xref: /titanic_50/usr/src/uts/common/fs/gfs.c (revision ab04eb8ef60d9dc9614d6cccffc474f24ca1d162)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /* Portions Copyright 2007 Shivakumar GN */
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/types.h>
30 #include <sys/cmn_err.h>
31 #include <sys/debug.h>
32 #include <sys/dirent.h>
33 #include <sys/kmem.h>
34 #include <sys/mman.h>
35 #include <sys/mutex.h>
36 #include <sys/sysmacros.h>
37 #include <sys/systm.h>
38 #include <sys/sunddi.h>
39 #include <sys/uio.h>
40 #include <sys/vmsystm.h>
41 #include <sys/vfs.h>
42 #include <sys/vnode.h>
43 
44 #include <vm/as.h>
45 #include <vm/seg_vn.h>
46 
47 #include <sys/gfs.h>
48 
49 /*
50  * Generic pseudo-filesystem routines.
51  *
52  * There are significant similarities between the implementation of certain file
53  * system entry points across different filesystems.  While one could attempt to
54  * "choke up on the bat" and incorporate common functionality into a VOP
55  * preamble or postamble, such an approach is limited in the benefit it can
56  * provide.  In this file we instead define a toolkit of routines which can be
57  * called from a filesystem (with in-kernel pseudo-filesystems being the focus
58  * of the exercise) in a more component-like fashion.
59  *
60  * There are three basic classes of routines:
61  *
62  * 1) Lowlevel support routines
63  *
64  *    These routines are designed to play a support role for existing
65  *    pseudo-filesystems (such as procfs).  They simplify common tasks,
66  *    without forcing the filesystem to hand over management to GFS.  The
67  *    routines covered are:
68  *
69  *	gfs_readdir_init()
70  *	gfs_readdir_emit()
71  *	gfs_readdir_emitn()
72  *	gfs_readdir_pred()
73  *	gfs_readdir_fini()
74  *	gfs_lookup_dot()
75  *
76  * 2) Complete GFS management
77  *
78  *    These routines take a more active role in management of the
79  *    pseudo-filesystem.  They handle the relationship between vnode private
80  *    data and VFS data, as well as the relationship between vnodes in the
81  *    directory hierarchy.
82  *
83  *    In order to use these interfaces, the first member of every private
84  *    v_data must be a gfs_file_t or a gfs_dir_t.  This hands over all control
85  *    to GFS.
86  *
87  * 	gfs_file_create()
88  * 	gfs_dir_create()
89  * 	gfs_root_create()
90  *
91  *	gfs_file_inactive()
92  *	gfs_dir_inactive()
93  *	gfs_dir_lookup()
94  *	gfs_dir_readdir()
95  *
96  * 	gfs_vop_inactive()
97  * 	gfs_vop_lookup()
98  * 	gfs_vop_readdir()
99  * 	gfs_vop_map()
100  *
101  * 3) Single File pseudo-filesystems
102  *
103  *    This routine creates a rooted file to be overlayed ontop of another
104  *    file in the physical filespace.
105  *
106  *    Note that the parent is NULL (actually the vfs), but there is nothing
107  *    technically keeping such a file from utilizing the "Complete GFS
108  *    management" set of routines.
109  *
110  * 	gfs_root_create_file()
111  */
112 
113 /*
114  * gfs_make_opsvec: take an array of vnode type definitions and create
115  * their vnodeops_t structures
116  *
117  * This routine takes an array of gfs_opsvec_t's.  It could
118  * alternatively take an array of gfs_opsvec_t*'s, which would allow
119  * vnode types to be completely defined in files external to the caller
120  * of gfs_make_opsvec().  As it stands, much more sharing takes place --
121  * both the caller and the vnode type provider need to access gfsv_ops
122  * and gfsv_template, and the caller also needs to know gfsv_name.
123  */
124 int
gfs_make_opsvec(gfs_opsvec_t * vec)125 gfs_make_opsvec(gfs_opsvec_t *vec)
126 {
127 	int error, i;
128 
129 	for (i = 0; ; i++) {
130 		if (vec[i].gfsv_name == NULL)
131 			return (0);
132 		error = vn_make_ops(vec[i].gfsv_name, vec[i].gfsv_template,
133 		    vec[i].gfsv_ops);
134 		if (error)
135 			break;
136 	}
137 
138 	cmn_err(CE_WARN, "gfs_make_opsvec: bad vnode ops template for '%s'",
139 	    vec[i].gfsv_name);
140 	for (i--; i >= 0; i--) {
141 		vn_freevnodeops(*vec[i].gfsv_ops);
142 		*vec[i].gfsv_ops = NULL;
143 	}
144 	return (error);
145 }
146 
147 /*
148  * Low level directory routines
149  *
150  * These routines provide some simple abstractions for reading directories.
151  * They are designed to be used by existing pseudo filesystems (namely procfs)
152  * that already have a complicated management infrastructure.
153  */
154 
155 /*
156  * gfs_get_parent_ino: used to obtain a parent inode number and the
157  * inode number of the given vnode in preparation for calling gfs_readdir_init.
158  */
159 int
gfs_get_parent_ino(vnode_t * dvp,cred_t * cr,caller_context_t * ct,ino64_t * pino,ino64_t * ino)160 gfs_get_parent_ino(vnode_t *dvp, cred_t *cr, caller_context_t *ct,
161     ino64_t *pino, ino64_t *ino)
162 {
163 	vnode_t *parent;
164 	gfs_dir_t *dp = dvp->v_data;
165 	int error;
166 
167 	*ino = dp->gfsd_file.gfs_ino;
168 	parent = dp->gfsd_file.gfs_parent;
169 
170 	if (parent == NULL) {
171 		*pino = *ino;		/* root of filesystem */
172 	} else if (dvp->v_flag & V_XATTRDIR) {
173 		vattr_t va;
174 
175 		va.va_mask = AT_NODEID;
176 		error = VOP_GETATTR(parent, &va, 0, cr, ct);
177 		if (error)
178 			return (error);
179 		*pino = va.va_nodeid;
180 	} else {
181 		*pino = ((gfs_file_t *)(parent->v_data))->gfs_ino;
182 	}
183 
184 	return (0);
185 }
186 
187 /*
188  * gfs_readdir_init: initiate a generic readdir
189  *   st		- a pointer to an uninitialized gfs_readdir_state_t structure
190  *   name_max	- the directory's maximum file name length
191  *   ureclen	- the exported file-space record length (1 for non-legacy FSs)
192  *   uiop	- the uiop passed to readdir
193  *   parent	- the parent directory's inode
194  *   self	- this directory's inode
195  *   flags	- flags from VOP_READDIR
196  *
197  * Returns 0 or a non-zero errno.
198  *
199  * Typical VOP_READDIR usage of gfs_readdir_*:
200  *
201  *	if ((error = gfs_readdir_init(...)) != 0)
202  *		return (error);
203  *	eof = 0;
204  *	while ((error = gfs_readdir_pred(..., &voffset)) != 0) {
205  *		if (!consumer_entry_at(voffset))
206  *			voffset = consumer_next_entry(voffset);
207  *		if (consumer_eof(voffset)) {
208  *			eof = 1
209  *			break;
210  *		}
211  *		if ((error = gfs_readdir_emit(..., voffset,
212  *		    consumer_ino(voffset), consumer_name(voffset))) != 0)
213  *			break;
214  *	}
215  *	return (gfs_readdir_fini(..., error, eofp, eof));
216  *
217  * As you can see, a zero result from gfs_readdir_pred() or
218  * gfs_readdir_emit() indicates that processing should continue,
219  * whereas a non-zero result indicates that the loop should terminate.
220  * Most consumers need do nothing more than let gfs_readdir_fini()
221  * determine what the cause of failure was and return the appropriate
222  * value.
223  */
224 int
gfs_readdir_init(gfs_readdir_state_t * st,int name_max,int ureclen,uio_t * uiop,ino64_t parent,ino64_t self,int flags)225 gfs_readdir_init(gfs_readdir_state_t *st, int name_max, int ureclen,
226     uio_t *uiop, ino64_t parent, ino64_t self, int flags)
227 {
228 	size_t dirent_size;
229 
230 	if (uiop->uio_loffset < 0 || uiop->uio_resid <= 0 ||
231 	    (uiop->uio_loffset % ureclen) != 0)
232 		return (EINVAL);
233 
234 	st->grd_ureclen = ureclen;
235 	st->grd_oresid = uiop->uio_resid;
236 	st->grd_namlen = name_max;
237 	if (flags & V_RDDIR_ENTFLAGS)
238 		dirent_size = EDIRENT_RECLEN(st->grd_namlen);
239 	else
240 		dirent_size = DIRENT64_RECLEN(st->grd_namlen);
241 	st->grd_dirent = kmem_zalloc(dirent_size, KM_SLEEP);
242 	st->grd_parent = parent;
243 	st->grd_self = self;
244 	st->grd_flags = flags;
245 
246 	return (0);
247 }
248 
249 /*
250  * gfs_readdir_emit_int: internal routine to emit directory entry
251  *
252  *   st		- the current readdir state, which must have d_ino/ed_ino
253  *		  and d_name/ed_name set
254  *   uiop	- caller-supplied uio pointer
255  *   next	- the offset of the next entry
256  */
257 static int
gfs_readdir_emit_int(gfs_readdir_state_t * st,uio_t * uiop,offset_t next)258 gfs_readdir_emit_int(gfs_readdir_state_t *st, uio_t *uiop, offset_t next)
259 {
260 	int reclen;
261 	dirent64_t *dp;
262 	edirent_t *edp;
263 
264 	if (st->grd_flags & V_RDDIR_ENTFLAGS) {
265 		edp = st->grd_dirent;
266 		reclen = EDIRENT_RECLEN(strlen(edp->ed_name));
267 	} else {
268 		dp = st->grd_dirent;
269 		reclen = DIRENT64_RECLEN(strlen(dp->d_name));
270 	}
271 
272 	if (reclen > uiop->uio_resid) {
273 		/*
274 		 * Error if no entries were returned yet
275 		 */
276 		if (uiop->uio_resid == st->grd_oresid)
277 			return (EINVAL);
278 		return (-1);
279 	}
280 
281 	if (st->grd_flags & V_RDDIR_ENTFLAGS) {
282 		edp->ed_off = next;
283 		edp->ed_reclen = (ushort_t)reclen;
284 	} else {
285 		dp->d_off = next;
286 		dp->d_reclen = (ushort_t)reclen;
287 	}
288 
289 	if (uiomove((caddr_t)st->grd_dirent, reclen, UIO_READ, uiop))
290 		return (EFAULT);
291 
292 	uiop->uio_loffset = next;
293 
294 	return (0);
295 }
296 
297 /*
298  * gfs_readdir_emit: emit a directory entry
299  *   voff       - the virtual offset (obtained from gfs_readdir_pred)
300  *   ino        - the entry's inode
301  *   name       - the entry's name
302  *   eflags	- value for ed_eflags (if processing edirent_t)
303  *
304  * Returns a 0 on success, a non-zero errno on failure, or -1 if the
305  * readdir loop should terminate.  A non-zero result (either errno or
306  * -1) from this function is typically passed directly to
307  * gfs_readdir_fini().
308  */
309 int
gfs_readdir_emit(gfs_readdir_state_t * st,uio_t * uiop,offset_t voff,ino64_t ino,const char * name,int eflags)310 gfs_readdir_emit(gfs_readdir_state_t *st, uio_t *uiop, offset_t voff,
311     ino64_t ino, const char *name, int eflags)
312 {
313 	offset_t off = (voff + 2) * st->grd_ureclen;
314 
315 	if (st->grd_flags & V_RDDIR_ENTFLAGS) {
316 		edirent_t *edp = st->grd_dirent;
317 
318 		edp->ed_ino = ino;
319 		(void) strncpy(edp->ed_name, name, st->grd_namlen);
320 		edp->ed_eflags = eflags;
321 	} else {
322 		dirent64_t *dp = st->grd_dirent;
323 
324 		dp->d_ino = ino;
325 		(void) strncpy(dp->d_name, name, st->grd_namlen);
326 	}
327 
328 	/*
329 	 * Inter-entry offsets are invalid, so we assume a record size of
330 	 * grd_ureclen and explicitly set the offset appropriately.
331 	 */
332 	return (gfs_readdir_emit_int(st, uiop, off + st->grd_ureclen));
333 }
334 
335 /*
336  * gfs_readdir_emitn: like gfs_readdir_emit(), but takes an integer
337  * instead of a string for the entry's name.
338  */
339 int
gfs_readdir_emitn(gfs_readdir_state_t * st,uio_t * uiop,offset_t voff,ino64_t ino,unsigned long num)340 gfs_readdir_emitn(gfs_readdir_state_t *st, uio_t *uiop, offset_t voff,
341     ino64_t ino, unsigned long num)
342 {
343 	char buf[40];
344 
345 	numtos(num, buf);
346 	return (gfs_readdir_emit(st, uiop, voff, ino, buf, 0));
347 }
348 
349 /*
350  * gfs_readdir_pred: readdir loop predicate
351  *   voffp - a pointer in which the next virtual offset should be stored
352  *
353  * Returns a 0 on success, a non-zero errno on failure, or -1 if the
354  * readdir loop should terminate.  A non-zero result (either errno or
355  * -1) from this function is typically passed directly to
356  * gfs_readdir_fini().
357  */
358 int
gfs_readdir_pred(gfs_readdir_state_t * st,uio_t * uiop,offset_t * voffp)359 gfs_readdir_pred(gfs_readdir_state_t *st, uio_t *uiop, offset_t *voffp)
360 {
361 	offset_t off, voff;
362 	int error;
363 
364 top:
365 	if (uiop->uio_resid <= 0)
366 		return (-1);
367 
368 	off = uiop->uio_loffset / st->grd_ureclen;
369 	voff = off - 2;
370 	if (off == 0) {
371 		if ((error = gfs_readdir_emit(st, uiop, voff, st->grd_self,
372 		    ".", 0)) == 0)
373 			goto top;
374 	} else if (off == 1) {
375 		if ((error = gfs_readdir_emit(st, uiop, voff, st->grd_parent,
376 		    "..", 0)) == 0)
377 			goto top;
378 	} else {
379 		*voffp = voff;
380 		return (0);
381 	}
382 
383 	return (error);
384 }
385 
386 /*
387  * gfs_readdir_fini: generic readdir cleanup
388  *   error	- if positive, an error to return
389  *   eofp	- the eofp passed to readdir
390  *   eof	- the eof value
391  *
392  * Returns a 0 on success, a non-zero errno on failure.  This result
393  * should be returned from readdir.
394  */
395 int
gfs_readdir_fini(gfs_readdir_state_t * st,int error,int * eofp,int eof)396 gfs_readdir_fini(gfs_readdir_state_t *st, int error, int *eofp, int eof)
397 {
398 	size_t dirent_size;
399 
400 	if (st->grd_flags & V_RDDIR_ENTFLAGS)
401 		dirent_size = EDIRENT_RECLEN(st->grd_namlen);
402 	else
403 		dirent_size = DIRENT64_RECLEN(st->grd_namlen);
404 	kmem_free(st->grd_dirent, dirent_size);
405 	if (error > 0)
406 		return (error);
407 	if (eofp)
408 		*eofp = eof;
409 	return (0);
410 }
411 
412 /*
413  * gfs_lookup_dot
414  *
415  * Performs a basic check for "." and ".." directory entries.
416  */
417 int
gfs_lookup_dot(vnode_t ** vpp,vnode_t * dvp,vnode_t * pvp,const char * nm)418 gfs_lookup_dot(vnode_t **vpp, vnode_t *dvp, vnode_t *pvp, const char *nm)
419 {
420 	if (*nm == '\0' || strcmp(nm, ".") == 0) {
421 		VN_HOLD(dvp);
422 		*vpp = dvp;
423 		return (0);
424 	} else if (strcmp(nm, "..") == 0) {
425 		if (pvp == NULL) {
426 			ASSERT(dvp->v_flag & VROOT);
427 			VN_HOLD(dvp);
428 			*vpp = dvp;
429 		} else {
430 			VN_HOLD(pvp);
431 			*vpp = pvp;
432 		}
433 		return (0);
434 	}
435 
436 	return (-1);
437 }
438 
439 /*
440  * gfs_file_create(): create a new GFS file
441  *
442  *   size	- size of private data structure (v_data)
443  *   pvp	- parent vnode (GFS directory)
444  *   ops	- vnode operations vector
445  *
446  * In order to use this interface, the parent vnode must have been created by
447  * gfs_dir_create(), and the private data stored in v_data must have a
448  * 'gfs_file_t' as its first field.
449  *
450  * Given these constraints, this routine will automatically:
451  *
452  * 	- Allocate v_data for the vnode
453  * 	- Initialize necessary fields in the vnode
454  * 	- Hold the parent
455  */
456 vnode_t *
gfs_file_create(size_t size,vnode_t * pvp,vnodeops_t * ops)457 gfs_file_create(size_t size, vnode_t *pvp, vnodeops_t *ops)
458 {
459 	gfs_file_t *fp;
460 	vnode_t *vp;
461 
462 	/*
463 	 * Allocate vnode and internal data structure
464 	 */
465 	fp = kmem_zalloc(size, KM_SLEEP);
466 	vp = vn_alloc(KM_SLEEP);
467 
468 	/*
469 	 * Set up various pointers
470 	 */
471 	fp->gfs_vnode = vp;
472 	fp->gfs_parent = pvp;
473 	vp->v_data = fp;
474 	fp->gfs_size = size;
475 	fp->gfs_type = GFS_FILE;
476 
477 	/*
478 	 * Initialize vnode and hold parent.
479 	 */
480 	vn_setops(vp, ops);
481 	if (pvp) {
482 		VN_SET_VFS_TYPE_DEV(vp, pvp->v_vfsp, VREG, 0);
483 		VN_HOLD(pvp);
484 	}
485 
486 	return (vp);
487 }
488 
489 /*
490  * gfs_dir_create: creates a new directory in the parent
491  *
492  *   size	- size of private data structure (v_data)
493  *   pvp	- parent vnode (GFS directory)
494  *   ops	- vnode operations vector
495  *   entries	- NULL-terminated list of static entries (if any)
496  *   maxlen	- maximum length of a directory entry
497  *   readdir_cb	- readdir callback (see gfs_dir_readdir)
498  *   inode_cb	- inode callback (see gfs_dir_readdir)
499  *   lookup_cb	- lookup callback (see gfs_dir_lookup)
500  *
501  * In order to use this function, the first member of the private vnode
502  * structure (v_data) must be a gfs_dir_t.  For each directory, there are
503  * static entries, defined when the structure is initialized, and dynamic
504  * entries, retrieved through callbacks.
505  *
506  * If a directory has static entries, then it must supply a inode callback,
507  * which will compute the inode number based on the parent and the index.
508  * For a directory with dynamic entries, the caller must supply a readdir
509  * callback and a lookup callback.  If a static lookup fails, we fall back to
510  * the supplied lookup callback, if any.
511  *
512  * This function also performs the same initialization as gfs_file_create().
513  */
514 vnode_t *
gfs_dir_create(size_t struct_size,vnode_t * pvp,vnodeops_t * ops,gfs_dirent_t * entries,gfs_inode_cb inode_cb,int maxlen,gfs_readdir_cb readdir_cb,gfs_lookup_cb lookup_cb)515 gfs_dir_create(size_t struct_size, vnode_t *pvp, vnodeops_t *ops,
516     gfs_dirent_t *entries, gfs_inode_cb inode_cb, int maxlen,
517     gfs_readdir_cb readdir_cb, gfs_lookup_cb lookup_cb)
518 {
519 	vnode_t *vp;
520 	gfs_dir_t *dp;
521 	gfs_dirent_t *de;
522 
523 	vp = gfs_file_create(struct_size, pvp, ops);
524 	vp->v_type = VDIR;
525 
526 	dp = vp->v_data;
527 	dp->gfsd_file.gfs_type = GFS_DIR;
528 	dp->gfsd_maxlen = maxlen;
529 
530 	if (entries != NULL) {
531 		for (de = entries; de->gfse_name != NULL; de++)
532 			dp->gfsd_nstatic++;
533 
534 		dp->gfsd_static = kmem_alloc(
535 		    dp->gfsd_nstatic * sizeof (gfs_dirent_t), KM_SLEEP);
536 		bcopy(entries, dp->gfsd_static,
537 		    dp->gfsd_nstatic * sizeof (gfs_dirent_t));
538 	}
539 
540 	dp->gfsd_readdir = readdir_cb;
541 	dp->gfsd_lookup = lookup_cb;
542 	dp->gfsd_inode = inode_cb;
543 
544 	mutex_init(&dp->gfsd_lock, NULL, MUTEX_DEFAULT, NULL);
545 
546 	return (vp);
547 }
548 
549 /*
550  * gfs_root_create(): create a root vnode for a GFS filesystem
551  *
552  * Similar to gfs_dir_create(), this creates a root vnode for a filesystem.  The
553  * only difference is that it takes a vfs_t instead of a vnode_t as its parent.
554  */
555 vnode_t *
gfs_root_create(size_t size,vfs_t * vfsp,vnodeops_t * ops,ino64_t ino,gfs_dirent_t * entries,gfs_inode_cb inode_cb,int maxlen,gfs_readdir_cb readdir_cb,gfs_lookup_cb lookup_cb)556 gfs_root_create(size_t size, vfs_t *vfsp, vnodeops_t *ops, ino64_t ino,
557     gfs_dirent_t *entries, gfs_inode_cb inode_cb, int maxlen,
558     gfs_readdir_cb readdir_cb, gfs_lookup_cb lookup_cb)
559 {
560 	vnode_t *vp = gfs_dir_create(size, NULL, ops, entries, inode_cb,
561 	    maxlen, readdir_cb, lookup_cb);
562 
563 	/* Manually set the inode */
564 	((gfs_file_t *)vp->v_data)->gfs_ino = ino;
565 
566 	VFS_HOLD(vfsp);
567 	VN_SET_VFS_TYPE_DEV(vp, vfsp, VDIR, 0);
568 	vp->v_flag |= VROOT | VNOCACHE | VNOMAP | VNOSWAP | VNOMOUNT;
569 
570 	return (vp);
571 }
572 
573 /*
574  * gfs_root_create_file(): create a root vnode for a GFS file as a filesystem
575  *
576  * Similar to gfs_root_create(), this creates a root vnode for a file to
577  * be the pseudo-filesystem.
578  */
579 vnode_t *
gfs_root_create_file(size_t size,vfs_t * vfsp,vnodeops_t * ops,ino64_t ino)580 gfs_root_create_file(size_t size, vfs_t *vfsp, vnodeops_t *ops, ino64_t ino)
581 {
582 	vnode_t	*vp = gfs_file_create(size, NULL, ops);
583 
584 	((gfs_file_t *)vp->v_data)->gfs_ino = ino;
585 
586 	VFS_HOLD(vfsp);
587 	VN_SET_VFS_TYPE_DEV(vp, vfsp, VREG, 0);
588 	vp->v_flag |= VROOT | VNOCACHE | VNOMAP | VNOSWAP | VNOMOUNT;
589 
590 	return (vp);
591 }
592 
593 /*
594  * gfs_file_inactive()
595  *
596  * Called from the VOP_INACTIVE() routine.  If necessary, this routine will
597  * remove the given vnode from the parent directory and clean up any references
598  * in the VFS layer.
599  *
600  * If the vnode was not removed (due to a race with vget), then NULL is
601  * returned.  Otherwise, a pointer to the private data is returned.
602  */
603 void *
gfs_file_inactive(vnode_t * vp)604 gfs_file_inactive(vnode_t *vp)
605 {
606 	int i;
607 	gfs_dirent_t *ge = NULL;
608 	gfs_file_t *fp = vp->v_data;
609 	gfs_dir_t *dp = NULL;
610 	void *data;
611 
612 	if (fp->gfs_parent == NULL || (vp->v_flag & V_XATTRDIR))
613 		goto found;
614 
615 	dp = fp->gfs_parent->v_data;
616 
617 	/*
618 	 * First, see if this vnode is cached in the parent.
619 	 */
620 	gfs_dir_lock(dp);
621 
622 	/*
623 	 * Find it in the set of static entries.
624 	 */
625 	for (i = 0; i < dp->gfsd_nstatic; i++)  {
626 		ge = &dp->gfsd_static[i];
627 
628 		if (ge->gfse_vnode == vp)
629 			goto found;
630 	}
631 
632 	/*
633 	 * If 'ge' is NULL, then it is a dynamic entry.
634 	 */
635 	ge = NULL;
636 
637 found:
638 	if (vp->v_flag & V_XATTRDIR) {
639 		mutex_enter(&fp->gfs_parent->v_lock);
640 	}
641 	mutex_enter(&vp->v_lock);
642 	if (vp->v_count == 1) {
643 		/*
644 		 * Really remove this vnode
645 		 */
646 		data = vp->v_data;
647 		if (ge != NULL) {
648 			/*
649 			 * If this was a statically cached entry, simply set the
650 			 * cached vnode to NULL.
651 			 */
652 			ge->gfse_vnode = NULL;
653 		}
654 		if (vp->v_flag & V_XATTRDIR) {
655 			fp->gfs_parent->v_xattrdir = NULL;
656 			mutex_exit(&fp->gfs_parent->v_lock);
657 		}
658 		mutex_exit(&vp->v_lock);
659 
660 		/*
661 		 * Free vnode and release parent
662 		 */
663 		if (fp->gfs_parent) {
664 			if (dp) {
665 				gfs_dir_unlock(dp);
666 			}
667 			VN_RELE(fp->gfs_parent);
668 		} else {
669 			ASSERT(vp->v_vfsp != NULL);
670 			VFS_RELE(vp->v_vfsp);
671 		}
672 		vn_free(vp);
673 	} else {
674 		vp->v_count--;
675 		data = NULL;
676 		mutex_exit(&vp->v_lock);
677 		if (vp->v_flag & V_XATTRDIR) {
678 			mutex_exit(&fp->gfs_parent->v_lock);
679 		}
680 		if (dp)
681 			gfs_dir_unlock(dp);
682 	}
683 
684 	return (data);
685 }
686 
687 /*
688  * gfs_dir_inactive()
689  *
690  * Same as above, but for directories.
691  */
692 void *
gfs_dir_inactive(vnode_t * vp)693 gfs_dir_inactive(vnode_t *vp)
694 {
695 	gfs_dir_t *dp;
696 
697 	ASSERT(vp->v_type == VDIR);
698 
699 	if ((dp = gfs_file_inactive(vp)) != NULL) {
700 		mutex_destroy(&dp->gfsd_lock);
701 		if (dp->gfsd_nstatic)
702 			kmem_free(dp->gfsd_static,
703 			    dp->gfsd_nstatic * sizeof (gfs_dirent_t));
704 	}
705 
706 	return (dp);
707 }
708 
709 /*
710  * gfs_dir_lookup_dynamic()
711  *
712  * This routine looks up the provided name amongst the dynamic entries
713  * in the gfs directory and returns the corresponding vnode, if found.
714  *
715  * The gfs directory is expected to be locked by the caller prior to
716  * calling this function.  The directory will be unlocked during the
717  * execution of this function, but will be locked upon return from the
718  * function.  This function returns 0 on success, non-zero on error.
719  *
720  * The dynamic lookups are performed by invoking the lookup
721  * callback, which is passed to this function as the first argument.
722  * The arguments to the callback are:
723  *
724  * int gfs_lookup_cb(vnode_t *pvp, const char *nm, vnode_t **vpp, cred_t *cr,
725  *     int flags, int *deflgs, pathname_t *rpnp);
726  *
727  *	pvp	- parent vnode
728  *	nm	- name of entry
729  *	vpp	- pointer to resulting vnode
730  *	cr	- pointer to cred
731  *	flags	- flags value from lookup request
732  *		ignored here; currently only used to request
733  *		insensitive lookups
734  *	direntflgs - output parameter, directory entry flags
735  *		ignored here; currently only used to indicate a lookup
736  *		has more than one possible match when case is not considered
737  *	realpnp	- output parameter, real pathname
738  *		ignored here; when lookup was performed case-insensitively,
739  *		this field contains the "real" name of the file.
740  *
741  * 	Returns 0 on success, non-zero on error.
742  */
743 static int
gfs_dir_lookup_dynamic(gfs_lookup_cb callback,gfs_dir_t * dp,const char * nm,vnode_t * dvp,vnode_t ** vpp,cred_t * cr,int flags,int * direntflags,pathname_t * realpnp)744 gfs_dir_lookup_dynamic(gfs_lookup_cb callback, gfs_dir_t *dp,
745     const char *nm, vnode_t *dvp, vnode_t **vpp, cred_t *cr, int flags,
746     int *direntflags, pathname_t *realpnp)
747 {
748 	gfs_file_t *fp;
749 	ino64_t ino;
750 	int ret;
751 
752 	ASSERT(GFS_DIR_LOCKED(dp));
753 
754 	/*
755 	 * Drop the directory lock, as the lookup routine
756 	 * will need to allocate memory, or otherwise deadlock on this
757 	 * directory.
758 	 */
759 	gfs_dir_unlock(dp);
760 	ret = callback(dvp, nm, vpp, &ino, cr, flags, direntflags, realpnp);
761 	gfs_dir_lock(dp);
762 
763 	/*
764 	 * The callback for extended attributes returns a vnode
765 	 * with v_data from an underlying fs.
766 	 */
767 	if (ret == 0 && !IS_XATTRDIR(dvp)) {
768 		fp = (gfs_file_t *)((*vpp)->v_data);
769 		fp->gfs_index = -1;
770 		fp->gfs_ino = ino;
771 	}
772 
773 	return (ret);
774 }
775 
776 /*
777  * gfs_dir_lookup_static()
778  *
779  * This routine looks up the provided name amongst the static entries
780  * in the gfs directory and returns the corresponding vnode, if found.
781  * The first argument to the function is a pointer to the comparison
782  * function this function should use to decide if names are a match.
783  *
784  * If a match is found, and GFS_CACHE_VNODE is set and the vnode
785  * exists, we simply return the existing vnode.  Otherwise, we call
786  * the static entry's callback routine, caching the result if
787  * necessary.  If the idx pointer argument is non-NULL, we use it to
788  * return the index of the matching static entry.
789  *
790  * The gfs directory is expected to be locked by the caller prior to calling
791  * this function.  The directory may be unlocked during the execution of
792  * this function, but will be locked upon return from the function.
793  *
794  * This function returns 0 if a match is found, ENOENT if not.
795  */
796 static int
gfs_dir_lookup_static(int (* compare)(const char *,const char *),gfs_dir_t * dp,const char * nm,vnode_t * dvp,int * idx,vnode_t ** vpp,pathname_t * rpnp)797 gfs_dir_lookup_static(int (*compare)(const char *, const char *),
798     gfs_dir_t *dp, const char *nm, vnode_t *dvp, int *idx,
799     vnode_t **vpp, pathname_t *rpnp)
800 {
801 	gfs_dirent_t *ge;
802 	vnode_t *vp = NULL;
803 	int i;
804 
805 	ASSERT(GFS_DIR_LOCKED(dp));
806 
807 	/*
808 	 * Search static entries.
809 	 */
810 	for (i = 0; i < dp->gfsd_nstatic; i++) {
811 		ge = &dp->gfsd_static[i];
812 
813 		if (compare(ge->gfse_name, nm) == 0) {
814 			if (rpnp)
815 				(void) strlcpy(rpnp->pn_buf, ge->gfse_name,
816 				    rpnp->pn_bufsize);
817 
818 			if (ge->gfse_vnode) {
819 				ASSERT(ge->gfse_flags & GFS_CACHE_VNODE);
820 				vp = ge->gfse_vnode;
821 				VN_HOLD(vp);
822 				break;
823 			}
824 
825 			/*
826 			 * We drop the directory lock, as the constructor will
827 			 * need to do KM_SLEEP allocations.  If we return from
828 			 * the constructor only to find that a parallel
829 			 * operation has completed, and GFS_CACHE_VNODE is set
830 			 * for this entry, we discard the result in favor of
831 			 * the cached vnode.
832 			 */
833 			gfs_dir_unlock(dp);
834 			vp = ge->gfse_ctor(dvp);
835 			gfs_dir_lock(dp);
836 
837 			((gfs_file_t *)vp->v_data)->gfs_index = i;
838 
839 			/* Set the inode according to the callback. */
840 			((gfs_file_t *)vp->v_data)->gfs_ino =
841 			    dp->gfsd_inode(dvp, i);
842 
843 			if (ge->gfse_flags & GFS_CACHE_VNODE) {
844 				if (ge->gfse_vnode == NULL) {
845 					ge->gfse_vnode = vp;
846 				} else {
847 					/*
848 					 * A parallel constructor beat us to it;
849 					 * return existing vnode.  We have to be
850 					 * careful because we can't release the
851 					 * current vnode while holding the
852 					 * directory lock; its inactive routine
853 					 * will try to lock this directory.
854 					 */
855 					vnode_t *oldvp = vp;
856 					vp = ge->gfse_vnode;
857 					VN_HOLD(vp);
858 
859 					gfs_dir_unlock(dp);
860 					VN_RELE(oldvp);
861 					gfs_dir_lock(dp);
862 				}
863 			}
864 			break;
865 		}
866 	}
867 
868 	if (vp == NULL)
869 		return (ENOENT);
870 	else if (idx)
871 		*idx = i;
872 	*vpp = vp;
873 	return (0);
874 }
875 
876 /*
877  * gfs_dir_lookup()
878  *
879  * Looks up the given name in the directory and returns the corresponding
880  * vnode, if found.
881  *
882  * First, we search statically defined entries, if any, with a call to
883  * gfs_dir_lookup_static().  If no static entry is found, and we have
884  * a callback function we try a dynamic lookup via gfs_dir_lookup_dynamic().
885  *
886  * This function returns 0 on success, non-zero on error.
887  */
888 int
gfs_dir_lookup(vnode_t * dvp,const char * nm,vnode_t ** vpp,cred_t * cr,int flags,int * direntflags,pathname_t * realpnp)889 gfs_dir_lookup(vnode_t *dvp, const char *nm, vnode_t **vpp, cred_t *cr,
890     int flags, int *direntflags, pathname_t *realpnp)
891 {
892 	gfs_dir_t *dp = dvp->v_data;
893 	boolean_t casecheck;
894 	vnode_t *dynvp = NULL;
895 	vnode_t *vp = NULL;
896 	int (*compare)(const char *, const char *);
897 	int error, idx;
898 
899 	ASSERT(dvp->v_type == VDIR);
900 
901 	if (gfs_lookup_dot(vpp, dvp, dp->gfsd_file.gfs_parent, nm) == 0)
902 		return (0);
903 
904 	casecheck = (flags & FIGNORECASE) != 0 && direntflags != NULL;
905 	if (vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) ||
906 	    (flags & FIGNORECASE))
907 		compare = strcasecmp;
908 	else
909 		compare = strcmp;
910 
911 	gfs_dir_lock(dp);
912 
913 	error = gfs_dir_lookup_static(compare, dp, nm, dvp, &idx, &vp, realpnp);
914 
915 	if (vp && casecheck) {
916 		gfs_dirent_t *ge;
917 		int i;
918 
919 		for (i = idx + 1; i < dp->gfsd_nstatic; i++) {
920 			ge = &dp->gfsd_static[i];
921 
922 			if (strcasecmp(ge->gfse_name, nm) == 0) {
923 				*direntflags |= ED_CASE_CONFLICT;
924 				goto out;
925 			}
926 		}
927 	}
928 
929 	if ((error || casecheck) && dp->gfsd_lookup)
930 		error = gfs_dir_lookup_dynamic(dp->gfsd_lookup, dp, nm, dvp,
931 		    &dynvp, cr, flags, direntflags, vp ? NULL : realpnp);
932 
933 	if (vp && dynvp) {
934 		/* static and dynamic entries are case-insensitive conflict */
935 		ASSERT(casecheck);
936 		*direntflags |= ED_CASE_CONFLICT;
937 		VN_RELE(dynvp);
938 	} else if (vp == NULL) {
939 		vp = dynvp;
940 	} else if (error == ENOENT) {
941 		error = 0;
942 	} else if (error) {
943 		VN_RELE(vp);
944 		vp = NULL;
945 	}
946 
947 out:
948 	gfs_dir_unlock(dp);
949 
950 	*vpp = vp;
951 	return (error);
952 }
953 
954 /*
955  * gfs_dir_readdir: does a readdir() on the given directory
956  *
957  *    dvp	- directory vnode
958  *    uiop	- uio structure
959  *    eofp	- eof pointer
960  *    data	- arbitrary data passed to readdir callback
961  *
962  * This routine does all the readdir() dirty work.  Even so, the caller must
963  * supply two callbacks in order to get full compatibility.
964  *
965  * If the directory contains static entries, an inode callback must be
966  * specified.  This avoids having to create every vnode and call VOP_GETATTR()
967  * when reading the directory.  This function has the following arguments:
968  *
969  *	ino_t gfs_inode_cb(vnode_t *vp, int index);
970  *
971  * 	vp	- vnode for the directory
972  * 	index	- index in original gfs_dirent_t array
973  *
974  * 	Returns the inode number for the given entry.
975  *
976  * For directories with dynamic entries, a readdir callback must be provided.
977  * This is significantly more complex, thanks to the particulars of
978  * VOP_READDIR().
979  *
980  *	int gfs_readdir_cb(vnode_t *vp, void *dp, int *eofp,
981  *	    offset_t *off, offset_t *nextoff, void *data, int flags)
982  *
983  *	vp	- directory vnode
984  *	dp	- directory entry, sized according to maxlen given to
985  *		  gfs_dir_create().  callback must fill in d_name and
986  *		  d_ino (if a dirent64_t), or ed_name, ed_ino, and ed_eflags
987  *		  (if an edirent_t). edirent_t is used if V_RDDIR_ENTFLAGS
988  *		  is set in 'flags'.
989  *	eofp	- callback must set to 1 when EOF has been reached
990  *	off	- on entry, the last offset read from the directory.  Callback
991  *		  must set to the offset of the current entry, typically left
992  *		  untouched.
993  *	nextoff	- callback must set to offset of next entry.  Typically
994  *		  (off + 1)
995  *	data	- caller-supplied data
996  *	flags	- VOP_READDIR flags
997  *
998  *	Return 0 on success, or error on failure.
999  */
1000 int
gfs_dir_readdir(vnode_t * dvp,uio_t * uiop,int * eofp,void * data,cred_t * cr,caller_context_t * ct,int flags)1001 gfs_dir_readdir(vnode_t *dvp, uio_t *uiop, int *eofp, void *data, cred_t *cr,
1002     caller_context_t *ct, int flags)
1003 {
1004 	gfs_readdir_state_t gstate;
1005 	int error, eof = 0;
1006 	ino64_t ino, pino;
1007 	offset_t off, next;
1008 	gfs_dir_t *dp = dvp->v_data;
1009 
1010 	error = gfs_get_parent_ino(dvp, cr, ct, &pino, &ino);
1011 	if (error)
1012 		return (error);
1013 
1014 	if ((error = gfs_readdir_init(&gstate, dp->gfsd_maxlen, 1, uiop,
1015 	    pino, ino, flags)) != 0)
1016 		return (error);
1017 
1018 	while ((error = gfs_readdir_pred(&gstate, uiop, &off)) == 0 &&
1019 	    !eof) {
1020 
1021 		if (off >= 0 && off < dp->gfsd_nstatic) {
1022 			ino = dp->gfsd_inode(dvp, off);
1023 
1024 			if ((error = gfs_readdir_emit(&gstate, uiop,
1025 			    off, ino, dp->gfsd_static[off].gfse_name, 0))
1026 			    != 0)
1027 				break;
1028 
1029 		} else if (dp->gfsd_readdir) {
1030 			off -= dp->gfsd_nstatic;
1031 
1032 			if ((error = dp->gfsd_readdir(dvp,
1033 			    gstate.grd_dirent, &eof, &off, &next,
1034 			    data, flags)) != 0 || eof)
1035 				break;
1036 
1037 			off += dp->gfsd_nstatic + 2;
1038 			next += dp->gfsd_nstatic + 2;
1039 
1040 			if ((error = gfs_readdir_emit_int(&gstate, uiop,
1041 			    next)) != 0)
1042 				break;
1043 		} else {
1044 			/*
1045 			 * Offset is beyond the end of the static entries, and
1046 			 * we have no dynamic entries.  Set EOF.
1047 			 */
1048 			eof = 1;
1049 		}
1050 	}
1051 
1052 	return (gfs_readdir_fini(&gstate, error, eofp, eof));
1053 }
1054 
1055 
1056 /*
1057  * gfs_vop_lookup: VOP_LOOKUP() entry point
1058  *
1059  * For use directly in vnode ops table.  Given a GFS directory, calls
1060  * gfs_dir_lookup() as necessary.
1061  */
1062 /* ARGSUSED */
1063 int
gfs_vop_lookup(vnode_t * dvp,char * nm,vnode_t ** vpp,pathname_t * pnp,int flags,vnode_t * rdir,cred_t * cr,caller_context_t * ct,int * direntflags,pathname_t * realpnp)1064 gfs_vop_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp,
1065     int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
1066     int *direntflags, pathname_t *realpnp)
1067 {
1068 	return (gfs_dir_lookup(dvp, nm, vpp, cr, flags, direntflags, realpnp));
1069 }
1070 
1071 /*
1072  * gfs_vop_readdir: VOP_READDIR() entry point
1073  *
1074  * For use directly in vnode ops table.  Given a GFS directory, calls
1075  * gfs_dir_readdir() as necessary.
1076  */
1077 /* ARGSUSED */
1078 int
gfs_vop_readdir(vnode_t * vp,uio_t * uiop,cred_t * cr,int * eofp,caller_context_t * ct,int flags)1079 gfs_vop_readdir(vnode_t *vp, uio_t *uiop, cred_t *cr, int *eofp,
1080     caller_context_t *ct, int flags)
1081 {
1082 	return (gfs_dir_readdir(vp, uiop, eofp, NULL, cr, ct, flags));
1083 }
1084 
1085 
1086 /*
1087  * gfs_vop_map: VOP_MAP() entry point
1088  *
1089  * Convenient routine for handling pseudo-files that wish to allow mmap() calls.
1090  * This function only works for readonly files, and uses the read function for
1091  * the vnode to fill in the data.  The mapped data is immediately faulted in and
1092  * filled with the necessary data during this call; there are no getpage() or
1093  * putpage() routines.
1094  */
1095 /* ARGSUSED */
1096 int
gfs_vop_map(vnode_t * vp,offset_t off,struct as * as,caddr_t * addrp,size_t len,uchar_t prot,uchar_t maxprot,uint_t flags,cred_t * cred,caller_context_t * ct)1097 gfs_vop_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
1098     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cred,
1099     caller_context_t *ct)
1100 {
1101 	int rv;
1102 	ssize_t resid = len;
1103 
1104 	/*
1105 	 * Check for bad parameters
1106 	 */
1107 #ifdef _ILP32
1108 	if (len > MAXOFF_T)
1109 		return (ENOMEM);
1110 #endif
1111 	if (vp->v_flag & VNOMAP)
1112 		return (ENOTSUP);
1113 	if (off > MAXOFF_T)
1114 		return (EFBIG);
1115 	if ((long)off < 0 || (long)(off + len) < 0)
1116 		return (EINVAL);
1117 	if (vp->v_type != VREG)
1118 		return (ENODEV);
1119 	if ((prot & (PROT_EXEC | PROT_WRITE)) != 0)
1120 		return (EACCES);
1121 
1122 	/*
1123 	 * Find appropriate address if needed, otherwise clear address range.
1124 	 */
1125 	as_rangelock(as);
1126 	rv = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
1127 	if (rv != 0) {
1128 		as_rangeunlock(as);
1129 		return (rv);
1130 	}
1131 
1132 	/*
1133 	 * Create mapping
1134 	 */
1135 	rv = as_map(as, *addrp, len, segvn_create, zfod_argsp);
1136 	as_rangeunlock(as);
1137 	if (rv != 0)
1138 		return (rv);
1139 
1140 	/*
1141 	 * Fill with data from read()
1142 	 */
1143 	rv = vn_rdwr(UIO_READ, vp, *addrp, len, off, UIO_USERSPACE,
1144 	    0, (rlim64_t)0, cred, &resid);
1145 
1146 	if (rv == 0 && resid != 0)
1147 		rv = ENXIO;
1148 
1149 	if (rv != 0) {
1150 		as_rangelock(as);
1151 		(void) as_unmap(as, *addrp, len);
1152 		as_rangeunlock(as);
1153 	}
1154 
1155 	return (rv);
1156 }
1157 
1158 /*
1159  * gfs_vop_inactive: VOP_INACTIVE() entry point
1160  *
1161  * Given a vnode that is a GFS file or directory, call gfs_file_inactive() or
1162  * gfs_dir_inactive() as necessary, and kmem_free()s associated private data.
1163  */
1164 /* ARGSUSED */
1165 void
gfs_vop_inactive(vnode_t * vp,cred_t * cr,caller_context_t * ct)1166 gfs_vop_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
1167 {
1168 	gfs_file_t *fp = vp->v_data;
1169 	void *data;
1170 
1171 	if (fp->gfs_type == GFS_DIR)
1172 		data = gfs_dir_inactive(vp);
1173 	else
1174 		data = gfs_file_inactive(vp);
1175 
1176 	if (data != NULL)
1177 		kmem_free(data, fp->gfs_size);
1178 }
1179