1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2022 Intel Corporation
4 */
5
6 #include "xe_guc_submit.h"
7
8 #include <linux/bitfield.h>
9 #include <linux/bitmap.h>
10 #include <linux/circ_buf.h>
11 #include <linux/delay.h>
12 #include <linux/dma-fence-array.h>
13 #include <linux/math64.h>
14
15 #include <drm/drm_managed.h>
16
17 #include "abi/guc_actions_abi.h"
18 #include "abi/guc_klvs_abi.h"
19 #include "regs/xe_lrc_layout.h"
20 #include "xe_assert.h"
21 #include "xe_devcoredump.h"
22 #include "xe_device.h"
23 #include "xe_exec_queue.h"
24 #include "xe_force_wake.h"
25 #include "xe_gpu_scheduler.h"
26 #include "xe_gt.h"
27 #include "xe_gt_clock.h"
28 #include "xe_gt_printk.h"
29 #include "xe_guc.h"
30 #include "xe_guc_capture.h"
31 #include "xe_guc_ct.h"
32 #include "xe_guc_exec_queue_types.h"
33 #include "xe_guc_id_mgr.h"
34 #include "xe_guc_submit_types.h"
35 #include "xe_hw_engine.h"
36 #include "xe_hw_fence.h"
37 #include "xe_lrc.h"
38 #include "xe_macros.h"
39 #include "xe_map.h"
40 #include "xe_mocs.h"
41 #include "xe_pm.h"
42 #include "xe_ring_ops_types.h"
43 #include "xe_sched_job.h"
44 #include "xe_trace.h"
45 #include "xe_vm.h"
46
47 static struct xe_guc *
exec_queue_to_guc(struct xe_exec_queue * q)48 exec_queue_to_guc(struct xe_exec_queue *q)
49 {
50 return &q->gt->uc.guc;
51 }
52
53 /*
54 * Helpers for engine state, using an atomic as some of the bits can transition
55 * as the same time (e.g. a suspend can be happning at the same time as schedule
56 * engine done being processed).
57 */
58 #define EXEC_QUEUE_STATE_REGISTERED (1 << 0)
59 #define EXEC_QUEUE_STATE_ENABLED (1 << 1)
60 #define EXEC_QUEUE_STATE_PENDING_ENABLE (1 << 2)
61 #define EXEC_QUEUE_STATE_PENDING_DISABLE (1 << 3)
62 #define EXEC_QUEUE_STATE_DESTROYED (1 << 4)
63 #define EXEC_QUEUE_STATE_SUSPENDED (1 << 5)
64 #define EXEC_QUEUE_STATE_RESET (1 << 6)
65 #define EXEC_QUEUE_STATE_KILLED (1 << 7)
66 #define EXEC_QUEUE_STATE_WEDGED (1 << 8)
67 #define EXEC_QUEUE_STATE_BANNED (1 << 9)
68 #define EXEC_QUEUE_STATE_CHECK_TIMEOUT (1 << 10)
69 #define EXEC_QUEUE_STATE_EXTRA_REF (1 << 11)
70
exec_queue_registered(struct xe_exec_queue * q)71 static bool exec_queue_registered(struct xe_exec_queue *q)
72 {
73 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_REGISTERED;
74 }
75
set_exec_queue_registered(struct xe_exec_queue * q)76 static void set_exec_queue_registered(struct xe_exec_queue *q)
77 {
78 atomic_or(EXEC_QUEUE_STATE_REGISTERED, &q->guc->state);
79 }
80
clear_exec_queue_registered(struct xe_exec_queue * q)81 static void clear_exec_queue_registered(struct xe_exec_queue *q)
82 {
83 atomic_and(~EXEC_QUEUE_STATE_REGISTERED, &q->guc->state);
84 }
85
exec_queue_enabled(struct xe_exec_queue * q)86 static bool exec_queue_enabled(struct xe_exec_queue *q)
87 {
88 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_ENABLED;
89 }
90
set_exec_queue_enabled(struct xe_exec_queue * q)91 static void set_exec_queue_enabled(struct xe_exec_queue *q)
92 {
93 atomic_or(EXEC_QUEUE_STATE_ENABLED, &q->guc->state);
94 }
95
clear_exec_queue_enabled(struct xe_exec_queue * q)96 static void clear_exec_queue_enabled(struct xe_exec_queue *q)
97 {
98 atomic_and(~EXEC_QUEUE_STATE_ENABLED, &q->guc->state);
99 }
100
exec_queue_pending_enable(struct xe_exec_queue * q)101 static bool exec_queue_pending_enable(struct xe_exec_queue *q)
102 {
103 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_PENDING_ENABLE;
104 }
105
set_exec_queue_pending_enable(struct xe_exec_queue * q)106 static void set_exec_queue_pending_enable(struct xe_exec_queue *q)
107 {
108 atomic_or(EXEC_QUEUE_STATE_PENDING_ENABLE, &q->guc->state);
109 }
110
clear_exec_queue_pending_enable(struct xe_exec_queue * q)111 static void clear_exec_queue_pending_enable(struct xe_exec_queue *q)
112 {
113 atomic_and(~EXEC_QUEUE_STATE_PENDING_ENABLE, &q->guc->state);
114 }
115
exec_queue_pending_disable(struct xe_exec_queue * q)116 static bool exec_queue_pending_disable(struct xe_exec_queue *q)
117 {
118 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_PENDING_DISABLE;
119 }
120
set_exec_queue_pending_disable(struct xe_exec_queue * q)121 static void set_exec_queue_pending_disable(struct xe_exec_queue *q)
122 {
123 atomic_or(EXEC_QUEUE_STATE_PENDING_DISABLE, &q->guc->state);
124 }
125
clear_exec_queue_pending_disable(struct xe_exec_queue * q)126 static void clear_exec_queue_pending_disable(struct xe_exec_queue *q)
127 {
128 atomic_and(~EXEC_QUEUE_STATE_PENDING_DISABLE, &q->guc->state);
129 }
130
exec_queue_destroyed(struct xe_exec_queue * q)131 static bool exec_queue_destroyed(struct xe_exec_queue *q)
132 {
133 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_DESTROYED;
134 }
135
set_exec_queue_destroyed(struct xe_exec_queue * q)136 static void set_exec_queue_destroyed(struct xe_exec_queue *q)
137 {
138 atomic_or(EXEC_QUEUE_STATE_DESTROYED, &q->guc->state);
139 }
140
exec_queue_banned(struct xe_exec_queue * q)141 static bool exec_queue_banned(struct xe_exec_queue *q)
142 {
143 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_BANNED;
144 }
145
set_exec_queue_banned(struct xe_exec_queue * q)146 static void set_exec_queue_banned(struct xe_exec_queue *q)
147 {
148 atomic_or(EXEC_QUEUE_STATE_BANNED, &q->guc->state);
149 }
150
exec_queue_suspended(struct xe_exec_queue * q)151 static bool exec_queue_suspended(struct xe_exec_queue *q)
152 {
153 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_SUSPENDED;
154 }
155
set_exec_queue_suspended(struct xe_exec_queue * q)156 static void set_exec_queue_suspended(struct xe_exec_queue *q)
157 {
158 atomic_or(EXEC_QUEUE_STATE_SUSPENDED, &q->guc->state);
159 }
160
clear_exec_queue_suspended(struct xe_exec_queue * q)161 static void clear_exec_queue_suspended(struct xe_exec_queue *q)
162 {
163 atomic_and(~EXEC_QUEUE_STATE_SUSPENDED, &q->guc->state);
164 }
165
exec_queue_reset(struct xe_exec_queue * q)166 static bool exec_queue_reset(struct xe_exec_queue *q)
167 {
168 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_RESET;
169 }
170
set_exec_queue_reset(struct xe_exec_queue * q)171 static void set_exec_queue_reset(struct xe_exec_queue *q)
172 {
173 atomic_or(EXEC_QUEUE_STATE_RESET, &q->guc->state);
174 }
175
exec_queue_killed(struct xe_exec_queue * q)176 static bool exec_queue_killed(struct xe_exec_queue *q)
177 {
178 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_KILLED;
179 }
180
set_exec_queue_killed(struct xe_exec_queue * q)181 static void set_exec_queue_killed(struct xe_exec_queue *q)
182 {
183 atomic_or(EXEC_QUEUE_STATE_KILLED, &q->guc->state);
184 }
185
exec_queue_wedged(struct xe_exec_queue * q)186 static bool exec_queue_wedged(struct xe_exec_queue *q)
187 {
188 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_WEDGED;
189 }
190
set_exec_queue_wedged(struct xe_exec_queue * q)191 static void set_exec_queue_wedged(struct xe_exec_queue *q)
192 {
193 atomic_or(EXEC_QUEUE_STATE_WEDGED, &q->guc->state);
194 }
195
exec_queue_check_timeout(struct xe_exec_queue * q)196 static bool exec_queue_check_timeout(struct xe_exec_queue *q)
197 {
198 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_CHECK_TIMEOUT;
199 }
200
set_exec_queue_check_timeout(struct xe_exec_queue * q)201 static void set_exec_queue_check_timeout(struct xe_exec_queue *q)
202 {
203 atomic_or(EXEC_QUEUE_STATE_CHECK_TIMEOUT, &q->guc->state);
204 }
205
clear_exec_queue_check_timeout(struct xe_exec_queue * q)206 static void clear_exec_queue_check_timeout(struct xe_exec_queue *q)
207 {
208 atomic_and(~EXEC_QUEUE_STATE_CHECK_TIMEOUT, &q->guc->state);
209 }
210
exec_queue_extra_ref(struct xe_exec_queue * q)211 static bool exec_queue_extra_ref(struct xe_exec_queue *q)
212 {
213 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_EXTRA_REF;
214 }
215
set_exec_queue_extra_ref(struct xe_exec_queue * q)216 static void set_exec_queue_extra_ref(struct xe_exec_queue *q)
217 {
218 atomic_or(EXEC_QUEUE_STATE_EXTRA_REF, &q->guc->state);
219 }
220
exec_queue_killed_or_banned_or_wedged(struct xe_exec_queue * q)221 static bool exec_queue_killed_or_banned_or_wedged(struct xe_exec_queue *q)
222 {
223 return (atomic_read(&q->guc->state) &
224 (EXEC_QUEUE_STATE_WEDGED | EXEC_QUEUE_STATE_KILLED |
225 EXEC_QUEUE_STATE_BANNED));
226 }
227
guc_submit_fini(struct drm_device * drm,void * arg)228 static void guc_submit_fini(struct drm_device *drm, void *arg)
229 {
230 struct xe_guc *guc = arg;
231
232 xa_destroy(&guc->submission_state.exec_queue_lookup);
233 }
234
guc_submit_wedged_fini(void * arg)235 static void guc_submit_wedged_fini(void *arg)
236 {
237 struct xe_guc *guc = arg;
238 struct xe_exec_queue *q;
239 unsigned long index;
240
241 mutex_lock(&guc->submission_state.lock);
242 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) {
243 if (exec_queue_wedged(q)) {
244 mutex_unlock(&guc->submission_state.lock);
245 xe_exec_queue_put(q);
246 mutex_lock(&guc->submission_state.lock);
247 }
248 }
249 mutex_unlock(&guc->submission_state.lock);
250 }
251
252 static const struct xe_exec_queue_ops guc_exec_queue_ops;
253
primelockdep(struct xe_guc * guc)254 static void primelockdep(struct xe_guc *guc)
255 {
256 if (!IS_ENABLED(CONFIG_LOCKDEP))
257 return;
258
259 fs_reclaim_acquire(GFP_KERNEL);
260
261 mutex_lock(&guc->submission_state.lock);
262 mutex_unlock(&guc->submission_state.lock);
263
264 fs_reclaim_release(GFP_KERNEL);
265 }
266
267 /**
268 * xe_guc_submit_init() - Initialize GuC submission.
269 * @guc: the &xe_guc to initialize
270 * @num_ids: number of GuC context IDs to use
271 *
272 * The bare-metal or PF driver can pass ~0 as &num_ids to indicate that all
273 * GuC context IDs supported by the GuC firmware should be used for submission.
274 *
275 * Only VF drivers will have to provide explicit number of GuC context IDs
276 * that they can use for submission.
277 *
278 * Return: 0 on success or a negative error code on failure.
279 */
xe_guc_submit_init(struct xe_guc * guc,unsigned int num_ids)280 int xe_guc_submit_init(struct xe_guc *guc, unsigned int num_ids)
281 {
282 struct xe_device *xe = guc_to_xe(guc);
283 struct xe_gt *gt = guc_to_gt(guc);
284 int err;
285
286 err = drmm_mutex_init(&xe->drm, &guc->submission_state.lock);
287 if (err)
288 return err;
289
290 err = xe_guc_id_mgr_init(&guc->submission_state.idm, num_ids);
291 if (err)
292 return err;
293
294 gt->exec_queue_ops = &guc_exec_queue_ops;
295
296 xa_init(&guc->submission_state.exec_queue_lookup);
297
298 init_waitqueue_head(&guc->submission_state.fini_wq);
299
300 primelockdep(guc);
301
302 return drmm_add_action_or_reset(&xe->drm, guc_submit_fini, guc);
303 }
304
__release_guc_id(struct xe_guc * guc,struct xe_exec_queue * q,u32 xa_count)305 static void __release_guc_id(struct xe_guc *guc, struct xe_exec_queue *q, u32 xa_count)
306 {
307 int i;
308
309 lockdep_assert_held(&guc->submission_state.lock);
310
311 for (i = 0; i < xa_count; ++i)
312 xa_erase(&guc->submission_state.exec_queue_lookup, q->guc->id + i);
313
314 xe_guc_id_mgr_release_locked(&guc->submission_state.idm,
315 q->guc->id, q->width);
316
317 if (xa_empty(&guc->submission_state.exec_queue_lookup))
318 wake_up(&guc->submission_state.fini_wq);
319 }
320
alloc_guc_id(struct xe_guc * guc,struct xe_exec_queue * q)321 static int alloc_guc_id(struct xe_guc *guc, struct xe_exec_queue *q)
322 {
323 int ret;
324 int i;
325
326 /*
327 * Must use GFP_NOWAIT as this lock is in the dma fence signalling path,
328 * worse case user gets -ENOMEM on engine create and has to try again.
329 *
330 * FIXME: Have caller pre-alloc or post-alloc /w GFP_KERNEL to prevent
331 * failure.
332 */
333 lockdep_assert_held(&guc->submission_state.lock);
334
335 ret = xe_guc_id_mgr_reserve_locked(&guc->submission_state.idm,
336 q->width);
337 if (ret < 0)
338 return ret;
339
340 q->guc->id = ret;
341
342 for (i = 0; i < q->width; ++i) {
343 ret = xa_err(xa_store(&guc->submission_state.exec_queue_lookup,
344 q->guc->id + i, q, GFP_NOWAIT));
345 if (ret)
346 goto err_release;
347 }
348
349 return 0;
350
351 err_release:
352 __release_guc_id(guc, q, i);
353
354 return ret;
355 }
356
release_guc_id(struct xe_guc * guc,struct xe_exec_queue * q)357 static void release_guc_id(struct xe_guc *guc, struct xe_exec_queue *q)
358 {
359 mutex_lock(&guc->submission_state.lock);
360 __release_guc_id(guc, q, q->width);
361 mutex_unlock(&guc->submission_state.lock);
362 }
363
364 struct exec_queue_policy {
365 u32 count;
366 struct guc_update_exec_queue_policy h2g;
367 };
368
__guc_exec_queue_policy_action_size(struct exec_queue_policy * policy)369 static u32 __guc_exec_queue_policy_action_size(struct exec_queue_policy *policy)
370 {
371 size_t bytes = sizeof(policy->h2g.header) +
372 (sizeof(policy->h2g.klv[0]) * policy->count);
373
374 return bytes / sizeof(u32);
375 }
376
__guc_exec_queue_policy_start_klv(struct exec_queue_policy * policy,u16 guc_id)377 static void __guc_exec_queue_policy_start_klv(struct exec_queue_policy *policy,
378 u16 guc_id)
379 {
380 policy->h2g.header.action =
381 XE_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES;
382 policy->h2g.header.guc_id = guc_id;
383 policy->count = 0;
384 }
385
386 #define MAKE_EXEC_QUEUE_POLICY_ADD(func, id) \
387 static void __guc_exec_queue_policy_add_##func(struct exec_queue_policy *policy, \
388 u32 data) \
389 { \
390 XE_WARN_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \
391 \
392 policy->h2g.klv[policy->count].kl = \
393 FIELD_PREP(GUC_KLV_0_KEY, \
394 GUC_CONTEXT_POLICIES_KLV_ID_##id) | \
395 FIELD_PREP(GUC_KLV_0_LEN, 1); \
396 policy->h2g.klv[policy->count].value = data; \
397 policy->count++; \
398 }
399
400 MAKE_EXEC_QUEUE_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM)
401 MAKE_EXEC_QUEUE_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT)
402 MAKE_EXEC_QUEUE_POLICY_ADD(priority, SCHEDULING_PRIORITY)
403 #undef MAKE_EXEC_QUEUE_POLICY_ADD
404
405 static const int xe_exec_queue_prio_to_guc[] = {
406 [XE_EXEC_QUEUE_PRIORITY_LOW] = GUC_CLIENT_PRIORITY_NORMAL,
407 [XE_EXEC_QUEUE_PRIORITY_NORMAL] = GUC_CLIENT_PRIORITY_KMD_NORMAL,
408 [XE_EXEC_QUEUE_PRIORITY_HIGH] = GUC_CLIENT_PRIORITY_HIGH,
409 [XE_EXEC_QUEUE_PRIORITY_KERNEL] = GUC_CLIENT_PRIORITY_KMD_HIGH,
410 };
411
init_policies(struct xe_guc * guc,struct xe_exec_queue * q)412 static void init_policies(struct xe_guc *guc, struct xe_exec_queue *q)
413 {
414 struct exec_queue_policy policy;
415 struct xe_device *xe = guc_to_xe(guc);
416 enum xe_exec_queue_priority prio = q->sched_props.priority;
417 u32 timeslice_us = q->sched_props.timeslice_us;
418 u32 preempt_timeout_us = q->sched_props.preempt_timeout_us;
419
420 xe_assert(xe, exec_queue_registered(q));
421
422 __guc_exec_queue_policy_start_klv(&policy, q->guc->id);
423 __guc_exec_queue_policy_add_priority(&policy, xe_exec_queue_prio_to_guc[prio]);
424 __guc_exec_queue_policy_add_execution_quantum(&policy, timeslice_us);
425 __guc_exec_queue_policy_add_preemption_timeout(&policy, preempt_timeout_us);
426
427 xe_guc_ct_send(&guc->ct, (u32 *)&policy.h2g,
428 __guc_exec_queue_policy_action_size(&policy), 0, 0);
429 }
430
set_min_preemption_timeout(struct xe_guc * guc,struct xe_exec_queue * q)431 static void set_min_preemption_timeout(struct xe_guc *guc, struct xe_exec_queue *q)
432 {
433 struct exec_queue_policy policy;
434
435 __guc_exec_queue_policy_start_klv(&policy, q->guc->id);
436 __guc_exec_queue_policy_add_preemption_timeout(&policy, 1);
437
438 xe_guc_ct_send(&guc->ct, (u32 *)&policy.h2g,
439 __guc_exec_queue_policy_action_size(&policy), 0, 0);
440 }
441
442 #define parallel_read(xe_, map_, field_) \
443 xe_map_rd_field(xe_, &map_, 0, struct guc_submit_parallel_scratch, \
444 field_)
445 #define parallel_write(xe_, map_, field_, val_) \
446 xe_map_wr_field(xe_, &map_, 0, struct guc_submit_parallel_scratch, \
447 field_, val_)
448
__register_mlrc_exec_queue(struct xe_guc * guc,struct xe_exec_queue * q,struct guc_ctxt_registration_info * info)449 static void __register_mlrc_exec_queue(struct xe_guc *guc,
450 struct xe_exec_queue *q,
451 struct guc_ctxt_registration_info *info)
452 {
453 #define MAX_MLRC_REG_SIZE (13 + XE_HW_ENGINE_MAX_INSTANCE * 2)
454 struct xe_device *xe = guc_to_xe(guc);
455 u32 action[MAX_MLRC_REG_SIZE];
456 int len = 0;
457 int i;
458
459 xe_assert(xe, xe_exec_queue_is_parallel(q));
460
461 action[len++] = XE_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
462 action[len++] = info->flags;
463 action[len++] = info->context_idx;
464 action[len++] = info->engine_class;
465 action[len++] = info->engine_submit_mask;
466 action[len++] = info->wq_desc_lo;
467 action[len++] = info->wq_desc_hi;
468 action[len++] = info->wq_base_lo;
469 action[len++] = info->wq_base_hi;
470 action[len++] = info->wq_size;
471 action[len++] = q->width;
472 action[len++] = info->hwlrca_lo;
473 action[len++] = info->hwlrca_hi;
474
475 for (i = 1; i < q->width; ++i) {
476 struct xe_lrc *lrc = q->lrc[i];
477
478 action[len++] = lower_32_bits(xe_lrc_descriptor(lrc));
479 action[len++] = upper_32_bits(xe_lrc_descriptor(lrc));
480 }
481
482 xe_assert(xe, len <= MAX_MLRC_REG_SIZE);
483 #undef MAX_MLRC_REG_SIZE
484
485 xe_guc_ct_send(&guc->ct, action, len, 0, 0);
486 }
487
__register_exec_queue(struct xe_guc * guc,struct guc_ctxt_registration_info * info)488 static void __register_exec_queue(struct xe_guc *guc,
489 struct guc_ctxt_registration_info *info)
490 {
491 u32 action[] = {
492 XE_GUC_ACTION_REGISTER_CONTEXT,
493 info->flags,
494 info->context_idx,
495 info->engine_class,
496 info->engine_submit_mask,
497 info->wq_desc_lo,
498 info->wq_desc_hi,
499 info->wq_base_lo,
500 info->wq_base_hi,
501 info->wq_size,
502 info->hwlrca_lo,
503 info->hwlrca_hi,
504 };
505
506 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 0, 0);
507 }
508
register_exec_queue(struct xe_exec_queue * q)509 static void register_exec_queue(struct xe_exec_queue *q)
510 {
511 struct xe_guc *guc = exec_queue_to_guc(q);
512 struct xe_device *xe = guc_to_xe(guc);
513 struct xe_lrc *lrc = q->lrc[0];
514 struct guc_ctxt_registration_info info;
515
516 xe_assert(xe, !exec_queue_registered(q));
517
518 memset(&info, 0, sizeof(info));
519 info.context_idx = q->guc->id;
520 info.engine_class = xe_engine_class_to_guc_class(q->class);
521 info.engine_submit_mask = q->logical_mask;
522 info.hwlrca_lo = lower_32_bits(xe_lrc_descriptor(lrc));
523 info.hwlrca_hi = upper_32_bits(xe_lrc_descriptor(lrc));
524 info.flags = CONTEXT_REGISTRATION_FLAG_KMD;
525
526 if (xe_exec_queue_is_parallel(q)) {
527 u64 ggtt_addr = xe_lrc_parallel_ggtt_addr(lrc);
528 struct iosys_map map = xe_lrc_parallel_map(lrc);
529
530 info.wq_desc_lo = lower_32_bits(ggtt_addr +
531 offsetof(struct guc_submit_parallel_scratch, wq_desc));
532 info.wq_desc_hi = upper_32_bits(ggtt_addr +
533 offsetof(struct guc_submit_parallel_scratch, wq_desc));
534 info.wq_base_lo = lower_32_bits(ggtt_addr +
535 offsetof(struct guc_submit_parallel_scratch, wq[0]));
536 info.wq_base_hi = upper_32_bits(ggtt_addr +
537 offsetof(struct guc_submit_parallel_scratch, wq[0]));
538 info.wq_size = WQ_SIZE;
539
540 q->guc->wqi_head = 0;
541 q->guc->wqi_tail = 0;
542 xe_map_memset(xe, &map, 0, 0, PARALLEL_SCRATCH_SIZE - WQ_SIZE);
543 parallel_write(xe, map, wq_desc.wq_status, WQ_STATUS_ACTIVE);
544 }
545
546 /*
547 * We must keep a reference for LR engines if engine is registered with
548 * the GuC as jobs signal immediately and can't destroy an engine if the
549 * GuC has a reference to it.
550 */
551 if (xe_exec_queue_is_lr(q))
552 xe_exec_queue_get(q);
553
554 set_exec_queue_registered(q);
555 trace_xe_exec_queue_register(q);
556 if (xe_exec_queue_is_parallel(q))
557 __register_mlrc_exec_queue(guc, q, &info);
558 else
559 __register_exec_queue(guc, &info);
560 init_policies(guc, q);
561 }
562
wq_space_until_wrap(struct xe_exec_queue * q)563 static u32 wq_space_until_wrap(struct xe_exec_queue *q)
564 {
565 return (WQ_SIZE - q->guc->wqi_tail);
566 }
567
wq_wait_for_space(struct xe_exec_queue * q,u32 wqi_size)568 static int wq_wait_for_space(struct xe_exec_queue *q, u32 wqi_size)
569 {
570 struct xe_guc *guc = exec_queue_to_guc(q);
571 struct xe_device *xe = guc_to_xe(guc);
572 struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]);
573 unsigned int sleep_period_ms = 1;
574
575 #define AVAILABLE_SPACE \
576 CIRC_SPACE(q->guc->wqi_tail, q->guc->wqi_head, WQ_SIZE)
577 if (wqi_size > AVAILABLE_SPACE) {
578 try_again:
579 q->guc->wqi_head = parallel_read(xe, map, wq_desc.head);
580 if (wqi_size > AVAILABLE_SPACE) {
581 if (sleep_period_ms == 1024) {
582 xe_gt_reset_async(q->gt);
583 return -ENODEV;
584 }
585
586 msleep(sleep_period_ms);
587 sleep_period_ms <<= 1;
588 goto try_again;
589 }
590 }
591 #undef AVAILABLE_SPACE
592
593 return 0;
594 }
595
wq_noop_append(struct xe_exec_queue * q)596 static int wq_noop_append(struct xe_exec_queue *q)
597 {
598 struct xe_guc *guc = exec_queue_to_guc(q);
599 struct xe_device *xe = guc_to_xe(guc);
600 struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]);
601 u32 len_dw = wq_space_until_wrap(q) / sizeof(u32) - 1;
602
603 if (wq_wait_for_space(q, wq_space_until_wrap(q)))
604 return -ENODEV;
605
606 xe_assert(xe, FIELD_FIT(WQ_LEN_MASK, len_dw));
607
608 parallel_write(xe, map, wq[q->guc->wqi_tail / sizeof(u32)],
609 FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) |
610 FIELD_PREP(WQ_LEN_MASK, len_dw));
611 q->guc->wqi_tail = 0;
612
613 return 0;
614 }
615
wq_item_append(struct xe_exec_queue * q)616 static void wq_item_append(struct xe_exec_queue *q)
617 {
618 struct xe_guc *guc = exec_queue_to_guc(q);
619 struct xe_device *xe = guc_to_xe(guc);
620 struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]);
621 #define WQ_HEADER_SIZE 4 /* Includes 1 LRC address too */
622 u32 wqi[XE_HW_ENGINE_MAX_INSTANCE + (WQ_HEADER_SIZE - 1)];
623 u32 wqi_size = (q->width + (WQ_HEADER_SIZE - 1)) * sizeof(u32);
624 u32 len_dw = (wqi_size / sizeof(u32)) - 1;
625 int i = 0, j;
626
627 if (wqi_size > wq_space_until_wrap(q)) {
628 if (wq_noop_append(q))
629 return;
630 }
631 if (wq_wait_for_space(q, wqi_size))
632 return;
633
634 wqi[i++] = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) |
635 FIELD_PREP(WQ_LEN_MASK, len_dw);
636 wqi[i++] = xe_lrc_descriptor(q->lrc[0]);
637 wqi[i++] = FIELD_PREP(WQ_GUC_ID_MASK, q->guc->id) |
638 FIELD_PREP(WQ_RING_TAIL_MASK, q->lrc[0]->ring.tail / sizeof(u64));
639 wqi[i++] = 0;
640 for (j = 1; j < q->width; ++j) {
641 struct xe_lrc *lrc = q->lrc[j];
642
643 wqi[i++] = lrc->ring.tail / sizeof(u64);
644 }
645
646 xe_assert(xe, i == wqi_size / sizeof(u32));
647
648 iosys_map_incr(&map, offsetof(struct guc_submit_parallel_scratch,
649 wq[q->guc->wqi_tail / sizeof(u32)]));
650 xe_map_memcpy_to(xe, &map, 0, wqi, wqi_size);
651 q->guc->wqi_tail += wqi_size;
652 xe_assert(xe, q->guc->wqi_tail <= WQ_SIZE);
653
654 xe_device_wmb(xe);
655
656 map = xe_lrc_parallel_map(q->lrc[0]);
657 parallel_write(xe, map, wq_desc.tail, q->guc->wqi_tail);
658 }
659
660 #define RESUME_PENDING ~0x0ull
submit_exec_queue(struct xe_exec_queue * q)661 static void submit_exec_queue(struct xe_exec_queue *q)
662 {
663 struct xe_guc *guc = exec_queue_to_guc(q);
664 struct xe_device *xe = guc_to_xe(guc);
665 struct xe_lrc *lrc = q->lrc[0];
666 u32 action[3];
667 u32 g2h_len = 0;
668 u32 num_g2h = 0;
669 int len = 0;
670 bool extra_submit = false;
671
672 xe_assert(xe, exec_queue_registered(q));
673
674 if (xe_exec_queue_is_parallel(q))
675 wq_item_append(q);
676 else
677 xe_lrc_set_ring_tail(lrc, lrc->ring.tail);
678
679 if (exec_queue_suspended(q) && !xe_exec_queue_is_parallel(q))
680 return;
681
682 if (!exec_queue_enabled(q) && !exec_queue_suspended(q)) {
683 action[len++] = XE_GUC_ACTION_SCHED_CONTEXT_MODE_SET;
684 action[len++] = q->guc->id;
685 action[len++] = GUC_CONTEXT_ENABLE;
686 g2h_len = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET;
687 num_g2h = 1;
688 if (xe_exec_queue_is_parallel(q))
689 extra_submit = true;
690
691 q->guc->resume_time = RESUME_PENDING;
692 set_exec_queue_pending_enable(q);
693 set_exec_queue_enabled(q);
694 trace_xe_exec_queue_scheduling_enable(q);
695 } else {
696 action[len++] = XE_GUC_ACTION_SCHED_CONTEXT;
697 action[len++] = q->guc->id;
698 trace_xe_exec_queue_submit(q);
699 }
700
701 xe_guc_ct_send(&guc->ct, action, len, g2h_len, num_g2h);
702
703 if (extra_submit) {
704 len = 0;
705 action[len++] = XE_GUC_ACTION_SCHED_CONTEXT;
706 action[len++] = q->guc->id;
707 trace_xe_exec_queue_submit(q);
708
709 xe_guc_ct_send(&guc->ct, action, len, 0, 0);
710 }
711 }
712
713 static struct dma_fence *
guc_exec_queue_run_job(struct drm_sched_job * drm_job)714 guc_exec_queue_run_job(struct drm_sched_job *drm_job)
715 {
716 struct xe_sched_job *job = to_xe_sched_job(drm_job);
717 struct xe_exec_queue *q = job->q;
718 struct xe_guc *guc = exec_queue_to_guc(q);
719 struct xe_device *xe = guc_to_xe(guc);
720 struct dma_fence *fence = NULL;
721 bool lr = xe_exec_queue_is_lr(q);
722
723 xe_assert(xe, !(exec_queue_destroyed(q) || exec_queue_pending_disable(q)) ||
724 exec_queue_banned(q) || exec_queue_suspended(q));
725
726 trace_xe_sched_job_run(job);
727
728 if (!exec_queue_killed_or_banned_or_wedged(q) && !xe_sched_job_is_error(job)) {
729 if (!exec_queue_registered(q))
730 register_exec_queue(q);
731 if (!lr) /* LR jobs are emitted in the exec IOCTL */
732 q->ring_ops->emit_job(job);
733 submit_exec_queue(q);
734 }
735
736 if (lr) {
737 xe_sched_job_set_error(job, -EOPNOTSUPP);
738 dma_fence_put(job->fence); /* Drop ref from xe_sched_job_arm */
739 } else {
740 fence = job->fence;
741 }
742
743 return fence;
744 }
745
guc_exec_queue_free_job(struct drm_sched_job * drm_job)746 static void guc_exec_queue_free_job(struct drm_sched_job *drm_job)
747 {
748 struct xe_sched_job *job = to_xe_sched_job(drm_job);
749
750 trace_xe_sched_job_free(job);
751 xe_sched_job_put(job);
752 }
753
xe_guc_read_stopped(struct xe_guc * guc)754 int xe_guc_read_stopped(struct xe_guc *guc)
755 {
756 return atomic_read(&guc->submission_state.stopped);
757 }
758
759 #define MAKE_SCHED_CONTEXT_ACTION(q, enable_disable) \
760 u32 action[] = { \
761 XE_GUC_ACTION_SCHED_CONTEXT_MODE_SET, \
762 q->guc->id, \
763 GUC_CONTEXT_##enable_disable, \
764 }
765
disable_scheduling_deregister(struct xe_guc * guc,struct xe_exec_queue * q)766 static void disable_scheduling_deregister(struct xe_guc *guc,
767 struct xe_exec_queue *q)
768 {
769 MAKE_SCHED_CONTEXT_ACTION(q, DISABLE);
770 int ret;
771
772 set_min_preemption_timeout(guc, q);
773 smp_rmb();
774 ret = wait_event_timeout(guc->ct.wq,
775 (!exec_queue_pending_enable(q) &&
776 !exec_queue_pending_disable(q)) ||
777 xe_guc_read_stopped(guc),
778 HZ * 5);
779 if (!ret) {
780 struct xe_gpu_scheduler *sched = &q->guc->sched;
781
782 xe_gt_warn(q->gt, "Pending enable/disable failed to respond\n");
783 xe_sched_submission_start(sched);
784 xe_gt_reset_async(q->gt);
785 xe_sched_tdr_queue_imm(sched);
786 return;
787 }
788
789 clear_exec_queue_enabled(q);
790 set_exec_queue_pending_disable(q);
791 set_exec_queue_destroyed(q);
792 trace_xe_exec_queue_scheduling_disable(q);
793
794 /*
795 * Reserve space for both G2H here as the 2nd G2H is sent from a G2H
796 * handler and we are not allowed to reserved G2H space in handlers.
797 */
798 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action),
799 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET +
800 G2H_LEN_DW_DEREGISTER_CONTEXT, 2);
801 }
802
xe_guc_exec_queue_trigger_cleanup(struct xe_exec_queue * q)803 static void xe_guc_exec_queue_trigger_cleanup(struct xe_exec_queue *q)
804 {
805 struct xe_guc *guc = exec_queue_to_guc(q);
806 struct xe_device *xe = guc_to_xe(guc);
807
808 /** to wakeup xe_wait_user_fence ioctl if exec queue is reset */
809 wake_up_all(&xe->ufence_wq);
810
811 if (xe_exec_queue_is_lr(q))
812 queue_work(guc_to_gt(guc)->ordered_wq, &q->guc->lr_tdr);
813 else
814 xe_sched_tdr_queue_imm(&q->guc->sched);
815 }
816
817 /**
818 * xe_guc_submit_wedge() - Wedge GuC submission
819 * @guc: the GuC object
820 *
821 * Save exec queue's registered with GuC state by taking a ref to each queue.
822 * Register a DRMM handler to drop refs upon driver unload.
823 */
xe_guc_submit_wedge(struct xe_guc * guc)824 void xe_guc_submit_wedge(struct xe_guc *guc)
825 {
826 struct xe_device *xe = guc_to_xe(guc);
827 struct xe_exec_queue *q;
828 unsigned long index;
829 int err;
830
831 xe_gt_assert(guc_to_gt(guc), guc_to_xe(guc)->wedged.mode);
832
833 err = devm_add_action_or_reset(guc_to_xe(guc)->drm.dev,
834 guc_submit_wedged_fini, guc);
835 if (err) {
836 drm_err(&xe->drm, "Failed to register xe_guc_submit clean-up on wedged.mode=2. Although device is wedged.\n");
837 return;
838 }
839
840 mutex_lock(&guc->submission_state.lock);
841 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q)
842 if (xe_exec_queue_get_unless_zero(q))
843 set_exec_queue_wedged(q);
844 mutex_unlock(&guc->submission_state.lock);
845 }
846
guc_submit_hint_wedged(struct xe_guc * guc)847 static bool guc_submit_hint_wedged(struct xe_guc *guc)
848 {
849 struct xe_device *xe = guc_to_xe(guc);
850
851 if (xe->wedged.mode != 2)
852 return false;
853
854 if (xe_device_wedged(xe))
855 return true;
856
857 xe_device_declare_wedged(xe);
858
859 return true;
860 }
861
xe_guc_exec_queue_lr_cleanup(struct work_struct * w)862 static void xe_guc_exec_queue_lr_cleanup(struct work_struct *w)
863 {
864 struct xe_guc_exec_queue *ge =
865 container_of(w, struct xe_guc_exec_queue, lr_tdr);
866 struct xe_exec_queue *q = ge->q;
867 struct xe_guc *guc = exec_queue_to_guc(q);
868 struct xe_device *xe = guc_to_xe(guc);
869 struct xe_gpu_scheduler *sched = &ge->sched;
870 bool wedged;
871
872 xe_assert(xe, xe_exec_queue_is_lr(q));
873 trace_xe_exec_queue_lr_cleanup(q);
874
875 wedged = guc_submit_hint_wedged(exec_queue_to_guc(q));
876
877 /* Kill the run_job / process_msg entry points */
878 xe_sched_submission_stop(sched);
879
880 /*
881 * Engine state now mostly stable, disable scheduling / deregister if
882 * needed. This cleanup routine might be called multiple times, where
883 * the actual async engine deregister drops the final engine ref.
884 * Calling disable_scheduling_deregister will mark the engine as
885 * destroyed and fire off the CT requests to disable scheduling /
886 * deregister, which we only want to do once. We also don't want to mark
887 * the engine as pending_disable again as this may race with the
888 * xe_guc_deregister_done_handler() which treats it as an unexpected
889 * state.
890 */
891 if (!wedged && exec_queue_registered(q) && !exec_queue_destroyed(q)) {
892 struct xe_guc *guc = exec_queue_to_guc(q);
893 int ret;
894
895 set_exec_queue_banned(q);
896 disable_scheduling_deregister(guc, q);
897
898 /*
899 * Must wait for scheduling to be disabled before signalling
900 * any fences, if GT broken the GT reset code should signal us.
901 */
902 ret = wait_event_timeout(guc->ct.wq,
903 !exec_queue_pending_disable(q) ||
904 xe_guc_read_stopped(guc), HZ * 5);
905 if (!ret) {
906 drm_warn(&xe->drm, "Schedule disable failed to respond");
907 xe_sched_submission_start(sched);
908 xe_gt_reset_async(q->gt);
909 return;
910 }
911 }
912
913 xe_sched_submission_start(sched);
914 }
915
916 #define ADJUST_FIVE_PERCENT(__t) mul_u64_u32_div(__t, 105, 100)
917
check_timeout(struct xe_exec_queue * q,struct xe_sched_job * job)918 static bool check_timeout(struct xe_exec_queue *q, struct xe_sched_job *job)
919 {
920 struct xe_gt *gt = guc_to_gt(exec_queue_to_guc(q));
921 u32 ctx_timestamp, ctx_job_timestamp;
922 u32 timeout_ms = q->sched_props.job_timeout_ms;
923 u32 diff;
924 u64 running_time_ms;
925
926 if (!xe_sched_job_started(job)) {
927 xe_gt_warn(gt, "Check job timeout: seqno=%u, lrc_seqno=%u, guc_id=%d, not started",
928 xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job),
929 q->guc->id);
930
931 return xe_sched_invalidate_job(job, 2);
932 }
933
934 ctx_timestamp = xe_lrc_ctx_timestamp(q->lrc[0]);
935 ctx_job_timestamp = xe_lrc_ctx_job_timestamp(q->lrc[0]);
936
937 /*
938 * Counter wraps at ~223s at the usual 19.2MHz, be paranoid catch
939 * possible overflows with a high timeout.
940 */
941 xe_gt_assert(gt, timeout_ms < 100 * MSEC_PER_SEC);
942
943 if (ctx_timestamp < ctx_job_timestamp)
944 diff = ctx_timestamp + U32_MAX - ctx_job_timestamp;
945 else
946 diff = ctx_timestamp - ctx_job_timestamp;
947
948 /*
949 * Ensure timeout is within 5% to account for an GuC scheduling latency
950 */
951 running_time_ms =
952 ADJUST_FIVE_PERCENT(xe_gt_clock_interval_to_ms(gt, diff));
953
954 xe_gt_dbg(gt,
955 "Check job timeout: seqno=%u, lrc_seqno=%u, guc_id=%d, running_time_ms=%llu, timeout_ms=%u, diff=0x%08x",
956 xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job),
957 q->guc->id, running_time_ms, timeout_ms, diff);
958
959 return running_time_ms >= timeout_ms;
960 }
961
enable_scheduling(struct xe_exec_queue * q)962 static void enable_scheduling(struct xe_exec_queue *q)
963 {
964 MAKE_SCHED_CONTEXT_ACTION(q, ENABLE);
965 struct xe_guc *guc = exec_queue_to_guc(q);
966 int ret;
967
968 xe_gt_assert(guc_to_gt(guc), !exec_queue_destroyed(q));
969 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q));
970 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q));
971 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_enable(q));
972
973 set_exec_queue_pending_enable(q);
974 set_exec_queue_enabled(q);
975 trace_xe_exec_queue_scheduling_enable(q);
976
977 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action),
978 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, 1);
979
980 ret = wait_event_timeout(guc->ct.wq,
981 !exec_queue_pending_enable(q) ||
982 xe_guc_read_stopped(guc), HZ * 5);
983 if (!ret || xe_guc_read_stopped(guc)) {
984 xe_gt_warn(guc_to_gt(guc), "Schedule enable failed to respond");
985 set_exec_queue_banned(q);
986 xe_gt_reset_async(q->gt);
987 xe_sched_tdr_queue_imm(&q->guc->sched);
988 }
989 }
990
disable_scheduling(struct xe_exec_queue * q,bool immediate)991 static void disable_scheduling(struct xe_exec_queue *q, bool immediate)
992 {
993 MAKE_SCHED_CONTEXT_ACTION(q, DISABLE);
994 struct xe_guc *guc = exec_queue_to_guc(q);
995
996 xe_gt_assert(guc_to_gt(guc), !exec_queue_destroyed(q));
997 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q));
998 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q));
999
1000 if (immediate)
1001 set_min_preemption_timeout(guc, q);
1002 clear_exec_queue_enabled(q);
1003 set_exec_queue_pending_disable(q);
1004 trace_xe_exec_queue_scheduling_disable(q);
1005
1006 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action),
1007 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, 1);
1008 }
1009
__deregister_exec_queue(struct xe_guc * guc,struct xe_exec_queue * q)1010 static void __deregister_exec_queue(struct xe_guc *guc, struct xe_exec_queue *q)
1011 {
1012 u32 action[] = {
1013 XE_GUC_ACTION_DEREGISTER_CONTEXT,
1014 q->guc->id,
1015 };
1016
1017 xe_gt_assert(guc_to_gt(guc), !exec_queue_destroyed(q));
1018 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q));
1019 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_enable(q));
1020 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q));
1021
1022 set_exec_queue_destroyed(q);
1023 trace_xe_exec_queue_deregister(q);
1024
1025 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action),
1026 G2H_LEN_DW_DEREGISTER_CONTEXT, 1);
1027 }
1028
1029 static enum drm_gpu_sched_stat
guc_exec_queue_timedout_job(struct drm_sched_job * drm_job)1030 guc_exec_queue_timedout_job(struct drm_sched_job *drm_job)
1031 {
1032 struct xe_sched_job *job = to_xe_sched_job(drm_job);
1033 struct xe_sched_job *tmp_job;
1034 struct xe_exec_queue *q = job->q;
1035 struct xe_gpu_scheduler *sched = &q->guc->sched;
1036 struct xe_guc *guc = exec_queue_to_guc(q);
1037 const char *process_name = "no process";
1038 struct xe_device *xe = guc_to_xe(guc);
1039 unsigned int fw_ref;
1040 int err = -ETIME;
1041 pid_t pid = -1;
1042 int i = 0;
1043 bool wedged, skip_timeout_check;
1044
1045 /*
1046 * TDR has fired before free job worker. Common if exec queue
1047 * immediately closed after last fence signaled. Add back to pending
1048 * list so job can be freed and kick scheduler ensuring free job is not
1049 * lost.
1050 */
1051 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &job->fence->flags)) {
1052 xe_sched_add_pending_job(sched, job);
1053 xe_sched_submission_start(sched);
1054
1055 return DRM_GPU_SCHED_STAT_NOMINAL;
1056 }
1057
1058 /* Kill the run_job entry point */
1059 xe_sched_submission_stop(sched);
1060
1061 /* Must check all state after stopping scheduler */
1062 skip_timeout_check = exec_queue_reset(q) ||
1063 exec_queue_killed_or_banned_or_wedged(q) ||
1064 exec_queue_destroyed(q);
1065
1066 /*
1067 * If devcoredump not captured and GuC capture for the job is not ready
1068 * do manual capture first and decide later if we need to use it
1069 */
1070 if (!exec_queue_killed(q) && !xe->devcoredump.captured &&
1071 !xe_guc_capture_get_matching_and_lock(job)) {
1072 /* take force wake before engine register manual capture */
1073 fw_ref = xe_force_wake_get(gt_to_fw(q->gt), XE_FORCEWAKE_ALL);
1074 if (!xe_force_wake_ref_has_domain(fw_ref, XE_FORCEWAKE_ALL))
1075 xe_gt_info(q->gt, "failed to get forcewake for coredump capture\n");
1076
1077 xe_engine_snapshot_capture_for_job(job);
1078
1079 xe_force_wake_put(gt_to_fw(q->gt), fw_ref);
1080 }
1081
1082 /*
1083 * XXX: Sampling timeout doesn't work in wedged mode as we have to
1084 * modify scheduling state to read timestamp. We could read the
1085 * timestamp from a register to accumulate current running time but this
1086 * doesn't work for SRIOV. For now assuming timeouts in wedged mode are
1087 * genuine timeouts.
1088 */
1089 wedged = guc_submit_hint_wedged(exec_queue_to_guc(q));
1090
1091 /* Engine state now stable, disable scheduling to check timestamp */
1092 if (!wedged && exec_queue_registered(q)) {
1093 int ret;
1094
1095 if (exec_queue_reset(q))
1096 err = -EIO;
1097
1098 if (!exec_queue_destroyed(q)) {
1099 /*
1100 * Wait for any pending G2H to flush out before
1101 * modifying state
1102 */
1103 ret = wait_event_timeout(guc->ct.wq,
1104 (!exec_queue_pending_enable(q) &&
1105 !exec_queue_pending_disable(q)) ||
1106 xe_guc_read_stopped(guc), HZ * 5);
1107 if (!ret || xe_guc_read_stopped(guc))
1108 goto trigger_reset;
1109
1110 /*
1111 * Flag communicates to G2H handler that schedule
1112 * disable originated from a timeout check. The G2H then
1113 * avoid triggering cleanup or deregistering the exec
1114 * queue.
1115 */
1116 set_exec_queue_check_timeout(q);
1117 disable_scheduling(q, skip_timeout_check);
1118 }
1119
1120 /*
1121 * Must wait for scheduling to be disabled before signalling
1122 * any fences, if GT broken the GT reset code should signal us.
1123 *
1124 * FIXME: Tests can generate a ton of 0x6000 (IOMMU CAT fault
1125 * error) messages which can cause the schedule disable to get
1126 * lost. If this occurs, trigger a GT reset to recover.
1127 */
1128 smp_rmb();
1129 ret = wait_event_timeout(guc->ct.wq,
1130 !exec_queue_pending_disable(q) ||
1131 xe_guc_read_stopped(guc), HZ * 5);
1132 if (!ret || xe_guc_read_stopped(guc)) {
1133 trigger_reset:
1134 if (!ret)
1135 xe_gt_warn(guc_to_gt(guc), "Schedule disable failed to respond");
1136 set_exec_queue_extra_ref(q);
1137 xe_exec_queue_get(q); /* GT reset owns this */
1138 set_exec_queue_banned(q);
1139 xe_gt_reset_async(q->gt);
1140 xe_sched_tdr_queue_imm(sched);
1141 goto rearm;
1142 }
1143 }
1144
1145 /*
1146 * Check if job is actually timed out, if so restart job execution and TDR
1147 */
1148 if (!wedged && !skip_timeout_check && !check_timeout(q, job) &&
1149 !exec_queue_reset(q) && exec_queue_registered(q)) {
1150 clear_exec_queue_check_timeout(q);
1151 goto sched_enable;
1152 }
1153
1154 if (q->vm && q->vm->xef) {
1155 process_name = q->vm->xef->process_name;
1156 pid = q->vm->xef->pid;
1157 }
1158 xe_gt_notice(guc_to_gt(guc), "Timedout job: seqno=%u, lrc_seqno=%u, guc_id=%d, flags=0x%lx in %s [%d]",
1159 xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job),
1160 q->guc->id, q->flags, process_name, pid);
1161
1162 trace_xe_sched_job_timedout(job);
1163
1164 if (!exec_queue_killed(q))
1165 xe_devcoredump(job);
1166
1167 /*
1168 * Kernel jobs should never fail, nor should VM jobs if they do
1169 * somethings has gone wrong and the GT needs a reset
1170 */
1171 xe_gt_WARN(q->gt, q->flags & EXEC_QUEUE_FLAG_KERNEL,
1172 "Kernel-submitted job timed out\n");
1173 xe_gt_WARN(q->gt, q->flags & EXEC_QUEUE_FLAG_VM && !exec_queue_killed(q),
1174 "VM job timed out on non-killed execqueue\n");
1175 if (!wedged && (q->flags & EXEC_QUEUE_FLAG_KERNEL ||
1176 (q->flags & EXEC_QUEUE_FLAG_VM && !exec_queue_killed(q)))) {
1177 if (!xe_sched_invalidate_job(job, 2)) {
1178 clear_exec_queue_check_timeout(q);
1179 xe_gt_reset_async(q->gt);
1180 goto rearm;
1181 }
1182 }
1183
1184 /* Finish cleaning up exec queue via deregister */
1185 set_exec_queue_banned(q);
1186 if (!wedged && exec_queue_registered(q) && !exec_queue_destroyed(q)) {
1187 set_exec_queue_extra_ref(q);
1188 xe_exec_queue_get(q);
1189 __deregister_exec_queue(guc, q);
1190 }
1191
1192 /* Stop fence signaling */
1193 xe_hw_fence_irq_stop(q->fence_irq);
1194
1195 /*
1196 * Fence state now stable, stop / start scheduler which cleans up any
1197 * fences that are complete
1198 */
1199 xe_sched_add_pending_job(sched, job);
1200 xe_sched_submission_start(sched);
1201
1202 xe_guc_exec_queue_trigger_cleanup(q);
1203
1204 /* Mark all outstanding jobs as bad, thus completing them */
1205 spin_lock(&sched->base.job_list_lock);
1206 list_for_each_entry(tmp_job, &sched->base.pending_list, drm.list)
1207 xe_sched_job_set_error(tmp_job, !i++ ? err : -ECANCELED);
1208 spin_unlock(&sched->base.job_list_lock);
1209
1210 /* Start fence signaling */
1211 xe_hw_fence_irq_start(q->fence_irq);
1212
1213 return DRM_GPU_SCHED_STAT_NOMINAL;
1214
1215 sched_enable:
1216 enable_scheduling(q);
1217 rearm:
1218 /*
1219 * XXX: Ideally want to adjust timeout based on current exection time
1220 * but there is not currently an easy way to do in DRM scheduler. With
1221 * some thought, do this in a follow up.
1222 */
1223 xe_sched_add_pending_job(sched, job);
1224 xe_sched_submission_start(sched);
1225
1226 return DRM_GPU_SCHED_STAT_NOMINAL;
1227 }
1228
__guc_exec_queue_fini_async(struct work_struct * w)1229 static void __guc_exec_queue_fini_async(struct work_struct *w)
1230 {
1231 struct xe_guc_exec_queue *ge =
1232 container_of(w, struct xe_guc_exec_queue, fini_async);
1233 struct xe_exec_queue *q = ge->q;
1234 struct xe_guc *guc = exec_queue_to_guc(q);
1235
1236 xe_pm_runtime_get(guc_to_xe(guc));
1237 trace_xe_exec_queue_destroy(q);
1238
1239 if (xe_exec_queue_is_lr(q))
1240 cancel_work_sync(&ge->lr_tdr);
1241 release_guc_id(guc, q);
1242 xe_sched_entity_fini(&ge->entity);
1243 xe_sched_fini(&ge->sched);
1244
1245 kfree(ge);
1246 xe_exec_queue_fini(q);
1247 xe_pm_runtime_put(guc_to_xe(guc));
1248 }
1249
guc_exec_queue_fini_async(struct xe_exec_queue * q)1250 static void guc_exec_queue_fini_async(struct xe_exec_queue *q)
1251 {
1252 struct xe_guc *guc = exec_queue_to_guc(q);
1253 struct xe_device *xe = guc_to_xe(guc);
1254
1255 INIT_WORK(&q->guc->fini_async, __guc_exec_queue_fini_async);
1256
1257 /* We must block on kernel engines so slabs are empty on driver unload */
1258 if (q->flags & EXEC_QUEUE_FLAG_PERMANENT || exec_queue_wedged(q))
1259 __guc_exec_queue_fini_async(&q->guc->fini_async);
1260 else
1261 queue_work(xe->destroy_wq, &q->guc->fini_async);
1262 }
1263
__guc_exec_queue_fini(struct xe_guc * guc,struct xe_exec_queue * q)1264 static void __guc_exec_queue_fini(struct xe_guc *guc, struct xe_exec_queue *q)
1265 {
1266 /*
1267 * Might be done from within the GPU scheduler, need to do async as we
1268 * fini the scheduler when the engine is fini'd, the scheduler can't
1269 * complete fini within itself (circular dependency). Async resolves
1270 * this we and don't really care when everything is fini'd, just that it
1271 * is.
1272 */
1273 guc_exec_queue_fini_async(q);
1274 }
1275
__guc_exec_queue_process_msg_cleanup(struct xe_sched_msg * msg)1276 static void __guc_exec_queue_process_msg_cleanup(struct xe_sched_msg *msg)
1277 {
1278 struct xe_exec_queue *q = msg->private_data;
1279 struct xe_guc *guc = exec_queue_to_guc(q);
1280 struct xe_device *xe = guc_to_xe(guc);
1281
1282 xe_assert(xe, !(q->flags & EXEC_QUEUE_FLAG_PERMANENT));
1283 trace_xe_exec_queue_cleanup_entity(q);
1284
1285 if (exec_queue_registered(q))
1286 disable_scheduling_deregister(guc, q);
1287 else
1288 __guc_exec_queue_fini(guc, q);
1289 }
1290
guc_exec_queue_allowed_to_change_state(struct xe_exec_queue * q)1291 static bool guc_exec_queue_allowed_to_change_state(struct xe_exec_queue *q)
1292 {
1293 return !exec_queue_killed_or_banned_or_wedged(q) && exec_queue_registered(q);
1294 }
1295
__guc_exec_queue_process_msg_set_sched_props(struct xe_sched_msg * msg)1296 static void __guc_exec_queue_process_msg_set_sched_props(struct xe_sched_msg *msg)
1297 {
1298 struct xe_exec_queue *q = msg->private_data;
1299 struct xe_guc *guc = exec_queue_to_guc(q);
1300
1301 if (guc_exec_queue_allowed_to_change_state(q))
1302 init_policies(guc, q);
1303 kfree(msg);
1304 }
1305
__suspend_fence_signal(struct xe_exec_queue * q)1306 static void __suspend_fence_signal(struct xe_exec_queue *q)
1307 {
1308 if (!q->guc->suspend_pending)
1309 return;
1310
1311 WRITE_ONCE(q->guc->suspend_pending, false);
1312 wake_up(&q->guc->suspend_wait);
1313 }
1314
suspend_fence_signal(struct xe_exec_queue * q)1315 static void suspend_fence_signal(struct xe_exec_queue *q)
1316 {
1317 struct xe_guc *guc = exec_queue_to_guc(q);
1318 struct xe_device *xe = guc_to_xe(guc);
1319
1320 xe_assert(xe, exec_queue_suspended(q) || exec_queue_killed(q) ||
1321 xe_guc_read_stopped(guc));
1322 xe_assert(xe, q->guc->suspend_pending);
1323
1324 __suspend_fence_signal(q);
1325 }
1326
__guc_exec_queue_process_msg_suspend(struct xe_sched_msg * msg)1327 static void __guc_exec_queue_process_msg_suspend(struct xe_sched_msg *msg)
1328 {
1329 struct xe_exec_queue *q = msg->private_data;
1330 struct xe_guc *guc = exec_queue_to_guc(q);
1331
1332 if (guc_exec_queue_allowed_to_change_state(q) && !exec_queue_suspended(q) &&
1333 exec_queue_enabled(q)) {
1334 wait_event(guc->ct.wq, (q->guc->resume_time != RESUME_PENDING ||
1335 xe_guc_read_stopped(guc)) && !exec_queue_pending_disable(q));
1336
1337 if (!xe_guc_read_stopped(guc)) {
1338 s64 since_resume_ms =
1339 ktime_ms_delta(ktime_get(),
1340 q->guc->resume_time);
1341 s64 wait_ms = q->vm->preempt.min_run_period_ms -
1342 since_resume_ms;
1343
1344 if (wait_ms > 0 && q->guc->resume_time)
1345 msleep(wait_ms);
1346
1347 set_exec_queue_suspended(q);
1348 disable_scheduling(q, false);
1349 }
1350 } else if (q->guc->suspend_pending) {
1351 set_exec_queue_suspended(q);
1352 suspend_fence_signal(q);
1353 }
1354 }
1355
__guc_exec_queue_process_msg_resume(struct xe_sched_msg * msg)1356 static void __guc_exec_queue_process_msg_resume(struct xe_sched_msg *msg)
1357 {
1358 struct xe_exec_queue *q = msg->private_data;
1359
1360 if (guc_exec_queue_allowed_to_change_state(q)) {
1361 clear_exec_queue_suspended(q);
1362 if (!exec_queue_enabled(q)) {
1363 q->guc->resume_time = RESUME_PENDING;
1364 enable_scheduling(q);
1365 }
1366 } else {
1367 clear_exec_queue_suspended(q);
1368 }
1369 }
1370
1371 #define CLEANUP 1 /* Non-zero values to catch uninitialized msg */
1372 #define SET_SCHED_PROPS 2
1373 #define SUSPEND 3
1374 #define RESUME 4
1375 #define OPCODE_MASK 0xf
1376 #define MSG_LOCKED BIT(8)
1377
guc_exec_queue_process_msg(struct xe_sched_msg * msg)1378 static void guc_exec_queue_process_msg(struct xe_sched_msg *msg)
1379 {
1380 struct xe_device *xe = guc_to_xe(exec_queue_to_guc(msg->private_data));
1381
1382 trace_xe_sched_msg_recv(msg);
1383
1384 switch (msg->opcode) {
1385 case CLEANUP:
1386 __guc_exec_queue_process_msg_cleanup(msg);
1387 break;
1388 case SET_SCHED_PROPS:
1389 __guc_exec_queue_process_msg_set_sched_props(msg);
1390 break;
1391 case SUSPEND:
1392 __guc_exec_queue_process_msg_suspend(msg);
1393 break;
1394 case RESUME:
1395 __guc_exec_queue_process_msg_resume(msg);
1396 break;
1397 default:
1398 XE_WARN_ON("Unknown message type");
1399 }
1400
1401 xe_pm_runtime_put(xe);
1402 }
1403
1404 static const struct drm_sched_backend_ops drm_sched_ops = {
1405 .run_job = guc_exec_queue_run_job,
1406 .free_job = guc_exec_queue_free_job,
1407 .timedout_job = guc_exec_queue_timedout_job,
1408 };
1409
1410 static const struct xe_sched_backend_ops xe_sched_ops = {
1411 .process_msg = guc_exec_queue_process_msg,
1412 };
1413
guc_exec_queue_init(struct xe_exec_queue * q)1414 static int guc_exec_queue_init(struct xe_exec_queue *q)
1415 {
1416 struct xe_gpu_scheduler *sched;
1417 struct xe_guc *guc = exec_queue_to_guc(q);
1418 struct xe_device *xe = guc_to_xe(guc);
1419 struct xe_guc_exec_queue *ge;
1420 long timeout;
1421 int err, i;
1422
1423 xe_assert(xe, xe_device_uc_enabled(guc_to_xe(guc)));
1424
1425 ge = kzalloc(sizeof(*ge), GFP_KERNEL);
1426 if (!ge)
1427 return -ENOMEM;
1428
1429 q->guc = ge;
1430 ge->q = q;
1431 init_waitqueue_head(&ge->suspend_wait);
1432
1433 for (i = 0; i < MAX_STATIC_MSG_TYPE; ++i)
1434 INIT_LIST_HEAD(&ge->static_msgs[i].link);
1435
1436 timeout = (q->vm && xe_vm_in_lr_mode(q->vm)) ? MAX_SCHEDULE_TIMEOUT :
1437 msecs_to_jiffies(q->sched_props.job_timeout_ms);
1438 err = xe_sched_init(&ge->sched, &drm_sched_ops, &xe_sched_ops,
1439 NULL, q->lrc[0]->ring.size / MAX_JOB_SIZE_BYTES, 64,
1440 timeout, guc_to_gt(guc)->ordered_wq, NULL,
1441 q->name, gt_to_xe(q->gt)->drm.dev);
1442 if (err)
1443 goto err_free;
1444
1445 sched = &ge->sched;
1446 err = xe_sched_entity_init(&ge->entity, sched);
1447 if (err)
1448 goto err_sched;
1449
1450 if (xe_exec_queue_is_lr(q))
1451 INIT_WORK(&q->guc->lr_tdr, xe_guc_exec_queue_lr_cleanup);
1452
1453 mutex_lock(&guc->submission_state.lock);
1454
1455 err = alloc_guc_id(guc, q);
1456 if (err)
1457 goto err_entity;
1458
1459 q->entity = &ge->entity;
1460
1461 if (xe_guc_read_stopped(guc))
1462 xe_sched_stop(sched);
1463
1464 mutex_unlock(&guc->submission_state.lock);
1465
1466 xe_exec_queue_assign_name(q, q->guc->id);
1467
1468 trace_xe_exec_queue_create(q);
1469
1470 return 0;
1471
1472 err_entity:
1473 mutex_unlock(&guc->submission_state.lock);
1474 xe_sched_entity_fini(&ge->entity);
1475 err_sched:
1476 xe_sched_fini(&ge->sched);
1477 err_free:
1478 kfree(ge);
1479
1480 return err;
1481 }
1482
guc_exec_queue_kill(struct xe_exec_queue * q)1483 static void guc_exec_queue_kill(struct xe_exec_queue *q)
1484 {
1485 trace_xe_exec_queue_kill(q);
1486 set_exec_queue_killed(q);
1487 __suspend_fence_signal(q);
1488 xe_guc_exec_queue_trigger_cleanup(q);
1489 }
1490
guc_exec_queue_add_msg(struct xe_exec_queue * q,struct xe_sched_msg * msg,u32 opcode)1491 static void guc_exec_queue_add_msg(struct xe_exec_queue *q, struct xe_sched_msg *msg,
1492 u32 opcode)
1493 {
1494 xe_pm_runtime_get_noresume(guc_to_xe(exec_queue_to_guc(q)));
1495
1496 INIT_LIST_HEAD(&msg->link);
1497 msg->opcode = opcode & OPCODE_MASK;
1498 msg->private_data = q;
1499
1500 trace_xe_sched_msg_add(msg);
1501 if (opcode & MSG_LOCKED)
1502 xe_sched_add_msg_locked(&q->guc->sched, msg);
1503 else
1504 xe_sched_add_msg(&q->guc->sched, msg);
1505 }
1506
guc_exec_queue_try_add_msg(struct xe_exec_queue * q,struct xe_sched_msg * msg,u32 opcode)1507 static bool guc_exec_queue_try_add_msg(struct xe_exec_queue *q,
1508 struct xe_sched_msg *msg,
1509 u32 opcode)
1510 {
1511 if (!list_empty(&msg->link))
1512 return false;
1513
1514 guc_exec_queue_add_msg(q, msg, opcode | MSG_LOCKED);
1515
1516 return true;
1517 }
1518
1519 #define STATIC_MSG_CLEANUP 0
1520 #define STATIC_MSG_SUSPEND 1
1521 #define STATIC_MSG_RESUME 2
guc_exec_queue_fini(struct xe_exec_queue * q)1522 static void guc_exec_queue_fini(struct xe_exec_queue *q)
1523 {
1524 struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_CLEANUP;
1525
1526 if (!(q->flags & EXEC_QUEUE_FLAG_PERMANENT) && !exec_queue_wedged(q))
1527 guc_exec_queue_add_msg(q, msg, CLEANUP);
1528 else
1529 __guc_exec_queue_fini(exec_queue_to_guc(q), q);
1530 }
1531
guc_exec_queue_set_priority(struct xe_exec_queue * q,enum xe_exec_queue_priority priority)1532 static int guc_exec_queue_set_priority(struct xe_exec_queue *q,
1533 enum xe_exec_queue_priority priority)
1534 {
1535 struct xe_sched_msg *msg;
1536
1537 if (q->sched_props.priority == priority ||
1538 exec_queue_killed_or_banned_or_wedged(q))
1539 return 0;
1540
1541 msg = kmalloc(sizeof(*msg), GFP_KERNEL);
1542 if (!msg)
1543 return -ENOMEM;
1544
1545 q->sched_props.priority = priority;
1546 guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS);
1547
1548 return 0;
1549 }
1550
guc_exec_queue_set_timeslice(struct xe_exec_queue * q,u32 timeslice_us)1551 static int guc_exec_queue_set_timeslice(struct xe_exec_queue *q, u32 timeslice_us)
1552 {
1553 struct xe_sched_msg *msg;
1554
1555 if (q->sched_props.timeslice_us == timeslice_us ||
1556 exec_queue_killed_or_banned_or_wedged(q))
1557 return 0;
1558
1559 msg = kmalloc(sizeof(*msg), GFP_KERNEL);
1560 if (!msg)
1561 return -ENOMEM;
1562
1563 q->sched_props.timeslice_us = timeslice_us;
1564 guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS);
1565
1566 return 0;
1567 }
1568
guc_exec_queue_set_preempt_timeout(struct xe_exec_queue * q,u32 preempt_timeout_us)1569 static int guc_exec_queue_set_preempt_timeout(struct xe_exec_queue *q,
1570 u32 preempt_timeout_us)
1571 {
1572 struct xe_sched_msg *msg;
1573
1574 if (q->sched_props.preempt_timeout_us == preempt_timeout_us ||
1575 exec_queue_killed_or_banned_or_wedged(q))
1576 return 0;
1577
1578 msg = kmalloc(sizeof(*msg), GFP_KERNEL);
1579 if (!msg)
1580 return -ENOMEM;
1581
1582 q->sched_props.preempt_timeout_us = preempt_timeout_us;
1583 guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS);
1584
1585 return 0;
1586 }
1587
guc_exec_queue_suspend(struct xe_exec_queue * q)1588 static int guc_exec_queue_suspend(struct xe_exec_queue *q)
1589 {
1590 struct xe_gpu_scheduler *sched = &q->guc->sched;
1591 struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_SUSPEND;
1592
1593 if (exec_queue_killed_or_banned_or_wedged(q))
1594 return -EINVAL;
1595
1596 xe_sched_msg_lock(sched);
1597 if (guc_exec_queue_try_add_msg(q, msg, SUSPEND))
1598 q->guc->suspend_pending = true;
1599 xe_sched_msg_unlock(sched);
1600
1601 return 0;
1602 }
1603
guc_exec_queue_suspend_wait(struct xe_exec_queue * q)1604 static int guc_exec_queue_suspend_wait(struct xe_exec_queue *q)
1605 {
1606 struct xe_guc *guc = exec_queue_to_guc(q);
1607 int ret;
1608
1609 /*
1610 * Likely don't need to check exec_queue_killed() as we clear
1611 * suspend_pending upon kill but to be paranoid but races in which
1612 * suspend_pending is set after kill also check kill here.
1613 */
1614 ret = wait_event_interruptible_timeout(q->guc->suspend_wait,
1615 !READ_ONCE(q->guc->suspend_pending) ||
1616 exec_queue_killed(q) ||
1617 xe_guc_read_stopped(guc),
1618 HZ * 5);
1619
1620 if (!ret) {
1621 xe_gt_warn(guc_to_gt(guc),
1622 "Suspend fence, guc_id=%d, failed to respond",
1623 q->guc->id);
1624 /* XXX: Trigger GT reset? */
1625 return -ETIME;
1626 }
1627
1628 return ret < 0 ? ret : 0;
1629 }
1630
guc_exec_queue_resume(struct xe_exec_queue * q)1631 static void guc_exec_queue_resume(struct xe_exec_queue *q)
1632 {
1633 struct xe_gpu_scheduler *sched = &q->guc->sched;
1634 struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_RESUME;
1635 struct xe_guc *guc = exec_queue_to_guc(q);
1636 struct xe_device *xe = guc_to_xe(guc);
1637
1638 xe_assert(xe, !q->guc->suspend_pending);
1639
1640 xe_sched_msg_lock(sched);
1641 guc_exec_queue_try_add_msg(q, msg, RESUME);
1642 xe_sched_msg_unlock(sched);
1643 }
1644
guc_exec_queue_reset_status(struct xe_exec_queue * q)1645 static bool guc_exec_queue_reset_status(struct xe_exec_queue *q)
1646 {
1647 return exec_queue_reset(q) || exec_queue_killed_or_banned_or_wedged(q);
1648 }
1649
1650 /*
1651 * All of these functions are an abstraction layer which other parts of XE can
1652 * use to trap into the GuC backend. All of these functions, aside from init,
1653 * really shouldn't do much other than trap into the DRM scheduler which
1654 * synchronizes these operations.
1655 */
1656 static const struct xe_exec_queue_ops guc_exec_queue_ops = {
1657 .init = guc_exec_queue_init,
1658 .kill = guc_exec_queue_kill,
1659 .fini = guc_exec_queue_fini,
1660 .set_priority = guc_exec_queue_set_priority,
1661 .set_timeslice = guc_exec_queue_set_timeslice,
1662 .set_preempt_timeout = guc_exec_queue_set_preempt_timeout,
1663 .suspend = guc_exec_queue_suspend,
1664 .suspend_wait = guc_exec_queue_suspend_wait,
1665 .resume = guc_exec_queue_resume,
1666 .reset_status = guc_exec_queue_reset_status,
1667 };
1668
guc_exec_queue_stop(struct xe_guc * guc,struct xe_exec_queue * q)1669 static void guc_exec_queue_stop(struct xe_guc *guc, struct xe_exec_queue *q)
1670 {
1671 struct xe_gpu_scheduler *sched = &q->guc->sched;
1672
1673 /* Stop scheduling + flush any DRM scheduler operations */
1674 xe_sched_submission_stop(sched);
1675
1676 /* Clean up lost G2H + reset engine state */
1677 if (exec_queue_registered(q)) {
1678 if (exec_queue_extra_ref(q) || xe_exec_queue_is_lr(q))
1679 xe_exec_queue_put(q);
1680 else if (exec_queue_destroyed(q))
1681 __guc_exec_queue_fini(guc, q);
1682 }
1683 if (q->guc->suspend_pending) {
1684 set_exec_queue_suspended(q);
1685 suspend_fence_signal(q);
1686 }
1687 atomic_and(EXEC_QUEUE_STATE_WEDGED | EXEC_QUEUE_STATE_BANNED |
1688 EXEC_QUEUE_STATE_KILLED | EXEC_QUEUE_STATE_DESTROYED |
1689 EXEC_QUEUE_STATE_SUSPENDED,
1690 &q->guc->state);
1691 q->guc->resume_time = 0;
1692 trace_xe_exec_queue_stop(q);
1693
1694 /*
1695 * Ban any engine (aside from kernel and engines used for VM ops) with a
1696 * started but not complete job or if a job has gone through a GT reset
1697 * more than twice.
1698 */
1699 if (!(q->flags & (EXEC_QUEUE_FLAG_KERNEL | EXEC_QUEUE_FLAG_VM))) {
1700 struct xe_sched_job *job = xe_sched_first_pending_job(sched);
1701 bool ban = false;
1702
1703 if (job) {
1704 if ((xe_sched_job_started(job) &&
1705 !xe_sched_job_completed(job)) ||
1706 xe_sched_invalidate_job(job, 2)) {
1707 trace_xe_sched_job_ban(job);
1708 ban = true;
1709 }
1710 } else if (xe_exec_queue_is_lr(q) &&
1711 (xe_lrc_ring_head(q->lrc[0]) != xe_lrc_ring_tail(q->lrc[0]))) {
1712 ban = true;
1713 }
1714
1715 if (ban) {
1716 set_exec_queue_banned(q);
1717 xe_guc_exec_queue_trigger_cleanup(q);
1718 }
1719 }
1720 }
1721
xe_guc_submit_reset_prepare(struct xe_guc * guc)1722 int xe_guc_submit_reset_prepare(struct xe_guc *guc)
1723 {
1724 int ret;
1725
1726 /*
1727 * Using an atomic here rather than submission_state.lock as this
1728 * function can be called while holding the CT lock (engine reset
1729 * failure). submission_state.lock needs the CT lock to resubmit jobs.
1730 * Atomic is not ideal, but it works to prevent against concurrent reset
1731 * and releasing any TDRs waiting on guc->submission_state.stopped.
1732 */
1733 ret = atomic_fetch_or(1, &guc->submission_state.stopped);
1734 smp_wmb();
1735 wake_up_all(&guc->ct.wq);
1736
1737 return ret;
1738 }
1739
xe_guc_submit_reset_wait(struct xe_guc * guc)1740 void xe_guc_submit_reset_wait(struct xe_guc *guc)
1741 {
1742 wait_event(guc->ct.wq, xe_device_wedged(guc_to_xe(guc)) ||
1743 !xe_guc_read_stopped(guc));
1744 }
1745
xe_guc_submit_stop(struct xe_guc * guc)1746 void xe_guc_submit_stop(struct xe_guc *guc)
1747 {
1748 struct xe_exec_queue *q;
1749 unsigned long index;
1750 struct xe_device *xe = guc_to_xe(guc);
1751
1752 xe_assert(xe, xe_guc_read_stopped(guc) == 1);
1753
1754 mutex_lock(&guc->submission_state.lock);
1755
1756 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) {
1757 /* Prevent redundant attempts to stop parallel queues */
1758 if (q->guc->id != index)
1759 continue;
1760
1761 guc_exec_queue_stop(guc, q);
1762 }
1763
1764 mutex_unlock(&guc->submission_state.lock);
1765
1766 /*
1767 * No one can enter the backend at this point, aside from new engine
1768 * creation which is protected by guc->submission_state.lock.
1769 */
1770
1771 }
1772
guc_exec_queue_start(struct xe_exec_queue * q)1773 static void guc_exec_queue_start(struct xe_exec_queue *q)
1774 {
1775 struct xe_gpu_scheduler *sched = &q->guc->sched;
1776
1777 if (!exec_queue_killed_or_banned_or_wedged(q)) {
1778 int i;
1779
1780 trace_xe_exec_queue_resubmit(q);
1781 for (i = 0; i < q->width; ++i)
1782 xe_lrc_set_ring_head(q->lrc[i], q->lrc[i]->ring.tail);
1783 xe_sched_resubmit_jobs(sched);
1784 }
1785
1786 xe_sched_submission_start(sched);
1787 xe_sched_submission_resume_tdr(sched);
1788 }
1789
xe_guc_submit_start(struct xe_guc * guc)1790 int xe_guc_submit_start(struct xe_guc *guc)
1791 {
1792 struct xe_exec_queue *q;
1793 unsigned long index;
1794 struct xe_device *xe = guc_to_xe(guc);
1795
1796 xe_assert(xe, xe_guc_read_stopped(guc) == 1);
1797
1798 mutex_lock(&guc->submission_state.lock);
1799 atomic_dec(&guc->submission_state.stopped);
1800 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) {
1801 /* Prevent redundant attempts to start parallel queues */
1802 if (q->guc->id != index)
1803 continue;
1804
1805 guc_exec_queue_start(q);
1806 }
1807 mutex_unlock(&guc->submission_state.lock);
1808
1809 wake_up_all(&guc->ct.wq);
1810
1811 return 0;
1812 }
1813
1814 static struct xe_exec_queue *
g2h_exec_queue_lookup(struct xe_guc * guc,u32 guc_id)1815 g2h_exec_queue_lookup(struct xe_guc *guc, u32 guc_id)
1816 {
1817 struct xe_device *xe = guc_to_xe(guc);
1818 struct xe_exec_queue *q;
1819
1820 if (unlikely(guc_id >= GUC_ID_MAX)) {
1821 drm_err(&xe->drm, "Invalid guc_id %u", guc_id);
1822 return NULL;
1823 }
1824
1825 q = xa_load(&guc->submission_state.exec_queue_lookup, guc_id);
1826 if (unlikely(!q)) {
1827 drm_err(&xe->drm, "Not engine present for guc_id %u", guc_id);
1828 return NULL;
1829 }
1830
1831 xe_assert(xe, guc_id >= q->guc->id);
1832 xe_assert(xe, guc_id < (q->guc->id + q->width));
1833
1834 return q;
1835 }
1836
deregister_exec_queue(struct xe_guc * guc,struct xe_exec_queue * q)1837 static void deregister_exec_queue(struct xe_guc *guc, struct xe_exec_queue *q)
1838 {
1839 u32 action[] = {
1840 XE_GUC_ACTION_DEREGISTER_CONTEXT,
1841 q->guc->id,
1842 };
1843
1844 xe_gt_assert(guc_to_gt(guc), exec_queue_destroyed(q));
1845 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q));
1846 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q));
1847 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_enable(q));
1848
1849 trace_xe_exec_queue_deregister(q);
1850
1851 xe_guc_ct_send_g2h_handler(&guc->ct, action, ARRAY_SIZE(action));
1852 }
1853
handle_sched_done(struct xe_guc * guc,struct xe_exec_queue * q,u32 runnable_state)1854 static void handle_sched_done(struct xe_guc *guc, struct xe_exec_queue *q,
1855 u32 runnable_state)
1856 {
1857 trace_xe_exec_queue_scheduling_done(q);
1858
1859 if (runnable_state == 1) {
1860 xe_gt_assert(guc_to_gt(guc), exec_queue_pending_enable(q));
1861
1862 q->guc->resume_time = ktime_get();
1863 clear_exec_queue_pending_enable(q);
1864 smp_wmb();
1865 wake_up_all(&guc->ct.wq);
1866 } else {
1867 bool check_timeout = exec_queue_check_timeout(q);
1868
1869 xe_gt_assert(guc_to_gt(guc), runnable_state == 0);
1870 xe_gt_assert(guc_to_gt(guc), exec_queue_pending_disable(q));
1871
1872 if (q->guc->suspend_pending) {
1873 suspend_fence_signal(q);
1874 clear_exec_queue_pending_disable(q);
1875 } else {
1876 if (exec_queue_banned(q) || check_timeout) {
1877 smp_wmb();
1878 wake_up_all(&guc->ct.wq);
1879 }
1880 if (!check_timeout && exec_queue_destroyed(q)) {
1881 /*
1882 * Make sure to clear the pending_disable only
1883 * after sampling the destroyed state. We want
1884 * to ensure we don't trigger the unregister too
1885 * early with something intending to only
1886 * disable scheduling. The caller doing the
1887 * destroy must wait for an ongoing
1888 * pending_disable before marking as destroyed.
1889 */
1890 clear_exec_queue_pending_disable(q);
1891 deregister_exec_queue(guc, q);
1892 } else {
1893 clear_exec_queue_pending_disable(q);
1894 }
1895 }
1896 }
1897 }
1898
xe_guc_sched_done_handler(struct xe_guc * guc,u32 * msg,u32 len)1899 int xe_guc_sched_done_handler(struct xe_guc *guc, u32 *msg, u32 len)
1900 {
1901 struct xe_device *xe = guc_to_xe(guc);
1902 struct xe_exec_queue *q;
1903 u32 guc_id = msg[0];
1904 u32 runnable_state = msg[1];
1905
1906 if (unlikely(len < 2)) {
1907 drm_err(&xe->drm, "Invalid length %u", len);
1908 return -EPROTO;
1909 }
1910
1911 q = g2h_exec_queue_lookup(guc, guc_id);
1912 if (unlikely(!q))
1913 return -EPROTO;
1914
1915 if (unlikely(!exec_queue_pending_enable(q) &&
1916 !exec_queue_pending_disable(q))) {
1917 xe_gt_err(guc_to_gt(guc),
1918 "SCHED_DONE: Unexpected engine state 0x%04x, guc_id=%d, runnable_state=%u",
1919 atomic_read(&q->guc->state), q->guc->id,
1920 runnable_state);
1921 return -EPROTO;
1922 }
1923
1924 handle_sched_done(guc, q, runnable_state);
1925
1926 return 0;
1927 }
1928
handle_deregister_done(struct xe_guc * guc,struct xe_exec_queue * q)1929 static void handle_deregister_done(struct xe_guc *guc, struct xe_exec_queue *q)
1930 {
1931 trace_xe_exec_queue_deregister_done(q);
1932
1933 clear_exec_queue_registered(q);
1934
1935 if (exec_queue_extra_ref(q) || xe_exec_queue_is_lr(q))
1936 xe_exec_queue_put(q);
1937 else
1938 __guc_exec_queue_fini(guc, q);
1939 }
1940
xe_guc_deregister_done_handler(struct xe_guc * guc,u32 * msg,u32 len)1941 int xe_guc_deregister_done_handler(struct xe_guc *guc, u32 *msg, u32 len)
1942 {
1943 struct xe_device *xe = guc_to_xe(guc);
1944 struct xe_exec_queue *q;
1945 u32 guc_id = msg[0];
1946
1947 if (unlikely(len < 1)) {
1948 drm_err(&xe->drm, "Invalid length %u", len);
1949 return -EPROTO;
1950 }
1951
1952 q = g2h_exec_queue_lookup(guc, guc_id);
1953 if (unlikely(!q))
1954 return -EPROTO;
1955
1956 if (!exec_queue_destroyed(q) || exec_queue_pending_disable(q) ||
1957 exec_queue_pending_enable(q) || exec_queue_enabled(q)) {
1958 xe_gt_err(guc_to_gt(guc),
1959 "DEREGISTER_DONE: Unexpected engine state 0x%04x, guc_id=%d",
1960 atomic_read(&q->guc->state), q->guc->id);
1961 return -EPROTO;
1962 }
1963
1964 handle_deregister_done(guc, q);
1965
1966 return 0;
1967 }
1968
xe_guc_exec_queue_reset_handler(struct xe_guc * guc,u32 * msg,u32 len)1969 int xe_guc_exec_queue_reset_handler(struct xe_guc *guc, u32 *msg, u32 len)
1970 {
1971 struct xe_gt *gt = guc_to_gt(guc);
1972 struct xe_device *xe = guc_to_xe(guc);
1973 struct xe_exec_queue *q;
1974 u32 guc_id = msg[0];
1975
1976 if (unlikely(len < 1)) {
1977 drm_err(&xe->drm, "Invalid length %u", len);
1978 return -EPROTO;
1979 }
1980
1981 q = g2h_exec_queue_lookup(guc, guc_id);
1982 if (unlikely(!q))
1983 return -EPROTO;
1984
1985 xe_gt_info(gt, "Engine reset: engine_class=%s, logical_mask: 0x%x, guc_id=%d",
1986 xe_hw_engine_class_to_str(q->class), q->logical_mask, guc_id);
1987
1988 trace_xe_exec_queue_reset(q);
1989
1990 /*
1991 * A banned engine is a NOP at this point (came from
1992 * guc_exec_queue_timedout_job). Otherwise, kick drm scheduler to cancel
1993 * jobs by setting timeout of the job to the minimum value kicking
1994 * guc_exec_queue_timedout_job.
1995 */
1996 set_exec_queue_reset(q);
1997 if (!exec_queue_banned(q) && !exec_queue_check_timeout(q))
1998 xe_guc_exec_queue_trigger_cleanup(q);
1999
2000 return 0;
2001 }
2002
2003 /*
2004 * xe_guc_error_capture_handler - Handler of GuC captured message
2005 * @guc: The GuC object
2006 * @msg: Point to the message
2007 * @len: The message length
2008 *
2009 * When GuC captured data is ready, GuC will send message
2010 * XE_GUC_ACTION_STATE_CAPTURE_NOTIFICATION to host, this function will be
2011 * called 1st to check status before process the data comes with the message.
2012 *
2013 * Returns: error code. 0 if success
2014 */
xe_guc_error_capture_handler(struct xe_guc * guc,u32 * msg,u32 len)2015 int xe_guc_error_capture_handler(struct xe_guc *guc, u32 *msg, u32 len)
2016 {
2017 u32 status;
2018
2019 if (unlikely(len != XE_GUC_ACTION_STATE_CAPTURE_NOTIFICATION_DATA_LEN)) {
2020 xe_gt_dbg(guc_to_gt(guc), "Invalid length %u", len);
2021 return -EPROTO;
2022 }
2023
2024 status = msg[0] & XE_GUC_STATE_CAPTURE_EVENT_STATUS_MASK;
2025 if (status == XE_GUC_STATE_CAPTURE_EVENT_STATUS_NOSPACE)
2026 xe_gt_warn(guc_to_gt(guc), "G2H-Error capture no space");
2027
2028 xe_guc_capture_process(guc);
2029
2030 return 0;
2031 }
2032
xe_guc_exec_queue_memory_cat_error_handler(struct xe_guc * guc,u32 * msg,u32 len)2033 int xe_guc_exec_queue_memory_cat_error_handler(struct xe_guc *guc, u32 *msg,
2034 u32 len)
2035 {
2036 struct xe_gt *gt = guc_to_gt(guc);
2037 struct xe_device *xe = guc_to_xe(guc);
2038 struct xe_exec_queue *q;
2039 u32 guc_id = msg[0];
2040
2041 if (unlikely(len < 1)) {
2042 drm_err(&xe->drm, "Invalid length %u", len);
2043 return -EPROTO;
2044 }
2045
2046 q = g2h_exec_queue_lookup(guc, guc_id);
2047 if (unlikely(!q))
2048 return -EPROTO;
2049
2050 xe_gt_dbg(gt, "Engine memory cat error: engine_class=%s, logical_mask: 0x%x, guc_id=%d",
2051 xe_hw_engine_class_to_str(q->class), q->logical_mask, guc_id);
2052
2053 trace_xe_exec_queue_memory_cat_error(q);
2054
2055 /* Treat the same as engine reset */
2056 set_exec_queue_reset(q);
2057 if (!exec_queue_banned(q) && !exec_queue_check_timeout(q))
2058 xe_guc_exec_queue_trigger_cleanup(q);
2059
2060 return 0;
2061 }
2062
xe_guc_exec_queue_reset_failure_handler(struct xe_guc * guc,u32 * msg,u32 len)2063 int xe_guc_exec_queue_reset_failure_handler(struct xe_guc *guc, u32 *msg, u32 len)
2064 {
2065 struct xe_device *xe = guc_to_xe(guc);
2066 u8 guc_class, instance;
2067 u32 reason;
2068
2069 if (unlikely(len != 3)) {
2070 drm_err(&xe->drm, "Invalid length %u", len);
2071 return -EPROTO;
2072 }
2073
2074 guc_class = msg[0];
2075 instance = msg[1];
2076 reason = msg[2];
2077
2078 /* Unexpected failure of a hardware feature, log an actual error */
2079 drm_err(&xe->drm, "GuC engine reset request failed on %d:%d because 0x%08X",
2080 guc_class, instance, reason);
2081
2082 xe_gt_reset_async(guc_to_gt(guc));
2083
2084 return 0;
2085 }
2086
2087 static void
guc_exec_queue_wq_snapshot_capture(struct xe_exec_queue * q,struct xe_guc_submit_exec_queue_snapshot * snapshot)2088 guc_exec_queue_wq_snapshot_capture(struct xe_exec_queue *q,
2089 struct xe_guc_submit_exec_queue_snapshot *snapshot)
2090 {
2091 struct xe_guc *guc = exec_queue_to_guc(q);
2092 struct xe_device *xe = guc_to_xe(guc);
2093 struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]);
2094 int i;
2095
2096 snapshot->guc.wqi_head = q->guc->wqi_head;
2097 snapshot->guc.wqi_tail = q->guc->wqi_tail;
2098 snapshot->parallel.wq_desc.head = parallel_read(xe, map, wq_desc.head);
2099 snapshot->parallel.wq_desc.tail = parallel_read(xe, map, wq_desc.tail);
2100 snapshot->parallel.wq_desc.status = parallel_read(xe, map,
2101 wq_desc.wq_status);
2102
2103 if (snapshot->parallel.wq_desc.head !=
2104 snapshot->parallel.wq_desc.tail) {
2105 for (i = snapshot->parallel.wq_desc.head;
2106 i != snapshot->parallel.wq_desc.tail;
2107 i = (i + sizeof(u32)) % WQ_SIZE)
2108 snapshot->parallel.wq[i / sizeof(u32)] =
2109 parallel_read(xe, map, wq[i / sizeof(u32)]);
2110 }
2111 }
2112
2113 static void
guc_exec_queue_wq_snapshot_print(struct xe_guc_submit_exec_queue_snapshot * snapshot,struct drm_printer * p)2114 guc_exec_queue_wq_snapshot_print(struct xe_guc_submit_exec_queue_snapshot *snapshot,
2115 struct drm_printer *p)
2116 {
2117 int i;
2118
2119 drm_printf(p, "\tWQ head: %u (internal), %d (memory)\n",
2120 snapshot->guc.wqi_head, snapshot->parallel.wq_desc.head);
2121 drm_printf(p, "\tWQ tail: %u (internal), %d (memory)\n",
2122 snapshot->guc.wqi_tail, snapshot->parallel.wq_desc.tail);
2123 drm_printf(p, "\tWQ status: %u\n", snapshot->parallel.wq_desc.status);
2124
2125 if (snapshot->parallel.wq_desc.head !=
2126 snapshot->parallel.wq_desc.tail) {
2127 for (i = snapshot->parallel.wq_desc.head;
2128 i != snapshot->parallel.wq_desc.tail;
2129 i = (i + sizeof(u32)) % WQ_SIZE)
2130 drm_printf(p, "\tWQ[%zu]: 0x%08x\n", i / sizeof(u32),
2131 snapshot->parallel.wq[i / sizeof(u32)]);
2132 }
2133 }
2134
2135 /**
2136 * xe_guc_exec_queue_snapshot_capture - Take a quick snapshot of the GuC Engine.
2137 * @q: faulty exec queue
2138 *
2139 * This can be printed out in a later stage like during dev_coredump
2140 * analysis.
2141 *
2142 * Returns: a GuC Submit Engine snapshot object that must be freed by the
2143 * caller, using `xe_guc_exec_queue_snapshot_free`.
2144 */
2145 struct xe_guc_submit_exec_queue_snapshot *
xe_guc_exec_queue_snapshot_capture(struct xe_exec_queue * q)2146 xe_guc_exec_queue_snapshot_capture(struct xe_exec_queue *q)
2147 {
2148 struct xe_gpu_scheduler *sched = &q->guc->sched;
2149 struct xe_guc_submit_exec_queue_snapshot *snapshot;
2150 int i;
2151
2152 snapshot = kzalloc(sizeof(*snapshot), GFP_ATOMIC);
2153
2154 if (!snapshot)
2155 return NULL;
2156
2157 snapshot->guc.id = q->guc->id;
2158 memcpy(&snapshot->name, &q->name, sizeof(snapshot->name));
2159 snapshot->class = q->class;
2160 snapshot->logical_mask = q->logical_mask;
2161 snapshot->width = q->width;
2162 snapshot->refcount = kref_read(&q->refcount);
2163 snapshot->sched_timeout = sched->base.timeout;
2164 snapshot->sched_props.timeslice_us = q->sched_props.timeslice_us;
2165 snapshot->sched_props.preempt_timeout_us =
2166 q->sched_props.preempt_timeout_us;
2167
2168 snapshot->lrc = kmalloc_array(q->width, sizeof(struct xe_lrc_snapshot *),
2169 GFP_ATOMIC);
2170
2171 if (snapshot->lrc) {
2172 for (i = 0; i < q->width; ++i) {
2173 struct xe_lrc *lrc = q->lrc[i];
2174
2175 snapshot->lrc[i] = xe_lrc_snapshot_capture(lrc);
2176 }
2177 }
2178
2179 snapshot->schedule_state = atomic_read(&q->guc->state);
2180 snapshot->exec_queue_flags = q->flags;
2181
2182 snapshot->parallel_execution = xe_exec_queue_is_parallel(q);
2183 if (snapshot->parallel_execution)
2184 guc_exec_queue_wq_snapshot_capture(q, snapshot);
2185
2186 spin_lock(&sched->base.job_list_lock);
2187 snapshot->pending_list_size = list_count_nodes(&sched->base.pending_list);
2188 snapshot->pending_list = kmalloc_array(snapshot->pending_list_size,
2189 sizeof(struct pending_list_snapshot),
2190 GFP_ATOMIC);
2191
2192 if (snapshot->pending_list) {
2193 struct xe_sched_job *job_iter;
2194
2195 i = 0;
2196 list_for_each_entry(job_iter, &sched->base.pending_list, drm.list) {
2197 snapshot->pending_list[i].seqno =
2198 xe_sched_job_seqno(job_iter);
2199 snapshot->pending_list[i].fence =
2200 dma_fence_is_signaled(job_iter->fence) ? 1 : 0;
2201 snapshot->pending_list[i].finished =
2202 dma_fence_is_signaled(&job_iter->drm.s_fence->finished)
2203 ? 1 : 0;
2204 i++;
2205 }
2206 }
2207
2208 spin_unlock(&sched->base.job_list_lock);
2209
2210 return snapshot;
2211 }
2212
2213 /**
2214 * xe_guc_exec_queue_snapshot_capture_delayed - Take delayed part of snapshot of the GuC Engine.
2215 * @snapshot: Previously captured snapshot of job.
2216 *
2217 * This captures some data that requires taking some locks, so it cannot be done in signaling path.
2218 */
2219 void
xe_guc_exec_queue_snapshot_capture_delayed(struct xe_guc_submit_exec_queue_snapshot * snapshot)2220 xe_guc_exec_queue_snapshot_capture_delayed(struct xe_guc_submit_exec_queue_snapshot *snapshot)
2221 {
2222 int i;
2223
2224 if (!snapshot || !snapshot->lrc)
2225 return;
2226
2227 for (i = 0; i < snapshot->width; ++i)
2228 xe_lrc_snapshot_capture_delayed(snapshot->lrc[i]);
2229 }
2230
2231 /**
2232 * xe_guc_exec_queue_snapshot_print - Print out a given GuC Engine snapshot.
2233 * @snapshot: GuC Submit Engine snapshot object.
2234 * @p: drm_printer where it will be printed out.
2235 *
2236 * This function prints out a given GuC Submit Engine snapshot object.
2237 */
2238 void
xe_guc_exec_queue_snapshot_print(struct xe_guc_submit_exec_queue_snapshot * snapshot,struct drm_printer * p)2239 xe_guc_exec_queue_snapshot_print(struct xe_guc_submit_exec_queue_snapshot *snapshot,
2240 struct drm_printer *p)
2241 {
2242 int i;
2243
2244 if (!snapshot)
2245 return;
2246
2247 drm_printf(p, "GuC ID: %d\n", snapshot->guc.id);
2248 drm_printf(p, "\tName: %s\n", snapshot->name);
2249 drm_printf(p, "\tClass: %d\n", snapshot->class);
2250 drm_printf(p, "\tLogical mask: 0x%x\n", snapshot->logical_mask);
2251 drm_printf(p, "\tWidth: %d\n", snapshot->width);
2252 drm_printf(p, "\tRef: %d\n", snapshot->refcount);
2253 drm_printf(p, "\tTimeout: %ld (ms)\n", snapshot->sched_timeout);
2254 drm_printf(p, "\tTimeslice: %u (us)\n",
2255 snapshot->sched_props.timeslice_us);
2256 drm_printf(p, "\tPreempt timeout: %u (us)\n",
2257 snapshot->sched_props.preempt_timeout_us);
2258
2259 for (i = 0; snapshot->lrc && i < snapshot->width; ++i)
2260 xe_lrc_snapshot_print(snapshot->lrc[i], p);
2261
2262 drm_printf(p, "\tSchedule State: 0x%x\n", snapshot->schedule_state);
2263 drm_printf(p, "\tFlags: 0x%lx\n", snapshot->exec_queue_flags);
2264
2265 if (snapshot->parallel_execution)
2266 guc_exec_queue_wq_snapshot_print(snapshot, p);
2267
2268 for (i = 0; snapshot->pending_list && i < snapshot->pending_list_size;
2269 i++)
2270 drm_printf(p, "\tJob: seqno=%d, fence=%d, finished=%d\n",
2271 snapshot->pending_list[i].seqno,
2272 snapshot->pending_list[i].fence,
2273 snapshot->pending_list[i].finished);
2274 }
2275
2276 /**
2277 * xe_guc_exec_queue_snapshot_free - Free all allocated objects for a given
2278 * snapshot.
2279 * @snapshot: GuC Submit Engine snapshot object.
2280 *
2281 * This function free all the memory that needed to be allocated at capture
2282 * time.
2283 */
xe_guc_exec_queue_snapshot_free(struct xe_guc_submit_exec_queue_snapshot * snapshot)2284 void xe_guc_exec_queue_snapshot_free(struct xe_guc_submit_exec_queue_snapshot *snapshot)
2285 {
2286 int i;
2287
2288 if (!snapshot)
2289 return;
2290
2291 if (snapshot->lrc) {
2292 for (i = 0; i < snapshot->width; i++)
2293 xe_lrc_snapshot_free(snapshot->lrc[i]);
2294 kfree(snapshot->lrc);
2295 }
2296 kfree(snapshot->pending_list);
2297 kfree(snapshot);
2298 }
2299
guc_exec_queue_print(struct xe_exec_queue * q,struct drm_printer * p)2300 static void guc_exec_queue_print(struct xe_exec_queue *q, struct drm_printer *p)
2301 {
2302 struct xe_guc_submit_exec_queue_snapshot *snapshot;
2303
2304 snapshot = xe_guc_exec_queue_snapshot_capture(q);
2305 xe_guc_exec_queue_snapshot_print(snapshot, p);
2306 xe_guc_exec_queue_snapshot_free(snapshot);
2307 }
2308
2309 /**
2310 * xe_guc_submit_print - GuC Submit Print.
2311 * @guc: GuC.
2312 * @p: drm_printer where it will be printed out.
2313 *
2314 * This function capture and prints snapshots of **all** GuC Engines.
2315 */
xe_guc_submit_print(struct xe_guc * guc,struct drm_printer * p)2316 void xe_guc_submit_print(struct xe_guc *guc, struct drm_printer *p)
2317 {
2318 struct xe_exec_queue *q;
2319 unsigned long index;
2320
2321 if (!xe_device_uc_enabled(guc_to_xe(guc)))
2322 return;
2323
2324 mutex_lock(&guc->submission_state.lock);
2325 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q)
2326 guc_exec_queue_print(q, p);
2327 mutex_unlock(&guc->submission_state.lock);
2328 }
2329