1 /* gf128mul.c - GF(2^128) multiplication functions 2 * 3 * Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. 4 * Copyright (c) 2006, Rik Snel <rsnel@cube.dyndns.org> 5 * 6 * Based on Dr Brian Gladman's (GPL'd) work published at 7 * http://gladman.plushost.co.uk/oldsite/cryptography_technology/index.php 8 * See the original copyright notice below. 9 * 10 * This program is free software; you can redistribute it and/or modify it 11 * under the terms of the GNU General Public License as published by the Free 12 * Software Foundation; either version 2 of the License, or (at your option) 13 * any later version. 14 */ 15 16 /* 17 --------------------------------------------------------------------------- 18 Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. All rights reserved. 19 20 LICENSE TERMS 21 22 The free distribution and use of this software in both source and binary 23 form is allowed (with or without changes) provided that: 24 25 1. distributions of this source code include the above copyright 26 notice, this list of conditions and the following disclaimer; 27 28 2. distributions in binary form include the above copyright 29 notice, this list of conditions and the following disclaimer 30 in the documentation and/or other associated materials; 31 32 3. the copyright holder's name is not used to endorse products 33 built using this software without specific written permission. 34 35 ALTERNATIVELY, provided that this notice is retained in full, this product 36 may be distributed under the terms of the GNU General Public License (GPL), 37 in which case the provisions of the GPL apply INSTEAD OF those given above. 38 39 DISCLAIMER 40 41 This software is provided 'as is' with no explicit or implied warranties 42 in respect of its properties, including, but not limited to, correctness 43 and/or fitness for purpose. 44 --------------------------------------------------------------------------- 45 Issue 31/01/2006 46 47 This file provides fast multiplication in GF(2^128) as required by several 48 cryptographic authentication modes 49 */ 50 51 #include <crypto/gf128mul.h> 52 #include <linux/kernel.h> 53 #include <linux/module.h> 54 #include <linux/slab.h> 55 56 #define gf128mul_dat(q) { \ 57 q(0x00), q(0x01), q(0x02), q(0x03), q(0x04), q(0x05), q(0x06), q(0x07),\ 58 q(0x08), q(0x09), q(0x0a), q(0x0b), q(0x0c), q(0x0d), q(0x0e), q(0x0f),\ 59 q(0x10), q(0x11), q(0x12), q(0x13), q(0x14), q(0x15), q(0x16), q(0x17),\ 60 q(0x18), q(0x19), q(0x1a), q(0x1b), q(0x1c), q(0x1d), q(0x1e), q(0x1f),\ 61 q(0x20), q(0x21), q(0x22), q(0x23), q(0x24), q(0x25), q(0x26), q(0x27),\ 62 q(0x28), q(0x29), q(0x2a), q(0x2b), q(0x2c), q(0x2d), q(0x2e), q(0x2f),\ 63 q(0x30), q(0x31), q(0x32), q(0x33), q(0x34), q(0x35), q(0x36), q(0x37),\ 64 q(0x38), q(0x39), q(0x3a), q(0x3b), q(0x3c), q(0x3d), q(0x3e), q(0x3f),\ 65 q(0x40), q(0x41), q(0x42), q(0x43), q(0x44), q(0x45), q(0x46), q(0x47),\ 66 q(0x48), q(0x49), q(0x4a), q(0x4b), q(0x4c), q(0x4d), q(0x4e), q(0x4f),\ 67 q(0x50), q(0x51), q(0x52), q(0x53), q(0x54), q(0x55), q(0x56), q(0x57),\ 68 q(0x58), q(0x59), q(0x5a), q(0x5b), q(0x5c), q(0x5d), q(0x5e), q(0x5f),\ 69 q(0x60), q(0x61), q(0x62), q(0x63), q(0x64), q(0x65), q(0x66), q(0x67),\ 70 q(0x68), q(0x69), q(0x6a), q(0x6b), q(0x6c), q(0x6d), q(0x6e), q(0x6f),\ 71 q(0x70), q(0x71), q(0x72), q(0x73), q(0x74), q(0x75), q(0x76), q(0x77),\ 72 q(0x78), q(0x79), q(0x7a), q(0x7b), q(0x7c), q(0x7d), q(0x7e), q(0x7f),\ 73 q(0x80), q(0x81), q(0x82), q(0x83), q(0x84), q(0x85), q(0x86), q(0x87),\ 74 q(0x88), q(0x89), q(0x8a), q(0x8b), q(0x8c), q(0x8d), q(0x8e), q(0x8f),\ 75 q(0x90), q(0x91), q(0x92), q(0x93), q(0x94), q(0x95), q(0x96), q(0x97),\ 76 q(0x98), q(0x99), q(0x9a), q(0x9b), q(0x9c), q(0x9d), q(0x9e), q(0x9f),\ 77 q(0xa0), q(0xa1), q(0xa2), q(0xa3), q(0xa4), q(0xa5), q(0xa6), q(0xa7),\ 78 q(0xa8), q(0xa9), q(0xaa), q(0xab), q(0xac), q(0xad), q(0xae), q(0xaf),\ 79 q(0xb0), q(0xb1), q(0xb2), q(0xb3), q(0xb4), q(0xb5), q(0xb6), q(0xb7),\ 80 q(0xb8), q(0xb9), q(0xba), q(0xbb), q(0xbc), q(0xbd), q(0xbe), q(0xbf),\ 81 q(0xc0), q(0xc1), q(0xc2), q(0xc3), q(0xc4), q(0xc5), q(0xc6), q(0xc7),\ 82 q(0xc8), q(0xc9), q(0xca), q(0xcb), q(0xcc), q(0xcd), q(0xce), q(0xcf),\ 83 q(0xd0), q(0xd1), q(0xd2), q(0xd3), q(0xd4), q(0xd5), q(0xd6), q(0xd7),\ 84 q(0xd8), q(0xd9), q(0xda), q(0xdb), q(0xdc), q(0xdd), q(0xde), q(0xdf),\ 85 q(0xe0), q(0xe1), q(0xe2), q(0xe3), q(0xe4), q(0xe5), q(0xe6), q(0xe7),\ 86 q(0xe8), q(0xe9), q(0xea), q(0xeb), q(0xec), q(0xed), q(0xee), q(0xef),\ 87 q(0xf0), q(0xf1), q(0xf2), q(0xf3), q(0xf4), q(0xf5), q(0xf6), q(0xf7),\ 88 q(0xf8), q(0xf9), q(0xfa), q(0xfb), q(0xfc), q(0xfd), q(0xfe), q(0xff) \ 89 } 90 91 /* 92 * Given a value i in 0..255 as the byte overflow when a field element 93 * in GF(2^128) is multiplied by x^8, the following macro returns the 94 * 16-bit value that must be XOR-ed into the low-degree end of the 95 * product to reduce it modulo the polynomial x^128 + x^7 + x^2 + x + 1. 96 * 97 * There are two versions of the macro, and hence two tables: one for 98 * the "be" convention where the highest-order bit is the coefficient of 99 * the highest-degree polynomial term, and one for the "le" convention 100 * where the highest-order bit is the coefficient of the lowest-degree 101 * polynomial term. In both cases the values are stored in CPU byte 102 * endianness such that the coefficients are ordered consistently across 103 * bytes, i.e. in the "be" table bits 15..0 of the stored value 104 * correspond to the coefficients of x^15..x^0, and in the "le" table 105 * bits 15..0 correspond to the coefficients of x^0..x^15. 106 * 107 * Therefore, provided that the appropriate byte endianness conversions 108 * are done by the multiplication functions (and these must be in place 109 * anyway to support both little endian and big endian CPUs), the "be" 110 * table can be used for multiplications of both "bbe" and "ble" 111 * elements, and the "le" table can be used for multiplications of both 112 * "lle" and "lbe" elements. 113 */ 114 115 #define xda_be(i) ( \ 116 (i & 0x80 ? 0x4380 : 0) ^ (i & 0x40 ? 0x21c0 : 0) ^ \ 117 (i & 0x20 ? 0x10e0 : 0) ^ (i & 0x10 ? 0x0870 : 0) ^ \ 118 (i & 0x08 ? 0x0438 : 0) ^ (i & 0x04 ? 0x021c : 0) ^ \ 119 (i & 0x02 ? 0x010e : 0) ^ (i & 0x01 ? 0x0087 : 0) \ 120 ) 121 122 #define xda_le(i) ( \ 123 (i & 0x80 ? 0xe100 : 0) ^ (i & 0x40 ? 0x7080 : 0) ^ \ 124 (i & 0x20 ? 0x3840 : 0) ^ (i & 0x10 ? 0x1c20 : 0) ^ \ 125 (i & 0x08 ? 0x0e10 : 0) ^ (i & 0x04 ? 0x0708 : 0) ^ \ 126 (i & 0x02 ? 0x0384 : 0) ^ (i & 0x01 ? 0x01c2 : 0) \ 127 ) 128 129 static const u16 gf128mul_table_le[256] = gf128mul_dat(xda_le); 130 static const u16 gf128mul_table_be[256] = gf128mul_dat(xda_be); 131 132 /* 133 * The following functions multiply a field element by x^8 in 134 * the polynomial field representation. They use 64-bit word operations 135 * to gain speed but compensate for machine endianness and hence work 136 * correctly on both styles of machine. 137 */ 138 139 static void gf128mul_x8_lle(be128 *x) 140 { 141 u64 a = be64_to_cpu(x->a); 142 u64 b = be64_to_cpu(x->b); 143 u64 _tt = gf128mul_table_le[b & 0xff]; 144 145 x->b = cpu_to_be64((b >> 8) | (a << 56)); 146 x->a = cpu_to_be64((a >> 8) ^ (_tt << 48)); 147 } 148 149 /* time invariant version of gf128mul_x8_lle */ 150 static void gf128mul_x8_lle_ti(be128 *x) 151 { 152 u64 a = be64_to_cpu(x->a); 153 u64 b = be64_to_cpu(x->b); 154 u64 _tt = xda_le(b & 0xff); /* avoid table lookup */ 155 156 x->b = cpu_to_be64((b >> 8) | (a << 56)); 157 x->a = cpu_to_be64((a >> 8) ^ (_tt << 48)); 158 } 159 160 static void gf128mul_x8_bbe(be128 *x) 161 { 162 u64 a = be64_to_cpu(x->a); 163 u64 b = be64_to_cpu(x->b); 164 u64 _tt = gf128mul_table_be[a >> 56]; 165 166 x->a = cpu_to_be64((a << 8) | (b >> 56)); 167 x->b = cpu_to_be64((b << 8) ^ _tt); 168 } 169 170 void gf128mul_x8_ble(le128 *r, const le128 *x) 171 { 172 u64 a = le64_to_cpu(x->a); 173 u64 b = le64_to_cpu(x->b); 174 u64 _tt = gf128mul_table_be[a >> 56]; 175 176 r->a = cpu_to_le64((a << 8) | (b >> 56)); 177 r->b = cpu_to_le64((b << 8) ^ _tt); 178 } 179 EXPORT_SYMBOL(gf128mul_x8_ble); 180 181 void gf128mul_lle(be128 *r, const be128 *b) 182 { 183 /* 184 * The p array should be aligned to twice the size of its element type, 185 * so that every even/odd pair is guaranteed to share a cacheline 186 * (assuming a cacheline size of 32 bytes or more, which is by far the 187 * most common). This ensures that each be128_xor() call in the loop 188 * takes the same amount of time regardless of the value of 'ch', which 189 * is derived from function parameter 'b', which is commonly used as a 190 * key, e.g., for GHASH. The odd array elements are all set to zero, 191 * making each be128_xor() a NOP if its associated bit in 'ch' is not 192 * set, and this is equivalent to calling be128_xor() conditionally. 193 * This approach aims to avoid leaking information about such keys 194 * through execution time variances. 195 * 196 * Unfortunately, __aligned(16) or higher does not work on x86 for 197 * variables on the stack so we need to perform the alignment by hand. 198 */ 199 be128 array[16 + 3] = {}; 200 be128 *p = PTR_ALIGN(&array[0], 2 * sizeof(be128)); 201 int i; 202 203 p[0] = *r; 204 for (i = 0; i < 7; ++i) 205 gf128mul_x_lle(&p[2 * i + 2], &p[2 * i]); 206 207 memset(r, 0, sizeof(*r)); 208 for (i = 0;;) { 209 u8 ch = ((u8 *)b)[15 - i]; 210 211 be128_xor(r, r, &p[ 0 + !(ch & 0x80)]); 212 be128_xor(r, r, &p[ 2 + !(ch & 0x40)]); 213 be128_xor(r, r, &p[ 4 + !(ch & 0x20)]); 214 be128_xor(r, r, &p[ 6 + !(ch & 0x10)]); 215 be128_xor(r, r, &p[ 8 + !(ch & 0x08)]); 216 be128_xor(r, r, &p[10 + !(ch & 0x04)]); 217 be128_xor(r, r, &p[12 + !(ch & 0x02)]); 218 be128_xor(r, r, &p[14 + !(ch & 0x01)]); 219 220 if (++i >= 16) 221 break; 222 223 gf128mul_x8_lle_ti(r); /* use the time invariant version */ 224 } 225 } 226 EXPORT_SYMBOL(gf128mul_lle); 227 228 /* This version uses 64k bytes of table space. 229 A 16 byte buffer has to be multiplied by a 16 byte key 230 value in GF(2^128). If we consider a GF(2^128) value in 231 the buffer's lowest byte, we can construct a table of 232 the 256 16 byte values that result from the 256 values 233 of this byte. This requires 4096 bytes. But we also 234 need tables for each of the 16 higher bytes in the 235 buffer as well, which makes 64 kbytes in total. 236 */ 237 /* additional explanation 238 * t[0][BYTE] contains g*BYTE 239 * t[1][BYTE] contains g*x^8*BYTE 240 * .. 241 * t[15][BYTE] contains g*x^120*BYTE */ 242 struct gf128mul_64k *gf128mul_init_64k_bbe(const be128 *g) 243 { 244 struct gf128mul_64k *t; 245 int i, j, k; 246 247 t = kzalloc(sizeof(*t), GFP_KERNEL); 248 if (!t) 249 goto out; 250 251 for (i = 0; i < 16; i++) { 252 t->t[i] = kzalloc(sizeof(*t->t[i]), GFP_KERNEL); 253 if (!t->t[i]) { 254 gf128mul_free_64k(t); 255 t = NULL; 256 goto out; 257 } 258 } 259 260 t->t[0]->t[1] = *g; 261 for (j = 1; j <= 64; j <<= 1) 262 gf128mul_x_bbe(&t->t[0]->t[j + j], &t->t[0]->t[j]); 263 264 for (i = 0;;) { 265 for (j = 2; j < 256; j += j) 266 for (k = 1; k < j; ++k) 267 be128_xor(&t->t[i]->t[j + k], 268 &t->t[i]->t[j], &t->t[i]->t[k]); 269 270 if (++i >= 16) 271 break; 272 273 for (j = 128; j > 0; j >>= 1) { 274 t->t[i]->t[j] = t->t[i - 1]->t[j]; 275 gf128mul_x8_bbe(&t->t[i]->t[j]); 276 } 277 } 278 279 out: 280 return t; 281 } 282 EXPORT_SYMBOL(gf128mul_init_64k_bbe); 283 284 void gf128mul_free_64k(struct gf128mul_64k *t) 285 { 286 int i; 287 288 for (i = 0; i < 16; i++) 289 kfree_sensitive(t->t[i]); 290 kfree_sensitive(t); 291 } 292 EXPORT_SYMBOL(gf128mul_free_64k); 293 294 void gf128mul_64k_bbe(be128 *a, const struct gf128mul_64k *t) 295 { 296 u8 *ap = (u8 *)a; 297 be128 r[1]; 298 int i; 299 300 *r = t->t[0]->t[ap[15]]; 301 for (i = 1; i < 16; ++i) 302 be128_xor(r, r, &t->t[i]->t[ap[15 - i]]); 303 *a = *r; 304 } 305 EXPORT_SYMBOL(gf128mul_64k_bbe); 306 307 /* This version uses 4k bytes of table space. 308 A 16 byte buffer has to be multiplied by a 16 byte key 309 value in GF(2^128). If we consider a GF(2^128) value in a 310 single byte, we can construct a table of the 256 16 byte 311 values that result from the 256 values of this byte. 312 This requires 4096 bytes. If we take the highest byte in 313 the buffer and use this table to get the result, we then 314 have to multiply by x^120 to get the final value. For the 315 next highest byte the result has to be multiplied by x^112 316 and so on. But we can do this by accumulating the result 317 in an accumulator starting with the result for the top 318 byte. We repeatedly multiply the accumulator value by 319 x^8 and then add in (i.e. xor) the 16 bytes of the next 320 lower byte in the buffer, stopping when we reach the 321 lowest byte. This requires a 4096 byte table. 322 */ 323 struct gf128mul_4k *gf128mul_init_4k_lle(const be128 *g) 324 { 325 struct gf128mul_4k *t; 326 int j, k; 327 328 t = kzalloc(sizeof(*t), GFP_KERNEL); 329 if (!t) 330 goto out; 331 332 t->t[128] = *g; 333 for (j = 64; j > 0; j >>= 1) 334 gf128mul_x_lle(&t->t[j], &t->t[j+j]); 335 336 for (j = 2; j < 256; j += j) 337 for (k = 1; k < j; ++k) 338 be128_xor(&t->t[j + k], &t->t[j], &t->t[k]); 339 340 out: 341 return t; 342 } 343 EXPORT_SYMBOL(gf128mul_init_4k_lle); 344 345 void gf128mul_4k_lle(be128 *a, const struct gf128mul_4k *t) 346 { 347 u8 *ap = (u8 *)a; 348 be128 r[1]; 349 int i = 15; 350 351 *r = t->t[ap[15]]; 352 while (i--) { 353 gf128mul_x8_lle(r); 354 be128_xor(r, r, &t->t[ap[i]]); 355 } 356 *a = *r; 357 } 358 EXPORT_SYMBOL(gf128mul_4k_lle); 359 360 MODULE_LICENSE("GPL"); 361 MODULE_DESCRIPTION("Functions for multiplying elements of GF(2^128)"); 362