xref: /linux/drivers/gpu/drm/msm/msm_gpu.h (revision ec0b62ccc986c06552c57f54116171cfd186ef92)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2013 Red Hat
4  * Author: Rob Clark <robdclark@gmail.com>
5  */
6 
7 #ifndef __MSM_GPU_H__
8 #define __MSM_GPU_H__
9 
10 #include <linux/adreno-smmu-priv.h>
11 #include <linux/clk.h>
12 #include <linux/devfreq.h>
13 #include <linux/interconnect.h>
14 #include <linux/pm_opp.h>
15 #include <linux/regulator/consumer.h>
16 
17 #include "msm_drv.h"
18 #include "msm_fence.h"
19 #include "msm_gpu_trace.h"
20 #include "msm_ringbuffer.h"
21 #include "msm_gem.h"
22 
23 struct msm_gem_submit;
24 struct msm_gem_vm_log_entry;
25 struct msm_gpu_perfcntr;
26 struct msm_gpu_state;
27 struct msm_context;
28 
29 struct msm_gpu_config {
30 	const char *ioname;
31 	unsigned int nr_rings;
32 };
33 
34 /* So far, with hardware that I've seen to date, we can have:
35  *  + zero, one, or two z180 2d cores
36  *  + a3xx or a2xx 3d core, which share a common CP (the firmware
37  *    for the CP seems to implement some different PM4 packet types
38  *    but the basics of cmdstream submission are the same)
39  *
40  * Which means that the eventual complete "class" hierarchy, once
41  * support for all past and present hw is in place, becomes:
42  *  + msm_gpu
43  *    + adreno_gpu
44  *      + a3xx_gpu
45  *      + a2xx_gpu
46  *    + z180_gpu
47  */
48 struct msm_gpu_funcs {
49 	int (*get_param)(struct msm_gpu *gpu, struct msm_context *ctx,
50 			 uint32_t param, uint64_t *value, uint32_t *len);
51 	int (*set_param)(struct msm_gpu *gpu, struct msm_context *ctx,
52 			 uint32_t param, uint64_t value, uint32_t len);
53 	int (*hw_init)(struct msm_gpu *gpu);
54 
55 	/**
56 	 * @ucode_load: Optional hook to upload fw to GEM objs
57 	 */
58 	int (*ucode_load)(struct msm_gpu *gpu);
59 
60 	int (*pm_suspend)(struct msm_gpu *gpu);
61 	int (*pm_resume)(struct msm_gpu *gpu);
62 	void (*submit)(struct msm_gpu *gpu, struct msm_gem_submit *submit);
63 	void (*flush)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
64 	irqreturn_t (*irq)(struct msm_gpu *irq);
65 	struct msm_ringbuffer *(*active_ring)(struct msm_gpu *gpu);
66 	void (*recover)(struct msm_gpu *gpu);
67 	void (*destroy)(struct msm_gpu *gpu);
68 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP)
69 	/* show GPU status in debugfs: */
70 	void (*show)(struct msm_gpu *gpu, struct msm_gpu_state *state,
71 			struct drm_printer *p);
72 	/* for generation specific debugfs: */
73 	void (*debugfs_init)(struct msm_gpu *gpu, struct drm_minor *minor);
74 #endif
75 	/* note: gpu_busy() can assume that we have been pm_resumed */
76 	u64 (*gpu_busy)(struct msm_gpu *gpu, unsigned long *out_sample_rate);
77 	struct msm_gpu_state *(*gpu_state_get)(struct msm_gpu *gpu);
78 	int (*gpu_state_put)(struct msm_gpu_state *state);
79 	unsigned long (*gpu_get_freq)(struct msm_gpu *gpu);
80 	/* note: gpu_set_freq() can assume that we have been pm_resumed */
81 	void (*gpu_set_freq)(struct msm_gpu *gpu, struct dev_pm_opp *opp,
82 			     bool suspended);
83 	struct drm_gpuvm *(*create_vm)(struct msm_gpu *gpu, struct platform_device *pdev);
84 	struct drm_gpuvm *(*create_private_vm)(struct msm_gpu *gpu, bool kernel_managed);
85 	uint32_t (*get_rptr)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
86 
87 	/**
88 	 * progress: Has the GPU made progress?
89 	 *
90 	 * Return true if GPU position in cmdstream has advanced (or changed)
91 	 * since the last call.  To avoid false negatives, this should account
92 	 * for cmdstream that is buffered in this FIFO upstream of the CP fw.
93 	 */
94 	bool (*progress)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
95 	void (*sysprof_setup)(struct msm_gpu *gpu);
96 };
97 
98 /* Additional state for iommu faults: */
99 struct msm_gpu_fault_info {
100 	u64 ttbr0;
101 	unsigned long iova;
102 	int flags;
103 	const char *type;
104 	const char *block;
105 
106 	/* Information about what we think/expect is the current SMMU state,
107 	 * for example expected_ttbr0 should match smmu_info.ttbr0 which
108 	 * was read back from SMMU registers.
109 	 */
110 	phys_addr_t pgtbl_ttbr0;
111 	u64 ptes[4];
112 	int asid;
113 };
114 
115 /**
116  * struct msm_gpu_devfreq - devfreq related state
117  */
118 struct msm_gpu_devfreq {
119 	/** devfreq: devfreq instance */
120 	struct devfreq *devfreq;
121 
122 	/** lock: lock for "suspended", "busy_cycles", and "time" */
123 	struct mutex lock;
124 
125 	/**
126 	 * idle_freq:
127 	 *
128 	 * Shadow frequency used while the GPU is idle.  From the PoV of
129 	 * the devfreq governor, we are continuing to sample busyness and
130 	 * adjust frequency while the GPU is idle, but we use this shadow
131 	 * value as the GPU is actually clamped to minimum frequency while
132 	 * it is inactive.
133 	 */
134 	unsigned long idle_freq;
135 
136 	/**
137 	 * boost_constraint:
138 	 *
139 	 * A PM QoS constraint to boost min freq for a period of time
140 	 * until the boost expires.
141 	 */
142 	struct dev_pm_qos_request boost_freq;
143 
144 	/**
145 	 * busy_cycles: Last busy counter value, for calculating elapsed busy
146 	 * cycles since last sampling period.
147 	 */
148 	u64 busy_cycles;
149 
150 	/** time: Time of last sampling period. */
151 	ktime_t time;
152 
153 	/** idle_time: Time of last transition to idle: */
154 	ktime_t idle_time;
155 
156 	/**
157 	 * idle_work:
158 	 *
159 	 * Used to delay clamping to idle freq on active->idle transition.
160 	 */
161 	struct msm_hrtimer_work idle_work;
162 
163 	/**
164 	 * boost_work:
165 	 *
166 	 * Used to reset the boost_constraint after the boost period has
167 	 * elapsed
168 	 */
169 	struct msm_hrtimer_work boost_work;
170 
171 	/** suspended: tracks if we're suspended */
172 	bool suspended;
173 };
174 
175 struct msm_gpu {
176 	const char *name;
177 	struct drm_device *dev;
178 	struct platform_device *pdev;
179 	const struct msm_gpu_funcs *funcs;
180 
181 	struct adreno_smmu_priv adreno_smmu;
182 
183 	/* performance counters (hw & sw): */
184 	spinlock_t perf_lock;
185 	bool perfcntr_active;
186 	struct {
187 		bool active;
188 		ktime_t time;
189 	} last_sample;
190 	uint32_t totaltime, activetime;    /* sw counters */
191 	uint32_t last_cntrs[5];            /* hw counters */
192 	const struct msm_gpu_perfcntr *perfcntrs;
193 	uint32_t num_perfcntrs;
194 
195 	struct msm_ringbuffer *rb[MSM_GPU_MAX_RINGS];
196 	int nr_rings;
197 
198 	/**
199 	 * sysprof_active:
200 	 *
201 	 * The count of contexts that have enabled system profiling.
202 	 */
203 	refcount_t sysprof_active;
204 
205 	/**
206 	 * lock:
207 	 *
208 	 * General lock for serializing all the gpu things.
209 	 *
210 	 * TODO move to per-ring locking where feasible (ie. submit/retire
211 	 * path, etc)
212 	 */
213 	struct mutex lock;
214 
215 	/**
216 	 * active_submits:
217 	 *
218 	 * The number of submitted but not yet retired submits, used to
219 	 * determine transitions between active and idle.
220 	 *
221 	 * Protected by active_lock
222 	 */
223 	int active_submits;
224 
225 	/** lock: protects active_submits and idle/active transitions */
226 	struct mutex active_lock;
227 
228 	/* does gpu need hw_init? */
229 	bool needs_hw_init;
230 
231 	/**
232 	 * global_faults: number of GPU hangs not attributed to a particular
233 	 * address space
234 	 */
235 	int global_faults;
236 
237 	void __iomem *mmio;
238 	int irq;
239 
240 	struct drm_gpuvm *vm;
241 
242 	/* Power Control: */
243 	struct regulator *gpu_reg, *gpu_cx;
244 	struct clk_bulk_data *grp_clks;
245 	int nr_clocks;
246 	struct clk *ebi1_clk, *core_clk, *rbbmtimer_clk;
247 	uint32_t fast_rate;
248 
249 	/* Hang and Inactivity Detection:
250 	 */
251 #define DRM_MSM_INACTIVE_PERIOD   66 /* in ms (roughly four frames) */
252 
253 #define DRM_MSM_HANGCHECK_DEFAULT_PERIOD 500 /* in ms */
254 #define DRM_MSM_HANGCHECK_PROGRESS_RETRIES 3
255 	struct timer_list hangcheck_timer;
256 
257 	/* work for handling GPU recovery: */
258 	struct kthread_work recover_work;
259 
260 	/** retire_event: notified when submits are retired: */
261 	wait_queue_head_t retire_event;
262 
263 	/* work for handling active-list retiring: */
264 	struct kthread_work retire_work;
265 
266 	/* worker for retire/recover: */
267 	struct kthread_worker *worker;
268 
269 	struct drm_gem_object *memptrs_bo;
270 
271 	struct msm_gpu_devfreq devfreq;
272 
273 	uint32_t suspend_count;
274 
275 	struct msm_gpu_state *crashstate;
276 
277 	/* True if the hardware supports expanded apriv (a650 and newer) */
278 	bool hw_apriv;
279 
280 	/**
281 	 * @allow_relocs: allow relocs in SUBMIT ioctl
282 	 *
283 	 * Mesa won't use relocs for driver version 1.4.0 and later.  This
284 	 * switch-over happened early enough in mesa a6xx bringup that we
285 	 * can disallow relocs for a6xx and newer.
286 	 */
287 	bool allow_relocs;
288 
289 	struct thermal_cooling_device *cooling;
290 };
291 
dev_to_gpu(struct device * dev)292 static inline struct msm_gpu *dev_to_gpu(struct device *dev)
293 {
294 	struct adreno_smmu_priv *adreno_smmu = dev_get_drvdata(dev);
295 
296 	if (!adreno_smmu)
297 		return NULL;
298 
299 	return container_of(adreno_smmu, struct msm_gpu, adreno_smmu);
300 }
301 
302 static inline bool
adreno_smmu_has_prr(struct msm_gpu * gpu)303 adreno_smmu_has_prr(struct msm_gpu *gpu)
304 {
305 	struct adreno_smmu_priv *adreno_smmu = dev_get_drvdata(&gpu->pdev->dev);
306 
307 	if (!adreno_smmu)
308 		return false;
309 
310 	return adreno_smmu && adreno_smmu->set_prr_addr;
311 }
312 
313 /* It turns out that all targets use the same ringbuffer size */
314 #define MSM_GPU_RINGBUFFER_SZ SZ_32K
315 #define MSM_GPU_RINGBUFFER_BLKSIZE 32
316 
317 #define MSM_GPU_RB_CNTL_DEFAULT \
318 		(AXXX_CP_RB_CNTL_BUFSZ(ilog2(MSM_GPU_RINGBUFFER_SZ / 8)) | \
319 		AXXX_CP_RB_CNTL_BLKSZ(ilog2(MSM_GPU_RINGBUFFER_BLKSIZE / 8)))
320 
msm_gpu_active(struct msm_gpu * gpu)321 static inline bool msm_gpu_active(struct msm_gpu *gpu)
322 {
323 	int i;
324 
325 	for (i = 0; i < gpu->nr_rings; i++) {
326 		struct msm_ringbuffer *ring = gpu->rb[i];
327 
328 		if (fence_after(ring->fctx->last_fence, ring->memptrs->fence))
329 			return true;
330 	}
331 
332 	return false;
333 }
334 
335 /* Perf-Counters:
336  * The select_reg and select_val are just there for the benefit of the child
337  * class that actually enables the perf counter..  but msm_gpu base class
338  * will handle sampling/displaying the counters.
339  */
340 
341 struct msm_gpu_perfcntr {
342 	uint32_t select_reg;
343 	uint32_t sample_reg;
344 	uint32_t select_val;
345 	const char *name;
346 };
347 
348 /*
349  * The number of priority levels provided by drm gpu scheduler.  The
350  * DRM_SCHED_PRIORITY_KERNEL priority level is treated specially in some
351  * cases, so we don't use it (no need for kernel generated jobs).
352  */
353 #define NR_SCHED_PRIORITIES (1 + DRM_SCHED_PRIORITY_LOW - DRM_SCHED_PRIORITY_HIGH)
354 
355 /**
356  * struct msm_context - per-drm_file context
357  */
358 struct msm_context {
359 	/** @queuelock: synchronizes access to submitqueues list */
360 	rwlock_t queuelock;
361 
362 	/** @submitqueues: list of &msm_gpu_submitqueue created by userspace */
363 	struct list_head submitqueues;
364 
365 	/**
366 	 * @queueid:
367 	 *
368 	 * Counter incremented each time a submitqueue is created, used to
369 	 * assign &msm_gpu_submitqueue.id
370 	 */
371 	int queueid;
372 
373 	/**
374 	 * @closed: The device file associated with this context has been closed.
375 	 *
376 	 * Once the device is closed, any submits that have not been written
377 	 * to the ring buffer are no-op'd.
378 	 */
379 	bool closed;
380 
381 	/**
382 	 * @userspace_managed_vm:
383 	 *
384 	 * Has userspace opted-in to userspace managed VM (ie. VM_BIND) via
385 	 * MSM_PARAM_EN_VM_BIND?
386 	 */
387 	bool userspace_managed_vm;
388 
389 	/**
390 	 * @vm:
391 	 *
392 	 * The per-process GPU address-space.  Do not access directly, use
393 	 * msm_context_vm().
394 	 */
395 	struct drm_gpuvm *vm;
396 
397 	/** @kref: the reference count */
398 	struct kref ref;
399 
400 	/**
401 	 * @seqno:
402 	 *
403 	 * A unique per-process sequence number.  Used to detect context
404 	 * switches, without relying on keeping a, potentially dangling,
405 	 * pointer to the previous context.
406 	 */
407 	int seqno;
408 
409 	/**
410 	 * @sysprof:
411 	 *
412 	 * The value of MSM_PARAM_SYSPROF set by userspace.  This is
413 	 * intended to be used by system profiling tools like Mesa's
414 	 * pps-producer (perfetto), and restricted to CAP_SYS_ADMIN.
415 	 *
416 	 * Setting a value of 1 will preserve performance counters across
417 	 * context switches.  Setting a value of 2 will in addition
418 	 * suppress suspend.  (Performance counters lose state across
419 	 * power collapse, which is undesirable for profiling in some
420 	 * cases.)
421 	 *
422 	 * The value automatically reverts to zero when the drm device
423 	 * file is closed.
424 	 */
425 	int sysprof;
426 
427 	/**
428 	 * @comm: Overridden task comm, see MSM_PARAM_COMM
429 	 *
430 	 * Accessed under msm_gpu::lock
431 	 */
432 	char *comm;
433 
434 	/**
435 	 * @cmdline: Overridden task cmdline, see MSM_PARAM_CMDLINE
436 	 *
437 	 * Accessed under msm_gpu::lock
438 	 */
439 	char *cmdline;
440 
441 	/**
442 	 * @elapsed:
443 	 *
444 	 * The total (cumulative) elapsed time GPU was busy with rendering
445 	 * from this context in ns.
446 	 */
447 	uint64_t elapsed_ns;
448 
449 	/**
450 	 * @cycles:
451 	 *
452 	 * The total (cumulative) GPU cycles elapsed attributed to this
453 	 * context.
454 	 */
455 	uint64_t cycles;
456 
457 	/**
458 	 * @entities:
459 	 *
460 	 * Table of per-priority-level sched entities used by submitqueues
461 	 * associated with this &drm_file.  Because some userspace apps
462 	 * make assumptions about rendering from multiple gl contexts
463 	 * (of the same priority) within the process happening in FIFO
464 	 * order without requiring any fencing beyond MakeCurrent(), we
465 	 * create at most one &drm_sched_entity per-process per-priority-
466 	 * level.
467 	 */
468 	struct drm_sched_entity *entities[NR_SCHED_PRIORITIES * MSM_GPU_MAX_RINGS];
469 
470 	/**
471 	 * @ctx_mem:
472 	 *
473 	 * Total amount of memory of GEM buffers with handles attached for
474 	 * this context.
475 	 */
476 	atomic64_t ctx_mem;
477 };
478 
479 struct drm_gpuvm *msm_context_vm(struct drm_device *dev, struct msm_context *ctx);
480 
481 /**
482  * msm_context_is_vm_bind() - has userspace opted in to VM_BIND?
483  *
484  * @ctx: the drm_file context
485  *
486  * See MSM_PARAM_EN_VM_BIND.  If userspace is managing the VM, it can
487  * do sparse binding including having multiple, potentially partial,
488  * mappings in the VM.  Therefore certain legacy uabi (ie. GET_IOVA,
489  * SET_IOVA) are rejected because they don't have a sensible meaning.
490  */
491 static inline bool
msm_context_is_vmbind(struct msm_context * ctx)492 msm_context_is_vmbind(struct msm_context *ctx)
493 {
494 	return ctx->userspace_managed_vm;
495 }
496 
497 /**
498  * msm_gpu_convert_priority - Map userspace priority to ring # and sched priority
499  *
500  * @gpu:        the gpu instance
501  * @prio:       the userspace priority level
502  * @ring_nr:    [out] the ringbuffer the userspace priority maps to
503  * @sched_prio: [out] the gpu scheduler priority level which the userspace
504  *              priority maps to
505  *
506  * With drm/scheduler providing it's own level of prioritization, our total
507  * number of available priority levels is (nr_rings * NR_SCHED_PRIORITIES).
508  * Each ring is associated with it's own scheduler instance.  However, our
509  * UABI is that lower numerical values are higher priority.  So mapping the
510  * single userspace priority level into ring_nr and sched_prio takes some
511  * care.  The userspace provided priority (when a submitqueue is created)
512  * is mapped to ring nr and scheduler priority as such:
513  *
514  *   ring_nr    = userspace_prio / NR_SCHED_PRIORITIES
515  *   sched_prio = NR_SCHED_PRIORITIES -
516  *                (userspace_prio % NR_SCHED_PRIORITIES) - 1
517  *
518  * This allows generations without preemption (nr_rings==1) to have some
519  * amount of prioritization, and provides more priority levels for gens
520  * that do have preemption.
521  */
msm_gpu_convert_priority(struct msm_gpu * gpu,int prio,unsigned * ring_nr,enum drm_sched_priority * sched_prio)522 static inline int msm_gpu_convert_priority(struct msm_gpu *gpu, int prio,
523 		unsigned *ring_nr, enum drm_sched_priority *sched_prio)
524 {
525 	unsigned rn, sp;
526 
527 	rn = div_u64_rem(prio, NR_SCHED_PRIORITIES, &sp);
528 
529 	/* invert sched priority to map to higher-numeric-is-higher-
530 	 * priority convention
531 	 */
532 	sp = NR_SCHED_PRIORITIES - sp - 1;
533 
534 	if (rn >= gpu->nr_rings)
535 		return -EINVAL;
536 
537 	*ring_nr = rn;
538 	*sched_prio = sp;
539 
540 	return 0;
541 }
542 
543 /**
544  * struct msm_gpu_submitqueues - Userspace created context.
545  *
546  * A submitqueue is associated with a gl context or vk queue (or equiv)
547  * in userspace.
548  *
549  * @id:        userspace id for the submitqueue, unique within the drm_file
550  * @flags:     userspace flags for the submitqueue, specified at creation
551  *             (currently unusued)
552  * @ring_nr:   the ringbuffer used by this submitqueue, which is determined
553  *             by the submitqueue's priority
554  * @faults:    the number of GPU hangs associated with this submitqueue
555  * @last_fence: the sequence number of the last allocated fence (for error
556  *             checking)
557  * @ctx:       the per-drm_file context associated with the submitqueue (ie.
558  *             which set of pgtables do submits jobs associated with the
559  *             submitqueue use)
560  * @node:      node in the context's list of submitqueues
561  * @fence_idr: maps fence-id to dma_fence for userspace visible fence
562  *             seqno, protected by submitqueue lock
563  * @idr_lock:  for serializing access to fence_idr
564  * @lock:      submitqueue lock for serializing submits on a queue
565  * @ref:       reference count
566  * @entity:    the submit job-queue
567  */
568 struct msm_gpu_submitqueue {
569 	int id;
570 	u32 flags;
571 	u32 ring_nr;
572 	int faults;
573 	uint32_t last_fence;
574 	struct msm_context *ctx;
575 	struct list_head node;
576 	struct idr fence_idr;
577 	struct spinlock idr_lock;
578 	struct mutex lock;
579 	struct kref ref;
580 	struct drm_sched_entity *entity;
581 
582 	/** @_vm_bind_entity: used for @entity pointer for VM_BIND queues */
583 	struct drm_sched_entity _vm_bind_entity[0];
584 };
585 
586 struct msm_gpu_state_bo {
587 	u64 iova;
588 	size_t size;
589 	u32 flags;
590 	void *data;
591 	bool encoded;
592 	char name[32];
593 };
594 
595 struct msm_gpu_state {
596 	struct kref ref;
597 	struct timespec64 time;
598 
599 	struct {
600 		u64 iova;
601 		u32 fence;
602 		u32 seqno;
603 		u32 rptr;
604 		u32 wptr;
605 		void *data;
606 		int data_size;
607 		bool encoded;
608 	} ring[MSM_GPU_MAX_RINGS];
609 
610 	int nr_registers;
611 	u32 *registers;
612 
613 	u32 rbbm_status;
614 
615 	char *comm;
616 	char *cmd;
617 
618 	struct msm_gpu_fault_info fault_info;
619 
620 	int nr_vm_logs;
621 	struct msm_gem_vm_log_entry *vm_logs;
622 
623 	int nr_bos;
624 	struct msm_gpu_state_bo *bos;
625 };
626 
gpu_write(struct msm_gpu * gpu,u32 reg,u32 data)627 static inline void gpu_write(struct msm_gpu *gpu, u32 reg, u32 data)
628 {
629 	trace_msm_gpu_regaccess(reg);
630 	writel(data, gpu->mmio + (reg << 2));
631 }
632 
gpu_read(struct msm_gpu * gpu,u32 reg)633 static inline u32 gpu_read(struct msm_gpu *gpu, u32 reg)
634 {
635 	trace_msm_gpu_regaccess(reg);
636 	return readl(gpu->mmio + (reg << 2));
637 }
638 
gpu_rmw(struct msm_gpu * gpu,u32 reg,u32 mask,u32 or)639 static inline void gpu_rmw(struct msm_gpu *gpu, u32 reg, u32 mask, u32 or)
640 {
641 	trace_msm_gpu_regaccess(reg);
642 	msm_rmw(gpu->mmio + (reg << 2), mask, or);
643 }
644 
gpu_read64(struct msm_gpu * gpu,u32 reg)645 static inline u64 gpu_read64(struct msm_gpu *gpu, u32 reg)
646 {
647 	u64 val;
648 
649 	/*
650 	 * Why not a readq here? Two reasons: 1) many of the LO registers are
651 	 * not quad word aligned and 2) the GPU hardware designers have a bit
652 	 * of a history of putting registers where they fit, especially in
653 	 * spins. The longer a GPU family goes the higher the chance that
654 	 * we'll get burned.  We could do a series of validity checks if we
655 	 * wanted to, but really is a readq() that much better? Nah.
656 	 */
657 
658 	/*
659 	 * For some lo/hi registers (like perfcounters), the hi value is latched
660 	 * when the lo is read, so make sure to read the lo first to trigger
661 	 * that
662 	 */
663 	trace_msm_gpu_regaccess(reg);
664 	val = (u64) readl(gpu->mmio + (reg << 2));
665 	trace_msm_gpu_regaccess(reg+1);
666 	val |= ((u64) readl(gpu->mmio + ((reg + 1) << 2)) << 32);
667 
668 	return val;
669 }
670 
gpu_write64(struct msm_gpu * gpu,u32 reg,u64 val)671 static inline void gpu_write64(struct msm_gpu *gpu, u32 reg, u64 val)
672 {
673 	trace_msm_gpu_regaccess(reg);
674 	/* Why not a writeq here? Read the screed above */
675 	writel(lower_32_bits(val), gpu->mmio + (reg << 2));
676 	trace_msm_gpu_regaccess(reg+1);
677 	writel(upper_32_bits(val), gpu->mmio + ((reg + 1) << 2));
678 }
679 
680 int msm_gpu_pm_suspend(struct msm_gpu *gpu);
681 int msm_gpu_pm_resume(struct msm_gpu *gpu);
682 
683 void msm_gpu_show_fdinfo(struct msm_gpu *gpu, struct msm_context *ctx,
684 			 struct drm_printer *p);
685 
686 int msm_submitqueue_init(struct drm_device *drm, struct msm_context *ctx);
687 struct msm_gpu_submitqueue *msm_submitqueue_get(struct msm_context *ctx,
688 		u32 id);
689 int msm_submitqueue_create(struct drm_device *drm,
690 		struct msm_context *ctx,
691 		u32 prio, u32 flags, u32 *id);
692 int msm_submitqueue_query(struct drm_device *drm, struct msm_context *ctx,
693 		struct drm_msm_submitqueue_query *args);
694 int msm_submitqueue_remove(struct msm_context *ctx, u32 id);
695 void msm_submitqueue_close(struct msm_context *ctx);
696 
697 void msm_submitqueue_destroy(struct kref *kref);
698 
699 int msm_context_set_sysprof(struct msm_context *ctx, struct msm_gpu *gpu, int sysprof);
700 void __msm_context_destroy(struct kref *kref);
701 
msm_context_put(struct msm_context * ctx)702 static inline void msm_context_put(struct msm_context *ctx)
703 {
704 	kref_put(&ctx->ref, __msm_context_destroy);
705 }
706 
msm_context_get(struct msm_context * ctx)707 static inline struct msm_context *msm_context_get(
708 	struct msm_context *ctx)
709 {
710 	kref_get(&ctx->ref);
711 	return ctx;
712 }
713 
714 void msm_devfreq_init(struct msm_gpu *gpu);
715 void msm_devfreq_cleanup(struct msm_gpu *gpu);
716 void msm_devfreq_resume(struct msm_gpu *gpu);
717 void msm_devfreq_suspend(struct msm_gpu *gpu);
718 void msm_devfreq_boost(struct msm_gpu *gpu, unsigned factor);
719 void msm_devfreq_active(struct msm_gpu *gpu);
720 void msm_devfreq_idle(struct msm_gpu *gpu);
721 
722 int msm_gpu_hw_init(struct msm_gpu *gpu);
723 
724 void msm_gpu_perfcntr_start(struct msm_gpu *gpu);
725 void msm_gpu_perfcntr_stop(struct msm_gpu *gpu);
726 int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime,
727 		uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs);
728 
729 void msm_gpu_retire(struct msm_gpu *gpu);
730 void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit);
731 
732 int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev,
733 		struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs,
734 		const char *name, struct msm_gpu_config *config);
735 
736 struct drm_gpuvm *
737 msm_gpu_create_private_vm(struct msm_gpu *gpu, struct task_struct *task,
738 			  bool kernel_managed);
739 
740 void msm_gpu_cleanup(struct msm_gpu *gpu);
741 
742 struct msm_gpu *adreno_load_gpu(struct drm_device *dev);
743 bool adreno_has_gpu(struct device_node *node);
744 void __init adreno_register(void);
745 void __exit adreno_unregister(void);
746 
msm_submitqueue_put(struct msm_gpu_submitqueue * queue)747 static inline void msm_submitqueue_put(struct msm_gpu_submitqueue *queue)
748 {
749 	if (queue)
750 		kref_put(&queue->ref, msm_submitqueue_destroy);
751 }
752 
msm_gpu_crashstate_get(struct msm_gpu * gpu)753 static inline struct msm_gpu_state *msm_gpu_crashstate_get(struct msm_gpu *gpu)
754 {
755 	struct msm_gpu_state *state = NULL;
756 
757 	mutex_lock(&gpu->lock);
758 
759 	if (gpu->crashstate) {
760 		kref_get(&gpu->crashstate->ref);
761 		state = gpu->crashstate;
762 	}
763 
764 	mutex_unlock(&gpu->lock);
765 
766 	return state;
767 }
768 
msm_gpu_crashstate_put(struct msm_gpu * gpu)769 static inline void msm_gpu_crashstate_put(struct msm_gpu *gpu)
770 {
771 	mutex_lock(&gpu->lock);
772 
773 	if (gpu->crashstate) {
774 		if (gpu->funcs->gpu_state_put(gpu->crashstate))
775 			gpu->crashstate = NULL;
776 	}
777 
778 	mutex_unlock(&gpu->lock);
779 }
780 
781 void msm_gpu_fault_crashstate_capture(struct msm_gpu *gpu, struct msm_gpu_fault_info *fault_info);
782 
783 /*
784  * Simple macro to semi-cleanly add the MAP_PRIV flag for targets that can
785  * support expanded privileges
786  */
787 #define check_apriv(gpu, flags) \
788 	(((gpu)->hw_apriv ? MSM_BO_MAP_PRIV : 0) | (flags))
789 
790 
791 #endif /* __MSM_GPU_H__ */
792