1 /*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <uapi/linux/perf_event.h>
18 #include <uapi/linux/bpf_perf_event.h>
19
20 /*
21 * Kernel-internal data types and definitions:
22 */
23
24 #ifdef CONFIG_PERF_EVENTS
25 # include <asm/perf_event.h>
26 # include <asm/local64.h>
27 #endif
28
29 #define PERF_GUEST_ACTIVE 0x01
30 #define PERF_GUEST_USER 0x02
31
32 struct perf_guest_info_callbacks {
33 unsigned int (*state)(void);
34 unsigned long (*get_ip)(void);
35 unsigned int (*handle_intel_pt_intr)(void);
36 };
37
38 #ifdef CONFIG_HAVE_HW_BREAKPOINT
39 #include <linux/rhashtable-types.h>
40 #include <asm/hw_breakpoint.h>
41 #endif
42
43 #include <linux/list.h>
44 #include <linux/mutex.h>
45 #include <linux/rculist.h>
46 #include <linux/rcupdate.h>
47 #include <linux/spinlock.h>
48 #include <linux/hrtimer.h>
49 #include <linux/fs.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/workqueue.h>
52 #include <linux/ftrace.h>
53 #include <linux/cpu.h>
54 #include <linux/irq_work.h>
55 #include <linux/static_key.h>
56 #include <linux/jump_label_ratelimit.h>
57 #include <linux/atomic.h>
58 #include <linux/sysfs.h>
59 #include <linux/perf_regs.h>
60 #include <linux/cgroup.h>
61 #include <linux/refcount.h>
62 #include <linux/security.h>
63 #include <linux/static_call.h>
64 #include <linux/lockdep.h>
65 #include <asm/local.h>
66
67 struct perf_callchain_entry {
68 __u64 nr;
69 __u64 ip[]; /* /proc/sys/kernel/perf_event_max_stack */
70 };
71
72 struct perf_callchain_entry_ctx {
73 struct perf_callchain_entry *entry;
74 u32 max_stack;
75 u32 nr;
76 short contexts;
77 bool contexts_maxed;
78 };
79
80 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
81 unsigned long off, unsigned long len);
82
83 struct perf_raw_frag {
84 union {
85 struct perf_raw_frag *next;
86 unsigned long pad;
87 };
88 perf_copy_f copy;
89 void *data;
90 u32 size;
91 } __packed;
92
93 struct perf_raw_record {
94 struct perf_raw_frag frag;
95 u32 size;
96 };
97
perf_raw_frag_last(const struct perf_raw_frag * frag)98 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
99 {
100 return frag->pad < sizeof(u64);
101 }
102
103 /*
104 * branch stack layout:
105 * nr: number of taken branches stored in entries[]
106 * hw_idx: The low level index of raw branch records
107 * for the most recent branch.
108 * -1ULL means invalid/unknown.
109 *
110 * Note that nr can vary from sample to sample
111 * branches (to, from) are stored from most recent
112 * to least recent, i.e., entries[0] contains the most
113 * recent branch.
114 * The entries[] is an abstraction of raw branch records,
115 * which may not be stored in age order in HW, e.g. Intel LBR.
116 * The hw_idx is to expose the low level index of raw
117 * branch record for the most recent branch aka entries[0].
118 * The hw_idx index is between -1 (unknown) and max depth,
119 * which can be retrieved in /sys/devices/cpu/caps/branches.
120 * For the architectures whose raw branch records are
121 * already stored in age order, the hw_idx should be 0.
122 */
123 struct perf_branch_stack {
124 __u64 nr;
125 __u64 hw_idx;
126 struct perf_branch_entry entries[];
127 };
128
129 struct task_struct;
130
131 /*
132 * extra PMU register associated with an event
133 */
134 struct hw_perf_event_extra {
135 u64 config; /* register value */
136 unsigned int reg; /* register address or index */
137 int alloc; /* extra register already allocated */
138 int idx; /* index in shared_regs->regs[] */
139 };
140
141 /**
142 * hw_perf_event::flag values
143 *
144 * PERF_EVENT_FLAG_ARCH bits are reserved for architecture-specific
145 * usage.
146 */
147 #define PERF_EVENT_FLAG_ARCH 0x000fffff
148 #define PERF_EVENT_FLAG_USER_READ_CNT 0x80000000
149
150 static_assert((PERF_EVENT_FLAG_USER_READ_CNT & PERF_EVENT_FLAG_ARCH) == 0);
151
152 /**
153 * struct hw_perf_event - performance event hardware details:
154 */
155 struct hw_perf_event {
156 #ifdef CONFIG_PERF_EVENTS
157 union {
158 struct { /* hardware */
159 u64 config;
160 u64 last_tag;
161 unsigned long config_base;
162 unsigned long event_base;
163 int event_base_rdpmc;
164 int idx;
165 int last_cpu;
166 int flags;
167
168 struct hw_perf_event_extra extra_reg;
169 struct hw_perf_event_extra branch_reg;
170 };
171 struct { /* aux / Intel-PT */
172 u64 aux_config;
173 /*
174 * For AUX area events, aux_paused cannot be a state
175 * flag because it can be updated asynchronously to
176 * state.
177 */
178 unsigned int aux_paused;
179 };
180 struct { /* software */
181 struct hrtimer hrtimer;
182 };
183 struct { /* tracepoint */
184 /* for tp_event->class */
185 struct list_head tp_list;
186 };
187 struct { /* amd_power */
188 u64 pwr_acc;
189 u64 ptsc;
190 };
191 #ifdef CONFIG_HAVE_HW_BREAKPOINT
192 struct { /* breakpoint */
193 /*
194 * Crufty hack to avoid the chicken and egg
195 * problem hw_breakpoint has with context
196 * creation and event initalization.
197 */
198 struct arch_hw_breakpoint info;
199 struct rhlist_head bp_list;
200 };
201 #endif
202 struct { /* amd_iommu */
203 u8 iommu_bank;
204 u8 iommu_cntr;
205 u16 padding;
206 u64 conf;
207 u64 conf1;
208 };
209 };
210 /*
211 * If the event is a per task event, this will point to the task in
212 * question. See the comment in perf_event_alloc().
213 */
214 struct task_struct *target;
215
216 /*
217 * PMU would store hardware filter configuration
218 * here.
219 */
220 void *addr_filters;
221
222 /* Last sync'ed generation of filters */
223 unsigned long addr_filters_gen;
224
225 /*
226 * hw_perf_event::state flags; used to track the PERF_EF_* state.
227 */
228 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
229 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
230 #define PERF_HES_ARCH 0x04
231
232 int state;
233
234 /*
235 * The last observed hardware counter value, updated with a
236 * local64_cmpxchg() such that pmu::read() can be called nested.
237 */
238 local64_t prev_count;
239
240 /*
241 * The period to start the next sample with.
242 */
243 u64 sample_period;
244
245 union {
246 struct { /* Sampling */
247 /*
248 * The period we started this sample with.
249 */
250 u64 last_period;
251
252 /*
253 * However much is left of the current period;
254 * note that this is a full 64bit value and
255 * allows for generation of periods longer
256 * than hardware might allow.
257 */
258 local64_t period_left;
259 };
260 struct { /* Topdown events counting for context switch */
261 u64 saved_metric;
262 u64 saved_slots;
263 };
264 };
265
266 /*
267 * State for throttling the event, see __perf_event_overflow() and
268 * perf_adjust_freq_unthr_context().
269 */
270 u64 interrupts_seq;
271 u64 interrupts;
272
273 /*
274 * State for freq target events, see __perf_event_overflow() and
275 * perf_adjust_freq_unthr_context().
276 */
277 u64 freq_time_stamp;
278 u64 freq_count_stamp;
279 #endif
280 };
281
282 struct perf_event;
283 struct perf_event_pmu_context;
284
285 /*
286 * Common implementation detail of pmu::{start,commit,cancel}_txn
287 */
288 #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */
289 #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */
290
291 /**
292 * pmu::capabilities flags
293 */
294 #define PERF_PMU_CAP_NO_INTERRUPT 0x0001
295 #define PERF_PMU_CAP_NO_NMI 0x0002
296 #define PERF_PMU_CAP_AUX_NO_SG 0x0004
297 #define PERF_PMU_CAP_EXTENDED_REGS 0x0008
298 #define PERF_PMU_CAP_EXCLUSIVE 0x0010
299 #define PERF_PMU_CAP_ITRACE 0x0020
300 #define PERF_PMU_CAP_NO_EXCLUDE 0x0040
301 #define PERF_PMU_CAP_AUX_OUTPUT 0x0080
302 #define PERF_PMU_CAP_EXTENDED_HW_TYPE 0x0100
303 #define PERF_PMU_CAP_AUX_PAUSE 0x0200
304
305 /**
306 * pmu::scope
307 */
308 enum perf_pmu_scope {
309 PERF_PMU_SCOPE_NONE = 0,
310 PERF_PMU_SCOPE_CORE,
311 PERF_PMU_SCOPE_DIE,
312 PERF_PMU_SCOPE_CLUSTER,
313 PERF_PMU_SCOPE_PKG,
314 PERF_PMU_SCOPE_SYS_WIDE,
315 PERF_PMU_MAX_SCOPE,
316 };
317
318 struct perf_output_handle;
319
320 #define PMU_NULL_DEV ((void *)(~0UL))
321
322 /**
323 * struct pmu - generic performance monitoring unit
324 */
325 struct pmu {
326 struct list_head entry;
327
328 struct module *module;
329 struct device *dev;
330 struct device *parent;
331 const struct attribute_group **attr_groups;
332 const struct attribute_group **attr_update;
333 const char *name;
334 int type;
335
336 /*
337 * various common per-pmu feature flags
338 */
339 int capabilities;
340
341 /*
342 * PMU scope
343 */
344 unsigned int scope;
345
346 int __percpu *pmu_disable_count;
347 struct perf_cpu_pmu_context __percpu *cpu_pmu_context;
348 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */
349 int task_ctx_nr;
350 int hrtimer_interval_ms;
351
352 /* number of address filters this PMU can do */
353 unsigned int nr_addr_filters;
354
355 /*
356 * Fully disable/enable this PMU, can be used to protect from the PMI
357 * as well as for lazy/batch writing of the MSRs.
358 */
359 void (*pmu_enable) (struct pmu *pmu); /* optional */
360 void (*pmu_disable) (struct pmu *pmu); /* optional */
361
362 /*
363 * Try and initialize the event for this PMU.
364 *
365 * Returns:
366 * -ENOENT -- @event is not for this PMU
367 *
368 * -ENODEV -- @event is for this PMU but PMU not present
369 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable
370 * -EINVAL -- @event is for this PMU but @event is not valid
371 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
372 * -EACCES -- @event is for this PMU, @event is valid, but no privileges
373 *
374 * 0 -- @event is for this PMU and valid
375 *
376 * Other error return values are allowed.
377 */
378 int (*event_init) (struct perf_event *event);
379
380 /*
381 * Notification that the event was mapped or unmapped. Called
382 * in the context of the mapping task.
383 */
384 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
385 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
386
387 /*
388 * Flags for ->add()/->del()/ ->start()/->stop(). There are
389 * matching hw_perf_event::state flags.
390 */
391 #define PERF_EF_START 0x01 /* start the counter when adding */
392 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
393 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
394 #define PERF_EF_PAUSE 0x08 /* AUX area event, pause tracing */
395 #define PERF_EF_RESUME 0x10 /* AUX area event, resume tracing */
396
397 /*
398 * Adds/Removes a counter to/from the PMU, can be done inside a
399 * transaction, see the ->*_txn() methods.
400 *
401 * The add/del callbacks will reserve all hardware resources required
402 * to service the event, this includes any counter constraint
403 * scheduling etc.
404 *
405 * Called with IRQs disabled and the PMU disabled on the CPU the event
406 * is on.
407 *
408 * ->add() called without PERF_EF_START should result in the same state
409 * as ->add() followed by ->stop().
410 *
411 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
412 * ->stop() that must deal with already being stopped without
413 * PERF_EF_UPDATE.
414 */
415 int (*add) (struct perf_event *event, int flags);
416 void (*del) (struct perf_event *event, int flags);
417
418 /*
419 * Starts/Stops a counter present on the PMU.
420 *
421 * The PMI handler should stop the counter when perf_event_overflow()
422 * returns !0. ->start() will be used to continue.
423 *
424 * Also used to change the sample period.
425 *
426 * Called with IRQs disabled and the PMU disabled on the CPU the event
427 * is on -- will be called from NMI context with the PMU generates
428 * NMIs.
429 *
430 * ->stop() with PERF_EF_UPDATE will read the counter and update
431 * period/count values like ->read() would.
432 *
433 * ->start() with PERF_EF_RELOAD will reprogram the counter
434 * value, must be preceded by a ->stop() with PERF_EF_UPDATE.
435 *
436 * ->stop() with PERF_EF_PAUSE will stop as simply as possible. Will not
437 * overlap another ->stop() with PERF_EF_PAUSE nor ->start() with
438 * PERF_EF_RESUME.
439 *
440 * ->start() with PERF_EF_RESUME will start as simply as possible but
441 * only if the counter is not otherwise stopped. Will not overlap
442 * another ->start() with PERF_EF_RESUME nor ->stop() with
443 * PERF_EF_PAUSE.
444 *
445 * Notably, PERF_EF_PAUSE/PERF_EF_RESUME *can* be concurrent with other
446 * ->stop()/->start() invocations, just not itself.
447 */
448 void (*start) (struct perf_event *event, int flags);
449 void (*stop) (struct perf_event *event, int flags);
450
451 /*
452 * Updates the counter value of the event.
453 *
454 * For sampling capable PMUs this will also update the software period
455 * hw_perf_event::period_left field.
456 */
457 void (*read) (struct perf_event *event);
458
459 /*
460 * Group events scheduling is treated as a transaction, add
461 * group events as a whole and perform one schedulability test.
462 * If the test fails, roll back the whole group
463 *
464 * Start the transaction, after this ->add() doesn't need to
465 * do schedulability tests.
466 *
467 * Optional.
468 */
469 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags);
470 /*
471 * If ->start_txn() disabled the ->add() schedulability test
472 * then ->commit_txn() is required to perform one. On success
473 * the transaction is closed. On error the transaction is kept
474 * open until ->cancel_txn() is called.
475 *
476 * Optional.
477 */
478 int (*commit_txn) (struct pmu *pmu);
479 /*
480 * Will cancel the transaction, assumes ->del() is called
481 * for each successful ->add() during the transaction.
482 *
483 * Optional.
484 */
485 void (*cancel_txn) (struct pmu *pmu);
486
487 /*
488 * Will return the value for perf_event_mmap_page::index for this event,
489 * if no implementation is provided it will default to 0 (see
490 * perf_event_idx_default).
491 */
492 int (*event_idx) (struct perf_event *event); /*optional */
493
494 /*
495 * context-switches callback
496 */
497 void (*sched_task) (struct perf_event_pmu_context *pmu_ctx,
498 bool sched_in);
499
500 /*
501 * Kmem cache of PMU specific data
502 */
503 struct kmem_cache *task_ctx_cache;
504
505 /*
506 * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data)
507 * can be synchronized using this function. See Intel LBR callstack support
508 * implementation and Perf core context switch handling callbacks for usage
509 * examples.
510 */
511 void (*swap_task_ctx) (struct perf_event_pmu_context *prev_epc,
512 struct perf_event_pmu_context *next_epc);
513 /* optional */
514
515 /*
516 * Set up pmu-private data structures for an AUX area
517 */
518 void *(*setup_aux) (struct perf_event *event, void **pages,
519 int nr_pages, bool overwrite);
520 /* optional */
521
522 /*
523 * Free pmu-private AUX data structures
524 */
525 void (*free_aux) (void *aux); /* optional */
526
527 /*
528 * Take a snapshot of the AUX buffer without touching the event
529 * state, so that preempting ->start()/->stop() callbacks does
530 * not interfere with their logic. Called in PMI context.
531 *
532 * Returns the size of AUX data copied to the output handle.
533 *
534 * Optional.
535 */
536 long (*snapshot_aux) (struct perf_event *event,
537 struct perf_output_handle *handle,
538 unsigned long size);
539
540 /*
541 * Validate address range filters: make sure the HW supports the
542 * requested configuration and number of filters; return 0 if the
543 * supplied filters are valid, -errno otherwise.
544 *
545 * Runs in the context of the ioctl()ing process and is not serialized
546 * with the rest of the PMU callbacks.
547 */
548 int (*addr_filters_validate) (struct list_head *filters);
549 /* optional */
550
551 /*
552 * Synchronize address range filter configuration:
553 * translate hw-agnostic filters into hardware configuration in
554 * event::hw::addr_filters.
555 *
556 * Runs as a part of filter sync sequence that is done in ->start()
557 * callback by calling perf_event_addr_filters_sync().
558 *
559 * May (and should) traverse event::addr_filters::list, for which its
560 * caller provides necessary serialization.
561 */
562 void (*addr_filters_sync) (struct perf_event *event);
563 /* optional */
564
565 /*
566 * Check if event can be used for aux_output purposes for
567 * events of this PMU.
568 *
569 * Runs from perf_event_open(). Should return 0 for "no match"
570 * or non-zero for "match".
571 */
572 int (*aux_output_match) (struct perf_event *event);
573 /* optional */
574
575 /*
576 * Skip programming this PMU on the given CPU. Typically needed for
577 * big.LITTLE things.
578 */
579 bool (*filter) (struct pmu *pmu, int cpu); /* optional */
580
581 /*
582 * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
583 */
584 int (*check_period) (struct perf_event *event, u64 value); /* optional */
585 };
586
587 enum perf_addr_filter_action_t {
588 PERF_ADDR_FILTER_ACTION_STOP = 0,
589 PERF_ADDR_FILTER_ACTION_START,
590 PERF_ADDR_FILTER_ACTION_FILTER,
591 };
592
593 /**
594 * struct perf_addr_filter - address range filter definition
595 * @entry: event's filter list linkage
596 * @path: object file's path for file-based filters
597 * @offset: filter range offset
598 * @size: filter range size (size==0 means single address trigger)
599 * @action: filter/start/stop
600 *
601 * This is a hardware-agnostic filter configuration as specified by the user.
602 */
603 struct perf_addr_filter {
604 struct list_head entry;
605 struct path path;
606 unsigned long offset;
607 unsigned long size;
608 enum perf_addr_filter_action_t action;
609 };
610
611 /**
612 * struct perf_addr_filters_head - container for address range filters
613 * @list: list of filters for this event
614 * @lock: spinlock that serializes accesses to the @list and event's
615 * (and its children's) filter generations.
616 * @nr_file_filters: number of file-based filters
617 *
618 * A child event will use parent's @list (and therefore @lock), so they are
619 * bundled together; see perf_event_addr_filters().
620 */
621 struct perf_addr_filters_head {
622 struct list_head list;
623 raw_spinlock_t lock;
624 unsigned int nr_file_filters;
625 };
626
627 struct perf_addr_filter_range {
628 unsigned long start;
629 unsigned long size;
630 };
631
632 /**
633 * enum perf_event_state - the states of an event:
634 */
635 enum perf_event_state {
636 PERF_EVENT_STATE_DEAD = -4,
637 PERF_EVENT_STATE_EXIT = -3,
638 PERF_EVENT_STATE_ERROR = -2,
639 PERF_EVENT_STATE_OFF = -1,
640 PERF_EVENT_STATE_INACTIVE = 0,
641 PERF_EVENT_STATE_ACTIVE = 1,
642 };
643
644 struct file;
645 struct perf_sample_data;
646
647 typedef void (*perf_overflow_handler_t)(struct perf_event *,
648 struct perf_sample_data *,
649 struct pt_regs *regs);
650
651 /*
652 * Event capabilities. For event_caps and groups caps.
653 *
654 * PERF_EV_CAP_SOFTWARE: Is a software event.
655 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
656 * from any CPU in the package where it is active.
657 * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and
658 * cannot be a group leader. If an event with this flag is detached from the
659 * group it is scheduled out and moved into an unrecoverable ERROR state.
660 * PERF_EV_CAP_READ_SCOPE: A CPU event that can be read from any CPU of the
661 * PMU scope where it is active.
662 */
663 #define PERF_EV_CAP_SOFTWARE BIT(0)
664 #define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1)
665 #define PERF_EV_CAP_SIBLING BIT(2)
666 #define PERF_EV_CAP_READ_SCOPE BIT(3)
667
668 #define SWEVENT_HLIST_BITS 8
669 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
670
671 struct swevent_hlist {
672 struct hlist_head heads[SWEVENT_HLIST_SIZE];
673 struct rcu_head rcu_head;
674 };
675
676 #define PERF_ATTACH_CONTEXT 0x01
677 #define PERF_ATTACH_GROUP 0x02
678 #define PERF_ATTACH_TASK 0x04
679 #define PERF_ATTACH_TASK_DATA 0x08
680 #define PERF_ATTACH_ITRACE 0x10
681 #define PERF_ATTACH_SCHED_CB 0x20
682 #define PERF_ATTACH_CHILD 0x40
683
684 struct bpf_prog;
685 struct perf_cgroup;
686 struct perf_buffer;
687
688 struct pmu_event_list {
689 raw_spinlock_t lock;
690 struct list_head list;
691 };
692
693 /*
694 * event->sibling_list is modified whole holding both ctx->lock and ctx->mutex
695 * as such iteration must hold either lock. However, since ctx->lock is an IRQ
696 * safe lock, and is only held by the CPU doing the modification, having IRQs
697 * disabled is sufficient since it will hold-off the IPIs.
698 */
699 #ifdef CONFIG_PROVE_LOCKING
700 #define lockdep_assert_event_ctx(event) \
701 WARN_ON_ONCE(__lockdep_enabled && \
702 (this_cpu_read(hardirqs_enabled) && \
703 lockdep_is_held(&(event)->ctx->mutex) != LOCK_STATE_HELD))
704 #else
705 #define lockdep_assert_event_ctx(event)
706 #endif
707
708 #define for_each_sibling_event(sibling, event) \
709 lockdep_assert_event_ctx(event); \
710 if ((event)->group_leader == (event)) \
711 list_for_each_entry((sibling), &(event)->sibling_list, sibling_list)
712
713 /**
714 * struct perf_event - performance event kernel representation:
715 */
716 struct perf_event {
717 #ifdef CONFIG_PERF_EVENTS
718 /*
719 * entry onto perf_event_context::event_list;
720 * modifications require ctx->lock
721 * RCU safe iterations.
722 */
723 struct list_head event_entry;
724
725 /*
726 * Locked for modification by both ctx->mutex and ctx->lock; holding
727 * either sufficies for read.
728 */
729 struct list_head sibling_list;
730 struct list_head active_list;
731 /*
732 * Node on the pinned or flexible tree located at the event context;
733 */
734 struct rb_node group_node;
735 u64 group_index;
736 /*
737 * We need storage to track the entries in perf_pmu_migrate_context; we
738 * cannot use the event_entry because of RCU and we want to keep the
739 * group in tact which avoids us using the other two entries.
740 */
741 struct list_head migrate_entry;
742
743 struct hlist_node hlist_entry;
744 struct list_head active_entry;
745 int nr_siblings;
746
747 /* Not serialized. Only written during event initialization. */
748 int event_caps;
749 /* The cumulative AND of all event_caps for events in this group. */
750 int group_caps;
751
752 unsigned int group_generation;
753 struct perf_event *group_leader;
754 /*
755 * event->pmu will always point to pmu in which this event belongs.
756 * Whereas event->pmu_ctx->pmu may point to other pmu when group of
757 * different pmu events is created.
758 */
759 struct pmu *pmu;
760 void *pmu_private;
761
762 enum perf_event_state state;
763 unsigned int attach_state;
764 local64_t count;
765 atomic64_t child_count;
766
767 /*
768 * These are the total time in nanoseconds that the event
769 * has been enabled (i.e. eligible to run, and the task has
770 * been scheduled in, if this is a per-task event)
771 * and running (scheduled onto the CPU), respectively.
772 */
773 u64 total_time_enabled;
774 u64 total_time_running;
775 u64 tstamp;
776
777 struct perf_event_attr attr;
778 u16 header_size;
779 u16 id_header_size;
780 u16 read_size;
781 struct hw_perf_event hw;
782
783 struct perf_event_context *ctx;
784 /*
785 * event->pmu_ctx points to perf_event_pmu_context in which the event
786 * is added. This pmu_ctx can be of other pmu for sw event when that
787 * sw event is part of a group which also contains non-sw events.
788 */
789 struct perf_event_pmu_context *pmu_ctx;
790 atomic_long_t refcount;
791
792 /*
793 * These accumulate total time (in nanoseconds) that children
794 * events have been enabled and running, respectively.
795 */
796 atomic64_t child_total_time_enabled;
797 atomic64_t child_total_time_running;
798
799 /*
800 * Protect attach/detach and child_list:
801 */
802 struct mutex child_mutex;
803 struct list_head child_list;
804 struct perf_event *parent;
805
806 int oncpu;
807 int cpu;
808
809 struct list_head owner_entry;
810 struct task_struct *owner;
811
812 /* mmap bits */
813 struct mutex mmap_mutex;
814 atomic_t mmap_count;
815
816 struct perf_buffer *rb;
817 struct list_head rb_entry;
818 unsigned long rcu_batches;
819 int rcu_pending;
820
821 /* poll related */
822 wait_queue_head_t waitq;
823 struct fasync_struct *fasync;
824
825 /* delayed work for NMIs and such */
826 unsigned int pending_wakeup;
827 unsigned int pending_kill;
828 unsigned int pending_disable;
829 unsigned long pending_addr; /* SIGTRAP */
830 struct irq_work pending_irq;
831 struct irq_work pending_disable_irq;
832 struct callback_head pending_task;
833 unsigned int pending_work;
834 struct rcuwait pending_work_wait;
835
836 atomic_t event_limit;
837
838 /* address range filters */
839 struct perf_addr_filters_head addr_filters;
840 /* vma address array for file-based filders */
841 struct perf_addr_filter_range *addr_filter_ranges;
842 unsigned long addr_filters_gen;
843
844 /* for aux_output events */
845 struct perf_event *aux_event;
846
847 void (*destroy)(struct perf_event *);
848 struct rcu_head rcu_head;
849
850 struct pid_namespace *ns;
851 u64 id;
852
853 atomic64_t lost_samples;
854
855 u64 (*clock)(void);
856 perf_overflow_handler_t overflow_handler;
857 void *overflow_handler_context;
858 struct bpf_prog *prog;
859 u64 bpf_cookie;
860
861 #ifdef CONFIG_EVENT_TRACING
862 struct trace_event_call *tp_event;
863 struct event_filter *filter;
864 #ifdef CONFIG_FUNCTION_TRACER
865 struct ftrace_ops ftrace_ops;
866 #endif
867 #endif
868
869 #ifdef CONFIG_CGROUP_PERF
870 struct perf_cgroup *cgrp; /* cgroup event is attach to */
871 #endif
872
873 #ifdef CONFIG_SECURITY
874 void *security;
875 #endif
876 struct list_head sb_list;
877
878 /*
879 * Certain events gets forwarded to another pmu internally by over-
880 * writing kernel copy of event->attr.type without user being aware
881 * of it. event->orig_type contains original 'type' requested by
882 * user.
883 */
884 __u32 orig_type;
885 #endif /* CONFIG_PERF_EVENTS */
886 };
887
888 /*
889 * ,-----------------------[1:n]------------------------.
890 * V V
891 * perf_event_context <-[1:n]-> perf_event_pmu_context <-[1:n]- perf_event
892 * | |
893 * `--[n:1]-> pmu <-[1:n]--'
894 *
895 *
896 * struct perf_event_pmu_context lifetime is refcount based and RCU freed
897 * (similar to perf_event_context). Locking is as if it were a member of
898 * perf_event_context; specifically:
899 *
900 * modification, both: ctx->mutex && ctx->lock
901 * reading, either: ctx->mutex || ctx->lock
902 *
903 * There is one exception to this; namely put_pmu_ctx() isn't always called
904 * with ctx->mutex held; this means that as long as we can guarantee the epc
905 * has events the above rules hold.
906 *
907 * Specificially, sys_perf_event_open()'s group_leader case depends on
908 * ctx->mutex pinning the configuration. Since we hold a reference on
909 * group_leader (through the filedesc) it can't go away, therefore it's
910 * associated pmu_ctx must exist and cannot change due to ctx->mutex.
911 *
912 * perf_event holds a refcount on perf_event_context
913 * perf_event holds a refcount on perf_event_pmu_context
914 */
915 struct perf_event_pmu_context {
916 struct pmu *pmu;
917 struct perf_event_context *ctx;
918
919 struct list_head pmu_ctx_entry;
920
921 struct list_head pinned_active;
922 struct list_head flexible_active;
923
924 /* Used to avoid freeing per-cpu perf_event_pmu_context */
925 unsigned int embedded : 1;
926
927 unsigned int nr_events;
928 unsigned int nr_cgroups;
929 unsigned int nr_freq;
930
931 atomic_t refcount; /* event <-> epc */
932 struct rcu_head rcu_head;
933
934 void *task_ctx_data; /* pmu specific data */
935 /*
936 * Set when one or more (plausibly active) event can't be scheduled
937 * due to pmu overcommit or pmu constraints, except tolerant to
938 * events not necessary to be active due to scheduling constraints,
939 * such as cgroups.
940 */
941 int rotate_necessary;
942 };
943
perf_pmu_ctx_is_active(struct perf_event_pmu_context * epc)944 static inline bool perf_pmu_ctx_is_active(struct perf_event_pmu_context *epc)
945 {
946 return !list_empty(&epc->flexible_active) || !list_empty(&epc->pinned_active);
947 }
948
949 struct perf_event_groups {
950 struct rb_root tree;
951 u64 index;
952 };
953
954
955 /**
956 * struct perf_event_context - event context structure
957 *
958 * Used as a container for task events and CPU events as well:
959 */
960 struct perf_event_context {
961 /*
962 * Protect the states of the events in the list,
963 * nr_active, and the list:
964 */
965 raw_spinlock_t lock;
966 /*
967 * Protect the list of events. Locking either mutex or lock
968 * is sufficient to ensure the list doesn't change; to change
969 * the list you need to lock both the mutex and the spinlock.
970 */
971 struct mutex mutex;
972
973 struct list_head pmu_ctx_list;
974 struct perf_event_groups pinned_groups;
975 struct perf_event_groups flexible_groups;
976 struct list_head event_list;
977
978 int nr_events;
979 int nr_user;
980 int is_active;
981
982 int nr_task_data;
983 int nr_stat;
984 int nr_freq;
985 int rotate_disable;
986
987 refcount_t refcount; /* event <-> ctx */
988 struct task_struct *task;
989
990 /*
991 * Context clock, runs when context enabled.
992 */
993 u64 time;
994 u64 timestamp;
995 u64 timeoffset;
996
997 /*
998 * These fields let us detect when two contexts have both
999 * been cloned (inherited) from a common ancestor.
1000 */
1001 struct perf_event_context *parent_ctx;
1002 u64 parent_gen;
1003 u64 generation;
1004 int pin_count;
1005 #ifdef CONFIG_CGROUP_PERF
1006 int nr_cgroups; /* cgroup evts */
1007 #endif
1008 struct rcu_head rcu_head;
1009
1010 /*
1011 * The count of events for which using the switch-out fast path
1012 * should be avoided.
1013 *
1014 * Sum (event->pending_work + events with
1015 * (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)))
1016 *
1017 * The SIGTRAP is targeted at ctx->task, as such it won't do changing
1018 * that until the signal is delivered.
1019 */
1020 local_t nr_no_switch_fast;
1021 };
1022
1023 struct perf_cpu_pmu_context {
1024 struct perf_event_pmu_context epc;
1025 struct perf_event_pmu_context *task_epc;
1026
1027 struct list_head sched_cb_entry;
1028 int sched_cb_usage;
1029
1030 int active_oncpu;
1031 int exclusive;
1032
1033 raw_spinlock_t hrtimer_lock;
1034 struct hrtimer hrtimer;
1035 ktime_t hrtimer_interval;
1036 unsigned int hrtimer_active;
1037 };
1038
1039 /**
1040 * struct perf_event_cpu_context - per cpu event context structure
1041 */
1042 struct perf_cpu_context {
1043 struct perf_event_context ctx;
1044 struct perf_event_context *task_ctx;
1045 int online;
1046
1047 #ifdef CONFIG_CGROUP_PERF
1048 struct perf_cgroup *cgrp;
1049 #endif
1050
1051 /*
1052 * Per-CPU storage for iterators used in visit_groups_merge. The default
1053 * storage is of size 2 to hold the CPU and any CPU event iterators.
1054 */
1055 int heap_size;
1056 struct perf_event **heap;
1057 struct perf_event *heap_default[2];
1058 };
1059
1060 struct perf_output_handle {
1061 struct perf_event *event;
1062 struct perf_buffer *rb;
1063 unsigned long wakeup;
1064 unsigned long size;
1065 u64 aux_flags;
1066 union {
1067 void *addr;
1068 unsigned long head;
1069 };
1070 int page;
1071 };
1072
1073 struct bpf_perf_event_data_kern {
1074 bpf_user_pt_regs_t *regs;
1075 struct perf_sample_data *data;
1076 struct perf_event *event;
1077 };
1078
1079 #ifdef CONFIG_CGROUP_PERF
1080
1081 /*
1082 * perf_cgroup_info keeps track of time_enabled for a cgroup.
1083 * This is a per-cpu dynamically allocated data structure.
1084 */
1085 struct perf_cgroup_info {
1086 u64 time;
1087 u64 timestamp;
1088 u64 timeoffset;
1089 int active;
1090 };
1091
1092 struct perf_cgroup {
1093 struct cgroup_subsys_state css;
1094 struct perf_cgroup_info __percpu *info;
1095 };
1096
1097 /*
1098 * Must ensure cgroup is pinned (css_get) before calling
1099 * this function. In other words, we cannot call this function
1100 * if there is no cgroup event for the current CPU context.
1101 */
1102 static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct * task,struct perf_event_context * ctx)1103 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
1104 {
1105 return container_of(task_css_check(task, perf_event_cgrp_id,
1106 ctx ? lockdep_is_held(&ctx->lock)
1107 : true),
1108 struct perf_cgroup, css);
1109 }
1110 #endif /* CONFIG_CGROUP_PERF */
1111
1112 #ifdef CONFIG_PERF_EVENTS
1113
1114 extern struct perf_event_context *perf_cpu_task_ctx(void);
1115
1116 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
1117 struct perf_event *event);
1118 extern void perf_aux_output_end(struct perf_output_handle *handle,
1119 unsigned long size);
1120 extern int perf_aux_output_skip(struct perf_output_handle *handle,
1121 unsigned long size);
1122 extern void *perf_get_aux(struct perf_output_handle *handle);
1123 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
1124 extern void perf_event_itrace_started(struct perf_event *event);
1125
1126 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
1127 extern void perf_pmu_unregister(struct pmu *pmu);
1128
1129 extern void __perf_event_task_sched_in(struct task_struct *prev,
1130 struct task_struct *task);
1131 extern void __perf_event_task_sched_out(struct task_struct *prev,
1132 struct task_struct *next);
1133 extern int perf_event_init_task(struct task_struct *child, u64 clone_flags);
1134 extern void perf_event_exit_task(struct task_struct *child);
1135 extern void perf_event_free_task(struct task_struct *task);
1136 extern void perf_event_delayed_put(struct task_struct *task);
1137 extern struct file *perf_event_get(unsigned int fd);
1138 extern const struct perf_event *perf_get_event(struct file *file);
1139 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
1140 extern void perf_event_print_debug(void);
1141 extern void perf_pmu_disable(struct pmu *pmu);
1142 extern void perf_pmu_enable(struct pmu *pmu);
1143 extern void perf_sched_cb_dec(struct pmu *pmu);
1144 extern void perf_sched_cb_inc(struct pmu *pmu);
1145 extern int perf_event_task_disable(void);
1146 extern int perf_event_task_enable(void);
1147
1148 extern void perf_pmu_resched(struct pmu *pmu);
1149
1150 extern int perf_event_refresh(struct perf_event *event, int refresh);
1151 extern void perf_event_update_userpage(struct perf_event *event);
1152 extern int perf_event_release_kernel(struct perf_event *event);
1153 extern struct perf_event *
1154 perf_event_create_kernel_counter(struct perf_event_attr *attr,
1155 int cpu,
1156 struct task_struct *task,
1157 perf_overflow_handler_t callback,
1158 void *context);
1159 extern void perf_pmu_migrate_context(struct pmu *pmu,
1160 int src_cpu, int dst_cpu);
1161 int perf_event_read_local(struct perf_event *event, u64 *value,
1162 u64 *enabled, u64 *running);
1163 extern u64 perf_event_read_value(struct perf_event *event,
1164 u64 *enabled, u64 *running);
1165
1166 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs);
1167
branch_sample_no_flags(const struct perf_event * event)1168 static inline bool branch_sample_no_flags(const struct perf_event *event)
1169 {
1170 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_FLAGS;
1171 }
1172
branch_sample_no_cycles(const struct perf_event * event)1173 static inline bool branch_sample_no_cycles(const struct perf_event *event)
1174 {
1175 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_CYCLES;
1176 }
1177
branch_sample_type(const struct perf_event * event)1178 static inline bool branch_sample_type(const struct perf_event *event)
1179 {
1180 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_TYPE_SAVE;
1181 }
1182
branch_sample_hw_index(const struct perf_event * event)1183 static inline bool branch_sample_hw_index(const struct perf_event *event)
1184 {
1185 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
1186 }
1187
branch_sample_priv(const struct perf_event * event)1188 static inline bool branch_sample_priv(const struct perf_event *event)
1189 {
1190 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_PRIV_SAVE;
1191 }
1192
branch_sample_counters(const struct perf_event * event)1193 static inline bool branch_sample_counters(const struct perf_event *event)
1194 {
1195 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_COUNTERS;
1196 }
1197
branch_sample_call_stack(const struct perf_event * event)1198 static inline bool branch_sample_call_stack(const struct perf_event *event)
1199 {
1200 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK;
1201 }
1202
1203 struct perf_sample_data {
1204 /*
1205 * Fields set by perf_sample_data_init() unconditionally,
1206 * group so as to minimize the cachelines touched.
1207 */
1208 u64 sample_flags;
1209 u64 period;
1210 u64 dyn_size;
1211
1212 /*
1213 * Fields commonly set by __perf_event_header__init_id(),
1214 * group so as to minimize the cachelines touched.
1215 */
1216 u64 type;
1217 struct {
1218 u32 pid;
1219 u32 tid;
1220 } tid_entry;
1221 u64 time;
1222 u64 id;
1223 struct {
1224 u32 cpu;
1225 u32 reserved;
1226 } cpu_entry;
1227
1228 /*
1229 * The other fields, optionally {set,used} by
1230 * perf_{prepare,output}_sample().
1231 */
1232 u64 ip;
1233 struct perf_callchain_entry *callchain;
1234 struct perf_raw_record *raw;
1235 struct perf_branch_stack *br_stack;
1236 u64 *br_stack_cntr;
1237 union perf_sample_weight weight;
1238 union perf_mem_data_src data_src;
1239 u64 txn;
1240
1241 struct perf_regs regs_user;
1242 struct perf_regs regs_intr;
1243 u64 stack_user_size;
1244
1245 u64 stream_id;
1246 u64 cgroup;
1247 u64 addr;
1248 u64 phys_addr;
1249 u64 data_page_size;
1250 u64 code_page_size;
1251 u64 aux_size;
1252 } ____cacheline_aligned;
1253
1254 /* default value for data source */
1255 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\
1256 PERF_MEM_S(LVL, NA) |\
1257 PERF_MEM_S(SNOOP, NA) |\
1258 PERF_MEM_S(LOCK, NA) |\
1259 PERF_MEM_S(TLB, NA) |\
1260 PERF_MEM_S(LVLNUM, NA))
1261
perf_sample_data_init(struct perf_sample_data * data,u64 addr,u64 period)1262 static inline void perf_sample_data_init(struct perf_sample_data *data,
1263 u64 addr, u64 period)
1264 {
1265 /* remaining struct members initialized in perf_prepare_sample() */
1266 data->sample_flags = PERF_SAMPLE_PERIOD;
1267 data->period = period;
1268 data->dyn_size = 0;
1269
1270 if (addr) {
1271 data->addr = addr;
1272 data->sample_flags |= PERF_SAMPLE_ADDR;
1273 }
1274 }
1275
perf_sample_save_callchain(struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)1276 static inline void perf_sample_save_callchain(struct perf_sample_data *data,
1277 struct perf_event *event,
1278 struct pt_regs *regs)
1279 {
1280 int size = 1;
1281
1282 data->callchain = perf_callchain(event, regs);
1283 size += data->callchain->nr;
1284
1285 data->dyn_size += size * sizeof(u64);
1286 data->sample_flags |= PERF_SAMPLE_CALLCHAIN;
1287 }
1288
perf_sample_save_raw_data(struct perf_sample_data * data,struct perf_raw_record * raw)1289 static inline void perf_sample_save_raw_data(struct perf_sample_data *data,
1290 struct perf_raw_record *raw)
1291 {
1292 struct perf_raw_frag *frag = &raw->frag;
1293 u32 sum = 0;
1294 int size;
1295
1296 do {
1297 sum += frag->size;
1298 if (perf_raw_frag_last(frag))
1299 break;
1300 frag = frag->next;
1301 } while (1);
1302
1303 size = round_up(sum + sizeof(u32), sizeof(u64));
1304 raw->size = size - sizeof(u32);
1305 frag->pad = raw->size - sum;
1306
1307 data->raw = raw;
1308 data->dyn_size += size;
1309 data->sample_flags |= PERF_SAMPLE_RAW;
1310 }
1311
perf_sample_save_brstack(struct perf_sample_data * data,struct perf_event * event,struct perf_branch_stack * brs,u64 * brs_cntr)1312 static inline void perf_sample_save_brstack(struct perf_sample_data *data,
1313 struct perf_event *event,
1314 struct perf_branch_stack *brs,
1315 u64 *brs_cntr)
1316 {
1317 int size = sizeof(u64); /* nr */
1318
1319 if (branch_sample_hw_index(event))
1320 size += sizeof(u64);
1321 size += brs->nr * sizeof(struct perf_branch_entry);
1322
1323 /*
1324 * The extension space for counters is appended after the
1325 * struct perf_branch_stack. It is used to store the occurrences
1326 * of events of each branch.
1327 */
1328 if (brs_cntr)
1329 size += brs->nr * sizeof(u64);
1330
1331 data->br_stack = brs;
1332 data->br_stack_cntr = brs_cntr;
1333 data->dyn_size += size;
1334 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
1335 }
1336
perf_sample_data_size(struct perf_sample_data * data,struct perf_event * event)1337 static inline u32 perf_sample_data_size(struct perf_sample_data *data,
1338 struct perf_event *event)
1339 {
1340 u32 size = sizeof(struct perf_event_header);
1341
1342 size += event->header_size + event->id_header_size;
1343 size += data->dyn_size;
1344
1345 return size;
1346 }
1347
1348 /*
1349 * Clear all bitfields in the perf_branch_entry.
1350 * The to and from fields are not cleared because they are
1351 * systematically modified by caller.
1352 */
perf_clear_branch_entry_bitfields(struct perf_branch_entry * br)1353 static inline void perf_clear_branch_entry_bitfields(struct perf_branch_entry *br)
1354 {
1355 br->mispred = 0;
1356 br->predicted = 0;
1357 br->in_tx = 0;
1358 br->abort = 0;
1359 br->cycles = 0;
1360 br->type = 0;
1361 br->spec = PERF_BR_SPEC_NA;
1362 br->reserved = 0;
1363 }
1364
1365 extern void perf_output_sample(struct perf_output_handle *handle,
1366 struct perf_event_header *header,
1367 struct perf_sample_data *data,
1368 struct perf_event *event);
1369 extern void perf_prepare_sample(struct perf_sample_data *data,
1370 struct perf_event *event,
1371 struct pt_regs *regs);
1372 extern void perf_prepare_header(struct perf_event_header *header,
1373 struct perf_sample_data *data,
1374 struct perf_event *event,
1375 struct pt_regs *regs);
1376
1377 extern int perf_event_overflow(struct perf_event *event,
1378 struct perf_sample_data *data,
1379 struct pt_regs *regs);
1380
1381 extern void perf_event_output_forward(struct perf_event *event,
1382 struct perf_sample_data *data,
1383 struct pt_regs *regs);
1384 extern void perf_event_output_backward(struct perf_event *event,
1385 struct perf_sample_data *data,
1386 struct pt_regs *regs);
1387 extern int perf_event_output(struct perf_event *event,
1388 struct perf_sample_data *data,
1389 struct pt_regs *regs);
1390
1391 static inline bool
is_default_overflow_handler(struct perf_event * event)1392 is_default_overflow_handler(struct perf_event *event)
1393 {
1394 perf_overflow_handler_t overflow_handler = event->overflow_handler;
1395
1396 if (likely(overflow_handler == perf_event_output_forward))
1397 return true;
1398 if (unlikely(overflow_handler == perf_event_output_backward))
1399 return true;
1400 return false;
1401 }
1402
1403 extern void
1404 perf_event_header__init_id(struct perf_event_header *header,
1405 struct perf_sample_data *data,
1406 struct perf_event *event);
1407 extern void
1408 perf_event__output_id_sample(struct perf_event *event,
1409 struct perf_output_handle *handle,
1410 struct perf_sample_data *sample);
1411
1412 extern void
1413 perf_log_lost_samples(struct perf_event *event, u64 lost);
1414
event_has_any_exclude_flag(struct perf_event * event)1415 static inline bool event_has_any_exclude_flag(struct perf_event *event)
1416 {
1417 struct perf_event_attr *attr = &event->attr;
1418
1419 return attr->exclude_idle || attr->exclude_user ||
1420 attr->exclude_kernel || attr->exclude_hv ||
1421 attr->exclude_guest || attr->exclude_host;
1422 }
1423
is_sampling_event(struct perf_event * event)1424 static inline bool is_sampling_event(struct perf_event *event)
1425 {
1426 return event->attr.sample_period != 0;
1427 }
1428
1429 /*
1430 * Return 1 for a software event, 0 for a hardware event
1431 */
is_software_event(struct perf_event * event)1432 static inline int is_software_event(struct perf_event *event)
1433 {
1434 return event->event_caps & PERF_EV_CAP_SOFTWARE;
1435 }
1436
1437 /*
1438 * Return 1 for event in sw context, 0 for event in hw context
1439 */
in_software_context(struct perf_event * event)1440 static inline int in_software_context(struct perf_event *event)
1441 {
1442 return event->pmu_ctx->pmu->task_ctx_nr == perf_sw_context;
1443 }
1444
is_exclusive_pmu(struct pmu * pmu)1445 static inline int is_exclusive_pmu(struct pmu *pmu)
1446 {
1447 return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE;
1448 }
1449
1450 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1451
1452 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1453 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1454
1455 #ifndef perf_arch_fetch_caller_regs
perf_arch_fetch_caller_regs(struct pt_regs * regs,unsigned long ip)1456 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1457 #endif
1458
1459 /*
1460 * When generating a perf sample in-line, instead of from an interrupt /
1461 * exception, we lack a pt_regs. This is typically used from software events
1462 * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints.
1463 *
1464 * We typically don't need a full set, but (for x86) do require:
1465 * - ip for PERF_SAMPLE_IP
1466 * - cs for user_mode() tests
1467 * - sp for PERF_SAMPLE_CALLCHAIN
1468 * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs())
1469 *
1470 * NOTE: assumes @regs is otherwise already 0 filled; this is important for
1471 * things like PERF_SAMPLE_REGS_INTR.
1472 */
perf_fetch_caller_regs(struct pt_regs * regs)1473 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1474 {
1475 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1476 }
1477
1478 static __always_inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)1479 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1480 {
1481 if (static_key_false(&perf_swevent_enabled[event_id]))
1482 __perf_sw_event(event_id, nr, regs, addr);
1483 }
1484
1485 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1486
1487 /*
1488 * 'Special' version for the scheduler, it hard assumes no recursion,
1489 * which is guaranteed by us not actually scheduling inside other swevents
1490 * because those disable preemption.
1491 */
__perf_sw_event_sched(u32 event_id,u64 nr,u64 addr)1492 static __always_inline void __perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1493 {
1494 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1495
1496 perf_fetch_caller_regs(regs);
1497 ___perf_sw_event(event_id, nr, regs, addr);
1498 }
1499
1500 extern struct static_key_false perf_sched_events;
1501
__perf_sw_enabled(int swevt)1502 static __always_inline bool __perf_sw_enabled(int swevt)
1503 {
1504 return static_key_false(&perf_swevent_enabled[swevt]);
1505 }
1506
perf_event_task_migrate(struct task_struct * task)1507 static inline void perf_event_task_migrate(struct task_struct *task)
1508 {
1509 if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS))
1510 task->sched_migrated = 1;
1511 }
1512
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)1513 static inline void perf_event_task_sched_in(struct task_struct *prev,
1514 struct task_struct *task)
1515 {
1516 if (static_branch_unlikely(&perf_sched_events))
1517 __perf_event_task_sched_in(prev, task);
1518
1519 if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS) &&
1520 task->sched_migrated) {
1521 __perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
1522 task->sched_migrated = 0;
1523 }
1524 }
1525
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)1526 static inline void perf_event_task_sched_out(struct task_struct *prev,
1527 struct task_struct *next)
1528 {
1529 if (__perf_sw_enabled(PERF_COUNT_SW_CONTEXT_SWITCHES))
1530 __perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1531
1532 #ifdef CONFIG_CGROUP_PERF
1533 if (__perf_sw_enabled(PERF_COUNT_SW_CGROUP_SWITCHES) &&
1534 perf_cgroup_from_task(prev, NULL) !=
1535 perf_cgroup_from_task(next, NULL))
1536 __perf_sw_event_sched(PERF_COUNT_SW_CGROUP_SWITCHES, 1, 0);
1537 #endif
1538
1539 if (static_branch_unlikely(&perf_sched_events))
1540 __perf_event_task_sched_out(prev, next);
1541 }
1542
1543 extern void perf_event_mmap(struct vm_area_struct *vma);
1544
1545 extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1546 bool unregister, const char *sym);
1547 extern void perf_event_bpf_event(struct bpf_prog *prog,
1548 enum perf_bpf_event_type type,
1549 u16 flags);
1550
1551 #ifdef CONFIG_GUEST_PERF_EVENTS
1552 extern struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
1553
1554 DECLARE_STATIC_CALL(__perf_guest_state, *perf_guest_cbs->state);
1555 DECLARE_STATIC_CALL(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
1556 DECLARE_STATIC_CALL(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
1557
perf_guest_state(void)1558 static inline unsigned int perf_guest_state(void)
1559 {
1560 return static_call(__perf_guest_state)();
1561 }
perf_guest_get_ip(void)1562 static inline unsigned long perf_guest_get_ip(void)
1563 {
1564 return static_call(__perf_guest_get_ip)();
1565 }
perf_guest_handle_intel_pt_intr(void)1566 static inline unsigned int perf_guest_handle_intel_pt_intr(void)
1567 {
1568 return static_call(__perf_guest_handle_intel_pt_intr)();
1569 }
1570 extern void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs);
1571 extern void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs);
1572 #else
perf_guest_state(void)1573 static inline unsigned int perf_guest_state(void) { return 0; }
perf_guest_get_ip(void)1574 static inline unsigned long perf_guest_get_ip(void) { return 0; }
perf_guest_handle_intel_pt_intr(void)1575 static inline unsigned int perf_guest_handle_intel_pt_intr(void) { return 0; }
1576 #endif /* CONFIG_GUEST_PERF_EVENTS */
1577
1578 extern void perf_event_exec(void);
1579 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1580 extern void perf_event_namespaces(struct task_struct *tsk);
1581 extern void perf_event_fork(struct task_struct *tsk);
1582 extern void perf_event_text_poke(const void *addr,
1583 const void *old_bytes, size_t old_len,
1584 const void *new_bytes, size_t new_len);
1585
1586 /* Callchains */
1587 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1588
1589 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1590 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1591 extern struct perf_callchain_entry *
1592 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1593 u32 max_stack, bool crosstask, bool add_mark);
1594 extern int get_callchain_buffers(int max_stack);
1595 extern void put_callchain_buffers(void);
1596 extern struct perf_callchain_entry *get_callchain_entry(int *rctx);
1597 extern void put_callchain_entry(int rctx);
1598
1599 extern int sysctl_perf_event_max_stack;
1600 extern int sysctl_perf_event_max_contexts_per_stack;
1601
perf_callchain_store_context(struct perf_callchain_entry_ctx * ctx,u64 ip)1602 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1603 {
1604 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1605 struct perf_callchain_entry *entry = ctx->entry;
1606 entry->ip[entry->nr++] = ip;
1607 ++ctx->contexts;
1608 return 0;
1609 } else {
1610 ctx->contexts_maxed = true;
1611 return -1; /* no more room, stop walking the stack */
1612 }
1613 }
1614
perf_callchain_store(struct perf_callchain_entry_ctx * ctx,u64 ip)1615 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1616 {
1617 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1618 struct perf_callchain_entry *entry = ctx->entry;
1619 entry->ip[entry->nr++] = ip;
1620 ++ctx->nr;
1621 return 0;
1622 } else {
1623 return -1; /* no more room, stop walking the stack */
1624 }
1625 }
1626
1627 extern int sysctl_perf_event_paranoid;
1628 extern int sysctl_perf_event_mlock;
1629 extern int sysctl_perf_event_sample_rate;
1630 extern int sysctl_perf_cpu_time_max_percent;
1631
1632 extern void perf_sample_event_took(u64 sample_len_ns);
1633
1634 int perf_event_max_sample_rate_handler(const struct ctl_table *table, int write,
1635 void *buffer, size_t *lenp, loff_t *ppos);
1636 int perf_cpu_time_max_percent_handler(const struct ctl_table *table, int write,
1637 void *buffer, size_t *lenp, loff_t *ppos);
1638 int perf_event_max_stack_handler(const struct ctl_table *table, int write,
1639 void *buffer, size_t *lenp, loff_t *ppos);
1640
1641 /* Access to perf_event_open(2) syscall. */
1642 #define PERF_SECURITY_OPEN 0
1643
1644 /* Finer grained perf_event_open(2) access control. */
1645 #define PERF_SECURITY_CPU 1
1646 #define PERF_SECURITY_KERNEL 2
1647 #define PERF_SECURITY_TRACEPOINT 3
1648
perf_is_paranoid(void)1649 static inline int perf_is_paranoid(void)
1650 {
1651 return sysctl_perf_event_paranoid > -1;
1652 }
1653
1654 int perf_allow_kernel(struct perf_event_attr *attr);
1655
perf_allow_cpu(struct perf_event_attr * attr)1656 static inline int perf_allow_cpu(struct perf_event_attr *attr)
1657 {
1658 if (sysctl_perf_event_paranoid > 0 && !perfmon_capable())
1659 return -EACCES;
1660
1661 return security_perf_event_open(attr, PERF_SECURITY_CPU);
1662 }
1663
perf_allow_tracepoint(struct perf_event_attr * attr)1664 static inline int perf_allow_tracepoint(struct perf_event_attr *attr)
1665 {
1666 if (sysctl_perf_event_paranoid > -1 && !perfmon_capable())
1667 return -EPERM;
1668
1669 return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT);
1670 }
1671
1672 extern void perf_event_init(void);
1673 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1674 int entry_size, struct pt_regs *regs,
1675 struct hlist_head *head, int rctx,
1676 struct task_struct *task);
1677 extern void perf_bp_event(struct perf_event *event, void *data);
1678
1679 extern unsigned long perf_misc_flags(struct perf_event *event, struct pt_regs *regs);
1680 extern unsigned long perf_instruction_pointer(struct perf_event *event,
1681 struct pt_regs *regs);
1682
1683 #ifndef perf_arch_misc_flags
1684 # define perf_arch_misc_flags(regs) \
1685 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1686 # define perf_arch_instruction_pointer(regs) instruction_pointer(regs)
1687 #endif
1688 #ifndef perf_arch_bpf_user_pt_regs
1689 # define perf_arch_bpf_user_pt_regs(regs) regs
1690 #endif
1691
1692 #ifndef perf_arch_guest_misc_flags
perf_arch_guest_misc_flags(struct pt_regs * regs)1693 static inline unsigned long perf_arch_guest_misc_flags(struct pt_regs *regs)
1694 {
1695 unsigned long guest_state = perf_guest_state();
1696
1697 if (!(guest_state & PERF_GUEST_ACTIVE))
1698 return 0;
1699
1700 if (guest_state & PERF_GUEST_USER)
1701 return PERF_RECORD_MISC_GUEST_USER;
1702 else
1703 return PERF_RECORD_MISC_GUEST_KERNEL;
1704 }
1705 # define perf_arch_guest_misc_flags(regs) perf_arch_guest_misc_flags(regs)
1706 #endif
1707
has_branch_stack(struct perf_event * event)1708 static inline bool has_branch_stack(struct perf_event *event)
1709 {
1710 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1711 }
1712
needs_branch_stack(struct perf_event * event)1713 static inline bool needs_branch_stack(struct perf_event *event)
1714 {
1715 return event->attr.branch_sample_type != 0;
1716 }
1717
has_aux(struct perf_event * event)1718 static inline bool has_aux(struct perf_event *event)
1719 {
1720 return event->pmu->setup_aux;
1721 }
1722
has_aux_action(struct perf_event * event)1723 static inline bool has_aux_action(struct perf_event *event)
1724 {
1725 return event->attr.aux_sample_size ||
1726 event->attr.aux_pause ||
1727 event->attr.aux_resume;
1728 }
1729
is_write_backward(struct perf_event * event)1730 static inline bool is_write_backward(struct perf_event *event)
1731 {
1732 return !!event->attr.write_backward;
1733 }
1734
has_addr_filter(struct perf_event * event)1735 static inline bool has_addr_filter(struct perf_event *event)
1736 {
1737 return event->pmu->nr_addr_filters;
1738 }
1739
1740 /*
1741 * An inherited event uses parent's filters
1742 */
1743 static inline struct perf_addr_filters_head *
perf_event_addr_filters(struct perf_event * event)1744 perf_event_addr_filters(struct perf_event *event)
1745 {
1746 struct perf_addr_filters_head *ifh = &event->addr_filters;
1747
1748 if (event->parent)
1749 ifh = &event->parent->addr_filters;
1750
1751 return ifh;
1752 }
1753
perf_event_fasync(struct perf_event * event)1754 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
1755 {
1756 /* Only the parent has fasync state */
1757 if (event->parent)
1758 event = event->parent;
1759 return &event->fasync;
1760 }
1761
1762 extern void perf_event_addr_filters_sync(struct perf_event *event);
1763 extern void perf_report_aux_output_id(struct perf_event *event, u64 hw_id);
1764
1765 extern int perf_output_begin(struct perf_output_handle *handle,
1766 struct perf_sample_data *data,
1767 struct perf_event *event, unsigned int size);
1768 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1769 struct perf_sample_data *data,
1770 struct perf_event *event,
1771 unsigned int size);
1772 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1773 struct perf_sample_data *data,
1774 struct perf_event *event,
1775 unsigned int size);
1776
1777 extern void perf_output_end(struct perf_output_handle *handle);
1778 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1779 const void *buf, unsigned int len);
1780 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1781 unsigned int len);
1782 extern long perf_output_copy_aux(struct perf_output_handle *aux_handle,
1783 struct perf_output_handle *handle,
1784 unsigned long from, unsigned long to);
1785 extern int perf_swevent_get_recursion_context(void);
1786 extern void perf_swevent_put_recursion_context(int rctx);
1787 extern u64 perf_swevent_set_period(struct perf_event *event);
1788 extern void perf_event_enable(struct perf_event *event);
1789 extern void perf_event_disable(struct perf_event *event);
1790 extern void perf_event_disable_local(struct perf_event *event);
1791 extern void perf_event_disable_inatomic(struct perf_event *event);
1792 extern void perf_event_task_tick(void);
1793 extern int perf_event_account_interrupt(struct perf_event *event);
1794 extern int perf_event_period(struct perf_event *event, u64 value);
1795 extern u64 perf_event_pause(struct perf_event *event, bool reset);
1796 #else /* !CONFIG_PERF_EVENTS: */
1797 static inline void *
perf_aux_output_begin(struct perf_output_handle * handle,struct perf_event * event)1798 perf_aux_output_begin(struct perf_output_handle *handle,
1799 struct perf_event *event) { return NULL; }
1800 static inline void
perf_aux_output_end(struct perf_output_handle * handle,unsigned long size)1801 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1802 { }
1803 static inline int
perf_aux_output_skip(struct perf_output_handle * handle,unsigned long size)1804 perf_aux_output_skip(struct perf_output_handle *handle,
1805 unsigned long size) { return -EINVAL; }
1806 static inline void *
perf_get_aux(struct perf_output_handle * handle)1807 perf_get_aux(struct perf_output_handle *handle) { return NULL; }
1808 static inline void
perf_event_task_migrate(struct task_struct * task)1809 perf_event_task_migrate(struct task_struct *task) { }
1810 static inline void
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)1811 perf_event_task_sched_in(struct task_struct *prev,
1812 struct task_struct *task) { }
1813 static inline void
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)1814 perf_event_task_sched_out(struct task_struct *prev,
1815 struct task_struct *next) { }
perf_event_init_task(struct task_struct * child,u64 clone_flags)1816 static inline int perf_event_init_task(struct task_struct *child,
1817 u64 clone_flags) { return 0; }
perf_event_exit_task(struct task_struct * child)1818 static inline void perf_event_exit_task(struct task_struct *child) { }
perf_event_free_task(struct task_struct * task)1819 static inline void perf_event_free_task(struct task_struct *task) { }
perf_event_delayed_put(struct task_struct * task)1820 static inline void perf_event_delayed_put(struct task_struct *task) { }
perf_event_get(unsigned int fd)1821 static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); }
perf_get_event(struct file * file)1822 static inline const struct perf_event *perf_get_event(struct file *file)
1823 {
1824 return ERR_PTR(-EINVAL);
1825 }
perf_event_attrs(struct perf_event * event)1826 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1827 {
1828 return ERR_PTR(-EINVAL);
1829 }
perf_event_read_local(struct perf_event * event,u64 * value,u64 * enabled,u64 * running)1830 static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1831 u64 *enabled, u64 *running)
1832 {
1833 return -EINVAL;
1834 }
perf_event_print_debug(void)1835 static inline void perf_event_print_debug(void) { }
perf_event_task_disable(void)1836 static inline int perf_event_task_disable(void) { return -EINVAL; }
perf_event_task_enable(void)1837 static inline int perf_event_task_enable(void) { return -EINVAL; }
perf_event_refresh(struct perf_event * event,int refresh)1838 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1839 {
1840 return -EINVAL;
1841 }
1842
1843 static inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)1844 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
1845 static inline void
perf_bp_event(struct perf_event * event,void * data)1846 perf_bp_event(struct perf_event *event, void *data) { }
1847
perf_event_mmap(struct vm_area_struct * vma)1848 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
1849
1850 typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data);
perf_event_ksymbol(u16 ksym_type,u64 addr,u32 len,bool unregister,const char * sym)1851 static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1852 bool unregister, const char *sym) { }
perf_event_bpf_event(struct bpf_prog * prog,enum perf_bpf_event_type type,u16 flags)1853 static inline void perf_event_bpf_event(struct bpf_prog *prog,
1854 enum perf_bpf_event_type type,
1855 u16 flags) { }
perf_event_exec(void)1856 static inline void perf_event_exec(void) { }
perf_event_comm(struct task_struct * tsk,bool exec)1857 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { }
perf_event_namespaces(struct task_struct * tsk)1858 static inline void perf_event_namespaces(struct task_struct *tsk) { }
perf_event_fork(struct task_struct * tsk)1859 static inline void perf_event_fork(struct task_struct *tsk) { }
perf_event_text_poke(const void * addr,const void * old_bytes,size_t old_len,const void * new_bytes,size_t new_len)1860 static inline void perf_event_text_poke(const void *addr,
1861 const void *old_bytes,
1862 size_t old_len,
1863 const void *new_bytes,
1864 size_t new_len) { }
perf_event_init(void)1865 static inline void perf_event_init(void) { }
perf_swevent_get_recursion_context(void)1866 static inline int perf_swevent_get_recursion_context(void) { return -1; }
perf_swevent_put_recursion_context(int rctx)1867 static inline void perf_swevent_put_recursion_context(int rctx) { }
perf_swevent_set_period(struct perf_event * event)1868 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; }
perf_event_enable(struct perf_event * event)1869 static inline void perf_event_enable(struct perf_event *event) { }
perf_event_disable(struct perf_event * event)1870 static inline void perf_event_disable(struct perf_event *event) { }
__perf_event_disable(void * info)1871 static inline int __perf_event_disable(void *info) { return -1; }
perf_event_task_tick(void)1872 static inline void perf_event_task_tick(void) { }
perf_event_release_kernel(struct perf_event * event)1873 static inline int perf_event_release_kernel(struct perf_event *event) { return 0; }
perf_event_period(struct perf_event * event,u64 value)1874 static inline int perf_event_period(struct perf_event *event, u64 value)
1875 {
1876 return -EINVAL;
1877 }
perf_event_pause(struct perf_event * event,bool reset)1878 static inline u64 perf_event_pause(struct perf_event *event, bool reset)
1879 {
1880 return 0;
1881 }
1882 #endif
1883
1884 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1885 extern void perf_restore_debug_store(void);
1886 #else
perf_restore_debug_store(void)1887 static inline void perf_restore_debug_store(void) { }
1888 #endif
1889
1890 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1891
1892 struct perf_pmu_events_attr {
1893 struct device_attribute attr;
1894 u64 id;
1895 const char *event_str;
1896 };
1897
1898 struct perf_pmu_events_ht_attr {
1899 struct device_attribute attr;
1900 u64 id;
1901 const char *event_str_ht;
1902 const char *event_str_noht;
1903 };
1904
1905 struct perf_pmu_events_hybrid_attr {
1906 struct device_attribute attr;
1907 u64 id;
1908 const char *event_str;
1909 u64 pmu_type;
1910 };
1911
1912 struct perf_pmu_format_hybrid_attr {
1913 struct device_attribute attr;
1914 u64 pmu_type;
1915 };
1916
1917 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1918 char *page);
1919
1920 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \
1921 static struct perf_pmu_events_attr _var = { \
1922 .attr = __ATTR(_name, 0444, _show, NULL), \
1923 .id = _id, \
1924 };
1925
1926 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \
1927 static struct perf_pmu_events_attr _var = { \
1928 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1929 .id = 0, \
1930 .event_str = _str, \
1931 };
1932
1933 #define PMU_EVENT_ATTR_ID(_name, _show, _id) \
1934 (&((struct perf_pmu_events_attr[]) { \
1935 { .attr = __ATTR(_name, 0444, _show, NULL), \
1936 .id = _id, } \
1937 })[0].attr.attr)
1938
1939 #define PMU_FORMAT_ATTR_SHOW(_name, _format) \
1940 static ssize_t \
1941 _name##_show(struct device *dev, \
1942 struct device_attribute *attr, \
1943 char *page) \
1944 { \
1945 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
1946 return sprintf(page, _format "\n"); \
1947 } \
1948
1949 #define PMU_FORMAT_ATTR(_name, _format) \
1950 PMU_FORMAT_ATTR_SHOW(_name, _format) \
1951 \
1952 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1953
1954 /* Performance counter hotplug functions */
1955 #ifdef CONFIG_PERF_EVENTS
1956 int perf_event_init_cpu(unsigned int cpu);
1957 int perf_event_exit_cpu(unsigned int cpu);
1958 #else
1959 #define perf_event_init_cpu NULL
1960 #define perf_event_exit_cpu NULL
1961 #endif
1962
1963 extern void arch_perf_update_userpage(struct perf_event *event,
1964 struct perf_event_mmap_page *userpg,
1965 u64 now);
1966
1967 /*
1968 * Snapshot branch stack on software events.
1969 *
1970 * Branch stack can be very useful in understanding software events. For
1971 * example, when a long function, e.g. sys_perf_event_open, returns an
1972 * errno, it is not obvious why the function failed. Branch stack could
1973 * provide very helpful information in this type of scenarios.
1974 *
1975 * On software event, it is necessary to stop the hardware branch recorder
1976 * fast. Otherwise, the hardware register/buffer will be flushed with
1977 * entries of the triggering event. Therefore, static call is used to
1978 * stop the hardware recorder.
1979 */
1980
1981 /*
1982 * cnt is the number of entries allocated for entries.
1983 * Return number of entries copied to .
1984 */
1985 typedef int (perf_snapshot_branch_stack_t)(struct perf_branch_entry *entries,
1986 unsigned int cnt);
1987 DECLARE_STATIC_CALL(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
1988
1989 #ifndef PERF_NEEDS_LOPWR_CB
perf_lopwr_cb(bool mode)1990 static inline void perf_lopwr_cb(bool mode)
1991 {
1992 }
1993 #endif
1994
1995 #endif /* _LINUX_PERF_EVENT_H */
1996