xref: /linux/drivers/net/phy/mxl-gpy.c (revision 1a9239bb4253f9076b5b4b2a1a4e8d7defd77a95)
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Copyright (C) 2021 Maxlinear Corporation
3  * Copyright (C) 2020 Intel Corporation
4  *
5  * Drivers for Maxlinear Ethernet GPY
6  *
7  */
8 
9 #include <linux/module.h>
10 #include <linux/bitfield.h>
11 #include <linux/hwmon.h>
12 #include <linux/mutex.h>
13 #include <linux/phy.h>
14 #include <linux/polynomial.h>
15 #include <linux/property.h>
16 #include <linux/netdevice.h>
17 
18 /* PHY ID */
19 #define PHY_ID_GPYx15B_MASK	0xFFFFFFFC
20 #define PHY_ID_GPY21xB_MASK	0xFFFFFFF9
21 #define PHY_ID_GPY2xx		0x67C9DC00
22 #define PHY_ID_GPY115B		0x67C9DF00
23 #define PHY_ID_GPY115C		0x67C9DF10
24 #define PHY_ID_GPY211B		0x67C9DE08
25 #define PHY_ID_GPY211C		0x67C9DE10
26 #define PHY_ID_GPY212B		0x67C9DE09
27 #define PHY_ID_GPY212C		0x67C9DE20
28 #define PHY_ID_GPY215B		0x67C9DF04
29 #define PHY_ID_GPY215C		0x67C9DF20
30 #define PHY_ID_GPY241B		0x67C9DE40
31 #define PHY_ID_GPY241BM		0x67C9DE80
32 #define PHY_ID_GPY245B		0x67C9DEC0
33 
34 #define PHY_CTL1		0x13
35 #define PHY_CTL1_MDICD		BIT(3)
36 #define PHY_CTL1_MDIAB		BIT(2)
37 #define PHY_CTL1_AMDIX		BIT(0)
38 #define PHY_MIISTAT		0x18	/* MII state */
39 #define PHY_IMASK		0x19	/* interrupt mask */
40 #define PHY_ISTAT		0x1A	/* interrupt status */
41 #define PHY_LED			0x1B	/* LEDs */
42 #define PHY_FWV			0x1E	/* firmware version */
43 
44 #define PHY_MIISTAT_SPD_MASK	GENMASK(2, 0)
45 #define PHY_MIISTAT_DPX		BIT(3)
46 #define PHY_MIISTAT_LS		BIT(10)
47 
48 #define PHY_MIISTAT_SPD_10	0
49 #define PHY_MIISTAT_SPD_100	1
50 #define PHY_MIISTAT_SPD_1000	2
51 #define PHY_MIISTAT_SPD_2500	4
52 
53 #define PHY_IMASK_WOL		BIT(15)	/* Wake-on-LAN */
54 #define PHY_IMASK_ANC		BIT(10)	/* Auto-Neg complete */
55 #define PHY_IMASK_ADSC		BIT(5)	/* Link auto-downspeed detect */
56 #define PHY_IMASK_DXMC		BIT(2)	/* Duplex mode change */
57 #define PHY_IMASK_LSPC		BIT(1)	/* Link speed change */
58 #define PHY_IMASK_LSTC		BIT(0)	/* Link state change */
59 #define PHY_IMASK_MASK		(PHY_IMASK_LSTC | \
60 				 PHY_IMASK_LSPC | \
61 				 PHY_IMASK_DXMC | \
62 				 PHY_IMASK_ADSC | \
63 				 PHY_IMASK_ANC)
64 
65 #define GPY_MAX_LEDS		4
66 #define PHY_LED_POLARITY(idx)	BIT(12 + (idx))
67 #define PHY_LED_HWCONTROL(idx)	BIT(8 + (idx))
68 #define PHY_LED_ON(idx)		BIT(idx)
69 
70 #define PHY_FWV_REL_MASK	BIT(15)
71 #define PHY_FWV_MAJOR_MASK	GENMASK(11, 8)
72 #define PHY_FWV_MINOR_MASK	GENMASK(7, 0)
73 
74 #define PHY_PMA_MGBT_POLARITY	0x82
75 #define PHY_MDI_MDI_X_MASK	GENMASK(1, 0)
76 #define PHY_MDI_MDI_X_NORMAL	0x3
77 #define PHY_MDI_MDI_X_AB	0x2
78 #define PHY_MDI_MDI_X_CD	0x1
79 #define PHY_MDI_MDI_X_CROSS	0x0
80 
81 /* LED */
82 #define VSPEC1_LED(idx)		(1 + (idx))
83 #define VSPEC1_LED_BLINKS	GENMASK(15, 12)
84 #define VSPEC1_LED_PULSE	GENMASK(11, 8)
85 #define VSPEC1_LED_CON		GENMASK(7, 4)
86 #define VSPEC1_LED_BLINKF	GENMASK(3, 0)
87 
88 #define VSPEC1_LED_LINK10	BIT(0)
89 #define VSPEC1_LED_LINK100	BIT(1)
90 #define VSPEC1_LED_LINK1000	BIT(2)
91 #define VSPEC1_LED_LINK2500	BIT(3)
92 
93 #define VSPEC1_LED_TXACT	BIT(0)
94 #define VSPEC1_LED_RXACT	BIT(1)
95 #define VSPEC1_LED_COL		BIT(2)
96 #define VSPEC1_LED_NO_CON	BIT(3)
97 
98 /* SGMII */
99 #define VSPEC1_SGMII_CTRL	0x08
100 #define VSPEC1_SGMII_CTRL_ANEN	BIT(12)		/* Aneg enable */
101 #define VSPEC1_SGMII_CTRL_ANRS	BIT(9)		/* Restart Aneg */
102 #define VSPEC1_SGMII_ANEN_ANRS	(VSPEC1_SGMII_CTRL_ANEN | \
103 				 VSPEC1_SGMII_CTRL_ANRS)
104 
105 /* Temperature sensor */
106 #define VSPEC1_TEMP_STA	0x0E
107 #define VSPEC1_TEMP_STA_DATA	GENMASK(9, 0)
108 
109 /* Mailbox */
110 #define VSPEC1_MBOX_DATA	0x5
111 #define VSPEC1_MBOX_ADDRLO	0x6
112 #define VSPEC1_MBOX_CMD		0x7
113 #define VSPEC1_MBOX_CMD_ADDRHI	GENMASK(7, 0)
114 #define VSPEC1_MBOX_CMD_RD	(0 << 8)
115 #define VSPEC1_MBOX_CMD_READY	BIT(15)
116 
117 /* WoL */
118 #define VPSPEC2_WOL_CTL		0x0E06
119 #define VPSPEC2_WOL_AD01	0x0E08
120 #define VPSPEC2_WOL_AD23	0x0E09
121 #define VPSPEC2_WOL_AD45	0x0E0A
122 #define WOL_EN			BIT(0)
123 
124 /* Internal registers, access via mbox */
125 #define REG_GPIO0_OUT		0xd3ce00
126 
127 struct gpy_priv {
128 	/* serialize mailbox acesses */
129 	struct mutex mbox_lock;
130 
131 	u8 fw_major;
132 	u8 fw_minor;
133 	u32 wolopts;
134 
135 	/* It takes 3 seconds to fully switch out of loopback mode before
136 	 * it can safely re-enter loopback mode. Record the time when
137 	 * loopback is disabled. Check and wait if necessary before loopback
138 	 * is enabled.
139 	 */
140 	u64 lb_dis_to;
141 };
142 
143 static const struct {
144 	int major;
145 	int minor;
146 } ver_need_sgmii_reaneg[] = {
147 	{7, 0x6D},
148 	{8, 0x6D},
149 	{9, 0x73},
150 };
151 
152 #if IS_ENABLED(CONFIG_HWMON)
153 /* The original translation formulae of the temperature (in degrees of Celsius)
154  * are as follows:
155  *
156  *   T = -2.5761e-11*(N^4) + 9.7332e-8*(N^3) + -1.9165e-4*(N^2) +
157  *       3.0762e-1*(N^1) + -5.2156e1
158  *
159  * where [-52.156, 137.961]C and N = [0, 1023].
160  *
161  * They must be accordingly altered to be suitable for the integer arithmetics.
162  * The technique is called 'factor redistribution', which just makes sure the
163  * multiplications and divisions are made so to have a result of the operations
164  * within the integer numbers limit. In addition we need to translate the
165  * formulae to accept millidegrees of Celsius. Here what it looks like after
166  * the alterations:
167  *
168  *   T = -25761e-12*(N^4) + 97332e-9*(N^3) + -191650e-6*(N^2) +
169  *       307620e-3*(N^1) + -52156
170  *
171  * where T = [-52156, 137961]mC and N = [0, 1023].
172  */
173 static const struct polynomial poly_N_to_temp = {
174 	.terms = {
175 		{4,  -25761, 1000, 1},
176 		{3,   97332, 1000, 1},
177 		{2, -191650, 1000, 1},
178 		{1,  307620, 1000, 1},
179 		{0,  -52156,    1, 1}
180 	}
181 };
182 
gpy_hwmon_read(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long * value)183 static int gpy_hwmon_read(struct device *dev,
184 			  enum hwmon_sensor_types type,
185 			  u32 attr, int channel, long *value)
186 {
187 	struct phy_device *phydev = dev_get_drvdata(dev);
188 	int ret;
189 
190 	ret = phy_read_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_TEMP_STA);
191 	if (ret < 0)
192 		return ret;
193 	if (!ret)
194 		return -ENODATA;
195 
196 	*value = polynomial_calc(&poly_N_to_temp,
197 				 FIELD_GET(VSPEC1_TEMP_STA_DATA, ret));
198 
199 	return 0;
200 }
201 
gpy_hwmon_is_visible(const void * data,enum hwmon_sensor_types type,u32 attr,int channel)202 static umode_t gpy_hwmon_is_visible(const void *data,
203 				    enum hwmon_sensor_types type,
204 				    u32 attr, int channel)
205 {
206 	return 0444;
207 }
208 
209 static const struct hwmon_channel_info * const gpy_hwmon_info[] = {
210 	HWMON_CHANNEL_INFO(temp, HWMON_T_INPUT),
211 	NULL
212 };
213 
214 static const struct hwmon_ops gpy_hwmon_hwmon_ops = {
215 	.is_visible	= gpy_hwmon_is_visible,
216 	.read		= gpy_hwmon_read,
217 };
218 
219 static const struct hwmon_chip_info gpy_hwmon_chip_info = {
220 	.ops		= &gpy_hwmon_hwmon_ops,
221 	.info		= gpy_hwmon_info,
222 };
223 
gpy_hwmon_register(struct phy_device * phydev)224 static int gpy_hwmon_register(struct phy_device *phydev)
225 {
226 	struct device *dev = &phydev->mdio.dev;
227 	struct device *hwmon_dev;
228 
229 	hwmon_dev = devm_hwmon_device_register_with_info(dev, NULL, phydev,
230 							 &gpy_hwmon_chip_info,
231 							 NULL);
232 
233 	return PTR_ERR_OR_ZERO(hwmon_dev);
234 }
235 #else
gpy_hwmon_register(struct phy_device * phydev)236 static int gpy_hwmon_register(struct phy_device *phydev)
237 {
238 	return 0;
239 }
240 #endif
241 
gpy_ack_interrupt(struct phy_device * phydev)242 static int gpy_ack_interrupt(struct phy_device *phydev)
243 {
244 	int ret;
245 
246 	/* Clear all pending interrupts */
247 	ret = phy_read(phydev, PHY_ISTAT);
248 	return ret < 0 ? ret : 0;
249 }
250 
gpy_mbox_read(struct phy_device * phydev,u32 addr)251 static int gpy_mbox_read(struct phy_device *phydev, u32 addr)
252 {
253 	struct gpy_priv *priv = phydev->priv;
254 	int val, ret;
255 	u16 cmd;
256 
257 	mutex_lock(&priv->mbox_lock);
258 
259 	ret = phy_write_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_MBOX_ADDRLO,
260 			    addr);
261 	if (ret)
262 		goto out;
263 
264 	cmd = VSPEC1_MBOX_CMD_RD;
265 	cmd |= FIELD_PREP(VSPEC1_MBOX_CMD_ADDRHI, addr >> 16);
266 
267 	ret = phy_write_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_MBOX_CMD, cmd);
268 	if (ret)
269 		goto out;
270 
271 	/* The mbox read is used in the interrupt workaround. It was observed
272 	 * that a read might take up to 2.5ms. This is also the time for which
273 	 * the interrupt line is stuck low. To be on the safe side, poll the
274 	 * ready bit for 10ms.
275 	 */
276 	ret = phy_read_mmd_poll_timeout(phydev, MDIO_MMD_VEND1,
277 					VSPEC1_MBOX_CMD, val,
278 					(val & VSPEC1_MBOX_CMD_READY),
279 					500, 10000, false);
280 	if (ret)
281 		goto out;
282 
283 	ret = phy_read_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_MBOX_DATA);
284 
285 out:
286 	mutex_unlock(&priv->mbox_lock);
287 	return ret;
288 }
289 
gpy_config_init(struct phy_device * phydev)290 static int gpy_config_init(struct phy_device *phydev)
291 {
292 	/* Nothing to configure. Configuration Requirement Placeholder */
293 	return 0;
294 }
295 
gpy21x_config_init(struct phy_device * phydev)296 static int gpy21x_config_init(struct phy_device *phydev)
297 {
298 	__set_bit(PHY_INTERFACE_MODE_2500BASEX, phydev->possible_interfaces);
299 	__set_bit(PHY_INTERFACE_MODE_SGMII, phydev->possible_interfaces);
300 
301 	return gpy_config_init(phydev);
302 }
303 
gpy_probe(struct phy_device * phydev)304 static int gpy_probe(struct phy_device *phydev)
305 {
306 	struct device *dev = &phydev->mdio.dev;
307 	struct gpy_priv *priv;
308 	int fw_version;
309 	int ret;
310 
311 	if (!phydev->is_c45) {
312 		ret = phy_get_c45_ids(phydev);
313 		if (ret < 0)
314 			return ret;
315 	}
316 
317 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
318 	if (!priv)
319 		return -ENOMEM;
320 	phydev->priv = priv;
321 	mutex_init(&priv->mbox_lock);
322 
323 	if (!device_property_present(dev, "maxlinear,use-broken-interrupts"))
324 		phydev->dev_flags |= PHY_F_NO_IRQ;
325 
326 	fw_version = phy_read(phydev, PHY_FWV);
327 	if (fw_version < 0)
328 		return fw_version;
329 	priv->fw_major = FIELD_GET(PHY_FWV_MAJOR_MASK, fw_version);
330 	priv->fw_minor = FIELD_GET(PHY_FWV_MINOR_MASK, fw_version);
331 
332 	ret = gpy_hwmon_register(phydev);
333 	if (ret)
334 		return ret;
335 
336 	/* Show GPY PHY FW version in dmesg */
337 	phydev_info(phydev, "Firmware Version: %d.%d (0x%04X%s)\n",
338 		    priv->fw_major, priv->fw_minor, fw_version,
339 		    fw_version & PHY_FWV_REL_MASK ? "" : " test version");
340 
341 	return 0;
342 }
343 
gpy_sgmii_need_reaneg(struct phy_device * phydev)344 static bool gpy_sgmii_need_reaneg(struct phy_device *phydev)
345 {
346 	struct gpy_priv *priv = phydev->priv;
347 	size_t i;
348 
349 	for (i = 0; i < ARRAY_SIZE(ver_need_sgmii_reaneg); i++) {
350 		if (priv->fw_major != ver_need_sgmii_reaneg[i].major)
351 			continue;
352 		if (priv->fw_minor < ver_need_sgmii_reaneg[i].minor)
353 			return true;
354 		break;
355 	}
356 
357 	return false;
358 }
359 
gpy_2500basex_chk(struct phy_device * phydev)360 static bool gpy_2500basex_chk(struct phy_device *phydev)
361 {
362 	int ret;
363 
364 	ret = phy_read(phydev, PHY_MIISTAT);
365 	if (ret < 0) {
366 		phydev_err(phydev, "Error: MDIO register access failed: %d\n",
367 			   ret);
368 		return false;
369 	}
370 
371 	if (!(ret & PHY_MIISTAT_LS) ||
372 	    FIELD_GET(PHY_MIISTAT_SPD_MASK, ret) != PHY_MIISTAT_SPD_2500)
373 		return false;
374 
375 	phydev->speed = SPEED_2500;
376 	phydev->interface = PHY_INTERFACE_MODE_2500BASEX;
377 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_SGMII_CTRL,
378 		       VSPEC1_SGMII_CTRL_ANEN, 0);
379 	return true;
380 }
381 
gpy_sgmii_aneg_en(struct phy_device * phydev)382 static bool gpy_sgmii_aneg_en(struct phy_device *phydev)
383 {
384 	int ret;
385 
386 	ret = phy_read_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_SGMII_CTRL);
387 	if (ret < 0) {
388 		phydev_err(phydev, "Error: MMD register access failed: %d\n",
389 			   ret);
390 		return true;
391 	}
392 
393 	return (ret & VSPEC1_SGMII_CTRL_ANEN) ? true : false;
394 }
395 
gpy_config_mdix(struct phy_device * phydev,u8 ctrl)396 static int gpy_config_mdix(struct phy_device *phydev, u8 ctrl)
397 {
398 	int ret;
399 	u16 val;
400 
401 	switch (ctrl) {
402 	case ETH_TP_MDI_AUTO:
403 		val = PHY_CTL1_AMDIX;
404 		break;
405 	case ETH_TP_MDI_X:
406 		val = (PHY_CTL1_MDIAB | PHY_CTL1_MDICD);
407 		break;
408 	case ETH_TP_MDI:
409 		val = 0;
410 		break;
411 	default:
412 		return 0;
413 	}
414 
415 	ret =  phy_modify(phydev, PHY_CTL1, PHY_CTL1_AMDIX | PHY_CTL1_MDIAB |
416 			  PHY_CTL1_MDICD, val);
417 	if (ret < 0)
418 		return ret;
419 
420 	return genphy_c45_restart_aneg(phydev);
421 }
422 
gpy_config_aneg(struct phy_device * phydev)423 static int gpy_config_aneg(struct phy_device *phydev)
424 {
425 	bool changed = false;
426 	u32 adv;
427 	int ret;
428 
429 	if (phydev->autoneg == AUTONEG_DISABLE) {
430 		/* Configure half duplex with genphy_setup_forced,
431 		 * because genphy_c45_pma_setup_forced does not support.
432 		 */
433 		return phydev->duplex != DUPLEX_FULL
434 			? genphy_setup_forced(phydev)
435 			: genphy_c45_pma_setup_forced(phydev);
436 	}
437 
438 	ret = gpy_config_mdix(phydev,  phydev->mdix_ctrl);
439 	if (ret < 0)
440 		return ret;
441 
442 	ret = genphy_c45_an_config_aneg(phydev);
443 	if (ret < 0)
444 		return ret;
445 	if (ret > 0)
446 		changed = true;
447 
448 	adv = linkmode_adv_to_mii_ctrl1000_t(phydev->advertising);
449 	ret = phy_modify_changed(phydev, MII_CTRL1000,
450 				 ADVERTISE_1000FULL | ADVERTISE_1000HALF,
451 				 adv);
452 	if (ret < 0)
453 		return ret;
454 	if (ret > 0)
455 		changed = true;
456 
457 	ret = genphy_c45_check_and_restart_aneg(phydev, changed);
458 	if (ret < 0)
459 		return ret;
460 
461 	if (phydev->interface == PHY_INTERFACE_MODE_USXGMII ||
462 	    phydev->interface == PHY_INTERFACE_MODE_INTERNAL)
463 		return 0;
464 
465 	/* No need to trigger re-ANEG if link speed is 2.5G or SGMII ANEG is
466 	 * disabled.
467 	 */
468 	if (!gpy_sgmii_need_reaneg(phydev) || gpy_2500basex_chk(phydev) ||
469 	    !gpy_sgmii_aneg_en(phydev))
470 		return 0;
471 
472 	/* There is a design constraint in GPY2xx device where SGMII AN is
473 	 * only triggered when there is change of speed. If, PHY link
474 	 * partner`s speed is still same even after PHY TPI is down and up
475 	 * again, SGMII AN is not triggered and hence no new in-band message
476 	 * from GPY to MAC side SGMII.
477 	 * This could cause an issue during power up, when PHY is up prior to
478 	 * MAC. At this condition, once MAC side SGMII is up, MAC side SGMII
479 	 * wouldn`t receive new in-band message from GPY with correct link
480 	 * status, speed and duplex info.
481 	 *
482 	 * 1) If PHY is already up and TPI link status is still down (such as
483 	 *    hard reboot), TPI link status is polled for 4 seconds before
484 	 *    retriggerring SGMII AN.
485 	 * 2) If PHY is already up and TPI link status is also up (such as soft
486 	 *    reboot), polling of TPI link status is not needed and SGMII AN is
487 	 *    immediately retriggered.
488 	 * 3) Other conditions such as PHY is down, speed change etc, skip
489 	 *    retriggering SGMII AN. Note: in case of speed change, GPY FW will
490 	 *    initiate SGMII AN.
491 	 */
492 
493 	if (phydev->state != PHY_UP)
494 		return 0;
495 
496 	ret = phy_read_poll_timeout(phydev, MII_BMSR, ret, ret & BMSR_LSTATUS,
497 				    20000, 4000000, false);
498 	if (ret == -ETIMEDOUT)
499 		return 0;
500 	else if (ret < 0)
501 		return ret;
502 
503 	/* Trigger SGMII AN. */
504 	return phy_modify_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_SGMII_CTRL,
505 			      VSPEC1_SGMII_CTRL_ANRS, VSPEC1_SGMII_CTRL_ANRS);
506 }
507 
gpy_update_mdix(struct phy_device * phydev)508 static int gpy_update_mdix(struct phy_device *phydev)
509 {
510 	int ret;
511 
512 	ret = phy_read(phydev, PHY_CTL1);
513 	if (ret < 0)
514 		return ret;
515 
516 	if (ret & PHY_CTL1_AMDIX)
517 		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
518 	else
519 		if (ret & PHY_CTL1_MDICD || ret & PHY_CTL1_MDIAB)
520 			phydev->mdix_ctrl = ETH_TP_MDI_X;
521 		else
522 			phydev->mdix_ctrl = ETH_TP_MDI;
523 
524 	ret = phy_read_mmd(phydev, MDIO_MMD_PMAPMD, PHY_PMA_MGBT_POLARITY);
525 	if (ret < 0)
526 		return ret;
527 
528 	if ((ret & PHY_MDI_MDI_X_MASK) < PHY_MDI_MDI_X_NORMAL)
529 		phydev->mdix = ETH_TP_MDI_X;
530 	else
531 		phydev->mdix = ETH_TP_MDI;
532 
533 	return 0;
534 }
535 
gpy_update_interface(struct phy_device * phydev)536 static int gpy_update_interface(struct phy_device *phydev)
537 {
538 	int ret;
539 
540 	/* Interface mode is fixed for USXGMII and integrated PHY */
541 	if (phydev->interface == PHY_INTERFACE_MODE_USXGMII ||
542 	    phydev->interface == PHY_INTERFACE_MODE_INTERNAL)
543 		return -EINVAL;
544 
545 	/* Automatically switch SERDES interface between SGMII and 2500-BaseX
546 	 * according to speed. Disable ANEG in 2500-BaseX mode.
547 	 */
548 	switch (phydev->speed) {
549 	case SPEED_2500:
550 		phydev->interface = PHY_INTERFACE_MODE_2500BASEX;
551 		ret = phy_modify_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_SGMII_CTRL,
552 				     VSPEC1_SGMII_CTRL_ANEN, 0);
553 		if (ret < 0) {
554 			phydev_err(phydev,
555 				   "Error: Disable of SGMII ANEG failed: %d\n",
556 				   ret);
557 			return ret;
558 		}
559 		break;
560 	case SPEED_1000:
561 	case SPEED_100:
562 	case SPEED_10:
563 		phydev->interface = PHY_INTERFACE_MODE_SGMII;
564 		if (gpy_sgmii_aneg_en(phydev))
565 			break;
566 		/* Enable and restart SGMII ANEG for 10/100/1000Mbps link speed
567 		 * if ANEG is disabled (in 2500-BaseX mode).
568 		 */
569 		ret = phy_modify_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_SGMII_CTRL,
570 				     VSPEC1_SGMII_ANEN_ANRS,
571 				     VSPEC1_SGMII_ANEN_ANRS);
572 		if (ret < 0) {
573 			phydev_err(phydev,
574 				   "Error: Enable of SGMII ANEG failed: %d\n",
575 				   ret);
576 			return ret;
577 		}
578 		break;
579 	}
580 
581 	if (phydev->speed == SPEED_2500 || phydev->speed == SPEED_1000) {
582 		ret = genphy_read_master_slave(phydev);
583 		if (ret < 0)
584 			return ret;
585 	}
586 
587 	return gpy_update_mdix(phydev);
588 }
589 
gpy_read_status(struct phy_device * phydev)590 static int gpy_read_status(struct phy_device *phydev)
591 {
592 	int ret;
593 
594 	ret = genphy_update_link(phydev);
595 	if (ret)
596 		return ret;
597 
598 	phydev->speed = SPEED_UNKNOWN;
599 	phydev->duplex = DUPLEX_UNKNOWN;
600 	phydev->pause = 0;
601 	phydev->asym_pause = 0;
602 
603 	if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) {
604 		ret = genphy_c45_read_lpa(phydev);
605 		if (ret < 0)
606 			return ret;
607 
608 		/* Read the link partner's 1G advertisement */
609 		ret = phy_read(phydev, MII_STAT1000);
610 		if (ret < 0)
611 			return ret;
612 		mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, ret);
613 	} else if (phydev->autoneg == AUTONEG_DISABLE) {
614 		linkmode_zero(phydev->lp_advertising);
615 	}
616 
617 	ret = phy_read(phydev, PHY_MIISTAT);
618 	if (ret < 0)
619 		return ret;
620 
621 	phydev->link = (ret & PHY_MIISTAT_LS) ? 1 : 0;
622 	phydev->duplex = (ret & PHY_MIISTAT_DPX) ? DUPLEX_FULL : DUPLEX_HALF;
623 	switch (FIELD_GET(PHY_MIISTAT_SPD_MASK, ret)) {
624 	case PHY_MIISTAT_SPD_10:
625 		phydev->speed = SPEED_10;
626 		break;
627 	case PHY_MIISTAT_SPD_100:
628 		phydev->speed = SPEED_100;
629 		break;
630 	case PHY_MIISTAT_SPD_1000:
631 		phydev->speed = SPEED_1000;
632 		break;
633 	case PHY_MIISTAT_SPD_2500:
634 		phydev->speed = SPEED_2500;
635 		break;
636 	}
637 
638 	if (phydev->link) {
639 		ret = gpy_update_interface(phydev);
640 		if (ret < 0)
641 			return ret;
642 	}
643 
644 	return 0;
645 }
646 
gpy_config_intr(struct phy_device * phydev)647 static int gpy_config_intr(struct phy_device *phydev)
648 {
649 	struct gpy_priv *priv = phydev->priv;
650 	u16 mask = 0;
651 	int ret;
652 
653 	ret = gpy_ack_interrupt(phydev);
654 	if (ret)
655 		return ret;
656 
657 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED)
658 		mask = PHY_IMASK_MASK;
659 
660 	if (priv->wolopts & WAKE_MAGIC)
661 		mask |= PHY_IMASK_WOL;
662 
663 	if (priv->wolopts & WAKE_PHY)
664 		mask |= PHY_IMASK_LSTC;
665 
666 	return phy_write(phydev, PHY_IMASK, mask);
667 }
668 
gpy_handle_interrupt(struct phy_device * phydev)669 static irqreturn_t gpy_handle_interrupt(struct phy_device *phydev)
670 {
671 	int reg;
672 
673 	reg = phy_read(phydev, PHY_ISTAT);
674 	if (reg < 0) {
675 		phy_error(phydev);
676 		return IRQ_NONE;
677 	}
678 
679 	if (!(reg & PHY_IMASK_MASK))
680 		return IRQ_NONE;
681 
682 	/* The PHY might leave the interrupt line asserted even after PHY_ISTAT
683 	 * is read. To avoid interrupt storms, delay the interrupt handling as
684 	 * long as the PHY drives the interrupt line. An internal bus read will
685 	 * stall as long as the interrupt line is asserted, thus just read a
686 	 * random register here.
687 	 * Because we cannot access the internal bus at all while the interrupt
688 	 * is driven by the PHY, there is no way to make the interrupt line
689 	 * unstuck (e.g. by changing the pinmux to GPIO input) during that time
690 	 * frame. Therefore, polling is the best we can do and won't do any more
691 	 * harm.
692 	 * It was observed that this bug happens on link state and link speed
693 	 * changes independent of the firmware version.
694 	 */
695 	if (reg & (PHY_IMASK_LSTC | PHY_IMASK_LSPC)) {
696 		reg = gpy_mbox_read(phydev, REG_GPIO0_OUT);
697 		if (reg < 0) {
698 			phy_error(phydev);
699 			return IRQ_NONE;
700 		}
701 	}
702 
703 	phy_trigger_machine(phydev);
704 
705 	return IRQ_HANDLED;
706 }
707 
gpy_set_wol(struct phy_device * phydev,struct ethtool_wolinfo * wol)708 static int gpy_set_wol(struct phy_device *phydev,
709 		       struct ethtool_wolinfo *wol)
710 {
711 	struct net_device *attach_dev = phydev->attached_dev;
712 	struct gpy_priv *priv = phydev->priv;
713 	int ret;
714 
715 	if (wol->wolopts & WAKE_MAGIC) {
716 		/* MAC address - Byte0:Byte1:Byte2:Byte3:Byte4:Byte5
717 		 * VPSPEC2_WOL_AD45 = Byte0:Byte1
718 		 * VPSPEC2_WOL_AD23 = Byte2:Byte3
719 		 * VPSPEC2_WOL_AD01 = Byte4:Byte5
720 		 */
721 		ret = phy_set_bits_mmd(phydev, MDIO_MMD_VEND2,
722 				       VPSPEC2_WOL_AD45,
723 				       ((attach_dev->dev_addr[0] << 8) |
724 				       attach_dev->dev_addr[1]));
725 		if (ret < 0)
726 			return ret;
727 
728 		ret = phy_set_bits_mmd(phydev, MDIO_MMD_VEND2,
729 				       VPSPEC2_WOL_AD23,
730 				       ((attach_dev->dev_addr[2] << 8) |
731 				       attach_dev->dev_addr[3]));
732 		if (ret < 0)
733 			return ret;
734 
735 		ret = phy_set_bits_mmd(phydev, MDIO_MMD_VEND2,
736 				       VPSPEC2_WOL_AD01,
737 				       ((attach_dev->dev_addr[4] << 8) |
738 				       attach_dev->dev_addr[5]));
739 		if (ret < 0)
740 			return ret;
741 
742 		/* Enable the WOL interrupt */
743 		ret = phy_write(phydev, PHY_IMASK, PHY_IMASK_WOL);
744 		if (ret < 0)
745 			return ret;
746 
747 		/* Enable magic packet matching */
748 		ret = phy_set_bits_mmd(phydev, MDIO_MMD_VEND2,
749 				       VPSPEC2_WOL_CTL,
750 				       WOL_EN);
751 		if (ret < 0)
752 			return ret;
753 
754 		/* Clear the interrupt status register.
755 		 * Only WoL is enabled so clear all.
756 		 */
757 		ret = phy_read(phydev, PHY_ISTAT);
758 		if (ret < 0)
759 			return ret;
760 
761 		priv->wolopts |= WAKE_MAGIC;
762 	} else {
763 		/* Disable magic packet matching */
764 		ret = phy_clear_bits_mmd(phydev, MDIO_MMD_VEND2,
765 					 VPSPEC2_WOL_CTL,
766 					 WOL_EN);
767 		if (ret < 0)
768 			return ret;
769 
770 		/* Disable the WOL interrupt */
771 		ret = phy_clear_bits(phydev, PHY_IMASK, PHY_IMASK_WOL);
772 		if (ret < 0)
773 			return ret;
774 
775 		priv->wolopts &= ~WAKE_MAGIC;
776 	}
777 
778 	if (wol->wolopts & WAKE_PHY) {
779 		/* Enable the link state change interrupt */
780 		ret = phy_set_bits(phydev, PHY_IMASK, PHY_IMASK_LSTC);
781 		if (ret < 0)
782 			return ret;
783 
784 		/* Clear the interrupt status register */
785 		ret = phy_read(phydev, PHY_ISTAT);
786 		if (ret < 0)
787 			return ret;
788 
789 		if (ret & (PHY_IMASK_MASK & ~PHY_IMASK_LSTC))
790 			phy_trigger_machine(phydev);
791 
792 		priv->wolopts |= WAKE_PHY;
793 		return 0;
794 	}
795 
796 	priv->wolopts &= ~WAKE_PHY;
797 	/* Disable the link state change interrupt */
798 	return phy_clear_bits(phydev, PHY_IMASK, PHY_IMASK_LSTC);
799 }
800 
gpy_get_wol(struct phy_device * phydev,struct ethtool_wolinfo * wol)801 static void gpy_get_wol(struct phy_device *phydev,
802 			struct ethtool_wolinfo *wol)
803 {
804 	struct gpy_priv *priv = phydev->priv;
805 
806 	wol->supported = WAKE_MAGIC | WAKE_PHY;
807 	wol->wolopts = priv->wolopts;
808 }
809 
gpy_loopback(struct phy_device * phydev,bool enable,int speed)810 static int gpy_loopback(struct phy_device *phydev, bool enable, int speed)
811 {
812 	struct gpy_priv *priv = phydev->priv;
813 	u16 set = 0;
814 	int ret;
815 
816 	if (enable) {
817 		u64 now = get_jiffies_64();
818 
819 		if (speed)
820 			return -EOPNOTSUPP;
821 
822 		/* wait until 3 seconds from last disable */
823 		if (time_before64(now, priv->lb_dis_to))
824 			msleep(jiffies64_to_msecs(priv->lb_dis_to - now));
825 
826 		set = BMCR_LOOPBACK;
827 	}
828 
829 	ret = phy_modify(phydev, MII_BMCR, BMCR_LOOPBACK, set);
830 	if (ret <= 0)
831 		return ret;
832 
833 	if (enable) {
834 		/* It takes some time for PHY device to switch into
835 		 * loopback mode.
836 		 */
837 		msleep(100);
838 	} else {
839 		priv->lb_dis_to = get_jiffies_64() + HZ * 3;
840 	}
841 
842 	return 0;
843 }
844 
gpy115_loopback(struct phy_device * phydev,bool enable,int speed)845 static int gpy115_loopback(struct phy_device *phydev, bool enable, int speed)
846 {
847 	struct gpy_priv *priv = phydev->priv;
848 
849 	if (enable)
850 		return gpy_loopback(phydev, enable, speed);
851 
852 	if (priv->fw_minor > 0x76)
853 		return gpy_loopback(phydev, 0, 0);
854 
855 	return genphy_soft_reset(phydev);
856 }
857 
gpy_led_brightness_set(struct phy_device * phydev,u8 index,enum led_brightness value)858 static int gpy_led_brightness_set(struct phy_device *phydev,
859 				  u8 index, enum led_brightness value)
860 {
861 	int ret;
862 
863 	if (index >= GPY_MAX_LEDS)
864 		return -EINVAL;
865 
866 	/* clear HWCONTROL and set manual LED state */
867 	ret = phy_modify(phydev, PHY_LED,
868 			 ((value == LED_OFF) ? PHY_LED_HWCONTROL(index) : 0) |
869 			 PHY_LED_ON(index),
870 			 (value == LED_OFF) ? 0 : PHY_LED_ON(index));
871 	if (ret)
872 		return ret;
873 
874 	/* ToDo: set PWM brightness */
875 
876 	/* clear HW LED setup */
877 	if (value == LED_OFF)
878 		return phy_write_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_LED(index), 0);
879 	else
880 		return 0;
881 }
882 
883 static const unsigned long supported_triggers = (BIT(TRIGGER_NETDEV_LINK) |
884 						 BIT(TRIGGER_NETDEV_LINK_10) |
885 						 BIT(TRIGGER_NETDEV_LINK_100) |
886 						 BIT(TRIGGER_NETDEV_LINK_1000) |
887 						 BIT(TRIGGER_NETDEV_LINK_2500) |
888 						 BIT(TRIGGER_NETDEV_RX) |
889 						 BIT(TRIGGER_NETDEV_TX));
890 
gpy_led_hw_is_supported(struct phy_device * phydev,u8 index,unsigned long rules)891 static int gpy_led_hw_is_supported(struct phy_device *phydev, u8 index,
892 				   unsigned long rules)
893 {
894 	if (index >= GPY_MAX_LEDS)
895 		return -EINVAL;
896 
897 	/* All combinations of the supported triggers are allowed */
898 	if (rules & ~supported_triggers)
899 		return -EOPNOTSUPP;
900 
901 	return 0;
902 }
903 
gpy_led_hw_control_get(struct phy_device * phydev,u8 index,unsigned long * rules)904 static int gpy_led_hw_control_get(struct phy_device *phydev, u8 index,
905 				  unsigned long *rules)
906 {
907 	int val;
908 
909 	if (index >= GPY_MAX_LEDS)
910 		return -EINVAL;
911 
912 	val = phy_read_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_LED(index));
913 	if (val < 0)
914 		return val;
915 
916 	if (FIELD_GET(VSPEC1_LED_CON, val) & VSPEC1_LED_LINK10)
917 		*rules |= BIT(TRIGGER_NETDEV_LINK_10);
918 
919 	if (FIELD_GET(VSPEC1_LED_CON, val) & VSPEC1_LED_LINK100)
920 		*rules |= BIT(TRIGGER_NETDEV_LINK_100);
921 
922 	if (FIELD_GET(VSPEC1_LED_CON, val) & VSPEC1_LED_LINK1000)
923 		*rules |= BIT(TRIGGER_NETDEV_LINK_1000);
924 
925 	if (FIELD_GET(VSPEC1_LED_CON, val) & VSPEC1_LED_LINK2500)
926 		*rules |= BIT(TRIGGER_NETDEV_LINK_2500);
927 
928 	if (FIELD_GET(VSPEC1_LED_CON, val) == (VSPEC1_LED_LINK10 |
929 					       VSPEC1_LED_LINK100 |
930 					       VSPEC1_LED_LINK1000 |
931 					       VSPEC1_LED_LINK2500))
932 		*rules |= BIT(TRIGGER_NETDEV_LINK);
933 
934 	if (FIELD_GET(VSPEC1_LED_PULSE, val) & VSPEC1_LED_TXACT)
935 		*rules |= BIT(TRIGGER_NETDEV_TX);
936 
937 	if (FIELD_GET(VSPEC1_LED_PULSE, val) & VSPEC1_LED_RXACT)
938 		*rules |= BIT(TRIGGER_NETDEV_RX);
939 
940 	return 0;
941 }
942 
gpy_led_hw_control_set(struct phy_device * phydev,u8 index,unsigned long rules)943 static int gpy_led_hw_control_set(struct phy_device *phydev, u8 index,
944 				  unsigned long rules)
945 {
946 	u16 val = 0;
947 	int ret;
948 
949 	if (index >= GPY_MAX_LEDS)
950 		return -EINVAL;
951 
952 	if (rules & BIT(TRIGGER_NETDEV_LINK) ||
953 	    rules & BIT(TRIGGER_NETDEV_LINK_10))
954 		val |= FIELD_PREP(VSPEC1_LED_CON, VSPEC1_LED_LINK10);
955 
956 	if (rules & BIT(TRIGGER_NETDEV_LINK) ||
957 	    rules & BIT(TRIGGER_NETDEV_LINK_100))
958 		val |= FIELD_PREP(VSPEC1_LED_CON, VSPEC1_LED_LINK100);
959 
960 	if (rules & BIT(TRIGGER_NETDEV_LINK) ||
961 	    rules & BIT(TRIGGER_NETDEV_LINK_1000))
962 		val |= FIELD_PREP(VSPEC1_LED_CON, VSPEC1_LED_LINK1000);
963 
964 	if (rules & BIT(TRIGGER_NETDEV_LINK) ||
965 	    rules & BIT(TRIGGER_NETDEV_LINK_2500))
966 		val |= FIELD_PREP(VSPEC1_LED_CON, VSPEC1_LED_LINK2500);
967 
968 	if (rules & BIT(TRIGGER_NETDEV_TX))
969 		val |= FIELD_PREP(VSPEC1_LED_PULSE, VSPEC1_LED_TXACT);
970 
971 	if (rules & BIT(TRIGGER_NETDEV_RX))
972 		val |= FIELD_PREP(VSPEC1_LED_PULSE, VSPEC1_LED_RXACT);
973 
974 	/* allow RX/TX pulse without link indication */
975 	if ((rules & BIT(TRIGGER_NETDEV_TX) || rules & BIT(TRIGGER_NETDEV_RX)) &&
976 	    !(val & VSPEC1_LED_CON))
977 		val |= FIELD_PREP(VSPEC1_LED_PULSE, VSPEC1_LED_NO_CON) | VSPEC1_LED_CON;
978 
979 	ret = phy_write_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_LED(index), val);
980 	if (ret)
981 		return ret;
982 
983 	return phy_set_bits(phydev, PHY_LED, PHY_LED_HWCONTROL(index));
984 }
985 
gpy_led_polarity_set(struct phy_device * phydev,int index,unsigned long modes)986 static int gpy_led_polarity_set(struct phy_device *phydev, int index,
987 				unsigned long modes)
988 {
989 	bool force_active_low = false, force_active_high = false;
990 	u32 mode;
991 
992 	if (index >= GPY_MAX_LEDS)
993 		return -EINVAL;
994 
995 	for_each_set_bit(mode, &modes, __PHY_LED_MODES_NUM) {
996 		switch (mode) {
997 		case PHY_LED_ACTIVE_LOW:
998 			force_active_low = true;
999 			break;
1000 		case PHY_LED_ACTIVE_HIGH:
1001 			force_active_high = true;
1002 			break;
1003 		default:
1004 			return -EINVAL;
1005 		}
1006 	}
1007 
1008 	if (force_active_low)
1009 		return phy_set_bits(phydev, PHY_LED, PHY_LED_POLARITY(index));
1010 
1011 	if (force_active_high)
1012 		return phy_clear_bits(phydev, PHY_LED, PHY_LED_POLARITY(index));
1013 
1014 	return -EINVAL;
1015 }
1016 
1017 static struct phy_driver gpy_drivers[] = {
1018 	{
1019 		PHY_ID_MATCH_MODEL(PHY_ID_GPY2xx),
1020 		.name		= "Maxlinear Ethernet GPY2xx",
1021 		.get_features	= genphy_c45_pma_read_abilities,
1022 		.config_init	= gpy_config_init,
1023 		.probe		= gpy_probe,
1024 		.suspend	= genphy_suspend,
1025 		.resume		= genphy_resume,
1026 		.config_aneg	= gpy_config_aneg,
1027 		.aneg_done	= genphy_c45_aneg_done,
1028 		.read_status	= gpy_read_status,
1029 		.config_intr	= gpy_config_intr,
1030 		.handle_interrupt = gpy_handle_interrupt,
1031 		.set_wol	= gpy_set_wol,
1032 		.get_wol	= gpy_get_wol,
1033 		.set_loopback	= gpy_loopback,
1034 		.led_brightness_set = gpy_led_brightness_set,
1035 		.led_hw_is_supported = gpy_led_hw_is_supported,
1036 		.led_hw_control_get = gpy_led_hw_control_get,
1037 		.led_hw_control_set = gpy_led_hw_control_set,
1038 		.led_polarity_set = gpy_led_polarity_set,
1039 	},
1040 	{
1041 		.phy_id		= PHY_ID_GPY115B,
1042 		.phy_id_mask	= PHY_ID_GPYx15B_MASK,
1043 		.name		= "Maxlinear Ethernet GPY115B",
1044 		.get_features	= genphy_c45_pma_read_abilities,
1045 		.config_init	= gpy_config_init,
1046 		.probe		= gpy_probe,
1047 		.suspend	= genphy_suspend,
1048 		.resume		= genphy_resume,
1049 		.config_aneg	= gpy_config_aneg,
1050 		.aneg_done	= genphy_c45_aneg_done,
1051 		.read_status	= gpy_read_status,
1052 		.config_intr	= gpy_config_intr,
1053 		.handle_interrupt = gpy_handle_interrupt,
1054 		.set_wol	= gpy_set_wol,
1055 		.get_wol	= gpy_get_wol,
1056 		.set_loopback	= gpy115_loopback,
1057 		.led_brightness_set = gpy_led_brightness_set,
1058 		.led_hw_is_supported = gpy_led_hw_is_supported,
1059 		.led_hw_control_get = gpy_led_hw_control_get,
1060 		.led_hw_control_set = gpy_led_hw_control_set,
1061 		.led_polarity_set = gpy_led_polarity_set,
1062 	},
1063 	{
1064 		PHY_ID_MATCH_MODEL(PHY_ID_GPY115C),
1065 		.name		= "Maxlinear Ethernet GPY115C",
1066 		.get_features	= genphy_c45_pma_read_abilities,
1067 		.config_init	= gpy_config_init,
1068 		.probe		= gpy_probe,
1069 		.suspend	= genphy_suspend,
1070 		.resume		= genphy_resume,
1071 		.config_aneg	= gpy_config_aneg,
1072 		.aneg_done	= genphy_c45_aneg_done,
1073 		.read_status	= gpy_read_status,
1074 		.config_intr	= gpy_config_intr,
1075 		.handle_interrupt = gpy_handle_interrupt,
1076 		.set_wol	= gpy_set_wol,
1077 		.get_wol	= gpy_get_wol,
1078 		.set_loopback	= gpy115_loopback,
1079 		.led_brightness_set = gpy_led_brightness_set,
1080 		.led_hw_is_supported = gpy_led_hw_is_supported,
1081 		.led_hw_control_get = gpy_led_hw_control_get,
1082 		.led_hw_control_set = gpy_led_hw_control_set,
1083 		.led_polarity_set = gpy_led_polarity_set,
1084 	},
1085 	{
1086 		.phy_id		= PHY_ID_GPY211B,
1087 		.phy_id_mask	= PHY_ID_GPY21xB_MASK,
1088 		.name		= "Maxlinear Ethernet GPY211B",
1089 		.get_features	= genphy_c45_pma_read_abilities,
1090 		.config_init	= gpy21x_config_init,
1091 		.probe		= gpy_probe,
1092 		.suspend	= genphy_suspend,
1093 		.resume		= genphy_resume,
1094 		.config_aneg	= gpy_config_aneg,
1095 		.aneg_done	= genphy_c45_aneg_done,
1096 		.read_status	= gpy_read_status,
1097 		.config_intr	= gpy_config_intr,
1098 		.handle_interrupt = gpy_handle_interrupt,
1099 		.set_wol	= gpy_set_wol,
1100 		.get_wol	= gpy_get_wol,
1101 		.set_loopback	= gpy_loopback,
1102 		.led_brightness_set = gpy_led_brightness_set,
1103 		.led_hw_is_supported = gpy_led_hw_is_supported,
1104 		.led_hw_control_get = gpy_led_hw_control_get,
1105 		.led_hw_control_set = gpy_led_hw_control_set,
1106 		.led_polarity_set = gpy_led_polarity_set,
1107 	},
1108 	{
1109 		PHY_ID_MATCH_MODEL(PHY_ID_GPY211C),
1110 		.name		= "Maxlinear Ethernet GPY211C",
1111 		.get_features	= genphy_c45_pma_read_abilities,
1112 		.config_init	= gpy21x_config_init,
1113 		.probe		= gpy_probe,
1114 		.suspend	= genphy_suspend,
1115 		.resume		= genphy_resume,
1116 		.config_aneg	= gpy_config_aneg,
1117 		.aneg_done	= genphy_c45_aneg_done,
1118 		.read_status	= gpy_read_status,
1119 		.config_intr	= gpy_config_intr,
1120 		.handle_interrupt = gpy_handle_interrupt,
1121 		.set_wol	= gpy_set_wol,
1122 		.get_wol	= gpy_get_wol,
1123 		.set_loopback	= gpy_loopback,
1124 		.led_brightness_set = gpy_led_brightness_set,
1125 		.led_hw_is_supported = gpy_led_hw_is_supported,
1126 		.led_hw_control_get = gpy_led_hw_control_get,
1127 		.led_hw_control_set = gpy_led_hw_control_set,
1128 		.led_polarity_set = gpy_led_polarity_set,
1129 	},
1130 	{
1131 		.phy_id		= PHY_ID_GPY212B,
1132 		.phy_id_mask	= PHY_ID_GPY21xB_MASK,
1133 		.name		= "Maxlinear Ethernet GPY212B",
1134 		.get_features	= genphy_c45_pma_read_abilities,
1135 		.config_init	= gpy21x_config_init,
1136 		.probe		= gpy_probe,
1137 		.suspend	= genphy_suspend,
1138 		.resume		= genphy_resume,
1139 		.config_aneg	= gpy_config_aneg,
1140 		.aneg_done	= genphy_c45_aneg_done,
1141 		.read_status	= gpy_read_status,
1142 		.config_intr	= gpy_config_intr,
1143 		.handle_interrupt = gpy_handle_interrupt,
1144 		.set_wol	= gpy_set_wol,
1145 		.get_wol	= gpy_get_wol,
1146 		.set_loopback	= gpy_loopback,
1147 		.led_brightness_set = gpy_led_brightness_set,
1148 		.led_hw_is_supported = gpy_led_hw_is_supported,
1149 		.led_hw_control_get = gpy_led_hw_control_get,
1150 		.led_hw_control_set = gpy_led_hw_control_set,
1151 		.led_polarity_set = gpy_led_polarity_set,
1152 	},
1153 	{
1154 		PHY_ID_MATCH_MODEL(PHY_ID_GPY212C),
1155 		.name		= "Maxlinear Ethernet GPY212C",
1156 		.get_features	= genphy_c45_pma_read_abilities,
1157 		.config_init	= gpy21x_config_init,
1158 		.probe		= gpy_probe,
1159 		.suspend	= genphy_suspend,
1160 		.resume		= genphy_resume,
1161 		.config_aneg	= gpy_config_aneg,
1162 		.aneg_done	= genphy_c45_aneg_done,
1163 		.read_status	= gpy_read_status,
1164 		.config_intr	= gpy_config_intr,
1165 		.handle_interrupt = gpy_handle_interrupt,
1166 		.set_wol	= gpy_set_wol,
1167 		.get_wol	= gpy_get_wol,
1168 		.set_loopback	= gpy_loopback,
1169 		.led_brightness_set = gpy_led_brightness_set,
1170 		.led_hw_is_supported = gpy_led_hw_is_supported,
1171 		.led_hw_control_get = gpy_led_hw_control_get,
1172 		.led_hw_control_set = gpy_led_hw_control_set,
1173 		.led_polarity_set = gpy_led_polarity_set,
1174 	},
1175 	{
1176 		.phy_id		= PHY_ID_GPY215B,
1177 		.phy_id_mask	= PHY_ID_GPYx15B_MASK,
1178 		.name		= "Maxlinear Ethernet GPY215B",
1179 		.get_features	= genphy_c45_pma_read_abilities,
1180 		.config_init	= gpy21x_config_init,
1181 		.probe		= gpy_probe,
1182 		.suspend	= genphy_suspend,
1183 		.resume		= genphy_resume,
1184 		.config_aneg	= gpy_config_aneg,
1185 		.aneg_done	= genphy_c45_aneg_done,
1186 		.read_status	= gpy_read_status,
1187 		.config_intr	= gpy_config_intr,
1188 		.handle_interrupt = gpy_handle_interrupt,
1189 		.set_wol	= gpy_set_wol,
1190 		.get_wol	= gpy_get_wol,
1191 		.set_loopback	= gpy_loopback,
1192 		.led_brightness_set = gpy_led_brightness_set,
1193 		.led_hw_is_supported = gpy_led_hw_is_supported,
1194 		.led_hw_control_get = gpy_led_hw_control_get,
1195 		.led_hw_control_set = gpy_led_hw_control_set,
1196 		.led_polarity_set = gpy_led_polarity_set,
1197 	},
1198 	{
1199 		PHY_ID_MATCH_MODEL(PHY_ID_GPY215C),
1200 		.name		= "Maxlinear Ethernet GPY215C",
1201 		.get_features	= genphy_c45_pma_read_abilities,
1202 		.config_init	= gpy21x_config_init,
1203 		.probe		= gpy_probe,
1204 		.suspend	= genphy_suspend,
1205 		.resume		= genphy_resume,
1206 		.config_aneg	= gpy_config_aneg,
1207 		.aneg_done	= genphy_c45_aneg_done,
1208 		.read_status	= gpy_read_status,
1209 		.config_intr	= gpy_config_intr,
1210 		.handle_interrupt = gpy_handle_interrupt,
1211 		.set_wol	= gpy_set_wol,
1212 		.get_wol	= gpy_get_wol,
1213 		.set_loopback	= gpy_loopback,
1214 		.led_brightness_set = gpy_led_brightness_set,
1215 		.led_hw_is_supported = gpy_led_hw_is_supported,
1216 		.led_hw_control_get = gpy_led_hw_control_get,
1217 		.led_hw_control_set = gpy_led_hw_control_set,
1218 		.led_polarity_set = gpy_led_polarity_set,
1219 	},
1220 	{
1221 		PHY_ID_MATCH_MODEL(PHY_ID_GPY241B),
1222 		.name		= "Maxlinear Ethernet GPY241B",
1223 		.get_features	= genphy_c45_pma_read_abilities,
1224 		.config_init	= gpy_config_init,
1225 		.probe		= gpy_probe,
1226 		.suspend	= genphy_suspend,
1227 		.resume		= genphy_resume,
1228 		.config_aneg	= gpy_config_aneg,
1229 		.aneg_done	= genphy_c45_aneg_done,
1230 		.read_status	= gpy_read_status,
1231 		.config_intr	= gpy_config_intr,
1232 		.handle_interrupt = gpy_handle_interrupt,
1233 		.set_wol	= gpy_set_wol,
1234 		.get_wol	= gpy_get_wol,
1235 		.set_loopback	= gpy_loopback,
1236 	},
1237 	{
1238 		PHY_ID_MATCH_MODEL(PHY_ID_GPY241BM),
1239 		.name		= "Maxlinear Ethernet GPY241BM",
1240 		.get_features	= genphy_c45_pma_read_abilities,
1241 		.config_init	= gpy_config_init,
1242 		.probe		= gpy_probe,
1243 		.suspend	= genphy_suspend,
1244 		.resume		= genphy_resume,
1245 		.config_aneg	= gpy_config_aneg,
1246 		.aneg_done	= genphy_c45_aneg_done,
1247 		.read_status	= gpy_read_status,
1248 		.config_intr	= gpy_config_intr,
1249 		.handle_interrupt = gpy_handle_interrupt,
1250 		.set_wol	= gpy_set_wol,
1251 		.get_wol	= gpy_get_wol,
1252 		.set_loopback	= gpy_loopback,
1253 	},
1254 	{
1255 		PHY_ID_MATCH_MODEL(PHY_ID_GPY245B),
1256 		.name		= "Maxlinear Ethernet GPY245B",
1257 		.get_features	= genphy_c45_pma_read_abilities,
1258 		.config_init	= gpy_config_init,
1259 		.probe		= gpy_probe,
1260 		.suspend	= genphy_suspend,
1261 		.resume		= genphy_resume,
1262 		.config_aneg	= gpy_config_aneg,
1263 		.aneg_done	= genphy_c45_aneg_done,
1264 		.read_status	= gpy_read_status,
1265 		.config_intr	= gpy_config_intr,
1266 		.handle_interrupt = gpy_handle_interrupt,
1267 		.set_wol	= gpy_set_wol,
1268 		.get_wol	= gpy_get_wol,
1269 		.set_loopback	= gpy_loopback,
1270 	},
1271 };
1272 module_phy_driver(gpy_drivers);
1273 
1274 static const struct mdio_device_id __maybe_unused gpy_tbl[] = {
1275 	{PHY_ID_MATCH_MODEL(PHY_ID_GPY2xx)},
1276 	{PHY_ID_GPY115B, PHY_ID_GPYx15B_MASK},
1277 	{PHY_ID_MATCH_MODEL(PHY_ID_GPY115C)},
1278 	{PHY_ID_GPY211B, PHY_ID_GPY21xB_MASK},
1279 	{PHY_ID_MATCH_MODEL(PHY_ID_GPY211C)},
1280 	{PHY_ID_GPY212B, PHY_ID_GPY21xB_MASK},
1281 	{PHY_ID_MATCH_MODEL(PHY_ID_GPY212C)},
1282 	{PHY_ID_GPY215B, PHY_ID_GPYx15B_MASK},
1283 	{PHY_ID_MATCH_MODEL(PHY_ID_GPY215C)},
1284 	{PHY_ID_MATCH_MODEL(PHY_ID_GPY241B)},
1285 	{PHY_ID_MATCH_MODEL(PHY_ID_GPY241BM)},
1286 	{PHY_ID_MATCH_MODEL(PHY_ID_GPY245B)},
1287 	{ }
1288 };
1289 MODULE_DEVICE_TABLE(mdio, gpy_tbl);
1290 
1291 MODULE_DESCRIPTION("Maxlinear Ethernet GPY Driver");
1292 MODULE_AUTHOR("Xu Liang");
1293 MODULE_LICENSE("GPL");
1294