena_gpio_list); 2636 2637 update_ena_gpio_to_rdev: 2638 pin->request_count++; 2639 rdev->ena_pin = pin; 2640 2641 mutex_unlock(®ulator_list_mutex); 2642 kfree(new_pin); 2643 2644 return 0; 2645 } 2646 regulator_ena_gpio_free(struct regulator_dev * rdev)2647 static void regulator_ena_gpio_free(struct regulator_dev *rdev) 2648 { 2649 struct regulator_enable_gpio *pin, *n; 2650 2651 if (!rdev->ena_pin) 2652 return; 2653 2654 /* Free the GPIO only in case of no use */ 2655 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) { 2656 if (pin != rdev->ena_pin) 2657 continue; 2658 2659 if (--pin->request_count) 2660 break; 2661 2662 gpiod_put(pin->gpiod); 2663 list_del(&pin->list); 2664 kfree(pin); 2665 break; 2666 } 2667 2668 rdev->ena_pin = NULL; 2669 } 2670 2671 /** 2672 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control 2673 * @rdev: regulator_dev structure 2674 * @enable: enable GPIO at initial use? 2675 * 2676 * GPIO is enabled in case of initial use. (enable_count is 0) 2677 * GPIO is disabled when it is not shared any more. (enable_count <= 1) 2678 * 2679 * Return: 0 on success or a negative error number on failure. 2680 */ regulator_ena_gpio_ctrl(struct regulator_dev * rdev,bool enable)2681 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable) 2682 { 2683 struct regulator_enable_gpio *pin = rdev->ena_pin; 2684 2685 if (!pin) 2686 return -EINVAL; 2687 2688 if (enable) { 2689 /* Enable GPIO at initial use */ 2690 if (pin->enable_count == 0) 2691 gpiod_set_value_cansleep(pin->gpiod, 1); 2692 2693 pin->enable_count++; 2694 } else { 2695 if (pin->enable_count > 1) { 2696 pin->enable_count--; 2697 return 0; 2698 } 2699 2700 /* Disable GPIO if not used */ 2701 if (pin->enable_count <= 1) { 2702 gpiod_set_value_cansleep(pin->gpiod, 0); 2703 pin->enable_count = 0; 2704 } 2705 } 2706 2707 return 0; 2708 } 2709 2710 /** 2711 * _regulator_check_status_enabled - check if regulator status can be 2712 * interpreted as "regulator is enabled" 2713 * @rdev: the regulator device to check 2714 * 2715 * Return: 2716 * * 1 - if status shows regulator is in enabled state 2717 * * 0 - if not enabled state 2718 * * Error Value - as received from ops->get_status() 2719 */ _regulator_check_status_enabled(struct regulator_dev * rdev)2720 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev) 2721 { 2722 int ret = rdev->desc->ops->get_status(rdev); 2723 2724 if (ret < 0) { 2725 rdev_info(rdev, "get_status returned error: %d\n", ret); 2726 return ret; 2727 } 2728 2729 switch (ret) { 2730 case REGULATOR_STATUS_OFF: 2731 case REGULATOR_STATUS_ERROR: 2732 case REGULATOR_STATUS_UNDEFINED: 2733 return 0; 2734 default: 2735 return 1; 2736 } 2737 } 2738 _regulator_do_enable(struct regulator_dev * rdev)2739 static int _regulator_do_enable(struct regulator_dev *rdev) 2740 { 2741 int ret, delay; 2742 2743 /* Query before enabling in case configuration dependent. */ 2744 ret = _regulator_get_enable_time(rdev); 2745 if (ret >= 0) { 2746 delay = ret; 2747 } else { 2748 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret)); 2749 delay = 0; 2750 } 2751 2752 trace_regulator_enable(rdev_get_name(rdev)); 2753 2754 if (rdev->desc->off_on_delay) { 2755 /* if needed, keep a distance of off_on_delay from last time 2756 * this regulator was disabled. 2757 */ 2758 ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay); 2759 s64 remaining = ktime_us_delta(end, ktime_get_boottime()); 2760 2761 if (remaining > 0) 2762 fsleep(remaining); 2763 } 2764 2765 if (rdev->ena_pin) { 2766 if (!rdev->ena_gpio_state) { 2767 ret = regulator_ena_gpio_ctrl(rdev, true); 2768 if (ret < 0) 2769 return ret; 2770 rdev->ena_gpio_state = 1; 2771 } 2772 } else if (rdev->desc->ops->enable) { 2773 ret = rdev->desc->ops->enable(rdev); 2774 if (ret < 0) 2775 return ret; 2776 } else { 2777 return -EINVAL; 2778 } 2779 2780 /* Allow the regulator to ramp; it would be useful to extend 2781 * this for bulk operations so that the regulators can ramp 2782 * together. 2783 */ 2784 trace_regulator_enable_delay(rdev_get_name(rdev)); 2785 2786 /* If poll_enabled_time is set, poll upto the delay calculated 2787 * above, delaying poll_enabled_time uS to check if the regulator 2788 * actually got enabled. 2789 * If the regulator isn't enabled after our delay helper has expired, 2790 * return -ETIMEDOUT. 2791 */ 2792 if (rdev->desc->poll_enabled_time) { 2793 int time_remaining = delay; 2794 2795 while (time_remaining > 0) { 2796 fsleep(rdev->desc->poll_enabled_time); 2797 2798 if (rdev->desc->ops->get_status) { 2799 ret = _regulator_check_status_enabled(rdev); 2800 if (ret < 0) 2801 return ret; 2802 else if (ret) 2803 break; 2804 } else if (rdev->desc->ops->is_enabled(rdev)) 2805 break; 2806 2807 time_remaining -= rdev->desc->poll_enabled_time; 2808 } 2809 2810 if (time_remaining <= 0) { 2811 rdev_err(rdev, "Enabled check timed out\n"); 2812 return -ETIMEDOUT; 2813 } 2814 } else { 2815 fsleep(delay); 2816 } 2817 2818 trace_regulator_enable_complete(rdev_get_name(rdev)); 2819 2820 return 0; 2821 } 2822 2823 /** 2824 * _regulator_handle_consumer_enable - handle that a consumer enabled 2825 * @regulator: regulator source 2826 * 2827 * Some things on a regulator consumer (like the contribution towards total 2828 * load on the regulator) only have an effect when the consumer wants the 2829 * regulator enabled. Explained in example with two consumers of the same 2830 * regulator: 2831 * consumer A: set_load(100); => total load = 0 2832 * consumer A: regulator_enable(); => total load = 100 2833 * consumer B: set_load(1000); => total load = 100 2834 * consumer B: regulator_enable(); => total load = 1100 2835 * consumer A: regulator_disable(); => total_load = 1000 2836 * 2837 * This function (together with _regulator_handle_consumer_disable) is 2838 * responsible for keeping track of the refcount for a given regulator consumer 2839 * and applying / unapplying these things. 2840 * 2841 * Return: 0 on success or negative error number on failure. 2842 */ _regulator_handle_consumer_enable(struct regulator * regulator)2843 static int _regulator_handle_consumer_enable(struct regulator *regulator) 2844 { 2845 int ret; 2846 struct regulator_dev *rdev = regulator->rdev; 2847 2848 lockdep_assert_held_once(&rdev->mutex.base); 2849 2850 regulator->enable_count++; 2851 if (regulator->uA_load && regulator->enable_count == 1) { 2852 ret = drms_uA_update(rdev); 2853 if (ret) 2854 regulator->enable_count--; 2855 return ret; 2856 } 2857 2858 return 0; 2859 } 2860 2861 /** 2862 * _regulator_handle_consumer_disable - handle that a consumer disabled 2863 * @regulator: regulator source 2864 * 2865 * The opposite of _regulator_handle_consumer_enable(). 2866 * 2867 * Return: 0 on success or a negative error number on failure. 2868 */ _regulator_handle_consumer_disable(struct regulator * regulator)2869 static int _regulator_handle_consumer_disable(struct regulator *regulator) 2870 { 2871 struct regulator_dev *rdev = regulator->rdev; 2872 2873 lockdep_assert_held_once(&rdev->mutex.base); 2874 2875 if (!regulator->enable_count) { 2876 rdev_err(rdev, "Underflow of regulator enable count\n"); 2877 return -EINVAL; 2878 } 2879 2880 regulator->enable_count--; 2881 if (regulator->uA_load && regulator->enable_count == 0) 2882 return drms_uA_update(rdev); 2883 2884 return 0; 2885 } 2886 2887 /* locks held by regulator_enable() */ _regulator_enable(struct regulator * regulator)2888 static int _regulator_enable(struct regulator *regulator) 2889 { 2890 struct regulator_dev *rdev = regulator->rdev; 2891 int ret; 2892 2893 lockdep_assert_held_once(&rdev->mutex.base); 2894 2895 if (rdev->use_count == 0 && rdev->supply) { 2896 ret = _regulator_enable(rdev->supply); 2897 if (ret < 0) 2898 return ret; 2899 } 2900 2901 /* balance only if there are regulators coupled */ 2902 if (rdev->coupling_desc.n_coupled > 1) { 2903 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 2904 if (ret < 0) 2905 goto err_disable_supply; 2906 } 2907 2908 ret = _regulator_handle_consumer_enable(regulator); 2909 if (ret < 0) 2910 goto err_disable_supply; 2911 2912 if (rdev->use_count == 0) { 2913 /* 2914 * The regulator may already be enabled if it's not switchable 2915 * or was left on 2916 */ 2917 ret = _regulator_is_enabled(rdev); 2918 if (ret == -EINVAL || ret == 0) { 2919 if (!regulator_ops_is_valid(rdev, 2920 REGULATOR_CHANGE_STATUS)) { 2921 ret = -EPERM; 2922 goto err_consumer_disable; 2923 } 2924 2925 ret = _regulator_do_enable(rdev); 2926 if (ret < 0) 2927 goto err_consumer_disable; 2928 2929 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE, 2930 NULL); 2931 } else if (ret < 0) { 2932 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret)); 2933 goto err_consumer_disable; 2934 } 2935 /* Fallthrough on positive return values - already enabled */ 2936 } 2937 2938 if (regulator->enable_count == 1) 2939 rdev->use_count++; 2940 2941 return 0; 2942 2943 err_consumer_disable: 2944 _regulator_handle_consumer_disable(regulator); 2945 2946 err_disable_supply: 2947 if (rdev->use_count == 0 && rdev->supply) 2948 _regulator_disable(rdev->supply); 2949 2950 return ret; 2951 } 2952 2953 /** 2954 * regulator_enable - enable regulator output 2955 * @regulator: regulator source 2956 * 2957 * Request that the regulator be enabled with the regulator output at 2958 * the predefined voltage or current value. Calls to regulator_enable() 2959 * must be balanced with calls to regulator_disable(). 2960 * 2961 * NOTE: the output value can be set by other drivers, boot loader or may be 2962 * hardwired in the regulator. 2963 * 2964 * Return: 0 on success or a negative error number on failure. 2965 */ regulator_enable(struct regulator * regulator)2966 int regulator_enable(struct regulator *regulator) 2967 { 2968 struct regulator_dev *rdev = regulator->rdev; 2969 struct ww_acquire_ctx ww_ctx; 2970 int ret; 2971 2972 regulator_lock_dependent(rdev, &ww_ctx); 2973 ret = _regulator_enable(regulator); 2974 regulator_unlock_dependent(rdev, &ww_ctx); 2975 2976 return ret; 2977 } 2978 EXPORT_SYMBOL_GPL(regulator_enable); 2979 _regulator_do_disable(struct regulator_dev * rdev)2980 static int _regulator_do_disable(struct regulator_dev *rdev) 2981 { 2982 int ret; 2983 2984 trace_regulator_disable(rdev_get_name(rdev)); 2985 2986 if (rdev->ena_pin) { 2987 if (rdev->ena_gpio_state) { 2988 ret = regulator_ena_gpio_ctrl(rdev, false); 2989 if (ret < 0) 2990 return ret; 2991 rdev->ena_gpio_state = 0; 2992 } 2993 2994 } else if (rdev->desc->ops->disable) { 2995 ret = rdev->desc->ops->disable(rdev); 2996 if (ret != 0) 2997 return ret; 2998 } 2999 3000 if (rdev->desc->off_on_delay) 3001 rdev->last_off = ktime_get_boottime(); 3002 3003 trace_regulator_disable_complete(rdev_get_name(rdev)); 3004 3005 return 0; 3006 } 3007 3008 /* locks held by regulator_disable() */ _regulator_disable(struct regulator * regulator)3009 static int _regulator_disable(struct regulator *regulator) 3010 { 3011 struct regulator_dev *rdev = regulator->rdev; 3012 int ret = 0; 3013 3014 lockdep_assert_held_once(&rdev->mutex.base); 3015 3016 if (WARN(regulator->enable_count == 0, 3017 "unbalanced disables for %s\n", rdev_get_name(rdev))) 3018 return -EIO; 3019 3020 if (regulator->enable_count == 1) { 3021 /* disabling last enable_count from this regulator */ 3022 /* are we the last user and permitted to disable ? */ 3023 if (rdev->use_count == 1 && 3024 (rdev->constraints && !rdev->constraints->always_on)) { 3025 3026 /* we are last user */ 3027 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) { 3028 ret = _notifier_call_chain(rdev, 3029 REGULATOR_EVENT_PRE_DISABLE, 3030 NULL); 3031 if (ret & NOTIFY_STOP_MASK) 3032 return -EINVAL; 3033 3034 ret = _regulator_do_disable(rdev); 3035 if (ret < 0) { 3036 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret)); 3037 _notifier_call_chain(rdev, 3038 REGULATOR_EVENT_ABORT_DISABLE, 3039 NULL); 3040 return ret; 3041 } 3042 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, 3043 NULL); 3044 } 3045 3046 rdev->use_count = 0; 3047 } else if (rdev->use_count > 1) { 3048 rdev->use_count--; 3049 } 3050 } 3051 3052 if (ret == 0) 3053 ret = _regulator_handle_consumer_disable(regulator); 3054 3055 if (ret == 0 && rdev->coupling_desc.n_coupled > 1) 3056 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 3057 3058 if (ret == 0 && rdev->use_count == 0 && rdev->supply) 3059 ret = _regulator_disable(rdev->supply); 3060 3061 return ret; 3062 } 3063 3064 /** 3065 * regulator_disable - disable regulator output 3066 * @regulator: regulator source 3067 * 3068 * Disable the regulator output voltage or current. Calls to 3069 * regulator_enable() must be balanced with calls to 3070 * regulator_disable(). 3071 * 3072 * NOTE: this will only disable the regulator output if no other consumer 3073 * devices have it enabled, the regulator device supports disabling and 3074 * machine constraints permit this operation. 3075 * 3076 * Return: 0 on success or a negative error number on failure. 3077 */ regulator_disable(struct regulator * regulator)3078 int regulator_disable(struct regulator *regulator) 3079 { 3080 struct regulator_dev *rdev = regulator->rdev; 3081 struct ww_acquire_ctx ww_ctx; 3082 int ret; 3083 3084 regulator_lock_dependent(rdev, &ww_ctx); 3085 ret = _regulator_disable(regulator); 3086 regulator_unlock_dependent(rdev, &ww_ctx); 3087 3088 return ret; 3089 } 3090 EXPORT_SYMBOL_GPL(regulator_disable); 3091 3092 /* locks held by regulator_force_disable() */ _regulator_force_disable(struct regulator_dev * rdev)3093 static int _regulator_force_disable(struct regulator_dev *rdev) 3094 { 3095 int ret = 0; 3096 3097 lockdep_assert_held_once(&rdev->mutex.base); 3098 3099 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 3100 REGULATOR_EVENT_PRE_DISABLE, NULL); 3101 if (ret & NOTIFY_STOP_MASK) 3102 return -EINVAL; 3103 3104 ret = _regulator_do_disable(rdev); 3105 if (ret < 0) { 3106 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret)); 3107 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 3108 REGULATOR_EVENT_ABORT_DISABLE, NULL); 3109 return ret; 3110 } 3111 3112 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 3113 REGULATOR_EVENT_DISABLE, NULL); 3114 3115 return 0; 3116 } 3117 3118 /** 3119 * regulator_force_disable - force disable regulator output 3120 * @regulator: regulator source 3121 * 3122 * Forcibly disable the regulator output voltage or current. 3123 * NOTE: this *will* disable the regulator output even if other consumer 3124 * devices have it enabled. This should be used for situations when device 3125 * damage will likely occur if the regulator is not disabled (e.g. over temp). 3126 * 3127 * Return: 0 on success or a negative error number on failure. 3128 */ regulator_force_disable(struct regulator * regulator)3129 int regulator_force_disable(struct regulator *regulator) 3130 { 3131 struct regulator_dev *rdev = regulator->rdev; 3132 struct ww_acquire_ctx ww_ctx; 3133 int ret; 3134 3135 regulator_lock_dependent(rdev, &ww_ctx); 3136 3137 ret = _regulator_force_disable(regulator->rdev); 3138 3139 if (rdev->coupling_desc.n_coupled > 1) 3140 regulator_balance_voltage(rdev, PM_SUSPEND_ON); 3141 3142 if (regulator->uA_load) { 3143 regulator->uA_load = 0; 3144 ret = drms_uA_update(rdev); 3145 } 3146 3147 if (rdev->use_count != 0 && rdev->supply) 3148 _regulator_disable(rdev->supply); 3149 3150 regulator_unlock_dependent(rdev, &ww_ctx); 3151 3152 return ret; 3153 } 3154 EXPORT_SYMBOL_GPL(regulator_force_disable); 3155 regulator_disable_work(struct work_struct * work)3156 static void regulator_disable_work(struct work_struct *work) 3157 { 3158 struct regulator_dev *rdev = container_of(work, struct regulator_dev, 3159 disable_work.work); 3160 struct ww_acquire_ctx ww_ctx; 3161 int count, i, ret; 3162 struct regulator *regulator; 3163 int total_count = 0; 3164 3165 regulator_lock_dependent(rdev, &ww_ctx); 3166 3167 /* 3168 * Workqueue functions queue the new work instance while the previous 3169 * work instance is being processed. Cancel the queued work instance 3170 * as the work instance under processing does the job of the queued 3171 * work instance. 3172 */ 3173 cancel_delayed_work(&rdev->disable_work); 3174 3175 list_for_each_entry(regulator, &rdev->consumer_list, list) { 3176 count = regulator->deferred_disables; 3177 3178 if (!count) 3179 continue; 3180 3181 total_count += count; 3182 regulator->deferred_disables = 0; 3183 3184 for (i = 0; i < count; i++) { 3185 ret = _regulator_disable(regulator); 3186 if (ret != 0) 3187 rdev_err(rdev, "Deferred disable failed: %pe\n", 3188 ERR_PTR(ret)); 3189 } 3190 } 3191 WARN_ON(!total_count); 3192 3193 if (rdev->coupling_desc.n_coupled > 1) 3194 regulator_balance_voltage(rdev, PM_SUSPEND_ON); 3195 3196 regulator_unlock_dependent(rdev, &ww_ctx); 3197 } 3198 3199 /** 3200 * regulator_disable_deferred - disable regulator output with delay 3201 * @regulator: regulator source 3202 * @ms: milliseconds until the regulator is disabled 3203 * 3204 * Execute regulator_disable() on the regulator after a delay. This 3205 * is intended for use with devices that require some time to quiesce. 3206 * 3207 * NOTE: this will only disable the regulator output if no other consumer 3208 * devices have it enabled, the regulator device supports disabling and 3209 * machine constraints permit this operation. 3210 * 3211 * Return: 0 on success or a negative error number on failure. 3212 */ regulator_disable_deferred(struct regulator * regulator,int ms)3213 int regulator_disable_deferred(struct regulator *regulator, int ms) 3214 { 3215 struct regulator_dev *rdev = regulator->rdev; 3216 3217 if (!ms) 3218 return regulator_disable(regulator); 3219 3220 regulator_lock(rdev); 3221 regulator->deferred_disables++; 3222 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work, 3223 msecs_to_jiffies(ms)); 3224 regulator_unlock(rdev); 3225 3226 return 0; 3227 } 3228 EXPORT_SYMBOL_GPL(regulator_disable_deferred); 3229 _regulator_is_enabled(struct regulator_dev * rdev)3230 static int _regulator_is_enabled(struct regulator_dev *rdev) 3231 { 3232 /* A GPIO control always takes precedence */ 3233 if (rdev->ena_pin) 3234 return rdev->ena_gpio_state; 3235 3236 /* If we don't know then assume that the regulator is always on */ 3237 if (!rdev->desc->ops->is_enabled) 3238 return 1; 3239 3240 return rdev->desc->ops->is_enabled(rdev); 3241 } 3242 _regulator_list_voltage(struct regulator_dev * rdev,unsigned selector,int lock)3243 static int _regulator_list_voltage(struct regulator_dev *rdev, 3244 unsigned selector, int lock) 3245 { 3246 const struct regulator_ops *ops = rdev->desc->ops; 3247 int ret; 3248 3249 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector) 3250 return rdev->desc->fixed_uV; 3251 3252 if (ops->list_voltage) { 3253 if (selector >= rdev->desc->n_voltages) 3254 return -EINVAL; 3255 if (selector < rdev->desc->linear_min_sel) 3256 return 0; 3257 if (lock) 3258 regulator_lock(rdev); 3259 ret = ops->list_voltage(rdev, selector); 3260 if (lock) 3261 regulator_unlock(rdev); 3262 } else if (rdev->is_switch && rdev->supply) { 3263 ret = _regulator_list_voltage(rdev->supply->rdev, 3264 selector, lock); 3265 } else { 3266 return -EINVAL; 3267 } 3268 3269 if (ret > 0) { 3270 if (ret < rdev->constraints->min_uV) 3271 ret = 0; 3272 else if (ret > rdev->constraints->max_uV) 3273 ret = 0; 3274 } 3275 3276 return ret; 3277 } 3278 3279 /** 3280 * regulator_is_enabled - is the regulator output enabled 3281 * @regulator: regulator source 3282 * 3283 * Note that the device backing this regulator handle can have multiple 3284 * users, so it might be enabled even if regulator_enable() was never 3285 * called for this particular source. 3286 * 3287 * Return: Positive if the regulator driver backing the source/client 3288 * has requested that the device be enabled, zero if it hasn't, 3289 * else a negative error number. 3290 */ regulator_is_enabled(struct regulator * regulator)3291 int regulator_is_enabled(struct regulator *regulator) 3292 { 3293 int ret; 3294 3295 if (regulator->always_on) 3296 return 1; 3297 3298 regulator_lock(regulator->rdev); 3299 ret = _regulator_is_enabled(regulator->rdev); 3300 regulator_unlock(regulator->rdev); 3301 3302 return ret; 3303 } 3304 EXPORT_SYMBOL_GPL(regulator_is_enabled); 3305 3306 /** 3307 * regulator_count_voltages - count regulator_list_voltage() selectors 3308 * @regulator: regulator source 3309 * 3310 * Return: Number of selectors for @regulator, or negative error number. 3311 * 3312 * Selectors are numbered starting at zero, and typically correspond to 3313 * bitfields in hardware registers. 3314 */ regulator_count_voltages(struct regulator * regulator)3315 int regulator_count_voltages(struct regulator *regulator) 3316 { 3317 struct regulator_dev *rdev = regulator->rdev; 3318 3319 if (rdev->desc->n_voltages) 3320 return rdev->desc->n_voltages; 3321 3322 if (!rdev->is_switch || !rdev->supply) 3323 return -EINVAL; 3324 3325 return regulator_count_voltages(rdev->supply); 3326 } 3327 EXPORT_SYMBOL_GPL(regulator_count_voltages); 3328 3329 /** 3330 * regulator_list_voltage - enumerate supported voltages 3331 * @regulator: regulator source 3332 * @selector: identify voltage to list 3333 * Context: can sleep 3334 * 3335 * Return: Voltage for @selector that can be passed to regulator_set_voltage(), 3336 * 0 if @selector can't be used on this system, or a negative error 3337 * number on failure. 3338 */ regulator_list_voltage(struct regulator * regulator,unsigned selector)3339 int regulator_list_voltage(struct regulator *regulator, unsigned selector) 3340 { 3341 return _regulator_list_voltage(regulator->rdev, selector, 1); 3342 } 3343 EXPORT_SYMBOL_GPL(regulator_list_voltage); 3344 3345 /** 3346 * regulator_get_regmap - get the regulator's register map 3347 * @regulator: regulator source 3348 * 3349 * Return: Pointer to the &struct regmap for @regulator, or ERR_PTR() 3350 * encoded -%EOPNOTSUPP if @regulator doesn't use regmap. 3351 */ regulator_get_regmap(struct regulator * regulator)3352 struct regmap *regulator_get_regmap(struct regulator *regulator) 3353 { 3354 struct regmap *map = regulator->rdev->regmap; 3355 3356 return map ? map : ERR_PTR(-EOPNOTSUPP); 3357 } 3358 EXPORT_SYMBOL_GPL(regulator_get_regmap); 3359 3360 /** 3361 * regulator_get_hardware_vsel_register - get the HW voltage selector register 3362 * @regulator: regulator source 3363 * @vsel_reg: voltage selector register, output parameter 3364 * @vsel_mask: mask for voltage selector bitfield, output parameter 3365 * 3366 * Returns the hardware register offset and bitmask used for setting the 3367 * regulator voltage. This might be useful when configuring voltage-scaling 3368 * hardware or firmware that can make I2C requests behind the kernel's back, 3369 * for example. 3370 * 3371 * Return: 0 on success, or -%EOPNOTSUPP if the regulator does not support 3372 * voltage selectors. 3373 * 3374 * On success, the output parameters @vsel_reg and @vsel_mask are filled in 3375 * and 0 is returned, otherwise a negative error number is returned. 3376 */ regulator_get_hardware_vsel_register(struct regulator * regulator,unsigned * vsel_reg,unsigned * vsel_mask)3377 int regulator_get_hardware_vsel_register(struct regulator *regulator, 3378 unsigned *vsel_reg, 3379 unsigned *vsel_mask) 3380 { 3381 struct regulator_dev *rdev = regulator->rdev; 3382 const struct regulator_ops *ops = rdev->desc->ops; 3383 3384 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 3385 return -EOPNOTSUPP; 3386 3387 *vsel_reg = rdev->desc->vsel_reg; 3388 *vsel_mask = rdev->desc->vsel_mask; 3389 3390 return 0; 3391 } 3392 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register); 3393 3394 /** 3395 * regulator_list_hardware_vsel - get the HW-specific register value for a selector 3396 * @regulator: regulator source 3397 * @selector: identify voltage to list 3398 * 3399 * Converts the selector to a hardware-specific voltage selector that can be 3400 * directly written to the regulator registers. The address of the voltage 3401 * register can be determined by calling @regulator_get_hardware_vsel_register. 3402 * 3403 * Return: 0 on success, -%EINVAL if the selector is outside the supported 3404 * range, or -%EOPNOTSUPP if the regulator does not support voltage 3405 * selectors. 3406 */ regulator_list_hardware_vsel(struct regulator * regulator,unsigned selector)3407 int regulator_list_hardware_vsel(struct regulator *regulator, 3408 unsigned selector) 3409 { 3410 struct regulator_dev *rdev = regulator->rdev; 3411 const struct regulator_ops *ops = rdev->desc->ops; 3412 3413 if (selector >= rdev->desc->n_voltages) 3414 return -EINVAL; 3415 if (selector < rdev->desc->linear_min_sel) 3416 return 0; 3417 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 3418 return -EOPNOTSUPP; 3419 3420 return selector; 3421 } 3422 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel); 3423 3424 /** 3425 * regulator_hardware_enable - access the HW for enable/disable regulator 3426 * @regulator: regulator source 3427 * @enable: true for enable, false for disable 3428 * 3429 * Request that the regulator be enabled/disabled with the regulator output at 3430 * the predefined voltage or current value. 3431 * 3432 * Return: 0 on success or a negative error number on failure. 3433 */ regulator_hardware_enable(struct regulator * regulator,bool enable)3434 int regulator_hardware_enable(struct regulator *regulator, bool enable) 3435 { 3436 struct regulator_dev *rdev = regulator->rdev; 3437 const struct regulator_ops *ops = rdev->desc->ops; 3438 int ret = -EOPNOTSUPP; 3439 3440 if (!rdev->exclusive || !ops || !ops->enable || !ops->disable) 3441 return ret; 3442 3443 if (enable) 3444 ret = ops->enable(rdev); 3445 else 3446 ret = ops->disable(rdev); 3447 3448 return ret; 3449 } 3450 EXPORT_SYMBOL_GPL(regulator_hardware_enable); 3451 3452 /** 3453 * regulator_get_linear_step - return the voltage step size between VSEL values 3454 * @regulator: regulator source 3455 * 3456 * Return: The voltage step size between VSEL values for linear regulators, 3457 * or 0 if the regulator isn't a linear regulator. 3458 */ regulator_get_linear_step(struct regulator * regulator)3459 unsigned int regulator_get_linear_step(struct regulator *regulator) 3460 { 3461 struct regulator_dev *rdev = regulator->rdev; 3462 3463 return rdev->desc->uV_step; 3464 } 3465 EXPORT_SYMBOL_GPL(regulator_get_linear_step); 3466 3467 /** 3468 * regulator_is_supported_voltage - check if a voltage range can be supported 3469 * 3470 * @regulator: Regulator to check. 3471 * @min_uV: Minimum required voltage in uV. 3472 * @max_uV: Maximum required voltage in uV. 3473 * 3474 * Return: 1 if the voltage range is supported, 0 if not, or a negative error 3475 * number if @regulator's voltage can't be changed and voltage readback 3476 * failed. 3477 */ regulator_is_supported_voltage(struct regulator * regulator,int min_uV,int max_uV)3478 int regulator_is_supported_voltage(struct regulator *regulator, 3479 int min_uV, int max_uV) 3480 { 3481 struct regulator_dev *rdev = regulator->rdev; 3482 int i, voltages, ret; 3483 3484 /* If we can't change voltage check the current voltage */ 3485 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 3486 ret = regulator_get_voltage(regulator); 3487 if (ret >= 0) 3488 return min_uV <= ret && ret <= max_uV; 3489 else 3490 return ret; 3491 } 3492 3493 /* Any voltage within constrains range is fine? */ 3494 if (rdev->desc->continuous_voltage_range) 3495 return min_uV >= rdev->constraints->min_uV && 3496 max_uV <= rdev->constraints->max_uV; 3497 3498 ret = regulator_count_voltages(regulator); 3499 if (ret < 0) 3500 return 0; 3501 voltages = ret; 3502 3503 for (i = 0; i < voltages; i++) { 3504 ret = regulator_list_voltage(regulator, i); 3505 3506 if (ret >= min_uV && ret <= max_uV) 3507 return 1; 3508 } 3509 3510 return 0; 3511 } 3512 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); 3513 regulator_map_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)3514 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV, 3515 int max_uV) 3516 { 3517 const struct regulator_desc *desc = rdev->desc; 3518 3519 if (desc->ops->map_voltage) 3520 return desc->ops->map_voltage(rdev, min_uV, max_uV); 3521 3522 if (desc->ops->list_voltage == regulator_list_voltage_linear) 3523 return regulator_map_voltage_linear(rdev, min_uV, max_uV); 3524 3525 if (desc->ops->list_voltage == regulator_list_voltage_linear_range) 3526 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV); 3527 3528 if (desc->ops->list_voltage == 3529 regulator_list_voltage_pickable_linear_range) 3530 return regulator_map_voltage_pickable_linear_range(rdev, 3531 min_uV, max_uV); 3532 3533 return regulator_map_voltage_iterate(rdev, min_uV, max_uV); 3534 } 3535 _regulator_call_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV,unsigned * selector)3536 static int _regulator_call_set_voltage(struct regulator_dev *rdev, 3537 int min_uV, int max_uV, 3538 unsigned *selector) 3539 { 3540 struct pre_voltage_change_data data; 3541 int ret; 3542 3543 data.old_uV = regulator_get_voltage_rdev(rdev); 3544 data.min_uV = min_uV; 3545 data.max_uV = max_uV; 3546 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 3547 &data); 3548 if (ret & NOTIFY_STOP_MASK) 3549 return -EINVAL; 3550 3551 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector); 3552 if (ret >= 0) 3553 return ret; 3554 3555 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 3556 (void *)data.old_uV); 3557 3558 return ret; 3559 } 3560 _regulator_call_set_voltage_sel(struct regulator_dev * rdev,int uV,unsigned selector)3561 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev, 3562 int uV, unsigned selector) 3563 { 3564 struct pre_voltage_change_data data; 3565 int ret; 3566 3567 data.old_uV = regulator_get_voltage_rdev(rdev); 3568 data.min_uV = uV; 3569 data.max_uV = uV; 3570 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 3571 &data); 3572 if (ret & NOTIFY_STOP_MASK) 3573 return -EINVAL; 3574 3575 ret = rdev->desc->ops->set_voltage_sel(rdev, selector); 3576 if (ret >= 0) 3577 return ret; 3578 3579 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 3580 (void *)data.old_uV); 3581 3582 return ret; 3583 } 3584 _regulator_set_voltage_sel_step(struct regulator_dev * rdev,int uV,int new_selector)3585 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev, 3586 int uV, int new_selector) 3587 { 3588 const struct regulator_ops *ops = rdev->desc->ops; 3589 int diff, old_sel, curr_sel, ret; 3590 3591 /* Stepping is only needed if the regulator is enabled. */ 3592 if (!_regulator_is_enabled(rdev)) 3593 goto final_set; 3594 3595 if (!ops->get_voltage_sel) 3596 return -EINVAL; 3597 3598 old_sel = ops->get_voltage_sel(rdev); 3599 if (old_sel < 0) 3600 return old_sel; 3601 3602 diff = new_selector - old_sel; 3603 if (diff == 0) 3604 return 0; /* No change needed. */ 3605 3606 if (diff > 0) { 3607 /* Stepping up. */ 3608 for (curr_sel = old_sel + rdev->desc->vsel_step; 3609 curr_sel < new_selector; 3610 curr_sel += rdev->desc->vsel_step) { 3611 /* 3612 * Call the callback directly instead of using 3613 * _regulator_call_set_voltage_sel() as we don't 3614 * want to notify anyone yet. Same in the branch 3615 * below. 3616 */ 3617 ret = ops->set_voltage_sel(rdev, curr_sel); 3618 if (ret) 3619 goto try_revert; 3620 } 3621 } else { 3622 /* Stepping down. */ 3623 for (curr_sel = old_sel - rdev->desc->vsel_step; 3624 curr_sel > new_selector; 3625 curr_sel -= rdev->desc->vsel_step) { 3626 ret = ops->set_voltage_sel(rdev, curr_sel); 3627 if (ret) 3628 goto try_revert; 3629 } 3630 } 3631 3632 final_set: 3633 /* The final selector will trigger the notifiers. */ 3634 return _regulator_call_set_voltage_sel(rdev, uV, new_selector); 3635 3636 try_revert: 3637 /* 3638 * At least try to return to the previous voltage if setting a new 3639 * one failed. 3640 */ 3641 (void)ops->set_voltage_sel(rdev, old_sel); 3642 return ret; 3643 } 3644 _regulator_set_voltage_time(struct regulator_dev * rdev,int old_uV,int new_uV)3645 static int _regulator_set_voltage_time(struct regulator_dev *rdev, 3646 int old_uV, int new_uV) 3647 { 3648 unsigned int ramp_delay = 0; 3649 3650 if (rdev->constraints->ramp_delay) 3651 ramp_delay = rdev->constraints->ramp_delay; 3652 else if (rdev->desc->ramp_delay) 3653 ramp_delay = rdev->desc->ramp_delay; 3654 else if (rdev->constraints->settling_time) 3655 return rdev->constraints->settling_time; 3656 else if (rdev->constraints->settling_time_up && 3657 (new_uV > old_uV)) 3658 return rdev->constraints->settling_time_up; 3659 else if (rdev->constraints->settling_time_down && 3660 (new_uV < old_uV)) 3661 return rdev->constraints->settling_time_down; 3662 3663 if (ramp_delay == 0) 3664 return 0; 3665 3666 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay); 3667 } 3668 _regulator_do_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)3669 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 3670 int min_uV, int max_uV) 3671 { 3672 int ret; 3673 int delay = 0; 3674 int best_val = 0; 3675 unsigned int selector; 3676 int old_selector = -1; 3677 const struct regulator_ops *ops = rdev->desc->ops; 3678 int old_uV = regulator_get_voltage_rdev(rdev); 3679 3680 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); 3681 3682 min_uV += rdev->constraints->uV_offset; 3683 max_uV += rdev->constraints->uV_offset; 3684 3685 /* 3686 * If we can't obtain the old selector there is not enough 3687 * info to call set_voltage_time_sel(). 3688 */ 3689 if (_regulator_is_enabled(rdev) && 3690 ops->set_voltage_time_sel && ops->get_voltage_sel) { 3691 old_selector = ops->get_voltage_sel(rdev); 3692 if (old_selector < 0) 3693 return old_selector; 3694 } 3695 3696 if (ops->set_voltage) { 3697 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV, 3698 &selector); 3699 3700 if (ret >= 0) { 3701 if (ops->list_voltage) 3702 best_val = ops->list_voltage(rdev, 3703 selector); 3704 else 3705 best_val = regulator_get_voltage_rdev(rdev); 3706 } 3707 3708 } else if (ops->set_voltage_sel) { 3709 ret = regulator_map_voltage(rdev, min_uV, max_uV); 3710 if (ret >= 0) { 3711 best_val = ops->list_voltage(rdev, ret); 3712 if (min_uV <= best_val && max_uV >= best_val) { 3713 selector = ret; 3714 if (old_selector == selector) 3715 ret = 0; 3716 else if (rdev->desc->vsel_step) 3717 ret = _regulator_set_voltage_sel_step( 3718 rdev, best_val, selector); 3719 else 3720 ret = _regulator_call_set_voltage_sel( 3721 rdev, best_val, selector); 3722 } else { 3723 ret = -EINVAL; 3724 } 3725 } 3726 } else { 3727 ret = -EINVAL; 3728 } 3729 3730 if (ret) 3731 goto out; 3732 3733 if (ops->set_voltage_time_sel) { 3734 /* 3735 * Call set_voltage_time_sel if successfully obtained 3736 * old_selector 3737 */ 3738 if (old_selector >= 0 && old_selector != selector) 3739 delay = ops->set_voltage_time_sel(rdev, old_selector, 3740 selector); 3741 } else { 3742 if (old_uV != best_val) { 3743 if (ops->set_voltage_time) 3744 delay = ops->set_voltage_time(rdev, old_uV, 3745 best_val); 3746 else 3747 delay = _regulator_set_voltage_time(rdev, 3748 old_uV, 3749 best_val); 3750 } 3751 } 3752 3753 if (delay < 0) { 3754 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay)); 3755 delay = 0; 3756 } 3757 3758 /* Insert any necessary delays */ 3759 fsleep(delay); 3760 3761 if (best_val >= 0) { 3762 unsigned long data = best_val; 3763 3764 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, 3765 (void *)data); 3766 } 3767 3768 out: 3769 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val); 3770 3771 return ret; 3772 } 3773 _regulator_do_set_suspend_voltage(struct regulator_dev * rdev,int min_uV,int max_uV,suspend_state_t state)3774 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev, 3775 int min_uV, int max_uV, suspend_state_t state) 3776 { 3777 struct regulator_state *rstate; 3778 int uV, sel; 3779 3780 rstate = regulator_get_suspend_state(rdev, state); 3781 if (rstate == NULL) 3782 return -EINVAL; 3783 3784 if (min_uV < rstate->min_uV) 3785 min_uV = rstate->min_uV; 3786 if (max_uV > rstate->max_uV) 3787 max_uV = rstate->max_uV; 3788 3789 sel = regulator_map_voltage(rdev, min_uV, max_uV); 3790 if (sel < 0) 3791 return sel; 3792 3793 uV = rdev->desc->ops->list_voltage(rdev, sel); 3794 if (uV >= min_uV && uV <= max_uV) 3795 rstate->uV = uV; 3796 3797 return 0; 3798 } 3799 regulator_set_voltage_unlocked(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)3800 static int regulator_set_voltage_unlocked(struct regulator *regulator, 3801 int min_uV, int max_uV, 3802 suspend_state_t state) 3803 { 3804 struct regulator_dev *rdev = regulator->rdev; 3805 struct regulator_voltage *voltage = ®ulator->voltage[state]; 3806 int ret = 0; 3807 int old_min_uV, old_max_uV; 3808 int current_uV; 3809 3810 /* If we're setting the same range as last time the change 3811 * should be a noop (some cpufreq implementations use the same 3812 * voltage for multiple frequencies, for example). 3813 */ 3814 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV) 3815 goto out; 3816 3817 /* If we're trying to set a range that overlaps the current voltage, 3818 * return successfully even though the regulator does not support 3819 * changing the voltage. 3820 */ 3821 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 3822 current_uV = regulator_get_voltage_rdev(rdev); 3823 if (min_uV <= current_uV && current_uV <= max_uV) { 3824 voltage->min_uV = min_uV; 3825 voltage->max_uV = max_uV; 3826 goto out; 3827 } 3828 } 3829 3830 /* sanity check */ 3831 if (!rdev->desc->ops->set_voltage && 3832 !rdev->desc->ops->set_voltage_sel) { 3833 ret = -EINVAL; 3834 goto out; 3835 } 3836 3837 /* constraints check */ 3838 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 3839 if (ret < 0) 3840 goto out; 3841 3842 /* restore original values in case of error */ 3843 old_min_uV = voltage->min_uV; 3844 old_max_uV = voltage->max_uV; 3845 voltage->min_uV = min_uV; 3846 voltage->max_uV = max_uV; 3847 3848 /* for not coupled regulators this will just set the voltage */ 3849 ret = regulator_balance_voltage(rdev, state); 3850 if (ret < 0) { 3851 voltage->min_uV = old_min_uV; 3852 voltage->max_uV = old_max_uV; 3853 } 3854 3855 out: 3856 return ret; 3857 } 3858 regulator_set_voltage_rdev(struct regulator_dev * rdev,int min_uV,int max_uV,suspend_state_t state)3859 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV, 3860 int max_uV, suspend_state_t state) 3861 { 3862 int best_supply_uV = 0; 3863 int supply_change_uV = 0; 3864 int ret; 3865 3866 if (rdev->supply && 3867 regulator_ops_is_valid(rdev->supply->rdev, 3868 REGULATOR_CHANGE_VOLTAGE) && 3869 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage || 3870 rdev->desc->ops->get_voltage_sel))) { 3871 int current_supply_uV; 3872 int selector; 3873 3874 selector = regulator_map_voltage(rdev, min_uV, max_uV); 3875 if (selector < 0) { 3876 ret = selector; 3877 goto out; 3878 } 3879 3880 best_supply_uV = _regulator_list_voltage(rdev, selector, 0); 3881 if (best_supply_uV < 0) { 3882 ret = best_supply_uV; 3883 goto out; 3884 } 3885 3886 best_supply_uV += rdev->desc->min_dropout_uV; 3887 3888 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev); 3889 if (current_supply_uV < 0) { 3890 ret = current_supply_uV; 3891 goto out; 3892 } 3893 3894 supply_change_uV = best_supply_uV - current_supply_uV; 3895 } 3896 3897 if (supply_change_uV > 0) { 3898 ret = regulator_set_voltage_unlocked(rdev->supply, 3899 best_supply_uV, INT_MAX, state); 3900 if (ret) { 3901 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n", 3902 ERR_PTR(ret)); 3903 goto out; 3904 } 3905 } 3906 3907 if (state == PM_SUSPEND_ON) 3908 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 3909 else 3910 ret = _regulator_do_set_suspend_voltage(rdev, min_uV, 3911 max_uV, state); 3912 if (ret < 0) 3913 goto out; 3914 3915 if (supply_change_uV < 0) { 3916 ret = regulator_set_voltage_unlocked(rdev->supply, 3917 best_supply_uV, INT_MAX, state); 3918 if (ret) 3919 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n", 3920 ERR_PTR(ret)); 3921 /* No need to fail here */ 3922 ret = 0; 3923 } 3924 3925 out: 3926 return ret; 3927 } 3928 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev); 3929 regulator_limit_voltage_step(struct regulator_dev * rdev,int * current_uV,int * min_uV)3930 static int regulator_limit_voltage_step(struct regulator_dev *rdev, 3931 int *current_uV, int *min_uV) 3932 { 3933 struct regulation_constraints *constraints = rdev->constraints; 3934 3935 /* Limit voltage change only if necessary */ 3936 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev)) 3937 return 1; 3938 3939 if (*current_uV < 0) { 3940 *current_uV = regulator_get_voltage_rdev(rdev); 3941 3942 if (*current_uV < 0) 3943 return *current_uV; 3944 } 3945 3946 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step) 3947 return 1; 3948 3949 /* Clamp target voltage within the given step */ 3950 if (*current_uV < *min_uV) 3951 *min_uV = min(*current_uV + constraints->max_uV_step, 3952 *min_uV); 3953 else 3954 *min_uV = max(*current_uV - constraints->max_uV_step, 3955 *min_uV); 3956 3957 return 0; 3958 } 3959 regulator_get_optimal_voltage(struct regulator_dev * rdev,int * current_uV,int * min_uV,int * max_uV,suspend_state_t state,int n_coupled)3960 static int regulator_get_optimal_voltage(struct regulator_dev *rdev, 3961 int *current_uV, 3962 int *min_uV, int *max_uV, 3963 suspend_state_t state, 3964 int n_coupled) 3965 { 3966 struct coupling_desc *c_desc = &rdev->coupling_desc; 3967 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs; 3968 struct regulation_constraints *constraints = rdev->constraints; 3969 int desired_min_uV = 0, desired_max_uV = INT_MAX; 3970 int max_current_uV = 0, min_current_uV = INT_MAX; 3971 int highest_min_uV = 0, target_uV, possible_uV; 3972 int i, ret, max_spread; 3973 bool done; 3974 3975 *current_uV = -1; 3976 3977 /* 3978 * If there are no coupled regulators, simply set the voltage 3979 * demanded by consumers. 3980 */ 3981 if (n_coupled == 1) { 3982 /* 3983 * If consumers don't provide any demands, set voltage 3984 * to min_uV 3985 */ 3986 desired_min_uV = constraints->min_uV; 3987 desired_max_uV = constraints->max_uV; 3988 3989 ret = regulator_check_consumers(rdev, 3990 &desired_min_uV, 3991 &desired_max_uV, state); 3992 if (ret < 0) 3993 return ret; 3994 3995 done = true; 3996 3997 goto finish; 3998 } 3999 4000 /* Find highest min desired voltage */ 4001 for (i = 0; i < n_coupled; i++) { 4002 int tmp_min = 0; 4003 int tmp_max = INT_MAX; 4004 4005 lockdep_assert_held_once(&c_rdevs[i]->mutex.base); 4006 4007 ret = regulator_check_consumers(c_rdevs[i], 4008 &tmp_min, 4009 &tmp_max, state); 4010 if (ret < 0) 4011 return ret; 4012 4013 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max); 4014 if (ret < 0) 4015 return ret; 4016 4017 highest_min_uV = max(highest_min_uV, tmp_min); 4018 4019 if (i == 0) { 4020 desired_min_uV = tmp_min; 4021 desired_max_uV = tmp_max; 4022 } 4023 } 4024 4025 max_spread = constraints->max_spread[0]; 4026 4027 /* 4028 * Let target_uV be equal to the desired one if possible. 4029 * If not, set it to minimum voltage, allowed by other coupled 4030 * regulators. 4031 */ 4032 target_uV = max(desired_min_uV, highest_min_uV - max_spread); 4033 4034 /* 4035 * Find min and max voltages, which currently aren't violating 4036 * max_spread. 4037 */ 4038 for (i = 1; i < n_coupled; i++) { 4039 int tmp_act; 4040 4041 if (!_regulator_is_enabled(c_rdevs[i])) 4042 continue; 4043 4044 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]); 4045 if (tmp_act < 0) 4046 return tmp_act; 4047 4048 min_current_uV = min(tmp_act, min_current_uV); 4049 max_current_uV = max(tmp_act, max_current_uV); 4050 } 4051 4052 /* There aren't any other regulators enabled */ 4053 if (max_current_uV == 0) { 4054 possible_uV = target_uV; 4055 } else { 4056 /* 4057 * Correct target voltage, so as it currently isn't 4058 * violating max_spread 4059 */ 4060 possible_uV = max(target_uV, max_current_uV - max_spread); 4061 possible_uV = min(possible_uV, min_current_uV + max_spread); 4062 } 4063 4064 if (possible_uV > desired_max_uV) 4065 return -EINVAL; 4066 4067 done = (possible_uV == target_uV); 4068 desired_min_uV = possible_uV; 4069 4070 finish: 4071 /* Apply max_uV_step constraint if necessary */ 4072 if (state == PM_SUSPEND_ON) { 4073 ret = regulator_limit_voltage_step(rdev, current_uV, 4074 &desired_min_uV); 4075 if (ret < 0) 4076 return ret; 4077 4078 if (ret == 0) 4079 done = false; 4080 } 4081 4082 /* Set current_uV if wasn't done earlier in the code and if necessary */ 4083 if (n_coupled > 1 && *current_uV == -1) { 4084 4085 if (_regulator_is_enabled(rdev)) { 4086 ret = regulator_get_voltage_rdev(rdev); 4087 if (ret < 0) 4088 return ret; 4089 4090 *current_uV = ret; 4091 } else { 4092 *current_uV = desired_min_uV; 4093 } 4094 } 4095 4096 *min_uV = desired_min_uV; 4097 *max_uV = desired_max_uV; 4098 4099 return done; 4100 } 4101 regulator_do_balance_voltage(struct regulator_dev * rdev,suspend_state_t state,bool skip_coupled)4102 int regulator_do_balance_voltage(struct regulator_dev *rdev, 4103 suspend_state_t state, bool skip_coupled) 4104 { 4105 struct regulator_dev **c_rdevs; 4106 struct regulator_dev *best_rdev; 4107 struct coupling_desc *c_desc = &rdev->coupling_desc; 4108 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev; 4109 unsigned int delta, best_delta; 4110 unsigned long c_rdev_done = 0; 4111 bool best_c_rdev_done; 4112 4113 c_rdevs = c_desc->coupled_rdevs; 4114 n_coupled = skip_coupled ? 1 : c_desc->n_coupled; 4115 4116 /* 4117 * Find the best possible voltage change on each loop. Leave the loop 4118 * if there isn't any possible change. 4119 */ 4120 do { 4121 best_c_rdev_done = false; 4122 best_delta = 0; 4123 best_min_uV = 0; 4124 best_max_uV = 0; 4125 best_c_rdev = 0; 4126 best_rdev = NULL; 4127 4128 /* 4129 * Find highest difference between optimal voltage 4130 * and current voltage. 4131 */ 4132 for (i = 0; i < n_coupled; i++) { 4133 /* 4134 * optimal_uV is the best voltage that can be set for 4135 * i-th regulator at the moment without violating 4136 * max_spread constraint in order to balance 4137 * the coupled voltages. 4138 */ 4139 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0; 4140 4141 if (test_bit(i, &c_rdev_done)) 4142 continue; 4143 4144 ret = regulator_get_optimal_voltage(c_rdevs[i], 4145 ¤t_uV, 4146 &optimal_uV, 4147 &optimal_max_uV, 4148 state, n_coupled); 4149 if (ret < 0) 4150 goto out; 4151 4152 delta = abs(optimal_uV - current_uV); 4153 4154 if (delta && best_delta <= delta) { 4155 best_c_rdev_done = ret; 4156 best_delta = delta; 4157 best_rdev = c_rdevs[i]; 4158 best_min_uV = optimal_uV; 4159 best_max_uV = optimal_max_uV; 4160 best_c_rdev = i; 4161 } 4162 } 4163 4164 /* Nothing to change, return successfully */ 4165 if (!best_rdev) { 4166 ret = 0; 4167 goto out; 4168 } 4169 4170 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV, 4171 best_max_uV, state); 4172 4173 if (ret < 0) 4174 goto out; 4175 4176 if (best_c_rdev_done) 4177 set_bit(best_c_rdev, &c_rdev_done); 4178 4179 } while (n_coupled > 1); 4180 4181 out: 4182 return ret; 4183 } 4184 regulator_balance_voltage(struct regulator_dev * rdev,suspend_state_t state)4185 static int regulator_balance_voltage(struct regulator_dev *rdev, 4186 suspend_state_t state) 4187 { 4188 struct coupling_desc *c_desc = &rdev->coupling_desc; 4189 struct regulator_coupler *coupler = c_desc->coupler; 4190 bool skip_coupled = false; 4191 4192 /* 4193 * If system is in a state other than PM_SUSPEND_ON, don't check 4194 * other coupled regulators. 4195 */ 4196 if (state != PM_SUSPEND_ON) 4197 skip_coupled = true; 4198 4199 if (c_desc->n_resolved < c_desc->n_coupled) { 4200 rdev_err(rdev, "Not all coupled regulators registered\n"); 4201 return -EPERM; 4202 } 4203 4204 /* Invoke custom balancer for customized couplers */ 4205 if (coupler && coupler->balance_voltage) 4206 return coupler->balance_voltage(coupler, rdev, state); 4207 4208 return regulator_do_balance_voltage(rdev, state, skip_coupled); 4209 } 4210 4211 /** 4212 * regulator_set_voltage - set regulator output voltage 4213 * @regulator: regulator source 4214 * @min_uV: Minimum required voltage in uV 4215 * @max_uV: Maximum acceptable voltage in uV 4216 * 4217 * Sets a voltage regulator to the desired output voltage. This can be set 4218 * during any regulator state. IOW, regulator can be disabled or enabled. 4219 * 4220 * If the regulator is enabled then the voltage will change to the new value 4221 * immediately otherwise if the regulator is disabled the regulator will 4222 * output at the new voltage when enabled. 4223 * 4224 * NOTE: If the regulator is shared between several devices then the lowest 4225 * request voltage that meets the system constraints will be used. 4226 * Regulator system constraints must be set for this regulator before 4227 * calling this function otherwise this call will fail. 4228 * 4229 * Return: 0 on success or a negative error number on failure. 4230 */ regulator_set_voltage(struct regulator * regulator,int min_uV,int max_uV)4231 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 4232 { 4233 struct ww_acquire_ctx ww_ctx; 4234 int ret; 4235 4236 regulator_lock_dependent(regulator->rdev, &ww_ctx); 4237 4238 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV, 4239 PM_SUSPEND_ON); 4240 4241 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 4242 4243 return ret; 4244 } 4245 EXPORT_SYMBOL_GPL(regulator_set_voltage); 4246 regulator_suspend_toggle(struct regulator_dev * rdev,suspend_state_t state,bool en)4247 static inline int regulator_suspend_toggle(struct regulator_dev *rdev, 4248 suspend_state_t state, bool en) 4249 { 4250 struct regulator_state *rstate; 4251 4252 rstate = regulator_get_suspend_state(rdev, state); 4253 if (rstate == NULL) 4254 return -EINVAL; 4255 4256 if (!rstate->changeable) 4257 return -EPERM; 4258 4259 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND; 4260 4261 return 0; 4262 } 4263 regulator_suspend_enable(struct regulator_dev * rdev,suspend_state_t state)4264 int regulator_suspend_enable(struct regulator_dev *rdev, 4265 suspend_state_t state) 4266 { 4267 return regulator_suspend_toggle(rdev, state, true); 4268 } 4269 EXPORT_SYMBOL_GPL(regulator_suspend_enable); 4270 regulator_suspend_disable(struct regulator_dev * rdev,suspend_state_t state)4271 int regulator_suspend_disable(struct regulator_dev *rdev, 4272 suspend_state_t state) 4273 { 4274 struct regulator *regulator; 4275 struct regulator_voltage *voltage; 4276 4277 /* 4278 * if any consumer wants this regulator device keeping on in 4279 * suspend states, don't set it as disabled. 4280 */ 4281 list_for_each_entry(regulator, &rdev->consumer_list, list) { 4282 voltage = ®ulator->voltage[state]; 4283 if (voltage->min_uV || voltage->max_uV) 4284 return 0; 4285 } 4286 4287 return regulator_suspend_toggle(rdev, state, false); 4288 } 4289 EXPORT_SYMBOL_GPL(regulator_suspend_disable); 4290 _regulator_set_suspend_voltage(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)4291 static int _regulator_set_suspend_voltage(struct regulator *regulator, 4292 int min_uV, int max_uV, 4293 suspend_state_t state) 4294 { 4295 struct regulator_dev *rdev = regulator->rdev; 4296 struct regulator_state *rstate; 4297 4298 rstate = regulator_get_suspend_state(rdev, state); 4299 if (rstate == NULL) 4300 return -EINVAL; 4301 4302 if (rstate->min_uV == rstate->max_uV) { 4303 rdev_err(rdev, "The suspend voltage can't be changed!\n"); 4304 return -EPERM; 4305 } 4306 4307 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state); 4308 } 4309 regulator_set_suspend_voltage(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)4310 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV, 4311 int max_uV, suspend_state_t state) 4312 { 4313 struct ww_acquire_ctx ww_ctx; 4314 int ret; 4315 4316 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */ 4317 if (regulator_check_states(state) || state == PM_SUSPEND_ON) 4318 return -EINVAL; 4319 4320 regulator_lock_dependent(regulator->rdev, &ww_ctx); 4321 4322 ret = _regulator_set_suspend_voltage(regulator, min_uV, 4323 max_uV, state); 4324 4325 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 4326 4327 return ret; 4328 } 4329 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage); 4330 4331 /** 4332 * regulator_set_voltage_time - get raise/fall time 4333 * @regulator: regulator source 4334 * @old_uV: starting voltage in microvolts 4335 * @new_uV: target voltage in microvolts 4336 * 4337 * Provided with the starting and ending voltage, this function attempts to 4338 * calculate the time in microseconds required to rise or fall to this new 4339 * voltage. 4340 * 4341 * Return: ramp time in microseconds, or a negative error number if calculation failed. 4342 */ regulator_set_voltage_time(struct regulator * regulator,int old_uV,int new_uV)4343 int regulator_set_voltage_time(struct regulator *regulator, 4344 int old_uV, int new_uV) 4345 { 4346 struct regulator_dev *rdev = regulator->rdev; 4347 const struct regulator_ops *ops = rdev->desc->ops; 4348 int old_sel = -1; 4349 int new_sel = -1; 4350 int voltage; 4351 int i; 4352 4353 if (ops->set_voltage_time) 4354 return ops->set_voltage_time(rdev, old_uV, new_uV); 4355 else if (!ops->set_voltage_time_sel) 4356 return _regulator_set_voltage_time(rdev, old_uV, new_uV); 4357 4358 /* Currently requires operations to do this */ 4359 if (!ops->list_voltage || !rdev->desc->n_voltages) 4360 return -EINVAL; 4361 4362 for (i = 0; i < rdev->desc->n_voltages; i++) { 4363 /* We only look for exact voltage matches here */ 4364 if (i < rdev->desc->linear_min_sel) 4365 continue; 4366 4367 if (old_sel >= 0 && new_sel >= 0) 4368 break; 4369 4370 voltage = regulator_list_voltage(regulator, i); 4371 if (voltage < 0) 4372 return -EINVAL; 4373 if (voltage == 0) 4374 continue; 4375 if (voltage == old_uV) 4376 old_sel = i; 4377 if (voltage == new_uV) 4378 new_sel = i; 4379 } 4380 4381 if (old_sel < 0 || new_sel < 0) 4382 return -EINVAL; 4383 4384 return ops->set_voltage_time_sel(rdev, old_sel, new_sel); 4385 } 4386 EXPORT_SYMBOL_GPL(regulator_set_voltage_time); 4387 4388 /** 4389 * regulator_set_voltage_time_sel - get raise/fall time 4390 * @rdev: regulator source device 4391 * @old_selector: selector for starting voltage 4392 * @new_selector: selector for target voltage 4393 * 4394 * Provided with the starting and target voltage selectors, this function 4395 * returns time in microseconds required to rise or fall to this new voltage 4396 * 4397 * Drivers providing ramp_delay in regulation_constraints can use this as their 4398 * set_voltage_time_sel() operation. 4399 * 4400 * Return: ramp time in microseconds, or a negative error number if calculation failed. 4401 */ regulator_set_voltage_time_sel(struct regulator_dev * rdev,unsigned int old_selector,unsigned int new_selector)4402 int regulator_set_voltage_time_sel(struct regulator_dev *rdev, 4403 unsigned int old_selector, 4404 unsigned int new_selector) 4405 { 4406 int old_volt, new_volt; 4407 4408 /* sanity check */ 4409 if (!rdev->desc->ops->list_voltage) 4410 return -EINVAL; 4411 4412 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector); 4413 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector); 4414 4415 if (rdev->desc->ops->set_voltage_time) 4416 return rdev->desc->ops->set_voltage_time(rdev, old_volt, 4417 new_volt); 4418 else 4419 return _regulator_set_voltage_time(rdev, old_volt, new_volt); 4420 } 4421 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel); 4422 regulator_sync_voltage_rdev(struct regulator_dev * rdev)4423 int regulator_sync_voltage_rdev(struct regulator_dev *rdev) 4424 { 4425 int ret; 4426 4427 regulator_lock(rdev); 4428 4429 if (!rdev->desc->ops->set_voltage && 4430 !rdev->desc->ops->set_voltage_sel) { 4431 ret = -EINVAL; 4432 goto out; 4433 } 4434 4435 /* balance only, if regulator is coupled */ 4436 if (rdev->coupling_desc.n_coupled > 1) 4437 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 4438 else 4439 ret = -EOPNOTSUPP; 4440 4441 out: 4442 regulator_unlock(rdev); 4443 return ret; 4444 } 4445 4446 /** 4447 * regulator_sync_voltage - re-apply last regulator output voltage 4448 * @regulator: regulator source 4449 * 4450 * Re-apply the last configured voltage. This is intended to be used 4451 * where some external control source the consumer is cooperating with 4452 * has caused the configured voltage to change. 4453 * 4454 * Return: 0 on success or a negative error number on failure. 4455 */ regulator_sync_voltage(struct regulator * regulator)4456 int regulator_sync_voltage(struct regulator *regulator) 4457 { 4458 struct regulator_dev *rdev = regulator->rdev; 4459 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON]; 4460 int ret, min_uV, max_uV; 4461 4462 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) 4463 return 0; 4464 4465 regulator_lock(rdev); 4466 4467 if (!rdev->desc->ops->set_voltage && 4468 !rdev->desc->ops->set_voltage_sel) { 4469 ret = -EINVAL; 4470 goto out; 4471 } 4472 4473 /* This is only going to work if we've had a voltage configured. */ 4474 if (!voltage->min_uV && !voltage->max_uV) { 4475 ret = -EINVAL; 4476 goto out; 4477 } 4478 4479 min_uV = voltage->min_uV; 4480 max_uV = voltage->max_uV; 4481 4482 /* This should be a paranoia check... */ 4483 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 4484 if (ret < 0) 4485 goto out; 4486 4487 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0); 4488 if (ret < 0) 4489 goto out; 4490 4491 /* balance only, if regulator is coupled */ 4492 if (rdev->coupling_desc.n_coupled > 1) 4493 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 4494 else 4495 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 4496 4497 out: 4498 regulator_unlock(rdev); 4499 return ret; 4500 } 4501 EXPORT_SYMBOL_GPL(regulator_sync_voltage); 4502 regulator_get_voltage_rdev(struct regulator_dev * rdev)4503 int regulator_get_voltage_rdev(struct regulator_dev *rdev) 4504 { 4505 int sel, ret; 4506 bool bypassed; 4507 4508 if (rdev->desc->ops->get_bypass) { 4509 ret = rdev->desc->ops->get_bypass(rdev, &bypassed); 4510 if (ret < 0) 4511 return ret; 4512 if (bypassed) { 4513 /* if bypassed the regulator must have a supply */ 4514 if (!rdev->supply) { 4515 rdev_err(rdev, 4516 "bypassed regulator has no supply!\n"); 4517 return -EPROBE_DEFER; 4518 } 4519 4520 return regulator_get_voltage_rdev(rdev->supply->rdev); 4521 } 4522 } 4523 4524 if (rdev->desc->ops->get_voltage_sel) { 4525 sel = rdev->desc->ops->get_voltage_sel(rdev); 4526 if (sel < 0) 4527 return sel; 4528 ret = rdev->desc->ops->list_voltage(rdev, sel); 4529 } else if (rdev->desc->ops->get_voltage) { 4530 ret = rdev->desc->ops->get_voltage(rdev); 4531 } else if (rdev->desc->ops->list_voltage) { 4532 ret = rdev->desc->ops->list_voltage(rdev, 0); 4533 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) { 4534 ret = rdev->desc->fixed_uV; 4535 } else if (rdev->supply) { 4536 ret = regulator_get_voltage_rdev(rdev->supply->rdev); 4537 } else if (rdev->supply_name) { 4538 return -EPROBE_DEFER; 4539 } else { 4540 return -EINVAL; 4541 } 4542 4543 if (ret < 0) 4544 return ret; 4545 return ret - rdev->constraints->uV_offset; 4546 } 4547 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev); 4548 4549 /** 4550 * regulator_get_voltage - get regulator output voltage 4551 * @regulator: regulator source 4552 * 4553 * Return: Current regulator voltage in uV, or a negative error number on failure. 4554 * 4555 * NOTE: If the regulator is disabled it will return the voltage value. This 4556 * function should not be used to determine regulator state. 4557 */ regulator_get_voltage(struct regulator * regulator)4558 int regulator_get_voltage(struct regulator *regulator) 4559 { 4560 struct ww_acquire_ctx ww_ctx; 4561 int ret; 4562 4563 regulator_lock_dependent(regulator->rdev, &ww_ctx); 4564 ret = regulator_get_voltage_rdev(regulator->rdev); 4565 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 4566 4567 return ret; 4568 } 4569 EXPORT_SYMBOL_GPL(regulator_get_voltage); 4570 4571 /** 4572 * regulator_set_current_limit - set regulator output current limit 4573 * @regulator: regulator source 4574 * @min_uA: Minimum supported current in uA 4575 * @max_uA: Maximum supported current in uA 4576 * 4577 * Sets current sink to the desired output current. This can be set during 4578 * any regulator state. IOW, regulator can be disabled or enabled. 4579 * 4580 * If the regulator is enabled then the current will change to the new value 4581 * immediately otherwise if the regulator is disabled the regulator will 4582 * output at the new current when enabled. 4583 * 4584 * NOTE: Regulator system constraints must be set for this regulator before 4585 * calling this function otherwise this call will fail. 4586 * 4587 * Return: 0 on success or a negative error number on failure. 4588 */ regulator_set_current_limit(struct regulator * regulator,int min_uA,int max_uA)4589 int regulator_set_current_limit(struct regulator *regulator, 4590 int min_uA, int max_uA) 4591 { 4592 struct regulator_dev *rdev = regulator->rdev; 4593 int ret; 4594 4595 regulator_lock(rdev); 4596 4597 /* sanity check */ 4598 if (!rdev->desc->ops->set_current_limit) { 4599 ret = -EINVAL; 4600 goto out; 4601 } 4602 4603 /* constraints check */ 4604 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); 4605 if (ret < 0) 4606 goto out; 4607 4608 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); 4609 out: 4610 regulator_unlock(rdev); 4611 return ret; 4612 } 4613 EXPORT_SYMBOL_GPL(regulator_set_current_limit); 4614 _regulator_get_current_limit_unlocked(struct regulator_dev * rdev)4615 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev) 4616 { 4617 /* sanity check */ 4618 if (!rdev->desc->ops->get_current_limit) 4619 return -EINVAL; 4620 4621 return rdev->desc->ops->get_current_limit(rdev); 4622 } 4623 _regulator_get_current_limit(struct regulator_dev * rdev)4624 static int _regulator_get_current_limit(struct regulator_dev *rdev) 4625 { 4626 int ret; 4627 4628 regulator_lock(rdev); 4629 ret = _regulator_get_current_limit_unlocked(rdev); 4630 regulator_unlock(rdev); 4631 4632 return ret; 4633 } 4634 4635 /** 4636 * regulator_get_current_limit - get regulator output current 4637 * @regulator: regulator source 4638 * 4639 * Return: Current supplied by the specified current sink in uA, 4640 * or a negative error number on failure. 4641 * 4642 * NOTE: If the regulator is disabled it will return the current value. This 4643 * function should not be used to determine regulator state. 4644 */ regulator_get_current_limit(struct regulator * regulator)4645 int regulator_get_current_limit(struct regulator *regulator) 4646 { 4647 return _regulator_get_current_limit(regulator->rdev); 4648 } 4649 EXPORT_SYMBOL_GPL(regulator_get_current_limit); 4650 4651 /** 4652 * regulator_get_unclaimed_power_budget - get regulator unclaimed power budget 4653 * @regulator: regulator source 4654 * 4655 * Return: Unclaimed power budget of the regulator in mW. 4656 */ regulator_get_unclaimed_power_budget(struct regulator * regulator)4657 int regulator_get_unclaimed_power_budget(struct regulator *regulator) 4658 { 4659 return regulator->rdev->constraints->pw_budget_mW - 4660 regulator->rdev->pw_requested_mW; 4661 } 4662 EXPORT_SYMBOL_GPL(regulator_get_unclaimed_power_budget); 4663 4664 /** 4665 * regulator_request_power_budget - request power budget on a regulator 4666 * @regulator: regulator source 4667 * @pw_req: Power requested 4668 * 4669 * Return: 0 on success or a negative error number on failure. 4670 */ regulator_request_power_budget(struct regulator * regulator,unsigned int pw_req)4671 int regulator_request_power_budget(struct regulator *regulator, 4672 unsigned int pw_req) 4673 { 4674 struct regulator_dev *rdev = regulator->rdev; 4675 int ret = 0, pw_tot_req; 4676 4677 regulator_lock(rdev); 4678 if (rdev->supply) { 4679 ret = regulator_request_power_budget(rdev->supply, pw_req); 4680 if (ret < 0) 4681 goto out; 4682 } 4683 4684 pw_tot_req = rdev->pw_requested_mW + pw_req; 4685 if (pw_tot_req > rdev->constraints->pw_budget_mW) { 4686 rdev_warn(rdev, "power requested %d mW out of budget %d mW", 4687 pw_req, 4688 rdev->constraints->pw_budget_mW - rdev->pw_requested_mW); 4689 regulator_notifier_call_chain(rdev, 4690 REGULATOR_EVENT_OVER_CURRENT_WARN, 4691 NULL); 4692 ret = -ERANGE; 4693 goto out; 4694 } 4695 4696 rdev->pw_requested_mW = pw_tot_req; 4697 out: 4698 regulator_unlock(rdev); 4699 return ret; 4700 } 4701 EXPORT_SYMBOL_GPL(regulator_request_power_budget); 4702 4703 /** 4704 * regulator_free_power_budget - free power budget on a regulator 4705 * @regulator: regulator source 4706 * @pw: Power to be released. 4707 * 4708 * Return: Power budget of the regulator in mW. 4709 */ regulator_free_power_budget(struct regulator * regulator,unsigned int pw)4710 void regulator_free_power_budget(struct regulator *regulator, 4711 unsigned int pw) 4712 { 4713 struct regulator_dev *rdev = regulator->rdev; 4714 int pw_tot_req; 4715 4716 regulator_lock(rdev); 4717 if (rdev->supply) 4718 regulator_free_power_budget(rdev->supply, pw); 4719 4720 pw_tot_req = rdev->pw_requested_mW - pw; 4721 if (pw_tot_req >= 0) 4722 rdev->pw_requested_mW = pw_tot_req; 4723 else 4724 rdev_warn(rdev, 4725 "too much power freed %d mW (already requested %d mW)", 4726 pw, rdev->pw_requested_mW); 4727 4728 regulator_unlock(rdev); 4729 } 4730 EXPORT_SYMBOL_GPL(regulator_free_power_budget); 4731 4732 /** 4733 * regulator_set_mode - set regulator operating mode 4734 * @regulator: regulator source 4735 * @mode: operating mode - one of the REGULATOR_MODE constants 4736 * 4737 * Set regulator operating mode to increase regulator efficiency or improve 4738 * regulation performance. 4739 * 4740 * NOTE: Regulator system constraints must be set for this regulator before 4741 * calling this function otherwise this call will fail. 4742 * 4743 * Return: 0 on success or a negative error number on failure. 4744 */ regulator_set_mode(struct regulator * regulator,unsigned int mode)4745 int regulator_set_mode(struct regulator *regulator, unsigned int mode) 4746 { 4747 struct regulator_dev *rdev = regulator->rdev; 4748 int ret; 4749 int regulator_curr_mode; 4750 4751 regulator_lock(rdev); 4752 4753 /* sanity check */ 4754 if (!rdev->desc->ops->set_mode) { 4755 ret = -EINVAL; 4756 goto out; 4757 } 4758 4759 /* return if the same mode is requested */ 4760 if (rdev->desc->ops->get_mode) { 4761 regulator_curr_mode = rdev->desc->ops->get_mode(rdev); 4762 if (regulator_curr_mode == mode) { 4763 ret = 0; 4764 goto out; 4765 } 4766 } 4767 4768 /* constraints check */ 4769 ret = regulator_mode_constrain(rdev, &mode); 4770 if (ret < 0) 4771 goto out; 4772 4773 ret = rdev->desc->ops->set_mode(rdev, mode); 4774 out: 4775 regulator_unlock(rdev); 4776 return ret; 4777 } 4778 EXPORT_SYMBOL_GPL(regulator_set_mode); 4779 _regulator_get_mode_unlocked(struct regulator_dev * rdev)4780 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev) 4781 { 4782 /* sanity check */ 4783 if (!rdev->desc->ops->get_mode) 4784 return -EINVAL; 4785 4786 return rdev->desc->ops->get_mode(rdev); 4787 } 4788 _regulator_get_mode(struct regulator_dev * rdev)4789 static unsigned int _regulator_get_mode(struct regulator_dev *rdev) 4790 { 4791 int ret; 4792 4793 regulator_lock(rdev); 4794 ret = _regulator_get_mode_unlocked(rdev); 4795 regulator_unlock(rdev); 4796 4797 return ret; 4798 } 4799 4800 /** 4801 * regulator_get_mode - get regulator operating mode 4802 * @regulator: regulator source 4803 * 4804 * Get the current regulator operating mode. 4805 * 4806 * Return: Current operating mode as %REGULATOR_MODE_* values, 4807 * or a negative error number on failure. 4808 */ regulator_get_mode(struct regulator * regulator)4809 unsigned int regulator_get_mode(struct regulator *regulator) 4810 { 4811 return _regulator_get_mode(regulator->rdev); 4812 } 4813 EXPORT_SYMBOL_GPL(regulator_get_mode); 4814 rdev_get_cached_err_flags(struct regulator_dev * rdev)4815 static int rdev_get_cached_err_flags(struct regulator_dev *rdev) 4816 { 4817 int ret = 0; 4818 4819 if (rdev->use_cached_err) { 4820 spin_lock(&rdev->err_lock); 4821 ret = rdev->cached_err; 4822 spin_unlock(&rdev->err_lock); 4823 } 4824 return ret; 4825 } 4826 _regulator_get_error_flags(struct regulator_dev * rdev,unsigned int * flags)4827 static int _regulator_get_error_flags(struct regulator_dev *rdev, 4828 unsigned int *flags) 4829 { 4830 int cached_flags, ret = 0; 4831 4832 regulator_lock(rdev); 4833 4834 cached_flags = rdev_get_cached_err_flags(rdev); 4835 4836 if (rdev->desc->ops->get_error_flags) 4837 ret = rdev->desc->ops->get_error_flags(rdev, flags); 4838 else if (!rdev->use_cached_err) 4839 ret = -EINVAL; 4840 4841 *flags |= cached_flags; 4842 4843 regulator_unlock(rdev); 4844 4845 return ret; 4846 } 4847 4848 /** 4849 * regulator_get_error_flags - get regulator error information 4850 * @regulator: regulator source 4851 * @flags: pointer to store error flags 4852 * 4853 * Get the current regulator error information. 4854 * 4855 * Return: 0 on success or a negative error number on failure. 4856 */ regulator_get_error_flags(struct regulator * regulator,unsigned int * flags)4857 int regulator_get_error_flags(struct regulator *regulator, 4858 unsigned int *flags) 4859 { 4860 return _regulator_get_error_flags(regulator->rdev, flags); 4861 } 4862 EXPORT_SYMBOL_GPL(regulator_get_error_flags); 4863 4864 /** 4865 * regulator_set_load - set regulator load 4866 * @regulator: regulator source 4867 * @uA_load: load current 4868 * 4869 * Notifies the regulator core of a new device load. This is then used by 4870 * DRMS (if enabled by constraints) to set the most efficient regulator 4871 * operating mode for the new regulator loading. 4872 * 4873 * Consumer devices notify their supply regulator of the maximum power 4874 * they will require (can be taken from device datasheet in the power 4875 * consumption tables) when they change operational status and hence power 4876 * state. Examples of operational state changes that can affect power 4877 * consumption are :- 4878 * 4879 * o Device is opened / closed. 4880 * o Device I/O is about to begin or has just finished. 4881 * o Device is idling in between work. 4882 * 4883 * This information is also exported via sysfs to userspace. 4884 * 4885 * DRMS will sum the total requested load on the regulator and change 4886 * to the most efficient operating mode if platform constraints allow. 4887 * 4888 * NOTE: when a regulator consumer requests to have a regulator 4889 * disabled then any load that consumer requested no longer counts 4890 * toward the total requested load. If the regulator is re-enabled 4891 * then the previously requested load will start counting again. 4892 * 4893 * If a regulator is an always-on regulator then an individual consumer's 4894 * load will still be removed if that consumer is fully disabled. 4895 * 4896 * Return: 0 on success or a negative error number on failure. 4897 */ regulator_set_load(struct regulator * regulator,int uA_load)4898 int regulator_set_load(struct regulator *regulator, int uA_load) 4899 { 4900 struct regulator_dev *rdev = regulator->rdev; 4901 int old_uA_load; 4902 int ret = 0; 4903 4904 regulator_lock(rdev); 4905 old_uA_load = regulator->uA_load; 4906 regulator->uA_load = uA_load; 4907 if (regulator->enable_count && old_uA_load != uA_load) { 4908 ret = drms_uA_update(rdev); 4909 if (ret < 0) 4910 regulator->uA_load = old_uA_load; 4911 } 4912 regulator_unlock(rdev); 4913 4914 return ret; 4915 } 4916 EXPORT_SYMBOL_GPL(regulator_set_load); 4917 4918 /** 4919 * regulator_allow_bypass - allow the regulator to go into bypass mode 4920 * 4921 * @regulator: Regulator to configure 4922 * @enable: enable or disable bypass mode 4923 * 4924 * Allow the regulator to go into bypass mode if all other consumers 4925 * for the regulator also enable bypass mode and the machine 4926 * constraints allow this. Bypass mode means that the regulator is 4927 * simply passing the input directly to the output with no regulation. 4928 * 4929 * Return: 0 on success or if changing bypass is not possible, or 4930 * a negative error number on failure. 4931 */ regulator_allow_bypass(struct regulator * regulator,bool enable)4932 int regulator_allow_bypass(struct regulator *regulator, bool enable) 4933 { 4934 struct regulator_dev *rdev = regulator->rdev; 4935 const char *name = rdev_get_name(rdev); 4936 int ret = 0; 4937 4938 if (!rdev->desc->ops->set_bypass) 4939 return 0; 4940 4941 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS)) 4942 return 0; 4943 4944 regulator_lock(rdev); 4945 4946 if (enable && !regulator->bypass) { 4947 rdev->bypass_count++; 4948 4949 if (rdev->bypass_count == rdev->open_count) { 4950 trace_regulator_bypass_enable(name); 4951 4952 ret = rdev->desc->ops->set_bypass(rdev, enable); 4953 if (ret != 0) 4954 rdev->bypass_count--; 4955 else 4956 trace_regulator_bypass_enable_complete(name); 4957 } 4958 4959 } else if (!enable && regulator->bypass) { 4960 rdev->bypass_count--; 4961 4962 if (rdev->bypass_count != rdev->open_count) { 4963 trace_regulator_bypass_disable(name); 4964 4965 ret = rdev->desc->ops->set_bypass(rdev, enable); 4966 if (ret != 0) 4967 rdev->bypass_count++; 4968 else 4969 trace_regulator_bypass_disable_complete(name); 4970 } 4971 } 4972 4973 if (ret == 0) 4974 regulator->bypass = enable; 4975 4976 regulator_unlock(rdev); 4977 4978 return ret; 4979 } 4980 EXPORT_SYMBOL_GPL(regulator_allow_bypass); 4981 4982 /** 4983 * regulator_register_notifier - register regulator event notifier 4984 * @regulator: regulator source 4985 * @nb: notifier block 4986 * 4987 * Register notifier block to receive regulator events. 4988 * 4989 * Return: 0 on success or a negative error number on failure. 4990 */ regulator_register_notifier(struct regulator * regulator,struct notifier_block * nb)4991 int regulator_register_notifier(struct regulator *regulator, 4992 struct notifier_block *nb) 4993 { 4994 return blocking_notifier_chain_register(®ulator->rdev->notifier, 4995 nb); 4996 } 4997 EXPORT_SYMBOL_GPL(regulator_register_notifier); 4998 4999 /** 5000 * regulator_unregister_notifier - unregister regulator event notifier 5001 * @regulator: regulator source 5002 * @nb: notifier block 5003 * 5004 * Unregister regulator event notifier block. 5005 * 5006 * Return: 0 on success or a negative error number on failure. 5007 */ regulator_unregister_notifier(struct regulator * regulator,struct notifier_block * nb)5008 int regulator_unregister_notifier(struct regulator *regulator, 5009 struct notifier_block *nb) 5010 { 5011 return blocking_notifier_chain_unregister(®ulator->rdev->notifier, 5012 nb); 5013 } 5014 EXPORT_SYMBOL_GPL(regulator_unregister_notifier); 5015 5016 /* notify regulator consumers and downstream regulator consumers. 5017 * Note mutex must be held by caller. 5018 */ _notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)5019 static int _notifier_call_chain(struct regulator_dev *rdev, 5020 unsigned long event, void *data) 5021 { 5022 /* call rdev chain first */ 5023 int ret = blocking_notifier_call_chain(&rdev->notifier, event, data); 5024 5025 if (IS_REACHABLE(CONFIG_REGULATOR_NETLINK_EVENTS)) { 5026 struct device *parent = rdev->dev.parent; 5027 const char *rname = rdev_get_name(rdev); 5028 char name[32]; 5029 5030 /* Avoid duplicate debugfs directory names */ 5031 if (parent && rname == rdev->desc->name) { 5032 snprintf(name, sizeof(name), "%s-%s", dev_name(parent), 5033 rname); 5034 rname = name; 5035 } 5036 reg_generate_netlink_event(rname, event); 5037 } 5038 5039 return ret; 5040 } 5041 _regulator_bulk_get(struct device * dev,int num_consumers,struct regulator_bulk_data * consumers,enum regulator_get_type get_type)5042 int _regulator_bulk_get(struct device *dev, int num_consumers, 5043 struct regulator_bulk_data *consumers, enum regulator_get_type get_type) 5044 { 5045 int i; 5046 int ret; 5047 5048 for (i = 0; i < num_consumers; i++) 5049 consumers[i].consumer = NULL; 5050 5051 for (i = 0; i < num_consumers; i++) { 5052 consumers[i].consumer = _regulator_get(dev, 5053 consumers[i].supply, get_type); 5054 if (IS_ERR(consumers[i].consumer)) { 5055 ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer), 5056 "Failed to get supply '%s'\n", 5057 consumers[i].supply); 5058 consumers[i].consumer = NULL; 5059 goto err; 5060 } 5061 5062 if (consumers[i].init_load_uA > 0) { 5063 ret = regulator_set_load(consumers[i].consumer, 5064 consumers[i].init_load_uA); 5065 if (ret) { 5066 i++; 5067 goto err; 5068 } 5069 } 5070 } 5071 5072 return 0; 5073 5074 err: 5075 while (--i >= 0) 5076 regulator_put(consumers[i].consumer); 5077 5078 return ret; 5079 } 5080 5081 /** 5082 * regulator_bulk_get - get multiple regulator consumers 5083 * 5084 * @dev: Device to supply 5085 * @num_consumers: Number of consumers to register 5086 * @consumers: Configuration of consumers; clients are stored here. 5087 * 5088 * This helper function allows drivers to get several regulator 5089 * consumers in one operation. If any of the regulators cannot be 5090 * acquired then any regulators that were allocated will be freed 5091 * before returning to the caller. 5092 * 5093 * Return: 0 on success or a negative error number on failure. 5094 */ regulator_bulk_get(struct device * dev,int num_consumers,struct regulator_bulk_data * consumers)5095 int regulator_bulk_get(struct device *dev, int num_consumers, 5096 struct regulator_bulk_data *consumers) 5097 { 5098 return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET); 5099 } 5100 EXPORT_SYMBOL_GPL(regulator_bulk_get); 5101 regulator_bulk_enable_async(void * data,async_cookie_t cookie)5102 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) 5103 { 5104 struct regulator_bulk_data *bulk = data; 5105 5106 bulk->ret = regulator_enable(bulk->consumer); 5107 } 5108 5109 /** 5110 * regulator_bulk_enable - enable multiple regulator consumers 5111 * 5112 * @num_consumers: Number of consumers 5113 * @consumers: Consumer data; clients are stored here. 5114 * 5115 * This convenience API allows consumers to enable multiple regulator 5116 * clients in a single API call. If any consumers cannot be enabled 5117 * then any others that were enabled will be disabled again prior to 5118 * return. 5119 * 5120 * Return: 0 on success or a negative error number on failure. 5121 */ regulator_bulk_enable(int num_consumers,struct regulator_bulk_data * consumers)5122 int regulator_bulk_enable(int num_consumers, 5123 struct regulator_bulk_data *consumers) 5124 { 5125 ASYNC_DOMAIN_EXCLUSIVE(async_domain); 5126 int i; 5127 int ret = 0; 5128 5129 for (i = 0; i < num_consumers; i++) { 5130 async_schedule_domain(regulator_bulk_enable_async, 5131 &consumers[i], &async_domain); 5132 } 5133 5134 async_synchronize_full_domain(&async_domain); 5135 5136 /* If any consumer failed we need to unwind any that succeeded */ 5137 for (i = 0; i < num_consumers; i++) { 5138 if (consumers[i].ret != 0) { 5139 ret = consumers[i].ret; 5140 goto err; 5141 } 5142 } 5143 5144 return 0; 5145 5146 err: 5147 for (i = 0; i < num_consumers; i++) { 5148 if (consumers[i].ret < 0) 5149 pr_err("Failed to enable %s: %pe\n", consumers[i].supply, 5150 ERR_PTR(consumers[i].ret)); 5151 else 5152 regulator_disable(consumers[i].consumer); 5153 } 5154 5155 return ret; 5156 } 5157 EXPORT_SYMBOL_GPL(regulator_bulk_enable); 5158 5159 /** 5160 * regulator_bulk_disable - disable multiple regulator consumers 5161 * 5162 * @num_consumers: Number of consumers 5163 * @consumers: Consumer data; clients are stored here. 5164 * 5165 * This convenience API allows consumers to disable multiple regulator 5166 * clients in a single API call. If any consumers cannot be disabled 5167 * then any others that were disabled will be enabled again prior to 5168 * return. 5169 * 5170 * Return: 0 on success or a negative error number on failure. 5171 */ regulator_bulk_disable(int num_consumers,struct regulator_bulk_data * consumers)5172 int regulator_bulk_disable(int num_consumers, 5173 struct regulator_bulk_data *consumers) 5174 { 5175 int i; 5176 int ret, r; 5177 5178 for (i = num_consumers - 1; i >= 0; --i) { 5179 ret = regulator_disable(consumers[i].consumer); 5180 if (ret != 0) 5181 goto err; 5182 } 5183 5184 return 0; 5185 5186 err: 5187 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret)); 5188 for (++i; i < num_consumers; ++i) { 5189 r = regulator_enable(consumers[i].consumer); 5190 if (r != 0) 5191 pr_err("Failed to re-enable %s: %pe\n", 5192 consumers[i].supply, ERR_PTR(r)); 5193 } 5194 5195 return ret; 5196 } 5197 EXPORT_SYMBOL_GPL(regulator_bulk_disable); 5198 5199 /** 5200 * regulator_bulk_force_disable - force disable multiple regulator consumers 5201 * 5202 * @num_consumers: Number of consumers 5203 * @consumers: Consumer data; clients are stored here. 5204 * 5205 * This convenience API allows consumers to forcibly disable multiple regulator 5206 * clients in a single API call. 5207 * NOTE: This should be used for situations when device damage will 5208 * likely occur if the regulators are not disabled (e.g. over temp). 5209 * Although regulator_force_disable function call for some consumers can 5210 * return error numbers, the function is called for all consumers. 5211 * 5212 * Return: 0 on success or a negative error number on failure. 5213 */ regulator_bulk_force_disable(int num_consumers,struct regulator_bulk_data * consumers)5214 int regulator_bulk_force_disable(int num_consumers, 5215 struct regulator_bulk_data *consumers) 5216 { 5217 int i; 5218 int ret = 0; 5219 5220 for (i = 0; i < num_consumers; i++) { 5221 consumers[i].ret = 5222 regulator_force_disable(consumers[i].consumer); 5223 5224 /* Store first error for reporting */ 5225 if (consumers[i].ret && !ret) 5226 ret = consumers[i].ret; 5227 } 5228 5229 return ret; 5230 } 5231 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); 5232 5233 /** 5234 * regulator_bulk_free - free multiple regulator consumers 5235 * 5236 * @num_consumers: Number of consumers 5237 * @consumers: Consumer data; clients are stored here. 5238 * 5239 * This convenience API allows consumers to free multiple regulator 5240 * clients in a single API call. 5241 */ regulator_bulk_free(int num_consumers,struct regulator_bulk_data * consumers)5242 void regulator_bulk_free(int num_consumers, 5243 struct regulator_bulk_data *consumers) 5244 { 5245 int i; 5246 5247 for (i = 0; i < num_consumers; i++) { 5248 regulator_put(consumers[i].consumer); 5249 consumers[i].consumer = NULL; 5250 } 5251 } 5252 EXPORT_SYMBOL_GPL(regulator_bulk_free); 5253 5254 /** 5255 * regulator_handle_critical - Handle events for system-critical regulators. 5256 * @rdev: The regulator device. 5257 * @event: The event being handled. 5258 * 5259 * This function handles critical events such as under-voltage, over-current, 5260 * and unknown errors for regulators deemed system-critical. On detecting such 5261 * events, it triggers a hardware protection shutdown with a defined timeout. 5262 */ regulator_handle_critical(struct regulator_dev * rdev,unsigned long event)5263 static void regulator_handle_critical(struct regulator_dev *rdev, 5264 unsigned long event) 5265 { 5266 const char *reason = NULL; 5267 5268 if (!rdev->constraints->system_critical) 5269 return; 5270 5271 switch (event) { 5272 case REGULATOR_EVENT_UNDER_VOLTAGE: 5273 reason = "System critical regulator: voltage drop detected"; 5274 break; 5275 case REGULATOR_EVENT_OVER_CURRENT: 5276 reason = "System critical regulator: over-current detected"; 5277 break; 5278 case REGULATOR_EVENT_FAIL: 5279 reason = "System critical regulator: unknown error"; 5280 } 5281 5282 if (!reason) 5283 return; 5284 5285 hw_protection_trigger(reason, 5286 rdev->constraints->uv_less_critical_window_ms); 5287 } 5288 5289 /** 5290 * regulator_notifier_call_chain - call regulator event notifier 5291 * @rdev: regulator source 5292 * @event: notifier block 5293 * @data: callback-specific data. 5294 * 5295 * Called by regulator drivers to notify clients a regulator event has 5296 * occurred. 5297 * 5298 * Return: %NOTIFY_DONE. 5299 */ regulator_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)5300 int regulator_notifier_call_chain(struct regulator_dev *rdev, 5301 unsigned long event, void *data) 5302 { 5303 regulator_handle_critical(rdev, event); 5304 5305 _notifier_call_chain(rdev, event, data); 5306 return NOTIFY_DONE; 5307 5308 } 5309 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); 5310 5311 /** 5312 * regulator_mode_to_status - convert a regulator mode into a status 5313 * 5314 * @mode: Mode to convert 5315 * 5316 * Convert a regulator mode into a status. 5317 * 5318 * Return: %REGULATOR_STATUS_* value corresponding to given mode. 5319 */ regulator_mode_to_status(unsigned int mode)5320 int regulator_mode_to_status(unsigned int mode) 5321 { 5322 switch (mode) { 5323 case REGULATOR_MODE_FAST: 5324 return REGULATOR_STATUS_FAST; 5325 case REGULATOR_MODE_NORMAL: 5326 return REGULATOR_STATUS_NORMAL; 5327 case REGULATOR_MODE_IDLE: 5328 return REGULATOR_STATUS_IDLE; 5329 case REGULATOR_MODE_STANDBY: 5330 return REGULATOR_STATUS_STANDBY; 5331 default: 5332 return REGULATOR_STATUS_UNDEFINED; 5333 } 5334 } 5335 EXPORT_SYMBOL_GPL(regulator_mode_to_status); 5336 5337 static struct attribute *regulator_dev_attrs[] = { 5338 &dev_attr_name.attr, 5339 &dev_attr_num_users.attr, 5340 &dev_attr_type.attr, 5341 &dev_attr_microvolts.attr, 5342 &dev_attr_microamps.attr, 5343 &dev_attr_opmode.attr, 5344 &dev_attr_state.attr, 5345 &dev_attr_status.attr, 5346 &dev_attr_bypass.attr, 5347 &dev_attr_requested_microamps.attr, 5348 &dev_attr_min_microvolts.attr, 5349 &dev_attr_max_microvolts.attr, 5350 &dev_attr_min_microamps.attr, 5351 &dev_attr_max_microamps.attr, 5352 &dev_attr_under_voltage.attr, 5353 &dev_attr_over_current.attr, 5354 &dev_attr_regulation_out.attr, 5355 &dev_attr_fail.attr, 5356 &dev_attr_over_temp.attr, 5357 &dev_attr_under_voltage_warn.attr, 5358 &dev_attr_over_current_warn.attr, 5359 &dev_attr_over_voltage_warn.attr, 5360 &dev_attr_over_temp_warn.attr, 5361 &dev_attr_suspend_standby_state.attr, 5362 &dev_attr_suspend_mem_state.attr, 5363 &dev_attr_suspend_disk_state.attr, 5364 &dev_attr_suspend_standby_microvolts.attr, 5365 &dev_attr_suspend_mem_microvolts.attr, 5366 &dev_attr_suspend_disk_microvolts.attr, 5367 &dev_attr_suspend_standby_mode.attr, 5368 &dev_attr_suspend_mem_mode.attr, 5369 &dev_attr_suspend_disk_mode.attr, 5370 &dev_attr_power_budget_milliwatt.attr, 5371 &dev_attr_power_requested_milliwatt.attr, 5372 NULL 5373 }; 5374 5375 /* 5376 * To avoid cluttering sysfs (and memory) with useless state, only 5377 * create attributes that can be meaningfully displayed. 5378 */ regulator_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)5379 static umode_t regulator_attr_is_visible(struct kobject *kobj, 5380 struct attribute *attr, int idx) 5381 { 5382 struct device *dev = kobj_to_dev(kobj); 5383 struct regulator_dev *rdev = dev_to_rdev(dev); 5384 const struct regulator_ops *ops = rdev->desc->ops; 5385 umode_t mode = attr->mode; 5386 5387 /* these three are always present */ 5388 if (attr == &dev_attr_name.attr || 5389 attr == &dev_attr_num_users.attr || 5390 attr == &dev_attr_type.attr) 5391 return mode; 5392 5393 /* some attributes need specific methods to be displayed */ 5394 if (attr == &dev_attr_microvolts.attr) { 5395 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || 5396 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) || 5397 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) || 5398 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1)) 5399 return mode; 5400 return 0; 5401 } 5402 5403 if (attr == &dev_attr_microamps.attr) 5404 return ops->get_current_limit ? mode : 0; 5405 5406 if (attr == &dev_attr_opmode.attr) 5407 return ops->get_mode ? mode : 0; 5408 5409 if (attr == &dev_attr_state.attr) 5410 return (rdev->ena_pin || ops->is_enabled) ? mode : 0; 5411 5412 if (attr == &dev_attr_status.attr) 5413 return ops->get_status ? mode : 0; 5414 5415 if (attr == &dev_attr_bypass.attr) 5416 return ops->get_bypass ? mode : 0; 5417 5418 if (attr == &dev_attr_under_voltage.attr || 5419 attr == &dev_attr_over_current.attr || 5420 attr == &dev_attr_regulation_out.attr || 5421 attr == &dev_attr_fail.attr || 5422 attr == &dev_attr_over_temp.attr || 5423 attr == &dev_attr_under_voltage_warn.attr || 5424 attr == &dev_attr_over_current_warn.attr || 5425 attr == &dev_attr_over_voltage_warn.attr || 5426 attr == &dev_attr_over_temp_warn.attr) 5427 return ops->get_error_flags ? mode : 0; 5428 5429 /* constraints need specific supporting methods */ 5430 if (attr == &dev_attr_min_microvolts.attr || 5431 attr == &dev_attr_max_microvolts.attr) 5432 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0; 5433 5434 if (attr == &dev_attr_min_microamps.attr || 5435 attr == &dev_attr_max_microamps.attr) 5436 return ops->set_current_limit ? mode : 0; 5437 5438 if (attr == &dev_attr_suspend_standby_state.attr || 5439 attr == &dev_attr_suspend_mem_state.attr || 5440 attr == &dev_attr_suspend_disk_state.attr) 5441 return mode; 5442 5443 if (attr == &dev_attr_suspend_standby_microvolts.attr || 5444 attr == &dev_attr_suspend_mem_microvolts.attr || 5445 attr == &dev_attr_suspend_disk_microvolts.attr) 5446 return ops->set_suspend_voltage ? mode : 0; 5447 5448 if (attr == &dev_attr_suspend_standby_mode.attr || 5449 attr == &dev_attr_suspend_mem_mode.attr || 5450 attr == &dev_attr_suspend_disk_mode.attr) 5451 return ops->set_suspend_mode ? mode : 0; 5452 5453 if (attr == &dev_attr_power_budget_milliwatt.attr || 5454 attr == &dev_attr_power_requested_milliwatt.attr) 5455 return rdev->constraints->pw_budget_mW != INT_MAX ? mode : 0; 5456 5457 return mode; 5458 } 5459 5460 static const struct attribute_group regulator_dev_group = { 5461 .attrs = regulator_dev_attrs, 5462 .is_visible = regulator_attr_is_visible, 5463 }; 5464 5465 static const struct attribute_group *regulator_dev_groups[] = { 5466 ®ulator_dev_group, 5467 NULL 5468 }; 5469 regulator_dev_release(struct device * dev)5470 static void regulator_dev_release(struct device *dev) 5471 { 5472 struct regulator_dev *rdev = dev_get_drvdata(dev); 5473 5474 debugfs_remove_recursive(rdev->debugfs); 5475 kfree(rdev->constraints); 5476 of_node_put(rdev->dev.of_node); 5477 kfree(rdev); 5478 } 5479 rdev_init_debugfs(struct regulator_dev * rdev)5480 static void rdev_init_debugfs(struct regulator_dev *rdev) 5481 { 5482 struct device *parent = rdev->dev.parent; 5483 const char *rname = rdev_get_name(rdev); 5484 char name[NAME_MAX]; 5485 5486 /* Avoid duplicate debugfs directory names */ 5487 if (parent && rname == rdev->desc->name) { 5488 snprintf(name, sizeof(name), "%s-%s", dev_name(parent), 5489 rname); 5490 rname = name; 5491 } 5492 5493 rdev->debugfs = debugfs_create_dir(rname, debugfs_root); 5494 if (IS_ERR(rdev->debugfs)) 5495 rdev_dbg(rdev, "Failed to create debugfs directory\n"); 5496 5497 debugfs_create_u32("use_count", 0444, rdev->debugfs, 5498 &rdev->use_count); 5499 debugfs_create_u32("open_count", 0444, rdev->debugfs, 5500 &rdev->open_count); 5501 debugfs_create_u32("bypass_count", 0444, rdev->debugfs, 5502 &rdev->bypass_count); 5503 } 5504 regulator_register_resolve_supply(struct device * dev,void * data)5505 static int regulator_register_resolve_supply(struct device *dev, void *data) 5506 { 5507 struct regulator_dev *rdev = dev_to_rdev(dev); 5508 5509 if (regulator_resolve_supply(rdev)) 5510 rdev_dbg(rdev, "unable to resolve supply\n"); 5511 5512 return 0; 5513 } 5514 regulator_coupler_register(struct regulator_coupler * coupler)5515 int regulator_coupler_register(struct regulator_coupler *coupler) 5516 { 5517 mutex_lock(®ulator_list_mutex); 5518 list_add_tail(&coupler->list, ®ulator_coupler_list); 5519 mutex_unlock(®ulator_list_mutex); 5520 5521 return 0; 5522 } 5523 5524 static struct regulator_coupler * regulator_find_coupler(struct regulator_dev * rdev)5525 regulator_find_coupler(struct regulator_dev *rdev) 5526 { 5527 struct regulator_coupler *coupler; 5528 int err; 5529 5530 /* 5531 * Note that regulators are appended to the list and the generic 5532 * coupler is registered first, hence it will be attached at last 5533 * if nobody cared. 5534 */ 5535 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) { 5536 err = coupler->attach_regulator(coupler, rdev); 5537 if (!err) { 5538 if (!coupler->balance_voltage && 5539 rdev->coupling_desc.n_coupled > 2) 5540 goto err_unsupported; 5541 5542 return coupler; 5543 } 5544 5545 if (err < 0) 5546 return ERR_PTR(err); 5547 5548 if (err == 1) 5549 continue; 5550 5551 break; 5552 } 5553 5554 return ERR_PTR(-EINVAL); 5555 5556 err_unsupported: 5557 if (coupler->detach_regulator) 5558 coupler->detach_regulator(coupler, rdev); 5559 5560 rdev_err(rdev, 5561 "Voltage balancing for multiple regulator couples is unimplemented\n"); 5562 5563 return ERR_PTR(-EPERM); 5564 } 5565 regulator_resolve_coupling(struct regulator_dev * rdev)5566 static void regulator_resolve_coupling(struct regulator_dev *rdev) 5567 { 5568 struct regulator_coupler *coupler = rdev->coupling_desc.coupler; 5569 struct coupling_desc *c_desc = &rdev->coupling_desc; 5570 int n_coupled = c_desc->n_coupled; 5571 struct regulator_dev *c_rdev; 5572 int i; 5573 5574 for (i = 1; i < n_coupled; i++) { 5575 /* already resolved */ 5576 if (c_desc->coupled_rdevs[i]) 5577 continue; 5578 5579 c_rdev = of_parse_coupled_regulator(rdev, i - 1); 5580 5581 if (!c_rdev) 5582 continue; 5583 5584 if (c_rdev->coupling_desc.coupler != coupler) { 5585 rdev_err(rdev, "coupler mismatch with %s\n", 5586 rdev_get_name(c_rdev)); 5587 return; 5588 } 5589 5590 c_desc->coupled_rdevs[i] = c_rdev; 5591 c_desc->n_resolved++; 5592 5593 regulator_resolve_coupling(c_rdev); 5594 } 5595 } 5596 regulator_remove_coupling(struct regulator_dev * rdev)5597 static void regulator_remove_coupling(struct regulator_dev *rdev) 5598 { 5599 struct regulator_coupler *coupler = rdev->coupling_desc.coupler; 5600 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc; 5601 struct regulator_dev *__c_rdev, *c_rdev; 5602 unsigned int __n_coupled, n_coupled; 5603 int i, k; 5604 int err; 5605 5606 n_coupled = c_desc->n_coupled; 5607 5608 for (i = 1; i < n_coupled; i++) { 5609 c_rdev = c_desc->coupled_rdevs[i]; 5610 5611 if (!c_rdev) 5612 continue; 5613 5614 regulator_lock(c_rdev); 5615 5616 __c_desc = &c_rdev->coupling_desc; 5617 __n_coupled = __c_desc->n_coupled; 5618 5619 for (k = 1; k < __n_coupled; k++) { 5620 __c_rdev = __c_desc->coupled_rdevs[k]; 5621 5622 if (__c_rdev == rdev) { 5623 __c_desc->coupled_rdevs[k] = NULL; 5624 __c_desc->n_resolved--; 5625 break; 5626 } 5627 } 5628 5629 regulator_unlock(c_rdev); 5630 5631 c_desc->coupled_rdevs[i] = NULL; 5632 c_desc->n_resolved--; 5633 } 5634 5635 if (coupler && coupler->detach_regulator) { 5636 err = coupler->detach_regulator(coupler, rdev); 5637 if (err) 5638 rdev_err(rdev, "failed to detach from coupler: %pe\n", 5639 ERR_PTR(err)); 5640 } 5641 5642 kfree(rdev->coupling_desc.coupled_rdevs); 5643 rdev->coupling_desc.coupled_rdevs = NULL; 5644 } 5645 regulator_init_coupling(struct regulator_dev * rdev)5646 static int regulator_init_coupling(struct regulator_dev *rdev) 5647 { 5648 struct regulator_dev **coupled; 5649 int err, n_phandles; 5650 5651 if (!IS_ENABLED(CONFIG_OF)) 5652 n_phandles = 0; 5653 else 5654 n_phandles = of_get_n_coupled(rdev); 5655 5656 coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL); 5657 if (!coupled) 5658 return -ENOMEM; 5659 5660 rdev->coupling_desc.coupled_rdevs = coupled; 5661 5662 /* 5663 * Every regulator should always have coupling descriptor filled with 5664 * at least pointer to itself. 5665 */ 5666 rdev->coupling_desc.coupled_rdevs[0] = rdev; 5667 rdev->coupling_desc.n_coupled = n_phandles + 1; 5668 rdev->coupling_desc.n_resolved++; 5669 5670 /* regulator isn't coupled */ 5671 if (n_phandles == 0) 5672 return 0; 5673 5674 if (!of_check_coupling_data(rdev)) 5675 return -EPERM; 5676 5677 mutex_lock(®ulator_list_mutex); 5678 rdev->coupling_desc.coupler = regulator_find_coupler(rdev); 5679 mutex_unlock(®ulator_list_mutex); 5680 5681 if (IS_ERR(rdev->coupling_desc.coupler)) { 5682 err = PTR_ERR(rdev->coupling_desc.coupler); 5683 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err)); 5684 return err; 5685 } 5686 5687 return 0; 5688 } 5689 generic_coupler_attach(struct regulator_coupler * coupler,struct regulator_dev * rdev)5690 static int generic_coupler_attach(struct regulator_coupler *coupler, 5691 struct regulator_dev *rdev) 5692 { 5693 if (rdev->coupling_desc.n_coupled > 2) { 5694 rdev_err(rdev, 5695 "Voltage balancing for multiple regulator couples is unimplemented\n"); 5696 return -EPERM; 5697 } 5698 5699 if (!rdev->constraints->always_on) { 5700 rdev_err(rdev, 5701 "Coupling of a non always-on regulator is unimplemented\n"); 5702 return -ENOTSUPP; 5703 } 5704 5705 return 0; 5706 } 5707 5708 static struct regulator_coupler generic_regulator_coupler = { 5709 .attach_regulator = generic_coupler_attach, 5710 }; 5711 5712 /** 5713 * regulator_register - register regulator 5714 * @dev: the device that drive the regulator 5715 * @regulator_desc: regulator to register 5716 * @cfg: runtime configuration for regulator 5717 * 5718 * Called by regulator drivers to register a regulator. 5719 * 5720 * Return: Pointer to a valid &struct regulator_dev on success or 5721 * an ERR_PTR() encoded negative error number on failure. 5722 */ 5723 struct regulator_dev * regulator_register(struct device * dev,const struct regulator_desc * regulator_desc,const struct regulator_config * cfg)5724 regulator_register(struct device *dev, 5725 const struct regulator_desc *regulator_desc, 5726 const struct regulator_config *cfg) 5727 { 5728 const struct regulator_init_data *init_data; 5729 struct regulator_config *config = NULL; 5730 static atomic_t regulator_no = ATOMIC_INIT(-1); 5731 struct regulator_dev *rdev; 5732 bool dangling_cfg_gpiod = false; 5733 bool dangling_of_gpiod = false; 5734 int ret, i; 5735 bool resolved_early = false; 5736 5737 if (cfg == NULL) 5738 return ERR_PTR(-EINVAL); 5739 if (cfg->ena_gpiod) 5740 dangling_cfg_gpiod = true; 5741 if (regulator_desc == NULL) { 5742 ret = -EINVAL; 5743 goto rinse; 5744 } 5745 5746 WARN_ON(!dev || !cfg->dev); 5747 5748 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) { 5749 ret = -EINVAL; 5750 goto rinse; 5751 } 5752 5753 if (regulator_desc->type != REGULATOR_VOLTAGE && 5754 regulator_desc->type != REGULATOR_CURRENT) { 5755 ret = -EINVAL; 5756 goto rinse; 5757 } 5758 5759 /* Only one of each should be implemented */ 5760 WARN_ON(regulator_desc->ops->get_voltage && 5761 regulator_desc->ops->get_voltage_sel); 5762 WARN_ON(regulator_desc->ops->set_voltage && 5763 regulator_desc->ops->set_voltage_sel); 5764 5765 /* If we're using selectors we must implement list_voltage. */ 5766 if (regulator_desc->ops->get_voltage_sel && 5767 !regulator_desc->ops->list_voltage) { 5768 ret = -EINVAL; 5769 goto rinse; 5770 } 5771 if (regulator_desc->ops->set_voltage_sel && 5772 !regulator_desc->ops->list_voltage) { 5773 ret = -EINVAL; 5774 goto rinse; 5775 } 5776 5777 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); 5778 if (rdev == NULL) { 5779 ret = -ENOMEM; 5780 goto rinse; 5781 } 5782 device_initialize(&rdev->dev); 5783 dev_set_drvdata(&rdev->dev, rdev); 5784 rdev->dev.class = ®ulator_class; 5785 spin_lock_init(&rdev->err_lock); 5786 5787 /* 5788 * Duplicate the config so the driver could override it after 5789 * parsing init data. 5790 */ 5791 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL); 5792 if (config == NULL) { 5793 ret = -ENOMEM; 5794 goto clean; 5795 } 5796 5797 /* 5798 * DT may override the config->init_data provided if the platform 5799 * needs to do so. If so, config->init_data is completely ignored. 5800 */ 5801 init_data = regulator_of_get_init_data(dev, regulator_desc, config, 5802 &rdev->dev.of_node); 5803 5804 /* 5805 * Sometimes not all resources are probed already so we need to take 5806 * that into account. This happens most the time if the ena_gpiod comes 5807 * from a gpio extender or something else. 5808 */ 5809 if (PTR_ERR(init_data) == -EPROBE_DEFER) { 5810 ret = -EPROBE_DEFER; 5811 goto clean; 5812 } 5813 5814 /* 5815 * We need to keep track of any GPIO descriptor coming from the 5816 * device tree until we have handled it over to the core. If the 5817 * config that was passed in to this function DOES NOT contain 5818 * a descriptor, and the config after this call DOES contain 5819 * a descriptor, we definitely got one from parsing the device 5820 * tree. 5821 */ 5822 if (!cfg->ena_gpiod && config->ena_gpiod) 5823 dangling_of_gpiod = true; 5824 if (!init_data) { 5825 init_data = config->init_data; 5826 rdev->dev.of_node = of_node_get(config->of_node); 5827 } 5828 5829 ww_mutex_init(&rdev->mutex, ®ulator_ww_class); 5830 rdev->reg_data = config->driver_data; 5831 rdev->owner = regulator_desc->owner; 5832 rdev->desc = regulator_desc; 5833 if (config->regmap) 5834 rdev->regmap = config->regmap; 5835 else if (dev_get_regmap(dev, NULL)) 5836 rdev->regmap = dev_get_regmap(dev, NULL); 5837 else if (dev->parent) 5838 rdev->regmap = dev_get_regmap(dev->parent, NULL); 5839 INIT_LIST_HEAD(&rdev->consumer_list); 5840 INIT_LIST_HEAD(&rdev->list); 5841 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); 5842 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); 5843 5844 if (init_data && init_data->supply_regulator) 5845 rdev->supply_name = init_data->supply_regulator; 5846 else if (regulator_desc->supply_name) 5847 rdev->supply_name = regulator_desc->supply_name; 5848 5849 /* register with sysfs */ 5850 rdev->dev.parent = config->dev; 5851 dev_set_name(&rdev->dev, "regulator.%lu", 5852 (unsigned long) atomic_inc_return(®ulator_no)); 5853 5854 /* set regulator constraints */ 5855 if (init_data) 5856 rdev->constraints = kmemdup(&init_data->constraints, 5857 sizeof(*rdev->constraints), 5858 GFP_KERNEL); 5859 else 5860 rdev->constraints = kzalloc(sizeof(*rdev->constraints), 5861 GFP_KERNEL); 5862 if (!rdev->constraints) { 5863 ret = -ENOMEM; 5864 goto wash; 5865 } 5866 5867 if (regulator_desc->init_cb) { 5868 ret = regulator_desc->init_cb(rdev, config); 5869 if (ret < 0) 5870 goto wash; 5871 } 5872 5873 if ((rdev->supply_name && !rdev->supply) && 5874 (rdev->constraints->always_on || 5875 rdev->constraints->boot_on)) { 5876 ret = regulator_resolve_supply(rdev); 5877 if (ret) 5878 rdev_dbg(rdev, "unable to resolve supply early: %pe\n", 5879 ERR_PTR(ret)); 5880 5881 resolved_early = true; 5882 } 5883 5884 if (config->ena_gpiod) { 5885 ret = regulator_ena_gpio_request(rdev, config); 5886 if (ret != 0) { 5887 rdev_err(rdev, "Failed to request enable GPIO: %pe\n", 5888 ERR_PTR(ret)); 5889 goto wash; 5890 } 5891 /* The regulator core took over the GPIO descriptor */ 5892 dangling_cfg_gpiod = false; 5893 dangling_of_gpiod = false; 5894 } 5895 5896 ret = set_machine_constraints(rdev); 5897 if (ret == -EPROBE_DEFER && !resolved_early) { 5898 /* Regulator might be in bypass mode and so needs its supply 5899 * to set the constraints 5900 */ 5901 /* FIXME: this currently triggers a chicken-and-egg problem 5902 * when creating -SUPPLY symlink in sysfs to a regulator 5903 * that is just being created 5904 */ 5905 rdev_dbg(rdev, "will resolve supply early: %s\n", 5906 rdev->supply_name); 5907 ret = regulator_resolve_supply(rdev); 5908 if (!ret) 5909 ret = set_machine_constraints(rdev); 5910 else 5911 rdev_dbg(rdev, "unable to resolve supply early: %pe\n", 5912 ERR_PTR(ret)); 5913 } 5914 if (ret < 0) 5915 goto wash; 5916 5917 ret = regulator_init_coupling(rdev); 5918 if (ret < 0) 5919 goto wash; 5920 5921 /* add consumers devices */ 5922 if (init_data) { 5923 for (i = 0; i < init_data->num_consumer_supplies; i++) { 5924 ret = set_consumer_device_supply(rdev, 5925 init_data->consumer_supplies[i].dev_name, 5926 init_data->consumer_supplies[i].supply); 5927 if (ret < 0) { 5928 dev_err(dev, "Failed to set supply %s\n", 5929 init_data->consumer_supplies[i].supply); 5930 goto unset_supplies; 5931 } 5932 } 5933 } 5934 5935 if (!rdev->desc->ops->get_voltage && 5936 !rdev->desc->ops->list_voltage && 5937 !rdev->desc->fixed_uV) 5938 rdev->is_switch = true; 5939 5940 ret = device_add(&rdev->dev); 5941 if (ret != 0) 5942 goto unset_supplies; 5943 5944 rdev_init_debugfs(rdev); 5945 5946 /* try to resolve regulators coupling since a new one was registered */ 5947 mutex_lock(®ulator_list_mutex); 5948 regulator_resolve_coupling(rdev); 5949 mutex_unlock(®ulator_list_mutex); 5950 5951 /* try to resolve regulators supply since a new one was registered */ 5952 class_for_each_device(®ulator_class, NULL, NULL, 5953 regulator_register_resolve_supply); 5954 kfree(config); 5955 return rdev; 5956 5957 unset_supplies: 5958 mutex_lock(®ulator_list_mutex); 5959 unset_regulator_supplies(rdev); 5960 regulator_remove_coupling(rdev); 5961 mutex_unlock(®ulator_list_mutex); 5962 wash: 5963 regulator_put(rdev->supply); 5964 kfree(rdev->coupling_desc.coupled_rdevs); 5965 mutex_lock(®ulator_list_mutex); 5966 regulator_ena_gpio_free(rdev); 5967 mutex_unlock(®ulator_list_mutex); 5968 clean: 5969 if (dangling_of_gpiod) 5970 gpiod_put(config->ena_gpiod); 5971 kfree(config); 5972 put_device(&rdev->dev); 5973 rinse: 5974 if (dangling_cfg_gpiod) 5975 gpiod_put(cfg->ena_gpiod); 5976 return ERR_PTR(ret); 5977 } 5978 EXPORT_SYMBOL_GPL(regulator_register); 5979 5980 /** 5981 * regulator_unregister - unregister regulator 5982 * @rdev: regulator to unregister 5983 * 5984 * Called by regulator drivers to unregister a regulator. 5985 */ regulator_unregister(struct regulator_dev * rdev)5986 void regulator_unregister(struct regulator_dev *rdev) 5987 { 5988 if (rdev == NULL) 5989 return; 5990 5991 if (rdev->supply) { 5992 while (rdev->use_count--) 5993 regulator_disable(rdev->supply); 5994 regulator_put(rdev->supply); 5995 } 5996 5997 flush_work(&rdev->disable_work.work); 5998 5999 mutex_lock(®ulator_list_mutex); 6000 6001 WARN_ON(rdev->open_count); 6002 regulator_remove_coupling(rdev); 6003 unset_regulator_supplies(rdev); 6004 list_del(&rdev->list); 6005 regulator_ena_gpio_free(rdev); 6006 device_unregister(&rdev->dev); 6007 6008 mutex_unlock(®ulator_list_mutex); 6009 } 6010 EXPORT_SYMBOL_GPL(regulator_unregister); 6011 6012 #ifdef CONFIG_SUSPEND 6013 /** 6014 * regulator_suspend - prepare regulators for system wide suspend 6015 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend() 6016 * 6017 * Configure each regulator with it's suspend operating parameters for state. 6018 * 6019 * Return: 0 on success or a negative error number on failure. 6020 */ regulator_suspend(struct device * dev)6021 static int regulator_suspend(struct device *dev) 6022 { 6023 struct regulator_dev *rdev = dev_to_rdev(dev); 6024 suspend_state_t state = pm_suspend_target_state; 6025 int ret; 6026 const struct regulator_state *rstate; 6027 6028 rstate = regulator_get_suspend_state_check(rdev, state); 6029 if (!rstate) 6030 return 0; 6031 6032 regulator_lock(rdev); 6033 ret = __suspend_set_state(rdev, rstate); 6034 regulator_unlock(rdev); 6035 6036 return ret; 6037 } 6038 regulator_resume(struct device * dev)6039 static int regulator_resume(struct device *dev) 6040 { 6041 suspend_state_t state = pm_suspend_target_state; 6042 struct regulator_dev *rdev = dev_to_rdev(dev); 6043 struct regulator_state *rstate; 6044 int ret = 0; 6045 6046 rstate = regulator_get_suspend_state(rdev, state); 6047 if (rstate == NULL) 6048 return 0; 6049 6050 /* Avoid grabbing the lock if we don't need to */ 6051 if (!rdev->desc->ops->resume) 6052 return 0; 6053 6054 regulator_lock(rdev); 6055 6056 if (rstate->enabled == ENABLE_IN_SUSPEND || 6057 rstate->enabled == DISABLE_IN_SUSPEND) 6058 ret = rdev->desc->ops->resume(rdev); 6059 6060 regulator_unlock(rdev); 6061 6062 return ret; 6063 } 6064 #else /* !CONFIG_SUSPEND */ 6065 6066 #define regulator_suspend NULL 6067 #define regulator_resume NULL 6068 6069 #endif /* !CONFIG_SUSPEND */ 6070 6071 #ifdef CONFIG_PM 6072 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = { 6073 .suspend = regulator_suspend, 6074 .resume = regulator_resume, 6075 }; 6076 #endif 6077 6078 const struct class regulator_class = { 6079 .name = "regulator", 6080 .dev_release = regulator_dev_release, 6081 .dev_groups = regulator_dev_groups, 6082 #ifdef CONFIG_PM 6083 .pm = ®ulator_pm_ops, 6084 #endif 6085 }; 6086 /** 6087 * regulator_has_full_constraints - the system has fully specified constraints 6088 * 6089 * Calling this function will cause the regulator API to disable all 6090 * regulators which have a zero use count and don't have an always_on 6091 * constraint in a late_initcall. 6092 * 6093 * The intention is that this will become the default behaviour in a 6094 * future kernel release so users are encouraged to use this facility 6095 * now. 6096 */ regulator_has_full_constraints(void)6097 void regulator_has_full_constraints(void) 6098 { 6099 has_full_constraints = 1; 6100 } 6101 EXPORT_SYMBOL_GPL(regulator_has_full_constraints); 6102 6103 /** 6104 * rdev_get_drvdata - get rdev regulator driver data 6105 * @rdev: regulator 6106 * 6107 * Get rdev regulator driver private data. This call can be used in the 6108 * regulator driver context. 6109 * 6110 * Return: Pointer to regulator driver private data. 6111 */ rdev_get_drvdata(struct regulator_dev * rdev)6112 void *rdev_get_drvdata(struct regulator_dev *rdev) 6113 { 6114 return rdev->reg_data; 6115 } 6116 EXPORT_SYMBOL_GPL(rdev_get_drvdata); 6117 6118 /** 6119 * regulator_get_drvdata - get regulator driver data 6120 * @regulator: regulator 6121 * 6122 * Get regulator driver private data. This call can be used in the consumer 6123 * driver context when non API regulator specific functions need to be called. 6124 * 6125 * Return: Pointer to regulator driver private data. 6126 */ regulator_get_drvdata(struct regulator * regulator)6127 void *regulator_get_drvdata(struct regulator *regulator) 6128 { 6129 return regulator->rdev->reg_data; 6130 } 6131 EXPORT_SYMBOL_GPL(regulator_get_drvdata); 6132 6133 /** 6134 * regulator_set_drvdata - set regulator driver data 6135 * @regulator: regulator 6136 * @data: data 6137 */ regulator_set_drvdata(struct regulator * regulator,void * data)6138 void regulator_set_drvdata(struct regulator *regulator, void *data) 6139 { 6140 regulator->rdev->reg_data = data; 6141 } 6142 EXPORT_SYMBOL_GPL(regulator_set_drvdata); 6143 6144 /** 6145 * rdev_get_id - get regulator ID 6146 * @rdev: regulator 6147 * 6148 * Return: Regulator ID for @rdev. 6149 */ rdev_get_id(struct regulator_dev * rdev)6150 int rdev_get_id(struct regulator_dev *rdev) 6151 { 6152 return rdev->desc->id; 6153 } 6154 EXPORT_SYMBOL_GPL(rdev_get_id); 6155 rdev_get_dev(struct regulator_dev * rdev)6156 struct device *rdev_get_dev(struct regulator_dev *rdev) 6157 { 6158 return &rdev->dev; 6159 } 6160 EXPORT_SYMBOL_GPL(rdev_get_dev); 6161 rdev_get_regmap(struct regulator_dev * rdev)6162 struct regmap *rdev_get_regmap(struct regulator_dev *rdev) 6163 { 6164 return rdev->regmap; 6165 } 6166 EXPORT_SYMBOL_GPL(rdev_get_regmap); 6167 regulator_get_init_drvdata(struct regulator_init_data * reg_init_data)6168 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) 6169 { 6170 return reg_init_data->driver_data; 6171 } 6172 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); 6173 6174 #ifdef CONFIG_DEBUG_FS supply_map_show(struct seq_file * sf,void * data)6175 static int supply_map_show(struct seq_file *sf, void *data) 6176 { 6177 struct regulator_map *map; 6178 6179 list_for_each_entry(map, ®ulator_map_list, list) { 6180 seq_printf(sf, "%s -> %s.%s\n", 6181 rdev_get_name(map->regulator), map->dev_name, 6182 map->supply); 6183 } 6184 6185 return 0; 6186 } 6187 DEFINE_SHOW_ATTRIBUTE(supply_map); 6188 6189 struct summary_data { 6190 struct seq_file *s; 6191 struct regulator_dev *parent; 6192 int level; 6193 }; 6194 6195 static void regulator_summary_show_subtree(struct seq_file *s, 6196 struct regulator_dev *rdev, 6197 int level); 6198 regulator_summary_show_children(struct device * dev,void * data)6199 static int regulator_summary_show_children(struct device *dev, void *data) 6200 { 6201 struct regulator_dev *rdev = dev_to_rdev(dev); 6202 struct summary_data *summary_data = data; 6203 6204 if (rdev->supply && rdev->supply->rdev == summary_data->parent) 6205 regulator_summary_show_subtree(summary_data->s, rdev, 6206 summary_data->level + 1); 6207 6208 return 0; 6209 } 6210 regulator_summary_show_subtree(struct seq_file * s,struct regulator_dev * rdev,int level)6211 static void regulator_summary_show_subtree(struct seq_file *s, 6212 struct regulator_dev *rdev, 6213 int level) 6214 { 6215 struct regulation_constraints *c; 6216 struct regulator *consumer; 6217 struct summary_data summary_data; 6218 unsigned int opmode; 6219 6220 if (!rdev) 6221 return; 6222 6223 opmode = _regulator_get_mode_unlocked(rdev); 6224 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ", 6225 level * 3 + 1, "", 6226 30 - level * 3, rdev_get_name(rdev), 6227 rdev->use_count, rdev->open_count, rdev->bypass_count, 6228 regulator_opmode_to_str(opmode)); 6229 6230 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000); 6231 seq_printf(s, "%5dmA ", 6232 _regulator_get_current_limit_unlocked(rdev) / 1000); 6233 6234 c = rdev->constraints; 6235 if (c) { 6236 switch (rdev->desc->type) { 6237 case REGULATOR_VOLTAGE: 6238 seq_printf(s, "%5dmV %5dmV ", 6239 c->min_uV / 1000, c->max_uV / 1000); 6240 break; 6241 case REGULATOR_CURRENT: 6242 seq_printf(s, "%5dmA %5dmA ", 6243 c->min_uA / 1000, c->max_uA / 1000); 6244 break; 6245 } 6246 } 6247 6248 seq_puts(s, "\n"); 6249 6250 list_for_each_entry(consumer, &rdev->consumer_list, list) { 6251 if (consumer->dev && consumer->dev->class == ®ulator_class) 6252 continue; 6253 6254 seq_printf(s, "%*s%-*s ", 6255 (level + 1) * 3 + 1, "", 6256 30 - (level + 1) * 3, 6257 consumer->supply_name ? consumer->supply_name : 6258 consumer->dev ? dev_name(consumer->dev) : "deviceless"); 6259 6260 switch (rdev->desc->type) { 6261 case REGULATOR_VOLTAGE: 6262 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV", 6263 consumer->enable_count, 6264 consumer->uA_load / 1000, 6265 consumer->uA_load && !consumer->enable_count ? 6266 '*' : ' ', 6267 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000, 6268 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000); 6269 break; 6270 case REGULATOR_CURRENT: 6271 break; 6272 } 6273 6274 seq_puts(s, "\n"); 6275 } 6276 6277 summary_data.s = s; 6278 summary_data.level = level; 6279 summary_data.parent = rdev; 6280 6281 class_for_each_device(®ulator_class, NULL, &summary_data, 6282 regulator_summary_show_children); 6283 } 6284 6285 struct summary_lock_data { 6286 struct ww_acquire_ctx *ww_ctx; 6287 struct regulator_dev **new_contended_rdev; 6288 struct regulator_dev **old_contended_rdev; 6289 }; 6290 regulator_summary_lock_one(struct device * dev,void * data)6291 static int regulator_summary_lock_one(struct device *dev, void *data) 6292 { 6293 struct regulator_dev *rdev = dev_to_rdev(dev); 6294 struct summary_lock_data *lock_data = data; 6295 int ret = 0; 6296 6297 if (rdev != *lock_data->old_contended_rdev) { 6298 ret = regulator_lock_nested(rdev, lock_data->ww_ctx); 6299 6300 if (ret == -EDEADLK) 6301 *lock_data->new_contended_rdev = rdev; 6302 else 6303 WARN_ON_ONCE(ret); 6304 } else { 6305 *lock_data->old_contended_rdev = NULL; 6306 } 6307 6308 return ret; 6309 } 6310 regulator_summary_unlock_one(struct device * dev,void * data)6311 static int regulator_summary_unlock_one(struct device *dev, void *data) 6312 { 6313 struct regulator_dev *rdev = dev_to_rdev(dev); 6314 struct summary_lock_data *lock_data = data; 6315 6316 if (lock_data) { 6317 if (rdev == *lock_data->new_contended_rdev) 6318 return -EDEADLK; 6319 } 6320 6321 regulator_unlock(rdev); 6322 6323 return 0; 6324 } 6325 regulator_summary_lock_all(struct ww_acquire_ctx * ww_ctx,struct regulator_dev ** new_contended_rdev,struct regulator_dev ** old_contended_rdev)6326 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx, 6327 struct regulator_dev **new_contended_rdev, 6328 struct regulator_dev **old_contended_rdev) 6329 { 6330 struct summary_lock_data lock_data; 6331 int ret; 6332 6333 lock_data.ww_ctx = ww_ctx; 6334 lock_data.new_contended_rdev = new_contended_rdev; 6335 lock_data.old_contended_rdev = old_contended_rdev; 6336 6337 ret = class_for_each_device(®ulator_class, NULL, &lock_data, 6338 regulator_summary_lock_one); 6339 if (ret) 6340 class_for_each_device(®ulator_class, NULL, &lock_data, 6341 regulator_summary_unlock_one); 6342 6343 return ret; 6344 } 6345 regulator_summary_lock(struct ww_acquire_ctx * ww_ctx)6346 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx) 6347 { 6348 struct regulator_dev *new_contended_rdev = NULL; 6349 struct regulator_dev *old_contended_rdev = NULL; 6350 int err; 6351 6352 mutex_lock(®ulator_list_mutex); 6353 6354 ww_acquire_init(ww_ctx, ®ulator_ww_class); 6355 6356 do { 6357 if (new_contended_rdev) { 6358 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx); 6359 old_contended_rdev = new_contended_rdev; 6360 old_contended_rdev->ref_cnt++; 6361 old_contended_rdev->mutex_owner = current; 6362 } 6363 6364 err = regulator_summary_lock_all(ww_ctx, 6365 &new_contended_rdev, 6366 &old_contended_rdev); 6367 6368 if (old_contended_rdev) 6369 regulator_unlock(old_contended_rdev); 6370 6371 } while (err == -EDEADLK); 6372 6373 ww_acquire_done(ww_ctx); 6374 } 6375 regulator_summary_unlock(struct ww_acquire_ctx * ww_ctx)6376 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx) 6377 { 6378 class_for_each_device(®ulator_class, NULL, NULL, 6379 regulator_summary_unlock_one); 6380 ww_acquire_fini(ww_ctx); 6381 6382 mutex_unlock(®ulator_list_mutex); 6383 } 6384 regulator_summary_show_roots(struct device * dev,void * data)6385 static int regulator_summary_show_roots(struct device *dev, void *data) 6386 { 6387 struct regulator_dev *rdev = dev_to_rdev(dev); 6388 struct seq_file *s = data; 6389 6390 if (!rdev->supply) 6391 regulator_summary_show_subtree(s, rdev, 0); 6392 6393 return 0; 6394 } 6395 regulator_summary_show(struct seq_file * s,void * data)6396 static int regulator_summary_show(struct seq_file *s, void *data) 6397 { 6398 struct ww_acquire_ctx ww_ctx; 6399 6400 seq_puts(s, " regulator use open bypass opmode voltage current min max\n"); 6401 seq_puts(s, "---------------------------------------------------------------------------------------\n"); 6402 6403 regulator_summary_lock(&ww_ctx); 6404 6405 class_for_each_device(®ulator_class, NULL, s, 6406 regulator_summary_show_roots); 6407 6408 regulator_summary_unlock(&ww_ctx); 6409 6410 return 0; 6411 } 6412 DEFINE_SHOW_ATTRIBUTE(regulator_summary); 6413 #endif /* CONFIG_DEBUG_FS */ 6414 regulator_init(void)6415 static int __init regulator_init(void) 6416 { 6417 int ret; 6418 6419 ret = class_register(®ulator_class); 6420 6421 debugfs_root = debugfs_create_dir("regulator", NULL); 6422 if (IS_ERR(debugfs_root)) 6423 pr_debug("regulator: Failed to create debugfs directory\n"); 6424 6425 #ifdef CONFIG_DEBUG_FS 6426 debugfs_create_file("supply_map", 0444, debugfs_root, NULL, 6427 &supply_map_fops); 6428 6429 debugfs_create_file("regulator_summary", 0444, debugfs_root, 6430 NULL, ®ulator_summary_fops); 6431 #endif 6432 regulator_dummy_init(); 6433 6434 regulator_coupler_register(&generic_regulator_coupler); 6435 6436 return ret; 6437 } 6438 6439 /* init early to allow our consumers to complete system booting */ 6440 core_initcall(regulator_init); 6441 regulator_late_cleanup(struct device * dev,void * data)6442 static int regulator_late_cleanup(struct device *dev, void *data) 6443 { 6444 struct regulator_dev *rdev = dev_to_rdev(dev); 6445 struct regulation_constraints *c = rdev->constraints; 6446 int ret; 6447 6448 if (c && c->always_on) 6449 return 0; 6450 6451 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) 6452 return 0; 6453 6454 regulator_lock(rdev); 6455 6456 if (rdev->use_count) 6457 goto unlock; 6458 6459 /* If reading the status failed, assume that it's off. */ 6460 if (_regulator_is_enabled(rdev) <= 0) 6461 goto unlock; 6462 6463 if (have_full_constraints()) { 6464 /* We log since this may kill the system if it goes 6465 * wrong. 6466 */ 6467 rdev_info(rdev, "disabling\n"); 6468 ret = _regulator_do_disable(rdev); 6469 if (ret != 0) 6470 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret)); 6471 } else { 6472 /* The intention is that in future we will 6473 * assume that full constraints are provided 6474 * so warn even if we aren't going to do 6475 * anything here. 6476 */ 6477 rdev_warn(rdev, "incomplete constraints, leaving on\n"); 6478 } 6479 6480 unlock: 6481 regulator_unlock(rdev); 6482 6483 return 0; 6484 } 6485 6486 static bool regulator_ignore_unused; regulator_ignore_unused_setup(char * __unused)6487 static int __init regulator_ignore_unused_setup(char *__unused) 6488 { 6489 regulator_ignore_unused = true; 6490 return 1; 6491 } 6492 __setup("regulator_ignore_unused", regulator_ignore_unused_setup); 6493 regulator_init_complete_work_function(struct work_struct * work)6494 static void regulator_init_complete_work_function(struct work_struct *work) 6495 { 6496 /* 6497 * Regulators may had failed to resolve their input supplies 6498 * when were registered, either because the input supply was 6499 * not registered yet or because its parent device was not 6500 * bound yet. So attempt to resolve the input supplies for 6501 * pending regulators before trying to disable unused ones. 6502 */ 6503 class_for_each_device(®ulator_class, NULL, NULL, 6504 regulator_register_resolve_supply); 6505 6506 /* 6507 * For debugging purposes, it may be useful to prevent unused 6508 * regulators from being disabled. 6509 */ 6510 if (regulator_ignore_unused) { 6511 pr_warn("regulator: Not disabling unused regulators\n"); 6512 return; 6513 } 6514 6515 /* If we have a full configuration then disable any regulators 6516 * we have permission to change the status for and which are 6517 * not in use or always_on. This is effectively the default 6518 * for DT and ACPI as they have full constraints. 6519 */ 6520 class_for_each_device(®ulator_class, NULL, NULL, 6521 regulator_late_cleanup); 6522 } 6523 6524 static DECLARE_DELAYED_WORK(regulator_init_complete_work, 6525 regulator_init_complete_work_function); 6526 regulator_init_complete(void)6527 static int __init regulator_init_complete(void) 6528 { 6529 /* 6530 * Since DT doesn't provide an idiomatic mechanism for 6531 * enabling full constraints and since it's much more natural 6532 * with DT to provide them just assume that a DT enabled 6533 * system has full constraints. 6534 */ 6535 if (of_have_populated_dt()) 6536 has_full_constraints = true; 6537 6538 /* 6539 * We punt completion for an arbitrary amount of time since 6540 * systems like distros will load many drivers from userspace 6541 * so consumers might not always be ready yet, this is 6542 * particularly an issue with laptops where this might bounce 6543 * the display off then on. Ideally we'd get a notification 6544 * from userspace when this happens but we don't so just wait 6545 * a bit and hope we waited long enough. It'd be better if 6546 * we'd only do this on systems that need it, and a kernel 6547 * command line option might be useful. 6548 */ 6549 schedule_delayed_work(®ulator_init_complete_work, 6550 msecs_to_jiffies(30000)); 6551 6552 return 0; 6553 } 6554 late_initcall_sync(regulator_init_complete); 6555