xref: /linux/drivers/net/phy/mxl-gpy.c (revision 8f7aa3d3c7323f4ca2768a9e74ebbe359c4f8f88)
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Copyright (C) 2021 Maxlinear Corporation
3  * Copyright (C) 2020 Intel Corporation
4  *
5  * Drivers for Maxlinear Ethernet GPY
6  *
7  */
8 
9 #include <linux/module.h>
10 #include <linux/bitfield.h>
11 #include <linux/hwmon.h>
12 #include <linux/mutex.h>
13 #include <linux/phy.h>
14 #include <linux/polynomial.h>
15 #include <linux/property.h>
16 #include <linux/netdevice.h>
17 
18 /* PHY ID */
19 #define PHY_ID_GPYx15B_MASK	0xFFFFFFFC
20 #define PHY_ID_GPY21xB_MASK	0xFFFFFFF9
21 #define PHY_ID_GPY2xx		0x67C9DC00
22 #define PHY_ID_GPY115B		0x67C9DF00
23 #define PHY_ID_GPY115C		0x67C9DF10
24 #define PHY_ID_GPY211B		0x67C9DE08
25 #define PHY_ID_GPY211C		0x67C9DE10
26 #define PHY_ID_GPY212B		0x67C9DE09
27 #define PHY_ID_GPY212C		0x67C9DE20
28 #define PHY_ID_GPY215B		0x67C9DF04
29 #define PHY_ID_GPY215C		0x67C9DF20
30 #define PHY_ID_GPY241B		0x67C9DE40
31 #define PHY_ID_GPY241BM		0x67C9DE80
32 #define PHY_ID_GPY245B		0x67C9DEC0
33 #define PHY_ID_MXL86211C	0xC1335400
34 #define PHY_ID_MXL86252		0xC1335520
35 #define PHY_ID_MXL86282		0xC1335500
36 
37 #define PHY_CTL1		0x13
38 #define PHY_CTL1_MDICD		BIT(3)
39 #define PHY_CTL1_MDIAB		BIT(2)
40 #define PHY_CTL1_AMDIX		BIT(0)
41 #define PHY_MIISTAT		0x18	/* MII state */
42 #define PHY_IMASK		0x19	/* interrupt mask */
43 #define PHY_ISTAT		0x1A	/* interrupt status */
44 #define PHY_LED			0x1B	/* LEDs */
45 #define PHY_FWV			0x1E	/* firmware version */
46 
47 #define PHY_MIISTAT_SPD_MASK	GENMASK(2, 0)
48 #define PHY_MIISTAT_DPX		BIT(3)
49 #define PHY_MIISTAT_LS		BIT(10)
50 
51 #define PHY_MIISTAT_SPD_10	0
52 #define PHY_MIISTAT_SPD_100	1
53 #define PHY_MIISTAT_SPD_1000	2
54 #define PHY_MIISTAT_SPD_2500	4
55 
56 #define PHY_IMASK_WOL		BIT(15)	/* Wake-on-LAN */
57 #define PHY_IMASK_ANC		BIT(10)	/* Auto-Neg complete */
58 #define PHY_IMASK_ADSC		BIT(5)	/* Link auto-downspeed detect */
59 #define PHY_IMASK_DXMC		BIT(2)	/* Duplex mode change */
60 #define PHY_IMASK_LSPC		BIT(1)	/* Link speed change */
61 #define PHY_IMASK_LSTC		BIT(0)	/* Link state change */
62 #define PHY_IMASK_MASK		(PHY_IMASK_LSTC | \
63 				 PHY_IMASK_LSPC | \
64 				 PHY_IMASK_DXMC | \
65 				 PHY_IMASK_ADSC | \
66 				 PHY_IMASK_ANC)
67 
68 #define GPY_MAX_LEDS		4
69 #define PHY_LED_POLARITY(idx)	BIT(12 + (idx))
70 #define PHY_LED_HWCONTROL(idx)	BIT(8 + (idx))
71 #define PHY_LED_ON(idx)		BIT(idx)
72 
73 #define PHY_FWV_REL_MASK	BIT(15)
74 #define PHY_FWV_MAJOR_MASK	GENMASK(11, 8)
75 #define PHY_FWV_MINOR_MASK	GENMASK(7, 0)
76 
77 #define PHY_PMA_MGBT_POLARITY	0x82
78 #define PHY_MDI_MDI_X_MASK	GENMASK(1, 0)
79 #define PHY_MDI_MDI_X_NORMAL	0x3
80 #define PHY_MDI_MDI_X_AB	0x2
81 #define PHY_MDI_MDI_X_CD	0x1
82 #define PHY_MDI_MDI_X_CROSS	0x0
83 
84 /* LED */
85 #define VSPEC1_LED(idx)		(1 + (idx))
86 #define VSPEC1_LED_BLINKS	GENMASK(15, 12)
87 #define VSPEC1_LED_PULSE	GENMASK(11, 8)
88 #define VSPEC1_LED_CON		GENMASK(7, 4)
89 #define VSPEC1_LED_BLINKF	GENMASK(3, 0)
90 
91 #define VSPEC1_LED_LINK10	BIT(0)
92 #define VSPEC1_LED_LINK100	BIT(1)
93 #define VSPEC1_LED_LINK1000	BIT(2)
94 #define VSPEC1_LED_LINK2500	BIT(3)
95 
96 #define VSPEC1_LED_TXACT	BIT(0)
97 #define VSPEC1_LED_RXACT	BIT(1)
98 #define VSPEC1_LED_COL		BIT(2)
99 #define VSPEC1_LED_NO_CON	BIT(3)
100 
101 /* SGMII */
102 #define VSPEC1_SGMII_CTRL	0x08
103 #define VSPEC1_SGMII_CTRL_ANEN	BIT(12)		/* Aneg enable */
104 #define VSPEC1_SGMII_CTRL_ANRS	BIT(9)		/* Restart Aneg */
105 #define VSPEC1_SGMII_ANEN_ANRS	(VSPEC1_SGMII_CTRL_ANEN | \
106 				 VSPEC1_SGMII_CTRL_ANRS)
107 
108 /* Temperature sensor */
109 #define VSPEC1_TEMP_STA	0x0E
110 #define VSPEC1_TEMP_STA_DATA	GENMASK(9, 0)
111 
112 /* Mailbox */
113 #define VSPEC1_MBOX_DATA	0x5
114 #define VSPEC1_MBOX_ADDRLO	0x6
115 #define VSPEC1_MBOX_CMD		0x7
116 #define VSPEC1_MBOX_CMD_ADDRHI	GENMASK(7, 0)
117 #define VSPEC1_MBOX_CMD_RD	(0 << 8)
118 #define VSPEC1_MBOX_CMD_READY	BIT(15)
119 
120 /* WoL */
121 #define VPSPEC2_WOL_CTL		0x0E06
122 #define VPSPEC2_WOL_AD01	0x0E08
123 #define VPSPEC2_WOL_AD23	0x0E09
124 #define VPSPEC2_WOL_AD45	0x0E0A
125 #define WOL_EN			BIT(0)
126 
127 /* Internal registers, access via mbox */
128 #define REG_GPIO0_OUT		0xd3ce00
129 
130 struct gpy_priv {
131 	/* serialize mailbox acesses */
132 	struct mutex mbox_lock;
133 
134 	u8 fw_major;
135 	u8 fw_minor;
136 	u32 wolopts;
137 
138 	/* It takes 3 seconds to fully switch out of loopback mode before
139 	 * it can safely re-enter loopback mode. Record the time when
140 	 * loopback is disabled. Check and wait if necessary before loopback
141 	 * is enabled.
142 	 */
143 	u64 lb_dis_to;
144 };
145 
146 static const struct {
147 	int major;
148 	int minor;
149 } ver_need_sgmii_reaneg[] = {
150 	{7, 0x6D},
151 	{8, 0x6D},
152 	{9, 0x73},
153 };
154 
155 #if IS_ENABLED(CONFIG_HWMON)
156 /* The original translation formulae of the temperature (in degrees of Celsius)
157  * are as follows:
158  *
159  *   T = -2.5761e-11*(N^4) + 9.7332e-8*(N^3) + -1.9165e-4*(N^2) +
160  *       3.0762e-1*(N^1) + -5.2156e1
161  *
162  * where [-52.156, 137.961]C and N = [0, 1023].
163  *
164  * They must be accordingly altered to be suitable for the integer arithmetics.
165  * The technique is called 'factor redistribution', which just makes sure the
166  * multiplications and divisions are made so to have a result of the operations
167  * within the integer numbers limit. In addition we need to translate the
168  * formulae to accept millidegrees of Celsius. Here what it looks like after
169  * the alterations:
170  *
171  *   T = -25761e-12*(N^4) + 97332e-9*(N^3) + -191650e-6*(N^2) +
172  *       307620e-3*(N^1) + -52156
173  *
174  * where T = [-52156, 137961]mC and N = [0, 1023].
175  */
176 static const struct polynomial poly_N_to_temp = {
177 	.terms = {
178 		{4,  -25761, 1000, 1},
179 		{3,   97332, 1000, 1},
180 		{2, -191650, 1000, 1},
181 		{1,  307620, 1000, 1},
182 		{0,  -52156,    1, 1}
183 	}
184 };
185 
186 static int gpy_hwmon_read(struct device *dev,
187 			  enum hwmon_sensor_types type,
188 			  u32 attr, int channel, long *value)
189 {
190 	struct phy_device *phydev = dev_get_drvdata(dev);
191 	int ret;
192 
193 	ret = phy_read_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_TEMP_STA);
194 	if (ret < 0)
195 		return ret;
196 	if (!ret)
197 		return -ENODATA;
198 
199 	*value = polynomial_calc(&poly_N_to_temp,
200 				 FIELD_GET(VSPEC1_TEMP_STA_DATA, ret));
201 
202 	return 0;
203 }
204 
205 static int mxl862x2_hwmon_read(struct device *dev,
206 			       enum hwmon_sensor_types type,
207 			       u32 attr, int channel, long *value)
208 {
209 	struct phy_device *phydev = dev_get_drvdata(dev);
210 	long tmp;
211 	int ret;
212 
213 	ret = phy_read_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_TEMP_STA);
214 	if (ret < 0)
215 		return ret;
216 	if (!ret)
217 		return -ENODATA;
218 
219 	tmp = (s16)ret;
220 	tmp *= 78125;
221 	tmp /= 10000;
222 
223 	*value = tmp;
224 
225 	return 0;
226 }
227 
228 static umode_t gpy_hwmon_is_visible(const void *data,
229 				    enum hwmon_sensor_types type,
230 				    u32 attr, int channel)
231 {
232 	return 0444;
233 }
234 
235 static const struct hwmon_channel_info * const gpy_hwmon_info[] = {
236 	HWMON_CHANNEL_INFO(temp, HWMON_T_INPUT),
237 	NULL
238 };
239 
240 static const struct hwmon_ops gpy_hwmon_hwmon_ops = {
241 	.is_visible	= gpy_hwmon_is_visible,
242 	.read		= gpy_hwmon_read,
243 };
244 
245 static const struct hwmon_ops mxl862x2_hwmon_hwmon_ops = {
246 	.is_visible	= gpy_hwmon_is_visible,
247 	.read		= mxl862x2_hwmon_read,
248 };
249 
250 static const struct hwmon_chip_info gpy_hwmon_chip_info = {
251 	.ops		= &gpy_hwmon_hwmon_ops,
252 	.info		= gpy_hwmon_info,
253 };
254 
255 static const struct hwmon_chip_info mxl862x2_hwmon_chip_info = {
256 	.ops		= &mxl862x2_hwmon_hwmon_ops,
257 	.info		= gpy_hwmon_info,
258 };
259 
260 static int gpy_hwmon_register(struct phy_device *phydev)
261 {
262 	struct device *dev = &phydev->mdio.dev;
263 	const struct hwmon_chip_info *info;
264 	struct device *hwmon_dev;
265 
266 	if (phy_id_compare_model(phydev->phy_id, PHY_ID_MXL86252) ||
267 	    phy_id_compare_model(phydev->phy_id, PHY_ID_MXL86282))
268 		info = &mxl862x2_hwmon_chip_info;
269 	else
270 		info = &gpy_hwmon_chip_info;
271 
272 	hwmon_dev = devm_hwmon_device_register_with_info(dev, NULL, phydev,
273 							 info, NULL);
274 
275 	return PTR_ERR_OR_ZERO(hwmon_dev);
276 }
277 #else
278 static int gpy_hwmon_register(struct phy_device *phydev)
279 {
280 	return 0;
281 }
282 #endif
283 
284 static int gpy_ack_interrupt(struct phy_device *phydev)
285 {
286 	int ret;
287 
288 	/* Clear all pending interrupts */
289 	ret = phy_read(phydev, PHY_ISTAT);
290 	return ret < 0 ? ret : 0;
291 }
292 
293 static int gpy_mbox_read(struct phy_device *phydev, u32 addr)
294 {
295 	struct gpy_priv *priv = phydev->priv;
296 	int val, ret;
297 	u16 cmd;
298 
299 	mutex_lock(&priv->mbox_lock);
300 
301 	ret = phy_write_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_MBOX_ADDRLO,
302 			    addr);
303 	if (ret)
304 		goto out;
305 
306 	cmd = VSPEC1_MBOX_CMD_RD;
307 	cmd |= FIELD_PREP(VSPEC1_MBOX_CMD_ADDRHI, addr >> 16);
308 
309 	ret = phy_write_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_MBOX_CMD, cmd);
310 	if (ret)
311 		goto out;
312 
313 	/* The mbox read is used in the interrupt workaround. It was observed
314 	 * that a read might take up to 2.5ms. This is also the time for which
315 	 * the interrupt line is stuck low. To be on the safe side, poll the
316 	 * ready bit for 10ms.
317 	 */
318 	ret = phy_read_mmd_poll_timeout(phydev, MDIO_MMD_VEND1,
319 					VSPEC1_MBOX_CMD, val,
320 					(val & VSPEC1_MBOX_CMD_READY),
321 					500, 10000, false);
322 	if (ret)
323 		goto out;
324 
325 	ret = phy_read_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_MBOX_DATA);
326 
327 out:
328 	mutex_unlock(&priv->mbox_lock);
329 	return ret;
330 }
331 
332 static int gpy_config_init(struct phy_device *phydev)
333 {
334 	/* Nothing to configure. Configuration Requirement Placeholder */
335 	return 0;
336 }
337 
338 static int gpy21x_config_init(struct phy_device *phydev)
339 {
340 	__set_bit(PHY_INTERFACE_MODE_2500BASEX, phydev->possible_interfaces);
341 	__set_bit(PHY_INTERFACE_MODE_SGMII, phydev->possible_interfaces);
342 
343 	return gpy_config_init(phydev);
344 }
345 
346 static int gpy_probe(struct phy_device *phydev)
347 {
348 	struct device *dev = &phydev->mdio.dev;
349 	struct gpy_priv *priv;
350 	int fw_version;
351 	int ret;
352 
353 	if (!phydev->is_c45) {
354 		ret = phy_get_c45_ids(phydev);
355 		if (ret < 0)
356 			return ret;
357 	}
358 
359 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
360 	if (!priv)
361 		return -ENOMEM;
362 	phydev->priv = priv;
363 	mutex_init(&priv->mbox_lock);
364 
365 	if (!device_property_present(dev, "maxlinear,use-broken-interrupts"))
366 		phydev->dev_flags |= PHY_F_NO_IRQ;
367 
368 	fw_version = phy_read(phydev, PHY_FWV);
369 	if (fw_version < 0)
370 		return fw_version;
371 	priv->fw_major = FIELD_GET(PHY_FWV_MAJOR_MASK, fw_version);
372 	priv->fw_minor = FIELD_GET(PHY_FWV_MINOR_MASK, fw_version);
373 
374 	ret = gpy_hwmon_register(phydev);
375 	if (ret)
376 		return ret;
377 
378 	/* Show GPY PHY FW version in dmesg */
379 	phydev_info(phydev, "Firmware Version: %d.%d (0x%04X%s)\n",
380 		    priv->fw_major, priv->fw_minor, fw_version,
381 		    fw_version & PHY_FWV_REL_MASK ? "" : " test version");
382 
383 	return 0;
384 }
385 
386 static bool gpy_sgmii_need_reaneg(struct phy_device *phydev)
387 {
388 	struct gpy_priv *priv = phydev->priv;
389 	size_t i;
390 
391 	for (i = 0; i < ARRAY_SIZE(ver_need_sgmii_reaneg); i++) {
392 		if (priv->fw_major != ver_need_sgmii_reaneg[i].major)
393 			continue;
394 		if (priv->fw_minor < ver_need_sgmii_reaneg[i].minor)
395 			return true;
396 		break;
397 	}
398 
399 	return false;
400 }
401 
402 static bool gpy_2500basex_chk(struct phy_device *phydev)
403 {
404 	int ret;
405 
406 	ret = phy_read(phydev, PHY_MIISTAT);
407 	if (ret < 0) {
408 		phydev_err(phydev, "Error: MDIO register access failed: %d\n",
409 			   ret);
410 		return false;
411 	}
412 
413 	if (!(ret & PHY_MIISTAT_LS) ||
414 	    FIELD_GET(PHY_MIISTAT_SPD_MASK, ret) != PHY_MIISTAT_SPD_2500)
415 		return false;
416 
417 	phydev->speed = SPEED_2500;
418 	phydev->interface = PHY_INTERFACE_MODE_2500BASEX;
419 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_SGMII_CTRL,
420 		       VSPEC1_SGMII_CTRL_ANEN, 0);
421 	return true;
422 }
423 
424 static bool gpy_sgmii_aneg_en(struct phy_device *phydev)
425 {
426 	int ret;
427 
428 	ret = phy_read_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_SGMII_CTRL);
429 	if (ret < 0) {
430 		phydev_err(phydev, "Error: MMD register access failed: %d\n",
431 			   ret);
432 		return true;
433 	}
434 
435 	return (ret & VSPEC1_SGMII_CTRL_ANEN) ? true : false;
436 }
437 
438 static int gpy_config_mdix(struct phy_device *phydev, u8 ctrl)
439 {
440 	int ret;
441 	u16 val;
442 
443 	switch (ctrl) {
444 	case ETH_TP_MDI_AUTO:
445 		val = PHY_CTL1_AMDIX;
446 		break;
447 	case ETH_TP_MDI_X:
448 		val = (PHY_CTL1_MDIAB | PHY_CTL1_MDICD);
449 		break;
450 	case ETH_TP_MDI:
451 		val = 0;
452 		break;
453 	default:
454 		return 0;
455 	}
456 
457 	ret =  phy_modify(phydev, PHY_CTL1, PHY_CTL1_AMDIX | PHY_CTL1_MDIAB |
458 			  PHY_CTL1_MDICD, val);
459 	if (ret < 0)
460 		return ret;
461 
462 	return genphy_c45_restart_aneg(phydev);
463 }
464 
465 static int gpy_config_aneg(struct phy_device *phydev)
466 {
467 	bool changed = false;
468 	u32 adv;
469 	int ret;
470 
471 	if (phydev->autoneg == AUTONEG_DISABLE) {
472 		/* Configure half duplex with genphy_setup_forced,
473 		 * because genphy_c45_pma_setup_forced does not support.
474 		 */
475 		return phydev->duplex != DUPLEX_FULL
476 			? genphy_setup_forced(phydev)
477 			: genphy_c45_pma_setup_forced(phydev);
478 	}
479 
480 	ret = gpy_config_mdix(phydev,  phydev->mdix_ctrl);
481 	if (ret < 0)
482 		return ret;
483 
484 	ret = genphy_c45_an_config_aneg(phydev);
485 	if (ret < 0)
486 		return ret;
487 	if (ret > 0)
488 		changed = true;
489 
490 	adv = linkmode_adv_to_mii_ctrl1000_t(phydev->advertising);
491 	ret = phy_modify_changed(phydev, MII_CTRL1000,
492 				 ADVERTISE_1000FULL | ADVERTISE_1000HALF,
493 				 adv);
494 	if (ret < 0)
495 		return ret;
496 	if (ret > 0)
497 		changed = true;
498 
499 	ret = genphy_c45_check_and_restart_aneg(phydev, changed);
500 	if (ret < 0)
501 		return ret;
502 
503 	if (phydev->interface == PHY_INTERFACE_MODE_USXGMII ||
504 	    phydev->interface == PHY_INTERFACE_MODE_INTERNAL)
505 		return 0;
506 
507 	/* No need to trigger re-ANEG if link speed is 2.5G or SGMII ANEG is
508 	 * disabled.
509 	 */
510 	if (!gpy_sgmii_need_reaneg(phydev) || gpy_2500basex_chk(phydev) ||
511 	    !gpy_sgmii_aneg_en(phydev))
512 		return 0;
513 
514 	/* There is a design constraint in GPY2xx device where SGMII AN is
515 	 * only triggered when there is change of speed. If, PHY link
516 	 * partner`s speed is still same even after PHY TPI is down and up
517 	 * again, SGMII AN is not triggered and hence no new in-band message
518 	 * from GPY to MAC side SGMII.
519 	 * This could cause an issue during power up, when PHY is up prior to
520 	 * MAC. At this condition, once MAC side SGMII is up, MAC side SGMII
521 	 * wouldn`t receive new in-band message from GPY with correct link
522 	 * status, speed and duplex info.
523 	 *
524 	 * 1) If PHY is already up and TPI link status is still down (such as
525 	 *    hard reboot), TPI link status is polled for 4 seconds before
526 	 *    retriggerring SGMII AN.
527 	 * 2) If PHY is already up and TPI link status is also up (such as soft
528 	 *    reboot), polling of TPI link status is not needed and SGMII AN is
529 	 *    immediately retriggered.
530 	 * 3) Other conditions such as PHY is down, speed change etc, skip
531 	 *    retriggering SGMII AN. Note: in case of speed change, GPY FW will
532 	 *    initiate SGMII AN.
533 	 */
534 
535 	if (phydev->state != PHY_UP)
536 		return 0;
537 
538 	ret = phy_read_poll_timeout(phydev, MII_BMSR, ret, ret & BMSR_LSTATUS,
539 				    20000, 4000000, false);
540 	if (ret == -ETIMEDOUT)
541 		return 0;
542 	else if (ret < 0)
543 		return ret;
544 
545 	/* Trigger SGMII AN. */
546 	return phy_modify_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_SGMII_CTRL,
547 			      VSPEC1_SGMII_CTRL_ANRS, VSPEC1_SGMII_CTRL_ANRS);
548 }
549 
550 static int gpy_update_mdix(struct phy_device *phydev)
551 {
552 	int ret;
553 
554 	ret = phy_read(phydev, PHY_CTL1);
555 	if (ret < 0)
556 		return ret;
557 
558 	if (ret & PHY_CTL1_AMDIX)
559 		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
560 	else
561 		if (ret & PHY_CTL1_MDICD || ret & PHY_CTL1_MDIAB)
562 			phydev->mdix_ctrl = ETH_TP_MDI_X;
563 		else
564 			phydev->mdix_ctrl = ETH_TP_MDI;
565 
566 	ret = phy_read_mmd(phydev, MDIO_MMD_PMAPMD, PHY_PMA_MGBT_POLARITY);
567 	if (ret < 0)
568 		return ret;
569 
570 	if ((ret & PHY_MDI_MDI_X_MASK) < PHY_MDI_MDI_X_NORMAL)
571 		phydev->mdix = ETH_TP_MDI_X;
572 	else
573 		phydev->mdix = ETH_TP_MDI;
574 
575 	return 0;
576 }
577 
578 static int gpy_update_interface(struct phy_device *phydev)
579 {
580 	int ret;
581 
582 	/* Interface mode is fixed for USXGMII and integrated PHY */
583 	if (phydev->interface == PHY_INTERFACE_MODE_USXGMII ||
584 	    phydev->interface == PHY_INTERFACE_MODE_INTERNAL)
585 		return 0;
586 
587 	/* Automatically switch SERDES interface between SGMII and 2500-BaseX
588 	 * according to speed. Disable ANEG in 2500-BaseX mode.
589 	 */
590 	switch (phydev->speed) {
591 	case SPEED_2500:
592 		phydev->interface = PHY_INTERFACE_MODE_2500BASEX;
593 		ret = phy_modify_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_SGMII_CTRL,
594 				     VSPEC1_SGMII_CTRL_ANEN, 0);
595 		if (ret < 0) {
596 			phydev_err(phydev,
597 				   "Error: Disable of SGMII ANEG failed: %d\n",
598 				   ret);
599 			return ret;
600 		}
601 		break;
602 	case SPEED_1000:
603 	case SPEED_100:
604 	case SPEED_10:
605 		phydev->interface = PHY_INTERFACE_MODE_SGMII;
606 		if (gpy_sgmii_aneg_en(phydev))
607 			break;
608 		/* Enable and restart SGMII ANEG for 10/100/1000Mbps link speed
609 		 * if ANEG is disabled (in 2500-BaseX mode).
610 		 */
611 		ret = phy_modify_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_SGMII_CTRL,
612 				     VSPEC1_SGMII_ANEN_ANRS,
613 				     VSPEC1_SGMII_ANEN_ANRS);
614 		if (ret < 0) {
615 			phydev_err(phydev,
616 				   "Error: Enable of SGMII ANEG failed: %d\n",
617 				   ret);
618 			return ret;
619 		}
620 		break;
621 	}
622 
623 	return 0;
624 }
625 
626 static int gpy_read_status(struct phy_device *phydev)
627 {
628 	int ret;
629 
630 	ret = genphy_update_link(phydev);
631 	if (ret)
632 		return ret;
633 
634 	phydev->speed = SPEED_UNKNOWN;
635 	phydev->duplex = DUPLEX_UNKNOWN;
636 	phydev->pause = 0;
637 	phydev->asym_pause = 0;
638 
639 	if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) {
640 		ret = genphy_c45_read_lpa(phydev);
641 		if (ret < 0)
642 			return ret;
643 
644 		/* Read the link partner's 1G advertisement */
645 		ret = phy_read(phydev, MII_STAT1000);
646 		if (ret < 0)
647 			return ret;
648 		mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, ret);
649 	} else if (phydev->autoneg == AUTONEG_DISABLE) {
650 		linkmode_zero(phydev->lp_advertising);
651 	}
652 
653 	ret = phy_read(phydev, PHY_MIISTAT);
654 	if (ret < 0)
655 		return ret;
656 
657 	phydev->link = (ret & PHY_MIISTAT_LS) ? 1 : 0;
658 	phydev->duplex = (ret & PHY_MIISTAT_DPX) ? DUPLEX_FULL : DUPLEX_HALF;
659 	switch (FIELD_GET(PHY_MIISTAT_SPD_MASK, ret)) {
660 	case PHY_MIISTAT_SPD_10:
661 		phydev->speed = SPEED_10;
662 		break;
663 	case PHY_MIISTAT_SPD_100:
664 		phydev->speed = SPEED_100;
665 		break;
666 	case PHY_MIISTAT_SPD_1000:
667 		phydev->speed = SPEED_1000;
668 		break;
669 	case PHY_MIISTAT_SPD_2500:
670 		phydev->speed = SPEED_2500;
671 		break;
672 	}
673 
674 	if (phydev->link) {
675 		ret = gpy_update_interface(phydev);
676 		if (ret < 0)
677 			return ret;
678 
679 		if (phydev->speed == SPEED_2500 || phydev->speed == SPEED_1000) {
680 			ret = genphy_read_master_slave(phydev);
681 			if (ret < 0)
682 				return ret;
683 		}
684 
685 		ret = gpy_update_mdix(phydev);
686 		if (ret < 0)
687 			return ret;
688 	}
689 
690 	return 0;
691 }
692 
693 static int gpy_config_intr(struct phy_device *phydev)
694 {
695 	struct gpy_priv *priv = phydev->priv;
696 	u16 mask = 0;
697 	int ret;
698 
699 	ret = gpy_ack_interrupt(phydev);
700 	if (ret)
701 		return ret;
702 
703 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED)
704 		mask = PHY_IMASK_MASK;
705 
706 	if (priv->wolopts & WAKE_MAGIC)
707 		mask |= PHY_IMASK_WOL;
708 
709 	if (priv->wolopts & WAKE_PHY)
710 		mask |= PHY_IMASK_LSTC;
711 
712 	return phy_write(phydev, PHY_IMASK, mask);
713 }
714 
715 static irqreturn_t gpy_handle_interrupt(struct phy_device *phydev)
716 {
717 	int reg;
718 
719 	reg = phy_read(phydev, PHY_ISTAT);
720 	if (reg < 0) {
721 		phy_error(phydev);
722 		return IRQ_NONE;
723 	}
724 
725 	if (!(reg & PHY_IMASK_MASK))
726 		return IRQ_NONE;
727 
728 	/* The PHY might leave the interrupt line asserted even after PHY_ISTAT
729 	 * is read. To avoid interrupt storms, delay the interrupt handling as
730 	 * long as the PHY drives the interrupt line. An internal bus read will
731 	 * stall as long as the interrupt line is asserted, thus just read a
732 	 * random register here.
733 	 * Because we cannot access the internal bus at all while the interrupt
734 	 * is driven by the PHY, there is no way to make the interrupt line
735 	 * unstuck (e.g. by changing the pinmux to GPIO input) during that time
736 	 * frame. Therefore, polling is the best we can do and won't do any more
737 	 * harm.
738 	 * It was observed that this bug happens on link state and link speed
739 	 * changes independent of the firmware version.
740 	 */
741 	if (reg & (PHY_IMASK_LSTC | PHY_IMASK_LSPC)) {
742 		reg = gpy_mbox_read(phydev, REG_GPIO0_OUT);
743 		if (reg < 0) {
744 			phy_error(phydev);
745 			return IRQ_NONE;
746 		}
747 	}
748 
749 	phy_trigger_machine(phydev);
750 
751 	return IRQ_HANDLED;
752 }
753 
754 static int gpy_set_wol(struct phy_device *phydev,
755 		       struct ethtool_wolinfo *wol)
756 {
757 	struct net_device *attach_dev = phydev->attached_dev;
758 	struct gpy_priv *priv = phydev->priv;
759 	int ret;
760 
761 	if (wol->wolopts & WAKE_MAGIC) {
762 		/* MAC address - Byte0:Byte1:Byte2:Byte3:Byte4:Byte5
763 		 * VPSPEC2_WOL_AD45 = Byte0:Byte1
764 		 * VPSPEC2_WOL_AD23 = Byte2:Byte3
765 		 * VPSPEC2_WOL_AD01 = Byte4:Byte5
766 		 */
767 		ret = phy_set_bits_mmd(phydev, MDIO_MMD_VEND2,
768 				       VPSPEC2_WOL_AD45,
769 				       ((attach_dev->dev_addr[0] << 8) |
770 				       attach_dev->dev_addr[1]));
771 		if (ret < 0)
772 			return ret;
773 
774 		ret = phy_set_bits_mmd(phydev, MDIO_MMD_VEND2,
775 				       VPSPEC2_WOL_AD23,
776 				       ((attach_dev->dev_addr[2] << 8) |
777 				       attach_dev->dev_addr[3]));
778 		if (ret < 0)
779 			return ret;
780 
781 		ret = phy_set_bits_mmd(phydev, MDIO_MMD_VEND2,
782 				       VPSPEC2_WOL_AD01,
783 				       ((attach_dev->dev_addr[4] << 8) |
784 				       attach_dev->dev_addr[5]));
785 		if (ret < 0)
786 			return ret;
787 
788 		/* Enable the WOL interrupt */
789 		ret = phy_write(phydev, PHY_IMASK, PHY_IMASK_WOL);
790 		if (ret < 0)
791 			return ret;
792 
793 		/* Enable magic packet matching */
794 		ret = phy_set_bits_mmd(phydev, MDIO_MMD_VEND2,
795 				       VPSPEC2_WOL_CTL,
796 				       WOL_EN);
797 		if (ret < 0)
798 			return ret;
799 
800 		/* Clear the interrupt status register.
801 		 * Only WoL is enabled so clear all.
802 		 */
803 		ret = phy_read(phydev, PHY_ISTAT);
804 		if (ret < 0)
805 			return ret;
806 
807 		priv->wolopts |= WAKE_MAGIC;
808 	} else {
809 		/* Disable magic packet matching */
810 		ret = phy_clear_bits_mmd(phydev, MDIO_MMD_VEND2,
811 					 VPSPEC2_WOL_CTL,
812 					 WOL_EN);
813 		if (ret < 0)
814 			return ret;
815 
816 		/* Disable the WOL interrupt */
817 		ret = phy_clear_bits(phydev, PHY_IMASK, PHY_IMASK_WOL);
818 		if (ret < 0)
819 			return ret;
820 
821 		priv->wolopts &= ~WAKE_MAGIC;
822 	}
823 
824 	if (wol->wolopts & WAKE_PHY) {
825 		/* Enable the link state change interrupt */
826 		ret = phy_set_bits(phydev, PHY_IMASK, PHY_IMASK_LSTC);
827 		if (ret < 0)
828 			return ret;
829 
830 		/* Clear the interrupt status register */
831 		ret = phy_read(phydev, PHY_ISTAT);
832 		if (ret < 0)
833 			return ret;
834 
835 		if (ret & (PHY_IMASK_MASK & ~PHY_IMASK_LSTC))
836 			phy_trigger_machine(phydev);
837 
838 		priv->wolopts |= WAKE_PHY;
839 		return 0;
840 	}
841 
842 	priv->wolopts &= ~WAKE_PHY;
843 	/* Disable the link state change interrupt */
844 	return phy_clear_bits(phydev, PHY_IMASK, PHY_IMASK_LSTC);
845 }
846 
847 static void gpy_get_wol(struct phy_device *phydev,
848 			struct ethtool_wolinfo *wol)
849 {
850 	struct gpy_priv *priv = phydev->priv;
851 
852 	wol->supported = WAKE_MAGIC | WAKE_PHY;
853 	wol->wolopts = priv->wolopts;
854 }
855 
856 static int gpy_loopback(struct phy_device *phydev, bool enable, int speed)
857 {
858 	struct gpy_priv *priv = phydev->priv;
859 	u16 set = 0;
860 	int ret;
861 
862 	if (enable) {
863 		u64 now = get_jiffies_64();
864 
865 		if (speed)
866 			return -EOPNOTSUPP;
867 
868 		/* wait until 3 seconds from last disable */
869 		if (time_before64(now, priv->lb_dis_to))
870 			msleep(jiffies64_to_msecs(priv->lb_dis_to - now));
871 
872 		set = BMCR_LOOPBACK;
873 	}
874 
875 	ret = phy_modify(phydev, MII_BMCR, BMCR_LOOPBACK, set);
876 	if (ret <= 0)
877 		return ret;
878 
879 	if (enable) {
880 		/* It takes some time for PHY device to switch into
881 		 * loopback mode.
882 		 */
883 		msleep(100);
884 	} else {
885 		priv->lb_dis_to = get_jiffies_64() + HZ * 3;
886 	}
887 
888 	return 0;
889 }
890 
891 static int gpy115_loopback(struct phy_device *phydev, bool enable, int speed)
892 {
893 	struct gpy_priv *priv = phydev->priv;
894 
895 	if (enable)
896 		return gpy_loopback(phydev, enable, speed);
897 
898 	if (priv->fw_minor > 0x76)
899 		return gpy_loopback(phydev, 0, 0);
900 
901 	return genphy_soft_reset(phydev);
902 }
903 
904 static int gpy_led_brightness_set(struct phy_device *phydev,
905 				  u8 index, enum led_brightness value)
906 {
907 	int ret;
908 
909 	if (index >= GPY_MAX_LEDS)
910 		return -EINVAL;
911 
912 	/* clear HWCONTROL and set manual LED state */
913 	ret = phy_modify(phydev, PHY_LED,
914 			 ((value == LED_OFF) ? PHY_LED_HWCONTROL(index) : 0) |
915 			 PHY_LED_ON(index),
916 			 (value == LED_OFF) ? 0 : PHY_LED_ON(index));
917 	if (ret)
918 		return ret;
919 
920 	/* ToDo: set PWM brightness */
921 
922 	/* clear HW LED setup */
923 	if (value == LED_OFF)
924 		return phy_write_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_LED(index), 0);
925 	else
926 		return 0;
927 }
928 
929 static const unsigned long supported_triggers = (BIT(TRIGGER_NETDEV_LINK) |
930 						 BIT(TRIGGER_NETDEV_LINK_10) |
931 						 BIT(TRIGGER_NETDEV_LINK_100) |
932 						 BIT(TRIGGER_NETDEV_LINK_1000) |
933 						 BIT(TRIGGER_NETDEV_LINK_2500) |
934 						 BIT(TRIGGER_NETDEV_RX) |
935 						 BIT(TRIGGER_NETDEV_TX));
936 
937 static int gpy_led_hw_is_supported(struct phy_device *phydev, u8 index,
938 				   unsigned long rules)
939 {
940 	if (index >= GPY_MAX_LEDS)
941 		return -EINVAL;
942 
943 	/* All combinations of the supported triggers are allowed */
944 	if (rules & ~supported_triggers)
945 		return -EOPNOTSUPP;
946 
947 	return 0;
948 }
949 
950 static int gpy_led_hw_control_get(struct phy_device *phydev, u8 index,
951 				  unsigned long *rules)
952 {
953 	int val;
954 
955 	if (index >= GPY_MAX_LEDS)
956 		return -EINVAL;
957 
958 	val = phy_read_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_LED(index));
959 	if (val < 0)
960 		return val;
961 
962 	if (FIELD_GET(VSPEC1_LED_CON, val) & VSPEC1_LED_LINK10)
963 		*rules |= BIT(TRIGGER_NETDEV_LINK_10);
964 
965 	if (FIELD_GET(VSPEC1_LED_CON, val) & VSPEC1_LED_LINK100)
966 		*rules |= BIT(TRIGGER_NETDEV_LINK_100);
967 
968 	if (FIELD_GET(VSPEC1_LED_CON, val) & VSPEC1_LED_LINK1000)
969 		*rules |= BIT(TRIGGER_NETDEV_LINK_1000);
970 
971 	if (FIELD_GET(VSPEC1_LED_CON, val) & VSPEC1_LED_LINK2500)
972 		*rules |= BIT(TRIGGER_NETDEV_LINK_2500);
973 
974 	if (FIELD_GET(VSPEC1_LED_CON, val) == (VSPEC1_LED_LINK10 |
975 					       VSPEC1_LED_LINK100 |
976 					       VSPEC1_LED_LINK1000 |
977 					       VSPEC1_LED_LINK2500))
978 		*rules |= BIT(TRIGGER_NETDEV_LINK);
979 
980 	if (FIELD_GET(VSPEC1_LED_PULSE, val) & VSPEC1_LED_TXACT)
981 		*rules |= BIT(TRIGGER_NETDEV_TX);
982 
983 	if (FIELD_GET(VSPEC1_LED_PULSE, val) & VSPEC1_LED_RXACT)
984 		*rules |= BIT(TRIGGER_NETDEV_RX);
985 
986 	return 0;
987 }
988 
989 static int gpy_led_hw_control_set(struct phy_device *phydev, u8 index,
990 				  unsigned long rules)
991 {
992 	u16 val = 0;
993 	int ret;
994 
995 	if (index >= GPY_MAX_LEDS)
996 		return -EINVAL;
997 
998 	if (rules & BIT(TRIGGER_NETDEV_LINK) ||
999 	    rules & BIT(TRIGGER_NETDEV_LINK_10))
1000 		val |= FIELD_PREP(VSPEC1_LED_CON, VSPEC1_LED_LINK10);
1001 
1002 	if (rules & BIT(TRIGGER_NETDEV_LINK) ||
1003 	    rules & BIT(TRIGGER_NETDEV_LINK_100))
1004 		val |= FIELD_PREP(VSPEC1_LED_CON, VSPEC1_LED_LINK100);
1005 
1006 	if (rules & BIT(TRIGGER_NETDEV_LINK) ||
1007 	    rules & BIT(TRIGGER_NETDEV_LINK_1000))
1008 		val |= FIELD_PREP(VSPEC1_LED_CON, VSPEC1_LED_LINK1000);
1009 
1010 	if (rules & BIT(TRIGGER_NETDEV_LINK) ||
1011 	    rules & BIT(TRIGGER_NETDEV_LINK_2500))
1012 		val |= FIELD_PREP(VSPEC1_LED_CON, VSPEC1_LED_LINK2500);
1013 
1014 	if (rules & BIT(TRIGGER_NETDEV_TX))
1015 		val |= FIELD_PREP(VSPEC1_LED_PULSE, VSPEC1_LED_TXACT);
1016 
1017 	if (rules & BIT(TRIGGER_NETDEV_RX))
1018 		val |= FIELD_PREP(VSPEC1_LED_PULSE, VSPEC1_LED_RXACT);
1019 
1020 	/* allow RX/TX pulse without link indication */
1021 	if ((rules & BIT(TRIGGER_NETDEV_TX) || rules & BIT(TRIGGER_NETDEV_RX)) &&
1022 	    !(val & VSPEC1_LED_CON))
1023 		val |= FIELD_PREP(VSPEC1_LED_PULSE, VSPEC1_LED_NO_CON) | VSPEC1_LED_CON;
1024 
1025 	ret = phy_write_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_LED(index), val);
1026 	if (ret)
1027 		return ret;
1028 
1029 	return phy_set_bits(phydev, PHY_LED, PHY_LED_HWCONTROL(index));
1030 }
1031 
1032 static int gpy_led_polarity_set(struct phy_device *phydev, int index,
1033 				unsigned long modes)
1034 {
1035 	bool force_active_low = false, force_active_high = false;
1036 	u32 mode;
1037 
1038 	if (index >= GPY_MAX_LEDS)
1039 		return -EINVAL;
1040 
1041 	for_each_set_bit(mode, &modes, __PHY_LED_MODES_NUM) {
1042 		switch (mode) {
1043 		case PHY_LED_ACTIVE_LOW:
1044 			force_active_low = true;
1045 			break;
1046 		case PHY_LED_ACTIVE_HIGH:
1047 			force_active_high = true;
1048 			break;
1049 		default:
1050 			return -EINVAL;
1051 		}
1052 	}
1053 
1054 	if (force_active_low)
1055 		return phy_set_bits(phydev, PHY_LED, PHY_LED_POLARITY(index));
1056 
1057 	if (force_active_high)
1058 		return phy_clear_bits(phydev, PHY_LED, PHY_LED_POLARITY(index));
1059 
1060 	return -EINVAL;
1061 }
1062 
1063 static struct phy_driver gpy_drivers[] = {
1064 	{
1065 		PHY_ID_MATCH_MODEL(PHY_ID_GPY2xx),
1066 		.name		= "Maxlinear Ethernet GPY2xx",
1067 		.get_features	= genphy_c45_pma_read_abilities,
1068 		.config_init	= gpy_config_init,
1069 		.probe		= gpy_probe,
1070 		.suspend	= genphy_suspend,
1071 		.resume		= genphy_resume,
1072 		.config_aneg	= gpy_config_aneg,
1073 		.aneg_done	= genphy_c45_aneg_done,
1074 		.read_status	= gpy_read_status,
1075 		.config_intr	= gpy_config_intr,
1076 		.handle_interrupt = gpy_handle_interrupt,
1077 		.set_wol	= gpy_set_wol,
1078 		.get_wol	= gpy_get_wol,
1079 		.set_loopback	= gpy_loopback,
1080 		.led_brightness_set = gpy_led_brightness_set,
1081 		.led_hw_is_supported = gpy_led_hw_is_supported,
1082 		.led_hw_control_get = gpy_led_hw_control_get,
1083 		.led_hw_control_set = gpy_led_hw_control_set,
1084 		.led_polarity_set = gpy_led_polarity_set,
1085 	},
1086 	{
1087 		.phy_id		= PHY_ID_GPY115B,
1088 		.phy_id_mask	= PHY_ID_GPYx15B_MASK,
1089 		.name		= "Maxlinear Ethernet GPY115B",
1090 		.get_features	= genphy_c45_pma_read_abilities,
1091 		.config_init	= gpy_config_init,
1092 		.probe		= gpy_probe,
1093 		.suspend	= genphy_suspend,
1094 		.resume		= genphy_resume,
1095 		.config_aneg	= gpy_config_aneg,
1096 		.aneg_done	= genphy_c45_aneg_done,
1097 		.read_status	= gpy_read_status,
1098 		.config_intr	= gpy_config_intr,
1099 		.handle_interrupt = gpy_handle_interrupt,
1100 		.set_wol	= gpy_set_wol,
1101 		.get_wol	= gpy_get_wol,
1102 		.set_loopback	= gpy115_loopback,
1103 		.led_brightness_set = gpy_led_brightness_set,
1104 		.led_hw_is_supported = gpy_led_hw_is_supported,
1105 		.led_hw_control_get = gpy_led_hw_control_get,
1106 		.led_hw_control_set = gpy_led_hw_control_set,
1107 		.led_polarity_set = gpy_led_polarity_set,
1108 	},
1109 	{
1110 		PHY_ID_MATCH_MODEL(PHY_ID_GPY115C),
1111 		.name		= "Maxlinear Ethernet GPY115C",
1112 		.get_features	= genphy_c45_pma_read_abilities,
1113 		.config_init	= gpy_config_init,
1114 		.probe		= gpy_probe,
1115 		.suspend	= genphy_suspend,
1116 		.resume		= genphy_resume,
1117 		.config_aneg	= gpy_config_aneg,
1118 		.aneg_done	= genphy_c45_aneg_done,
1119 		.read_status	= gpy_read_status,
1120 		.config_intr	= gpy_config_intr,
1121 		.handle_interrupt = gpy_handle_interrupt,
1122 		.set_wol	= gpy_set_wol,
1123 		.get_wol	= gpy_get_wol,
1124 		.set_loopback	= gpy115_loopback,
1125 		.led_brightness_set = gpy_led_brightness_set,
1126 		.led_hw_is_supported = gpy_led_hw_is_supported,
1127 		.led_hw_control_get = gpy_led_hw_control_get,
1128 		.led_hw_control_set = gpy_led_hw_control_set,
1129 		.led_polarity_set = gpy_led_polarity_set,
1130 	},
1131 	{
1132 		.phy_id		= PHY_ID_GPY211B,
1133 		.phy_id_mask	= PHY_ID_GPY21xB_MASK,
1134 		.name		= "Maxlinear Ethernet GPY211B",
1135 		.get_features	= genphy_c45_pma_read_abilities,
1136 		.config_init	= gpy21x_config_init,
1137 		.probe		= gpy_probe,
1138 		.suspend	= genphy_suspend,
1139 		.resume		= genphy_resume,
1140 		.config_aneg	= gpy_config_aneg,
1141 		.aneg_done	= genphy_c45_aneg_done,
1142 		.read_status	= gpy_read_status,
1143 		.config_intr	= gpy_config_intr,
1144 		.handle_interrupt = gpy_handle_interrupt,
1145 		.set_wol	= gpy_set_wol,
1146 		.get_wol	= gpy_get_wol,
1147 		.set_loopback	= gpy_loopback,
1148 		.led_brightness_set = gpy_led_brightness_set,
1149 		.led_hw_is_supported = gpy_led_hw_is_supported,
1150 		.led_hw_control_get = gpy_led_hw_control_get,
1151 		.led_hw_control_set = gpy_led_hw_control_set,
1152 		.led_polarity_set = gpy_led_polarity_set,
1153 	},
1154 	{
1155 		PHY_ID_MATCH_MODEL(PHY_ID_GPY211C),
1156 		.name		= "Maxlinear Ethernet GPY211C",
1157 		.get_features	= genphy_c45_pma_read_abilities,
1158 		.config_init	= gpy21x_config_init,
1159 		.probe		= gpy_probe,
1160 		.suspend	= genphy_suspend,
1161 		.resume		= genphy_resume,
1162 		.config_aneg	= gpy_config_aneg,
1163 		.aneg_done	= genphy_c45_aneg_done,
1164 		.read_status	= gpy_read_status,
1165 		.config_intr	= gpy_config_intr,
1166 		.handle_interrupt = gpy_handle_interrupt,
1167 		.set_wol	= gpy_set_wol,
1168 		.get_wol	= gpy_get_wol,
1169 		.set_loopback	= gpy_loopback,
1170 		.led_brightness_set = gpy_led_brightness_set,
1171 		.led_hw_is_supported = gpy_led_hw_is_supported,
1172 		.led_hw_control_get = gpy_led_hw_control_get,
1173 		.led_hw_control_set = gpy_led_hw_control_set,
1174 		.led_polarity_set = gpy_led_polarity_set,
1175 	},
1176 	{
1177 		.phy_id		= PHY_ID_GPY212B,
1178 		.phy_id_mask	= PHY_ID_GPY21xB_MASK,
1179 		.name		= "Maxlinear Ethernet GPY212B",
1180 		.get_features	= genphy_c45_pma_read_abilities,
1181 		.config_init	= gpy21x_config_init,
1182 		.probe		= gpy_probe,
1183 		.suspend	= genphy_suspend,
1184 		.resume		= genphy_resume,
1185 		.config_aneg	= gpy_config_aneg,
1186 		.aneg_done	= genphy_c45_aneg_done,
1187 		.read_status	= gpy_read_status,
1188 		.config_intr	= gpy_config_intr,
1189 		.handle_interrupt = gpy_handle_interrupt,
1190 		.set_wol	= gpy_set_wol,
1191 		.get_wol	= gpy_get_wol,
1192 		.set_loopback	= gpy_loopback,
1193 		.led_brightness_set = gpy_led_brightness_set,
1194 		.led_hw_is_supported = gpy_led_hw_is_supported,
1195 		.led_hw_control_get = gpy_led_hw_control_get,
1196 		.led_hw_control_set = gpy_led_hw_control_set,
1197 		.led_polarity_set = gpy_led_polarity_set,
1198 	},
1199 	{
1200 		PHY_ID_MATCH_MODEL(PHY_ID_GPY212C),
1201 		.name		= "Maxlinear Ethernet GPY212C",
1202 		.get_features	= genphy_c45_pma_read_abilities,
1203 		.config_init	= gpy21x_config_init,
1204 		.probe		= gpy_probe,
1205 		.suspend	= genphy_suspend,
1206 		.resume		= genphy_resume,
1207 		.config_aneg	= gpy_config_aneg,
1208 		.aneg_done	= genphy_c45_aneg_done,
1209 		.read_status	= gpy_read_status,
1210 		.config_intr	= gpy_config_intr,
1211 		.handle_interrupt = gpy_handle_interrupt,
1212 		.set_wol	= gpy_set_wol,
1213 		.get_wol	= gpy_get_wol,
1214 		.set_loopback	= gpy_loopback,
1215 		.led_brightness_set = gpy_led_brightness_set,
1216 		.led_hw_is_supported = gpy_led_hw_is_supported,
1217 		.led_hw_control_get = gpy_led_hw_control_get,
1218 		.led_hw_control_set = gpy_led_hw_control_set,
1219 		.led_polarity_set = gpy_led_polarity_set,
1220 	},
1221 	{
1222 		.phy_id		= PHY_ID_GPY215B,
1223 		.phy_id_mask	= PHY_ID_GPYx15B_MASK,
1224 		.name		= "Maxlinear Ethernet GPY215B",
1225 		.get_features	= genphy_c45_pma_read_abilities,
1226 		.config_init	= gpy21x_config_init,
1227 		.probe		= gpy_probe,
1228 		.suspend	= genphy_suspend,
1229 		.resume		= genphy_resume,
1230 		.config_aneg	= gpy_config_aneg,
1231 		.aneg_done	= genphy_c45_aneg_done,
1232 		.read_status	= gpy_read_status,
1233 		.config_intr	= gpy_config_intr,
1234 		.handle_interrupt = gpy_handle_interrupt,
1235 		.set_wol	= gpy_set_wol,
1236 		.get_wol	= gpy_get_wol,
1237 		.set_loopback	= gpy_loopback,
1238 		.led_brightness_set = gpy_led_brightness_set,
1239 		.led_hw_is_supported = gpy_led_hw_is_supported,
1240 		.led_hw_control_get = gpy_led_hw_control_get,
1241 		.led_hw_control_set = gpy_led_hw_control_set,
1242 		.led_polarity_set = gpy_led_polarity_set,
1243 	},
1244 	{
1245 		PHY_ID_MATCH_MODEL(PHY_ID_GPY215C),
1246 		.name		= "Maxlinear Ethernet GPY215C",
1247 		.get_features	= genphy_c45_pma_read_abilities,
1248 		.config_init	= gpy21x_config_init,
1249 		.probe		= gpy_probe,
1250 		.suspend	= genphy_suspend,
1251 		.resume		= genphy_resume,
1252 		.config_aneg	= gpy_config_aneg,
1253 		.aneg_done	= genphy_c45_aneg_done,
1254 		.read_status	= gpy_read_status,
1255 		.config_intr	= gpy_config_intr,
1256 		.handle_interrupt = gpy_handle_interrupt,
1257 		.set_wol	= gpy_set_wol,
1258 		.get_wol	= gpy_get_wol,
1259 		.set_loopback	= gpy_loopback,
1260 		.led_brightness_set = gpy_led_brightness_set,
1261 		.led_hw_is_supported = gpy_led_hw_is_supported,
1262 		.led_hw_control_get = gpy_led_hw_control_get,
1263 		.led_hw_control_set = gpy_led_hw_control_set,
1264 		.led_polarity_set = gpy_led_polarity_set,
1265 	},
1266 	{
1267 		PHY_ID_MATCH_MODEL(PHY_ID_GPY241B),
1268 		.name		= "Maxlinear Ethernet GPY241B",
1269 		.get_features	= genphy_c45_pma_read_abilities,
1270 		.config_init	= gpy_config_init,
1271 		.probe		= gpy_probe,
1272 		.suspend	= genphy_suspend,
1273 		.resume		= genphy_resume,
1274 		.config_aneg	= gpy_config_aneg,
1275 		.aneg_done	= genphy_c45_aneg_done,
1276 		.read_status	= gpy_read_status,
1277 		.config_intr	= gpy_config_intr,
1278 		.handle_interrupt = gpy_handle_interrupt,
1279 		.set_wol	= gpy_set_wol,
1280 		.get_wol	= gpy_get_wol,
1281 		.set_loopback	= gpy_loopback,
1282 	},
1283 	{
1284 		PHY_ID_MATCH_MODEL(PHY_ID_GPY241BM),
1285 		.name		= "Maxlinear Ethernet GPY241BM",
1286 		.get_features	= genphy_c45_pma_read_abilities,
1287 		.config_init	= gpy_config_init,
1288 		.probe		= gpy_probe,
1289 		.suspend	= genphy_suspend,
1290 		.resume		= genphy_resume,
1291 		.config_aneg	= gpy_config_aneg,
1292 		.aneg_done	= genphy_c45_aneg_done,
1293 		.read_status	= gpy_read_status,
1294 		.config_intr	= gpy_config_intr,
1295 		.handle_interrupt = gpy_handle_interrupt,
1296 		.set_wol	= gpy_set_wol,
1297 		.get_wol	= gpy_get_wol,
1298 		.set_loopback	= gpy_loopback,
1299 	},
1300 	{
1301 		PHY_ID_MATCH_MODEL(PHY_ID_GPY245B),
1302 		.name		= "Maxlinear Ethernet GPY245B",
1303 		.get_features	= genphy_c45_pma_read_abilities,
1304 		.config_init	= gpy_config_init,
1305 		.probe		= gpy_probe,
1306 		.suspend	= genphy_suspend,
1307 		.resume		= genphy_resume,
1308 		.config_aneg	= gpy_config_aneg,
1309 		.aneg_done	= genphy_c45_aneg_done,
1310 		.read_status	= gpy_read_status,
1311 		.config_intr	= gpy_config_intr,
1312 		.handle_interrupt = gpy_handle_interrupt,
1313 		.set_wol	= gpy_set_wol,
1314 		.get_wol	= gpy_get_wol,
1315 		.set_loopback	= gpy_loopback,
1316 	},
1317 	{
1318 		PHY_ID_MATCH_MODEL(PHY_ID_MXL86211C),
1319 		.name		= "Maxlinear Ethernet MxL86211C",
1320 		.get_features	= genphy_c45_pma_read_abilities,
1321 		.config_init	= gpy_config_init,
1322 		.probe		= gpy_probe,
1323 		.suspend	= genphy_suspend,
1324 		.resume		= genphy_resume,
1325 		.config_aneg	= gpy_config_aneg,
1326 		.aneg_done	= genphy_c45_aneg_done,
1327 		.read_status	= gpy_read_status,
1328 		.config_intr	= gpy_config_intr,
1329 		.handle_interrupt = gpy_handle_interrupt,
1330 		.set_wol	= gpy_set_wol,
1331 		.get_wol	= gpy_get_wol,
1332 		.set_loopback	= gpy_loopback,
1333 		.led_brightness_set = gpy_led_brightness_set,
1334 		.led_hw_is_supported = gpy_led_hw_is_supported,
1335 		.led_hw_control_get = gpy_led_hw_control_get,
1336 		.led_hw_control_set = gpy_led_hw_control_set,
1337 		.led_polarity_set = gpy_led_polarity_set,
1338 	},
1339 	{
1340 		PHY_ID_MATCH_MODEL(PHY_ID_MXL86252),
1341 		.name		= "MaxLinear Ethernet MxL86252",
1342 		.get_features	= genphy_c45_pma_read_abilities,
1343 		.config_init	= gpy_config_init,
1344 		.probe		= gpy_probe,
1345 		.suspend	= genphy_suspend,
1346 		.resume		= genphy_resume,
1347 		.config_aneg	= gpy_config_aneg,
1348 		.aneg_done	= genphy_c45_aneg_done,
1349 		.read_status	= gpy_read_status,
1350 		.config_intr	= gpy_config_intr,
1351 		.handle_interrupt = gpy_handle_interrupt,
1352 		.set_wol	= gpy_set_wol,
1353 		.get_wol	= gpy_get_wol,
1354 		.set_loopback	= gpy_loopback,
1355 		.led_brightness_set = gpy_led_brightness_set,
1356 		.led_hw_is_supported = gpy_led_hw_is_supported,
1357 		.led_hw_control_get = gpy_led_hw_control_get,
1358 		.led_hw_control_set = gpy_led_hw_control_set,
1359 		.led_polarity_set = gpy_led_polarity_set,
1360 	},
1361 	{
1362 		PHY_ID_MATCH_MODEL(PHY_ID_MXL86282),
1363 		.name		= "MaxLinear Ethernet MxL86282",
1364 		.get_features	= genphy_c45_pma_read_abilities,
1365 		.config_init	= gpy_config_init,
1366 		.probe		= gpy_probe,
1367 		.suspend	= genphy_suspend,
1368 		.resume		= genphy_resume,
1369 		.config_aneg	= gpy_config_aneg,
1370 		.aneg_done	= genphy_c45_aneg_done,
1371 		.read_status	= gpy_read_status,
1372 		.config_intr	= gpy_config_intr,
1373 		.handle_interrupt = gpy_handle_interrupt,
1374 		.set_wol	= gpy_set_wol,
1375 		.get_wol	= gpy_get_wol,
1376 		.set_loopback	= gpy_loopback,
1377 		.led_brightness_set = gpy_led_brightness_set,
1378 		.led_hw_is_supported = gpy_led_hw_is_supported,
1379 		.led_hw_control_get = gpy_led_hw_control_get,
1380 		.led_hw_control_set = gpy_led_hw_control_set,
1381 		.led_polarity_set = gpy_led_polarity_set,
1382 	},
1383 };
1384 module_phy_driver(gpy_drivers);
1385 
1386 static const struct mdio_device_id __maybe_unused gpy_tbl[] = {
1387 	{PHY_ID_MATCH_MODEL(PHY_ID_GPY2xx)},
1388 	{PHY_ID_GPY115B, PHY_ID_GPYx15B_MASK},
1389 	{PHY_ID_MATCH_MODEL(PHY_ID_GPY115C)},
1390 	{PHY_ID_GPY211B, PHY_ID_GPY21xB_MASK},
1391 	{PHY_ID_MATCH_MODEL(PHY_ID_GPY211C)},
1392 	{PHY_ID_GPY212B, PHY_ID_GPY21xB_MASK},
1393 	{PHY_ID_MATCH_MODEL(PHY_ID_GPY212C)},
1394 	{PHY_ID_GPY215B, PHY_ID_GPYx15B_MASK},
1395 	{PHY_ID_MATCH_MODEL(PHY_ID_GPY215C)},
1396 	{PHY_ID_MATCH_MODEL(PHY_ID_GPY241B)},
1397 	{PHY_ID_MATCH_MODEL(PHY_ID_GPY241BM)},
1398 	{PHY_ID_MATCH_MODEL(PHY_ID_GPY245B)},
1399 	{PHY_ID_MATCH_MODEL(PHY_ID_MXL86211C)},
1400 	{PHY_ID_MATCH_MODEL(PHY_ID_MXL86252)},
1401 	{PHY_ID_MATCH_MODEL(PHY_ID_MXL86282)},
1402 	{ }
1403 };
1404 MODULE_DEVICE_TABLE(mdio, gpy_tbl);
1405 
1406 MODULE_DESCRIPTION("Maxlinear Ethernet GPY Driver");
1407 MODULE_AUTHOR("Xu Liang");
1408 MODULE_LICENSE("GPL");
1409