1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Copyright (C) 1991,1992 Linus Torvalds 4 * 5 * entry_32.S contains the system-call and low-level fault and trap handling routines. 6 * 7 * Stack layout while running C code: 8 * ptrace needs to have all registers on the stack. 9 * If the order here is changed, it needs to be 10 * updated in fork.c:copy_process(), signal.c:do_signal(), 11 * ptrace.c and ptrace.h 12 * 13 * 0(%esp) - %ebx 14 * 4(%esp) - %ecx 15 * 8(%esp) - %edx 16 * C(%esp) - %esi 17 * 10(%esp) - %edi 18 * 14(%esp) - %ebp 19 * 18(%esp) - %eax 20 * 1C(%esp) - %ds 21 * 20(%esp) - %es 22 * 24(%esp) - %fs 23 * 28(%esp) - unused -- was %gs on old stackprotector kernels 24 * 2C(%esp) - orig_eax 25 * 30(%esp) - %eip 26 * 34(%esp) - %cs 27 * 38(%esp) - %eflags 28 * 3C(%esp) - %oldesp 29 * 40(%esp) - %oldss 30 */ 31 32#include <linux/linkage.h> 33#include <linux/err.h> 34#include <asm/thread_info.h> 35#include <asm/irqflags.h> 36#include <asm/errno.h> 37#include <asm/segment.h> 38#include <asm/smp.h> 39#include <asm/percpu.h> 40#include <asm/processor-flags.h> 41#include <asm/irq_vectors.h> 42#include <asm/cpufeatures.h> 43#include <asm/alternative.h> 44#include <asm/asm.h> 45#include <asm/smap.h> 46#include <asm/frame.h> 47#include <asm/trapnr.h> 48#include <asm/nospec-branch.h> 49 50#include "calling.h" 51 52 .section .entry.text, "ax" 53 54#define PTI_SWITCH_MASK (1 << PAGE_SHIFT) 55 56/* Unconditionally switch to user cr3 */ 57.macro SWITCH_TO_USER_CR3 scratch_reg:req 58 ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI 59 60 movl %cr3, \scratch_reg 61 orl $PTI_SWITCH_MASK, \scratch_reg 62 movl \scratch_reg, %cr3 63.Lend_\@: 64.endm 65 66.macro BUG_IF_WRONG_CR3 no_user_check=0 67#ifdef CONFIG_DEBUG_ENTRY 68 ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI 69 .if \no_user_check == 0 70 /* coming from usermode? */ 71 testl $USER_SEGMENT_RPL_MASK, PT_CS(%esp) 72 jz .Lend_\@ 73 .endif 74 /* On user-cr3? */ 75 movl %cr3, %eax 76 testl $PTI_SWITCH_MASK, %eax 77 jnz .Lend_\@ 78 /* From userspace with kernel cr3 - BUG */ 79 ud2 80.Lend_\@: 81#endif 82.endm 83 84/* 85 * Switch to kernel cr3 if not already loaded and return current cr3 in 86 * \scratch_reg 87 */ 88.macro SWITCH_TO_KERNEL_CR3 scratch_reg:req 89 ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI 90 movl %cr3, \scratch_reg 91 /* Test if we are already on kernel CR3 */ 92 testl $PTI_SWITCH_MASK, \scratch_reg 93 jz .Lend_\@ 94 andl $(~PTI_SWITCH_MASK), \scratch_reg 95 movl \scratch_reg, %cr3 96 /* Return original CR3 in \scratch_reg */ 97 orl $PTI_SWITCH_MASK, \scratch_reg 98.Lend_\@: 99.endm 100 101#define CS_FROM_ENTRY_STACK (1 << 31) 102#define CS_FROM_USER_CR3 (1 << 30) 103#define CS_FROM_KERNEL (1 << 29) 104#define CS_FROM_ESPFIX (1 << 28) 105 106.macro FIXUP_FRAME 107 /* 108 * The high bits of the CS dword (__csh) are used for CS_FROM_*. 109 * Clear them in case hardware didn't do this for us. 110 */ 111 andl $0x0000ffff, 4*4(%esp) 112 113#ifdef CONFIG_VM86 114 testl $X86_EFLAGS_VM, 5*4(%esp) 115 jnz .Lfrom_usermode_no_fixup_\@ 116#endif 117 testl $USER_SEGMENT_RPL_MASK, 4*4(%esp) 118 jnz .Lfrom_usermode_no_fixup_\@ 119 120 orl $CS_FROM_KERNEL, 4*4(%esp) 121 122 /* 123 * When we're here from kernel mode; the (exception) stack looks like: 124 * 125 * 6*4(%esp) - <previous context> 126 * 5*4(%esp) - flags 127 * 4*4(%esp) - cs 128 * 3*4(%esp) - ip 129 * 2*4(%esp) - orig_eax 130 * 1*4(%esp) - gs / function 131 * 0*4(%esp) - fs 132 * 133 * Lets build a 5 entry IRET frame after that, such that struct pt_regs 134 * is complete and in particular regs->sp is correct. This gives us 135 * the original 6 entries as gap: 136 * 137 * 14*4(%esp) - <previous context> 138 * 13*4(%esp) - gap / flags 139 * 12*4(%esp) - gap / cs 140 * 11*4(%esp) - gap / ip 141 * 10*4(%esp) - gap / orig_eax 142 * 9*4(%esp) - gap / gs / function 143 * 8*4(%esp) - gap / fs 144 * 7*4(%esp) - ss 145 * 6*4(%esp) - sp 146 * 5*4(%esp) - flags 147 * 4*4(%esp) - cs 148 * 3*4(%esp) - ip 149 * 2*4(%esp) - orig_eax 150 * 1*4(%esp) - gs / function 151 * 0*4(%esp) - fs 152 */ 153 154 pushl %ss # ss 155 pushl %esp # sp (points at ss) 156 addl $7*4, (%esp) # point sp back at the previous context 157 pushl 7*4(%esp) # flags 158 pushl 7*4(%esp) # cs 159 pushl 7*4(%esp) # ip 160 pushl 7*4(%esp) # orig_eax 161 pushl 7*4(%esp) # gs / function 162 pushl 7*4(%esp) # fs 163.Lfrom_usermode_no_fixup_\@: 164.endm 165 166.macro IRET_FRAME 167 /* 168 * We're called with %ds, %es, %fs, and %gs from the interrupted 169 * frame, so we shouldn't use them. Also, we may be in ESPFIX 170 * mode and therefore have a nonzero SS base and an offset ESP, 171 * so any attempt to access the stack needs to use SS. (except for 172 * accesses through %esp, which automatically use SS.) 173 */ 174 testl $CS_FROM_KERNEL, 1*4(%esp) 175 jz .Lfinished_frame_\@ 176 177 /* 178 * Reconstruct the 3 entry IRET frame right after the (modified) 179 * regs->sp without lowering %esp in between, such that an NMI in the 180 * middle doesn't scribble our stack. 181 */ 182 pushl %eax 183 pushl %ecx 184 movl 5*4(%esp), %eax # (modified) regs->sp 185 186 movl 4*4(%esp), %ecx # flags 187 movl %ecx, %ss:-1*4(%eax) 188 189 movl 3*4(%esp), %ecx # cs 190 andl $0x0000ffff, %ecx 191 movl %ecx, %ss:-2*4(%eax) 192 193 movl 2*4(%esp), %ecx # ip 194 movl %ecx, %ss:-3*4(%eax) 195 196 movl 1*4(%esp), %ecx # eax 197 movl %ecx, %ss:-4*4(%eax) 198 199 popl %ecx 200 lea -4*4(%eax), %esp 201 popl %eax 202.Lfinished_frame_\@: 203.endm 204 205.macro SAVE_ALL pt_regs_ax=%eax switch_stacks=0 skip_gs=0 unwind_espfix=0 206 cld 207.if \skip_gs == 0 208 pushl $0 209.endif 210 pushl %fs 211 212 pushl %eax 213 movl $(__KERNEL_PERCPU), %eax 214 movl %eax, %fs 215.if \unwind_espfix > 0 216 UNWIND_ESPFIX_STACK 217.endif 218 popl %eax 219 220 FIXUP_FRAME 221 pushl %es 222 pushl %ds 223 pushl \pt_regs_ax 224 pushl %ebp 225 pushl %edi 226 pushl %esi 227 pushl %edx 228 pushl %ecx 229 pushl %ebx 230 movl $(__USER_DS), %edx 231 movl %edx, %ds 232 movl %edx, %es 233 /* Switch to kernel stack if necessary */ 234.if \switch_stacks > 0 235 SWITCH_TO_KERNEL_STACK 236.endif 237.endm 238 239.macro SAVE_ALL_NMI cr3_reg:req unwind_espfix=0 240 SAVE_ALL unwind_espfix=\unwind_espfix 241 242 BUG_IF_WRONG_CR3 243 244 /* 245 * Now switch the CR3 when PTI is enabled. 246 * 247 * We can enter with either user or kernel cr3, the code will 248 * store the old cr3 in \cr3_reg and switches to the kernel cr3 249 * if necessary. 250 */ 251 SWITCH_TO_KERNEL_CR3 scratch_reg=\cr3_reg 252 253.Lend_\@: 254.endm 255 256.macro RESTORE_INT_REGS 257 popl %ebx 258 popl %ecx 259 popl %edx 260 popl %esi 261 popl %edi 262 popl %ebp 263 popl %eax 264.endm 265 266.macro RESTORE_REGS pop=0 267 RESTORE_INT_REGS 2681: popl %ds 2692: popl %es 2703: popl %fs 2714: addl $(4 + \pop), %esp /* pop the unused "gs" slot */ 272 IRET_FRAME 273 274 /* 275 * There is no _ASM_EXTABLE_TYPE_REG() for ASM, however since this is 276 * ASM the registers are known and we can trivially hard-code them. 277 */ 278 _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_POP_ZERO|EX_REG_DS) 279 _ASM_EXTABLE_TYPE(2b, 3b, EX_TYPE_POP_ZERO|EX_REG_ES) 280 _ASM_EXTABLE_TYPE(3b, 4b, EX_TYPE_POP_ZERO|EX_REG_FS) 281.endm 282 283.macro RESTORE_ALL_NMI cr3_reg:req pop=0 284 /* 285 * Now switch the CR3 when PTI is enabled. 286 * 287 * We enter with kernel cr3 and switch the cr3 to the value 288 * stored on \cr3_reg, which is either a user or a kernel cr3. 289 */ 290 ALTERNATIVE "jmp .Lswitched_\@", "", X86_FEATURE_PTI 291 292 testl $PTI_SWITCH_MASK, \cr3_reg 293 jz .Lswitched_\@ 294 295 /* User cr3 in \cr3_reg - write it to hardware cr3 */ 296 movl \cr3_reg, %cr3 297 298.Lswitched_\@: 299 300 BUG_IF_WRONG_CR3 301 302 RESTORE_REGS pop=\pop 303.endm 304 305.macro CHECK_AND_APPLY_ESPFIX 306#ifdef CONFIG_X86_ESPFIX32 307#define GDT_ESPFIX_OFFSET (GDT_ENTRY_ESPFIX_SS * 8) 308#define GDT_ESPFIX_SS PER_CPU_VAR(gdt_page + GDT_ESPFIX_OFFSET) 309 310 ALTERNATIVE "jmp .Lend_\@", "", X86_BUG_ESPFIX 311 312 movl PT_EFLAGS(%esp), %eax # mix EFLAGS, SS and CS 313 /* 314 * Warning: PT_OLDSS(%esp) contains the wrong/random values if we 315 * are returning to the kernel. 316 * See comments in process.c:copy_thread() for details. 317 */ 318 movb PT_OLDSS(%esp), %ah 319 movb PT_CS(%esp), %al 320 andl $(X86_EFLAGS_VM | (SEGMENT_TI_MASK << 8) | SEGMENT_RPL_MASK), %eax 321 cmpl $((SEGMENT_LDT << 8) | USER_RPL), %eax 322 jne .Lend_\@ # returning to user-space with LDT SS 323 324 /* 325 * Setup and switch to ESPFIX stack 326 * 327 * We're returning to userspace with a 16 bit stack. The CPU will not 328 * restore the high word of ESP for us on executing iret... This is an 329 * "official" bug of all the x86-compatible CPUs, which we can work 330 * around to make dosemu and wine happy. We do this by preloading the 331 * high word of ESP with the high word of the userspace ESP while 332 * compensating for the offset by changing to the ESPFIX segment with 333 * a base address that matches for the difference. 334 */ 335 mov %esp, %edx /* load kernel esp */ 336 mov PT_OLDESP(%esp), %eax /* load userspace esp */ 337 mov %dx, %ax /* eax: new kernel esp */ 338 sub %eax, %edx /* offset (low word is 0) */ 339 shr $16, %edx 340 mov %dl, GDT_ESPFIX_SS + 4 /* bits 16..23 */ 341 mov %dh, GDT_ESPFIX_SS + 7 /* bits 24..31 */ 342 pushl $__ESPFIX_SS 343 pushl %eax /* new kernel esp */ 344 /* 345 * Disable interrupts, but do not irqtrace this section: we 346 * will soon execute iret and the tracer was already set to 347 * the irqstate after the IRET: 348 */ 349 cli 350 lss (%esp), %esp /* switch to espfix segment */ 351.Lend_\@: 352#endif /* CONFIG_X86_ESPFIX32 */ 353.endm 354 355/* 356 * Called with pt_regs fully populated and kernel segments loaded, 357 * so we can access PER_CPU and use the integer registers. 358 * 359 * We need to be very careful here with the %esp switch, because an NMI 360 * can happen everywhere. If the NMI handler finds itself on the 361 * entry-stack, it will overwrite the task-stack and everything we 362 * copied there. So allocate the stack-frame on the task-stack and 363 * switch to it before we do any copying. 364 */ 365 366.macro SWITCH_TO_KERNEL_STACK 367 368 BUG_IF_WRONG_CR3 369 370 SWITCH_TO_KERNEL_CR3 scratch_reg=%eax 371 372 /* 373 * %eax now contains the entry cr3 and we carry it forward in 374 * that register for the time this macro runs 375 */ 376 377 /* Are we on the entry stack? Bail out if not! */ 378 movl PER_CPU_VAR(cpu_entry_area), %ecx 379 addl $CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx 380 subl %esp, %ecx /* ecx = (end of entry_stack) - esp */ 381 cmpl $SIZEOF_entry_stack, %ecx 382 jae .Lend_\@ 383 384 /* Load stack pointer into %esi and %edi */ 385 movl %esp, %esi 386 movl %esi, %edi 387 388 /* Move %edi to the top of the entry stack */ 389 andl $(MASK_entry_stack), %edi 390 addl $(SIZEOF_entry_stack), %edi 391 392 /* Load top of task-stack into %edi */ 393 movl TSS_entry2task_stack(%edi), %edi 394 395 /* Special case - entry from kernel mode via entry stack */ 396#ifdef CONFIG_VM86 397 movl PT_EFLAGS(%esp), %ecx # mix EFLAGS and CS 398 movb PT_CS(%esp), %cl 399 andl $(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %ecx 400#else 401 movl PT_CS(%esp), %ecx 402 andl $SEGMENT_RPL_MASK, %ecx 403#endif 404 cmpl $USER_RPL, %ecx 405 jb .Lentry_from_kernel_\@ 406 407 /* Bytes to copy */ 408 movl $PTREGS_SIZE, %ecx 409 410#ifdef CONFIG_VM86 411 testl $X86_EFLAGS_VM, PT_EFLAGS(%esi) 412 jz .Lcopy_pt_regs_\@ 413 414 /* 415 * Stack-frame contains 4 additional segment registers when 416 * coming from VM86 mode 417 */ 418 addl $(4 * 4), %ecx 419 420#endif 421.Lcopy_pt_regs_\@: 422 423 /* Allocate frame on task-stack */ 424 subl %ecx, %edi 425 426 /* Switch to task-stack */ 427 movl %edi, %esp 428 429 /* 430 * We are now on the task-stack and can safely copy over the 431 * stack-frame 432 */ 433 shrl $2, %ecx 434 cld 435 rep movsl 436 437 jmp .Lend_\@ 438 439.Lentry_from_kernel_\@: 440 441 /* 442 * This handles the case when we enter the kernel from 443 * kernel-mode and %esp points to the entry-stack. When this 444 * happens we need to switch to the task-stack to run C code, 445 * but switch back to the entry-stack again when we approach 446 * iret and return to the interrupted code-path. This usually 447 * happens when we hit an exception while restoring user-space 448 * segment registers on the way back to user-space or when the 449 * sysenter handler runs with eflags.tf set. 450 * 451 * When we switch to the task-stack here, we can't trust the 452 * contents of the entry-stack anymore, as the exception handler 453 * might be scheduled out or moved to another CPU. Therefore we 454 * copy the complete entry-stack to the task-stack and set a 455 * marker in the iret-frame (bit 31 of the CS dword) to detect 456 * what we've done on the iret path. 457 * 458 * On the iret path we copy everything back and switch to the 459 * entry-stack, so that the interrupted kernel code-path 460 * continues on the same stack it was interrupted with. 461 * 462 * Be aware that an NMI can happen anytime in this code. 463 * 464 * %esi: Entry-Stack pointer (same as %esp) 465 * %edi: Top of the task stack 466 * %eax: CR3 on kernel entry 467 */ 468 469 /* Calculate number of bytes on the entry stack in %ecx */ 470 movl %esi, %ecx 471 472 /* %ecx to the top of entry-stack */ 473 andl $(MASK_entry_stack), %ecx 474 addl $(SIZEOF_entry_stack), %ecx 475 476 /* Number of bytes on the entry stack to %ecx */ 477 sub %esi, %ecx 478 479 /* Mark stackframe as coming from entry stack */ 480 orl $CS_FROM_ENTRY_STACK, PT_CS(%esp) 481 482 /* 483 * Test the cr3 used to enter the kernel and add a marker 484 * so that we can switch back to it before iret. 485 */ 486 testl $PTI_SWITCH_MASK, %eax 487 jz .Lcopy_pt_regs_\@ 488 orl $CS_FROM_USER_CR3, PT_CS(%esp) 489 490 /* 491 * %esi and %edi are unchanged, %ecx contains the number of 492 * bytes to copy. The code at .Lcopy_pt_regs_\@ will allocate 493 * the stack-frame on task-stack and copy everything over 494 */ 495 jmp .Lcopy_pt_regs_\@ 496 497.Lend_\@: 498.endm 499 500/* 501 * Switch back from the kernel stack to the entry stack. 502 * 503 * The %esp register must point to pt_regs on the task stack. It will 504 * first calculate the size of the stack-frame to copy, depending on 505 * whether we return to VM86 mode or not. With that it uses 'rep movsl' 506 * to copy the contents of the stack over to the entry stack. 507 * 508 * We must be very careful here, as we can't trust the contents of the 509 * task-stack once we switched to the entry-stack. When an NMI happens 510 * while on the entry-stack, the NMI handler will switch back to the top 511 * of the task stack, overwriting our stack-frame we are about to copy. 512 * Therefore we switch the stack only after everything is copied over. 513 */ 514.macro SWITCH_TO_ENTRY_STACK 515 516 /* Bytes to copy */ 517 movl $PTREGS_SIZE, %ecx 518 519#ifdef CONFIG_VM86 520 testl $(X86_EFLAGS_VM), PT_EFLAGS(%esp) 521 jz .Lcopy_pt_regs_\@ 522 523 /* Additional 4 registers to copy when returning to VM86 mode */ 524 addl $(4 * 4), %ecx 525 526.Lcopy_pt_regs_\@: 527#endif 528 529 /* Initialize source and destination for movsl */ 530 movl PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi 531 subl %ecx, %edi 532 movl %esp, %esi 533 534 /* Save future stack pointer in %ebx */ 535 movl %edi, %ebx 536 537 /* Copy over the stack-frame */ 538 shrl $2, %ecx 539 cld 540 rep movsl 541 542 /* 543 * Switch to entry-stack - needs to happen after everything is 544 * copied because the NMI handler will overwrite the task-stack 545 * when on entry-stack 546 */ 547 movl %ebx, %esp 548 549.Lend_\@: 550.endm 551 552/* 553 * This macro handles the case when we return to kernel-mode on the iret 554 * path and have to switch back to the entry stack and/or user-cr3 555 * 556 * See the comments below the .Lentry_from_kernel_\@ label in the 557 * SWITCH_TO_KERNEL_STACK macro for more details. 558 */ 559.macro PARANOID_EXIT_TO_KERNEL_MODE 560 561 /* 562 * Test if we entered the kernel with the entry-stack. Most 563 * likely we did not, because this code only runs on the 564 * return-to-kernel path. 565 */ 566 testl $CS_FROM_ENTRY_STACK, PT_CS(%esp) 567 jz .Lend_\@ 568 569 /* Unlikely slow-path */ 570 571 /* Clear marker from stack-frame */ 572 andl $(~CS_FROM_ENTRY_STACK), PT_CS(%esp) 573 574 /* Copy the remaining task-stack contents to entry-stack */ 575 movl %esp, %esi 576 movl PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi 577 578 /* Bytes on the task-stack to ecx */ 579 movl PER_CPU_VAR(cpu_tss_rw + TSS_sp1), %ecx 580 subl %esi, %ecx 581 582 /* Allocate stack-frame on entry-stack */ 583 subl %ecx, %edi 584 585 /* 586 * Save future stack-pointer, we must not switch until the 587 * copy is done, otherwise the NMI handler could destroy the 588 * contents of the task-stack we are about to copy. 589 */ 590 movl %edi, %ebx 591 592 /* Do the copy */ 593 shrl $2, %ecx 594 cld 595 rep movsl 596 597 /* Safe to switch to entry-stack now */ 598 movl %ebx, %esp 599 600 /* 601 * We came from entry-stack and need to check if we also need to 602 * switch back to user cr3. 603 */ 604 testl $CS_FROM_USER_CR3, PT_CS(%esp) 605 jz .Lend_\@ 606 607 /* Clear marker from stack-frame */ 608 andl $(~CS_FROM_USER_CR3), PT_CS(%esp) 609 610 SWITCH_TO_USER_CR3 scratch_reg=%eax 611 612.Lend_\@: 613.endm 614 615/** 616 * idtentry - Macro to generate entry stubs for simple IDT entries 617 * @vector: Vector number 618 * @asmsym: ASM symbol for the entry point 619 * @cfunc: C function to be called 620 * @has_error_code: Hardware pushed error code on stack 621 */ 622.macro idtentry vector asmsym cfunc has_error_code:req 623SYM_CODE_START(\asmsym) 624 ASM_CLAC 625 cld 626 627 .if \has_error_code == 0 628 pushl $0 /* Clear the error code */ 629 .endif 630 631 /* Push the C-function address into the GS slot */ 632 pushl $\cfunc 633 /* Invoke the common exception entry */ 634 jmp handle_exception 635SYM_CODE_END(\asmsym) 636.endm 637 638.macro idtentry_irq vector cfunc 639 .p2align CONFIG_X86_L1_CACHE_SHIFT 640SYM_CODE_START_LOCAL(asm_\cfunc) 641 ASM_CLAC 642 SAVE_ALL switch_stacks=1 643 ENCODE_FRAME_POINTER 644 movl %esp, %eax 645 movl PT_ORIG_EAX(%esp), %edx /* get the vector from stack */ 646 movl $-1, PT_ORIG_EAX(%esp) /* no syscall to restart */ 647 call \cfunc 648 jmp handle_exception_return 649SYM_CODE_END(asm_\cfunc) 650.endm 651 652/* 653 * Include the defines which emit the idt entries which are shared 654 * shared between 32 and 64 bit and emit the __irqentry_text_* markers 655 * so the stacktrace boundary checks work. 656 */ 657 .align 16 658 .globl __irqentry_text_start 659__irqentry_text_start: 660 661#include <asm/idtentry.h> 662 663 .align 16 664 .globl __irqentry_text_end 665__irqentry_text_end: 666 667/* 668 * %eax: prev task 669 * %edx: next task 670 */ 671.pushsection .text, "ax" 672SYM_CODE_START(__switch_to_asm) 673 /* 674 * Save callee-saved registers 675 * This must match the order in struct inactive_task_frame 676 */ 677 pushl %ebp 678 pushl %ebx 679 pushl %edi 680 pushl %esi 681 /* 682 * Flags are saved to prevent AC leakage. This could go 683 * away if objtool would have 32bit support to verify 684 * the STAC/CLAC correctness. 685 */ 686 pushfl 687 688 /* switch stack */ 689 movl %esp, TASK_threadsp(%eax) 690 movl TASK_threadsp(%edx), %esp 691 692#ifdef CONFIG_STACKPROTECTOR 693 movl TASK_stack_canary(%edx), %ebx 694 movl %ebx, PER_CPU_VAR(__stack_chk_guard) 695#endif 696 697 /* 698 * When switching from a shallower to a deeper call stack 699 * the RSB may either underflow or use entries populated 700 * with userspace addresses. On CPUs where those concerns 701 * exist, overwrite the RSB with entries which capture 702 * speculative execution to prevent attack. 703 */ 704 FILL_RETURN_BUFFER %ebx, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW 705 706 /* Restore flags or the incoming task to restore AC state. */ 707 popfl 708 /* restore callee-saved registers */ 709 popl %esi 710 popl %edi 711 popl %ebx 712 popl %ebp 713 714 jmp __switch_to 715SYM_CODE_END(__switch_to_asm) 716.popsection 717 718/* 719 * A newly forked process directly context switches into this address. 720 * 721 * eax: prev task we switched from 722 * ebx: kernel thread func (NULL for user thread) 723 * edi: kernel thread arg 724 */ 725.pushsection .text, "ax" 726SYM_CODE_START(ret_from_fork_asm) 727 movl %esp, %edx /* regs */ 728 729 /* return address for the stack unwinder */ 730 pushl $.Lsyscall_32_done 731 732 FRAME_BEGIN 733 /* prev already in EAX */ 734 movl %ebx, %ecx /* fn */ 735 pushl %edi /* fn_arg */ 736 call ret_from_fork 737 addl $4, %esp 738 FRAME_END 739 740 RET 741SYM_CODE_END(ret_from_fork_asm) 742.popsection 743 744SYM_ENTRY(__begin_SYSENTER_singlestep_region, SYM_L_GLOBAL, SYM_A_NONE) 745/* 746 * All code from here through __end_SYSENTER_singlestep_region is subject 747 * to being single-stepped if a user program sets TF and executes SYSENTER. 748 * There is absolutely nothing that we can do to prevent this from happening 749 * (thanks Intel!). To keep our handling of this situation as simple as 750 * possible, we handle TF just like AC and NT, except that our #DB handler 751 * will ignore all of the single-step traps generated in this range. 752 */ 753 754/* 755 * 32-bit SYSENTER entry. 756 * 757 * 32-bit system calls through the vDSO's __kernel_vsyscall enter here 758 * if X86_FEATURE_SEP is available. This is the preferred system call 759 * entry on 32-bit systems. 760 * 761 * The SYSENTER instruction, in principle, should *only* occur in the 762 * vDSO. In practice, a small number of Android devices were shipped 763 * with a copy of Bionic that inlined a SYSENTER instruction. This 764 * never happened in any of Google's Bionic versions -- it only happened 765 * in a narrow range of Intel-provided versions. 766 * 767 * SYSENTER loads SS, ESP, CS, and EIP from previously programmed MSRs. 768 * IF and VM in RFLAGS are cleared (IOW: interrupts are off). 769 * SYSENTER does not save anything on the stack, 770 * and does not save old EIP (!!!), ESP, or EFLAGS. 771 * 772 * To avoid losing track of EFLAGS.VM (and thus potentially corrupting 773 * user and/or vm86 state), we explicitly disable the SYSENTER 774 * instruction in vm86 mode by reprogramming the MSRs. 775 * 776 * Arguments: 777 * eax system call number 778 * ebx arg1 779 * ecx arg2 780 * edx arg3 781 * esi arg4 782 * edi arg5 783 * ebp user stack 784 * 0(%ebp) arg6 785 */ 786SYM_FUNC_START(entry_SYSENTER_32) 787 /* 788 * On entry-stack with all userspace-regs live - save and 789 * restore eflags and %eax to use it as scratch-reg for the cr3 790 * switch. 791 */ 792 pushfl 793 pushl %eax 794 BUG_IF_WRONG_CR3 no_user_check=1 795 SWITCH_TO_KERNEL_CR3 scratch_reg=%eax 796 popl %eax 797 popfl 798 799 /* Stack empty again, switch to task stack */ 800 movl TSS_entry2task_stack(%esp), %esp 801 802.Lsysenter_past_esp: 803 pushl $__USER_DS /* pt_regs->ss */ 804 pushl $0 /* pt_regs->sp (placeholder) */ 805 pushfl /* pt_regs->flags (except IF = 0) */ 806 pushl $__USER_CS /* pt_regs->cs */ 807 pushl $0 /* pt_regs->ip = 0 (placeholder) */ 808 pushl %eax /* pt_regs->orig_ax */ 809 SAVE_ALL pt_regs_ax=$-ENOSYS /* save rest, stack already switched */ 810 811 /* 812 * SYSENTER doesn't filter flags, so we need to clear NT, AC 813 * and TF ourselves. To save a few cycles, we can check whether 814 * either was set instead of doing an unconditional popfq. 815 * This needs to happen before enabling interrupts so that 816 * we don't get preempted with NT set. 817 * 818 * If TF is set, we will single-step all the way to here -- do_debug 819 * will ignore all the traps. (Yes, this is slow, but so is 820 * single-stepping in general. This allows us to avoid having 821 * a more complicated code to handle the case where a user program 822 * forces us to single-step through the SYSENTER entry code.) 823 * 824 * NB.: .Lsysenter_fix_flags is a label with the code under it moved 825 * out-of-line as an optimization: NT is unlikely to be set in the 826 * majority of the cases and instead of polluting the I$ unnecessarily, 827 * we're keeping that code behind a branch which will predict as 828 * not-taken and therefore its instructions won't be fetched. 829 */ 830 testl $X86_EFLAGS_NT|X86_EFLAGS_AC|X86_EFLAGS_TF, PT_EFLAGS(%esp) 831 jnz .Lsysenter_fix_flags 832.Lsysenter_flags_fixed: 833 834 movl %esp, %eax 835 call do_SYSENTER_32 836 testb %al, %al 837 jz .Lsyscall_32_done 838 839 STACKLEAK_ERASE 840 841 /* Opportunistic SYSEXIT */ 842 843 /* 844 * Setup entry stack - we keep the pointer in %eax and do the 845 * switch after almost all user-state is restored. 846 */ 847 848 /* Load entry stack pointer and allocate frame for eflags/eax */ 849 movl PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %eax 850 subl $(2*4), %eax 851 852 /* Copy eflags and eax to entry stack */ 853 movl PT_EFLAGS(%esp), %edi 854 movl PT_EAX(%esp), %esi 855 movl %edi, (%eax) 856 movl %esi, 4(%eax) 857 858 /* Restore user registers and segments */ 859 movl PT_EIP(%esp), %edx /* pt_regs->ip */ 860 movl PT_OLDESP(%esp), %ecx /* pt_regs->sp */ 8611: mov PT_FS(%esp), %fs 862 863 popl %ebx /* pt_regs->bx */ 864 addl $2*4, %esp /* skip pt_regs->cx and pt_regs->dx */ 865 popl %esi /* pt_regs->si */ 866 popl %edi /* pt_regs->di */ 867 popl %ebp /* pt_regs->bp */ 868 869 /* Switch to entry stack */ 870 movl %eax, %esp 871 872 /* Now ready to switch the cr3 */ 873 SWITCH_TO_USER_CR3 scratch_reg=%eax 874 /* Clobbers ZF */ 875 CLEAR_CPU_BUFFERS 876 877 /* 878 * Restore all flags except IF. (We restore IF separately because 879 * STI gives a one-instruction window in which we won't be interrupted, 880 * whereas POPF does not.) 881 */ 882 btrl $X86_EFLAGS_IF_BIT, (%esp) 883 BUG_IF_WRONG_CR3 no_user_check=1 884 popfl 885 popl %eax 886 887 /* 888 * Return back to the vDSO, which will pop ecx and edx. 889 * Don't bother with DS and ES (they already contain __USER_DS). 890 */ 891 sti 892 sysexit 893 8942: movl $0, PT_FS(%esp) 895 jmp 1b 896 _ASM_EXTABLE(1b, 2b) 897 898.Lsysenter_fix_flags: 899 pushl $X86_EFLAGS_FIXED 900 popfl 901 jmp .Lsysenter_flags_fixed 902SYM_ENTRY(__end_SYSENTER_singlestep_region, SYM_L_GLOBAL, SYM_A_NONE) 903SYM_FUNC_END(entry_SYSENTER_32) 904 905/* 906 * 32-bit legacy system call entry. 907 * 908 * 32-bit x86 Linux system calls traditionally used the INT $0x80 909 * instruction. INT $0x80 lands here. 910 * 911 * This entry point can be used by any 32-bit perform system calls. 912 * Instances of INT $0x80 can be found inline in various programs and 913 * libraries. It is also used by the vDSO's __kernel_vsyscall 914 * fallback for hardware that doesn't support a faster entry method. 915 * Restarted 32-bit system calls also fall back to INT $0x80 916 * regardless of what instruction was originally used to do the system 917 * call. (64-bit programs can use INT $0x80 as well, but they can 918 * only run on 64-bit kernels and therefore land in 919 * entry_INT80_compat.) 920 * 921 * This is considered a slow path. It is not used by most libc 922 * implementations on modern hardware except during process startup. 923 * 924 * Arguments: 925 * eax system call number 926 * ebx arg1 927 * ecx arg2 928 * edx arg3 929 * esi arg4 930 * edi arg5 931 * ebp arg6 932 */ 933SYM_FUNC_START(entry_INT80_32) 934 ASM_CLAC 935 pushl %eax /* pt_regs->orig_ax */ 936 937 SAVE_ALL pt_regs_ax=$-ENOSYS switch_stacks=1 /* save rest */ 938 939 movl %esp, %eax 940 call do_int80_syscall_32 941.Lsyscall_32_done: 942 STACKLEAK_ERASE 943 944restore_all_switch_stack: 945 SWITCH_TO_ENTRY_STACK 946 CHECK_AND_APPLY_ESPFIX 947 948 /* Switch back to user CR3 */ 949 SWITCH_TO_USER_CR3 scratch_reg=%eax 950 951 BUG_IF_WRONG_CR3 952 953 /* Restore user state */ 954 RESTORE_REGS pop=4 # skip orig_eax/error_code 955 CLEAR_CPU_BUFFERS 956.Lirq_return: 957 /* 958 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization 959 * when returning from IPI handler and when returning from 960 * scheduler to user-space. 961 */ 962 iret 963 964.Lasm_iret_error: 965 pushl $0 # no error code 966 pushl $iret_error 967 968#ifdef CONFIG_DEBUG_ENTRY 969 /* 970 * The stack-frame here is the one that iret faulted on, so its a 971 * return-to-user frame. We are on kernel-cr3 because we come here from 972 * the fixup code. This confuses the CR3 checker, so switch to user-cr3 973 * as the checker expects it. 974 */ 975 pushl %eax 976 SWITCH_TO_USER_CR3 scratch_reg=%eax 977 popl %eax 978#endif 979 980 jmp handle_exception 981 982 _ASM_EXTABLE(.Lirq_return, .Lasm_iret_error) 983SYM_FUNC_END(entry_INT80_32) 984 985.macro FIXUP_ESPFIX_STACK 986/* 987 * Switch back for ESPFIX stack to the normal zerobased stack 988 * 989 * We can't call C functions using the ESPFIX stack. This code reads 990 * the high word of the segment base from the GDT and swiches to the 991 * normal stack and adjusts ESP with the matching offset. 992 * 993 * We might be on user CR3 here, so percpu data is not mapped and we can't 994 * access the GDT through the percpu segment. Instead, use SGDT to find 995 * the cpu_entry_area alias of the GDT. 996 */ 997#ifdef CONFIG_X86_ESPFIX32 998 /* fixup the stack */ 999 pushl %ecx 1000 subl $2*4, %esp 1001 sgdt (%esp) 1002 movl 2(%esp), %ecx /* GDT address */ 1003 /* 1004 * Careful: ECX is a linear pointer, so we need to force base 1005 * zero. %cs is the only known-linear segment we have right now. 1006 */ 1007 mov %cs:GDT_ESPFIX_OFFSET + 4(%ecx), %al /* bits 16..23 */ 1008 mov %cs:GDT_ESPFIX_OFFSET + 7(%ecx), %ah /* bits 24..31 */ 1009 shl $16, %eax 1010 addl $2*4, %esp 1011 popl %ecx 1012 addl %esp, %eax /* the adjusted stack pointer */ 1013 pushl $__KERNEL_DS 1014 pushl %eax 1015 lss (%esp), %esp /* switch to the normal stack segment */ 1016#endif 1017.endm 1018 1019.macro UNWIND_ESPFIX_STACK 1020 /* It's safe to clobber %eax, all other regs need to be preserved */ 1021#ifdef CONFIG_X86_ESPFIX32 1022 movl %ss, %eax 1023 /* see if on espfix stack */ 1024 cmpw $__ESPFIX_SS, %ax 1025 jne .Lno_fixup_\@ 1026 /* switch to normal stack */ 1027 FIXUP_ESPFIX_STACK 1028.Lno_fixup_\@: 1029#endif 1030.endm 1031 1032SYM_CODE_START_LOCAL_NOALIGN(handle_exception) 1033 /* the function address is in %gs's slot on the stack */ 1034 SAVE_ALL switch_stacks=1 skip_gs=1 unwind_espfix=1 1035 ENCODE_FRAME_POINTER 1036 1037 movl PT_GS(%esp), %edi # get the function address 1038 1039 /* fixup orig %eax */ 1040 movl PT_ORIG_EAX(%esp), %edx # get the error code 1041 movl $-1, PT_ORIG_EAX(%esp) # no syscall to restart 1042 1043 movl %esp, %eax # pt_regs pointer 1044 CALL_NOSPEC edi 1045 1046handle_exception_return: 1047#ifdef CONFIG_VM86 1048 movl PT_EFLAGS(%esp), %eax # mix EFLAGS and CS 1049 movb PT_CS(%esp), %al 1050 andl $(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %eax 1051#else 1052 /* 1053 * We can be coming here from child spawned by kernel_thread(). 1054 */ 1055 movl PT_CS(%esp), %eax 1056 andl $SEGMENT_RPL_MASK, %eax 1057#endif 1058 cmpl $USER_RPL, %eax # returning to v8086 or userspace ? 1059 jnb ret_to_user 1060 1061 PARANOID_EXIT_TO_KERNEL_MODE 1062 BUG_IF_WRONG_CR3 1063 RESTORE_REGS 4 1064 jmp .Lirq_return 1065 1066ret_to_user: 1067 movl %esp, %eax 1068 jmp restore_all_switch_stack 1069SYM_CODE_END(handle_exception) 1070 1071SYM_CODE_START(asm_exc_double_fault) 10721: 1073 /* 1074 * This is a task gate handler, not an interrupt gate handler. 1075 * The error code is on the stack, but the stack is otherwise 1076 * empty. Interrupts are off. Our state is sane with the following 1077 * exceptions: 1078 * 1079 * - CR0.TS is set. "TS" literally means "task switched". 1080 * - EFLAGS.NT is set because we're a "nested task". 1081 * - The doublefault TSS has back_link set and has been marked busy. 1082 * - TR points to the doublefault TSS and the normal TSS is busy. 1083 * - CR3 is the normal kernel PGD. This would be delightful, except 1084 * that the CPU didn't bother to save the old CR3 anywhere. This 1085 * would make it very awkward to return back to the context we came 1086 * from. 1087 * 1088 * The rest of EFLAGS is sanitized for us, so we don't need to 1089 * worry about AC or DF. 1090 * 1091 * Don't even bother popping the error code. It's always zero, 1092 * and ignoring it makes us a bit more robust against buggy 1093 * hypervisor task gate implementations. 1094 * 1095 * We will manually undo the task switch instead of doing a 1096 * task-switching IRET. 1097 */ 1098 1099 clts /* clear CR0.TS */ 1100 pushl $X86_EFLAGS_FIXED 1101 popfl /* clear EFLAGS.NT */ 1102 1103 call doublefault_shim 1104 1105 /* We don't support returning, so we have no IRET here. */ 11061: 1107 hlt 1108 jmp 1b 1109SYM_CODE_END(asm_exc_double_fault) 1110 1111/* 1112 * NMI is doubly nasty. It can happen on the first instruction of 1113 * entry_SYSENTER_32 (just like #DB), but it can also interrupt the beginning 1114 * of the #DB handler even if that #DB in turn hit before entry_SYSENTER_32 1115 * switched stacks. We handle both conditions by simply checking whether we 1116 * interrupted kernel code running on the SYSENTER stack. 1117 */ 1118SYM_CODE_START(asm_exc_nmi) 1119 ASM_CLAC 1120 1121#ifdef CONFIG_X86_ESPFIX32 1122 /* 1123 * ESPFIX_SS is only ever set on the return to user path 1124 * after we've switched to the entry stack. 1125 */ 1126 pushl %eax 1127 movl %ss, %eax 1128 cmpw $__ESPFIX_SS, %ax 1129 popl %eax 1130 je .Lnmi_espfix_stack 1131#endif 1132 1133 pushl %eax # pt_regs->orig_ax 1134 SAVE_ALL_NMI cr3_reg=%edi 1135 ENCODE_FRAME_POINTER 1136 xorl %edx, %edx # zero error code 1137 movl %esp, %eax # pt_regs pointer 1138 1139 /* Are we currently on the SYSENTER stack? */ 1140 movl PER_CPU_VAR(cpu_entry_area), %ecx 1141 addl $CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx 1142 subl %eax, %ecx /* ecx = (end of entry_stack) - esp */ 1143 cmpl $SIZEOF_entry_stack, %ecx 1144 jb .Lnmi_from_sysenter_stack 1145 1146 /* Not on SYSENTER stack. */ 1147 call exc_nmi 1148 jmp .Lnmi_return 1149 1150.Lnmi_from_sysenter_stack: 1151 /* 1152 * We're on the SYSENTER stack. Switch off. No one (not even debug) 1153 * is using the thread stack right now, so it's safe for us to use it. 1154 */ 1155 movl %esp, %ebx 1156 movl PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %esp 1157 call exc_nmi 1158 movl %ebx, %esp 1159 1160.Lnmi_return: 1161#ifdef CONFIG_X86_ESPFIX32 1162 testl $CS_FROM_ESPFIX, PT_CS(%esp) 1163 jnz .Lnmi_from_espfix 1164#endif 1165 1166 CHECK_AND_APPLY_ESPFIX 1167 RESTORE_ALL_NMI cr3_reg=%edi pop=4 1168 CLEAR_CPU_BUFFERS 1169 jmp .Lirq_return 1170 1171#ifdef CONFIG_X86_ESPFIX32 1172.Lnmi_espfix_stack: 1173 /* 1174 * Create the pointer to LSS back 1175 */ 1176 pushl %ss 1177 pushl %esp 1178 addl $4, (%esp) 1179 1180 /* Copy the (short) IRET frame */ 1181 pushl 4*4(%esp) # flags 1182 pushl 4*4(%esp) # cs 1183 pushl 4*4(%esp) # ip 1184 1185 pushl %eax # orig_ax 1186 1187 SAVE_ALL_NMI cr3_reg=%edi unwind_espfix=1 1188 ENCODE_FRAME_POINTER 1189 1190 /* clear CS_FROM_KERNEL, set CS_FROM_ESPFIX */ 1191 xorl $(CS_FROM_ESPFIX | CS_FROM_KERNEL), PT_CS(%esp) 1192 1193 xorl %edx, %edx # zero error code 1194 movl %esp, %eax # pt_regs pointer 1195 jmp .Lnmi_from_sysenter_stack 1196 1197.Lnmi_from_espfix: 1198 RESTORE_ALL_NMI cr3_reg=%edi 1199 /* 1200 * Because we cleared CS_FROM_KERNEL, IRET_FRAME 'forgot' to 1201 * fix up the gap and long frame: 1202 * 1203 * 3 - original frame (exception) 1204 * 2 - ESPFIX block (above) 1205 * 6 - gap (FIXUP_FRAME) 1206 * 5 - long frame (FIXUP_FRAME) 1207 * 1 - orig_ax 1208 */ 1209 lss (1+5+6)*4(%esp), %esp # back to espfix stack 1210 CLEAR_CPU_BUFFERS 1211 jmp .Lirq_return 1212#endif 1213SYM_CODE_END(asm_exc_nmi) 1214 1215.pushsection .text, "ax" 1216SYM_CODE_START(rewind_stack_and_make_dead) 1217 /* Prevent any naive code from trying to unwind to our caller. */ 1218 xorl %ebp, %ebp 1219 1220 movl PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %esi 1221 leal -TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%esi), %esp 1222 1223 call make_task_dead 12241: jmp 1b 1225SYM_CODE_END(rewind_stack_and_make_dead) 1226.popsection 1227