1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
22 /* All Rights Reserved */
23
24
25 /*
26 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */
29
30 #ifndef _SYS_SYSMACROS_H
31 #define _SYS_SYSMACROS_H
32
33 #include <sys/param.h>
34 #include <sys/isa_defs.h>
35 #if defined(__FreeBSD__) && defined(_KERNEL)
36 #include <sys/libkern.h>
37 #endif
38
39 #ifdef __cplusplus
40 extern "C" {
41 #endif
42
43 /*
44 * Some macros for units conversion
45 */
46 /*
47 * Disk blocks (sectors) and bytes.
48 */
49 #ifndef dtob
50 #define dtob(DD) ((DD) << DEV_BSHIFT)
51 #endif
52 #ifndef btod
53 #define btod(BB) (((BB) + DEV_BSIZE - 1) >> DEV_BSHIFT)
54 #endif
55 #define btodt(BB) ((BB) >> DEV_BSHIFT)
56 #define lbtod(BB) (((offset_t)(BB) + DEV_BSIZE - 1) >> DEV_BSHIFT)
57
58 /* common macros */
59 #ifndef MIN
60 #define MIN(a, b) ((a) < (b) ? (a) : (b))
61 #endif
62 #ifndef MAX
63 #define MAX(a, b) ((a) < (b) ? (b) : (a))
64 #endif
65 #ifndef ABS
66 #define ABS(a) ((a) < 0 ? -(a) : (a))
67 #endif
68 #ifndef SIGNOF
69 #define SIGNOF(a) ((a) < 0 ? -1 : (a) > 0)
70 #endif
71
72 #ifdef _KERNEL
73
74 /*
75 * Convert a single byte to/from binary-coded decimal (BCD).
76 */
77 extern unsigned char byte_to_bcd[256];
78 extern unsigned char bcd_to_byte[256];
79
80 #define BYTE_TO_BCD(x) byte_to_bcd[(x) & 0xff]
81 #define BCD_TO_BYTE(x) bcd_to_byte[(x) & 0xff]
82
83 #endif /* _KERNEL */
84
85 /*
86 * WARNING: The device number macros defined here should not be used by device
87 * drivers or user software. Device drivers should use the device functions
88 * defined in the DDI/DKI interface (see also ddi.h). Application software
89 * should make use of the library routines available in makedev(3). A set of
90 * new device macros are provided to operate on the expanded device number
91 * format supported in SVR4. Macro versions of the DDI device functions are
92 * provided for use by kernel proper routines only. Macro routines bmajor(),
93 * major(), minor(), emajor(), eminor(), and makedev() will be removed or
94 * their definitions changed at the next major release following SVR4.
95 */
96
97 #define O_BITSMAJOR 7 /* # of SVR3 major device bits */
98 #define O_BITSMINOR 8 /* # of SVR3 minor device bits */
99 #define O_MAXMAJ 0x7f /* SVR3 max major value */
100 #define O_MAXMIN 0xff /* SVR3 max minor value */
101
102
103 #define L_BITSMAJOR32 14 /* # of SVR4 major device bits */
104 #define L_BITSMINOR32 18 /* # of SVR4 minor device bits */
105 #define L_MAXMAJ32 0x3fff /* SVR4 max major value */
106 #define L_MAXMIN32 0x3ffff /* MAX minor for 3b2 software drivers. */
107 /* For 3b2 hardware devices the minor is */
108 /* restricted to 256 (0-255) */
109
110 #ifdef _LP64
111 #define L_BITSMAJOR 32 /* # of major device bits in 64-bit Solaris */
112 #define L_BITSMINOR 32 /* # of minor device bits in 64-bit Solaris */
113 #define L_MAXMAJ 0xfffffffful /* max major value */
114 #define L_MAXMIN 0xfffffffful /* max minor value */
115 #else
116 #define L_BITSMAJOR L_BITSMAJOR32
117 #define L_BITSMINOR L_BITSMINOR32
118 #define L_MAXMAJ L_MAXMAJ32
119 #define L_MAXMIN L_MAXMIN32
120 #endif
121
122 #ifdef illumos
123 #ifdef _KERNEL
124
125 /* major part of a device internal to the kernel */
126
127 #define major(x) (major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ)
128 #define bmajor(x) (major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ)
129
130 /* get internal major part of expanded device number */
131
132 #define getmajor(x) (major_t)((((dev_t)(x)) >> L_BITSMINOR) & L_MAXMAJ)
133
134 /* minor part of a device internal to the kernel */
135
136 #define minor(x) (minor_t)((x) & O_MAXMIN)
137
138 /* get internal minor part of expanded device number */
139
140 #define getminor(x) (minor_t)((x) & L_MAXMIN)
141
142 #else
143
144 /* major part of a device external from the kernel (same as emajor below) */
145
146 #define major(x) (major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ)
147
148 /* minor part of a device external from the kernel (same as eminor below) */
149
150 #define minor(x) (minor_t)((x) & O_MAXMIN)
151
152 #endif /* _KERNEL */
153
154 /* create old device number */
155
156 #define makedev(x, y) (unsigned short)(((x) << O_BITSMINOR) | ((y) & O_MAXMIN))
157
158 /* make an new device number */
159
160 #define makedevice(x, y) (dev_t)(((dev_t)(x) << L_BITSMINOR) | ((y) & L_MAXMIN))
161
162
163 /*
164 * emajor() allows kernel/driver code to print external major numbers
165 * eminor() allows kernel/driver code to print external minor numbers
166 */
167
168 #define emajor(x) \
169 (major_t)(((unsigned int)(x) >> O_BITSMINOR) > O_MAXMAJ) ? \
170 NODEV : (((unsigned int)(x) >> O_BITSMINOR) & O_MAXMAJ)
171
172 #define eminor(x) \
173 (minor_t)((x) & O_MAXMIN)
174
175 /*
176 * get external major and minor device
177 * components from expanded device number
178 */
179 #define getemajor(x) (major_t)((((dev_t)(x) >> L_BITSMINOR) > L_MAXMAJ) ? \
180 NODEV : (((dev_t)(x) >> L_BITSMINOR) & L_MAXMAJ))
181 #define geteminor(x) (minor_t)((x) & L_MAXMIN)
182 #endif /* illumos */
183
184 /*
185 * These are versions of the kernel routines for compressing and
186 * expanding long device numbers that don't return errors.
187 */
188 #if (L_BITSMAJOR32 == L_BITSMAJOR) && (L_BITSMINOR32 == L_BITSMINOR)
189
190 #define DEVCMPL(x) (x)
191 #define DEVEXPL(x) (x)
192
193 #else
194
195 #define DEVCMPL(x) \
196 (dev32_t)((((x) >> L_BITSMINOR) > L_MAXMAJ32 || \
197 ((x) & L_MAXMIN) > L_MAXMIN32) ? NODEV32 : \
198 ((((x) >> L_BITSMINOR) << L_BITSMINOR32) | ((x) & L_MAXMIN32)))
199
200 #define DEVEXPL(x) \
201 (((x) == NODEV32) ? NODEV : \
202 makedevice(((x) >> L_BITSMINOR32) & L_MAXMAJ32, (x) & L_MAXMIN32))
203
204 #endif /* L_BITSMAJOR32 ... */
205
206 /* convert to old (SVR3.2) dev format */
207
208 #define cmpdev(x) \
209 (o_dev_t)((((x) >> L_BITSMINOR) > O_MAXMAJ || \
210 ((x) & L_MAXMIN) > O_MAXMIN) ? NODEV : \
211 ((((x) >> L_BITSMINOR) << O_BITSMINOR) | ((x) & O_MAXMIN)))
212
213 /* convert to new (SVR4) dev format */
214
215 #define expdev(x) \
216 (dev_t)(((dev_t)(((x) >> O_BITSMINOR) & O_MAXMAJ) << L_BITSMINOR) | \
217 ((x) & O_MAXMIN))
218
219 /*
220 * Macro for checking power of 2 address alignment.
221 */
222 #define IS_P2ALIGNED(v, a) ((((uintptr_t)(v)) & ((uintptr_t)(a) - 1)) == 0)
223
224 /*
225 * Macros for counting and rounding.
226 */
227 #ifndef howmany
228 #define howmany(x, y) (((x)+((y)-1))/(y))
229 #endif
230 #ifndef roundup
231 #define roundup(x, y) ((((x)+((y)-1))/(y))*(y))
232 #endif
233 /*
234 * Macro to determine if value is a power of 2
235 */
236 #define ISP2(x) (((x) & ((x) - 1)) == 0)
237
238 /*
239 * Macros for various sorts of alignment and rounding. The "align" must
240 * be a power of 2. Often times it is a block, sector, or page.
241 */
242
243 /*
244 * return x rounded down to an align boundary
245 * eg, P2ALIGN(1200, 1024) == 1024 (1*align)
246 * eg, P2ALIGN(1024, 1024) == 1024 (1*align)
247 * eg, P2ALIGN(0x1234, 0x100) == 0x1200 (0x12*align)
248 * eg, P2ALIGN(0x5600, 0x100) == 0x5600 (0x56*align)
249 */
250 #define P2ALIGN(x, align) ((x) & -(align))
251
252 /*
253 * return x % (mod) align
254 * eg, P2PHASE(0x1234, 0x100) == 0x34 (x-0x12*align)
255 * eg, P2PHASE(0x5600, 0x100) == 0x00 (x-0x56*align)
256 */
257 #define P2PHASE(x, align) ((x) & ((align) - 1))
258
259 /*
260 * return how much space is left in this block (but if it's perfectly
261 * aligned, return 0).
262 * eg, P2NPHASE(0x1234, 0x100) == 0xcc (0x13*align-x)
263 * eg, P2NPHASE(0x5600, 0x100) == 0x00 (0x56*align-x)
264 */
265 #define P2NPHASE(x, align) (-(x) & ((align) - 1))
266
267 /*
268 * return x rounded up to an align boundary
269 * eg, P2ROUNDUP(0x1234, 0x100) == 0x1300 (0x13*align)
270 * eg, P2ROUNDUP(0x5600, 0x100) == 0x5600 (0x56*align)
271 */
272 #define P2ROUNDUP(x, align) (-(-(x) & -(align)))
273
274 /*
275 * return the ending address of the block that x is in
276 * eg, P2END(0x1234, 0x100) == 0x12ff (0x13*align - 1)
277 * eg, P2END(0x5600, 0x100) == 0x56ff (0x57*align - 1)
278 */
279 #define P2END(x, align) (-(~(x) & -(align)))
280
281 /*
282 * return x rounded up to the next phase (offset) within align.
283 * phase should be < align.
284 * eg, P2PHASEUP(0x1234, 0x100, 0x10) == 0x1310 (0x13*align + phase)
285 * eg, P2PHASEUP(0x5600, 0x100, 0x10) == 0x5610 (0x56*align + phase)
286 */
287 #define P2PHASEUP(x, align, phase) ((phase) - (((phase) - (x)) & -(align)))
288
289 /*
290 * return TRUE if adding len to off would cause it to cross an align
291 * boundary.
292 * eg, P2BOUNDARY(0x1234, 0xe0, 0x100) == TRUE (0x1234 + 0xe0 == 0x1314)
293 * eg, P2BOUNDARY(0x1234, 0x50, 0x100) == FALSE (0x1234 + 0x50 == 0x1284)
294 */
295 #define P2BOUNDARY(off, len, align) \
296 (((off) ^ ((off) + (len) - 1)) > (align) - 1)
297
298 /*
299 * Return TRUE if they have the same highest bit set.
300 * eg, P2SAMEHIGHBIT(0x1234, 0x1001) == TRUE (the high bit is 0x1000)
301 * eg, P2SAMEHIGHBIT(0x1234, 0x3010) == FALSE (high bit of 0x3010 is 0x2000)
302 */
303 #define P2SAMEHIGHBIT(x, y) (((x) ^ (y)) < ((x) & (y)))
304
305 /*
306 * Typed version of the P2* macros. These macros should be used to ensure
307 * that the result is correctly calculated based on the data type of (x),
308 * which is passed in as the last argument, regardless of the data
309 * type of the alignment. For example, if (x) is of type uint64_t,
310 * and we want to round it up to a page boundary using "PAGESIZE" as
311 * the alignment, we can do either
312 * P2ROUNDUP(x, (uint64_t)PAGESIZE)
313 * or
314 * P2ROUNDUP_TYPED(x, PAGESIZE, uint64_t)
315 */
316 #define P2ALIGN_TYPED(x, align, type) \
317 ((type)(x) & -(type)(align))
318 #define P2PHASE_TYPED(x, align, type) \
319 ((type)(x) & ((type)(align) - 1))
320 #define P2NPHASE_TYPED(x, align, type) \
321 (-(type)(x) & ((type)(align) - 1))
322 #define P2ROUNDUP_TYPED(x, align, type) \
323 (-(-(type)(x) & -(type)(align)))
324 #define P2END_TYPED(x, align, type) \
325 (-(~(type)(x) & -(type)(align)))
326 #define P2PHASEUP_TYPED(x, align, phase, type) \
327 ((type)(phase) - (((type)(phase) - (type)(x)) & -(type)(align)))
328 #define P2CROSS_TYPED(x, y, align, type) \
329 (((type)(x) ^ (type)(y)) > (type)(align) - 1)
330 #define P2SAMEHIGHBIT_TYPED(x, y, type) \
331 (((type)(x) ^ (type)(y)) < ((type)(x) & (type)(y)))
332
333 /*
334 * Macros to atomically increment/decrement a variable. mutex and var
335 * must be pointers.
336 */
337 #define INCR_COUNT(var, mutex) mutex_enter(mutex), (*(var))++, mutex_exit(mutex)
338 #define DECR_COUNT(var, mutex) mutex_enter(mutex), (*(var))--, mutex_exit(mutex)
339
340 /*
341 * Macros to declare bitfields - the order in the parameter list is
342 * Low to High - that is, declare bit 0 first. We only support 8-bit bitfields
343 * because if a field crosses a byte boundary it's not likely to be meaningful
344 * without reassembly in its nonnative endianness.
345 */
346 #if defined(_BIT_FIELDS_LTOH)
347 #define DECL_BITFIELD2(_a, _b) \
348 uint8_t _a, _b
349 #define DECL_BITFIELD3(_a, _b, _c) \
350 uint8_t _a, _b, _c
351 #define DECL_BITFIELD4(_a, _b, _c, _d) \
352 uint8_t _a, _b, _c, _d
353 #define DECL_BITFIELD5(_a, _b, _c, _d, _e) \
354 uint8_t _a, _b, _c, _d, _e
355 #define DECL_BITFIELD6(_a, _b, _c, _d, _e, _f) \
356 uint8_t _a, _b, _c, _d, _e, _f
357 #define DECL_BITFIELD7(_a, _b, _c, _d, _e, _f, _g) \
358 uint8_t _a, _b, _c, _d, _e, _f, _g
359 #define DECL_BITFIELD8(_a, _b, _c, _d, _e, _f, _g, _h) \
360 uint8_t _a, _b, _c, _d, _e, _f, _g, _h
361 #elif defined(_BIT_FIELDS_HTOL)
362 #define DECL_BITFIELD2(_a, _b) \
363 uint8_t _b, _a
364 #define DECL_BITFIELD3(_a, _b, _c) \
365 uint8_t _c, _b, _a
366 #define DECL_BITFIELD4(_a, _b, _c, _d) \
367 uint8_t _d, _c, _b, _a
368 #define DECL_BITFIELD5(_a, _b, _c, _d, _e) \
369 uint8_t _e, _d, _c, _b, _a
370 #define DECL_BITFIELD6(_a, _b, _c, _d, _e, _f) \
371 uint8_t _f, _e, _d, _c, _b, _a
372 #define DECL_BITFIELD7(_a, _b, _c, _d, _e, _f, _g) \
373 uint8_t _g, _f, _e, _d, _c, _b, _a
374 #define DECL_BITFIELD8(_a, _b, _c, _d, _e, _f, _g, _h) \
375 uint8_t _h, _g, _f, _e, _d, _c, _b, _a
376 #else
377 #error One of _BIT_FIELDS_LTOH or _BIT_FIELDS_HTOL must be defined
378 #endif /* _BIT_FIELDS_LTOH */
379
380 #if defined(_KERNEL) && !defined(_KMEMUSER) && !defined(offsetof)
381
382 /* avoid any possibility of clashing with <stddef.h> version */
383
384 #define offsetof(s, m) ((size_t)(&(((s *)0)->m)))
385 #endif
386
387 /*
388 * Find highest one bit set.
389 * Returns bit number + 1 of highest bit that is set, otherwise returns 0.
390 * High order bit is 31 (or 63 in _LP64 kernel).
391 */
392 static __inline int
highbit(unsigned long i)393 highbit(unsigned long i)
394 {
395 #if defined(__FreeBSD__) && defined(_KERNEL)
396 return (flsl(i));
397 #else
398 int h = 1;
399
400 if (i == 0)
401 return (0);
402 #ifdef _LP64
403 if (i & 0xffffffff00000000ul) {
404 h += 32; i >>= 32;
405 }
406 #endif
407 if (i & 0xffff0000) {
408 h += 16; i >>= 16;
409 }
410 if (i & 0xff00) {
411 h += 8; i >>= 8;
412 }
413 if (i & 0xf0) {
414 h += 4; i >>= 4;
415 }
416 if (i & 0xc) {
417 h += 2; i >>= 2;
418 }
419 if (i & 0x2) {
420 h += 1;
421 }
422 return (h);
423 #endif
424 }
425
426 /*
427 * Find highest one bit set.
428 * Returns bit number + 1 of highest bit that is set, otherwise returns 0.
429 */
430 static __inline int
highbit64(uint64_t i)431 highbit64(uint64_t i)
432 {
433 #if defined(__FreeBSD__) && defined(_KERNEL)
434 return (flsll(i));
435 #else
436 int h = 1;
437
438 if (i == 0)
439 return (0);
440 if (i & 0xffffffff00000000ULL) {
441 h += 32; i >>= 32;
442 }
443 if (i & 0xffff0000) {
444 h += 16; i >>= 16;
445 }
446 if (i & 0xff00) {
447 h += 8; i >>= 8;
448 }
449 if (i & 0xf0) {
450 h += 4; i >>= 4;
451 }
452 if (i & 0xc) {
453 h += 2; i >>= 2;
454 }
455 if (i & 0x2) {
456 h += 1;
457 }
458 return (h);
459 #endif
460 }
461
462 #ifdef __cplusplus
463 }
464 #endif
465
466 #endif /* _SYS_SYSMACROS_H */
467