1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2014-2019 Intel Corporation
4 */
5
6 #include "gem/i915_gem_lmem.h"
7 #include "gt/intel_gt.h"
8 #include "gt/intel_gt_irq.h"
9 #include "gt/intel_gt_pm_irq.h"
10 #include "gt/intel_gt_regs.h"
11 #include "intel_guc.h"
12 #include "intel_guc_ads.h"
13 #include "intel_guc_capture.h"
14 #include "intel_guc_print.h"
15 #include "intel_guc_slpc.h"
16 #include "intel_guc_submission.h"
17 #include "i915_drv.h"
18 #include "i915_irq.h"
19 #include "i915_reg.h"
20
21 /**
22 * DOC: GuC
23 *
24 * The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is
25 * designed to offload some of the functionality usually performed by the host
26 * driver; currently the main operations it can take care of are:
27 *
28 * - Authentication of the HuC, which is required to fully enable HuC usage.
29 * - Low latency graphics context scheduling (a.k.a. GuC submission).
30 * - GT Power management.
31 *
32 * The enable_guc module parameter can be used to select which of those
33 * operations to enable within GuC. Note that not all the operations are
34 * supported on all gen9+ platforms.
35 *
36 * Enabling the GuC is not mandatory and therefore the firmware is only loaded
37 * if at least one of the operations is selected. However, not loading the GuC
38 * might result in the loss of some features that do require the GuC (currently
39 * just the HuC, but more are expected to land in the future).
40 */
41
intel_guc_notify(struct intel_guc * guc)42 void intel_guc_notify(struct intel_guc *guc)
43 {
44 struct intel_gt *gt = guc_to_gt(guc);
45
46 /*
47 * On Gen11+, the value written to the register is passes as a payload
48 * to the FW. However, the FW currently treats all values the same way
49 * (H2G interrupt), so we can just write the value that the HW expects
50 * on older gens.
51 */
52 intel_uncore_write(gt->uncore, guc->notify_reg, GUC_SEND_TRIGGER);
53 }
54
guc_send_reg(struct intel_guc * guc,u32 i)55 static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i)
56 {
57 GEM_BUG_ON(!guc->send_regs.base);
58 GEM_BUG_ON(!guc->send_regs.count);
59 GEM_BUG_ON(i >= guc->send_regs.count);
60
61 return _MMIO(guc->send_regs.base + 4 * i);
62 }
63
intel_guc_init_send_regs(struct intel_guc * guc)64 void intel_guc_init_send_regs(struct intel_guc *guc)
65 {
66 struct intel_gt *gt = guc_to_gt(guc);
67 enum forcewake_domains fw_domains = 0;
68 unsigned int i;
69
70 GEM_BUG_ON(!guc->send_regs.base);
71 GEM_BUG_ON(!guc->send_regs.count);
72
73 for (i = 0; i < guc->send_regs.count; i++) {
74 fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore,
75 guc_send_reg(guc, i),
76 FW_REG_READ | FW_REG_WRITE);
77 }
78 guc->send_regs.fw_domains = fw_domains;
79 }
80
gen9_reset_guc_interrupts(struct intel_guc * guc)81 static void gen9_reset_guc_interrupts(struct intel_guc *guc)
82 {
83 struct intel_gt *gt = guc_to_gt(guc);
84
85 assert_rpm_wakelock_held(>->i915->runtime_pm);
86
87 spin_lock_irq(gt->irq_lock);
88 gen6_gt_pm_reset_iir(gt, gt->pm_guc_events);
89 spin_unlock_irq(gt->irq_lock);
90 }
91
gen9_enable_guc_interrupts(struct intel_guc * guc)92 static void gen9_enable_guc_interrupts(struct intel_guc *guc)
93 {
94 struct intel_gt *gt = guc_to_gt(guc);
95
96 assert_rpm_wakelock_held(>->i915->runtime_pm);
97
98 spin_lock_irq(gt->irq_lock);
99 guc_WARN_ON_ONCE(guc, intel_uncore_read(gt->uncore, GEN8_GT_IIR(2)) &
100 gt->pm_guc_events);
101 gen6_gt_pm_enable_irq(gt, gt->pm_guc_events);
102 spin_unlock_irq(gt->irq_lock);
103
104 guc->interrupts.enabled = true;
105 }
106
gen9_disable_guc_interrupts(struct intel_guc * guc)107 static void gen9_disable_guc_interrupts(struct intel_guc *guc)
108 {
109 struct intel_gt *gt = guc_to_gt(guc);
110
111 assert_rpm_wakelock_held(>->i915->runtime_pm);
112 guc->interrupts.enabled = false;
113
114 spin_lock_irq(gt->irq_lock);
115
116 gen6_gt_pm_disable_irq(gt, gt->pm_guc_events);
117
118 spin_unlock_irq(gt->irq_lock);
119 intel_synchronize_irq(gt->i915);
120
121 gen9_reset_guc_interrupts(guc);
122 }
123
__gen11_reset_guc_interrupts(struct intel_gt * gt)124 static bool __gen11_reset_guc_interrupts(struct intel_gt *gt)
125 {
126 u32 irq = gt->type == GT_MEDIA ? MTL_MGUC : GEN11_GUC;
127
128 lockdep_assert_held(gt->irq_lock);
129 return gen11_gt_reset_one_iir(gt, 0, irq);
130 }
131
gen11_reset_guc_interrupts(struct intel_guc * guc)132 static void gen11_reset_guc_interrupts(struct intel_guc *guc)
133 {
134 struct intel_gt *gt = guc_to_gt(guc);
135
136 spin_lock_irq(gt->irq_lock);
137 __gen11_reset_guc_interrupts(gt);
138 spin_unlock_irq(gt->irq_lock);
139 }
140
gen11_enable_guc_interrupts(struct intel_guc * guc)141 static void gen11_enable_guc_interrupts(struct intel_guc *guc)
142 {
143 struct intel_gt *gt = guc_to_gt(guc);
144
145 spin_lock_irq(gt->irq_lock);
146 __gen11_reset_guc_interrupts(gt);
147 spin_unlock_irq(gt->irq_lock);
148
149 guc->interrupts.enabled = true;
150 }
151
gen11_disable_guc_interrupts(struct intel_guc * guc)152 static void gen11_disable_guc_interrupts(struct intel_guc *guc)
153 {
154 struct intel_gt *gt = guc_to_gt(guc);
155
156 guc->interrupts.enabled = false;
157 intel_synchronize_irq(gt->i915);
158
159 gen11_reset_guc_interrupts(guc);
160 }
161
guc_dead_worker_func(struct work_struct * w)162 static void guc_dead_worker_func(struct work_struct *w)
163 {
164 struct intel_guc *guc = container_of(w, struct intel_guc, dead_guc_worker);
165 struct intel_gt *gt = guc_to_gt(guc);
166 unsigned long last = guc->last_dead_guc_jiffies;
167 unsigned long delta = jiffies_to_msecs(jiffies - last);
168
169 if (delta < 500) {
170 intel_gt_set_wedged(gt);
171 } else {
172 intel_gt_handle_error(gt, ALL_ENGINES, I915_ERROR_CAPTURE, "dead GuC");
173 guc->last_dead_guc_jiffies = jiffies;
174 }
175 }
176
intel_guc_init_early(struct intel_guc * guc)177 void intel_guc_init_early(struct intel_guc *guc)
178 {
179 struct intel_gt *gt = guc_to_gt(guc);
180 struct drm_i915_private *i915 = gt->i915;
181
182 intel_uc_fw_init_early(&guc->fw, INTEL_UC_FW_TYPE_GUC, true);
183 intel_guc_ct_init_early(&guc->ct);
184 intel_guc_log_init_early(&guc->log);
185 intel_guc_submission_init_early(guc);
186 intel_guc_slpc_init_early(&guc->slpc);
187 intel_guc_rc_init_early(guc);
188
189 INIT_WORK(&guc->dead_guc_worker, guc_dead_worker_func);
190
191 mutex_init(&guc->send_mutex);
192 spin_lock_init(&guc->irq_lock);
193 if (GRAPHICS_VER(i915) >= 11) {
194 guc->interrupts.reset = gen11_reset_guc_interrupts;
195 guc->interrupts.enable = gen11_enable_guc_interrupts;
196 guc->interrupts.disable = gen11_disable_guc_interrupts;
197 if (gt->type == GT_MEDIA) {
198 guc->notify_reg = MEDIA_GUC_HOST_INTERRUPT;
199 guc->send_regs.base = i915_mmio_reg_offset(MEDIA_SOFT_SCRATCH(0));
200 } else {
201 guc->notify_reg = GEN11_GUC_HOST_INTERRUPT;
202 guc->send_regs.base = i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0));
203 }
204
205 guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT;
206
207 } else {
208 guc->notify_reg = GUC_SEND_INTERRUPT;
209 guc->interrupts.reset = gen9_reset_guc_interrupts;
210 guc->interrupts.enable = gen9_enable_guc_interrupts;
211 guc->interrupts.disable = gen9_disable_guc_interrupts;
212 guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0));
213 guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN;
214 BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT);
215 }
216
217 intel_guc_enable_msg(guc, INTEL_GUC_RECV_MSG_EXCEPTION |
218 INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED);
219 }
220
intel_guc_init_late(struct intel_guc * guc)221 void intel_guc_init_late(struct intel_guc *guc)
222 {
223 intel_guc_ads_init_late(guc);
224 }
225
guc_ctl_debug_flags(struct intel_guc * guc)226 static u32 guc_ctl_debug_flags(struct intel_guc *guc)
227 {
228 u32 level = intel_guc_log_get_level(&guc->log);
229 u32 flags = 0;
230
231 if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
232 flags |= GUC_LOG_DISABLED;
233 else
234 flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) <<
235 GUC_LOG_VERBOSITY_SHIFT;
236
237 return flags;
238 }
239
guc_ctl_feature_flags(struct intel_guc * guc)240 static u32 guc_ctl_feature_flags(struct intel_guc *guc)
241 {
242 struct intel_gt *gt = guc_to_gt(guc);
243 u32 flags = 0;
244
245 /*
246 * Enable PXP GuC autoteardown flow.
247 * NB: MTL does things differently.
248 */
249 if (HAS_PXP(gt->i915) && !IS_METEORLAKE(gt->i915))
250 flags |= GUC_CTL_ENABLE_GUC_PXP_CTL;
251
252 if (!intel_guc_submission_is_used(guc))
253 flags |= GUC_CTL_DISABLE_SCHEDULER;
254
255 if (intel_guc_slpc_is_used(guc))
256 flags |= GUC_CTL_ENABLE_SLPC;
257
258 return flags;
259 }
260
guc_ctl_log_params_flags(struct intel_guc * guc)261 static u32 guc_ctl_log_params_flags(struct intel_guc *guc)
262 {
263 struct intel_guc_log *log = &guc->log;
264 u32 offset, flags;
265
266 GEM_BUG_ON(!log->sizes_initialised);
267
268 offset = intel_guc_ggtt_offset(guc, log->vma) >> PAGE_SHIFT;
269
270 flags = GUC_LOG_VALID |
271 GUC_LOG_NOTIFY_ON_HALF_FULL |
272 log->sizes[GUC_LOG_SECTIONS_DEBUG].flag |
273 log->sizes[GUC_LOG_SECTIONS_CAPTURE].flag |
274 (log->sizes[GUC_LOG_SECTIONS_CRASH].count << GUC_LOG_CRASH_SHIFT) |
275 (log->sizes[GUC_LOG_SECTIONS_DEBUG].count << GUC_LOG_DEBUG_SHIFT) |
276 (log->sizes[GUC_LOG_SECTIONS_CAPTURE].count << GUC_LOG_CAPTURE_SHIFT) |
277 (offset << GUC_LOG_BUF_ADDR_SHIFT);
278
279 return flags;
280 }
281
guc_ctl_ads_flags(struct intel_guc * guc)282 static u32 guc_ctl_ads_flags(struct intel_guc *guc)
283 {
284 u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT;
285 u32 flags = ads << GUC_ADS_ADDR_SHIFT;
286
287 return flags;
288 }
289
guc_ctl_wa_flags(struct intel_guc * guc)290 static u32 guc_ctl_wa_flags(struct intel_guc *guc)
291 {
292 struct intel_gt *gt = guc_to_gt(guc);
293 u32 flags = 0;
294
295 /* Wa_22012773006:gen11,gen12 < XeHP */
296 if (GRAPHICS_VER(gt->i915) >= 11 &&
297 GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 55))
298 flags |= GUC_WA_POLLCS;
299
300 /* Wa_14014475959 */
301 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
302 IS_DG2(gt->i915))
303 flags |= GUC_WA_HOLD_CCS_SWITCHOUT;
304
305 /* Wa_16019325821 */
306 /* Wa_14019159160 */
307 if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74)))
308 flags |= GUC_WA_RCS_CCS_SWITCHOUT;
309
310 /*
311 * Wa_14012197797
312 * Wa_22011391025
313 *
314 * The same WA bit is used for both and 22011391025 is applicable to
315 * all DG2.
316 */
317 if (IS_DG2(gt->i915))
318 flags |= GUC_WA_DUAL_QUEUE;
319
320 /* Wa_22011802037: graphics version 11/12 */
321 if (intel_engine_reset_needs_wa_22011802037(gt))
322 flags |= GUC_WA_PRE_PARSER;
323
324 /*
325 * Wa_22012727170
326 * Wa_22012727685
327 */
328 if (IS_DG2_G11(gt->i915))
329 flags |= GUC_WA_CONTEXT_ISOLATION;
330
331 /*
332 * Wa_14018913170: Applicable to all platforms supported by i915 so
333 * don't bother testing for all X/Y/Z platforms explicitly.
334 */
335 if (GUC_FIRMWARE_VER(guc) >= MAKE_GUC_VER(70, 7, 0))
336 flags |= GUC_WA_ENABLE_TSC_CHECK_ON_RC6;
337
338 return flags;
339 }
340
guc_ctl_devid(struct intel_guc * guc)341 static u32 guc_ctl_devid(struct intel_guc *guc)
342 {
343 struct drm_i915_private *i915 = guc_to_i915(guc);
344
345 return (INTEL_DEVID(i915) << 16) | INTEL_REVID(i915);
346 }
347
348 /*
349 * Initialise the GuC parameter block before starting the firmware
350 * transfer. These parameters are read by the firmware on startup
351 * and cannot be changed thereafter.
352 */
guc_init_params(struct intel_guc * guc)353 static void guc_init_params(struct intel_guc *guc)
354 {
355 u32 *params = guc->params;
356 int i;
357
358 BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32));
359
360 params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
361 params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
362 params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
363 params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
364 params[GUC_CTL_WA] = guc_ctl_wa_flags(guc);
365 params[GUC_CTL_DEVID] = guc_ctl_devid(guc);
366
367 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
368 guc_dbg(guc, "param[%2d] = %#x\n", i, params[i]);
369 }
370
371 /*
372 * Initialise the GuC parameter block before starting the firmware
373 * transfer. These parameters are read by the firmware on startup
374 * and cannot be changed thereafter.
375 */
intel_guc_write_params(struct intel_guc * guc)376 void intel_guc_write_params(struct intel_guc *guc)
377 {
378 struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
379 int i;
380
381 /*
382 * All SOFT_SCRATCH registers are in FORCEWAKE_GT domain and
383 * they are power context saved so it's ok to release forcewake
384 * when we are done here and take it again at xfer time.
385 */
386 intel_uncore_forcewake_get(uncore, FORCEWAKE_GT);
387
388 intel_uncore_write(uncore, SOFT_SCRATCH(0), 0);
389
390 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
391 intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]);
392
393 intel_uncore_forcewake_put(uncore, FORCEWAKE_GT);
394 }
395
intel_guc_dump_time_info(struct intel_guc * guc,struct drm_printer * p)396 void intel_guc_dump_time_info(struct intel_guc *guc, struct drm_printer *p)
397 {
398 struct intel_gt *gt = guc_to_gt(guc);
399 intel_wakeref_t wakeref;
400 u32 stamp = 0;
401 u64 ktime;
402
403 with_intel_runtime_pm(>->i915->runtime_pm, wakeref)
404 stamp = intel_uncore_read(gt->uncore, GUCPMTIMESTAMP);
405 ktime = ktime_get_boottime_ns();
406
407 drm_printf(p, "Kernel timestamp: 0x%08llX [%llu]\n", ktime, ktime);
408 drm_printf(p, "GuC timestamp: 0x%08X [%u]\n", stamp, stamp);
409 drm_printf(p, "CS timestamp frequency: %u Hz, %u ns\n",
410 gt->clock_frequency, gt->clock_period_ns);
411 }
412
intel_guc_init(struct intel_guc * guc)413 int intel_guc_init(struct intel_guc *guc)
414 {
415 int ret;
416
417 ret = intel_uc_fw_init(&guc->fw);
418 if (ret)
419 goto out;
420
421 ret = intel_guc_log_create(&guc->log);
422 if (ret)
423 goto err_fw;
424
425 ret = intel_guc_capture_init(guc);
426 if (ret)
427 goto err_log;
428
429 ret = intel_guc_ads_create(guc);
430 if (ret)
431 goto err_capture;
432
433 GEM_BUG_ON(!guc->ads_vma);
434
435 ret = intel_guc_ct_init(&guc->ct);
436 if (ret)
437 goto err_ads;
438
439 if (intel_guc_submission_is_used(guc)) {
440 /*
441 * This is stuff we need to have available at fw load time
442 * if we are planning to enable submission later
443 */
444 ret = intel_guc_submission_init(guc);
445 if (ret)
446 goto err_ct;
447 }
448
449 if (intel_guc_slpc_is_used(guc)) {
450 ret = intel_guc_slpc_init(&guc->slpc);
451 if (ret)
452 goto err_submission;
453 }
454
455 /* now that everything is perma-pinned, initialize the parameters */
456 guc_init_params(guc);
457
458 intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_LOADABLE);
459
460 return 0;
461
462 err_submission:
463 intel_guc_submission_fini(guc);
464 err_ct:
465 intel_guc_ct_fini(&guc->ct);
466 err_ads:
467 intel_guc_ads_destroy(guc);
468 err_capture:
469 intel_guc_capture_destroy(guc);
470 err_log:
471 intel_guc_log_destroy(&guc->log);
472 err_fw:
473 intel_uc_fw_fini(&guc->fw);
474 out:
475 intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_INIT_FAIL);
476 guc_probe_error(guc, "failed with %pe\n", ERR_PTR(ret));
477 return ret;
478 }
479
intel_guc_fini(struct intel_guc * guc)480 void intel_guc_fini(struct intel_guc *guc)
481 {
482 if (!intel_uc_fw_is_loadable(&guc->fw))
483 return;
484
485 flush_work(&guc->dead_guc_worker);
486
487 if (intel_guc_slpc_is_used(guc))
488 intel_guc_slpc_fini(&guc->slpc);
489
490 if (intel_guc_submission_is_used(guc))
491 intel_guc_submission_fini(guc);
492
493 intel_guc_ct_fini(&guc->ct);
494
495 intel_guc_ads_destroy(guc);
496 intel_guc_capture_destroy(guc);
497 intel_guc_log_destroy(&guc->log);
498 intel_uc_fw_fini(&guc->fw);
499 }
500
501 /*
502 * This function implements the MMIO based host to GuC interface.
503 */
intel_guc_send_mmio(struct intel_guc * guc,const u32 * request,u32 len,u32 * response_buf,u32 response_buf_size)504 int intel_guc_send_mmio(struct intel_guc *guc, const u32 *request, u32 len,
505 u32 *response_buf, u32 response_buf_size)
506 {
507 struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
508 u32 header;
509 int i;
510 int ret;
511
512 GEM_BUG_ON(!len);
513 GEM_BUG_ON(len > guc->send_regs.count);
514
515 GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) != GUC_HXG_ORIGIN_HOST);
516 GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) != GUC_HXG_TYPE_REQUEST);
517
518 mutex_lock(&guc->send_mutex);
519 intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains);
520
521 retry:
522 for (i = 0; i < len; i++)
523 intel_uncore_write(uncore, guc_send_reg(guc, i), request[i]);
524
525 intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1));
526
527 intel_guc_notify(guc);
528
529 /*
530 * No GuC command should ever take longer than 10ms.
531 * Fast commands should still complete in 10us.
532 */
533 ret = __intel_wait_for_register_fw(uncore,
534 guc_send_reg(guc, 0),
535 GUC_HXG_MSG_0_ORIGIN,
536 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN,
537 GUC_HXG_ORIGIN_GUC),
538 10, 10, &header);
539 if (unlikely(ret)) {
540 timeout:
541 guc_err(guc, "mmio request %#x: no reply %x\n",
542 request[0], header);
543 goto out;
544 }
545
546 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_BUSY) {
547 #define done ({ header = intel_uncore_read(uncore, guc_send_reg(guc, 0)); \
548 FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != GUC_HXG_ORIGIN_GUC || \
549 FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_NO_RESPONSE_BUSY; })
550
551 ret = wait_for(done, 1000);
552 if (unlikely(ret))
553 goto timeout;
554 if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) !=
555 GUC_HXG_ORIGIN_GUC))
556 goto proto;
557 #undef done
558 }
559
560 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
561 u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header);
562
563 guc_dbg(guc, "mmio request %#x: retrying, reason %u\n",
564 request[0], reason);
565 goto retry;
566 }
567
568 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_RESPONSE_FAILURE) {
569 u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header);
570 u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header);
571
572 guc_err(guc, "mmio request %#x: failure %x/%u\n",
573 request[0], error, hint);
574 ret = -ENXIO;
575 goto out;
576 }
577
578 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_RESPONSE_SUCCESS) {
579 proto:
580 guc_err(guc, "mmio request %#x: unexpected reply %#x\n",
581 request[0], header);
582 ret = -EPROTO;
583 goto out;
584 }
585
586 if (response_buf) {
587 int count = min(response_buf_size, guc->send_regs.count);
588
589 GEM_BUG_ON(!count);
590
591 response_buf[0] = header;
592
593 for (i = 1; i < count; i++)
594 response_buf[i] = intel_uncore_read(uncore,
595 guc_send_reg(guc, i));
596
597 /* Use number of copied dwords as our return value */
598 ret = count;
599 } else {
600 /* Use data from the GuC response as our return value */
601 ret = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header);
602 }
603
604 out:
605 intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains);
606 mutex_unlock(&guc->send_mutex);
607
608 return ret;
609 }
610
intel_guc_crash_process_msg(struct intel_guc * guc,u32 action)611 int intel_guc_crash_process_msg(struct intel_guc *guc, u32 action)
612 {
613 if (action == INTEL_GUC_ACTION_NOTIFY_CRASH_DUMP_POSTED)
614 guc_err(guc, "Crash dump notification\n");
615 else if (action == INTEL_GUC_ACTION_NOTIFY_EXCEPTION)
616 guc_err(guc, "Exception notification\n");
617 else
618 guc_err(guc, "Unknown crash notification: 0x%04X\n", action);
619
620 queue_work(system_unbound_wq, &guc->dead_guc_worker);
621
622 return 0;
623 }
624
intel_guc_to_host_process_recv_msg(struct intel_guc * guc,const u32 * payload,u32 len)625 int intel_guc_to_host_process_recv_msg(struct intel_guc *guc,
626 const u32 *payload, u32 len)
627 {
628 u32 msg;
629
630 if (unlikely(!len))
631 return -EPROTO;
632
633 /* Make sure to handle only enabled messages */
634 msg = payload[0] & guc->msg_enabled_mask;
635
636 if (msg & INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED)
637 guc_err(guc, "Received early crash dump notification!\n");
638 if (msg & INTEL_GUC_RECV_MSG_EXCEPTION)
639 guc_err(guc, "Received early exception notification!\n");
640
641 if (msg & (INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED | INTEL_GUC_RECV_MSG_EXCEPTION))
642 queue_work(system_unbound_wq, &guc->dead_guc_worker);
643
644 return 0;
645 }
646
647 /**
648 * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode
649 * @guc: intel_guc structure
650 * @rsa_offset: rsa offset w.r.t ggtt base of huc vma
651 *
652 * Triggers a HuC firmware authentication request to the GuC via intel_guc_send
653 * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by
654 * intel_huc_auth().
655 *
656 * Return: non-zero code on error
657 */
intel_guc_auth_huc(struct intel_guc * guc,u32 rsa_offset)658 int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset)
659 {
660 u32 action[] = {
661 INTEL_GUC_ACTION_AUTHENTICATE_HUC,
662 rsa_offset
663 };
664
665 return intel_guc_send(guc, action, ARRAY_SIZE(action));
666 }
667
668 /**
669 * intel_guc_suspend() - notify GuC entering suspend state
670 * @guc: the guc
671 */
intel_guc_suspend(struct intel_guc * guc)672 int intel_guc_suspend(struct intel_guc *guc)
673 {
674 int ret;
675 u32 action[] = {
676 INTEL_GUC_ACTION_CLIENT_SOFT_RESET,
677 };
678
679 if (!intel_guc_is_ready(guc))
680 return 0;
681
682 if (intel_guc_submission_is_used(guc)) {
683 flush_work(&guc->dead_guc_worker);
684
685 /*
686 * This H2G MMIO command tears down the GuC in two steps. First it will
687 * generate a G2H CTB for every active context indicating a reset. In
688 * practice the i915 shouldn't ever get a G2H as suspend should only be
689 * called when the GPU is idle. Next, it tears down the CTBs and this
690 * H2G MMIO command completes.
691 *
692 * Don't abort on a failure code from the GuC. Keep going and do the
693 * clean up in santize() and re-initialisation on resume and hopefully
694 * the error here won't be problematic.
695 */
696 ret = intel_guc_send_mmio(guc, action, ARRAY_SIZE(action), NULL, 0);
697 if (ret)
698 guc_err(guc, "suspend: RESET_CLIENT action failed with %pe\n",
699 ERR_PTR(ret));
700 }
701
702 /* Signal that the GuC isn't running. */
703 intel_guc_sanitize(guc);
704
705 return 0;
706 }
707
708 /**
709 * intel_guc_resume() - notify GuC resuming from suspend state
710 * @guc: the guc
711 */
intel_guc_resume(struct intel_guc * guc)712 int intel_guc_resume(struct intel_guc *guc)
713 {
714 /*
715 * NB: This function can still be called even if GuC submission is
716 * disabled, e.g. if GuC is enabled for HuC authentication only. Thus,
717 * if any code is later added here, it must be support doing nothing
718 * if submission is disabled (as per intel_guc_suspend).
719 */
720 return 0;
721 }
722
723 /**
724 * DOC: GuC Memory Management
725 *
726 * GuC can't allocate any memory for its own usage, so all the allocations must
727 * be handled by the host driver. GuC accesses the memory via the GGTT, with the
728 * exception of the top and bottom parts of the 4GB address space, which are
729 * instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM)
730 * or other parts of the HW. The driver must take care not to place objects that
731 * the GuC is going to access in these reserved ranges. The layout of the GuC
732 * address space is shown below:
733 *
734 * ::
735 *
736 * +===========> +====================+ <== FFFF_FFFF
737 * ^ | Reserved |
738 * | +====================+ <== GUC_GGTT_TOP
739 * | | |
740 * | | DRAM |
741 * GuC | |
742 * Address +===> +====================+ <== GuC ggtt_pin_bias
743 * Space ^ | |
744 * | | | |
745 * | GuC | GuC |
746 * | WOPCM | WOPCM |
747 * | Size | |
748 * | | | |
749 * v v | |
750 * +=======+===> +====================+ <== 0000_0000
751 *
752 * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM
753 * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped
754 * to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size.
755 */
756
757 /**
758 * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
759 * @guc: the guc
760 * @size: size of area to allocate (both virtual space and memory)
761 *
762 * This is a wrapper to create an object for use with the GuC. In order to
763 * use it inside the GuC, an object needs to be pinned lifetime, so we allocate
764 * both some backing storage and a range inside the Global GTT. We must pin
765 * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that
766 * range is reserved inside GuC.
767 *
768 * Return: A i915_vma if successful, otherwise an ERR_PTR.
769 */
intel_guc_allocate_vma(struct intel_guc * guc,u32 size)770 struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size)
771 {
772 struct intel_gt *gt = guc_to_gt(guc);
773 struct drm_i915_gem_object *obj;
774 struct i915_vma *vma;
775 u64 flags;
776 int ret;
777
778 if (HAS_LMEM(gt->i915))
779 obj = i915_gem_object_create_lmem(gt->i915, size,
780 I915_BO_ALLOC_CPU_CLEAR |
781 I915_BO_ALLOC_CONTIGUOUS |
782 I915_BO_ALLOC_PM_EARLY);
783 else
784 obj = i915_gem_object_create_shmem(gt->i915, size);
785
786 if (IS_ERR(obj))
787 return ERR_CAST(obj);
788
789 /*
790 * Wa_22016122933: For Media version 13.0, all Media GT shared
791 * memory needs to be mapped as WC on CPU side and UC (PAT
792 * index 2) on GPU side.
793 */
794 if (intel_gt_needs_wa_22016122933(gt))
795 i915_gem_object_set_cache_coherency(obj, I915_CACHE_NONE);
796
797 vma = i915_vma_instance(obj, >->ggtt->vm, NULL);
798 if (IS_ERR(vma))
799 goto err;
800
801 flags = PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
802 ret = i915_ggtt_pin(vma, NULL, 0, flags);
803 if (ret) {
804 vma = ERR_PTR(ret);
805 goto err;
806 }
807
808 return i915_vma_make_unshrinkable(vma);
809
810 err:
811 i915_gem_object_put(obj);
812 return vma;
813 }
814
815 /**
816 * intel_guc_allocate_and_map_vma() - Allocate and map VMA for GuC usage
817 * @guc: the guc
818 * @size: size of area to allocate (both virtual space and memory)
819 * @out_vma: return variable for the allocated vma pointer
820 * @out_vaddr: return variable for the obj mapping
821 *
822 * This wrapper calls intel_guc_allocate_vma() and then maps the allocated
823 * object with I915_MAP_WB.
824 *
825 * Return: 0 if successful, a negative errno code otherwise.
826 */
intel_guc_allocate_and_map_vma(struct intel_guc * guc,u32 size,struct i915_vma ** out_vma,void ** out_vaddr)827 int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size,
828 struct i915_vma **out_vma, void **out_vaddr)
829 {
830 struct i915_vma *vma;
831 void *vaddr;
832
833 vma = intel_guc_allocate_vma(guc, size);
834 if (IS_ERR(vma))
835 return PTR_ERR(vma);
836
837 vaddr = i915_gem_object_pin_map_unlocked(vma->obj,
838 intel_gt_coherent_map_type(guc_to_gt(guc),
839 vma->obj, true));
840 if (IS_ERR(vaddr)) {
841 i915_vma_unpin_and_release(&vma, 0);
842 return PTR_ERR(vaddr);
843 }
844
845 *out_vma = vma;
846 *out_vaddr = vaddr;
847
848 return 0;
849 }
850
__guc_action_self_cfg(struct intel_guc * guc,u16 key,u16 len,u64 value)851 static int __guc_action_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value)
852 {
853 u32 request[HOST2GUC_SELF_CFG_REQUEST_MSG_LEN] = {
854 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
855 FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
856 FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, GUC_ACTION_HOST2GUC_SELF_CFG),
857 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_KEY, key) |
858 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_LEN, len),
859 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_2_VALUE32, lower_32_bits(value)),
860 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_3_VALUE64, upper_32_bits(value)),
861 };
862 int ret;
863
864 GEM_BUG_ON(len > 2);
865 GEM_BUG_ON(len == 1 && upper_32_bits(value));
866
867 /* Self config must go over MMIO */
868 ret = intel_guc_send_mmio(guc, request, ARRAY_SIZE(request), NULL, 0);
869
870 if (unlikely(ret < 0))
871 return ret;
872 if (unlikely(ret > 1))
873 return -EPROTO;
874 if (unlikely(!ret))
875 return -ENOKEY;
876
877 return 0;
878 }
879
__guc_self_cfg(struct intel_guc * guc,u16 key,u16 len,u64 value)880 static int __guc_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value)
881 {
882 int err = __guc_action_self_cfg(guc, key, len, value);
883
884 if (unlikely(err))
885 guc_probe_error(guc, "Unsuccessful self-config (%pe) key %#hx value %#llx\n",
886 ERR_PTR(err), key, value);
887 return err;
888 }
889
intel_guc_self_cfg32(struct intel_guc * guc,u16 key,u32 value)890 int intel_guc_self_cfg32(struct intel_guc *guc, u16 key, u32 value)
891 {
892 return __guc_self_cfg(guc, key, 1, value);
893 }
894
intel_guc_self_cfg64(struct intel_guc * guc,u16 key,u64 value)895 int intel_guc_self_cfg64(struct intel_guc *guc, u16 key, u64 value)
896 {
897 return __guc_self_cfg(guc, key, 2, value);
898 }
899
900 /**
901 * intel_guc_load_status - dump information about GuC load status
902 * @guc: the GuC
903 * @p: the &drm_printer
904 *
905 * Pretty printer for GuC load status.
906 */
intel_guc_load_status(struct intel_guc * guc,struct drm_printer * p)907 void intel_guc_load_status(struct intel_guc *guc, struct drm_printer *p)
908 {
909 struct intel_gt *gt = guc_to_gt(guc);
910 struct intel_uncore *uncore = gt->uncore;
911 intel_wakeref_t wakeref;
912
913 if (!intel_guc_is_supported(guc)) {
914 drm_printf(p, "GuC not supported\n");
915 return;
916 }
917
918 if (!intel_guc_is_wanted(guc)) {
919 drm_printf(p, "GuC disabled\n");
920 return;
921 }
922
923 intel_uc_fw_dump(&guc->fw, p);
924
925 with_intel_runtime_pm(uncore->rpm, wakeref) {
926 u32 status = intel_uncore_read(uncore, GUC_STATUS);
927 u32 i;
928
929 drm_printf(p, "GuC status 0x%08x:\n", status);
930 drm_printf(p, "\tBootrom status = 0x%x\n",
931 (status & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
932 drm_printf(p, "\tuKernel status = 0x%x\n",
933 (status & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
934 drm_printf(p, "\tMIA Core status = 0x%x\n",
935 (status & GS_MIA_MASK) >> GS_MIA_SHIFT);
936 drm_puts(p, "Scratch registers:\n");
937 for (i = 0; i < 16; i++) {
938 drm_printf(p, "\t%2d: \t0x%x\n",
939 i, intel_uncore_read(uncore, SOFT_SCRATCH(i)));
940 }
941 }
942 }
943
intel_guc_write_barrier(struct intel_guc * guc)944 void intel_guc_write_barrier(struct intel_guc *guc)
945 {
946 struct intel_gt *gt = guc_to_gt(guc);
947
948 if (i915_gem_object_is_lmem(guc->ct.vma->obj)) {
949 /*
950 * Ensure intel_uncore_write_fw can be used rather than
951 * intel_uncore_write.
952 */
953 GEM_BUG_ON(guc->send_regs.fw_domains);
954
955 /*
956 * This register is used by the i915 and GuC for MMIO based
957 * communication. Once we are in this code CTBs are the only
958 * method the i915 uses to communicate with the GuC so it is
959 * safe to write to this register (a value of 0 is NOP for MMIO
960 * communication). If we ever start mixing CTBs and MMIOs a new
961 * register will have to be chosen. This function is also used
962 * to enforce ordering of a work queue item write and an update
963 * to the process descriptor. When a work queue is being used,
964 * CTBs are also the only mechanism of communication.
965 */
966 intel_uncore_write_fw(gt->uncore, GEN11_SOFT_SCRATCH(0), 0);
967 } else {
968 /* wmb() sufficient for a barrier if in smem */
969 wmb();
970 }
971 }
972