xref: /linux/lib/crypto/gf128mul.c (revision 454cb97726fe62a04b187a0d631ec0a69f6b713a)
1 /* gf128mul.c - GF(2^128) multiplication functions
2  *
3  * Copyright (c) 2003, Dr Brian Gladman, Worcester, UK.
4  * Copyright (c) 2006, Rik Snel <rsnel@cube.dyndns.org>
5  *
6  * Based on Dr Brian Gladman's (GPL'd) work published at
7  * http://gladman.plushost.co.uk/oldsite/cryptography_technology/index.php
8  * See the original copyright notice below.
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the Free
12  * Software Foundation; either version 2 of the License, or (at your option)
13  * any later version.
14  */
15 
16 /*
17  ---------------------------------------------------------------------------
18  Copyright (c) 2003, Dr Brian Gladman, Worcester, UK.   All rights reserved.
19 
20  LICENSE TERMS
21 
22  The free distribution and use of this software in both source and binary
23  form is allowed (with or without changes) provided that:
24 
25    1. distributions of this source code include the above copyright
26       notice, this list of conditions and the following disclaimer;
27 
28    2. distributions in binary form include the above copyright
29       notice, this list of conditions and the following disclaimer
30       in the documentation and/or other associated materials;
31 
32    3. the copyright holder's name is not used to endorse products
33       built using this software without specific written permission.
34 
35  ALTERNATIVELY, provided that this notice is retained in full, this product
36  may be distributed under the terms of the GNU General Public License (GPL),
37  in which case the provisions of the GPL apply INSTEAD OF those given above.
38 
39  DISCLAIMER
40 
41  This software is provided 'as is' with no explicit or implied warranties
42  in respect of its properties, including, but not limited to, correctness
43  and/or fitness for purpose.
44  ---------------------------------------------------------------------------
45  Issue 31/01/2006
46 
47  This file provides fast multiplication in GF(2^128) as required by several
48  cryptographic authentication modes
49 */
50 
51 #include <crypto/gf128mul.h>
52 #include <linux/kernel.h>
53 #include <linux/module.h>
54 #include <linux/slab.h>
55 
56 #define gf128mul_dat(q) { \
57 	q(0x00), q(0x01), q(0x02), q(0x03), q(0x04), q(0x05), q(0x06), q(0x07),\
58 	q(0x08), q(0x09), q(0x0a), q(0x0b), q(0x0c), q(0x0d), q(0x0e), q(0x0f),\
59 	q(0x10), q(0x11), q(0x12), q(0x13), q(0x14), q(0x15), q(0x16), q(0x17),\
60 	q(0x18), q(0x19), q(0x1a), q(0x1b), q(0x1c), q(0x1d), q(0x1e), q(0x1f),\
61 	q(0x20), q(0x21), q(0x22), q(0x23), q(0x24), q(0x25), q(0x26), q(0x27),\
62 	q(0x28), q(0x29), q(0x2a), q(0x2b), q(0x2c), q(0x2d), q(0x2e), q(0x2f),\
63 	q(0x30), q(0x31), q(0x32), q(0x33), q(0x34), q(0x35), q(0x36), q(0x37),\
64 	q(0x38), q(0x39), q(0x3a), q(0x3b), q(0x3c), q(0x3d), q(0x3e), q(0x3f),\
65 	q(0x40), q(0x41), q(0x42), q(0x43), q(0x44), q(0x45), q(0x46), q(0x47),\
66 	q(0x48), q(0x49), q(0x4a), q(0x4b), q(0x4c), q(0x4d), q(0x4e), q(0x4f),\
67 	q(0x50), q(0x51), q(0x52), q(0x53), q(0x54), q(0x55), q(0x56), q(0x57),\
68 	q(0x58), q(0x59), q(0x5a), q(0x5b), q(0x5c), q(0x5d), q(0x5e), q(0x5f),\
69 	q(0x60), q(0x61), q(0x62), q(0x63), q(0x64), q(0x65), q(0x66), q(0x67),\
70 	q(0x68), q(0x69), q(0x6a), q(0x6b), q(0x6c), q(0x6d), q(0x6e), q(0x6f),\
71 	q(0x70), q(0x71), q(0x72), q(0x73), q(0x74), q(0x75), q(0x76), q(0x77),\
72 	q(0x78), q(0x79), q(0x7a), q(0x7b), q(0x7c), q(0x7d), q(0x7e), q(0x7f),\
73 	q(0x80), q(0x81), q(0x82), q(0x83), q(0x84), q(0x85), q(0x86), q(0x87),\
74 	q(0x88), q(0x89), q(0x8a), q(0x8b), q(0x8c), q(0x8d), q(0x8e), q(0x8f),\
75 	q(0x90), q(0x91), q(0x92), q(0x93), q(0x94), q(0x95), q(0x96), q(0x97),\
76 	q(0x98), q(0x99), q(0x9a), q(0x9b), q(0x9c), q(0x9d), q(0x9e), q(0x9f),\
77 	q(0xa0), q(0xa1), q(0xa2), q(0xa3), q(0xa4), q(0xa5), q(0xa6), q(0xa7),\
78 	q(0xa8), q(0xa9), q(0xaa), q(0xab), q(0xac), q(0xad), q(0xae), q(0xaf),\
79 	q(0xb0), q(0xb1), q(0xb2), q(0xb3), q(0xb4), q(0xb5), q(0xb6), q(0xb7),\
80 	q(0xb8), q(0xb9), q(0xba), q(0xbb), q(0xbc), q(0xbd), q(0xbe), q(0xbf),\
81 	q(0xc0), q(0xc1), q(0xc2), q(0xc3), q(0xc4), q(0xc5), q(0xc6), q(0xc7),\
82 	q(0xc8), q(0xc9), q(0xca), q(0xcb), q(0xcc), q(0xcd), q(0xce), q(0xcf),\
83 	q(0xd0), q(0xd1), q(0xd2), q(0xd3), q(0xd4), q(0xd5), q(0xd6), q(0xd7),\
84 	q(0xd8), q(0xd9), q(0xda), q(0xdb), q(0xdc), q(0xdd), q(0xde), q(0xdf),\
85 	q(0xe0), q(0xe1), q(0xe2), q(0xe3), q(0xe4), q(0xe5), q(0xe6), q(0xe7),\
86 	q(0xe8), q(0xe9), q(0xea), q(0xeb), q(0xec), q(0xed), q(0xee), q(0xef),\
87 	q(0xf0), q(0xf1), q(0xf2), q(0xf3), q(0xf4), q(0xf5), q(0xf6), q(0xf7),\
88 	q(0xf8), q(0xf9), q(0xfa), q(0xfb), q(0xfc), q(0xfd), q(0xfe), q(0xff) \
89 }
90 
91 /*
92  * Given a value i in 0..255 as the byte overflow when a field element
93  * in GF(2^128) is multiplied by x^8, the following macro returns the
94  * 16-bit value that must be XOR-ed into the low-degree end of the
95  * product to reduce it modulo the polynomial x^128 + x^7 + x^2 + x + 1.
96  *
97  * There are two versions of the macro, and hence two tables: one for
98  * the "be" convention where the highest-order bit is the coefficient of
99  * the highest-degree polynomial term, and one for the "le" convention
100  * where the highest-order bit is the coefficient of the lowest-degree
101  * polynomial term.  In both cases the values are stored in CPU byte
102  * endianness such that the coefficients are ordered consistently across
103  * bytes, i.e. in the "be" table bits 15..0 of the stored value
104  * correspond to the coefficients of x^15..x^0, and in the "le" table
105  * bits 15..0 correspond to the coefficients of x^0..x^15.
106  *
107  * Therefore, provided that the appropriate byte endianness conversions
108  * are done by the multiplication functions (and these must be in place
109  * anyway to support both little endian and big endian CPUs), the "be"
110  * table can be used for multiplications of both "bbe" and "ble"
111  * elements, and the "le" table can be used for multiplications of both
112  * "lle" and "lbe" elements.
113  */
114 
115 #define xda_be(i) ( \
116 	(i & 0x80 ? 0x4380 : 0) ^ (i & 0x40 ? 0x21c0 : 0) ^ \
117 	(i & 0x20 ? 0x10e0 : 0) ^ (i & 0x10 ? 0x0870 : 0) ^ \
118 	(i & 0x08 ? 0x0438 : 0) ^ (i & 0x04 ? 0x021c : 0) ^ \
119 	(i & 0x02 ? 0x010e : 0) ^ (i & 0x01 ? 0x0087 : 0) \
120 )
121 
122 #define xda_le(i) ( \
123 	(i & 0x80 ? 0xe100 : 0) ^ (i & 0x40 ? 0x7080 : 0) ^ \
124 	(i & 0x20 ? 0x3840 : 0) ^ (i & 0x10 ? 0x1c20 : 0) ^ \
125 	(i & 0x08 ? 0x0e10 : 0) ^ (i & 0x04 ? 0x0708 : 0) ^ \
126 	(i & 0x02 ? 0x0384 : 0) ^ (i & 0x01 ? 0x01c2 : 0) \
127 )
128 
129 static const u16 gf128mul_table_le[256] = gf128mul_dat(xda_le);
130 static const u16 gf128mul_table_be[256] = gf128mul_dat(xda_be);
131 
132 /*
133  * The following functions multiply a field element by x^8 in
134  * the polynomial field representation.  They use 64-bit word operations
135  * to gain speed but compensate for machine endianness and hence work
136  * correctly on both styles of machine.
137  */
138 
139 static void gf128mul_x8_lle(be128 *x)
140 {
141 	u64 a = be64_to_cpu(x->a);
142 	u64 b = be64_to_cpu(x->b);
143 	u64 _tt = gf128mul_table_le[b & 0xff];
144 
145 	x->b = cpu_to_be64((b >> 8) | (a << 56));
146 	x->a = cpu_to_be64((a >> 8) ^ (_tt << 48));
147 }
148 
149 /* time invariant version of gf128mul_x8_lle */
150 static void gf128mul_x8_lle_ti(be128 *x)
151 {
152 	u64 a = be64_to_cpu(x->a);
153 	u64 b = be64_to_cpu(x->b);
154 	u64 _tt = xda_le(b & 0xff); /* avoid table lookup */
155 
156 	x->b = cpu_to_be64((b >> 8) | (a << 56));
157 	x->a = cpu_to_be64((a >> 8) ^ (_tt << 48));
158 }
159 
160 static void gf128mul_x8_bbe(be128 *x)
161 {
162 	u64 a = be64_to_cpu(x->a);
163 	u64 b = be64_to_cpu(x->b);
164 	u64 _tt = gf128mul_table_be[a >> 56];
165 
166 	x->a = cpu_to_be64((a << 8) | (b >> 56));
167 	x->b = cpu_to_be64((b << 8) ^ _tt);
168 }
169 
170 void gf128mul_x8_ble(le128 *r, const le128 *x)
171 {
172 	u64 a = le64_to_cpu(x->a);
173 	u64 b = le64_to_cpu(x->b);
174 	u64 _tt = gf128mul_table_be[a >> 56];
175 
176 	r->a = cpu_to_le64((a << 8) | (b >> 56));
177 	r->b = cpu_to_le64((b << 8) ^ _tt);
178 }
179 EXPORT_SYMBOL(gf128mul_x8_ble);
180 
181 void gf128mul_lle(be128 *r, const be128 *b)
182 {
183 	/*
184 	 * The p array should be aligned to twice the size of its element type,
185 	 * so that every even/odd pair is guaranteed to share a cacheline
186 	 * (assuming a cacheline size of 32 bytes or more, which is by far the
187 	 * most common). This ensures that each be128_xor() call in the loop
188 	 * takes the same amount of time regardless of the value of 'ch', which
189 	 * is derived from function parameter 'b', which is commonly used as a
190 	 * key, e.g., for GHASH. The odd array elements are all set to zero,
191 	 * making each be128_xor() a NOP if its associated bit in 'ch' is not
192 	 * set, and this is equivalent to calling be128_xor() conditionally.
193 	 * This approach aims to avoid leaking information about such keys
194 	 * through execution time variances.
195 	 *
196 	 * Unfortunately, __aligned(16) or higher does not work on x86 for
197 	 * variables on the stack so we need to perform the alignment by hand.
198 	 */
199 	be128 array[16 + 3] = {};
200 	be128 *p = PTR_ALIGN(&array[0], 2 * sizeof(be128));
201 	int i;
202 
203 	p[0] = *r;
204 	for (i = 0; i < 7; ++i)
205 		gf128mul_x_lle(&p[2 * i + 2], &p[2 * i]);
206 
207 	memset(r, 0, sizeof(*r));
208 	for (i = 0;;) {
209 		u8 ch = ((u8 *)b)[15 - i];
210 
211 		be128_xor(r, r, &p[ 0 + !(ch & 0x80)]);
212 		be128_xor(r, r, &p[ 2 + !(ch & 0x40)]);
213 		be128_xor(r, r, &p[ 4 + !(ch & 0x20)]);
214 		be128_xor(r, r, &p[ 6 + !(ch & 0x10)]);
215 		be128_xor(r, r, &p[ 8 + !(ch & 0x08)]);
216 		be128_xor(r, r, &p[10 + !(ch & 0x04)]);
217 		be128_xor(r, r, &p[12 + !(ch & 0x02)]);
218 		be128_xor(r, r, &p[14 + !(ch & 0x01)]);
219 
220 		if (++i >= 16)
221 			break;
222 
223 		gf128mul_x8_lle_ti(r); /* use the time invariant version */
224 	}
225 }
226 EXPORT_SYMBOL(gf128mul_lle);
227 
228 /*      This version uses 64k bytes of table space.
229     A 16 byte buffer has to be multiplied by a 16 byte key
230     value in GF(2^128).  If we consider a GF(2^128) value in
231     the buffer's lowest byte, we can construct a table of
232     the 256 16 byte values that result from the 256 values
233     of this byte.  This requires 4096 bytes. But we also
234     need tables for each of the 16 higher bytes in the
235     buffer as well, which makes 64 kbytes in total.
236 */
237 /* additional explanation
238  * t[0][BYTE] contains g*BYTE
239  * t[1][BYTE] contains g*x^8*BYTE
240  *  ..
241  * t[15][BYTE] contains g*x^120*BYTE */
242 struct gf128mul_64k *gf128mul_init_64k_bbe(const be128 *g)
243 {
244 	struct gf128mul_64k *t;
245 	int i, j, k;
246 
247 	t = kzalloc(sizeof(*t), GFP_KERNEL);
248 	if (!t)
249 		goto out;
250 
251 	for (i = 0; i < 16; i++) {
252 		t->t[i] = kzalloc(sizeof(*t->t[i]), GFP_KERNEL);
253 		if (!t->t[i]) {
254 			gf128mul_free_64k(t);
255 			t = NULL;
256 			goto out;
257 		}
258 	}
259 
260 	t->t[0]->t[1] = *g;
261 	for (j = 1; j <= 64; j <<= 1)
262 		gf128mul_x_bbe(&t->t[0]->t[j + j], &t->t[0]->t[j]);
263 
264 	for (i = 0;;) {
265 		for (j = 2; j < 256; j += j)
266 			for (k = 1; k < j; ++k)
267 				be128_xor(&t->t[i]->t[j + k],
268 					  &t->t[i]->t[j], &t->t[i]->t[k]);
269 
270 		if (++i >= 16)
271 			break;
272 
273 		for (j = 128; j > 0; j >>= 1) {
274 			t->t[i]->t[j] = t->t[i - 1]->t[j];
275 			gf128mul_x8_bbe(&t->t[i]->t[j]);
276 		}
277 	}
278 
279 out:
280 	return t;
281 }
282 EXPORT_SYMBOL(gf128mul_init_64k_bbe);
283 
284 void gf128mul_free_64k(struct gf128mul_64k *t)
285 {
286 	int i;
287 
288 	for (i = 0; i < 16; i++)
289 		kfree_sensitive(t->t[i]);
290 	kfree_sensitive(t);
291 }
292 EXPORT_SYMBOL(gf128mul_free_64k);
293 
294 void gf128mul_64k_bbe(be128 *a, const struct gf128mul_64k *t)
295 {
296 	u8 *ap = (u8 *)a;
297 	be128 r[1];
298 	int i;
299 
300 	*r = t->t[0]->t[ap[15]];
301 	for (i = 1; i < 16; ++i)
302 		be128_xor(r, r, &t->t[i]->t[ap[15 - i]]);
303 	*a = *r;
304 }
305 EXPORT_SYMBOL(gf128mul_64k_bbe);
306 
307 /*      This version uses 4k bytes of table space.
308     A 16 byte buffer has to be multiplied by a 16 byte key
309     value in GF(2^128).  If we consider a GF(2^128) value in a
310     single byte, we can construct a table of the 256 16 byte
311     values that result from the 256 values of this byte.
312     This requires 4096 bytes. If we take the highest byte in
313     the buffer and use this table to get the result, we then
314     have to multiply by x^120 to get the final value. For the
315     next highest byte the result has to be multiplied by x^112
316     and so on. But we can do this by accumulating the result
317     in an accumulator starting with the result for the top
318     byte.  We repeatedly multiply the accumulator value by
319     x^8 and then add in (i.e. xor) the 16 bytes of the next
320     lower byte in the buffer, stopping when we reach the
321     lowest byte. This requires a 4096 byte table.
322 */
323 struct gf128mul_4k *gf128mul_init_4k_lle(const be128 *g)
324 {
325 	struct gf128mul_4k *t;
326 	int j, k;
327 
328 	t = kzalloc(sizeof(*t), GFP_KERNEL);
329 	if (!t)
330 		goto out;
331 
332 	t->t[128] = *g;
333 	for (j = 64; j > 0; j >>= 1)
334 		gf128mul_x_lle(&t->t[j], &t->t[j+j]);
335 
336 	for (j = 2; j < 256; j += j)
337 		for (k = 1; k < j; ++k)
338 			be128_xor(&t->t[j + k], &t->t[j], &t->t[k]);
339 
340 out:
341 	return t;
342 }
343 EXPORT_SYMBOL(gf128mul_init_4k_lle);
344 
345 void gf128mul_4k_lle(be128 *a, const struct gf128mul_4k *t)
346 {
347 	u8 *ap = (u8 *)a;
348 	be128 r[1];
349 	int i = 15;
350 
351 	*r = t->t[ap[15]];
352 	while (i--) {
353 		gf128mul_x8_lle(r);
354 		be128_xor(r, r, &t->t[ap[i]]);
355 	}
356 	*a = *r;
357 }
358 EXPORT_SYMBOL(gf128mul_4k_lle);
359 
360 MODULE_LICENSE("GPL");
361 MODULE_DESCRIPTION("Functions for multiplying elements of GF(2^128)");
362