xref: /freebsd/contrib/llvm-project/clang/lib/Analysis/CalledOnceCheck.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1  //===- CalledOnceCheck.cpp - Check 'called once' parameters ---------------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  
9  #include "clang/Analysis/Analyses/CalledOnceCheck.h"
10  #include "clang/AST/ASTContext.h"
11  #include "clang/AST/Attr.h"
12  #include "clang/AST/Decl.h"
13  #include "clang/AST/DeclBase.h"
14  #include "clang/AST/Expr.h"
15  #include "clang/AST/ExprObjC.h"
16  #include "clang/AST/OperationKinds.h"
17  #include "clang/AST/ParentMap.h"
18  #include "clang/AST/RecursiveASTVisitor.h"
19  #include "clang/AST/Stmt.h"
20  #include "clang/AST/StmtObjC.h"
21  #include "clang/AST/StmtVisitor.h"
22  #include "clang/AST/Type.h"
23  #include "clang/Analysis/AnalysisDeclContext.h"
24  #include "clang/Analysis/CFG.h"
25  #include "clang/Analysis/FlowSensitive/DataflowWorklist.h"
26  #include "clang/Basic/Builtins.h"
27  #include "clang/Basic/IdentifierTable.h"
28  #include "clang/Basic/LLVM.h"
29  #include "llvm/ADT/BitVector.h"
30  #include "llvm/ADT/BitmaskEnum.h"
31  #include "llvm/ADT/PointerIntPair.h"
32  #include "llvm/ADT/STLExtras.h"
33  #include "llvm/ADT/Sequence.h"
34  #include "llvm/ADT/SmallVector.h"
35  #include "llvm/ADT/StringRef.h"
36  #include "llvm/Support/Casting.h"
37  #include "llvm/Support/Compiler.h"
38  #include "llvm/Support/ErrorHandling.h"
39  #include <memory>
40  #include <optional>
41  
42  using namespace clang;
43  
44  namespace {
45  static constexpr unsigned EXPECTED_MAX_NUMBER_OF_PARAMS = 2;
46  template <class T>
47  using ParamSizedVector = llvm::SmallVector<T, EXPECTED_MAX_NUMBER_OF_PARAMS>;
48  static constexpr unsigned EXPECTED_NUMBER_OF_BASIC_BLOCKS = 8;
49  template <class T>
50  using CFGSizedVector = llvm::SmallVector<T, EXPECTED_NUMBER_OF_BASIC_BLOCKS>;
51  constexpr llvm::StringLiteral CONVENTIONAL_NAMES[] = {
52      "completionHandler", "completion",      "withCompletionHandler",
53      "withCompletion",    "completionBlock", "withCompletionBlock",
54      "replyTo",           "reply",           "withReplyTo"};
55  constexpr llvm::StringLiteral CONVENTIONAL_SUFFIXES[] = {
56      "WithCompletionHandler", "WithCompletion", "WithCompletionBlock",
57      "WithReplyTo", "WithReply"};
58  constexpr llvm::StringLiteral CONVENTIONAL_CONDITIONS[] = {
59      "error", "cancel", "shouldCall", "done", "OK", "success"};
60  
61  struct KnownCalledOnceParameter {
62    llvm::StringLiteral FunctionName;
63    unsigned ParamIndex;
64  };
65  constexpr KnownCalledOnceParameter KNOWN_CALLED_ONCE_PARAMETERS[] = {
66      {llvm::StringLiteral{"dispatch_async"}, 1},
67      {llvm::StringLiteral{"dispatch_async_and_wait"}, 1},
68      {llvm::StringLiteral{"dispatch_after"}, 2},
69      {llvm::StringLiteral{"dispatch_sync"}, 1},
70      {llvm::StringLiteral{"dispatch_once"}, 1},
71      {llvm::StringLiteral{"dispatch_barrier_async"}, 1},
72      {llvm::StringLiteral{"dispatch_barrier_async_and_wait"}, 1},
73      {llvm::StringLiteral{"dispatch_barrier_sync"}, 1}};
74  
75  class ParameterStatus {
76  public:
77    // Status kind is basically the main part of parameter's status.
78    // The kind represents our knowledge (so far) about a tracked parameter
79    // in the context of this analysis.
80    //
81    // Since we want to report on missing and extraneous calls, we need to
82    // track the fact whether paramater was called or not.  This automatically
83    // decides two kinds: `NotCalled` and `Called`.
84    //
85    // One of the erroneous situations is the case when parameter is called only
86    // on some of the paths.  We could've considered it `NotCalled`, but we want
87    // to report double call warnings even if these two calls are not guaranteed
88    // to happen in every execution.  We also don't want to have it as `Called`
89    // because not calling tracked parameter on all of the paths is an error
90    // on its own.  For these reasons, we need to have a separate kind,
91    // `MaybeCalled`, and change `Called` to `DefinitelyCalled` to avoid
92    // confusion.
93    //
94    // Two violations of calling parameter more than once and not calling it on
95    // every path are not, however, mutually exclusive.  In situations where both
96    // violations take place, we prefer to report ONLY double call.  It's always
97    // harder to pinpoint a bug that has arisen when a user neglects to take the
98    // right action (and therefore, no action is taken), than when a user takes
99    // the wrong action.  And, in order to remember that we already reported
100    // a double call, we need another kind: `Reported`.
101    //
102    // Our analysis is intra-procedural and, while in the perfect world,
103    // developers only use tracked parameters to call them, in the real world,
104    // the picture might be different.  Parameters can be stored in global
105    // variables or leaked into other functions that we know nothing about.
106    // We try to be lenient and trust users.  Another kind `Escaped` reflects
107    // such situations.  We don't know if it gets called there or not, but we
108    // should always think of `Escaped` as the best possible option.
109    //
110    // Some of the paths in the analyzed functions might end with a call
111    // to noreturn functions.  Such paths are not required to have parameter
112    // calls and we want to track that.  For the purposes of better diagnostics,
113    // we don't want to reuse `Escaped` and, thus, have another kind `NoReturn`.
114    //
115    // Additionally, we have `NotVisited` kind that tells us nothing about
116    // a tracked parameter, but is used for tracking analyzed (aka visited)
117    // basic blocks.
118    //
119    // If we consider `|` to be a JOIN operation of two kinds coming from
120    // two different paths, the following properties must hold:
121    //
122    //   1. for any Kind K: K | K == K
123    //      Joining two identical kinds should result in the same kind.
124    //
125    //   2. for any Kind K: Reported | K == Reported
126    //      Doesn't matter on which path it was reported, it still is.
127    //
128    //   3. for any Kind K: NoReturn | K == K
129    //      We can totally ignore noreturn paths during merges.
130    //
131    //   4. DefinitelyCalled | NotCalled == MaybeCalled
132    //      Called on one path, not called on another - that's simply
133    //      a definition for MaybeCalled.
134    //
135    //   5. for any Kind K in [DefinitelyCalled, NotCalled, MaybeCalled]:
136    //      Escaped | K == K
137    //      Escaped mirrors other statuses after joins.
138    //      Every situation, when we join any of the listed kinds K,
139    //      is a violation.  For this reason, in order to assume the
140    //      best outcome for this escape, we consider it to be the
141    //      same as the other path.
142    //
143    //   6. for any Kind K in [DefinitelyCalled, NotCalled]:
144    //      MaybeCalled | K == MaybeCalled
145    //      MaybeCalled should basically stay after almost every join.
146    enum Kind {
147      // No-return paths should be absolutely transparent for the analysis.
148      // 0x0 is the identity element for selected join operation (binary or).
149      NoReturn = 0x0, /* 0000 */
150      // Escaped marks situations when marked parameter escaped into
151      // another function (so we can assume that it was possibly called there).
152      Escaped = 0x1, /* 0001 */
153      // Parameter was definitely called once at this point.
154      DefinitelyCalled = 0x3, /* 0011 */
155      // Kinds less or equal to NON_ERROR_STATUS are not considered errors.
156      NON_ERROR_STATUS = DefinitelyCalled,
157      // Parameter was not yet called.
158      NotCalled = 0x5, /* 0101 */
159      // Parameter was not called at least on one path leading to this point,
160      // while there is also at least one path that it gets called.
161      MaybeCalled = 0x7, /* 0111 */
162      // Parameter was not yet analyzed.
163      NotVisited = 0x8, /* 1000 */
164      // We already reported a violation and stopped tracking calls for this
165      // parameter.
166      Reported = 0xF, /* 1111 */
167      LLVM_MARK_AS_BITMASK_ENUM(/* LargestValue = */ Reported)
168    };
169  
170    constexpr ParameterStatus() = default;
ParameterStatus(Kind K)171    /* implicit */ ParameterStatus(Kind K) : StatusKind(K) {
172      assert(!seenAnyCalls(K) && "Can't initialize status without a call");
173    }
ParameterStatus(Kind K,const Expr * Call)174    ParameterStatus(Kind K, const Expr *Call) : StatusKind(K), Call(Call) {
175      assert(seenAnyCalls(K) && "This kind is not supposed to have a call");
176    }
177  
getCall() const178    const Expr &getCall() const {
179      assert(seenAnyCalls(getKind()) && "ParameterStatus doesn't have a call");
180      return *Call;
181    }
seenAnyCalls(Kind K)182    static bool seenAnyCalls(Kind K) {
183      return (K & DefinitelyCalled) == DefinitelyCalled && K != Reported;
184    }
seenAnyCalls() const185    bool seenAnyCalls() const { return seenAnyCalls(getKind()); }
186  
isErrorStatus(Kind K)187    static bool isErrorStatus(Kind K) { return K > NON_ERROR_STATUS; }
isErrorStatus() const188    bool isErrorStatus() const { return isErrorStatus(getKind()); }
189  
getKind() const190    Kind getKind() const { return StatusKind; }
191  
join(const ParameterStatus & Other)192    void join(const ParameterStatus &Other) {
193      // If we have a pointer already, let's keep it.
194      // For the purposes of the analysis, it doesn't really matter
195      // which call we report.
196      //
197      // If we don't have a pointer, let's take whatever gets joined.
198      if (!Call) {
199        Call = Other.Call;
200      }
201      // Join kinds.
202      StatusKind |= Other.getKind();
203    }
204  
operator ==(const ParameterStatus & Other) const205    bool operator==(const ParameterStatus &Other) const {
206      // We compare only kinds, pointers on their own is only additional
207      // information.
208      return getKind() == Other.getKind();
209    }
210  
211  private:
212    // It would've been a perfect place to use llvm::PointerIntPair, but
213    // unfortunately NumLowBitsAvailable for clang::Expr had been reduced to 2.
214    Kind StatusKind = NotVisited;
215    const Expr *Call = nullptr;
216  };
217  
218  /// State aggregates statuses of all tracked parameters.
219  class State {
220  public:
State(unsigned Size,ParameterStatus::Kind K=ParameterStatus::NotVisited)221    State(unsigned Size, ParameterStatus::Kind K = ParameterStatus::NotVisited)
222        : ParamData(Size, K) {}
223  
224    /// Return status of a parameter with the given index.
225    /// \{
getStatusFor(unsigned Index)226    ParameterStatus &getStatusFor(unsigned Index) { return ParamData[Index]; }
getStatusFor(unsigned Index) const227    const ParameterStatus &getStatusFor(unsigned Index) const {
228      return ParamData[Index];
229    }
230    /// \}
231  
232    /// Return true if parameter with the given index can be called.
seenAnyCalls(unsigned Index) const233    bool seenAnyCalls(unsigned Index) const {
234      return getStatusFor(Index).seenAnyCalls();
235    }
236    /// Return a reference that we consider a call.
237    ///
238    /// Should only be used for parameters that can be called.
getCallFor(unsigned Index) const239    const Expr &getCallFor(unsigned Index) const {
240      return getStatusFor(Index).getCall();
241    }
242    /// Return status kind of parameter with the given index.
getKindFor(unsigned Index) const243    ParameterStatus::Kind getKindFor(unsigned Index) const {
244      return getStatusFor(Index).getKind();
245    }
246  
isVisited() const247    bool isVisited() const {
248      return llvm::all_of(ParamData, [](const ParameterStatus &S) {
249        return S.getKind() != ParameterStatus::NotVisited;
250      });
251    }
252  
253    // Join other state into the current state.
join(const State & Other)254    void join(const State &Other) {
255      assert(ParamData.size() == Other.ParamData.size() &&
256             "Couldn't join statuses with different sizes");
257      for (auto Pair : llvm::zip(ParamData, Other.ParamData)) {
258        std::get<0>(Pair).join(std::get<1>(Pair));
259      }
260    }
261  
262    using iterator = ParamSizedVector<ParameterStatus>::iterator;
263    using const_iterator = ParamSizedVector<ParameterStatus>::const_iterator;
264  
begin()265    iterator begin() { return ParamData.begin(); }
end()266    iterator end() { return ParamData.end(); }
267  
begin() const268    const_iterator begin() const { return ParamData.begin(); }
end() const269    const_iterator end() const { return ParamData.end(); }
270  
operator ==(const State & Other) const271    bool operator==(const State &Other) const {
272      return ParamData == Other.ParamData;
273    }
274  
275  private:
276    ParamSizedVector<ParameterStatus> ParamData;
277  };
278  
279  /// A simple class that finds DeclRefExpr in the given expression.
280  ///
281  /// However, we don't want to find ANY nested DeclRefExpr skipping whatever
282  /// expressions on our way.  Only certain expressions considered "no-op"
283  /// for our task are indeed skipped.
284  class DeclRefFinder
285      : public ConstStmtVisitor<DeclRefFinder, const DeclRefExpr *> {
286  public:
287    /// Find a DeclRefExpr in the given expression.
288    ///
289    /// In its most basic form (ShouldRetrieveFromComparisons == false),
290    /// this function can be simply reduced to the following question:
291    ///
292    ///   - If expression E is used as a function argument, could we say
293    ///     that DeclRefExpr nested in E is used as an argument?
294    ///
295    /// According to this rule, we can say that parens, casts and dereferencing
296    /// (dereferencing only applied to function pointers, but this is our case)
297    /// can be skipped.
298    ///
299    /// When we should look into comparisons the question changes to:
300    ///
301    ///   - If expression E is used as a condition, could we say that
302    ///     DeclRefExpr is being checked?
303    ///
304    /// And even though, these are two different questions, they have quite a lot
305    /// in common.  Actually, we can say that whatever expression answers
306    /// positively the first question also fits the second question as well.
307    ///
308    /// In addition, we skip binary operators == and !=, and unary opeartor !.
find(const Expr * E,bool ShouldRetrieveFromComparisons=false)309    static const DeclRefExpr *find(const Expr *E,
310                                   bool ShouldRetrieveFromComparisons = false) {
311      return DeclRefFinder(ShouldRetrieveFromComparisons).Visit(E);
312    }
313  
VisitDeclRefExpr(const DeclRefExpr * DR)314    const DeclRefExpr *VisitDeclRefExpr(const DeclRefExpr *DR) { return DR; }
315  
VisitUnaryOperator(const UnaryOperator * UO)316    const DeclRefExpr *VisitUnaryOperator(const UnaryOperator *UO) {
317      switch (UO->getOpcode()) {
318      case UO_LNot:
319        // We care about logical not only if we care about comparisons.
320        if (!ShouldRetrieveFromComparisons)
321          return nullptr;
322        [[fallthrough]];
323      // Function pointer/references can be dereferenced before a call.
324      // That doesn't make it, however, any different from a regular call.
325      // For this reason, dereference operation is a "no-op".
326      case UO_Deref:
327        return Visit(UO->getSubExpr());
328      default:
329        return nullptr;
330      }
331    }
332  
VisitBinaryOperator(const BinaryOperator * BO)333    const DeclRefExpr *VisitBinaryOperator(const BinaryOperator *BO) {
334      if (!ShouldRetrieveFromComparisons)
335        return nullptr;
336  
337      switch (BO->getOpcode()) {
338      case BO_EQ:
339      case BO_NE: {
340        const DeclRefExpr *LHS = Visit(BO->getLHS());
341        return LHS ? LHS : Visit(BO->getRHS());
342      }
343      default:
344        return nullptr;
345      }
346    }
347  
VisitOpaqueValueExpr(const OpaqueValueExpr * OVE)348    const DeclRefExpr *VisitOpaqueValueExpr(const OpaqueValueExpr *OVE) {
349      return Visit(OVE->getSourceExpr());
350    }
351  
VisitCallExpr(const CallExpr * CE)352    const DeclRefExpr *VisitCallExpr(const CallExpr *CE) {
353      if (!ShouldRetrieveFromComparisons)
354        return nullptr;
355  
356      // We want to see through some of the boolean builtin functions
357      // that we are likely to see in conditions.
358      switch (CE->getBuiltinCallee()) {
359      case Builtin::BI__builtin_expect:
360      case Builtin::BI__builtin_expect_with_probability: {
361        assert(CE->getNumArgs() >= 2);
362  
363        const DeclRefExpr *Candidate = Visit(CE->getArg(0));
364        return Candidate != nullptr ? Candidate : Visit(CE->getArg(1));
365      }
366  
367      case Builtin::BI__builtin_unpredictable:
368        return Visit(CE->getArg(0));
369  
370      default:
371        return nullptr;
372      }
373    }
374  
VisitExpr(const Expr * E)375    const DeclRefExpr *VisitExpr(const Expr *E) {
376      // It is a fallback method that gets called whenever the actual type
377      // of the given expression is not covered.
378      //
379      // We first check if we have anything to skip.  And then repeat the whole
380      // procedure for a nested expression instead.
381      const Expr *DeclutteredExpr = E->IgnoreParenCasts();
382      return E != DeclutteredExpr ? Visit(DeclutteredExpr) : nullptr;
383    }
384  
385  private:
DeclRefFinder(bool ShouldRetrieveFromComparisons)386    DeclRefFinder(bool ShouldRetrieveFromComparisons)
387        : ShouldRetrieveFromComparisons(ShouldRetrieveFromComparisons) {}
388  
389    bool ShouldRetrieveFromComparisons;
390  };
391  
findDeclRefExpr(const Expr * In,bool ShouldRetrieveFromComparisons=false)392  const DeclRefExpr *findDeclRefExpr(const Expr *In,
393                                     bool ShouldRetrieveFromComparisons = false) {
394    return DeclRefFinder::find(In, ShouldRetrieveFromComparisons);
395  }
396  
397  const ParmVarDecl *
findReferencedParmVarDecl(const Expr * In,bool ShouldRetrieveFromComparisons=false)398  findReferencedParmVarDecl(const Expr *In,
399                            bool ShouldRetrieveFromComparisons = false) {
400    if (const DeclRefExpr *DR =
401            findDeclRefExpr(In, ShouldRetrieveFromComparisons)) {
402      return dyn_cast<ParmVarDecl>(DR->getDecl());
403    }
404  
405    return nullptr;
406  }
407  
408  /// Return conditions expression of a statement if it has one.
getCondition(const Stmt * S)409  const Expr *getCondition(const Stmt *S) {
410    if (!S) {
411      return nullptr;
412    }
413  
414    if (const auto *If = dyn_cast<IfStmt>(S)) {
415      return If->getCond();
416    }
417    if (const auto *Ternary = dyn_cast<AbstractConditionalOperator>(S)) {
418      return Ternary->getCond();
419    }
420  
421    return nullptr;
422  }
423  
424  /// A small helper class that collects all named identifiers in the given
425  /// expression.  It traverses it recursively, so names from deeper levels
426  /// of the AST will end up in the results.
427  /// Results might have duplicate names, if this is a problem, convert to
428  /// string sets afterwards.
429  class NamesCollector : public RecursiveASTVisitor<NamesCollector> {
430  public:
431    static constexpr unsigned EXPECTED_NUMBER_OF_NAMES = 5;
432    using NameCollection =
433        llvm::SmallVector<llvm::StringRef, EXPECTED_NUMBER_OF_NAMES>;
434  
collect(const Expr * From)435    static NameCollection collect(const Expr *From) {
436      NamesCollector Impl;
437      Impl.TraverseStmt(const_cast<Expr *>(From));
438      return Impl.Result;
439    }
440  
VisitDeclRefExpr(const DeclRefExpr * E)441    bool VisitDeclRefExpr(const DeclRefExpr *E) {
442      Result.push_back(E->getDecl()->getName());
443      return true;
444    }
445  
VisitObjCPropertyRefExpr(const ObjCPropertyRefExpr * E)446    bool VisitObjCPropertyRefExpr(const ObjCPropertyRefExpr *E) {
447      llvm::StringRef Name;
448  
449      if (E->isImplicitProperty()) {
450        ObjCMethodDecl *PropertyMethodDecl = nullptr;
451        if (E->isMessagingGetter()) {
452          PropertyMethodDecl = E->getImplicitPropertyGetter();
453        } else {
454          PropertyMethodDecl = E->getImplicitPropertySetter();
455        }
456        assert(PropertyMethodDecl &&
457               "Implicit property must have associated declaration");
458        Name = PropertyMethodDecl->getSelector().getNameForSlot(0);
459      } else {
460        assert(E->isExplicitProperty());
461        Name = E->getExplicitProperty()->getName();
462      }
463  
464      Result.push_back(Name);
465      return true;
466    }
467  
468  private:
469    NamesCollector() = default;
470    NameCollection Result;
471  };
472  
473  /// Check whether the given expression mentions any of conventional names.
mentionsAnyOfConventionalNames(const Expr * E)474  bool mentionsAnyOfConventionalNames(const Expr *E) {
475    NamesCollector::NameCollection MentionedNames = NamesCollector::collect(E);
476  
477    return llvm::any_of(MentionedNames, [](llvm::StringRef ConditionName) {
478      return llvm::any_of(
479          CONVENTIONAL_CONDITIONS,
480          [ConditionName](const llvm::StringLiteral &Conventional) {
481            return ConditionName.contains_insensitive(Conventional);
482          });
483    });
484  }
485  
486  /// Clarification is a simple pair of a reason why parameter is not called
487  /// on every path and a statement to blame.
488  struct Clarification {
489    NeverCalledReason Reason;
490    const Stmt *Location;
491  };
492  
493  /// A helper class that can produce a clarification based on the given pair
494  /// of basic blocks.
495  class NotCalledClarifier
496      : public ConstStmtVisitor<NotCalledClarifier,
497                                std::optional<Clarification>> {
498  public:
499    /// The main entrypoint for the class, the function that tries to find the
500    /// clarification of how to explain which sub-path starts with a CFG edge
501    /// from Conditional to SuccWithoutCall.
502    ///
503    /// This means that this function has one precondition:
504    ///   SuccWithoutCall should be a successor block for Conditional.
505    ///
506    /// Because clarification is not needed for non-trivial pairs of blocks
507    /// (i.e. SuccWithoutCall is not the only successor), it returns meaningful
508    /// results only for such cases.  For this very reason, the parent basic
509    /// block, Conditional, is named that way, so it is clear what kind of
510    /// block is expected.
clarify(const CFGBlock * Conditional,const CFGBlock * SuccWithoutCall)511    static std::optional<Clarification> clarify(const CFGBlock *Conditional,
512                                                const CFGBlock *SuccWithoutCall) {
513      if (const Stmt *Terminator = Conditional->getTerminatorStmt()) {
514        return NotCalledClarifier{Conditional, SuccWithoutCall}.Visit(Terminator);
515      }
516      return std::nullopt;
517    }
518  
VisitIfStmt(const IfStmt * If)519    std::optional<Clarification> VisitIfStmt(const IfStmt *If) {
520      return VisitBranchingBlock(If, NeverCalledReason::IfThen);
521    }
522  
523    std::optional<Clarification>
VisitAbstractConditionalOperator(const AbstractConditionalOperator * Ternary)524    VisitAbstractConditionalOperator(const AbstractConditionalOperator *Ternary) {
525      return VisitBranchingBlock(Ternary, NeverCalledReason::IfThen);
526    }
527  
VisitSwitchStmt(const SwitchStmt * Switch)528    std::optional<Clarification> VisitSwitchStmt(const SwitchStmt *Switch) {
529      const Stmt *CaseToBlame = SuccInQuestion->getLabel();
530      if (!CaseToBlame) {
531        // If interesting basic block is not labeled, it means that this
532        // basic block does not represent any of the cases.
533        return Clarification{NeverCalledReason::SwitchSkipped, Switch};
534      }
535  
536      for (const SwitchCase *Case = Switch->getSwitchCaseList(); Case;
537           Case = Case->getNextSwitchCase()) {
538        if (Case == CaseToBlame) {
539          return Clarification{NeverCalledReason::Switch, Case};
540        }
541      }
542  
543      llvm_unreachable("Found unexpected switch structure");
544    }
545  
VisitForStmt(const ForStmt * For)546    std::optional<Clarification> VisitForStmt(const ForStmt *For) {
547      return VisitBranchingBlock(For, NeverCalledReason::LoopEntered);
548    }
549  
VisitWhileStmt(const WhileStmt * While)550    std::optional<Clarification> VisitWhileStmt(const WhileStmt *While) {
551      return VisitBranchingBlock(While, NeverCalledReason::LoopEntered);
552    }
553  
554    std::optional<Clarification>
VisitBranchingBlock(const Stmt * Terminator,NeverCalledReason DefaultReason)555    VisitBranchingBlock(const Stmt *Terminator, NeverCalledReason DefaultReason) {
556      assert(Parent->succ_size() == 2 &&
557             "Branching block should have exactly two successors");
558      unsigned SuccessorIndex = getSuccessorIndex(Parent, SuccInQuestion);
559      NeverCalledReason ActualReason =
560          updateForSuccessor(DefaultReason, SuccessorIndex);
561      return Clarification{ActualReason, Terminator};
562    }
563  
VisitBinaryOperator(const BinaryOperator *)564    std::optional<Clarification> VisitBinaryOperator(const BinaryOperator *) {
565      // We don't want to report on short-curcuit logical operations.
566      return std::nullopt;
567    }
568  
VisitStmt(const Stmt * Terminator)569    std::optional<Clarification> VisitStmt(const Stmt *Terminator) {
570      // If we got here, we didn't have a visit function for more derived
571      // classes of statement that this terminator actually belongs to.
572      //
573      // This is not a good scenario and should not happen in practice, but
574      // at least we'll warn the user.
575      return Clarification{NeverCalledReason::FallbackReason, Terminator};
576    }
577  
getSuccessorIndex(const CFGBlock * Parent,const CFGBlock * Child)578    static unsigned getSuccessorIndex(const CFGBlock *Parent,
579                                      const CFGBlock *Child) {
580      CFGBlock::const_succ_iterator It = llvm::find(Parent->succs(), Child);
581      assert(It != Parent->succ_end() &&
582             "Given blocks should be in parent-child relationship");
583      return It - Parent->succ_begin();
584    }
585  
586    static NeverCalledReason
updateForSuccessor(NeverCalledReason ReasonForTrueBranch,unsigned SuccessorIndex)587    updateForSuccessor(NeverCalledReason ReasonForTrueBranch,
588                       unsigned SuccessorIndex) {
589      assert(SuccessorIndex <= 1);
590      unsigned RawReason =
591          static_cast<unsigned>(ReasonForTrueBranch) + SuccessorIndex;
592      assert(RawReason <=
593             static_cast<unsigned>(NeverCalledReason::LARGEST_VALUE));
594      return static_cast<NeverCalledReason>(RawReason);
595    }
596  
597  private:
NotCalledClarifier(const CFGBlock * Parent,const CFGBlock * SuccInQuestion)598    NotCalledClarifier(const CFGBlock *Parent, const CFGBlock *SuccInQuestion)
599        : Parent(Parent), SuccInQuestion(SuccInQuestion) {}
600  
601    const CFGBlock *Parent, *SuccInQuestion;
602  };
603  
604  class CalledOnceChecker : public ConstStmtVisitor<CalledOnceChecker> {
605  public:
check(AnalysisDeclContext & AC,CalledOnceCheckHandler & Handler,bool CheckConventionalParameters)606    static void check(AnalysisDeclContext &AC, CalledOnceCheckHandler &Handler,
607                      bool CheckConventionalParameters) {
608      CalledOnceChecker(AC, Handler, CheckConventionalParameters).check();
609    }
610  
611  private:
CalledOnceChecker(AnalysisDeclContext & AC,CalledOnceCheckHandler & Handler,bool CheckConventionalParameters)612    CalledOnceChecker(AnalysisDeclContext &AC, CalledOnceCheckHandler &Handler,
613                      bool CheckConventionalParameters)
614        : FunctionCFG(*AC.getCFG()), AC(AC), Handler(Handler),
615          CheckConventionalParameters(CheckConventionalParameters),
616          CurrentState(0) {
617      initDataStructures();
618      assert((size() == 0 || !States.empty()) &&
619             "Data structures are inconsistent");
620    }
621  
622    //===----------------------------------------------------------------------===//
623    //                            Initializing functions
624    //===----------------------------------------------------------------------===//
625  
initDataStructures()626    void initDataStructures() {
627      const Decl *AnalyzedDecl = AC.getDecl();
628  
629      if (const auto *Function = dyn_cast<FunctionDecl>(AnalyzedDecl)) {
630        findParamsToTrack(Function);
631      } else if (const auto *Method = dyn_cast<ObjCMethodDecl>(AnalyzedDecl)) {
632        findParamsToTrack(Method);
633      } else if (const auto *Block = dyn_cast<BlockDecl>(AnalyzedDecl)) {
634        findCapturesToTrack(Block);
635        findParamsToTrack(Block);
636      }
637  
638      // Have something to track, let's init states for every block from the CFG.
639      if (size() != 0) {
640        States =
641            CFGSizedVector<State>(FunctionCFG.getNumBlockIDs(), State(size()));
642      }
643    }
644  
findCapturesToTrack(const BlockDecl * Block)645    void findCapturesToTrack(const BlockDecl *Block) {
646      for (const auto &Capture : Block->captures()) {
647        if (const auto *P = dyn_cast<ParmVarDecl>(Capture.getVariable())) {
648          // Parameter DeclContext is its owning function or method.
649          const DeclContext *ParamContext = P->getDeclContext();
650          if (shouldBeCalledOnce(ParamContext, P)) {
651            TrackedParams.push_back(P);
652          }
653        }
654      }
655    }
656  
657    template <class FunctionLikeDecl>
findParamsToTrack(const FunctionLikeDecl * Function)658    void findParamsToTrack(const FunctionLikeDecl *Function) {
659      for (unsigned Index : llvm::seq<unsigned>(0u, Function->param_size())) {
660        if (shouldBeCalledOnce(Function, Index)) {
661          TrackedParams.push_back(Function->getParamDecl(Index));
662        }
663      }
664    }
665  
666    //===----------------------------------------------------------------------===//
667    //                         Main logic 'check' functions
668    //===----------------------------------------------------------------------===//
669  
check()670    void check() {
671      // Nothing to check here: we don't have marked parameters.
672      if (size() == 0 || isPossiblyEmptyImpl())
673        return;
674  
675      assert(
676          llvm::none_of(States, [](const State &S) { return S.isVisited(); }) &&
677          "None of the blocks should be 'visited' before the analysis");
678  
679      // For our task, both backward and forward approaches suite well.
680      // However, in order to report better diagnostics, we decided to go with
681      // backward analysis.
682      //
683      // Let's consider the following CFG and how forward and backward analyses
684      // will work for it.
685      //
686      //                  FORWARD:           |                 BACKWARD:
687      //                    #1               |                     #1
688      //                +---------+          |               +-----------+
689      //                |   if    |          |               |MaybeCalled|
690      //                +---------+          |               +-----------+
691      //                |NotCalled|          |               |    if     |
692      //                +---------+          |               +-----------+
693      //                 /       \           |                 /       \
694      //         #2     /         \  #3      |         #2     /         \  #3
695      // +----------------+      +---------+ | +----------------+      +---------+
696      // |     foo()      |      |   ...   | | |DefinitelyCalled|      |NotCalled|
697      // +----------------+      +---------+ | +----------------+      +---------+
698      // |DefinitelyCalled|      |NotCalled| | |     foo()      |      |   ...   |
699      // +----------------+      +---------+ | +----------------+      +---------+
700      //                \         /          |                \         /
701      //                 \  #4   /           |                 \  #4   /
702      //               +-----------+         |                +---------+
703      //               |    ...    |         |                |NotCalled|
704      //               +-----------+         |                +---------+
705      //               |MaybeCalled|         |                |   ...   |
706      //               +-----------+         |                +---------+
707      //
708      // The most natural way to report lacking call in the block #3 would be to
709      // message that the false branch of the if statement in the block #1 doesn't
710      // have a call.  And while with the forward approach we'll need to find a
711      // least common ancestor or something like that to find the 'if' to blame,
712      // backward analysis gives it to us out of the box.
713      BackwardDataflowWorklist Worklist(FunctionCFG, AC);
714  
715      // Let's visit EXIT.
716      const CFGBlock *Exit = &FunctionCFG.getExit();
717      assignState(Exit, State(size(), ParameterStatus::NotCalled));
718      Worklist.enqueuePredecessors(Exit);
719  
720      while (const CFGBlock *BB = Worklist.dequeue()) {
721        assert(BB && "Worklist should filter out null blocks");
722        check(BB);
723        assert(CurrentState.isVisited() &&
724               "After the check, basic block should be visited");
725  
726        // Traverse successor basic blocks if the status of this block
727        // has changed.
728        if (assignState(BB, CurrentState)) {
729          Worklist.enqueuePredecessors(BB);
730        }
731      }
732  
733      // Check that we have all tracked parameters at the last block.
734      // As we are performing a backward version of the analysis,
735      // it should be the ENTRY block.
736      checkEntry(&FunctionCFG.getEntry());
737    }
738  
check(const CFGBlock * BB)739    void check(const CFGBlock *BB) {
740      // We start with a state 'inherited' from all the successors.
741      CurrentState = joinSuccessors(BB);
742      assert(CurrentState.isVisited() &&
743             "Shouldn't start with a 'not visited' state");
744  
745      // This is the 'exit' situation, broken promises are probably OK
746      // in such scenarios.
747      if (BB->hasNoReturnElement()) {
748        markNoReturn();
749        // This block still can have calls (even multiple calls) and
750        // for this reason there is no early return here.
751      }
752  
753      // We use a backward dataflow propagation and for this reason we
754      // should traverse basic blocks bottom-up.
755      for (const CFGElement &Element : llvm::reverse(*BB)) {
756        if (std::optional<CFGStmt> S = Element.getAs<CFGStmt>()) {
757          check(S->getStmt());
758        }
759      }
760    }
check(const Stmt * S)761    void check(const Stmt *S) { Visit(S); }
762  
checkEntry(const CFGBlock * Entry)763    void checkEntry(const CFGBlock *Entry) {
764      // We finalize this algorithm with the ENTRY block because
765      // we use a backward version of the analysis.  This is where
766      // we can judge that some of the tracked parameters are not called on
767      // every path from ENTRY to EXIT.
768  
769      const State &EntryStatus = getState(Entry);
770      llvm::BitVector NotCalledOnEveryPath(size(), false);
771      llvm::BitVector NotUsedOnEveryPath(size(), false);
772  
773      // Check if there are no calls of the marked parameter at all
774      for (const auto &IndexedStatus : llvm::enumerate(EntryStatus)) {
775        const ParmVarDecl *Parameter = getParameter(IndexedStatus.index());
776  
777        switch (IndexedStatus.value().getKind()) {
778        case ParameterStatus::NotCalled:
779          // If there were places where this parameter escapes (aka being used),
780          // we can provide a more useful diagnostic by pointing at the exact
781          // branches where it is not even mentioned.
782          if (!hasEverEscaped(IndexedStatus.index())) {
783            // This parameter is was not used at all, so we should report the
784            // most generic version of the warning.
785            if (isCaptured(Parameter)) {
786              // We want to specify that it was captured by the block.
787              Handler.handleCapturedNeverCalled(Parameter, AC.getDecl(),
788                                                !isExplicitlyMarked(Parameter));
789            } else {
790              Handler.handleNeverCalled(Parameter,
791                                        !isExplicitlyMarked(Parameter));
792            }
793          } else {
794            // Mark it as 'interesting' to figure out which paths don't even
795            // have escapes.
796            NotUsedOnEveryPath[IndexedStatus.index()] = true;
797          }
798  
799          break;
800        case ParameterStatus::MaybeCalled:
801          // If we have 'maybe called' at this point, we have an error
802          // that there is at least one path where this parameter
803          // is not called.
804          //
805          // However, reporting the warning with only that information can be
806          // too vague for the users.  For this reason, we mark such parameters
807          // as "interesting" for further analysis.
808          NotCalledOnEveryPath[IndexedStatus.index()] = true;
809          break;
810        default:
811          break;
812        }
813      }
814  
815      // Early exit if we don't have parameters for extra analysis...
816      if (NotCalledOnEveryPath.none() && NotUsedOnEveryPath.none() &&
817          // ... or if we've seen variables with cleanup functions.
818          // We can't reason that we've seen every path in this case,
819          // and thus abandon reporting any warnings that imply that.
820          !FunctionHasCleanupVars)
821        return;
822  
823      // We are looking for a pair of blocks A, B so that the following is true:
824      //   * A is a predecessor of B
825      //   * B is marked as NotCalled
826      //   * A has at least one successor marked as either
827      //     Escaped or DefinitelyCalled
828      //
829      // In that situation, it is guaranteed that B is the first block of the path
830      // where the user doesn't call or use parameter in question.
831      //
832      // For this reason, branch A -> B can be used for reporting.
833      //
834      // This part of the algorithm is guarded by a condition that the function
835      // does indeed have a violation of contract.  For this reason, we can
836      // spend more time to find a good spot to place the warning.
837      //
838      // The following algorithm has the worst case complexity of O(V + E),
839      // where V is the number of basic blocks in FunctionCFG,
840      //       E is the number of edges between blocks in FunctionCFG.
841      for (const CFGBlock *BB : FunctionCFG) {
842        if (!BB)
843          continue;
844  
845        const State &BlockState = getState(BB);
846  
847        for (unsigned Index : llvm::seq(0u, size())) {
848          // We don't want to use 'isLosingCall' here because we want to report
849          // the following situation as well:
850          //
851          //           MaybeCalled
852          //            |  ...  |
853          //    MaybeCalled   NotCalled
854          //
855          // Even though successor is not 'DefinitelyCalled', it is still useful
856          // to report it, it is still a path without a call.
857          if (NotCalledOnEveryPath[Index] &&
858              BlockState.getKindFor(Index) == ParameterStatus::MaybeCalled) {
859  
860            findAndReportNotCalledBranches(BB, Index);
861          } else if (NotUsedOnEveryPath[Index] &&
862                     isLosingEscape(BlockState, BB, Index)) {
863  
864            findAndReportNotCalledBranches(BB, Index, /* IsEscape = */ true);
865          }
866        }
867      }
868    }
869  
870    /// Check potential call of a tracked parameter.
checkDirectCall(const CallExpr * Call)871    void checkDirectCall(const CallExpr *Call) {
872      if (auto Index = getIndexOfCallee(Call)) {
873        processCallFor(*Index, Call);
874      }
875    }
876  
877    /// Check the call expression for being an indirect call of one of the tracked
878    /// parameters.  It is indirect in the sense that this particular call is not
879    /// calling the parameter itself, but rather uses it as the argument.
880    template <class CallLikeExpr>
checkIndirectCall(const CallLikeExpr * CallOrMessage)881    void checkIndirectCall(const CallLikeExpr *CallOrMessage) {
882      // CallExpr::arguments does not interact nicely with llvm::enumerate.
883      llvm::ArrayRef<const Expr *> Arguments =
884          llvm::ArrayRef(CallOrMessage->getArgs(), CallOrMessage->getNumArgs());
885  
886      // Let's check if any of the call arguments is a point of interest.
887      for (const auto &Argument : llvm::enumerate(Arguments)) {
888        if (auto Index = getIndexOfExpression(Argument.value())) {
889          if (shouldBeCalledOnce(CallOrMessage, Argument.index())) {
890            // If the corresponding parameter is marked as 'called_once' we should
891            // consider it as a call.
892            processCallFor(*Index, CallOrMessage);
893          } else {
894            // Otherwise, we mark this parameter as escaped, which can be
895            // interpreted both as called or not called depending on the context.
896            processEscapeFor(*Index);
897          }
898          // Otherwise, let's keep the state as it is.
899        }
900      }
901    }
902  
903    /// Process call of the parameter with the given index
processCallFor(unsigned Index,const Expr * Call)904    void processCallFor(unsigned Index, const Expr *Call) {
905      ParameterStatus &CurrentParamStatus = CurrentState.getStatusFor(Index);
906  
907      if (CurrentParamStatus.seenAnyCalls()) {
908  
909        // At this point, this parameter was called, so this is a second call.
910        const ParmVarDecl *Parameter = getParameter(Index);
911        Handler.handleDoubleCall(
912            Parameter, &CurrentState.getCallFor(Index), Call,
913            !isExplicitlyMarked(Parameter),
914            // We are sure that the second call is definitely
915            // going to happen if the status is 'DefinitelyCalled'.
916            CurrentParamStatus.getKind() == ParameterStatus::DefinitelyCalled);
917  
918        // Mark this parameter as already reported on, so we don't repeat
919        // warnings.
920        CurrentParamStatus = ParameterStatus::Reported;
921  
922      } else if (CurrentParamStatus.getKind() != ParameterStatus::Reported) {
923        // If we didn't report anything yet, let's mark this parameter
924        // as called.
925        ParameterStatus Called(ParameterStatus::DefinitelyCalled, Call);
926        CurrentParamStatus = Called;
927      }
928    }
929  
930    /// Process escape of the parameter with the given index
processEscapeFor(unsigned Index)931    void processEscapeFor(unsigned Index) {
932      ParameterStatus &CurrentParamStatus = CurrentState.getStatusFor(Index);
933  
934      // Escape overrides whatever error we think happened.
935      if (CurrentParamStatus.isErrorStatus() &&
936          CurrentParamStatus.getKind() != ParameterStatus::Kind::Reported) {
937        CurrentParamStatus = ParameterStatus::Escaped;
938      }
939    }
940  
findAndReportNotCalledBranches(const CFGBlock * Parent,unsigned Index,bool IsEscape=false)941    void findAndReportNotCalledBranches(const CFGBlock *Parent, unsigned Index,
942                                        bool IsEscape = false) {
943      for (const CFGBlock *Succ : Parent->succs()) {
944        if (!Succ)
945          continue;
946  
947        if (getState(Succ).getKindFor(Index) == ParameterStatus::NotCalled) {
948          assert(Parent->succ_size() >= 2 &&
949                 "Block should have at least two successors at this point");
950          if (auto Clarification = NotCalledClarifier::clarify(Parent, Succ)) {
951            const ParmVarDecl *Parameter = getParameter(Index);
952            Handler.handleNeverCalled(
953                Parameter, AC.getDecl(), Clarification->Location,
954                Clarification->Reason, !IsEscape, !isExplicitlyMarked(Parameter));
955          }
956        }
957      }
958    }
959  
960    //===----------------------------------------------------------------------===//
961    //                   Predicate functions to check parameters
962    //===----------------------------------------------------------------------===//
963  
964    /// Return true if parameter is explicitly marked as 'called_once'.
isExplicitlyMarked(const ParmVarDecl * Parameter)965    static bool isExplicitlyMarked(const ParmVarDecl *Parameter) {
966      return Parameter->hasAttr<CalledOnceAttr>();
967    }
968  
969    /// Return true if the given name matches conventional pattens.
isConventional(llvm::StringRef Name)970    static bool isConventional(llvm::StringRef Name) {
971      return llvm::count(CONVENTIONAL_NAMES, Name) != 0;
972    }
973  
974    /// Return true if the given name has conventional suffixes.
hasConventionalSuffix(llvm::StringRef Name)975    static bool hasConventionalSuffix(llvm::StringRef Name) {
976      return llvm::any_of(CONVENTIONAL_SUFFIXES, [Name](llvm::StringRef Suffix) {
977        return Name.ends_with(Suffix);
978      });
979    }
980  
981    /// Return true if the given type can be used for conventional parameters.
isConventional(QualType Ty)982    static bool isConventional(QualType Ty) {
983      if (!Ty->isBlockPointerType()) {
984        return false;
985      }
986  
987      QualType BlockType = Ty->castAs<BlockPointerType>()->getPointeeType();
988      // Completion handlers should have a block type with void return type.
989      return BlockType->castAs<FunctionType>()->getReturnType()->isVoidType();
990    }
991  
992    /// Return true if the only parameter of the function is conventional.
isOnlyParameterConventional(const FunctionDecl * Function)993    static bool isOnlyParameterConventional(const FunctionDecl *Function) {
994      IdentifierInfo *II = Function->getIdentifier();
995      return Function->getNumParams() == 1 && II &&
996             hasConventionalSuffix(II->getName());
997    }
998  
999    /// Return true/false if 'swift_async' attribute states that the given
1000    /// parameter is conventionally called once.
1001    /// Return std::nullopt if the given declaration doesn't have 'swift_async'
1002    /// attribute.
isConventionalSwiftAsync(const Decl * D,unsigned ParamIndex)1003    static std::optional<bool> isConventionalSwiftAsync(const Decl *D,
1004                                                        unsigned ParamIndex) {
1005      if (const SwiftAsyncAttr *A = D->getAttr<SwiftAsyncAttr>()) {
1006        if (A->getKind() == SwiftAsyncAttr::None) {
1007          return false;
1008        }
1009  
1010        return A->getCompletionHandlerIndex().getASTIndex() == ParamIndex;
1011      }
1012      return std::nullopt;
1013    }
1014  
1015    /// Return true if the specified selector represents init method.
isInitMethod(Selector MethodSelector)1016    static bool isInitMethod(Selector MethodSelector) {
1017      return MethodSelector.getMethodFamily() == OMF_init;
1018    }
1019  
1020    /// Return true if the specified selector piece matches conventions.
isConventionalSelectorPiece(Selector MethodSelector,unsigned PieceIndex,QualType PieceType)1021    static bool isConventionalSelectorPiece(Selector MethodSelector,
1022                                            unsigned PieceIndex,
1023                                            QualType PieceType) {
1024      if (!isConventional(PieceType) || isInitMethod(MethodSelector)) {
1025        return false;
1026      }
1027  
1028      if (MethodSelector.getNumArgs() == 1) {
1029        assert(PieceIndex == 0);
1030        return hasConventionalSuffix(MethodSelector.getNameForSlot(0));
1031      }
1032  
1033      llvm::StringRef PieceName = MethodSelector.getNameForSlot(PieceIndex);
1034      return isConventional(PieceName) || hasConventionalSuffix(PieceName);
1035    }
1036  
shouldBeCalledOnce(const ParmVarDecl * Parameter) const1037    bool shouldBeCalledOnce(const ParmVarDecl *Parameter) const {
1038      return isExplicitlyMarked(Parameter) ||
1039             (CheckConventionalParameters &&
1040              (isConventional(Parameter->getName()) ||
1041               hasConventionalSuffix(Parameter->getName())) &&
1042              isConventional(Parameter->getType()));
1043    }
1044  
shouldBeCalledOnce(const DeclContext * ParamContext,const ParmVarDecl * Param)1045    bool shouldBeCalledOnce(const DeclContext *ParamContext,
1046                            const ParmVarDecl *Param) {
1047      unsigned ParamIndex = Param->getFunctionScopeIndex();
1048      if (const auto *Function = dyn_cast<FunctionDecl>(ParamContext)) {
1049        return shouldBeCalledOnce(Function, ParamIndex);
1050      }
1051      if (const auto *Method = dyn_cast<ObjCMethodDecl>(ParamContext)) {
1052        return shouldBeCalledOnce(Method, ParamIndex);
1053      }
1054      return shouldBeCalledOnce(Param);
1055    }
1056  
shouldBeCalledOnce(const BlockDecl * Block,unsigned ParamIndex) const1057    bool shouldBeCalledOnce(const BlockDecl *Block, unsigned ParamIndex) const {
1058      return shouldBeCalledOnce(Block->getParamDecl(ParamIndex));
1059    }
1060  
shouldBeCalledOnce(const FunctionDecl * Function,unsigned ParamIndex) const1061    bool shouldBeCalledOnce(const FunctionDecl *Function,
1062                            unsigned ParamIndex) const {
1063      if (ParamIndex >= Function->getNumParams()) {
1064        return false;
1065      }
1066      // 'swift_async' goes first and overrides anything else.
1067      if (auto ConventionalAsync =
1068              isConventionalSwiftAsync(Function, ParamIndex)) {
1069        return *ConventionalAsync;
1070      }
1071  
1072      return shouldBeCalledOnce(Function->getParamDecl(ParamIndex)) ||
1073             (CheckConventionalParameters &&
1074              isOnlyParameterConventional(Function));
1075    }
1076  
shouldBeCalledOnce(const ObjCMethodDecl * Method,unsigned ParamIndex) const1077    bool shouldBeCalledOnce(const ObjCMethodDecl *Method,
1078                            unsigned ParamIndex) const {
1079      Selector MethodSelector = Method->getSelector();
1080      if (ParamIndex >= MethodSelector.getNumArgs()) {
1081        return false;
1082      }
1083  
1084      // 'swift_async' goes first and overrides anything else.
1085      if (auto ConventionalAsync = isConventionalSwiftAsync(Method, ParamIndex)) {
1086        return *ConventionalAsync;
1087      }
1088  
1089      const ParmVarDecl *Parameter = Method->getParamDecl(ParamIndex);
1090      return shouldBeCalledOnce(Parameter) ||
1091             (CheckConventionalParameters &&
1092              isConventionalSelectorPiece(MethodSelector, ParamIndex,
1093                                          Parameter->getType()));
1094    }
1095  
shouldBeCalledOnce(const CallExpr * Call,unsigned ParamIndex) const1096    bool shouldBeCalledOnce(const CallExpr *Call, unsigned ParamIndex) const {
1097      const FunctionDecl *Function = Call->getDirectCallee();
1098      return Function && shouldBeCalledOnce(Function, ParamIndex);
1099    }
1100  
shouldBeCalledOnce(const ObjCMessageExpr * Message,unsigned ParamIndex) const1101    bool shouldBeCalledOnce(const ObjCMessageExpr *Message,
1102                            unsigned ParamIndex) const {
1103      const ObjCMethodDecl *Method = Message->getMethodDecl();
1104      return Method && ParamIndex < Method->param_size() &&
1105             shouldBeCalledOnce(Method, ParamIndex);
1106    }
1107  
1108    //===----------------------------------------------------------------------===//
1109    //                               Utility methods
1110    //===----------------------------------------------------------------------===//
1111  
isCaptured(const ParmVarDecl * Parameter) const1112    bool isCaptured(const ParmVarDecl *Parameter) const {
1113      if (const BlockDecl *Block = dyn_cast<BlockDecl>(AC.getDecl())) {
1114        return Block->capturesVariable(Parameter);
1115      }
1116      return false;
1117    }
1118  
1119    // Return a call site where the block is called exactly once or null otherwise
getBlockGuaraneedCallSite(const BlockExpr * Block) const1120    const Expr *getBlockGuaraneedCallSite(const BlockExpr *Block) const {
1121      ParentMap &PM = AC.getParentMap();
1122  
1123      // We don't want to track the block through assignments and so on, instead
1124      // we simply see how the block used and if it's used directly in a call,
1125      // we decide based on call to what it is.
1126      //
1127      // In order to do this, we go up the parents of the block looking for
1128      // a call or a message expressions.  These might not be immediate parents
1129      // of the actual block expression due to casts and parens, so we skip them.
1130      for (const Stmt *Prev = Block, *Current = PM.getParent(Block);
1131           Current != nullptr; Prev = Current, Current = PM.getParent(Current)) {
1132        // Skip no-op (for our case) operations.
1133        if (isa<CastExpr>(Current) || isa<ParenExpr>(Current))
1134          continue;
1135  
1136        // At this point, Prev represents our block as an immediate child of the
1137        // call.
1138        if (const auto *Call = dyn_cast<CallExpr>(Current)) {
1139          // It might be the call of the Block itself...
1140          if (Call->getCallee() == Prev)
1141            return Call;
1142  
1143          // ...or it can be an indirect call of the block.
1144          return shouldBlockArgumentBeCalledOnce(Call, Prev) ? Call : nullptr;
1145        }
1146        if (const auto *Message = dyn_cast<ObjCMessageExpr>(Current)) {
1147          return shouldBlockArgumentBeCalledOnce(Message, Prev) ? Message
1148                                                                : nullptr;
1149        }
1150  
1151        break;
1152      }
1153  
1154      return nullptr;
1155    }
1156  
1157    template <class CallLikeExpr>
shouldBlockArgumentBeCalledOnce(const CallLikeExpr * CallOrMessage,const Stmt * BlockArgument) const1158    bool shouldBlockArgumentBeCalledOnce(const CallLikeExpr *CallOrMessage,
1159                                         const Stmt *BlockArgument) const {
1160      // CallExpr::arguments does not interact nicely with llvm::enumerate.
1161      llvm::ArrayRef<const Expr *> Arguments =
1162          llvm::ArrayRef(CallOrMessage->getArgs(), CallOrMessage->getNumArgs());
1163  
1164      for (const auto &Argument : llvm::enumerate(Arguments)) {
1165        if (Argument.value() == BlockArgument) {
1166          return shouldBlockArgumentBeCalledOnce(CallOrMessage, Argument.index());
1167        }
1168      }
1169  
1170      return false;
1171    }
1172  
shouldBlockArgumentBeCalledOnce(const CallExpr * Call,unsigned ParamIndex) const1173    bool shouldBlockArgumentBeCalledOnce(const CallExpr *Call,
1174                                         unsigned ParamIndex) const {
1175      const FunctionDecl *Function = Call->getDirectCallee();
1176      return shouldBlockArgumentBeCalledOnce(Function, ParamIndex) ||
1177             shouldBeCalledOnce(Call, ParamIndex);
1178    }
1179  
shouldBlockArgumentBeCalledOnce(const ObjCMessageExpr * Message,unsigned ParamIndex) const1180    bool shouldBlockArgumentBeCalledOnce(const ObjCMessageExpr *Message,
1181                                         unsigned ParamIndex) const {
1182      // At the moment, we don't have any Obj-C methods we want to specifically
1183      // check in here.
1184      return shouldBeCalledOnce(Message, ParamIndex);
1185    }
1186  
shouldBlockArgumentBeCalledOnce(const FunctionDecl * Function,unsigned ParamIndex)1187    static bool shouldBlockArgumentBeCalledOnce(const FunctionDecl *Function,
1188                                                unsigned ParamIndex) {
1189      // There is a list of important API functions that while not following
1190      // conventions nor being directly annotated, still guarantee that the
1191      // callback parameter will be called exactly once.
1192      //
1193      // Here we check if this is the case.
1194      return Function &&
1195             llvm::any_of(KNOWN_CALLED_ONCE_PARAMETERS,
1196                          [Function, ParamIndex](
1197                              const KnownCalledOnceParameter &Reference) {
1198                            return Reference.FunctionName ==
1199                                       Function->getName() &&
1200                                   Reference.ParamIndex == ParamIndex;
1201                          });
1202    }
1203  
1204    /// Return true if the analyzed function is actually a default implementation
1205    /// of the method that has to be overriden.
1206    ///
1207    /// These functions can have tracked parameters, but wouldn't call them
1208    /// because they are not designed to perform any meaningful actions.
1209    ///
1210    /// There are a couple of flavors of such default implementations:
1211    ///   1. Empty methods or methods with a single return statement
1212    ///   2. Methods that have one block with a call to no return function
1213    ///   3. Methods with only assertion-like operations
isPossiblyEmptyImpl() const1214    bool isPossiblyEmptyImpl() const {
1215      if (!isa<ObjCMethodDecl>(AC.getDecl())) {
1216        // We care only about functions that are not supposed to be called.
1217        // Only methods can be overriden.
1218        return false;
1219      }
1220  
1221      // Case #1 (without return statements)
1222      if (FunctionCFG.size() == 2) {
1223        // Method has only two blocks: ENTRY and EXIT.
1224        // This is equivalent to empty function.
1225        return true;
1226      }
1227  
1228      // Case #2
1229      if (FunctionCFG.size() == 3) {
1230        const CFGBlock &Entry = FunctionCFG.getEntry();
1231        if (Entry.succ_empty()) {
1232          return false;
1233        }
1234  
1235        const CFGBlock *OnlyBlock = *Entry.succ_begin();
1236        // Method has only one block, let's see if it has a no-return
1237        // element.
1238        if (OnlyBlock && OnlyBlock->hasNoReturnElement()) {
1239          return true;
1240        }
1241        // Fallthrough, CFGs with only one block can fall into #1 and #3 as well.
1242      }
1243  
1244      // Cases #1 (return statements) and #3.
1245      //
1246      // It is hard to detect that something is an assertion or came
1247      // from assertion.  Here we use a simple heuristic:
1248      //
1249      //   - If it came from a macro, it can be an assertion.
1250      //
1251      // Additionally, we can't assume a number of basic blocks or the CFG's
1252      // structure because assertions might include loops and conditions.
1253      return llvm::all_of(FunctionCFG, [](const CFGBlock *BB) {
1254        if (!BB) {
1255          // Unreachable blocks are totally fine.
1256          return true;
1257        }
1258  
1259        // Return statements can have sub-expressions that are represented as
1260        // separate statements of a basic block.  We should allow this.
1261        // This parent map will be initialized with a parent tree for all
1262        // subexpressions of the block's return statement (if it has one).
1263        std::unique_ptr<ParentMap> ReturnChildren;
1264  
1265        return llvm::all_of(
1266            llvm::reverse(*BB), // we should start with return statements, if we
1267                                // have any, i.e. from the bottom of the block
1268            [&ReturnChildren](const CFGElement &Element) {
1269              if (std::optional<CFGStmt> S = Element.getAs<CFGStmt>()) {
1270                const Stmt *SuspiciousStmt = S->getStmt();
1271  
1272                if (isa<ReturnStmt>(SuspiciousStmt)) {
1273                  // Let's initialize this structure to test whether
1274                  // some further statement is a part of this return.
1275                  ReturnChildren = std::make_unique<ParentMap>(
1276                      const_cast<Stmt *>(SuspiciousStmt));
1277                  // Return statements are allowed as part of #1.
1278                  return true;
1279                }
1280  
1281                return SuspiciousStmt->getBeginLoc().isMacroID() ||
1282                       (ReturnChildren &&
1283                        ReturnChildren->hasParent(SuspiciousStmt));
1284              }
1285              return true;
1286            });
1287      });
1288    }
1289  
1290    /// Check if parameter with the given index has ever escaped.
hasEverEscaped(unsigned Index) const1291    bool hasEverEscaped(unsigned Index) const {
1292      return llvm::any_of(States, [Index](const State &StateForOneBB) {
1293        return StateForOneBB.getKindFor(Index) == ParameterStatus::Escaped;
1294      });
1295    }
1296  
1297    /// Return status stored for the given basic block.
1298    /// \{
getState(const CFGBlock * BB)1299    State &getState(const CFGBlock *BB) {
1300      assert(BB);
1301      return States[BB->getBlockID()];
1302    }
getState(const CFGBlock * BB) const1303    const State &getState(const CFGBlock *BB) const {
1304      assert(BB);
1305      return States[BB->getBlockID()];
1306    }
1307    /// \}
1308  
1309    /// Assign status to the given basic block.
1310    ///
1311    /// Returns true when the stored status changed.
assignState(const CFGBlock * BB,const State & ToAssign)1312    bool assignState(const CFGBlock *BB, const State &ToAssign) {
1313      State &Current = getState(BB);
1314      if (Current == ToAssign) {
1315        return false;
1316      }
1317  
1318      Current = ToAssign;
1319      return true;
1320    }
1321  
1322    /// Join all incoming statuses for the given basic block.
joinSuccessors(const CFGBlock * BB) const1323    State joinSuccessors(const CFGBlock *BB) const {
1324      auto Succs =
1325          llvm::make_filter_range(BB->succs(), [this](const CFGBlock *Succ) {
1326            return Succ && this->getState(Succ).isVisited();
1327          });
1328      // We came to this block from somewhere after all.
1329      assert(!Succs.empty() &&
1330             "Basic block should have at least one visited successor");
1331  
1332      State Result = getState(*Succs.begin());
1333  
1334      for (const CFGBlock *Succ : llvm::drop_begin(Succs, 1)) {
1335        Result.join(getState(Succ));
1336      }
1337  
1338      if (const Expr *Condition = getCondition(BB->getTerminatorStmt())) {
1339        handleConditional(BB, Condition, Result);
1340      }
1341  
1342      return Result;
1343    }
1344  
handleConditional(const CFGBlock * BB,const Expr * Condition,State & ToAlter) const1345    void handleConditional(const CFGBlock *BB, const Expr *Condition,
1346                           State &ToAlter) const {
1347      handleParameterCheck(BB, Condition, ToAlter);
1348      if (SuppressOnConventionalErrorPaths) {
1349        handleConventionalCheck(BB, Condition, ToAlter);
1350      }
1351    }
1352  
handleParameterCheck(const CFGBlock * BB,const Expr * Condition,State & ToAlter) const1353    void handleParameterCheck(const CFGBlock *BB, const Expr *Condition,
1354                              State &ToAlter) const {
1355      // In this function, we try to deal with the following pattern:
1356      //
1357      //   if (parameter)
1358      //     parameter(...);
1359      //
1360      // It's not good to show a warning here because clearly 'parameter'
1361      // couldn't and shouldn't be called on the 'else' path.
1362      //
1363      // Let's check if this if statement has a check involving one of
1364      // the tracked parameters.
1365      if (const ParmVarDecl *Parameter = findReferencedParmVarDecl(
1366              Condition,
1367              /* ShouldRetrieveFromComparisons = */ true)) {
1368        if (const auto Index = getIndex(*Parameter)) {
1369          ParameterStatus &CurrentStatus = ToAlter.getStatusFor(*Index);
1370  
1371          // We don't want to deep dive into semantics of the check and
1372          // figure out if that check was for null or something else.
1373          // We simply trust the user that they know what they are doing.
1374          //
1375          // For this reason, in the following loop we look for the
1376          // best-looking option.
1377          for (const CFGBlock *Succ : BB->succs()) {
1378            if (!Succ)
1379              continue;
1380  
1381            const ParameterStatus &StatusInSucc =
1382                getState(Succ).getStatusFor(*Index);
1383  
1384            if (StatusInSucc.isErrorStatus()) {
1385              continue;
1386            }
1387  
1388            // Let's use this status instead.
1389            CurrentStatus = StatusInSucc;
1390  
1391            if (StatusInSucc.getKind() == ParameterStatus::DefinitelyCalled) {
1392              // This is the best option to have and we already found it.
1393              break;
1394            }
1395  
1396            // If we found 'Escaped' first, we still might find 'DefinitelyCalled'
1397            // on the other branch.  And we prefer the latter.
1398          }
1399        }
1400      }
1401    }
1402  
handleConventionalCheck(const CFGBlock * BB,const Expr * Condition,State & ToAlter) const1403    void handleConventionalCheck(const CFGBlock *BB, const Expr *Condition,
1404                                 State &ToAlter) const {
1405      // Even when the analysis is technically correct, it is a widespread pattern
1406      // not to call completion handlers in some scenarios.  These usually have
1407      // typical conditional names, such as 'error' or 'cancel'.
1408      if (!mentionsAnyOfConventionalNames(Condition)) {
1409        return;
1410      }
1411  
1412      for (const auto &IndexedStatus : llvm::enumerate(ToAlter)) {
1413        const ParmVarDecl *Parameter = getParameter(IndexedStatus.index());
1414        // Conventions do not apply to explicitly marked parameters.
1415        if (isExplicitlyMarked(Parameter)) {
1416          continue;
1417        }
1418  
1419        ParameterStatus &CurrentStatus = IndexedStatus.value();
1420        // If we did find that on one of the branches the user uses the callback
1421        // and doesn't on the other path, we believe that they know what they are
1422        // doing and trust them.
1423        //
1424        // There are two possible scenarios for that:
1425        //   1. Current status is 'MaybeCalled' and one of the branches is
1426        //      'DefinitelyCalled'
1427        //   2. Current status is 'NotCalled' and one of the branches is 'Escaped'
1428        if (isLosingCall(ToAlter, BB, IndexedStatus.index()) ||
1429            isLosingEscape(ToAlter, BB, IndexedStatus.index())) {
1430          CurrentStatus = ParameterStatus::Escaped;
1431        }
1432      }
1433    }
1434  
isLosingCall(const State & StateAfterJoin,const CFGBlock * JoinBlock,unsigned ParameterIndex) const1435    bool isLosingCall(const State &StateAfterJoin, const CFGBlock *JoinBlock,
1436                      unsigned ParameterIndex) const {
1437      // Let's check if the block represents DefinitelyCalled -> MaybeCalled
1438      // transition.
1439      return isLosingJoin(StateAfterJoin, JoinBlock, ParameterIndex,
1440                          ParameterStatus::MaybeCalled,
1441                          ParameterStatus::DefinitelyCalled);
1442    }
1443  
isLosingEscape(const State & StateAfterJoin,const CFGBlock * JoinBlock,unsigned ParameterIndex) const1444    bool isLosingEscape(const State &StateAfterJoin, const CFGBlock *JoinBlock,
1445                        unsigned ParameterIndex) const {
1446      // Let's check if the block represents Escaped -> NotCalled transition.
1447      return isLosingJoin(StateAfterJoin, JoinBlock, ParameterIndex,
1448                          ParameterStatus::NotCalled, ParameterStatus::Escaped);
1449    }
1450  
isLosingJoin(const State & StateAfterJoin,const CFGBlock * JoinBlock,unsigned ParameterIndex,ParameterStatus::Kind AfterJoin,ParameterStatus::Kind BeforeJoin) const1451    bool isLosingJoin(const State &StateAfterJoin, const CFGBlock *JoinBlock,
1452                      unsigned ParameterIndex, ParameterStatus::Kind AfterJoin,
1453                      ParameterStatus::Kind BeforeJoin) const {
1454      assert(!ParameterStatus::isErrorStatus(BeforeJoin) &&
1455             ParameterStatus::isErrorStatus(AfterJoin) &&
1456             "It's not a losing join if statuses do not represent "
1457             "correct-to-error transition");
1458  
1459      const ParameterStatus &CurrentStatus =
1460          StateAfterJoin.getStatusFor(ParameterIndex);
1461  
1462      return CurrentStatus.getKind() == AfterJoin &&
1463             anySuccessorHasStatus(JoinBlock, ParameterIndex, BeforeJoin);
1464    }
1465  
1466    /// Return true if any of the successors of the given basic block has
1467    /// a specified status for the given parameter.
anySuccessorHasStatus(const CFGBlock * Parent,unsigned ParameterIndex,ParameterStatus::Kind ToFind) const1468    bool anySuccessorHasStatus(const CFGBlock *Parent, unsigned ParameterIndex,
1469                               ParameterStatus::Kind ToFind) const {
1470      return llvm::any_of(
1471          Parent->succs(), [this, ParameterIndex, ToFind](const CFGBlock *Succ) {
1472            return Succ && getState(Succ).getKindFor(ParameterIndex) == ToFind;
1473          });
1474    }
1475  
1476    /// Check given expression that was discovered to escape.
checkEscapee(const Expr * E)1477    void checkEscapee(const Expr *E) {
1478      if (const ParmVarDecl *Parameter = findReferencedParmVarDecl(E)) {
1479        checkEscapee(*Parameter);
1480      }
1481    }
1482  
1483    /// Check given parameter that was discovered to escape.
checkEscapee(const ParmVarDecl & Parameter)1484    void checkEscapee(const ParmVarDecl &Parameter) {
1485      if (auto Index = getIndex(Parameter)) {
1486        processEscapeFor(*Index);
1487      }
1488    }
1489  
1490    /// Mark all parameters in the current state as 'no-return'.
markNoReturn()1491    void markNoReturn() {
1492      for (ParameterStatus &PS : CurrentState) {
1493        PS = ParameterStatus::NoReturn;
1494      }
1495    }
1496  
1497    /// Check if the given assignment represents suppression and act on it.
checkSuppression(const BinaryOperator * Assignment)1498    void checkSuppression(const BinaryOperator *Assignment) {
1499      // Suppression has the following form:
1500      //    parameter = 0;
1501      // 0 can be of any form (NULL, nil, etc.)
1502      if (auto Index = getIndexOfExpression(Assignment->getLHS())) {
1503  
1504        // We don't care what is written in the RHS, it could be whatever
1505        // we can interpret as 0.
1506        if (auto Constant =
1507                Assignment->getRHS()->IgnoreParenCasts()->getIntegerConstantExpr(
1508                    AC.getASTContext())) {
1509  
1510          ParameterStatus &CurrentParamStatus = CurrentState.getStatusFor(*Index);
1511  
1512          if (0 == *Constant && CurrentParamStatus.seenAnyCalls()) {
1513            // Even though this suppression mechanism is introduced to tackle
1514            // false positives for multiple calls, the fact that the user has
1515            // to use suppression can also tell us that we couldn't figure out
1516            // how different paths cancel each other out.  And if that is true,
1517            // we will most certainly have false positives about parameters not
1518            // being called on certain paths.
1519            //
1520            // For this reason, we abandon tracking this parameter altogether.
1521            CurrentParamStatus = ParameterStatus::Reported;
1522          }
1523        }
1524      }
1525    }
1526  
1527  public:
1528    //===----------------------------------------------------------------------===//
1529    //                            Tree traversal methods
1530    //===----------------------------------------------------------------------===//
1531  
VisitCallExpr(const CallExpr * Call)1532    void VisitCallExpr(const CallExpr *Call) {
1533      // This call might be a direct call, i.e. a parameter call...
1534      checkDirectCall(Call);
1535      // ... or an indirect call, i.e. when parameter is an argument.
1536      checkIndirectCall(Call);
1537    }
1538  
VisitObjCMessageExpr(const ObjCMessageExpr * Message)1539    void VisitObjCMessageExpr(const ObjCMessageExpr *Message) {
1540      // The most common situation that we are defending against here is
1541      // copying a tracked parameter.
1542      if (const Expr *Receiver = Message->getInstanceReceiver()) {
1543        checkEscapee(Receiver);
1544      }
1545      // Message expressions unlike calls, could not be direct.
1546      checkIndirectCall(Message);
1547    }
1548  
VisitBlockExpr(const BlockExpr * Block)1549    void VisitBlockExpr(const BlockExpr *Block) {
1550      // Block expressions are tricky.  It is a very common practice to capture
1551      // completion handlers by blocks and use them there.
1552      // For this reason, it is important to analyze blocks and report warnings
1553      // for completion handler misuse in blocks.
1554      //
1555      // However, it can be quite difficult to track how the block itself is being
1556      // used.  The full precise anlysis of that will be similar to alias analysis
1557      // for completion handlers and can be too heavyweight for a compile-time
1558      // diagnostic.  Instead, we judge about the immediate use of the block.
1559      //
1560      // Here, we try to find a call expression where we know due to conventions,
1561      // annotations, or other reasons that the block is called once and only
1562      // once.
1563      const Expr *CalledOnceCallSite = getBlockGuaraneedCallSite(Block);
1564  
1565      // We need to report this information to the handler because in the
1566      // situation when we know that the block is called exactly once, we can be
1567      // stricter in terms of reported diagnostics.
1568      if (CalledOnceCallSite) {
1569        Handler.handleBlockThatIsGuaranteedToBeCalledOnce(Block->getBlockDecl());
1570      } else {
1571        Handler.handleBlockWithNoGuarantees(Block->getBlockDecl());
1572      }
1573  
1574      for (const auto &Capture : Block->getBlockDecl()->captures()) {
1575        if (const auto *Param = dyn_cast<ParmVarDecl>(Capture.getVariable())) {
1576          if (auto Index = getIndex(*Param)) {
1577            if (CalledOnceCallSite) {
1578              // The call site of a block can be considered a call site of the
1579              // captured parameter we track.
1580              processCallFor(*Index, CalledOnceCallSite);
1581            } else {
1582              // We still should consider this block as an escape for parameter,
1583              // if we don't know about its call site or the number of time it
1584              // can be invoked.
1585              processEscapeFor(*Index);
1586            }
1587          }
1588        }
1589      }
1590    }
1591  
VisitBinaryOperator(const BinaryOperator * Op)1592    void VisitBinaryOperator(const BinaryOperator *Op) {
1593      if (Op->getOpcode() == clang::BO_Assign) {
1594        // Let's check if one of the tracked parameters is assigned into
1595        // something, and if it is we don't want to track extra variables, so we
1596        // consider it as an escapee.
1597        checkEscapee(Op->getRHS());
1598  
1599        // Let's check whether this assignment is a suppression.
1600        checkSuppression(Op);
1601      }
1602    }
1603  
VisitDeclStmt(const DeclStmt * DS)1604    void VisitDeclStmt(const DeclStmt *DS) {
1605      // Variable initialization is not assignment and should be handled
1606      // separately.
1607      //
1608      // Multiple declarations can be a part of declaration statement.
1609      for (const auto *Declaration : DS->getDeclGroup()) {
1610        if (const auto *Var = dyn_cast<VarDecl>(Declaration)) {
1611          if (Var->getInit()) {
1612            checkEscapee(Var->getInit());
1613          }
1614  
1615          if (Var->hasAttr<CleanupAttr>()) {
1616            FunctionHasCleanupVars = true;
1617          }
1618        }
1619      }
1620    }
1621  
VisitCStyleCastExpr(const CStyleCastExpr * Cast)1622    void VisitCStyleCastExpr(const CStyleCastExpr *Cast) {
1623      // We consider '(void)parameter' as a manual no-op escape.
1624      // It should be used to explicitly tell the analysis that this parameter
1625      // is intentionally not called on this path.
1626      if (Cast->getType().getCanonicalType()->isVoidType()) {
1627        checkEscapee(Cast->getSubExpr());
1628      }
1629    }
1630  
VisitObjCAtThrowStmt(const ObjCAtThrowStmt *)1631    void VisitObjCAtThrowStmt(const ObjCAtThrowStmt *) {
1632      // It is OK not to call marked parameters on exceptional paths.
1633      markNoReturn();
1634    }
1635  
1636  private:
size() const1637    unsigned size() const { return TrackedParams.size(); }
1638  
getIndexOfCallee(const CallExpr * Call) const1639    std::optional<unsigned> getIndexOfCallee(const CallExpr *Call) const {
1640      return getIndexOfExpression(Call->getCallee());
1641    }
1642  
getIndexOfExpression(const Expr * E) const1643    std::optional<unsigned> getIndexOfExpression(const Expr *E) const {
1644      if (const ParmVarDecl *Parameter = findReferencedParmVarDecl(E)) {
1645        return getIndex(*Parameter);
1646      }
1647  
1648      return std::nullopt;
1649    }
1650  
getIndex(const ParmVarDecl & Parameter) const1651    std::optional<unsigned> getIndex(const ParmVarDecl &Parameter) const {
1652      // Expected number of parameters that we actually track is 1.
1653      //
1654      // Also, the maximum number of declared parameters could not be on a scale
1655      // of hundreds of thousands.
1656      //
1657      // In this setting, linear search seems reasonable and even performs better
1658      // than bisection.
1659      ParamSizedVector<const ParmVarDecl *>::const_iterator It =
1660          llvm::find(TrackedParams, &Parameter);
1661  
1662      if (It != TrackedParams.end()) {
1663        return It - TrackedParams.begin();
1664      }
1665  
1666      return std::nullopt;
1667    }
1668  
getParameter(unsigned Index) const1669    const ParmVarDecl *getParameter(unsigned Index) const {
1670      assert(Index < TrackedParams.size());
1671      return TrackedParams[Index];
1672    }
1673  
1674    const CFG &FunctionCFG;
1675    AnalysisDeclContext &AC;
1676    CalledOnceCheckHandler &Handler;
1677    bool CheckConventionalParameters;
1678    // As of now, we turn this behavior off.  So, we still are going to report
1679    // missing calls on paths that look like it was intentional.
1680    // Technically such reports are true positives, but they can make some users
1681    // grumpy because of the sheer number of warnings.
1682    // It can be turned back on if we decide that we want to have the other way
1683    // around.
1684    bool SuppressOnConventionalErrorPaths = false;
1685  
1686    // The user can annotate variable declarations with cleanup functions, which
1687    // essentially imposes a custom destructor logic on that variable.
1688    // It is possible to use it, however, to call tracked parameters on all exits
1689    // from the function.  For this reason, we track the fact that the function
1690    // actually has these.
1691    bool FunctionHasCleanupVars = false;
1692  
1693    State CurrentState;
1694    ParamSizedVector<const ParmVarDecl *> TrackedParams;
1695    CFGSizedVector<State> States;
1696  };
1697  
1698  } // end anonymous namespace
1699  
1700  namespace clang {
checkCalledOnceParameters(AnalysisDeclContext & AC,CalledOnceCheckHandler & Handler,bool CheckConventionalParameters)1701  void checkCalledOnceParameters(AnalysisDeclContext &AC,
1702                                 CalledOnceCheckHandler &Handler,
1703                                 bool CheckConventionalParameters) {
1704    CalledOnceChecker::check(AC, Handler, CheckConventionalParameters);
1705  }
1706  } // end namespace clang
1707