1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2012 Alexander Block. All rights reserved.
4 */
5
6 #include <linux/bsearch.h>
7 #include <linux/fs.h>
8 #include <linux/file.h>
9 #include <linux/sort.h>
10 #include <linux/mount.h>
11 #include <linux/xattr.h>
12 #include <linux/posix_acl_xattr.h>
13 #include <linux/radix-tree.h>
14 #include <linux/vmalloc.h>
15 #include <linux/string.h>
16 #include <linux/compat.h>
17 #include <linux/crc32c.h>
18 #include <linux/fsverity.h>
19
20 #include "send.h"
21 #include "ctree.h"
22 #include "backref.h"
23 #include "locking.h"
24 #include "disk-io.h"
25 #include "btrfs_inode.h"
26 #include "transaction.h"
27 #include "compression.h"
28 #include "print-tree.h"
29 #include "accessors.h"
30 #include "dir-item.h"
31 #include "file-item.h"
32 #include "ioctl.h"
33 #include "verity.h"
34 #include "lru_cache.h"
35
36 /*
37 * Maximum number of references an extent can have in order for us to attempt to
38 * issue clone operations instead of write operations. This currently exists to
39 * avoid hitting limitations of the backreference walking code (taking a lot of
40 * time and using too much memory for extents with large number of references).
41 */
42 #define SEND_MAX_EXTENT_REFS 1024
43
44 /*
45 * A fs_path is a helper to dynamically build path names with unknown size.
46 * It reallocates the internal buffer on demand.
47 * It allows fast adding of path elements on the right side (normal path) and
48 * fast adding to the left side (reversed path). A reversed path can also be
49 * unreversed if needed.
50 */
51 struct fs_path {
52 union {
53 struct {
54 char *start;
55 char *end;
56
57 char *buf;
58 unsigned short buf_len:15;
59 unsigned short reversed:1;
60 char inline_buf[];
61 };
62 /*
63 * Average path length does not exceed 200 bytes, we'll have
64 * better packing in the slab and higher chance to satisfy
65 * an allocation later during send.
66 */
67 char pad[256];
68 };
69 };
70 #define FS_PATH_INLINE_SIZE \
71 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
72
73
74 /* reused for each extent */
75 struct clone_root {
76 struct btrfs_root *root;
77 u64 ino;
78 u64 offset;
79 u64 num_bytes;
80 bool found_ref;
81 };
82
83 #define SEND_MAX_NAME_CACHE_SIZE 256
84
85 /*
86 * Limit the root_ids array of struct backref_cache_entry to 17 elements.
87 * This makes the size of a cache entry to be exactly 192 bytes on x86_64, which
88 * can be satisfied from the kmalloc-192 slab, without wasting any space.
89 * The most common case is to have a single root for cloning, which corresponds
90 * to the send root. Having the user specify more than 16 clone roots is not
91 * common, and in such rare cases we simply don't use caching if the number of
92 * cloning roots that lead down to a leaf is more than 17.
93 */
94 #define SEND_MAX_BACKREF_CACHE_ROOTS 17
95
96 /*
97 * Max number of entries in the cache.
98 * With SEND_MAX_BACKREF_CACHE_ROOTS as 17, the size in bytes, excluding
99 * maple tree's internal nodes, is 24K.
100 */
101 #define SEND_MAX_BACKREF_CACHE_SIZE 128
102
103 /*
104 * A backref cache entry maps a leaf to a list of IDs of roots from which the
105 * leaf is accessible and we can use for clone operations.
106 * With SEND_MAX_BACKREF_CACHE_ROOTS as 12, each cache entry is 128 bytes (on
107 * x86_64).
108 */
109 struct backref_cache_entry {
110 struct btrfs_lru_cache_entry entry;
111 u64 root_ids[SEND_MAX_BACKREF_CACHE_ROOTS];
112 /* Number of valid elements in the root_ids array. */
113 int num_roots;
114 };
115
116 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
117 static_assert(offsetof(struct backref_cache_entry, entry) == 0);
118
119 /*
120 * Max number of entries in the cache that stores directories that were already
121 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
122 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
123 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
124 */
125 #define SEND_MAX_DIR_CREATED_CACHE_SIZE 64
126
127 /*
128 * Max number of entries in the cache that stores directories that were already
129 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
130 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
131 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
132 */
133 #define SEND_MAX_DIR_UTIMES_CACHE_SIZE 64
134
135 struct send_ctx {
136 struct file *send_filp;
137 loff_t send_off;
138 char *send_buf;
139 u32 send_size;
140 u32 send_max_size;
141 /*
142 * Whether BTRFS_SEND_A_DATA attribute was already added to current
143 * command (since protocol v2, data must be the last attribute).
144 */
145 bool put_data;
146 struct page **send_buf_pages;
147 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
148 /* Protocol version compatibility requested */
149 u32 proto;
150
151 struct btrfs_root *send_root;
152 struct btrfs_root *parent_root;
153 struct clone_root *clone_roots;
154 int clone_roots_cnt;
155
156 /* current state of the compare_tree call */
157 struct btrfs_path *left_path;
158 struct btrfs_path *right_path;
159 struct btrfs_key *cmp_key;
160
161 /*
162 * Keep track of the generation of the last transaction that was used
163 * for relocating a block group. This is periodically checked in order
164 * to detect if a relocation happened since the last check, so that we
165 * don't operate on stale extent buffers for nodes (level >= 1) or on
166 * stale disk_bytenr values of file extent items.
167 */
168 u64 last_reloc_trans;
169
170 /*
171 * infos of the currently processed inode. In case of deleted inodes,
172 * these are the values from the deleted inode.
173 */
174 u64 cur_ino;
175 u64 cur_inode_gen;
176 u64 cur_inode_size;
177 u64 cur_inode_mode;
178 u64 cur_inode_rdev;
179 u64 cur_inode_last_extent;
180 u64 cur_inode_next_write_offset;
181 bool cur_inode_new;
182 bool cur_inode_new_gen;
183 bool cur_inode_deleted;
184 bool ignore_cur_inode;
185 bool cur_inode_needs_verity;
186 void *verity_descriptor;
187
188 u64 send_progress;
189
190 struct list_head new_refs;
191 struct list_head deleted_refs;
192
193 struct btrfs_lru_cache name_cache;
194
195 /*
196 * The inode we are currently processing. It's not NULL only when we
197 * need to issue write commands for data extents from this inode.
198 */
199 struct inode *cur_inode;
200 struct file_ra_state ra;
201 u64 page_cache_clear_start;
202 bool clean_page_cache;
203
204 /*
205 * We process inodes by their increasing order, so if before an
206 * incremental send we reverse the parent/child relationship of
207 * directories such that a directory with a lower inode number was
208 * the parent of a directory with a higher inode number, and the one
209 * becoming the new parent got renamed too, we can't rename/move the
210 * directory with lower inode number when we finish processing it - we
211 * must process the directory with higher inode number first, then
212 * rename/move it and then rename/move the directory with lower inode
213 * number. Example follows.
214 *
215 * Tree state when the first send was performed:
216 *
217 * .
218 * |-- a (ino 257)
219 * |-- b (ino 258)
220 * |
221 * |
222 * |-- c (ino 259)
223 * | |-- d (ino 260)
224 * |
225 * |-- c2 (ino 261)
226 *
227 * Tree state when the second (incremental) send is performed:
228 *
229 * .
230 * |-- a (ino 257)
231 * |-- b (ino 258)
232 * |-- c2 (ino 261)
233 * |-- d2 (ino 260)
234 * |-- cc (ino 259)
235 *
236 * The sequence of steps that lead to the second state was:
237 *
238 * mv /a/b/c/d /a/b/c2/d2
239 * mv /a/b/c /a/b/c2/d2/cc
240 *
241 * "c" has lower inode number, but we can't move it (2nd mv operation)
242 * before we move "d", which has higher inode number.
243 *
244 * So we just memorize which move/rename operations must be performed
245 * later when their respective parent is processed and moved/renamed.
246 */
247
248 /* Indexed by parent directory inode number. */
249 struct rb_root pending_dir_moves;
250
251 /*
252 * Reverse index, indexed by the inode number of a directory that
253 * is waiting for the move/rename of its immediate parent before its
254 * own move/rename can be performed.
255 */
256 struct rb_root waiting_dir_moves;
257
258 /*
259 * A directory that is going to be rm'ed might have a child directory
260 * which is in the pending directory moves index above. In this case,
261 * the directory can only be removed after the move/rename of its child
262 * is performed. Example:
263 *
264 * Parent snapshot:
265 *
266 * . (ino 256)
267 * |-- a/ (ino 257)
268 * |-- b/ (ino 258)
269 * |-- c/ (ino 259)
270 * | |-- x/ (ino 260)
271 * |
272 * |-- y/ (ino 261)
273 *
274 * Send snapshot:
275 *
276 * . (ino 256)
277 * |-- a/ (ino 257)
278 * |-- b/ (ino 258)
279 * |-- YY/ (ino 261)
280 * |-- x/ (ino 260)
281 *
282 * Sequence of steps that lead to the send snapshot:
283 * rm -f /a/b/c/foo.txt
284 * mv /a/b/y /a/b/YY
285 * mv /a/b/c/x /a/b/YY
286 * rmdir /a/b/c
287 *
288 * When the child is processed, its move/rename is delayed until its
289 * parent is processed (as explained above), but all other operations
290 * like update utimes, chown, chgrp, etc, are performed and the paths
291 * that it uses for those operations must use the orphanized name of
292 * its parent (the directory we're going to rm later), so we need to
293 * memorize that name.
294 *
295 * Indexed by the inode number of the directory to be deleted.
296 */
297 struct rb_root orphan_dirs;
298
299 struct rb_root rbtree_new_refs;
300 struct rb_root rbtree_deleted_refs;
301
302 struct btrfs_lru_cache backref_cache;
303 u64 backref_cache_last_reloc_trans;
304
305 struct btrfs_lru_cache dir_created_cache;
306 struct btrfs_lru_cache dir_utimes_cache;
307 };
308
309 struct pending_dir_move {
310 struct rb_node node;
311 struct list_head list;
312 u64 parent_ino;
313 u64 ino;
314 u64 gen;
315 struct list_head update_refs;
316 };
317
318 struct waiting_dir_move {
319 struct rb_node node;
320 u64 ino;
321 /*
322 * There might be some directory that could not be removed because it
323 * was waiting for this directory inode to be moved first. Therefore
324 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
325 */
326 u64 rmdir_ino;
327 u64 rmdir_gen;
328 bool orphanized;
329 };
330
331 struct orphan_dir_info {
332 struct rb_node node;
333 u64 ino;
334 u64 gen;
335 u64 last_dir_index_offset;
336 u64 dir_high_seq_ino;
337 };
338
339 struct name_cache_entry {
340 /*
341 * The key in the entry is an inode number, and the generation matches
342 * the inode's generation.
343 */
344 struct btrfs_lru_cache_entry entry;
345 u64 parent_ino;
346 u64 parent_gen;
347 int ret;
348 int need_later_update;
349 /* Name length without NUL terminator. */
350 int name_len;
351 /* Not NUL terminated. */
352 char name[] __counted_by(name_len) __nonstring;
353 };
354
355 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
356 static_assert(offsetof(struct name_cache_entry, entry) == 0);
357
358 #define ADVANCE 1
359 #define ADVANCE_ONLY_NEXT -1
360
361 enum btrfs_compare_tree_result {
362 BTRFS_COMPARE_TREE_NEW,
363 BTRFS_COMPARE_TREE_DELETED,
364 BTRFS_COMPARE_TREE_CHANGED,
365 BTRFS_COMPARE_TREE_SAME,
366 };
367
368 __cold
inconsistent_snapshot_error(struct send_ctx * sctx,enum btrfs_compare_tree_result result,const char * what)369 static void inconsistent_snapshot_error(struct send_ctx *sctx,
370 enum btrfs_compare_tree_result result,
371 const char *what)
372 {
373 const char *result_string;
374
375 switch (result) {
376 case BTRFS_COMPARE_TREE_NEW:
377 result_string = "new";
378 break;
379 case BTRFS_COMPARE_TREE_DELETED:
380 result_string = "deleted";
381 break;
382 case BTRFS_COMPARE_TREE_CHANGED:
383 result_string = "updated";
384 break;
385 case BTRFS_COMPARE_TREE_SAME:
386 ASSERT(0);
387 result_string = "unchanged";
388 break;
389 default:
390 ASSERT(0);
391 result_string = "unexpected";
392 }
393
394 btrfs_err(sctx->send_root->fs_info,
395 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
396 result_string, what, sctx->cmp_key->objectid,
397 btrfs_root_id(sctx->send_root),
398 (sctx->parent_root ? btrfs_root_id(sctx->parent_root) : 0));
399 }
400
401 __maybe_unused
proto_cmd_ok(const struct send_ctx * sctx,int cmd)402 static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd)
403 {
404 switch (sctx->proto) {
405 case 1: return cmd <= BTRFS_SEND_C_MAX_V1;
406 case 2: return cmd <= BTRFS_SEND_C_MAX_V2;
407 case 3: return cmd <= BTRFS_SEND_C_MAX_V3;
408 default: return false;
409 }
410 }
411
412 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
413
414 static struct waiting_dir_move *
415 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
416
417 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen);
418
need_send_hole(struct send_ctx * sctx)419 static int need_send_hole(struct send_ctx *sctx)
420 {
421 return (sctx->parent_root && !sctx->cur_inode_new &&
422 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
423 S_ISREG(sctx->cur_inode_mode));
424 }
425
fs_path_reset(struct fs_path * p)426 static void fs_path_reset(struct fs_path *p)
427 {
428 if (p->reversed) {
429 p->start = p->buf + p->buf_len - 1;
430 p->end = p->start;
431 *p->start = 0;
432 } else {
433 p->start = p->buf;
434 p->end = p->start;
435 *p->start = 0;
436 }
437 }
438
fs_path_alloc(void)439 static struct fs_path *fs_path_alloc(void)
440 {
441 struct fs_path *p;
442
443 p = kmalloc(sizeof(*p), GFP_KERNEL);
444 if (!p)
445 return NULL;
446 p->reversed = 0;
447 p->buf = p->inline_buf;
448 p->buf_len = FS_PATH_INLINE_SIZE;
449 fs_path_reset(p);
450 return p;
451 }
452
fs_path_alloc_reversed(void)453 static struct fs_path *fs_path_alloc_reversed(void)
454 {
455 struct fs_path *p;
456
457 p = fs_path_alloc();
458 if (!p)
459 return NULL;
460 p->reversed = 1;
461 fs_path_reset(p);
462 return p;
463 }
464
fs_path_free(struct fs_path * p)465 static void fs_path_free(struct fs_path *p)
466 {
467 if (!p)
468 return;
469 if (p->buf != p->inline_buf)
470 kfree(p->buf);
471 kfree(p);
472 }
473
fs_path_len(struct fs_path * p)474 static int fs_path_len(struct fs_path *p)
475 {
476 return p->end - p->start;
477 }
478
fs_path_ensure_buf(struct fs_path * p,int len)479 static int fs_path_ensure_buf(struct fs_path *p, int len)
480 {
481 char *tmp_buf;
482 int path_len;
483 int old_buf_len;
484
485 len++;
486
487 if (p->buf_len >= len)
488 return 0;
489
490 if (len > PATH_MAX) {
491 WARN_ON(1);
492 return -ENOMEM;
493 }
494
495 path_len = p->end - p->start;
496 old_buf_len = p->buf_len;
497
498 /*
499 * Allocate to the next largest kmalloc bucket size, to let
500 * the fast path happen most of the time.
501 */
502 len = kmalloc_size_roundup(len);
503 /*
504 * First time the inline_buf does not suffice
505 */
506 if (p->buf == p->inline_buf) {
507 tmp_buf = kmalloc(len, GFP_KERNEL);
508 if (tmp_buf)
509 memcpy(tmp_buf, p->buf, old_buf_len);
510 } else {
511 tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
512 }
513 if (!tmp_buf)
514 return -ENOMEM;
515 p->buf = tmp_buf;
516 p->buf_len = len;
517
518 if (p->reversed) {
519 tmp_buf = p->buf + old_buf_len - path_len - 1;
520 p->end = p->buf + p->buf_len - 1;
521 p->start = p->end - path_len;
522 memmove(p->start, tmp_buf, path_len + 1);
523 } else {
524 p->start = p->buf;
525 p->end = p->start + path_len;
526 }
527 return 0;
528 }
529
fs_path_prepare_for_add(struct fs_path * p,int name_len,char ** prepared)530 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
531 char **prepared)
532 {
533 int ret;
534 int new_len;
535
536 new_len = p->end - p->start + name_len;
537 if (p->start != p->end)
538 new_len++;
539 ret = fs_path_ensure_buf(p, new_len);
540 if (ret < 0)
541 goto out;
542
543 if (p->reversed) {
544 if (p->start != p->end)
545 *--p->start = '/';
546 p->start -= name_len;
547 *prepared = p->start;
548 } else {
549 if (p->start != p->end)
550 *p->end++ = '/';
551 *prepared = p->end;
552 p->end += name_len;
553 *p->end = 0;
554 }
555
556 out:
557 return ret;
558 }
559
fs_path_add(struct fs_path * p,const char * name,int name_len)560 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
561 {
562 int ret;
563 char *prepared;
564
565 ret = fs_path_prepare_for_add(p, name_len, &prepared);
566 if (ret < 0)
567 goto out;
568 memcpy(prepared, name, name_len);
569
570 out:
571 return ret;
572 }
573
fs_path_add_path(struct fs_path * p,struct fs_path * p2)574 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
575 {
576 int ret;
577 char *prepared;
578
579 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
580 if (ret < 0)
581 goto out;
582 memcpy(prepared, p2->start, p2->end - p2->start);
583
584 out:
585 return ret;
586 }
587
fs_path_add_from_extent_buffer(struct fs_path * p,struct extent_buffer * eb,unsigned long off,int len)588 static int fs_path_add_from_extent_buffer(struct fs_path *p,
589 struct extent_buffer *eb,
590 unsigned long off, int len)
591 {
592 int ret;
593 char *prepared;
594
595 ret = fs_path_prepare_for_add(p, len, &prepared);
596 if (ret < 0)
597 goto out;
598
599 read_extent_buffer(eb, prepared, off, len);
600
601 out:
602 return ret;
603 }
604
fs_path_copy(struct fs_path * p,struct fs_path * from)605 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
606 {
607 p->reversed = from->reversed;
608 fs_path_reset(p);
609
610 return fs_path_add_path(p, from);
611 }
612
fs_path_unreverse(struct fs_path * p)613 static void fs_path_unreverse(struct fs_path *p)
614 {
615 char *tmp;
616 int len;
617
618 if (!p->reversed)
619 return;
620
621 tmp = p->start;
622 len = p->end - p->start;
623 p->start = p->buf;
624 p->end = p->start + len;
625 memmove(p->start, tmp, len + 1);
626 p->reversed = 0;
627 }
628
alloc_path_for_send(void)629 static struct btrfs_path *alloc_path_for_send(void)
630 {
631 struct btrfs_path *path;
632
633 path = btrfs_alloc_path();
634 if (!path)
635 return NULL;
636 path->search_commit_root = 1;
637 path->skip_locking = 1;
638 path->need_commit_sem = 1;
639 return path;
640 }
641
write_buf(struct file * filp,const void * buf,u32 len,loff_t * off)642 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
643 {
644 int ret;
645 u32 pos = 0;
646
647 while (pos < len) {
648 ret = kernel_write(filp, buf + pos, len - pos, off);
649 if (ret < 0)
650 return ret;
651 if (ret == 0)
652 return -EIO;
653 pos += ret;
654 }
655
656 return 0;
657 }
658
tlv_put(struct send_ctx * sctx,u16 attr,const void * data,int len)659 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
660 {
661 struct btrfs_tlv_header *hdr;
662 int total_len = sizeof(*hdr) + len;
663 int left = sctx->send_max_size - sctx->send_size;
664
665 if (WARN_ON_ONCE(sctx->put_data))
666 return -EINVAL;
667
668 if (unlikely(left < total_len))
669 return -EOVERFLOW;
670
671 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
672 put_unaligned_le16(attr, &hdr->tlv_type);
673 put_unaligned_le16(len, &hdr->tlv_len);
674 memcpy(hdr + 1, data, len);
675 sctx->send_size += total_len;
676
677 return 0;
678 }
679
680 #define TLV_PUT_DEFINE_INT(bits) \
681 static int tlv_put_u##bits(struct send_ctx *sctx, \
682 u##bits attr, u##bits value) \
683 { \
684 __le##bits __tmp = cpu_to_le##bits(value); \
685 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
686 }
687
688 TLV_PUT_DEFINE_INT(8)
689 TLV_PUT_DEFINE_INT(32)
690 TLV_PUT_DEFINE_INT(64)
691
tlv_put_string(struct send_ctx * sctx,u16 attr,const char * str,int len)692 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
693 const char *str, int len)
694 {
695 if (len == -1)
696 len = strlen(str);
697 return tlv_put(sctx, attr, str, len);
698 }
699
tlv_put_uuid(struct send_ctx * sctx,u16 attr,const u8 * uuid)700 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
701 const u8 *uuid)
702 {
703 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
704 }
705
tlv_put_btrfs_timespec(struct send_ctx * sctx,u16 attr,struct extent_buffer * eb,struct btrfs_timespec * ts)706 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
707 struct extent_buffer *eb,
708 struct btrfs_timespec *ts)
709 {
710 struct btrfs_timespec bts;
711 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
712 return tlv_put(sctx, attr, &bts, sizeof(bts));
713 }
714
715
716 #define TLV_PUT(sctx, attrtype, data, attrlen) \
717 do { \
718 ret = tlv_put(sctx, attrtype, data, attrlen); \
719 if (ret < 0) \
720 goto tlv_put_failure; \
721 } while (0)
722
723 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
724 do { \
725 ret = tlv_put_u##bits(sctx, attrtype, value); \
726 if (ret < 0) \
727 goto tlv_put_failure; \
728 } while (0)
729
730 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
731 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
732 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
733 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
734 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
735 do { \
736 ret = tlv_put_string(sctx, attrtype, str, len); \
737 if (ret < 0) \
738 goto tlv_put_failure; \
739 } while (0)
740 #define TLV_PUT_PATH(sctx, attrtype, p) \
741 do { \
742 ret = tlv_put_string(sctx, attrtype, p->start, \
743 p->end - p->start); \
744 if (ret < 0) \
745 goto tlv_put_failure; \
746 } while(0)
747 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
748 do { \
749 ret = tlv_put_uuid(sctx, attrtype, uuid); \
750 if (ret < 0) \
751 goto tlv_put_failure; \
752 } while (0)
753 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
754 do { \
755 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
756 if (ret < 0) \
757 goto tlv_put_failure; \
758 } while (0)
759
send_header(struct send_ctx * sctx)760 static int send_header(struct send_ctx *sctx)
761 {
762 struct btrfs_stream_header hdr;
763
764 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
765 hdr.version = cpu_to_le32(sctx->proto);
766 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
767 &sctx->send_off);
768 }
769
770 /*
771 * For each command/item we want to send to userspace, we call this function.
772 */
begin_cmd(struct send_ctx * sctx,int cmd)773 static int begin_cmd(struct send_ctx *sctx, int cmd)
774 {
775 struct btrfs_cmd_header *hdr;
776
777 if (WARN_ON(!sctx->send_buf))
778 return -EINVAL;
779
780 if (unlikely(sctx->send_size != 0)) {
781 btrfs_err(sctx->send_root->fs_info,
782 "send: command header buffer not empty cmd %d offset %llu",
783 cmd, sctx->send_off);
784 return -EINVAL;
785 }
786
787 sctx->send_size += sizeof(*hdr);
788 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
789 put_unaligned_le16(cmd, &hdr->cmd);
790
791 return 0;
792 }
793
send_cmd(struct send_ctx * sctx)794 static int send_cmd(struct send_ctx *sctx)
795 {
796 int ret;
797 struct btrfs_cmd_header *hdr;
798 u32 crc;
799
800 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
801 put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len);
802 put_unaligned_le32(0, &hdr->crc);
803
804 crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
805 put_unaligned_le32(crc, &hdr->crc);
806
807 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
808 &sctx->send_off);
809
810 sctx->send_size = 0;
811 sctx->put_data = false;
812
813 return ret;
814 }
815
816 /*
817 * Sends a move instruction to user space
818 */
send_rename(struct send_ctx * sctx,struct fs_path * from,struct fs_path * to)819 static int send_rename(struct send_ctx *sctx,
820 struct fs_path *from, struct fs_path *to)
821 {
822 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
823 int ret;
824
825 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
826
827 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
828 if (ret < 0)
829 goto out;
830
831 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
832 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
833
834 ret = send_cmd(sctx);
835
836 tlv_put_failure:
837 out:
838 return ret;
839 }
840
841 /*
842 * Sends a link instruction to user space
843 */
send_link(struct send_ctx * sctx,struct fs_path * path,struct fs_path * lnk)844 static int send_link(struct send_ctx *sctx,
845 struct fs_path *path, struct fs_path *lnk)
846 {
847 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
848 int ret;
849
850 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
851
852 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
853 if (ret < 0)
854 goto out;
855
856 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
857 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
858
859 ret = send_cmd(sctx);
860
861 tlv_put_failure:
862 out:
863 return ret;
864 }
865
866 /*
867 * Sends an unlink instruction to user space
868 */
send_unlink(struct send_ctx * sctx,struct fs_path * path)869 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
870 {
871 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
872 int ret;
873
874 btrfs_debug(fs_info, "send_unlink %s", path->start);
875
876 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
877 if (ret < 0)
878 goto out;
879
880 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
881
882 ret = send_cmd(sctx);
883
884 tlv_put_failure:
885 out:
886 return ret;
887 }
888
889 /*
890 * Sends a rmdir instruction to user space
891 */
send_rmdir(struct send_ctx * sctx,struct fs_path * path)892 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
893 {
894 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
895 int ret;
896
897 btrfs_debug(fs_info, "send_rmdir %s", path->start);
898
899 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
900 if (ret < 0)
901 goto out;
902
903 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
904
905 ret = send_cmd(sctx);
906
907 tlv_put_failure:
908 out:
909 return ret;
910 }
911
912 struct btrfs_inode_info {
913 u64 size;
914 u64 gen;
915 u64 mode;
916 u64 uid;
917 u64 gid;
918 u64 rdev;
919 u64 fileattr;
920 u64 nlink;
921 };
922
923 /*
924 * Helper function to retrieve some fields from an inode item.
925 */
get_inode_info(struct btrfs_root * root,u64 ino,struct btrfs_inode_info * info)926 static int get_inode_info(struct btrfs_root *root, u64 ino,
927 struct btrfs_inode_info *info)
928 {
929 int ret;
930 struct btrfs_path *path;
931 struct btrfs_inode_item *ii;
932 struct btrfs_key key;
933
934 path = alloc_path_for_send();
935 if (!path)
936 return -ENOMEM;
937
938 key.objectid = ino;
939 key.type = BTRFS_INODE_ITEM_KEY;
940 key.offset = 0;
941 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
942 if (ret) {
943 if (ret > 0)
944 ret = -ENOENT;
945 goto out;
946 }
947
948 if (!info)
949 goto out;
950
951 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
952 struct btrfs_inode_item);
953 info->size = btrfs_inode_size(path->nodes[0], ii);
954 info->gen = btrfs_inode_generation(path->nodes[0], ii);
955 info->mode = btrfs_inode_mode(path->nodes[0], ii);
956 info->uid = btrfs_inode_uid(path->nodes[0], ii);
957 info->gid = btrfs_inode_gid(path->nodes[0], ii);
958 info->rdev = btrfs_inode_rdev(path->nodes[0], ii);
959 info->nlink = btrfs_inode_nlink(path->nodes[0], ii);
960 /*
961 * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's
962 * otherwise logically split to 32/32 parts.
963 */
964 info->fileattr = btrfs_inode_flags(path->nodes[0], ii);
965
966 out:
967 btrfs_free_path(path);
968 return ret;
969 }
970
get_inode_gen(struct btrfs_root * root,u64 ino,u64 * gen)971 static int get_inode_gen(struct btrfs_root *root, u64 ino, u64 *gen)
972 {
973 int ret;
974 struct btrfs_inode_info info = { 0 };
975
976 ASSERT(gen);
977
978 ret = get_inode_info(root, ino, &info);
979 *gen = info.gen;
980 return ret;
981 }
982
983 typedef int (*iterate_inode_ref_t)(u64 dir, struct fs_path *p, void *ctx);
984
985 /*
986 * Helper function to iterate the entries in ONE btrfs_inode_ref or
987 * btrfs_inode_extref.
988 * The iterate callback may return a non zero value to stop iteration. This can
989 * be a negative value for error codes or 1 to simply stop it.
990 *
991 * path must point to the INODE_REF or INODE_EXTREF when called.
992 */
iterate_inode_ref(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * found_key,int resolve,iterate_inode_ref_t iterate,void * ctx)993 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
994 struct btrfs_key *found_key, int resolve,
995 iterate_inode_ref_t iterate, void *ctx)
996 {
997 struct extent_buffer *eb = path->nodes[0];
998 struct btrfs_inode_ref *iref;
999 struct btrfs_inode_extref *extref;
1000 struct btrfs_path *tmp_path;
1001 struct fs_path *p;
1002 u32 cur = 0;
1003 u32 total;
1004 int slot = path->slots[0];
1005 u32 name_len;
1006 char *start;
1007 int ret = 0;
1008 u64 dir;
1009 unsigned long name_off;
1010 unsigned long elem_size;
1011 unsigned long ptr;
1012
1013 p = fs_path_alloc_reversed();
1014 if (!p)
1015 return -ENOMEM;
1016
1017 tmp_path = alloc_path_for_send();
1018 if (!tmp_path) {
1019 fs_path_free(p);
1020 return -ENOMEM;
1021 }
1022
1023
1024 if (found_key->type == BTRFS_INODE_REF_KEY) {
1025 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
1026 struct btrfs_inode_ref);
1027 total = btrfs_item_size(eb, slot);
1028 elem_size = sizeof(*iref);
1029 } else {
1030 ptr = btrfs_item_ptr_offset(eb, slot);
1031 total = btrfs_item_size(eb, slot);
1032 elem_size = sizeof(*extref);
1033 }
1034
1035 while (cur < total) {
1036 fs_path_reset(p);
1037
1038 if (found_key->type == BTRFS_INODE_REF_KEY) {
1039 iref = (struct btrfs_inode_ref *)(ptr + cur);
1040 name_len = btrfs_inode_ref_name_len(eb, iref);
1041 name_off = (unsigned long)(iref + 1);
1042 dir = found_key->offset;
1043 } else {
1044 extref = (struct btrfs_inode_extref *)(ptr + cur);
1045 name_len = btrfs_inode_extref_name_len(eb, extref);
1046 name_off = (unsigned long)&extref->name;
1047 dir = btrfs_inode_extref_parent(eb, extref);
1048 }
1049
1050 if (resolve) {
1051 start = btrfs_ref_to_path(root, tmp_path, name_len,
1052 name_off, eb, dir,
1053 p->buf, p->buf_len);
1054 if (IS_ERR(start)) {
1055 ret = PTR_ERR(start);
1056 goto out;
1057 }
1058 if (start < p->buf) {
1059 /* overflow , try again with larger buffer */
1060 ret = fs_path_ensure_buf(p,
1061 p->buf_len + p->buf - start);
1062 if (ret < 0)
1063 goto out;
1064 start = btrfs_ref_to_path(root, tmp_path,
1065 name_len, name_off,
1066 eb, dir,
1067 p->buf, p->buf_len);
1068 if (IS_ERR(start)) {
1069 ret = PTR_ERR(start);
1070 goto out;
1071 }
1072 if (unlikely(start < p->buf)) {
1073 btrfs_err(root->fs_info,
1074 "send: path ref buffer underflow for key (%llu %u %llu)",
1075 found_key->objectid,
1076 found_key->type,
1077 found_key->offset);
1078 ret = -EINVAL;
1079 goto out;
1080 }
1081 }
1082 p->start = start;
1083 } else {
1084 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
1085 name_len);
1086 if (ret < 0)
1087 goto out;
1088 }
1089
1090 cur += elem_size + name_len;
1091 ret = iterate(dir, p, ctx);
1092 if (ret)
1093 goto out;
1094 }
1095
1096 out:
1097 btrfs_free_path(tmp_path);
1098 fs_path_free(p);
1099 return ret;
1100 }
1101
1102 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
1103 const char *name, int name_len,
1104 const char *data, int data_len,
1105 void *ctx);
1106
1107 /*
1108 * Helper function to iterate the entries in ONE btrfs_dir_item.
1109 * The iterate callback may return a non zero value to stop iteration. This can
1110 * be a negative value for error codes or 1 to simply stop it.
1111 *
1112 * path must point to the dir item when called.
1113 */
iterate_dir_item(struct btrfs_root * root,struct btrfs_path * path,iterate_dir_item_t iterate,void * ctx)1114 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1115 iterate_dir_item_t iterate, void *ctx)
1116 {
1117 int ret = 0;
1118 struct extent_buffer *eb;
1119 struct btrfs_dir_item *di;
1120 struct btrfs_key di_key;
1121 char *buf = NULL;
1122 int buf_len;
1123 u32 name_len;
1124 u32 data_len;
1125 u32 cur;
1126 u32 len;
1127 u32 total;
1128 int slot;
1129 int num;
1130
1131 /*
1132 * Start with a small buffer (1 page). If later we end up needing more
1133 * space, which can happen for xattrs on a fs with a leaf size greater
1134 * than the page size, attempt to increase the buffer. Typically xattr
1135 * values are small.
1136 */
1137 buf_len = PATH_MAX;
1138 buf = kmalloc(buf_len, GFP_KERNEL);
1139 if (!buf) {
1140 ret = -ENOMEM;
1141 goto out;
1142 }
1143
1144 eb = path->nodes[0];
1145 slot = path->slots[0];
1146 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1147 cur = 0;
1148 len = 0;
1149 total = btrfs_item_size(eb, slot);
1150
1151 num = 0;
1152 while (cur < total) {
1153 name_len = btrfs_dir_name_len(eb, di);
1154 data_len = btrfs_dir_data_len(eb, di);
1155 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1156
1157 if (btrfs_dir_ftype(eb, di) == BTRFS_FT_XATTR) {
1158 if (name_len > XATTR_NAME_MAX) {
1159 ret = -ENAMETOOLONG;
1160 goto out;
1161 }
1162 if (name_len + data_len >
1163 BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1164 ret = -E2BIG;
1165 goto out;
1166 }
1167 } else {
1168 /*
1169 * Path too long
1170 */
1171 if (name_len + data_len > PATH_MAX) {
1172 ret = -ENAMETOOLONG;
1173 goto out;
1174 }
1175 }
1176
1177 if (name_len + data_len > buf_len) {
1178 buf_len = name_len + data_len;
1179 if (is_vmalloc_addr(buf)) {
1180 vfree(buf);
1181 buf = NULL;
1182 } else {
1183 char *tmp = krealloc(buf, buf_len,
1184 GFP_KERNEL | __GFP_NOWARN);
1185
1186 if (!tmp)
1187 kfree(buf);
1188 buf = tmp;
1189 }
1190 if (!buf) {
1191 buf = kvmalloc(buf_len, GFP_KERNEL);
1192 if (!buf) {
1193 ret = -ENOMEM;
1194 goto out;
1195 }
1196 }
1197 }
1198
1199 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1200 name_len + data_len);
1201
1202 len = sizeof(*di) + name_len + data_len;
1203 di = (struct btrfs_dir_item *)((char *)di + len);
1204 cur += len;
1205
1206 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1207 data_len, ctx);
1208 if (ret < 0)
1209 goto out;
1210 if (ret) {
1211 ret = 0;
1212 goto out;
1213 }
1214
1215 num++;
1216 }
1217
1218 out:
1219 kvfree(buf);
1220 return ret;
1221 }
1222
__copy_first_ref(u64 dir,struct fs_path * p,void * ctx)1223 static int __copy_first_ref(u64 dir, struct fs_path *p, void *ctx)
1224 {
1225 int ret;
1226 struct fs_path *pt = ctx;
1227
1228 ret = fs_path_copy(pt, p);
1229 if (ret < 0)
1230 return ret;
1231
1232 /* we want the first only */
1233 return 1;
1234 }
1235
1236 /*
1237 * Retrieve the first path of an inode. If an inode has more then one
1238 * ref/hardlink, this is ignored.
1239 */
get_inode_path(struct btrfs_root * root,u64 ino,struct fs_path * path)1240 static int get_inode_path(struct btrfs_root *root,
1241 u64 ino, struct fs_path *path)
1242 {
1243 int ret;
1244 struct btrfs_key key, found_key;
1245 struct btrfs_path *p;
1246
1247 p = alloc_path_for_send();
1248 if (!p)
1249 return -ENOMEM;
1250
1251 fs_path_reset(path);
1252
1253 key.objectid = ino;
1254 key.type = BTRFS_INODE_REF_KEY;
1255 key.offset = 0;
1256
1257 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1258 if (ret < 0)
1259 goto out;
1260 if (ret) {
1261 ret = 1;
1262 goto out;
1263 }
1264 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1265 if (found_key.objectid != ino ||
1266 (found_key.type != BTRFS_INODE_REF_KEY &&
1267 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1268 ret = -ENOENT;
1269 goto out;
1270 }
1271
1272 ret = iterate_inode_ref(root, p, &found_key, 1,
1273 __copy_first_ref, path);
1274 if (ret < 0)
1275 goto out;
1276 ret = 0;
1277
1278 out:
1279 btrfs_free_path(p);
1280 return ret;
1281 }
1282
1283 struct backref_ctx {
1284 struct send_ctx *sctx;
1285
1286 /* number of total found references */
1287 u64 found;
1288
1289 /*
1290 * used for clones found in send_root. clones found behind cur_objectid
1291 * and cur_offset are not considered as allowed clones.
1292 */
1293 u64 cur_objectid;
1294 u64 cur_offset;
1295
1296 /* may be truncated in case it's the last extent in a file */
1297 u64 extent_len;
1298
1299 /* The bytenr the file extent item we are processing refers to. */
1300 u64 bytenr;
1301 /* The owner (root id) of the data backref for the current extent. */
1302 u64 backref_owner;
1303 /* The offset of the data backref for the current extent. */
1304 u64 backref_offset;
1305 };
1306
__clone_root_cmp_bsearch(const void * key,const void * elt)1307 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1308 {
1309 u64 root = (u64)(uintptr_t)key;
1310 const struct clone_root *cr = elt;
1311
1312 if (root < btrfs_root_id(cr->root))
1313 return -1;
1314 if (root > btrfs_root_id(cr->root))
1315 return 1;
1316 return 0;
1317 }
1318
__clone_root_cmp_sort(const void * e1,const void * e2)1319 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1320 {
1321 const struct clone_root *cr1 = e1;
1322 const struct clone_root *cr2 = e2;
1323
1324 if (btrfs_root_id(cr1->root) < btrfs_root_id(cr2->root))
1325 return -1;
1326 if (btrfs_root_id(cr1->root) > btrfs_root_id(cr2->root))
1327 return 1;
1328 return 0;
1329 }
1330
1331 /*
1332 * Called for every backref that is found for the current extent.
1333 * Results are collected in sctx->clone_roots->ino/offset.
1334 */
iterate_backrefs(u64 ino,u64 offset,u64 num_bytes,u64 root_id,void * ctx_)1335 static int iterate_backrefs(u64 ino, u64 offset, u64 num_bytes, u64 root_id,
1336 void *ctx_)
1337 {
1338 struct backref_ctx *bctx = ctx_;
1339 struct clone_root *clone_root;
1340
1341 /* First check if the root is in the list of accepted clone sources */
1342 clone_root = bsearch((void *)(uintptr_t)root_id, bctx->sctx->clone_roots,
1343 bctx->sctx->clone_roots_cnt,
1344 sizeof(struct clone_root),
1345 __clone_root_cmp_bsearch);
1346 if (!clone_root)
1347 return 0;
1348
1349 /* This is our own reference, bail out as we can't clone from it. */
1350 if (clone_root->root == bctx->sctx->send_root &&
1351 ino == bctx->cur_objectid &&
1352 offset == bctx->cur_offset)
1353 return 0;
1354
1355 /*
1356 * Make sure we don't consider clones from send_root that are
1357 * behind the current inode/offset.
1358 */
1359 if (clone_root->root == bctx->sctx->send_root) {
1360 /*
1361 * If the source inode was not yet processed we can't issue a
1362 * clone operation, as the source extent does not exist yet at
1363 * the destination of the stream.
1364 */
1365 if (ino > bctx->cur_objectid)
1366 return 0;
1367 /*
1368 * We clone from the inode currently being sent as long as the
1369 * source extent is already processed, otherwise we could try
1370 * to clone from an extent that does not exist yet at the
1371 * destination of the stream.
1372 */
1373 if (ino == bctx->cur_objectid &&
1374 offset + bctx->extent_len >
1375 bctx->sctx->cur_inode_next_write_offset)
1376 return 0;
1377 }
1378
1379 bctx->found++;
1380 clone_root->found_ref = true;
1381
1382 /*
1383 * If the given backref refers to a file extent item with a larger
1384 * number of bytes than what we found before, use the new one so that
1385 * we clone more optimally and end up doing less writes and getting
1386 * less exclusive, non-shared extents at the destination.
1387 */
1388 if (num_bytes > clone_root->num_bytes) {
1389 clone_root->ino = ino;
1390 clone_root->offset = offset;
1391 clone_root->num_bytes = num_bytes;
1392
1393 /*
1394 * Found a perfect candidate, so there's no need to continue
1395 * backref walking.
1396 */
1397 if (num_bytes >= bctx->extent_len)
1398 return BTRFS_ITERATE_EXTENT_INODES_STOP;
1399 }
1400
1401 return 0;
1402 }
1403
lookup_backref_cache(u64 leaf_bytenr,void * ctx,const u64 ** root_ids_ret,int * root_count_ret)1404 static bool lookup_backref_cache(u64 leaf_bytenr, void *ctx,
1405 const u64 **root_ids_ret, int *root_count_ret)
1406 {
1407 struct backref_ctx *bctx = ctx;
1408 struct send_ctx *sctx = bctx->sctx;
1409 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1410 const u64 key = leaf_bytenr >> fs_info->sectorsize_bits;
1411 struct btrfs_lru_cache_entry *raw_entry;
1412 struct backref_cache_entry *entry;
1413
1414 if (sctx->backref_cache.size == 0)
1415 return false;
1416
1417 /*
1418 * If relocation happened since we first filled the cache, then we must
1419 * empty the cache and can not use it, because even though we operate on
1420 * read-only roots, their leaves and nodes may have been reallocated and
1421 * now be used for different nodes/leaves of the same tree or some other
1422 * tree.
1423 *
1424 * We are called from iterate_extent_inodes() while either holding a
1425 * transaction handle or holding fs_info->commit_root_sem, so no need
1426 * to take any lock here.
1427 */
1428 if (fs_info->last_reloc_trans > sctx->backref_cache_last_reloc_trans) {
1429 btrfs_lru_cache_clear(&sctx->backref_cache);
1430 return false;
1431 }
1432
1433 raw_entry = btrfs_lru_cache_lookup(&sctx->backref_cache, key, 0);
1434 if (!raw_entry)
1435 return false;
1436
1437 entry = container_of(raw_entry, struct backref_cache_entry, entry);
1438 *root_ids_ret = entry->root_ids;
1439 *root_count_ret = entry->num_roots;
1440
1441 return true;
1442 }
1443
store_backref_cache(u64 leaf_bytenr,const struct ulist * root_ids,void * ctx)1444 static void store_backref_cache(u64 leaf_bytenr, const struct ulist *root_ids,
1445 void *ctx)
1446 {
1447 struct backref_ctx *bctx = ctx;
1448 struct send_ctx *sctx = bctx->sctx;
1449 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1450 struct backref_cache_entry *new_entry;
1451 struct ulist_iterator uiter;
1452 struct ulist_node *node;
1453 int ret;
1454
1455 /*
1456 * We're called while holding a transaction handle or while holding
1457 * fs_info->commit_root_sem (at iterate_extent_inodes()), so must do a
1458 * NOFS allocation.
1459 */
1460 new_entry = kmalloc(sizeof(struct backref_cache_entry), GFP_NOFS);
1461 /* No worries, cache is optional. */
1462 if (!new_entry)
1463 return;
1464
1465 new_entry->entry.key = leaf_bytenr >> fs_info->sectorsize_bits;
1466 new_entry->entry.gen = 0;
1467 new_entry->num_roots = 0;
1468 ULIST_ITER_INIT(&uiter);
1469 while ((node = ulist_next(root_ids, &uiter)) != NULL) {
1470 const u64 root_id = node->val;
1471 struct clone_root *root;
1472
1473 root = bsearch((void *)(uintptr_t)root_id, sctx->clone_roots,
1474 sctx->clone_roots_cnt, sizeof(struct clone_root),
1475 __clone_root_cmp_bsearch);
1476 if (!root)
1477 continue;
1478
1479 /* Too many roots, just exit, no worries as caching is optional. */
1480 if (new_entry->num_roots >= SEND_MAX_BACKREF_CACHE_ROOTS) {
1481 kfree(new_entry);
1482 return;
1483 }
1484
1485 new_entry->root_ids[new_entry->num_roots] = root_id;
1486 new_entry->num_roots++;
1487 }
1488
1489 /*
1490 * We may have not added any roots to the new cache entry, which means
1491 * none of the roots is part of the list of roots from which we are
1492 * allowed to clone. Cache the new entry as it's still useful to avoid
1493 * backref walking to determine which roots have a path to the leaf.
1494 *
1495 * Also use GFP_NOFS because we're called while holding a transaction
1496 * handle or while holding fs_info->commit_root_sem.
1497 */
1498 ret = btrfs_lru_cache_store(&sctx->backref_cache, &new_entry->entry,
1499 GFP_NOFS);
1500 ASSERT(ret == 0 || ret == -ENOMEM);
1501 if (ret) {
1502 /* Caching is optional, no worries. */
1503 kfree(new_entry);
1504 return;
1505 }
1506
1507 /*
1508 * We are called from iterate_extent_inodes() while either holding a
1509 * transaction handle or holding fs_info->commit_root_sem, so no need
1510 * to take any lock here.
1511 */
1512 if (sctx->backref_cache.size == 1)
1513 sctx->backref_cache_last_reloc_trans = fs_info->last_reloc_trans;
1514 }
1515
check_extent_item(u64 bytenr,const struct btrfs_extent_item * ei,const struct extent_buffer * leaf,void * ctx)1516 static int check_extent_item(u64 bytenr, const struct btrfs_extent_item *ei,
1517 const struct extent_buffer *leaf, void *ctx)
1518 {
1519 const u64 refs = btrfs_extent_refs(leaf, ei);
1520 const struct backref_ctx *bctx = ctx;
1521 const struct send_ctx *sctx = bctx->sctx;
1522
1523 if (bytenr == bctx->bytenr) {
1524 const u64 flags = btrfs_extent_flags(leaf, ei);
1525
1526 if (WARN_ON(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
1527 return -EUCLEAN;
1528
1529 /*
1530 * If we have only one reference and only the send root as a
1531 * clone source - meaning no clone roots were given in the
1532 * struct btrfs_ioctl_send_args passed to the send ioctl - then
1533 * it's our reference and there's no point in doing backref
1534 * walking which is expensive, so exit early.
1535 */
1536 if (refs == 1 && sctx->clone_roots_cnt == 1)
1537 return -ENOENT;
1538 }
1539
1540 /*
1541 * Backreference walking (iterate_extent_inodes() below) is currently
1542 * too expensive when an extent has a large number of references, both
1543 * in time spent and used memory. So for now just fallback to write
1544 * operations instead of clone operations when an extent has more than
1545 * a certain amount of references.
1546 */
1547 if (refs > SEND_MAX_EXTENT_REFS)
1548 return -ENOENT;
1549
1550 return 0;
1551 }
1552
skip_self_data_ref(u64 root,u64 ino,u64 offset,void * ctx)1553 static bool skip_self_data_ref(u64 root, u64 ino, u64 offset, void *ctx)
1554 {
1555 const struct backref_ctx *bctx = ctx;
1556
1557 if (ino == bctx->cur_objectid &&
1558 root == bctx->backref_owner &&
1559 offset == bctx->backref_offset)
1560 return true;
1561
1562 return false;
1563 }
1564
1565 /*
1566 * Given an inode, offset and extent item, it finds a good clone for a clone
1567 * instruction. Returns -ENOENT when none could be found. The function makes
1568 * sure that the returned clone is usable at the point where sending is at the
1569 * moment. This means, that no clones are accepted which lie behind the current
1570 * inode+offset.
1571 *
1572 * path must point to the extent item when called.
1573 */
find_extent_clone(struct send_ctx * sctx,struct btrfs_path * path,u64 ino,u64 data_offset,u64 ino_size,struct clone_root ** found)1574 static int find_extent_clone(struct send_ctx *sctx,
1575 struct btrfs_path *path,
1576 u64 ino, u64 data_offset,
1577 u64 ino_size,
1578 struct clone_root **found)
1579 {
1580 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1581 int ret;
1582 int extent_type;
1583 u64 logical;
1584 u64 disk_byte;
1585 u64 num_bytes;
1586 struct btrfs_file_extent_item *fi;
1587 struct extent_buffer *eb = path->nodes[0];
1588 struct backref_ctx backref_ctx = { 0 };
1589 struct btrfs_backref_walk_ctx backref_walk_ctx = { 0 };
1590 struct clone_root *cur_clone_root;
1591 int compressed;
1592 u32 i;
1593
1594 /*
1595 * With fallocate we can get prealloc extents beyond the inode's i_size,
1596 * so we don't do anything here because clone operations can not clone
1597 * to a range beyond i_size without increasing the i_size of the
1598 * destination inode.
1599 */
1600 if (data_offset >= ino_size)
1601 return 0;
1602
1603 fi = btrfs_item_ptr(eb, path->slots[0], struct btrfs_file_extent_item);
1604 extent_type = btrfs_file_extent_type(eb, fi);
1605 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1606 return -ENOENT;
1607
1608 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1609 if (disk_byte == 0)
1610 return -ENOENT;
1611
1612 compressed = btrfs_file_extent_compression(eb, fi);
1613 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1614 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1615
1616 /*
1617 * Setup the clone roots.
1618 */
1619 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1620 cur_clone_root = sctx->clone_roots + i;
1621 cur_clone_root->ino = (u64)-1;
1622 cur_clone_root->offset = 0;
1623 cur_clone_root->num_bytes = 0;
1624 cur_clone_root->found_ref = false;
1625 }
1626
1627 backref_ctx.sctx = sctx;
1628 backref_ctx.cur_objectid = ino;
1629 backref_ctx.cur_offset = data_offset;
1630 backref_ctx.bytenr = disk_byte;
1631 /*
1632 * Use the header owner and not the send root's id, because in case of a
1633 * snapshot we can have shared subtrees.
1634 */
1635 backref_ctx.backref_owner = btrfs_header_owner(eb);
1636 backref_ctx.backref_offset = data_offset - btrfs_file_extent_offset(eb, fi);
1637
1638 /*
1639 * The last extent of a file may be too large due to page alignment.
1640 * We need to adjust extent_len in this case so that the checks in
1641 * iterate_backrefs() work.
1642 */
1643 if (data_offset + num_bytes >= ino_size)
1644 backref_ctx.extent_len = ino_size - data_offset;
1645 else
1646 backref_ctx.extent_len = num_bytes;
1647
1648 /*
1649 * Now collect all backrefs.
1650 */
1651 backref_walk_ctx.bytenr = disk_byte;
1652 if (compressed == BTRFS_COMPRESS_NONE)
1653 backref_walk_ctx.extent_item_pos = btrfs_file_extent_offset(eb, fi);
1654 backref_walk_ctx.fs_info = fs_info;
1655 backref_walk_ctx.cache_lookup = lookup_backref_cache;
1656 backref_walk_ctx.cache_store = store_backref_cache;
1657 backref_walk_ctx.indirect_ref_iterator = iterate_backrefs;
1658 backref_walk_ctx.check_extent_item = check_extent_item;
1659 backref_walk_ctx.user_ctx = &backref_ctx;
1660
1661 /*
1662 * If have a single clone root, then it's the send root and we can tell
1663 * the backref walking code to skip our own backref and not resolve it,
1664 * since we can not use it for cloning - the source and destination
1665 * ranges can't overlap and in case the leaf is shared through a subtree
1666 * due to snapshots, we can't use those other roots since they are not
1667 * in the list of clone roots.
1668 */
1669 if (sctx->clone_roots_cnt == 1)
1670 backref_walk_ctx.skip_data_ref = skip_self_data_ref;
1671
1672 ret = iterate_extent_inodes(&backref_walk_ctx, true, iterate_backrefs,
1673 &backref_ctx);
1674 if (ret < 0)
1675 return ret;
1676
1677 down_read(&fs_info->commit_root_sem);
1678 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
1679 /*
1680 * A transaction commit for a transaction in which block group
1681 * relocation was done just happened.
1682 * The disk_bytenr of the file extent item we processed is
1683 * possibly stale, referring to the extent's location before
1684 * relocation. So act as if we haven't found any clone sources
1685 * and fallback to write commands, which will read the correct
1686 * data from the new extent location. Otherwise we will fail
1687 * below because we haven't found our own back reference or we
1688 * could be getting incorrect sources in case the old extent
1689 * was already reallocated after the relocation.
1690 */
1691 up_read(&fs_info->commit_root_sem);
1692 return -ENOENT;
1693 }
1694 up_read(&fs_info->commit_root_sem);
1695
1696 btrfs_debug(fs_info,
1697 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1698 data_offset, ino, num_bytes, logical);
1699
1700 if (!backref_ctx.found) {
1701 btrfs_debug(fs_info, "no clones found");
1702 return -ENOENT;
1703 }
1704
1705 cur_clone_root = NULL;
1706 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1707 struct clone_root *clone_root = &sctx->clone_roots[i];
1708
1709 if (!clone_root->found_ref)
1710 continue;
1711
1712 /*
1713 * Choose the root from which we can clone more bytes, to
1714 * minimize write operations and therefore have more extent
1715 * sharing at the destination (the same as in the source).
1716 */
1717 if (!cur_clone_root ||
1718 clone_root->num_bytes > cur_clone_root->num_bytes) {
1719 cur_clone_root = clone_root;
1720
1721 /*
1722 * We found an optimal clone candidate (any inode from
1723 * any root is fine), so we're done.
1724 */
1725 if (clone_root->num_bytes >= backref_ctx.extent_len)
1726 break;
1727 }
1728 }
1729
1730 if (cur_clone_root) {
1731 *found = cur_clone_root;
1732 ret = 0;
1733 } else {
1734 ret = -ENOENT;
1735 }
1736
1737 return ret;
1738 }
1739
read_symlink(struct btrfs_root * root,u64 ino,struct fs_path * dest)1740 static int read_symlink(struct btrfs_root *root,
1741 u64 ino,
1742 struct fs_path *dest)
1743 {
1744 int ret;
1745 struct btrfs_path *path;
1746 struct btrfs_key key;
1747 struct btrfs_file_extent_item *ei;
1748 u8 type;
1749 u8 compression;
1750 unsigned long off;
1751 int len;
1752
1753 path = alloc_path_for_send();
1754 if (!path)
1755 return -ENOMEM;
1756
1757 key.objectid = ino;
1758 key.type = BTRFS_EXTENT_DATA_KEY;
1759 key.offset = 0;
1760 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1761 if (ret < 0)
1762 goto out;
1763 if (ret) {
1764 /*
1765 * An empty symlink inode. Can happen in rare error paths when
1766 * creating a symlink (transaction committed before the inode
1767 * eviction handler removed the symlink inode items and a crash
1768 * happened in between or the subvol was snapshoted in between).
1769 * Print an informative message to dmesg/syslog so that the user
1770 * can delete the symlink.
1771 */
1772 btrfs_err(root->fs_info,
1773 "Found empty symlink inode %llu at root %llu",
1774 ino, btrfs_root_id(root));
1775 ret = -EIO;
1776 goto out;
1777 }
1778
1779 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1780 struct btrfs_file_extent_item);
1781 type = btrfs_file_extent_type(path->nodes[0], ei);
1782 if (unlikely(type != BTRFS_FILE_EXTENT_INLINE)) {
1783 ret = -EUCLEAN;
1784 btrfs_crit(root->fs_info,
1785 "send: found symlink extent that is not inline, ino %llu root %llu extent type %d",
1786 ino, btrfs_root_id(root), type);
1787 goto out;
1788 }
1789 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1790 if (unlikely(compression != BTRFS_COMPRESS_NONE)) {
1791 ret = -EUCLEAN;
1792 btrfs_crit(root->fs_info,
1793 "send: found symlink extent with compression, ino %llu root %llu compression type %d",
1794 ino, btrfs_root_id(root), compression);
1795 goto out;
1796 }
1797
1798 off = btrfs_file_extent_inline_start(ei);
1799 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1800
1801 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1802
1803 out:
1804 btrfs_free_path(path);
1805 return ret;
1806 }
1807
1808 /*
1809 * Helper function to generate a file name that is unique in the root of
1810 * send_root and parent_root. This is used to generate names for orphan inodes.
1811 */
gen_unique_name(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * dest)1812 static int gen_unique_name(struct send_ctx *sctx,
1813 u64 ino, u64 gen,
1814 struct fs_path *dest)
1815 {
1816 int ret = 0;
1817 struct btrfs_path *path;
1818 struct btrfs_dir_item *di;
1819 char tmp[64];
1820 int len;
1821 u64 idx = 0;
1822
1823 path = alloc_path_for_send();
1824 if (!path)
1825 return -ENOMEM;
1826
1827 while (1) {
1828 struct fscrypt_str tmp_name;
1829
1830 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1831 ino, gen, idx);
1832 ASSERT(len < sizeof(tmp));
1833 tmp_name.name = tmp;
1834 tmp_name.len = strlen(tmp);
1835
1836 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1837 path, BTRFS_FIRST_FREE_OBJECTID,
1838 &tmp_name, 0);
1839 btrfs_release_path(path);
1840 if (IS_ERR(di)) {
1841 ret = PTR_ERR(di);
1842 goto out;
1843 }
1844 if (di) {
1845 /* not unique, try again */
1846 idx++;
1847 continue;
1848 }
1849
1850 if (!sctx->parent_root) {
1851 /* unique */
1852 ret = 0;
1853 break;
1854 }
1855
1856 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1857 path, BTRFS_FIRST_FREE_OBJECTID,
1858 &tmp_name, 0);
1859 btrfs_release_path(path);
1860 if (IS_ERR(di)) {
1861 ret = PTR_ERR(di);
1862 goto out;
1863 }
1864 if (di) {
1865 /* not unique, try again */
1866 idx++;
1867 continue;
1868 }
1869 /* unique */
1870 break;
1871 }
1872
1873 ret = fs_path_add(dest, tmp, strlen(tmp));
1874
1875 out:
1876 btrfs_free_path(path);
1877 return ret;
1878 }
1879
1880 enum inode_state {
1881 inode_state_no_change,
1882 inode_state_will_create,
1883 inode_state_did_create,
1884 inode_state_will_delete,
1885 inode_state_did_delete,
1886 };
1887
get_cur_inode_state(struct send_ctx * sctx,u64 ino,u64 gen,u64 * send_gen,u64 * parent_gen)1888 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen,
1889 u64 *send_gen, u64 *parent_gen)
1890 {
1891 int ret;
1892 int left_ret;
1893 int right_ret;
1894 u64 left_gen;
1895 u64 right_gen = 0;
1896 struct btrfs_inode_info info;
1897
1898 ret = get_inode_info(sctx->send_root, ino, &info);
1899 if (ret < 0 && ret != -ENOENT)
1900 goto out;
1901 left_ret = (info.nlink == 0) ? -ENOENT : ret;
1902 left_gen = info.gen;
1903 if (send_gen)
1904 *send_gen = ((left_ret == -ENOENT) ? 0 : info.gen);
1905
1906 if (!sctx->parent_root) {
1907 right_ret = -ENOENT;
1908 } else {
1909 ret = get_inode_info(sctx->parent_root, ino, &info);
1910 if (ret < 0 && ret != -ENOENT)
1911 goto out;
1912 right_ret = (info.nlink == 0) ? -ENOENT : ret;
1913 right_gen = info.gen;
1914 if (parent_gen)
1915 *parent_gen = ((right_ret == -ENOENT) ? 0 : info.gen);
1916 }
1917
1918 if (!left_ret && !right_ret) {
1919 if (left_gen == gen && right_gen == gen) {
1920 ret = inode_state_no_change;
1921 } else if (left_gen == gen) {
1922 if (ino < sctx->send_progress)
1923 ret = inode_state_did_create;
1924 else
1925 ret = inode_state_will_create;
1926 } else if (right_gen == gen) {
1927 if (ino < sctx->send_progress)
1928 ret = inode_state_did_delete;
1929 else
1930 ret = inode_state_will_delete;
1931 } else {
1932 ret = -ENOENT;
1933 }
1934 } else if (!left_ret) {
1935 if (left_gen == gen) {
1936 if (ino < sctx->send_progress)
1937 ret = inode_state_did_create;
1938 else
1939 ret = inode_state_will_create;
1940 } else {
1941 ret = -ENOENT;
1942 }
1943 } else if (!right_ret) {
1944 if (right_gen == gen) {
1945 if (ino < sctx->send_progress)
1946 ret = inode_state_did_delete;
1947 else
1948 ret = inode_state_will_delete;
1949 } else {
1950 ret = -ENOENT;
1951 }
1952 } else {
1953 ret = -ENOENT;
1954 }
1955
1956 out:
1957 return ret;
1958 }
1959
is_inode_existent(struct send_ctx * sctx,u64 ino,u64 gen,u64 * send_gen,u64 * parent_gen)1960 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen,
1961 u64 *send_gen, u64 *parent_gen)
1962 {
1963 int ret;
1964
1965 if (ino == BTRFS_FIRST_FREE_OBJECTID)
1966 return 1;
1967
1968 ret = get_cur_inode_state(sctx, ino, gen, send_gen, parent_gen);
1969 if (ret < 0)
1970 goto out;
1971
1972 if (ret == inode_state_no_change ||
1973 ret == inode_state_did_create ||
1974 ret == inode_state_will_delete)
1975 ret = 1;
1976 else
1977 ret = 0;
1978
1979 out:
1980 return ret;
1981 }
1982
1983 /*
1984 * Helper function to lookup a dir item in a dir.
1985 */
lookup_dir_item_inode(struct btrfs_root * root,u64 dir,const char * name,int name_len,u64 * found_inode)1986 static int lookup_dir_item_inode(struct btrfs_root *root,
1987 u64 dir, const char *name, int name_len,
1988 u64 *found_inode)
1989 {
1990 int ret = 0;
1991 struct btrfs_dir_item *di;
1992 struct btrfs_key key;
1993 struct btrfs_path *path;
1994 struct fscrypt_str name_str = FSTR_INIT((char *)name, name_len);
1995
1996 path = alloc_path_for_send();
1997 if (!path)
1998 return -ENOMEM;
1999
2000 di = btrfs_lookup_dir_item(NULL, root, path, dir, &name_str, 0);
2001 if (IS_ERR_OR_NULL(di)) {
2002 ret = di ? PTR_ERR(di) : -ENOENT;
2003 goto out;
2004 }
2005 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
2006 if (key.type == BTRFS_ROOT_ITEM_KEY) {
2007 ret = -ENOENT;
2008 goto out;
2009 }
2010 *found_inode = key.objectid;
2011
2012 out:
2013 btrfs_free_path(path);
2014 return ret;
2015 }
2016
2017 /*
2018 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
2019 * generation of the parent dir and the name of the dir entry.
2020 */
get_first_ref(struct btrfs_root * root,u64 ino,u64 * dir,u64 * dir_gen,struct fs_path * name)2021 static int get_first_ref(struct btrfs_root *root, u64 ino,
2022 u64 *dir, u64 *dir_gen, struct fs_path *name)
2023 {
2024 int ret;
2025 struct btrfs_key key;
2026 struct btrfs_key found_key;
2027 struct btrfs_path *path;
2028 int len;
2029 u64 parent_dir;
2030
2031 path = alloc_path_for_send();
2032 if (!path)
2033 return -ENOMEM;
2034
2035 key.objectid = ino;
2036 key.type = BTRFS_INODE_REF_KEY;
2037 key.offset = 0;
2038
2039 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
2040 if (ret < 0)
2041 goto out;
2042 if (!ret)
2043 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2044 path->slots[0]);
2045 if (ret || found_key.objectid != ino ||
2046 (found_key.type != BTRFS_INODE_REF_KEY &&
2047 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
2048 ret = -ENOENT;
2049 goto out;
2050 }
2051
2052 if (found_key.type == BTRFS_INODE_REF_KEY) {
2053 struct btrfs_inode_ref *iref;
2054 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2055 struct btrfs_inode_ref);
2056 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
2057 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2058 (unsigned long)(iref + 1),
2059 len);
2060 parent_dir = found_key.offset;
2061 } else {
2062 struct btrfs_inode_extref *extref;
2063 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2064 struct btrfs_inode_extref);
2065 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
2066 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2067 (unsigned long)&extref->name, len);
2068 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
2069 }
2070 if (ret < 0)
2071 goto out;
2072 btrfs_release_path(path);
2073
2074 if (dir_gen) {
2075 ret = get_inode_gen(root, parent_dir, dir_gen);
2076 if (ret < 0)
2077 goto out;
2078 }
2079
2080 *dir = parent_dir;
2081
2082 out:
2083 btrfs_free_path(path);
2084 return ret;
2085 }
2086
is_first_ref(struct btrfs_root * root,u64 ino,u64 dir,const char * name,int name_len)2087 static int is_first_ref(struct btrfs_root *root,
2088 u64 ino, u64 dir,
2089 const char *name, int name_len)
2090 {
2091 int ret;
2092 struct fs_path *tmp_name;
2093 u64 tmp_dir;
2094
2095 tmp_name = fs_path_alloc();
2096 if (!tmp_name)
2097 return -ENOMEM;
2098
2099 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
2100 if (ret < 0)
2101 goto out;
2102
2103 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
2104 ret = 0;
2105 goto out;
2106 }
2107
2108 ret = !memcmp(tmp_name->start, name, name_len);
2109
2110 out:
2111 fs_path_free(tmp_name);
2112 return ret;
2113 }
2114
2115 /*
2116 * Used by process_recorded_refs to determine if a new ref would overwrite an
2117 * already existing ref. In case it detects an overwrite, it returns the
2118 * inode/gen in who_ino/who_gen.
2119 * When an overwrite is detected, process_recorded_refs does proper orphanizing
2120 * to make sure later references to the overwritten inode are possible.
2121 * Orphanizing is however only required for the first ref of an inode.
2122 * process_recorded_refs does an additional is_first_ref check to see if
2123 * orphanizing is really required.
2124 */
will_overwrite_ref(struct send_ctx * sctx,u64 dir,u64 dir_gen,const char * name,int name_len,u64 * who_ino,u64 * who_gen,u64 * who_mode)2125 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2126 const char *name, int name_len,
2127 u64 *who_ino, u64 *who_gen, u64 *who_mode)
2128 {
2129 int ret;
2130 u64 parent_root_dir_gen;
2131 u64 other_inode = 0;
2132 struct btrfs_inode_info info;
2133
2134 if (!sctx->parent_root)
2135 return 0;
2136
2137 ret = is_inode_existent(sctx, dir, dir_gen, NULL, &parent_root_dir_gen);
2138 if (ret <= 0)
2139 return 0;
2140
2141 /*
2142 * If we have a parent root we need to verify that the parent dir was
2143 * not deleted and then re-created, if it was then we have no overwrite
2144 * and we can just unlink this entry.
2145 *
2146 * @parent_root_dir_gen was set to 0 if the inode does not exist in the
2147 * parent root.
2148 */
2149 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID &&
2150 parent_root_dir_gen != dir_gen)
2151 return 0;
2152
2153 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
2154 &other_inode);
2155 if (ret == -ENOENT)
2156 return 0;
2157 else if (ret < 0)
2158 return ret;
2159
2160 /*
2161 * Check if the overwritten ref was already processed. If yes, the ref
2162 * was already unlinked/moved, so we can safely assume that we will not
2163 * overwrite anything at this point in time.
2164 */
2165 if (other_inode > sctx->send_progress ||
2166 is_waiting_for_move(sctx, other_inode)) {
2167 ret = get_inode_info(sctx->parent_root, other_inode, &info);
2168 if (ret < 0)
2169 return ret;
2170
2171 *who_ino = other_inode;
2172 *who_gen = info.gen;
2173 *who_mode = info.mode;
2174 return 1;
2175 }
2176
2177 return 0;
2178 }
2179
2180 /*
2181 * Checks if the ref was overwritten by an already processed inode. This is
2182 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
2183 * thus the orphan name needs be used.
2184 * process_recorded_refs also uses it to avoid unlinking of refs that were
2185 * overwritten.
2186 */
did_overwrite_ref(struct send_ctx * sctx,u64 dir,u64 dir_gen,u64 ino,u64 ino_gen,const char * name,int name_len)2187 static int did_overwrite_ref(struct send_ctx *sctx,
2188 u64 dir, u64 dir_gen,
2189 u64 ino, u64 ino_gen,
2190 const char *name, int name_len)
2191 {
2192 int ret;
2193 u64 ow_inode;
2194 u64 ow_gen = 0;
2195 u64 send_root_dir_gen;
2196
2197 if (!sctx->parent_root)
2198 return 0;
2199
2200 ret = is_inode_existent(sctx, dir, dir_gen, &send_root_dir_gen, NULL);
2201 if (ret <= 0)
2202 return ret;
2203
2204 /*
2205 * @send_root_dir_gen was set to 0 if the inode does not exist in the
2206 * send root.
2207 */
2208 if (dir != BTRFS_FIRST_FREE_OBJECTID && send_root_dir_gen != dir_gen)
2209 return 0;
2210
2211 /* check if the ref was overwritten by another ref */
2212 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
2213 &ow_inode);
2214 if (ret == -ENOENT) {
2215 /* was never and will never be overwritten */
2216 return 0;
2217 } else if (ret < 0) {
2218 return ret;
2219 }
2220
2221 if (ow_inode == ino) {
2222 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2223 if (ret < 0)
2224 return ret;
2225
2226 /* It's the same inode, so no overwrite happened. */
2227 if (ow_gen == ino_gen)
2228 return 0;
2229 }
2230
2231 /*
2232 * We know that it is or will be overwritten. Check this now.
2233 * The current inode being processed might have been the one that caused
2234 * inode 'ino' to be orphanized, therefore check if ow_inode matches
2235 * the current inode being processed.
2236 */
2237 if (ow_inode < sctx->send_progress)
2238 return 1;
2239
2240 if (ino != sctx->cur_ino && ow_inode == sctx->cur_ino) {
2241 if (ow_gen == 0) {
2242 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2243 if (ret < 0)
2244 return ret;
2245 }
2246 if (ow_gen == sctx->cur_inode_gen)
2247 return 1;
2248 }
2249
2250 return 0;
2251 }
2252
2253 /*
2254 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
2255 * that got overwritten. This is used by process_recorded_refs to determine
2256 * if it has to use the path as returned by get_cur_path or the orphan name.
2257 */
did_overwrite_first_ref(struct send_ctx * sctx,u64 ino,u64 gen)2258 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
2259 {
2260 int ret = 0;
2261 struct fs_path *name = NULL;
2262 u64 dir;
2263 u64 dir_gen;
2264
2265 if (!sctx->parent_root)
2266 goto out;
2267
2268 name = fs_path_alloc();
2269 if (!name)
2270 return -ENOMEM;
2271
2272 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2273 if (ret < 0)
2274 goto out;
2275
2276 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2277 name->start, fs_path_len(name));
2278
2279 out:
2280 fs_path_free(name);
2281 return ret;
2282 }
2283
name_cache_search(struct send_ctx * sctx,u64 ino,u64 gen)2284 static inline struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2285 u64 ino, u64 gen)
2286 {
2287 struct btrfs_lru_cache_entry *entry;
2288
2289 entry = btrfs_lru_cache_lookup(&sctx->name_cache, ino, gen);
2290 if (!entry)
2291 return NULL;
2292
2293 return container_of(entry, struct name_cache_entry, entry);
2294 }
2295
2296 /*
2297 * Used by get_cur_path for each ref up to the root.
2298 * Returns 0 if it succeeded.
2299 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2300 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2301 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2302 * Returns <0 in case of error.
2303 */
__get_cur_name_and_parent(struct send_ctx * sctx,u64 ino,u64 gen,u64 * parent_ino,u64 * parent_gen,struct fs_path * dest)2304 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2305 u64 ino, u64 gen,
2306 u64 *parent_ino,
2307 u64 *parent_gen,
2308 struct fs_path *dest)
2309 {
2310 int ret;
2311 int nce_ret;
2312 struct name_cache_entry *nce;
2313
2314 /*
2315 * First check if we already did a call to this function with the same
2316 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2317 * return the cached result.
2318 */
2319 nce = name_cache_search(sctx, ino, gen);
2320 if (nce) {
2321 if (ino < sctx->send_progress && nce->need_later_update) {
2322 btrfs_lru_cache_remove(&sctx->name_cache, &nce->entry);
2323 nce = NULL;
2324 } else {
2325 *parent_ino = nce->parent_ino;
2326 *parent_gen = nce->parent_gen;
2327 ret = fs_path_add(dest, nce->name, nce->name_len);
2328 if (ret < 0)
2329 goto out;
2330 ret = nce->ret;
2331 goto out;
2332 }
2333 }
2334
2335 /*
2336 * If the inode is not existent yet, add the orphan name and return 1.
2337 * This should only happen for the parent dir that we determine in
2338 * record_new_ref_if_needed().
2339 */
2340 ret = is_inode_existent(sctx, ino, gen, NULL, NULL);
2341 if (ret < 0)
2342 goto out;
2343
2344 if (!ret) {
2345 ret = gen_unique_name(sctx, ino, gen, dest);
2346 if (ret < 0)
2347 goto out;
2348 ret = 1;
2349 goto out_cache;
2350 }
2351
2352 /*
2353 * Depending on whether the inode was already processed or not, use
2354 * send_root or parent_root for ref lookup.
2355 */
2356 if (ino < sctx->send_progress)
2357 ret = get_first_ref(sctx->send_root, ino,
2358 parent_ino, parent_gen, dest);
2359 else
2360 ret = get_first_ref(sctx->parent_root, ino,
2361 parent_ino, parent_gen, dest);
2362 if (ret < 0)
2363 goto out;
2364
2365 /*
2366 * Check if the ref was overwritten by an inode's ref that was processed
2367 * earlier. If yes, treat as orphan and return 1.
2368 */
2369 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2370 dest->start, dest->end - dest->start);
2371 if (ret < 0)
2372 goto out;
2373 if (ret) {
2374 fs_path_reset(dest);
2375 ret = gen_unique_name(sctx, ino, gen, dest);
2376 if (ret < 0)
2377 goto out;
2378 ret = 1;
2379 }
2380
2381 out_cache:
2382 /*
2383 * Store the result of the lookup in the name cache.
2384 */
2385 nce = kmalloc(sizeof(*nce) + fs_path_len(dest), GFP_KERNEL);
2386 if (!nce) {
2387 ret = -ENOMEM;
2388 goto out;
2389 }
2390
2391 nce->entry.key = ino;
2392 nce->entry.gen = gen;
2393 nce->parent_ino = *parent_ino;
2394 nce->parent_gen = *parent_gen;
2395 nce->name_len = fs_path_len(dest);
2396 nce->ret = ret;
2397 memcpy(nce->name, dest->start, nce->name_len);
2398
2399 if (ino < sctx->send_progress)
2400 nce->need_later_update = 0;
2401 else
2402 nce->need_later_update = 1;
2403
2404 nce_ret = btrfs_lru_cache_store(&sctx->name_cache, &nce->entry, GFP_KERNEL);
2405 if (nce_ret < 0) {
2406 kfree(nce);
2407 ret = nce_ret;
2408 }
2409
2410 out:
2411 return ret;
2412 }
2413
2414 /*
2415 * Magic happens here. This function returns the first ref to an inode as it
2416 * would look like while receiving the stream at this point in time.
2417 * We walk the path up to the root. For every inode in between, we check if it
2418 * was already processed/sent. If yes, we continue with the parent as found
2419 * in send_root. If not, we continue with the parent as found in parent_root.
2420 * If we encounter an inode that was deleted at this point in time, we use the
2421 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2422 * that were not created yet and overwritten inodes/refs.
2423 *
2424 * When do we have orphan inodes:
2425 * 1. When an inode is freshly created and thus no valid refs are available yet
2426 * 2. When a directory lost all it's refs (deleted) but still has dir items
2427 * inside which were not processed yet (pending for move/delete). If anyone
2428 * tried to get the path to the dir items, it would get a path inside that
2429 * orphan directory.
2430 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2431 * of an unprocessed inode. If in that case the first ref would be
2432 * overwritten, the overwritten inode gets "orphanized". Later when we
2433 * process this overwritten inode, it is restored at a new place by moving
2434 * the orphan inode.
2435 *
2436 * sctx->send_progress tells this function at which point in time receiving
2437 * would be.
2438 */
get_cur_path(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * dest)2439 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2440 struct fs_path *dest)
2441 {
2442 int ret = 0;
2443 struct fs_path *name = NULL;
2444 u64 parent_inode = 0;
2445 u64 parent_gen = 0;
2446 int stop = 0;
2447
2448 name = fs_path_alloc();
2449 if (!name) {
2450 ret = -ENOMEM;
2451 goto out;
2452 }
2453
2454 dest->reversed = 1;
2455 fs_path_reset(dest);
2456
2457 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2458 struct waiting_dir_move *wdm;
2459
2460 fs_path_reset(name);
2461
2462 if (is_waiting_for_rm(sctx, ino, gen)) {
2463 ret = gen_unique_name(sctx, ino, gen, name);
2464 if (ret < 0)
2465 goto out;
2466 ret = fs_path_add_path(dest, name);
2467 break;
2468 }
2469
2470 wdm = get_waiting_dir_move(sctx, ino);
2471 if (wdm && wdm->orphanized) {
2472 ret = gen_unique_name(sctx, ino, gen, name);
2473 stop = 1;
2474 } else if (wdm) {
2475 ret = get_first_ref(sctx->parent_root, ino,
2476 &parent_inode, &parent_gen, name);
2477 } else {
2478 ret = __get_cur_name_and_parent(sctx, ino, gen,
2479 &parent_inode,
2480 &parent_gen, name);
2481 if (ret)
2482 stop = 1;
2483 }
2484
2485 if (ret < 0)
2486 goto out;
2487
2488 ret = fs_path_add_path(dest, name);
2489 if (ret < 0)
2490 goto out;
2491
2492 ino = parent_inode;
2493 gen = parent_gen;
2494 }
2495
2496 out:
2497 fs_path_free(name);
2498 if (!ret)
2499 fs_path_unreverse(dest);
2500 return ret;
2501 }
2502
2503 /*
2504 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2505 */
send_subvol_begin(struct send_ctx * sctx)2506 static int send_subvol_begin(struct send_ctx *sctx)
2507 {
2508 int ret;
2509 struct btrfs_root *send_root = sctx->send_root;
2510 struct btrfs_root *parent_root = sctx->parent_root;
2511 struct btrfs_path *path;
2512 struct btrfs_key key;
2513 struct btrfs_root_ref *ref;
2514 struct extent_buffer *leaf;
2515 char *name = NULL;
2516 int namelen;
2517
2518 path = btrfs_alloc_path();
2519 if (!path)
2520 return -ENOMEM;
2521
2522 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2523 if (!name) {
2524 btrfs_free_path(path);
2525 return -ENOMEM;
2526 }
2527
2528 key.objectid = btrfs_root_id(send_root);
2529 key.type = BTRFS_ROOT_BACKREF_KEY;
2530 key.offset = 0;
2531
2532 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2533 &key, path, 1, 0);
2534 if (ret < 0)
2535 goto out;
2536 if (ret) {
2537 ret = -ENOENT;
2538 goto out;
2539 }
2540
2541 leaf = path->nodes[0];
2542 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2543 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2544 key.objectid != btrfs_root_id(send_root)) {
2545 ret = -ENOENT;
2546 goto out;
2547 }
2548 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2549 namelen = btrfs_root_ref_name_len(leaf, ref);
2550 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2551 btrfs_release_path(path);
2552
2553 if (parent_root) {
2554 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2555 if (ret < 0)
2556 goto out;
2557 } else {
2558 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2559 if (ret < 0)
2560 goto out;
2561 }
2562
2563 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2564
2565 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2566 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2567 sctx->send_root->root_item.received_uuid);
2568 else
2569 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2570 sctx->send_root->root_item.uuid);
2571
2572 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2573 btrfs_root_ctransid(&sctx->send_root->root_item));
2574 if (parent_root) {
2575 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2576 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2577 parent_root->root_item.received_uuid);
2578 else
2579 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2580 parent_root->root_item.uuid);
2581 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2582 btrfs_root_ctransid(&sctx->parent_root->root_item));
2583 }
2584
2585 ret = send_cmd(sctx);
2586
2587 tlv_put_failure:
2588 out:
2589 btrfs_free_path(path);
2590 kfree(name);
2591 return ret;
2592 }
2593
send_truncate(struct send_ctx * sctx,u64 ino,u64 gen,u64 size)2594 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2595 {
2596 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2597 int ret = 0;
2598 struct fs_path *p;
2599
2600 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2601
2602 p = fs_path_alloc();
2603 if (!p)
2604 return -ENOMEM;
2605
2606 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2607 if (ret < 0)
2608 goto out;
2609
2610 ret = get_cur_path(sctx, ino, gen, p);
2611 if (ret < 0)
2612 goto out;
2613 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2614 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2615
2616 ret = send_cmd(sctx);
2617
2618 tlv_put_failure:
2619 out:
2620 fs_path_free(p);
2621 return ret;
2622 }
2623
send_chmod(struct send_ctx * sctx,u64 ino,u64 gen,u64 mode)2624 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2625 {
2626 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2627 int ret = 0;
2628 struct fs_path *p;
2629
2630 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2631
2632 p = fs_path_alloc();
2633 if (!p)
2634 return -ENOMEM;
2635
2636 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2637 if (ret < 0)
2638 goto out;
2639
2640 ret = get_cur_path(sctx, ino, gen, p);
2641 if (ret < 0)
2642 goto out;
2643 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2644 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2645
2646 ret = send_cmd(sctx);
2647
2648 tlv_put_failure:
2649 out:
2650 fs_path_free(p);
2651 return ret;
2652 }
2653
send_fileattr(struct send_ctx * sctx,u64 ino,u64 gen,u64 fileattr)2654 static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr)
2655 {
2656 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2657 int ret = 0;
2658 struct fs_path *p;
2659
2660 if (sctx->proto < 2)
2661 return 0;
2662
2663 btrfs_debug(fs_info, "send_fileattr %llu fileattr=%llu", ino, fileattr);
2664
2665 p = fs_path_alloc();
2666 if (!p)
2667 return -ENOMEM;
2668
2669 ret = begin_cmd(sctx, BTRFS_SEND_C_FILEATTR);
2670 if (ret < 0)
2671 goto out;
2672
2673 ret = get_cur_path(sctx, ino, gen, p);
2674 if (ret < 0)
2675 goto out;
2676 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2677 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr);
2678
2679 ret = send_cmd(sctx);
2680
2681 tlv_put_failure:
2682 out:
2683 fs_path_free(p);
2684 return ret;
2685 }
2686
send_chown(struct send_ctx * sctx,u64 ino,u64 gen,u64 uid,u64 gid)2687 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2688 {
2689 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2690 int ret = 0;
2691 struct fs_path *p;
2692
2693 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2694 ino, uid, gid);
2695
2696 p = fs_path_alloc();
2697 if (!p)
2698 return -ENOMEM;
2699
2700 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2701 if (ret < 0)
2702 goto out;
2703
2704 ret = get_cur_path(sctx, ino, gen, p);
2705 if (ret < 0)
2706 goto out;
2707 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2708 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2709 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2710
2711 ret = send_cmd(sctx);
2712
2713 tlv_put_failure:
2714 out:
2715 fs_path_free(p);
2716 return ret;
2717 }
2718
send_utimes(struct send_ctx * sctx,u64 ino,u64 gen)2719 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2720 {
2721 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2722 int ret = 0;
2723 struct fs_path *p = NULL;
2724 struct btrfs_inode_item *ii;
2725 struct btrfs_path *path = NULL;
2726 struct extent_buffer *eb;
2727 struct btrfs_key key;
2728 int slot;
2729
2730 btrfs_debug(fs_info, "send_utimes %llu", ino);
2731
2732 p = fs_path_alloc();
2733 if (!p)
2734 return -ENOMEM;
2735
2736 path = alloc_path_for_send();
2737 if (!path) {
2738 ret = -ENOMEM;
2739 goto out;
2740 }
2741
2742 key.objectid = ino;
2743 key.type = BTRFS_INODE_ITEM_KEY;
2744 key.offset = 0;
2745 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2746 if (ret > 0)
2747 ret = -ENOENT;
2748 if (ret < 0)
2749 goto out;
2750
2751 eb = path->nodes[0];
2752 slot = path->slots[0];
2753 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2754
2755 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2756 if (ret < 0)
2757 goto out;
2758
2759 ret = get_cur_path(sctx, ino, gen, p);
2760 if (ret < 0)
2761 goto out;
2762 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2763 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2764 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2765 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2766 if (sctx->proto >= 2)
2767 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime);
2768
2769 ret = send_cmd(sctx);
2770
2771 tlv_put_failure:
2772 out:
2773 fs_path_free(p);
2774 btrfs_free_path(path);
2775 return ret;
2776 }
2777
2778 /*
2779 * If the cache is full, we can't remove entries from it and do a call to
2780 * send_utimes() for each respective inode, because we might be finishing
2781 * processing an inode that is a directory and it just got renamed, and existing
2782 * entries in the cache may refer to inodes that have the directory in their
2783 * full path - in which case we would generate outdated paths (pre-rename)
2784 * for the inodes that the cache entries point to. Instead of prunning the
2785 * cache when inserting, do it after we finish processing each inode at
2786 * finish_inode_if_needed().
2787 */
cache_dir_utimes(struct send_ctx * sctx,u64 dir,u64 gen)2788 static int cache_dir_utimes(struct send_ctx *sctx, u64 dir, u64 gen)
2789 {
2790 struct btrfs_lru_cache_entry *entry;
2791 int ret;
2792
2793 entry = btrfs_lru_cache_lookup(&sctx->dir_utimes_cache, dir, gen);
2794 if (entry != NULL)
2795 return 0;
2796
2797 /* Caching is optional, don't fail if we can't allocate memory. */
2798 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2799 if (!entry)
2800 return send_utimes(sctx, dir, gen);
2801
2802 entry->key = dir;
2803 entry->gen = gen;
2804
2805 ret = btrfs_lru_cache_store(&sctx->dir_utimes_cache, entry, GFP_KERNEL);
2806 ASSERT(ret != -EEXIST);
2807 if (ret) {
2808 kfree(entry);
2809 return send_utimes(sctx, dir, gen);
2810 }
2811
2812 return 0;
2813 }
2814
trim_dir_utimes_cache(struct send_ctx * sctx)2815 static int trim_dir_utimes_cache(struct send_ctx *sctx)
2816 {
2817 while (sctx->dir_utimes_cache.size > SEND_MAX_DIR_UTIMES_CACHE_SIZE) {
2818 struct btrfs_lru_cache_entry *lru;
2819 int ret;
2820
2821 lru = btrfs_lru_cache_lru_entry(&sctx->dir_utimes_cache);
2822 ASSERT(lru != NULL);
2823
2824 ret = send_utimes(sctx, lru->key, lru->gen);
2825 if (ret)
2826 return ret;
2827
2828 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, lru);
2829 }
2830
2831 return 0;
2832 }
2833
2834 /*
2835 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2836 * a valid path yet because we did not process the refs yet. So, the inode
2837 * is created as orphan.
2838 */
send_create_inode(struct send_ctx * sctx,u64 ino)2839 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2840 {
2841 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2842 int ret = 0;
2843 struct fs_path *p;
2844 int cmd;
2845 struct btrfs_inode_info info;
2846 u64 gen;
2847 u64 mode;
2848 u64 rdev;
2849
2850 btrfs_debug(fs_info, "send_create_inode %llu", ino);
2851
2852 p = fs_path_alloc();
2853 if (!p)
2854 return -ENOMEM;
2855
2856 if (ino != sctx->cur_ino) {
2857 ret = get_inode_info(sctx->send_root, ino, &info);
2858 if (ret < 0)
2859 goto out;
2860 gen = info.gen;
2861 mode = info.mode;
2862 rdev = info.rdev;
2863 } else {
2864 gen = sctx->cur_inode_gen;
2865 mode = sctx->cur_inode_mode;
2866 rdev = sctx->cur_inode_rdev;
2867 }
2868
2869 if (S_ISREG(mode)) {
2870 cmd = BTRFS_SEND_C_MKFILE;
2871 } else if (S_ISDIR(mode)) {
2872 cmd = BTRFS_SEND_C_MKDIR;
2873 } else if (S_ISLNK(mode)) {
2874 cmd = BTRFS_SEND_C_SYMLINK;
2875 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2876 cmd = BTRFS_SEND_C_MKNOD;
2877 } else if (S_ISFIFO(mode)) {
2878 cmd = BTRFS_SEND_C_MKFIFO;
2879 } else if (S_ISSOCK(mode)) {
2880 cmd = BTRFS_SEND_C_MKSOCK;
2881 } else {
2882 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2883 (int)(mode & S_IFMT));
2884 ret = -EOPNOTSUPP;
2885 goto out;
2886 }
2887
2888 ret = begin_cmd(sctx, cmd);
2889 if (ret < 0)
2890 goto out;
2891
2892 ret = gen_unique_name(sctx, ino, gen, p);
2893 if (ret < 0)
2894 goto out;
2895
2896 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2897 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2898
2899 if (S_ISLNK(mode)) {
2900 fs_path_reset(p);
2901 ret = read_symlink(sctx->send_root, ino, p);
2902 if (ret < 0)
2903 goto out;
2904 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2905 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2906 S_ISFIFO(mode) || S_ISSOCK(mode)) {
2907 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2908 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2909 }
2910
2911 ret = send_cmd(sctx);
2912 if (ret < 0)
2913 goto out;
2914
2915
2916 tlv_put_failure:
2917 out:
2918 fs_path_free(p);
2919 return ret;
2920 }
2921
cache_dir_created(struct send_ctx * sctx,u64 dir)2922 static void cache_dir_created(struct send_ctx *sctx, u64 dir)
2923 {
2924 struct btrfs_lru_cache_entry *entry;
2925 int ret;
2926
2927 /* Caching is optional, ignore any failures. */
2928 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2929 if (!entry)
2930 return;
2931
2932 entry->key = dir;
2933 entry->gen = 0;
2934 ret = btrfs_lru_cache_store(&sctx->dir_created_cache, entry, GFP_KERNEL);
2935 if (ret < 0)
2936 kfree(entry);
2937 }
2938
2939 /*
2940 * We need some special handling for inodes that get processed before the parent
2941 * directory got created. See process_recorded_refs for details.
2942 * This function does the check if we already created the dir out of order.
2943 */
did_create_dir(struct send_ctx * sctx,u64 dir)2944 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2945 {
2946 int ret = 0;
2947 int iter_ret = 0;
2948 struct btrfs_path *path = NULL;
2949 struct btrfs_key key;
2950 struct btrfs_key found_key;
2951 struct btrfs_key di_key;
2952 struct btrfs_dir_item *di;
2953
2954 if (btrfs_lru_cache_lookup(&sctx->dir_created_cache, dir, 0))
2955 return 1;
2956
2957 path = alloc_path_for_send();
2958 if (!path)
2959 return -ENOMEM;
2960
2961 key.objectid = dir;
2962 key.type = BTRFS_DIR_INDEX_KEY;
2963 key.offset = 0;
2964
2965 btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) {
2966 struct extent_buffer *eb = path->nodes[0];
2967
2968 if (found_key.objectid != key.objectid ||
2969 found_key.type != key.type) {
2970 ret = 0;
2971 break;
2972 }
2973
2974 di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item);
2975 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2976
2977 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2978 di_key.objectid < sctx->send_progress) {
2979 ret = 1;
2980 cache_dir_created(sctx, dir);
2981 break;
2982 }
2983 }
2984 /* Catch error found during iteration */
2985 if (iter_ret < 0)
2986 ret = iter_ret;
2987
2988 btrfs_free_path(path);
2989 return ret;
2990 }
2991
2992 /*
2993 * Only creates the inode if it is:
2994 * 1. Not a directory
2995 * 2. Or a directory which was not created already due to out of order
2996 * directories. See did_create_dir and process_recorded_refs for details.
2997 */
send_create_inode_if_needed(struct send_ctx * sctx)2998 static int send_create_inode_if_needed(struct send_ctx *sctx)
2999 {
3000 int ret;
3001
3002 if (S_ISDIR(sctx->cur_inode_mode)) {
3003 ret = did_create_dir(sctx, sctx->cur_ino);
3004 if (ret < 0)
3005 return ret;
3006 else if (ret > 0)
3007 return 0;
3008 }
3009
3010 ret = send_create_inode(sctx, sctx->cur_ino);
3011
3012 if (ret == 0 && S_ISDIR(sctx->cur_inode_mode))
3013 cache_dir_created(sctx, sctx->cur_ino);
3014
3015 return ret;
3016 }
3017
3018 struct recorded_ref {
3019 struct list_head list;
3020 char *name;
3021 struct fs_path *full_path;
3022 u64 dir;
3023 u64 dir_gen;
3024 int name_len;
3025 struct rb_node node;
3026 struct rb_root *root;
3027 };
3028
recorded_ref_alloc(void)3029 static struct recorded_ref *recorded_ref_alloc(void)
3030 {
3031 struct recorded_ref *ref;
3032
3033 ref = kzalloc(sizeof(*ref), GFP_KERNEL);
3034 if (!ref)
3035 return NULL;
3036 RB_CLEAR_NODE(&ref->node);
3037 INIT_LIST_HEAD(&ref->list);
3038 return ref;
3039 }
3040
recorded_ref_free(struct recorded_ref * ref)3041 static void recorded_ref_free(struct recorded_ref *ref)
3042 {
3043 if (!ref)
3044 return;
3045 if (!RB_EMPTY_NODE(&ref->node))
3046 rb_erase(&ref->node, ref->root);
3047 list_del(&ref->list);
3048 fs_path_free(ref->full_path);
3049 kfree(ref);
3050 }
3051
set_ref_path(struct recorded_ref * ref,struct fs_path * path)3052 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
3053 {
3054 ref->full_path = path;
3055 ref->name = (char *)kbasename(ref->full_path->start);
3056 ref->name_len = ref->full_path->end - ref->name;
3057 }
3058
dup_ref(struct recorded_ref * ref,struct list_head * list)3059 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
3060 {
3061 struct recorded_ref *new;
3062
3063 new = recorded_ref_alloc();
3064 if (!new)
3065 return -ENOMEM;
3066
3067 new->dir = ref->dir;
3068 new->dir_gen = ref->dir_gen;
3069 list_add_tail(&new->list, list);
3070 return 0;
3071 }
3072
__free_recorded_refs(struct list_head * head)3073 static void __free_recorded_refs(struct list_head *head)
3074 {
3075 struct recorded_ref *cur;
3076
3077 while (!list_empty(head)) {
3078 cur = list_entry(head->next, struct recorded_ref, list);
3079 recorded_ref_free(cur);
3080 }
3081 }
3082
free_recorded_refs(struct send_ctx * sctx)3083 static void free_recorded_refs(struct send_ctx *sctx)
3084 {
3085 __free_recorded_refs(&sctx->new_refs);
3086 __free_recorded_refs(&sctx->deleted_refs);
3087 }
3088
3089 /*
3090 * Renames/moves a file/dir to its orphan name. Used when the first
3091 * ref of an unprocessed inode gets overwritten and for all non empty
3092 * directories.
3093 */
orphanize_inode(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * path)3094 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
3095 struct fs_path *path)
3096 {
3097 int ret;
3098 struct fs_path *orphan;
3099
3100 orphan = fs_path_alloc();
3101 if (!orphan)
3102 return -ENOMEM;
3103
3104 ret = gen_unique_name(sctx, ino, gen, orphan);
3105 if (ret < 0)
3106 goto out;
3107
3108 ret = send_rename(sctx, path, orphan);
3109
3110 out:
3111 fs_path_free(orphan);
3112 return ret;
3113 }
3114
add_orphan_dir_info(struct send_ctx * sctx,u64 dir_ino,u64 dir_gen)3115 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx,
3116 u64 dir_ino, u64 dir_gen)
3117 {
3118 struct rb_node **p = &sctx->orphan_dirs.rb_node;
3119 struct rb_node *parent = NULL;
3120 struct orphan_dir_info *entry, *odi;
3121
3122 while (*p) {
3123 parent = *p;
3124 entry = rb_entry(parent, struct orphan_dir_info, node);
3125 if (dir_ino < entry->ino)
3126 p = &(*p)->rb_left;
3127 else if (dir_ino > entry->ino)
3128 p = &(*p)->rb_right;
3129 else if (dir_gen < entry->gen)
3130 p = &(*p)->rb_left;
3131 else if (dir_gen > entry->gen)
3132 p = &(*p)->rb_right;
3133 else
3134 return entry;
3135 }
3136
3137 odi = kmalloc(sizeof(*odi), GFP_KERNEL);
3138 if (!odi)
3139 return ERR_PTR(-ENOMEM);
3140 odi->ino = dir_ino;
3141 odi->gen = dir_gen;
3142 odi->last_dir_index_offset = 0;
3143 odi->dir_high_seq_ino = 0;
3144
3145 rb_link_node(&odi->node, parent, p);
3146 rb_insert_color(&odi->node, &sctx->orphan_dirs);
3147 return odi;
3148 }
3149
get_orphan_dir_info(struct send_ctx * sctx,u64 dir_ino,u64 gen)3150 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx,
3151 u64 dir_ino, u64 gen)
3152 {
3153 struct rb_node *n = sctx->orphan_dirs.rb_node;
3154 struct orphan_dir_info *entry;
3155
3156 while (n) {
3157 entry = rb_entry(n, struct orphan_dir_info, node);
3158 if (dir_ino < entry->ino)
3159 n = n->rb_left;
3160 else if (dir_ino > entry->ino)
3161 n = n->rb_right;
3162 else if (gen < entry->gen)
3163 n = n->rb_left;
3164 else if (gen > entry->gen)
3165 n = n->rb_right;
3166 else
3167 return entry;
3168 }
3169 return NULL;
3170 }
3171
is_waiting_for_rm(struct send_ctx * sctx,u64 dir_ino,u64 gen)3172 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen)
3173 {
3174 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen);
3175
3176 return odi != NULL;
3177 }
3178
free_orphan_dir_info(struct send_ctx * sctx,struct orphan_dir_info * odi)3179 static void free_orphan_dir_info(struct send_ctx *sctx,
3180 struct orphan_dir_info *odi)
3181 {
3182 if (!odi)
3183 return;
3184 rb_erase(&odi->node, &sctx->orphan_dirs);
3185 kfree(odi);
3186 }
3187
3188 /*
3189 * Returns 1 if a directory can be removed at this point in time.
3190 * We check this by iterating all dir items and checking if the inode behind
3191 * the dir item was already processed.
3192 */
can_rmdir(struct send_ctx * sctx,u64 dir,u64 dir_gen)3193 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen)
3194 {
3195 int ret = 0;
3196 int iter_ret = 0;
3197 struct btrfs_root *root = sctx->parent_root;
3198 struct btrfs_path *path;
3199 struct btrfs_key key;
3200 struct btrfs_key found_key;
3201 struct btrfs_key loc;
3202 struct btrfs_dir_item *di;
3203 struct orphan_dir_info *odi = NULL;
3204 u64 dir_high_seq_ino = 0;
3205 u64 last_dir_index_offset = 0;
3206
3207 /*
3208 * Don't try to rmdir the top/root subvolume dir.
3209 */
3210 if (dir == BTRFS_FIRST_FREE_OBJECTID)
3211 return 0;
3212
3213 odi = get_orphan_dir_info(sctx, dir, dir_gen);
3214 if (odi && sctx->cur_ino < odi->dir_high_seq_ino)
3215 return 0;
3216
3217 path = alloc_path_for_send();
3218 if (!path)
3219 return -ENOMEM;
3220
3221 if (!odi) {
3222 /*
3223 * Find the inode number associated with the last dir index
3224 * entry. This is very likely the inode with the highest number
3225 * of all inodes that have an entry in the directory. We can
3226 * then use it to avoid future calls to can_rmdir(), when
3227 * processing inodes with a lower number, from having to search
3228 * the parent root b+tree for dir index keys.
3229 */
3230 key.objectid = dir;
3231 key.type = BTRFS_DIR_INDEX_KEY;
3232 key.offset = (u64)-1;
3233
3234 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3235 if (ret < 0) {
3236 goto out;
3237 } else if (ret > 0) {
3238 /* Can't happen, the root is never empty. */
3239 ASSERT(path->slots[0] > 0);
3240 if (WARN_ON(path->slots[0] == 0)) {
3241 ret = -EUCLEAN;
3242 goto out;
3243 }
3244 path->slots[0]--;
3245 }
3246
3247 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3248 if (key.objectid != dir || key.type != BTRFS_DIR_INDEX_KEY) {
3249 /* No index keys, dir can be removed. */
3250 ret = 1;
3251 goto out;
3252 }
3253
3254 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3255 struct btrfs_dir_item);
3256 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3257 dir_high_seq_ino = loc.objectid;
3258 if (sctx->cur_ino < dir_high_seq_ino) {
3259 ret = 0;
3260 goto out;
3261 }
3262
3263 btrfs_release_path(path);
3264 }
3265
3266 key.objectid = dir;
3267 key.type = BTRFS_DIR_INDEX_KEY;
3268 key.offset = (odi ? odi->last_dir_index_offset : 0);
3269
3270 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
3271 struct waiting_dir_move *dm;
3272
3273 if (found_key.objectid != key.objectid ||
3274 found_key.type != key.type)
3275 break;
3276
3277 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3278 struct btrfs_dir_item);
3279 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3280
3281 dir_high_seq_ino = max(dir_high_seq_ino, loc.objectid);
3282 last_dir_index_offset = found_key.offset;
3283
3284 dm = get_waiting_dir_move(sctx, loc.objectid);
3285 if (dm) {
3286 dm->rmdir_ino = dir;
3287 dm->rmdir_gen = dir_gen;
3288 ret = 0;
3289 goto out;
3290 }
3291
3292 if (loc.objectid > sctx->cur_ino) {
3293 ret = 0;
3294 goto out;
3295 }
3296 }
3297 if (iter_ret < 0) {
3298 ret = iter_ret;
3299 goto out;
3300 }
3301 free_orphan_dir_info(sctx, odi);
3302
3303 ret = 1;
3304
3305 out:
3306 btrfs_free_path(path);
3307
3308 if (ret)
3309 return ret;
3310
3311 if (!odi) {
3312 odi = add_orphan_dir_info(sctx, dir, dir_gen);
3313 if (IS_ERR(odi))
3314 return PTR_ERR(odi);
3315
3316 odi->gen = dir_gen;
3317 }
3318
3319 odi->last_dir_index_offset = last_dir_index_offset;
3320 odi->dir_high_seq_ino = max(odi->dir_high_seq_ino, dir_high_seq_ino);
3321
3322 return 0;
3323 }
3324
is_waiting_for_move(struct send_ctx * sctx,u64 ino)3325 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3326 {
3327 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3328
3329 return entry != NULL;
3330 }
3331
add_waiting_dir_move(struct send_ctx * sctx,u64 ino,bool orphanized)3332 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3333 {
3334 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3335 struct rb_node *parent = NULL;
3336 struct waiting_dir_move *entry, *dm;
3337
3338 dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3339 if (!dm)
3340 return -ENOMEM;
3341 dm->ino = ino;
3342 dm->rmdir_ino = 0;
3343 dm->rmdir_gen = 0;
3344 dm->orphanized = orphanized;
3345
3346 while (*p) {
3347 parent = *p;
3348 entry = rb_entry(parent, struct waiting_dir_move, node);
3349 if (ino < entry->ino) {
3350 p = &(*p)->rb_left;
3351 } else if (ino > entry->ino) {
3352 p = &(*p)->rb_right;
3353 } else {
3354 kfree(dm);
3355 return -EEXIST;
3356 }
3357 }
3358
3359 rb_link_node(&dm->node, parent, p);
3360 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3361 return 0;
3362 }
3363
3364 static struct waiting_dir_move *
get_waiting_dir_move(struct send_ctx * sctx,u64 ino)3365 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3366 {
3367 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3368 struct waiting_dir_move *entry;
3369
3370 while (n) {
3371 entry = rb_entry(n, struct waiting_dir_move, node);
3372 if (ino < entry->ino)
3373 n = n->rb_left;
3374 else if (ino > entry->ino)
3375 n = n->rb_right;
3376 else
3377 return entry;
3378 }
3379 return NULL;
3380 }
3381
free_waiting_dir_move(struct send_ctx * sctx,struct waiting_dir_move * dm)3382 static void free_waiting_dir_move(struct send_ctx *sctx,
3383 struct waiting_dir_move *dm)
3384 {
3385 if (!dm)
3386 return;
3387 rb_erase(&dm->node, &sctx->waiting_dir_moves);
3388 kfree(dm);
3389 }
3390
add_pending_dir_move(struct send_ctx * sctx,u64 ino,u64 ino_gen,u64 parent_ino,struct list_head * new_refs,struct list_head * deleted_refs,const bool is_orphan)3391 static int add_pending_dir_move(struct send_ctx *sctx,
3392 u64 ino,
3393 u64 ino_gen,
3394 u64 parent_ino,
3395 struct list_head *new_refs,
3396 struct list_head *deleted_refs,
3397 const bool is_orphan)
3398 {
3399 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3400 struct rb_node *parent = NULL;
3401 struct pending_dir_move *entry = NULL, *pm;
3402 struct recorded_ref *cur;
3403 int exists = 0;
3404 int ret;
3405
3406 pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3407 if (!pm)
3408 return -ENOMEM;
3409 pm->parent_ino = parent_ino;
3410 pm->ino = ino;
3411 pm->gen = ino_gen;
3412 INIT_LIST_HEAD(&pm->list);
3413 INIT_LIST_HEAD(&pm->update_refs);
3414 RB_CLEAR_NODE(&pm->node);
3415
3416 while (*p) {
3417 parent = *p;
3418 entry = rb_entry(parent, struct pending_dir_move, node);
3419 if (parent_ino < entry->parent_ino) {
3420 p = &(*p)->rb_left;
3421 } else if (parent_ino > entry->parent_ino) {
3422 p = &(*p)->rb_right;
3423 } else {
3424 exists = 1;
3425 break;
3426 }
3427 }
3428
3429 list_for_each_entry(cur, deleted_refs, list) {
3430 ret = dup_ref(cur, &pm->update_refs);
3431 if (ret < 0)
3432 goto out;
3433 }
3434 list_for_each_entry(cur, new_refs, list) {
3435 ret = dup_ref(cur, &pm->update_refs);
3436 if (ret < 0)
3437 goto out;
3438 }
3439
3440 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3441 if (ret)
3442 goto out;
3443
3444 if (exists) {
3445 list_add_tail(&pm->list, &entry->list);
3446 } else {
3447 rb_link_node(&pm->node, parent, p);
3448 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3449 }
3450 ret = 0;
3451 out:
3452 if (ret) {
3453 __free_recorded_refs(&pm->update_refs);
3454 kfree(pm);
3455 }
3456 return ret;
3457 }
3458
get_pending_dir_moves(struct send_ctx * sctx,u64 parent_ino)3459 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3460 u64 parent_ino)
3461 {
3462 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3463 struct pending_dir_move *entry;
3464
3465 while (n) {
3466 entry = rb_entry(n, struct pending_dir_move, node);
3467 if (parent_ino < entry->parent_ino)
3468 n = n->rb_left;
3469 else if (parent_ino > entry->parent_ino)
3470 n = n->rb_right;
3471 else
3472 return entry;
3473 }
3474 return NULL;
3475 }
3476
path_loop(struct send_ctx * sctx,struct fs_path * name,u64 ino,u64 gen,u64 * ancestor_ino)3477 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3478 u64 ino, u64 gen, u64 *ancestor_ino)
3479 {
3480 int ret = 0;
3481 u64 parent_inode = 0;
3482 u64 parent_gen = 0;
3483 u64 start_ino = ino;
3484
3485 *ancestor_ino = 0;
3486 while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3487 fs_path_reset(name);
3488
3489 if (is_waiting_for_rm(sctx, ino, gen))
3490 break;
3491 if (is_waiting_for_move(sctx, ino)) {
3492 if (*ancestor_ino == 0)
3493 *ancestor_ino = ino;
3494 ret = get_first_ref(sctx->parent_root, ino,
3495 &parent_inode, &parent_gen, name);
3496 } else {
3497 ret = __get_cur_name_and_parent(sctx, ino, gen,
3498 &parent_inode,
3499 &parent_gen, name);
3500 if (ret > 0) {
3501 ret = 0;
3502 break;
3503 }
3504 }
3505 if (ret < 0)
3506 break;
3507 if (parent_inode == start_ino) {
3508 ret = 1;
3509 if (*ancestor_ino == 0)
3510 *ancestor_ino = ino;
3511 break;
3512 }
3513 ino = parent_inode;
3514 gen = parent_gen;
3515 }
3516 return ret;
3517 }
3518
apply_dir_move(struct send_ctx * sctx,struct pending_dir_move * pm)3519 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3520 {
3521 struct fs_path *from_path = NULL;
3522 struct fs_path *to_path = NULL;
3523 struct fs_path *name = NULL;
3524 u64 orig_progress = sctx->send_progress;
3525 struct recorded_ref *cur;
3526 u64 parent_ino, parent_gen;
3527 struct waiting_dir_move *dm = NULL;
3528 u64 rmdir_ino = 0;
3529 u64 rmdir_gen;
3530 u64 ancestor;
3531 bool is_orphan;
3532 int ret;
3533
3534 name = fs_path_alloc();
3535 from_path = fs_path_alloc();
3536 if (!name || !from_path) {
3537 ret = -ENOMEM;
3538 goto out;
3539 }
3540
3541 dm = get_waiting_dir_move(sctx, pm->ino);
3542 ASSERT(dm);
3543 rmdir_ino = dm->rmdir_ino;
3544 rmdir_gen = dm->rmdir_gen;
3545 is_orphan = dm->orphanized;
3546 free_waiting_dir_move(sctx, dm);
3547
3548 if (is_orphan) {
3549 ret = gen_unique_name(sctx, pm->ino,
3550 pm->gen, from_path);
3551 } else {
3552 ret = get_first_ref(sctx->parent_root, pm->ino,
3553 &parent_ino, &parent_gen, name);
3554 if (ret < 0)
3555 goto out;
3556 ret = get_cur_path(sctx, parent_ino, parent_gen,
3557 from_path);
3558 if (ret < 0)
3559 goto out;
3560 ret = fs_path_add_path(from_path, name);
3561 }
3562 if (ret < 0)
3563 goto out;
3564
3565 sctx->send_progress = sctx->cur_ino + 1;
3566 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3567 if (ret < 0)
3568 goto out;
3569 if (ret) {
3570 LIST_HEAD(deleted_refs);
3571 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3572 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3573 &pm->update_refs, &deleted_refs,
3574 is_orphan);
3575 if (ret < 0)
3576 goto out;
3577 if (rmdir_ino) {
3578 dm = get_waiting_dir_move(sctx, pm->ino);
3579 ASSERT(dm);
3580 dm->rmdir_ino = rmdir_ino;
3581 dm->rmdir_gen = rmdir_gen;
3582 }
3583 goto out;
3584 }
3585 fs_path_reset(name);
3586 to_path = name;
3587 name = NULL;
3588 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3589 if (ret < 0)
3590 goto out;
3591
3592 ret = send_rename(sctx, from_path, to_path);
3593 if (ret < 0)
3594 goto out;
3595
3596 if (rmdir_ino) {
3597 struct orphan_dir_info *odi;
3598 u64 gen;
3599
3600 odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen);
3601 if (!odi) {
3602 /* already deleted */
3603 goto finish;
3604 }
3605 gen = odi->gen;
3606
3607 ret = can_rmdir(sctx, rmdir_ino, gen);
3608 if (ret < 0)
3609 goto out;
3610 if (!ret)
3611 goto finish;
3612
3613 name = fs_path_alloc();
3614 if (!name) {
3615 ret = -ENOMEM;
3616 goto out;
3617 }
3618 ret = get_cur_path(sctx, rmdir_ino, gen, name);
3619 if (ret < 0)
3620 goto out;
3621 ret = send_rmdir(sctx, name);
3622 if (ret < 0)
3623 goto out;
3624 }
3625
3626 finish:
3627 ret = cache_dir_utimes(sctx, pm->ino, pm->gen);
3628 if (ret < 0)
3629 goto out;
3630
3631 /*
3632 * After rename/move, need to update the utimes of both new parent(s)
3633 * and old parent(s).
3634 */
3635 list_for_each_entry(cur, &pm->update_refs, list) {
3636 /*
3637 * The parent inode might have been deleted in the send snapshot
3638 */
3639 ret = get_inode_info(sctx->send_root, cur->dir, NULL);
3640 if (ret == -ENOENT) {
3641 ret = 0;
3642 continue;
3643 }
3644 if (ret < 0)
3645 goto out;
3646
3647 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen);
3648 if (ret < 0)
3649 goto out;
3650 }
3651
3652 out:
3653 fs_path_free(name);
3654 fs_path_free(from_path);
3655 fs_path_free(to_path);
3656 sctx->send_progress = orig_progress;
3657
3658 return ret;
3659 }
3660
free_pending_move(struct send_ctx * sctx,struct pending_dir_move * m)3661 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3662 {
3663 if (!list_empty(&m->list))
3664 list_del(&m->list);
3665 if (!RB_EMPTY_NODE(&m->node))
3666 rb_erase(&m->node, &sctx->pending_dir_moves);
3667 __free_recorded_refs(&m->update_refs);
3668 kfree(m);
3669 }
3670
tail_append_pending_moves(struct send_ctx * sctx,struct pending_dir_move * moves,struct list_head * stack)3671 static void tail_append_pending_moves(struct send_ctx *sctx,
3672 struct pending_dir_move *moves,
3673 struct list_head *stack)
3674 {
3675 if (list_empty(&moves->list)) {
3676 list_add_tail(&moves->list, stack);
3677 } else {
3678 LIST_HEAD(list);
3679 list_splice_init(&moves->list, &list);
3680 list_add_tail(&moves->list, stack);
3681 list_splice_tail(&list, stack);
3682 }
3683 if (!RB_EMPTY_NODE(&moves->node)) {
3684 rb_erase(&moves->node, &sctx->pending_dir_moves);
3685 RB_CLEAR_NODE(&moves->node);
3686 }
3687 }
3688
apply_children_dir_moves(struct send_ctx * sctx)3689 static int apply_children_dir_moves(struct send_ctx *sctx)
3690 {
3691 struct pending_dir_move *pm;
3692 LIST_HEAD(stack);
3693 u64 parent_ino = sctx->cur_ino;
3694 int ret = 0;
3695
3696 pm = get_pending_dir_moves(sctx, parent_ino);
3697 if (!pm)
3698 return 0;
3699
3700 tail_append_pending_moves(sctx, pm, &stack);
3701
3702 while (!list_empty(&stack)) {
3703 pm = list_first_entry(&stack, struct pending_dir_move, list);
3704 parent_ino = pm->ino;
3705 ret = apply_dir_move(sctx, pm);
3706 free_pending_move(sctx, pm);
3707 if (ret)
3708 goto out;
3709 pm = get_pending_dir_moves(sctx, parent_ino);
3710 if (pm)
3711 tail_append_pending_moves(sctx, pm, &stack);
3712 }
3713 return 0;
3714
3715 out:
3716 while (!list_empty(&stack)) {
3717 pm = list_first_entry(&stack, struct pending_dir_move, list);
3718 free_pending_move(sctx, pm);
3719 }
3720 return ret;
3721 }
3722
3723 /*
3724 * We might need to delay a directory rename even when no ancestor directory
3725 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3726 * renamed. This happens when we rename a directory to the old name (the name
3727 * in the parent root) of some other unrelated directory that got its rename
3728 * delayed due to some ancestor with higher number that got renamed.
3729 *
3730 * Example:
3731 *
3732 * Parent snapshot:
3733 * . (ino 256)
3734 * |---- a/ (ino 257)
3735 * | |---- file (ino 260)
3736 * |
3737 * |---- b/ (ino 258)
3738 * |---- c/ (ino 259)
3739 *
3740 * Send snapshot:
3741 * . (ino 256)
3742 * |---- a/ (ino 258)
3743 * |---- x/ (ino 259)
3744 * |---- y/ (ino 257)
3745 * |----- file (ino 260)
3746 *
3747 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3748 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3749 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3750 * must issue is:
3751 *
3752 * 1 - rename 259 from 'c' to 'x'
3753 * 2 - rename 257 from 'a' to 'x/y'
3754 * 3 - rename 258 from 'b' to 'a'
3755 *
3756 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3757 * be done right away and < 0 on error.
3758 */
wait_for_dest_dir_move(struct send_ctx * sctx,struct recorded_ref * parent_ref,const bool is_orphan)3759 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3760 struct recorded_ref *parent_ref,
3761 const bool is_orphan)
3762 {
3763 struct btrfs_path *path;
3764 struct btrfs_key key;
3765 struct btrfs_key di_key;
3766 struct btrfs_dir_item *di;
3767 u64 left_gen;
3768 u64 right_gen;
3769 int ret = 0;
3770 struct waiting_dir_move *wdm;
3771
3772 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3773 return 0;
3774
3775 path = alloc_path_for_send();
3776 if (!path)
3777 return -ENOMEM;
3778
3779 key.objectid = parent_ref->dir;
3780 key.type = BTRFS_DIR_ITEM_KEY;
3781 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3782
3783 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3784 if (ret < 0) {
3785 goto out;
3786 } else if (ret > 0) {
3787 ret = 0;
3788 goto out;
3789 }
3790
3791 di = btrfs_match_dir_item_name(path, parent_ref->name,
3792 parent_ref->name_len);
3793 if (!di) {
3794 ret = 0;
3795 goto out;
3796 }
3797 /*
3798 * di_key.objectid has the number of the inode that has a dentry in the
3799 * parent directory with the same name that sctx->cur_ino is being
3800 * renamed to. We need to check if that inode is in the send root as
3801 * well and if it is currently marked as an inode with a pending rename,
3802 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3803 * that it happens after that other inode is renamed.
3804 */
3805 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3806 if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3807 ret = 0;
3808 goto out;
3809 }
3810
3811 ret = get_inode_gen(sctx->parent_root, di_key.objectid, &left_gen);
3812 if (ret < 0)
3813 goto out;
3814 ret = get_inode_gen(sctx->send_root, di_key.objectid, &right_gen);
3815 if (ret < 0) {
3816 if (ret == -ENOENT)
3817 ret = 0;
3818 goto out;
3819 }
3820
3821 /* Different inode, no need to delay the rename of sctx->cur_ino */
3822 if (right_gen != left_gen) {
3823 ret = 0;
3824 goto out;
3825 }
3826
3827 wdm = get_waiting_dir_move(sctx, di_key.objectid);
3828 if (wdm && !wdm->orphanized) {
3829 ret = add_pending_dir_move(sctx,
3830 sctx->cur_ino,
3831 sctx->cur_inode_gen,
3832 di_key.objectid,
3833 &sctx->new_refs,
3834 &sctx->deleted_refs,
3835 is_orphan);
3836 if (!ret)
3837 ret = 1;
3838 }
3839 out:
3840 btrfs_free_path(path);
3841 return ret;
3842 }
3843
3844 /*
3845 * Check if inode ino2, or any of its ancestors, is inode ino1.
3846 * Return 1 if true, 0 if false and < 0 on error.
3847 */
check_ino_in_path(struct btrfs_root * root,const u64 ino1,const u64 ino1_gen,const u64 ino2,const u64 ino2_gen,struct fs_path * fs_path)3848 static int check_ino_in_path(struct btrfs_root *root,
3849 const u64 ino1,
3850 const u64 ino1_gen,
3851 const u64 ino2,
3852 const u64 ino2_gen,
3853 struct fs_path *fs_path)
3854 {
3855 u64 ino = ino2;
3856
3857 if (ino1 == ino2)
3858 return ino1_gen == ino2_gen;
3859
3860 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3861 u64 parent;
3862 u64 parent_gen;
3863 int ret;
3864
3865 fs_path_reset(fs_path);
3866 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3867 if (ret < 0)
3868 return ret;
3869 if (parent == ino1)
3870 return parent_gen == ino1_gen;
3871 ino = parent;
3872 }
3873 return 0;
3874 }
3875
3876 /*
3877 * Check if inode ino1 is an ancestor of inode ino2 in the given root for any
3878 * possible path (in case ino2 is not a directory and has multiple hard links).
3879 * Return 1 if true, 0 if false and < 0 on error.
3880 */
is_ancestor(struct btrfs_root * root,const u64 ino1,const u64 ino1_gen,const u64 ino2,struct fs_path * fs_path)3881 static int is_ancestor(struct btrfs_root *root,
3882 const u64 ino1,
3883 const u64 ino1_gen,
3884 const u64 ino2,
3885 struct fs_path *fs_path)
3886 {
3887 bool free_fs_path = false;
3888 int ret = 0;
3889 int iter_ret = 0;
3890 struct btrfs_path *path = NULL;
3891 struct btrfs_key key;
3892
3893 if (!fs_path) {
3894 fs_path = fs_path_alloc();
3895 if (!fs_path)
3896 return -ENOMEM;
3897 free_fs_path = true;
3898 }
3899
3900 path = alloc_path_for_send();
3901 if (!path) {
3902 ret = -ENOMEM;
3903 goto out;
3904 }
3905
3906 key.objectid = ino2;
3907 key.type = BTRFS_INODE_REF_KEY;
3908 key.offset = 0;
3909
3910 btrfs_for_each_slot(root, &key, &key, path, iter_ret) {
3911 struct extent_buffer *leaf = path->nodes[0];
3912 int slot = path->slots[0];
3913 u32 cur_offset = 0;
3914 u32 item_size;
3915
3916 if (key.objectid != ino2)
3917 break;
3918 if (key.type != BTRFS_INODE_REF_KEY &&
3919 key.type != BTRFS_INODE_EXTREF_KEY)
3920 break;
3921
3922 item_size = btrfs_item_size(leaf, slot);
3923 while (cur_offset < item_size) {
3924 u64 parent;
3925 u64 parent_gen;
3926
3927 if (key.type == BTRFS_INODE_EXTREF_KEY) {
3928 unsigned long ptr;
3929 struct btrfs_inode_extref *extref;
3930
3931 ptr = btrfs_item_ptr_offset(leaf, slot);
3932 extref = (struct btrfs_inode_extref *)
3933 (ptr + cur_offset);
3934 parent = btrfs_inode_extref_parent(leaf,
3935 extref);
3936 cur_offset += sizeof(*extref);
3937 cur_offset += btrfs_inode_extref_name_len(leaf,
3938 extref);
3939 } else {
3940 parent = key.offset;
3941 cur_offset = item_size;
3942 }
3943
3944 ret = get_inode_gen(root, parent, &parent_gen);
3945 if (ret < 0)
3946 goto out;
3947 ret = check_ino_in_path(root, ino1, ino1_gen,
3948 parent, parent_gen, fs_path);
3949 if (ret)
3950 goto out;
3951 }
3952 }
3953 ret = 0;
3954 if (iter_ret < 0)
3955 ret = iter_ret;
3956
3957 out:
3958 btrfs_free_path(path);
3959 if (free_fs_path)
3960 fs_path_free(fs_path);
3961 return ret;
3962 }
3963
wait_for_parent_move(struct send_ctx * sctx,struct recorded_ref * parent_ref,const bool is_orphan)3964 static int wait_for_parent_move(struct send_ctx *sctx,
3965 struct recorded_ref *parent_ref,
3966 const bool is_orphan)
3967 {
3968 int ret = 0;
3969 u64 ino = parent_ref->dir;
3970 u64 ino_gen = parent_ref->dir_gen;
3971 u64 parent_ino_before, parent_ino_after;
3972 struct fs_path *path_before = NULL;
3973 struct fs_path *path_after = NULL;
3974 int len1, len2;
3975
3976 path_after = fs_path_alloc();
3977 path_before = fs_path_alloc();
3978 if (!path_after || !path_before) {
3979 ret = -ENOMEM;
3980 goto out;
3981 }
3982
3983 /*
3984 * Our current directory inode may not yet be renamed/moved because some
3985 * ancestor (immediate or not) has to be renamed/moved first. So find if
3986 * such ancestor exists and make sure our own rename/move happens after
3987 * that ancestor is processed to avoid path build infinite loops (done
3988 * at get_cur_path()).
3989 */
3990 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3991 u64 parent_ino_after_gen;
3992
3993 if (is_waiting_for_move(sctx, ino)) {
3994 /*
3995 * If the current inode is an ancestor of ino in the
3996 * parent root, we need to delay the rename of the
3997 * current inode, otherwise don't delayed the rename
3998 * because we can end up with a circular dependency
3999 * of renames, resulting in some directories never
4000 * getting the respective rename operations issued in
4001 * the send stream or getting into infinite path build
4002 * loops.
4003 */
4004 ret = is_ancestor(sctx->parent_root,
4005 sctx->cur_ino, sctx->cur_inode_gen,
4006 ino, path_before);
4007 if (ret)
4008 break;
4009 }
4010
4011 fs_path_reset(path_before);
4012 fs_path_reset(path_after);
4013
4014 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
4015 &parent_ino_after_gen, path_after);
4016 if (ret < 0)
4017 goto out;
4018 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
4019 NULL, path_before);
4020 if (ret < 0 && ret != -ENOENT) {
4021 goto out;
4022 } else if (ret == -ENOENT) {
4023 ret = 0;
4024 break;
4025 }
4026
4027 len1 = fs_path_len(path_before);
4028 len2 = fs_path_len(path_after);
4029 if (ino > sctx->cur_ino &&
4030 (parent_ino_before != parent_ino_after || len1 != len2 ||
4031 memcmp(path_before->start, path_after->start, len1))) {
4032 u64 parent_ino_gen;
4033
4034 ret = get_inode_gen(sctx->parent_root, ino, &parent_ino_gen);
4035 if (ret < 0)
4036 goto out;
4037 if (ino_gen == parent_ino_gen) {
4038 ret = 1;
4039 break;
4040 }
4041 }
4042 ino = parent_ino_after;
4043 ino_gen = parent_ino_after_gen;
4044 }
4045
4046 out:
4047 fs_path_free(path_before);
4048 fs_path_free(path_after);
4049
4050 if (ret == 1) {
4051 ret = add_pending_dir_move(sctx,
4052 sctx->cur_ino,
4053 sctx->cur_inode_gen,
4054 ino,
4055 &sctx->new_refs,
4056 &sctx->deleted_refs,
4057 is_orphan);
4058 if (!ret)
4059 ret = 1;
4060 }
4061
4062 return ret;
4063 }
4064
update_ref_path(struct send_ctx * sctx,struct recorded_ref * ref)4065 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4066 {
4067 int ret;
4068 struct fs_path *new_path;
4069
4070 /*
4071 * Our reference's name member points to its full_path member string, so
4072 * we use here a new path.
4073 */
4074 new_path = fs_path_alloc();
4075 if (!new_path)
4076 return -ENOMEM;
4077
4078 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
4079 if (ret < 0) {
4080 fs_path_free(new_path);
4081 return ret;
4082 }
4083 ret = fs_path_add(new_path, ref->name, ref->name_len);
4084 if (ret < 0) {
4085 fs_path_free(new_path);
4086 return ret;
4087 }
4088
4089 fs_path_free(ref->full_path);
4090 set_ref_path(ref, new_path);
4091
4092 return 0;
4093 }
4094
4095 /*
4096 * When processing the new references for an inode we may orphanize an existing
4097 * directory inode because its old name conflicts with one of the new references
4098 * of the current inode. Later, when processing another new reference of our
4099 * inode, we might need to orphanize another inode, but the path we have in the
4100 * reference reflects the pre-orphanization name of the directory we previously
4101 * orphanized. For example:
4102 *
4103 * parent snapshot looks like:
4104 *
4105 * . (ino 256)
4106 * |----- f1 (ino 257)
4107 * |----- f2 (ino 258)
4108 * |----- d1/ (ino 259)
4109 * |----- d2/ (ino 260)
4110 *
4111 * send snapshot looks like:
4112 *
4113 * . (ino 256)
4114 * |----- d1 (ino 258)
4115 * |----- f2/ (ino 259)
4116 * |----- f2_link/ (ino 260)
4117 * | |----- f1 (ino 257)
4118 * |
4119 * |----- d2 (ino 258)
4120 *
4121 * When processing inode 257 we compute the name for inode 259 as "d1", and we
4122 * cache it in the name cache. Later when we start processing inode 258, when
4123 * collecting all its new references we set a full path of "d1/d2" for its new
4124 * reference with name "d2". When we start processing the new references we
4125 * start by processing the new reference with name "d1", and this results in
4126 * orphanizing inode 259, since its old reference causes a conflict. Then we
4127 * move on the next new reference, with name "d2", and we find out we must
4128 * orphanize inode 260, as its old reference conflicts with ours - but for the
4129 * orphanization we use a source path corresponding to the path we stored in the
4130 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the
4131 * receiver fail since the path component "d1/" no longer exists, it was renamed
4132 * to "o259-6-0/" when processing the previous new reference. So in this case we
4133 * must recompute the path in the new reference and use it for the new
4134 * orphanization operation.
4135 */
refresh_ref_path(struct send_ctx * sctx,struct recorded_ref * ref)4136 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4137 {
4138 char *name;
4139 int ret;
4140
4141 name = kmemdup(ref->name, ref->name_len, GFP_KERNEL);
4142 if (!name)
4143 return -ENOMEM;
4144
4145 fs_path_reset(ref->full_path);
4146 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path);
4147 if (ret < 0)
4148 goto out;
4149
4150 ret = fs_path_add(ref->full_path, name, ref->name_len);
4151 if (ret < 0)
4152 goto out;
4153
4154 /* Update the reference's base name pointer. */
4155 set_ref_path(ref, ref->full_path);
4156 out:
4157 kfree(name);
4158 return ret;
4159 }
4160
4161 /*
4162 * This does all the move/link/unlink/rmdir magic.
4163 */
process_recorded_refs(struct send_ctx * sctx,int * pending_move)4164 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
4165 {
4166 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4167 int ret = 0;
4168 struct recorded_ref *cur;
4169 struct recorded_ref *cur2;
4170 LIST_HEAD(check_dirs);
4171 struct fs_path *valid_path = NULL;
4172 u64 ow_inode = 0;
4173 u64 ow_gen;
4174 u64 ow_mode;
4175 int did_overwrite = 0;
4176 int is_orphan = 0;
4177 u64 last_dir_ino_rm = 0;
4178 bool can_rename = true;
4179 bool orphanized_dir = false;
4180 bool orphanized_ancestor = false;
4181
4182 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
4183
4184 /*
4185 * This should never happen as the root dir always has the same ref
4186 * which is always '..'
4187 */
4188 if (unlikely(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID)) {
4189 btrfs_err(fs_info,
4190 "send: unexpected inode %llu in process_recorded_refs()",
4191 sctx->cur_ino);
4192 ret = -EINVAL;
4193 goto out;
4194 }
4195
4196 valid_path = fs_path_alloc();
4197 if (!valid_path) {
4198 ret = -ENOMEM;
4199 goto out;
4200 }
4201
4202 /*
4203 * First, check if the first ref of the current inode was overwritten
4204 * before. If yes, we know that the current inode was already orphanized
4205 * and thus use the orphan name. If not, we can use get_cur_path to
4206 * get the path of the first ref as it would like while receiving at
4207 * this point in time.
4208 * New inodes are always orphan at the beginning, so force to use the
4209 * orphan name in this case.
4210 * The first ref is stored in valid_path and will be updated if it
4211 * gets moved around.
4212 */
4213 if (!sctx->cur_inode_new) {
4214 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
4215 sctx->cur_inode_gen);
4216 if (ret < 0)
4217 goto out;
4218 if (ret)
4219 did_overwrite = 1;
4220 }
4221 if (sctx->cur_inode_new || did_overwrite) {
4222 ret = gen_unique_name(sctx, sctx->cur_ino,
4223 sctx->cur_inode_gen, valid_path);
4224 if (ret < 0)
4225 goto out;
4226 is_orphan = 1;
4227 } else {
4228 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4229 valid_path);
4230 if (ret < 0)
4231 goto out;
4232 }
4233
4234 /*
4235 * Before doing any rename and link operations, do a first pass on the
4236 * new references to orphanize any unprocessed inodes that may have a
4237 * reference that conflicts with one of the new references of the current
4238 * inode. This needs to happen first because a new reference may conflict
4239 * with the old reference of a parent directory, so we must make sure
4240 * that the path used for link and rename commands don't use an
4241 * orphanized name when an ancestor was not yet orphanized.
4242 *
4243 * Example:
4244 *
4245 * Parent snapshot:
4246 *
4247 * . (ino 256)
4248 * |----- testdir/ (ino 259)
4249 * | |----- a (ino 257)
4250 * |
4251 * |----- b (ino 258)
4252 *
4253 * Send snapshot:
4254 *
4255 * . (ino 256)
4256 * |----- testdir_2/ (ino 259)
4257 * | |----- a (ino 260)
4258 * |
4259 * |----- testdir (ino 257)
4260 * |----- b (ino 257)
4261 * |----- b2 (ino 258)
4262 *
4263 * Processing the new reference for inode 257 with name "b" may happen
4264 * before processing the new reference with name "testdir". If so, we
4265 * must make sure that by the time we send a link command to create the
4266 * hard link "b", inode 259 was already orphanized, since the generated
4267 * path in "valid_path" already contains the orphanized name for 259.
4268 * We are processing inode 257, so only later when processing 259 we do
4269 * the rename operation to change its temporary (orphanized) name to
4270 * "testdir_2".
4271 */
4272 list_for_each_entry(cur, &sctx->new_refs, list) {
4273 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4274 if (ret < 0)
4275 goto out;
4276 if (ret == inode_state_will_create)
4277 continue;
4278
4279 /*
4280 * Check if this new ref would overwrite the first ref of another
4281 * unprocessed inode. If yes, orphanize the overwritten inode.
4282 * If we find an overwritten ref that is not the first ref,
4283 * simply unlink it.
4284 */
4285 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4286 cur->name, cur->name_len,
4287 &ow_inode, &ow_gen, &ow_mode);
4288 if (ret < 0)
4289 goto out;
4290 if (ret) {
4291 ret = is_first_ref(sctx->parent_root,
4292 ow_inode, cur->dir, cur->name,
4293 cur->name_len);
4294 if (ret < 0)
4295 goto out;
4296 if (ret) {
4297 struct name_cache_entry *nce;
4298 struct waiting_dir_move *wdm;
4299
4300 if (orphanized_dir) {
4301 ret = refresh_ref_path(sctx, cur);
4302 if (ret < 0)
4303 goto out;
4304 }
4305
4306 ret = orphanize_inode(sctx, ow_inode, ow_gen,
4307 cur->full_path);
4308 if (ret < 0)
4309 goto out;
4310 if (S_ISDIR(ow_mode))
4311 orphanized_dir = true;
4312
4313 /*
4314 * If ow_inode has its rename operation delayed
4315 * make sure that its orphanized name is used in
4316 * the source path when performing its rename
4317 * operation.
4318 */
4319 wdm = get_waiting_dir_move(sctx, ow_inode);
4320 if (wdm)
4321 wdm->orphanized = true;
4322
4323 /*
4324 * Make sure we clear our orphanized inode's
4325 * name from the name cache. This is because the
4326 * inode ow_inode might be an ancestor of some
4327 * other inode that will be orphanized as well
4328 * later and has an inode number greater than
4329 * sctx->send_progress. We need to prevent
4330 * future name lookups from using the old name
4331 * and get instead the orphan name.
4332 */
4333 nce = name_cache_search(sctx, ow_inode, ow_gen);
4334 if (nce)
4335 btrfs_lru_cache_remove(&sctx->name_cache,
4336 &nce->entry);
4337
4338 /*
4339 * ow_inode might currently be an ancestor of
4340 * cur_ino, therefore compute valid_path (the
4341 * current path of cur_ino) again because it
4342 * might contain the pre-orphanization name of
4343 * ow_inode, which is no longer valid.
4344 */
4345 ret = is_ancestor(sctx->parent_root,
4346 ow_inode, ow_gen,
4347 sctx->cur_ino, NULL);
4348 if (ret > 0) {
4349 orphanized_ancestor = true;
4350 fs_path_reset(valid_path);
4351 ret = get_cur_path(sctx, sctx->cur_ino,
4352 sctx->cur_inode_gen,
4353 valid_path);
4354 }
4355 if (ret < 0)
4356 goto out;
4357 } else {
4358 /*
4359 * If we previously orphanized a directory that
4360 * collided with a new reference that we already
4361 * processed, recompute the current path because
4362 * that directory may be part of the path.
4363 */
4364 if (orphanized_dir) {
4365 ret = refresh_ref_path(sctx, cur);
4366 if (ret < 0)
4367 goto out;
4368 }
4369 ret = send_unlink(sctx, cur->full_path);
4370 if (ret < 0)
4371 goto out;
4372 }
4373 }
4374
4375 }
4376
4377 list_for_each_entry(cur, &sctx->new_refs, list) {
4378 /*
4379 * We may have refs where the parent directory does not exist
4380 * yet. This happens if the parent directories inum is higher
4381 * than the current inum. To handle this case, we create the
4382 * parent directory out of order. But we need to check if this
4383 * did already happen before due to other refs in the same dir.
4384 */
4385 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4386 if (ret < 0)
4387 goto out;
4388 if (ret == inode_state_will_create) {
4389 ret = 0;
4390 /*
4391 * First check if any of the current inodes refs did
4392 * already create the dir.
4393 */
4394 list_for_each_entry(cur2, &sctx->new_refs, list) {
4395 if (cur == cur2)
4396 break;
4397 if (cur2->dir == cur->dir) {
4398 ret = 1;
4399 break;
4400 }
4401 }
4402
4403 /*
4404 * If that did not happen, check if a previous inode
4405 * did already create the dir.
4406 */
4407 if (!ret)
4408 ret = did_create_dir(sctx, cur->dir);
4409 if (ret < 0)
4410 goto out;
4411 if (!ret) {
4412 ret = send_create_inode(sctx, cur->dir);
4413 if (ret < 0)
4414 goto out;
4415 cache_dir_created(sctx, cur->dir);
4416 }
4417 }
4418
4419 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4420 ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4421 if (ret < 0)
4422 goto out;
4423 if (ret == 1) {
4424 can_rename = false;
4425 *pending_move = 1;
4426 }
4427 }
4428
4429 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4430 can_rename) {
4431 ret = wait_for_parent_move(sctx, cur, is_orphan);
4432 if (ret < 0)
4433 goto out;
4434 if (ret == 1) {
4435 can_rename = false;
4436 *pending_move = 1;
4437 }
4438 }
4439
4440 /*
4441 * link/move the ref to the new place. If we have an orphan
4442 * inode, move it and update valid_path. If not, link or move
4443 * it depending on the inode mode.
4444 */
4445 if (is_orphan && can_rename) {
4446 ret = send_rename(sctx, valid_path, cur->full_path);
4447 if (ret < 0)
4448 goto out;
4449 is_orphan = 0;
4450 ret = fs_path_copy(valid_path, cur->full_path);
4451 if (ret < 0)
4452 goto out;
4453 } else if (can_rename) {
4454 if (S_ISDIR(sctx->cur_inode_mode)) {
4455 /*
4456 * Dirs can't be linked, so move it. For moved
4457 * dirs, we always have one new and one deleted
4458 * ref. The deleted ref is ignored later.
4459 */
4460 ret = send_rename(sctx, valid_path,
4461 cur->full_path);
4462 if (!ret)
4463 ret = fs_path_copy(valid_path,
4464 cur->full_path);
4465 if (ret < 0)
4466 goto out;
4467 } else {
4468 /*
4469 * We might have previously orphanized an inode
4470 * which is an ancestor of our current inode,
4471 * so our reference's full path, which was
4472 * computed before any such orphanizations, must
4473 * be updated.
4474 */
4475 if (orphanized_dir) {
4476 ret = update_ref_path(sctx, cur);
4477 if (ret < 0)
4478 goto out;
4479 }
4480 ret = send_link(sctx, cur->full_path,
4481 valid_path);
4482 if (ret < 0)
4483 goto out;
4484 }
4485 }
4486 ret = dup_ref(cur, &check_dirs);
4487 if (ret < 0)
4488 goto out;
4489 }
4490
4491 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4492 /*
4493 * Check if we can already rmdir the directory. If not,
4494 * orphanize it. For every dir item inside that gets deleted
4495 * later, we do this check again and rmdir it then if possible.
4496 * See the use of check_dirs for more details.
4497 */
4498 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen);
4499 if (ret < 0)
4500 goto out;
4501 if (ret) {
4502 ret = send_rmdir(sctx, valid_path);
4503 if (ret < 0)
4504 goto out;
4505 } else if (!is_orphan) {
4506 ret = orphanize_inode(sctx, sctx->cur_ino,
4507 sctx->cur_inode_gen, valid_path);
4508 if (ret < 0)
4509 goto out;
4510 is_orphan = 1;
4511 }
4512
4513 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4514 ret = dup_ref(cur, &check_dirs);
4515 if (ret < 0)
4516 goto out;
4517 }
4518 } else if (S_ISDIR(sctx->cur_inode_mode) &&
4519 !list_empty(&sctx->deleted_refs)) {
4520 /*
4521 * We have a moved dir. Add the old parent to check_dirs
4522 */
4523 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4524 list);
4525 ret = dup_ref(cur, &check_dirs);
4526 if (ret < 0)
4527 goto out;
4528 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
4529 /*
4530 * We have a non dir inode. Go through all deleted refs and
4531 * unlink them if they were not already overwritten by other
4532 * inodes.
4533 */
4534 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4535 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4536 sctx->cur_ino, sctx->cur_inode_gen,
4537 cur->name, cur->name_len);
4538 if (ret < 0)
4539 goto out;
4540 if (!ret) {
4541 /*
4542 * If we orphanized any ancestor before, we need
4543 * to recompute the full path for deleted names,
4544 * since any such path was computed before we
4545 * processed any references and orphanized any
4546 * ancestor inode.
4547 */
4548 if (orphanized_ancestor) {
4549 ret = update_ref_path(sctx, cur);
4550 if (ret < 0)
4551 goto out;
4552 }
4553 ret = send_unlink(sctx, cur->full_path);
4554 if (ret < 0)
4555 goto out;
4556 }
4557 ret = dup_ref(cur, &check_dirs);
4558 if (ret < 0)
4559 goto out;
4560 }
4561 /*
4562 * If the inode is still orphan, unlink the orphan. This may
4563 * happen when a previous inode did overwrite the first ref
4564 * of this inode and no new refs were added for the current
4565 * inode. Unlinking does not mean that the inode is deleted in
4566 * all cases. There may still be links to this inode in other
4567 * places.
4568 */
4569 if (is_orphan) {
4570 ret = send_unlink(sctx, valid_path);
4571 if (ret < 0)
4572 goto out;
4573 }
4574 }
4575
4576 /*
4577 * We did collect all parent dirs where cur_inode was once located. We
4578 * now go through all these dirs and check if they are pending for
4579 * deletion and if it's finally possible to perform the rmdir now.
4580 * We also update the inode stats of the parent dirs here.
4581 */
4582 list_for_each_entry(cur, &check_dirs, list) {
4583 /*
4584 * In case we had refs into dirs that were not processed yet,
4585 * we don't need to do the utime and rmdir logic for these dirs.
4586 * The dir will be processed later.
4587 */
4588 if (cur->dir > sctx->cur_ino)
4589 continue;
4590
4591 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4592 if (ret < 0)
4593 goto out;
4594
4595 if (ret == inode_state_did_create ||
4596 ret == inode_state_no_change) {
4597 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen);
4598 if (ret < 0)
4599 goto out;
4600 } else if (ret == inode_state_did_delete &&
4601 cur->dir != last_dir_ino_rm) {
4602 ret = can_rmdir(sctx, cur->dir, cur->dir_gen);
4603 if (ret < 0)
4604 goto out;
4605 if (ret) {
4606 ret = get_cur_path(sctx, cur->dir,
4607 cur->dir_gen, valid_path);
4608 if (ret < 0)
4609 goto out;
4610 ret = send_rmdir(sctx, valid_path);
4611 if (ret < 0)
4612 goto out;
4613 last_dir_ino_rm = cur->dir;
4614 }
4615 }
4616 }
4617
4618 ret = 0;
4619
4620 out:
4621 __free_recorded_refs(&check_dirs);
4622 free_recorded_refs(sctx);
4623 fs_path_free(valid_path);
4624 return ret;
4625 }
4626
rbtree_ref_comp(const void * k,const struct rb_node * node)4627 static int rbtree_ref_comp(const void *k, const struct rb_node *node)
4628 {
4629 const struct recorded_ref *data = k;
4630 const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node);
4631 int result;
4632
4633 if (data->dir > ref->dir)
4634 return 1;
4635 if (data->dir < ref->dir)
4636 return -1;
4637 if (data->dir_gen > ref->dir_gen)
4638 return 1;
4639 if (data->dir_gen < ref->dir_gen)
4640 return -1;
4641 if (data->name_len > ref->name_len)
4642 return 1;
4643 if (data->name_len < ref->name_len)
4644 return -1;
4645 result = strcmp(data->name, ref->name);
4646 if (result > 0)
4647 return 1;
4648 if (result < 0)
4649 return -1;
4650 return 0;
4651 }
4652
rbtree_ref_less(struct rb_node * node,const struct rb_node * parent)4653 static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent)
4654 {
4655 const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node);
4656
4657 return rbtree_ref_comp(entry, parent) < 0;
4658 }
4659
record_ref_in_tree(struct rb_root * root,struct list_head * refs,struct fs_path * name,u64 dir,u64 dir_gen,struct send_ctx * sctx)4660 static int record_ref_in_tree(struct rb_root *root, struct list_head *refs,
4661 struct fs_path *name, u64 dir, u64 dir_gen,
4662 struct send_ctx *sctx)
4663 {
4664 int ret = 0;
4665 struct fs_path *path = NULL;
4666 struct recorded_ref *ref = NULL;
4667
4668 path = fs_path_alloc();
4669 if (!path) {
4670 ret = -ENOMEM;
4671 goto out;
4672 }
4673
4674 ref = recorded_ref_alloc();
4675 if (!ref) {
4676 ret = -ENOMEM;
4677 goto out;
4678 }
4679
4680 ret = get_cur_path(sctx, dir, dir_gen, path);
4681 if (ret < 0)
4682 goto out;
4683 ret = fs_path_add_path(path, name);
4684 if (ret < 0)
4685 goto out;
4686
4687 ref->dir = dir;
4688 ref->dir_gen = dir_gen;
4689 set_ref_path(ref, path);
4690 list_add_tail(&ref->list, refs);
4691 rb_add(&ref->node, root, rbtree_ref_less);
4692 ref->root = root;
4693 out:
4694 if (ret) {
4695 if (path && (!ref || !ref->full_path))
4696 fs_path_free(path);
4697 recorded_ref_free(ref);
4698 }
4699 return ret;
4700 }
4701
record_new_ref_if_needed(u64 dir,struct fs_path * name,void * ctx)4702 static int record_new_ref_if_needed(u64 dir, struct fs_path *name, void *ctx)
4703 {
4704 int ret = 0;
4705 struct send_ctx *sctx = ctx;
4706 struct rb_node *node = NULL;
4707 struct recorded_ref data;
4708 struct recorded_ref *ref;
4709 u64 dir_gen;
4710
4711 ret = get_inode_gen(sctx->send_root, dir, &dir_gen);
4712 if (ret < 0)
4713 goto out;
4714
4715 data.dir = dir;
4716 data.dir_gen = dir_gen;
4717 set_ref_path(&data, name);
4718 node = rb_find(&data, &sctx->rbtree_deleted_refs, rbtree_ref_comp);
4719 if (node) {
4720 ref = rb_entry(node, struct recorded_ref, node);
4721 recorded_ref_free(ref);
4722 } else {
4723 ret = record_ref_in_tree(&sctx->rbtree_new_refs,
4724 &sctx->new_refs, name, dir, dir_gen,
4725 sctx);
4726 }
4727 out:
4728 return ret;
4729 }
4730
record_deleted_ref_if_needed(u64 dir,struct fs_path * name,void * ctx)4731 static int record_deleted_ref_if_needed(u64 dir, struct fs_path *name, void *ctx)
4732 {
4733 int ret = 0;
4734 struct send_ctx *sctx = ctx;
4735 struct rb_node *node = NULL;
4736 struct recorded_ref data;
4737 struct recorded_ref *ref;
4738 u64 dir_gen;
4739
4740 ret = get_inode_gen(sctx->parent_root, dir, &dir_gen);
4741 if (ret < 0)
4742 goto out;
4743
4744 data.dir = dir;
4745 data.dir_gen = dir_gen;
4746 set_ref_path(&data, name);
4747 node = rb_find(&data, &sctx->rbtree_new_refs, rbtree_ref_comp);
4748 if (node) {
4749 ref = rb_entry(node, struct recorded_ref, node);
4750 recorded_ref_free(ref);
4751 } else {
4752 ret = record_ref_in_tree(&sctx->rbtree_deleted_refs,
4753 &sctx->deleted_refs, name, dir,
4754 dir_gen, sctx);
4755 }
4756 out:
4757 return ret;
4758 }
4759
record_new_ref(struct send_ctx * sctx)4760 static int record_new_ref(struct send_ctx *sctx)
4761 {
4762 int ret;
4763
4764 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4765 sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4766 if (ret < 0)
4767 goto out;
4768 ret = 0;
4769
4770 out:
4771 return ret;
4772 }
4773
record_deleted_ref(struct send_ctx * sctx)4774 static int record_deleted_ref(struct send_ctx *sctx)
4775 {
4776 int ret;
4777
4778 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4779 sctx->cmp_key, 0, record_deleted_ref_if_needed,
4780 sctx);
4781 if (ret < 0)
4782 goto out;
4783 ret = 0;
4784
4785 out:
4786 return ret;
4787 }
4788
record_changed_ref(struct send_ctx * sctx)4789 static int record_changed_ref(struct send_ctx *sctx)
4790 {
4791 int ret = 0;
4792
4793 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4794 sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4795 if (ret < 0)
4796 goto out;
4797 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4798 sctx->cmp_key, 0, record_deleted_ref_if_needed, sctx);
4799 if (ret < 0)
4800 goto out;
4801 ret = 0;
4802
4803 out:
4804 return ret;
4805 }
4806
4807 /*
4808 * Record and process all refs at once. Needed when an inode changes the
4809 * generation number, which means that it was deleted and recreated.
4810 */
process_all_refs(struct send_ctx * sctx,enum btrfs_compare_tree_result cmd)4811 static int process_all_refs(struct send_ctx *sctx,
4812 enum btrfs_compare_tree_result cmd)
4813 {
4814 int ret = 0;
4815 int iter_ret = 0;
4816 struct btrfs_root *root;
4817 struct btrfs_path *path;
4818 struct btrfs_key key;
4819 struct btrfs_key found_key;
4820 iterate_inode_ref_t cb;
4821 int pending_move = 0;
4822
4823 path = alloc_path_for_send();
4824 if (!path)
4825 return -ENOMEM;
4826
4827 if (cmd == BTRFS_COMPARE_TREE_NEW) {
4828 root = sctx->send_root;
4829 cb = record_new_ref_if_needed;
4830 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4831 root = sctx->parent_root;
4832 cb = record_deleted_ref_if_needed;
4833 } else {
4834 btrfs_err(sctx->send_root->fs_info,
4835 "Wrong command %d in process_all_refs", cmd);
4836 ret = -EINVAL;
4837 goto out;
4838 }
4839
4840 key.objectid = sctx->cmp_key->objectid;
4841 key.type = BTRFS_INODE_REF_KEY;
4842 key.offset = 0;
4843 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
4844 if (found_key.objectid != key.objectid ||
4845 (found_key.type != BTRFS_INODE_REF_KEY &&
4846 found_key.type != BTRFS_INODE_EXTREF_KEY))
4847 break;
4848
4849 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4850 if (ret < 0)
4851 goto out;
4852 }
4853 /* Catch error found during iteration */
4854 if (iter_ret < 0) {
4855 ret = iter_ret;
4856 goto out;
4857 }
4858 btrfs_release_path(path);
4859
4860 /*
4861 * We don't actually care about pending_move as we are simply
4862 * re-creating this inode and will be rename'ing it into place once we
4863 * rename the parent directory.
4864 */
4865 ret = process_recorded_refs(sctx, &pending_move);
4866 out:
4867 btrfs_free_path(path);
4868 return ret;
4869 }
4870
send_set_xattr(struct send_ctx * sctx,struct fs_path * path,const char * name,int name_len,const char * data,int data_len)4871 static int send_set_xattr(struct send_ctx *sctx,
4872 struct fs_path *path,
4873 const char *name, int name_len,
4874 const char *data, int data_len)
4875 {
4876 int ret = 0;
4877
4878 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4879 if (ret < 0)
4880 goto out;
4881
4882 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4883 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4884 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4885
4886 ret = send_cmd(sctx);
4887
4888 tlv_put_failure:
4889 out:
4890 return ret;
4891 }
4892
send_remove_xattr(struct send_ctx * sctx,struct fs_path * path,const char * name,int name_len)4893 static int send_remove_xattr(struct send_ctx *sctx,
4894 struct fs_path *path,
4895 const char *name, int name_len)
4896 {
4897 int ret = 0;
4898
4899 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4900 if (ret < 0)
4901 goto out;
4902
4903 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4904 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4905
4906 ret = send_cmd(sctx);
4907
4908 tlv_put_failure:
4909 out:
4910 return ret;
4911 }
4912
__process_new_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)4913 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4914 const char *name, int name_len, const char *data,
4915 int data_len, void *ctx)
4916 {
4917 int ret;
4918 struct send_ctx *sctx = ctx;
4919 struct fs_path *p;
4920 struct posix_acl_xattr_header dummy_acl;
4921
4922 /* Capabilities are emitted by finish_inode_if_needed */
4923 if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4924 return 0;
4925
4926 p = fs_path_alloc();
4927 if (!p)
4928 return -ENOMEM;
4929
4930 /*
4931 * This hack is needed because empty acls are stored as zero byte
4932 * data in xattrs. Problem with that is, that receiving these zero byte
4933 * acls will fail later. To fix this, we send a dummy acl list that
4934 * only contains the version number and no entries.
4935 */
4936 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4937 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4938 if (data_len == 0) {
4939 dummy_acl.a_version =
4940 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4941 data = (char *)&dummy_acl;
4942 data_len = sizeof(dummy_acl);
4943 }
4944 }
4945
4946 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4947 if (ret < 0)
4948 goto out;
4949
4950 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4951
4952 out:
4953 fs_path_free(p);
4954 return ret;
4955 }
4956
__process_deleted_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)4957 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4958 const char *name, int name_len,
4959 const char *data, int data_len, void *ctx)
4960 {
4961 int ret;
4962 struct send_ctx *sctx = ctx;
4963 struct fs_path *p;
4964
4965 p = fs_path_alloc();
4966 if (!p)
4967 return -ENOMEM;
4968
4969 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4970 if (ret < 0)
4971 goto out;
4972
4973 ret = send_remove_xattr(sctx, p, name, name_len);
4974
4975 out:
4976 fs_path_free(p);
4977 return ret;
4978 }
4979
process_new_xattr(struct send_ctx * sctx)4980 static int process_new_xattr(struct send_ctx *sctx)
4981 {
4982 int ret = 0;
4983
4984 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4985 __process_new_xattr, sctx);
4986
4987 return ret;
4988 }
4989
process_deleted_xattr(struct send_ctx * sctx)4990 static int process_deleted_xattr(struct send_ctx *sctx)
4991 {
4992 return iterate_dir_item(sctx->parent_root, sctx->right_path,
4993 __process_deleted_xattr, sctx);
4994 }
4995
4996 struct find_xattr_ctx {
4997 const char *name;
4998 int name_len;
4999 int found_idx;
5000 char *found_data;
5001 int found_data_len;
5002 };
5003
__find_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * vctx)5004 static int __find_xattr(int num, struct btrfs_key *di_key, const char *name,
5005 int name_len, const char *data, int data_len, void *vctx)
5006 {
5007 struct find_xattr_ctx *ctx = vctx;
5008
5009 if (name_len == ctx->name_len &&
5010 strncmp(name, ctx->name, name_len) == 0) {
5011 ctx->found_idx = num;
5012 ctx->found_data_len = data_len;
5013 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
5014 if (!ctx->found_data)
5015 return -ENOMEM;
5016 return 1;
5017 }
5018 return 0;
5019 }
5020
find_xattr(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key,const char * name,int name_len,char ** data,int * data_len)5021 static int find_xattr(struct btrfs_root *root,
5022 struct btrfs_path *path,
5023 struct btrfs_key *key,
5024 const char *name, int name_len,
5025 char **data, int *data_len)
5026 {
5027 int ret;
5028 struct find_xattr_ctx ctx;
5029
5030 ctx.name = name;
5031 ctx.name_len = name_len;
5032 ctx.found_idx = -1;
5033 ctx.found_data = NULL;
5034 ctx.found_data_len = 0;
5035
5036 ret = iterate_dir_item(root, path, __find_xattr, &ctx);
5037 if (ret < 0)
5038 return ret;
5039
5040 if (ctx.found_idx == -1)
5041 return -ENOENT;
5042 if (data) {
5043 *data = ctx.found_data;
5044 *data_len = ctx.found_data_len;
5045 } else {
5046 kfree(ctx.found_data);
5047 }
5048 return ctx.found_idx;
5049 }
5050
5051
__process_changed_new_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)5052 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
5053 const char *name, int name_len,
5054 const char *data, int data_len,
5055 void *ctx)
5056 {
5057 int ret;
5058 struct send_ctx *sctx = ctx;
5059 char *found_data = NULL;
5060 int found_data_len = 0;
5061
5062 ret = find_xattr(sctx->parent_root, sctx->right_path,
5063 sctx->cmp_key, name, name_len, &found_data,
5064 &found_data_len);
5065 if (ret == -ENOENT) {
5066 ret = __process_new_xattr(num, di_key, name, name_len, data,
5067 data_len, ctx);
5068 } else if (ret >= 0) {
5069 if (data_len != found_data_len ||
5070 memcmp(data, found_data, data_len)) {
5071 ret = __process_new_xattr(num, di_key, name, name_len,
5072 data, data_len, ctx);
5073 } else {
5074 ret = 0;
5075 }
5076 }
5077
5078 kfree(found_data);
5079 return ret;
5080 }
5081
__process_changed_deleted_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)5082 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
5083 const char *name, int name_len,
5084 const char *data, int data_len,
5085 void *ctx)
5086 {
5087 int ret;
5088 struct send_ctx *sctx = ctx;
5089
5090 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
5091 name, name_len, NULL, NULL);
5092 if (ret == -ENOENT)
5093 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
5094 data_len, ctx);
5095 else if (ret >= 0)
5096 ret = 0;
5097
5098 return ret;
5099 }
5100
process_changed_xattr(struct send_ctx * sctx)5101 static int process_changed_xattr(struct send_ctx *sctx)
5102 {
5103 int ret = 0;
5104
5105 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
5106 __process_changed_new_xattr, sctx);
5107 if (ret < 0)
5108 goto out;
5109 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
5110 __process_changed_deleted_xattr, sctx);
5111
5112 out:
5113 return ret;
5114 }
5115
process_all_new_xattrs(struct send_ctx * sctx)5116 static int process_all_new_xattrs(struct send_ctx *sctx)
5117 {
5118 int ret = 0;
5119 int iter_ret = 0;
5120 struct btrfs_root *root;
5121 struct btrfs_path *path;
5122 struct btrfs_key key;
5123 struct btrfs_key found_key;
5124
5125 path = alloc_path_for_send();
5126 if (!path)
5127 return -ENOMEM;
5128
5129 root = sctx->send_root;
5130
5131 key.objectid = sctx->cmp_key->objectid;
5132 key.type = BTRFS_XATTR_ITEM_KEY;
5133 key.offset = 0;
5134 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
5135 if (found_key.objectid != key.objectid ||
5136 found_key.type != key.type) {
5137 ret = 0;
5138 break;
5139 }
5140
5141 ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
5142 if (ret < 0)
5143 break;
5144 }
5145 /* Catch error found during iteration */
5146 if (iter_ret < 0)
5147 ret = iter_ret;
5148
5149 btrfs_free_path(path);
5150 return ret;
5151 }
5152
send_verity(struct send_ctx * sctx,struct fs_path * path,struct fsverity_descriptor * desc)5153 static int send_verity(struct send_ctx *sctx, struct fs_path *path,
5154 struct fsverity_descriptor *desc)
5155 {
5156 int ret;
5157
5158 ret = begin_cmd(sctx, BTRFS_SEND_C_ENABLE_VERITY);
5159 if (ret < 0)
5160 goto out;
5161
5162 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
5163 TLV_PUT_U8(sctx, BTRFS_SEND_A_VERITY_ALGORITHM,
5164 le8_to_cpu(desc->hash_algorithm));
5165 TLV_PUT_U32(sctx, BTRFS_SEND_A_VERITY_BLOCK_SIZE,
5166 1U << le8_to_cpu(desc->log_blocksize));
5167 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SALT_DATA, desc->salt,
5168 le8_to_cpu(desc->salt_size));
5169 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SIG_DATA, desc->signature,
5170 le32_to_cpu(desc->sig_size));
5171
5172 ret = send_cmd(sctx);
5173
5174 tlv_put_failure:
5175 out:
5176 return ret;
5177 }
5178
process_verity(struct send_ctx * sctx)5179 static int process_verity(struct send_ctx *sctx)
5180 {
5181 int ret = 0;
5182 struct inode *inode;
5183 struct fs_path *p;
5184
5185 inode = btrfs_iget(sctx->cur_ino, sctx->send_root);
5186 if (IS_ERR(inode))
5187 return PTR_ERR(inode);
5188
5189 ret = btrfs_get_verity_descriptor(inode, NULL, 0);
5190 if (ret < 0)
5191 goto iput;
5192
5193 if (ret > FS_VERITY_MAX_DESCRIPTOR_SIZE) {
5194 ret = -EMSGSIZE;
5195 goto iput;
5196 }
5197 if (!sctx->verity_descriptor) {
5198 sctx->verity_descriptor = kvmalloc(FS_VERITY_MAX_DESCRIPTOR_SIZE,
5199 GFP_KERNEL);
5200 if (!sctx->verity_descriptor) {
5201 ret = -ENOMEM;
5202 goto iput;
5203 }
5204 }
5205
5206 ret = btrfs_get_verity_descriptor(inode, sctx->verity_descriptor, ret);
5207 if (ret < 0)
5208 goto iput;
5209
5210 p = fs_path_alloc();
5211 if (!p) {
5212 ret = -ENOMEM;
5213 goto iput;
5214 }
5215 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5216 if (ret < 0)
5217 goto free_path;
5218
5219 ret = send_verity(sctx, p, sctx->verity_descriptor);
5220 if (ret < 0)
5221 goto free_path;
5222
5223 free_path:
5224 fs_path_free(p);
5225 iput:
5226 iput(inode);
5227 return ret;
5228 }
5229
max_send_read_size(const struct send_ctx * sctx)5230 static inline u64 max_send_read_size(const struct send_ctx *sctx)
5231 {
5232 return sctx->send_max_size - SZ_16K;
5233 }
5234
put_data_header(struct send_ctx * sctx,u32 len)5235 static int put_data_header(struct send_ctx *sctx, u32 len)
5236 {
5237 if (WARN_ON_ONCE(sctx->put_data))
5238 return -EINVAL;
5239 sctx->put_data = true;
5240 if (sctx->proto >= 2) {
5241 /*
5242 * Since v2, the data attribute header doesn't include a length,
5243 * it is implicitly to the end of the command.
5244 */
5245 if (sctx->send_max_size - sctx->send_size < sizeof(__le16) + len)
5246 return -EOVERFLOW;
5247 put_unaligned_le16(BTRFS_SEND_A_DATA, sctx->send_buf + sctx->send_size);
5248 sctx->send_size += sizeof(__le16);
5249 } else {
5250 struct btrfs_tlv_header *hdr;
5251
5252 if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len)
5253 return -EOVERFLOW;
5254 hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size);
5255 put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type);
5256 put_unaligned_le16(len, &hdr->tlv_len);
5257 sctx->send_size += sizeof(*hdr);
5258 }
5259 return 0;
5260 }
5261
put_file_data(struct send_ctx * sctx,u64 offset,u32 len)5262 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len)
5263 {
5264 struct btrfs_root *root = sctx->send_root;
5265 struct btrfs_fs_info *fs_info = root->fs_info;
5266 struct folio *folio;
5267 pgoff_t index = offset >> PAGE_SHIFT;
5268 pgoff_t last_index;
5269 unsigned pg_offset = offset_in_page(offset);
5270 struct address_space *mapping = sctx->cur_inode->i_mapping;
5271 int ret;
5272
5273 ret = put_data_header(sctx, len);
5274 if (ret)
5275 return ret;
5276
5277 last_index = (offset + len - 1) >> PAGE_SHIFT;
5278
5279 while (index <= last_index) {
5280 unsigned cur_len = min_t(unsigned, len,
5281 PAGE_SIZE - pg_offset);
5282
5283 folio = filemap_lock_folio(mapping, index);
5284 if (IS_ERR(folio)) {
5285 page_cache_sync_readahead(mapping,
5286 &sctx->ra, NULL, index,
5287 last_index + 1 - index);
5288
5289 folio = filemap_grab_folio(mapping, index);
5290 if (IS_ERR(folio)) {
5291 ret = PTR_ERR(folio);
5292 break;
5293 }
5294 }
5295
5296 WARN_ON(folio_order(folio));
5297
5298 if (folio_test_readahead(folio))
5299 page_cache_async_readahead(mapping, &sctx->ra, NULL, folio,
5300 last_index + 1 - index);
5301
5302 if (!folio_test_uptodate(folio)) {
5303 btrfs_read_folio(NULL, folio);
5304 folio_lock(folio);
5305 if (!folio_test_uptodate(folio)) {
5306 folio_unlock(folio);
5307 btrfs_err(fs_info,
5308 "send: IO error at offset %llu for inode %llu root %llu",
5309 folio_pos(folio), sctx->cur_ino,
5310 btrfs_root_id(sctx->send_root));
5311 folio_put(folio);
5312 ret = -EIO;
5313 break;
5314 }
5315 }
5316
5317 memcpy_from_folio(sctx->send_buf + sctx->send_size, folio,
5318 pg_offset, cur_len);
5319 folio_unlock(folio);
5320 folio_put(folio);
5321 index++;
5322 pg_offset = 0;
5323 len -= cur_len;
5324 sctx->send_size += cur_len;
5325 }
5326
5327 return ret;
5328 }
5329
5330 /*
5331 * Read some bytes from the current inode/file and send a write command to
5332 * user space.
5333 */
send_write(struct send_ctx * sctx,u64 offset,u32 len)5334 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
5335 {
5336 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5337 int ret = 0;
5338 struct fs_path *p;
5339
5340 p = fs_path_alloc();
5341 if (!p)
5342 return -ENOMEM;
5343
5344 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
5345
5346 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5347 if (ret < 0)
5348 goto out;
5349
5350 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5351 if (ret < 0)
5352 goto out;
5353
5354 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5355 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5356 ret = put_file_data(sctx, offset, len);
5357 if (ret < 0)
5358 goto out;
5359
5360 ret = send_cmd(sctx);
5361
5362 tlv_put_failure:
5363 out:
5364 fs_path_free(p);
5365 return ret;
5366 }
5367
5368 /*
5369 * Send a clone command to user space.
5370 */
send_clone(struct send_ctx * sctx,u64 offset,u32 len,struct clone_root * clone_root)5371 static int send_clone(struct send_ctx *sctx,
5372 u64 offset, u32 len,
5373 struct clone_root *clone_root)
5374 {
5375 int ret = 0;
5376 struct fs_path *p;
5377 u64 gen;
5378
5379 btrfs_debug(sctx->send_root->fs_info,
5380 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
5381 offset, len, btrfs_root_id(clone_root->root),
5382 clone_root->ino, clone_root->offset);
5383
5384 p = fs_path_alloc();
5385 if (!p)
5386 return -ENOMEM;
5387
5388 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
5389 if (ret < 0)
5390 goto out;
5391
5392 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5393 if (ret < 0)
5394 goto out;
5395
5396 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5397 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
5398 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5399
5400 if (clone_root->root == sctx->send_root) {
5401 ret = get_inode_gen(sctx->send_root, clone_root->ino, &gen);
5402 if (ret < 0)
5403 goto out;
5404 ret = get_cur_path(sctx, clone_root->ino, gen, p);
5405 } else {
5406 ret = get_inode_path(clone_root->root, clone_root->ino, p);
5407 }
5408 if (ret < 0)
5409 goto out;
5410
5411 /*
5412 * If the parent we're using has a received_uuid set then use that as
5413 * our clone source as that is what we will look for when doing a
5414 * receive.
5415 *
5416 * This covers the case that we create a snapshot off of a received
5417 * subvolume and then use that as the parent and try to receive on a
5418 * different host.
5419 */
5420 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
5421 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5422 clone_root->root->root_item.received_uuid);
5423 else
5424 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5425 clone_root->root->root_item.uuid);
5426 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5427 btrfs_root_ctransid(&clone_root->root->root_item));
5428 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
5429 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
5430 clone_root->offset);
5431
5432 ret = send_cmd(sctx);
5433
5434 tlv_put_failure:
5435 out:
5436 fs_path_free(p);
5437 return ret;
5438 }
5439
5440 /*
5441 * Send an update extent command to user space.
5442 */
send_update_extent(struct send_ctx * sctx,u64 offset,u32 len)5443 static int send_update_extent(struct send_ctx *sctx,
5444 u64 offset, u32 len)
5445 {
5446 int ret = 0;
5447 struct fs_path *p;
5448
5449 p = fs_path_alloc();
5450 if (!p)
5451 return -ENOMEM;
5452
5453 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5454 if (ret < 0)
5455 goto out;
5456
5457 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5458 if (ret < 0)
5459 goto out;
5460
5461 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5462 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5463 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5464
5465 ret = send_cmd(sctx);
5466
5467 tlv_put_failure:
5468 out:
5469 fs_path_free(p);
5470 return ret;
5471 }
5472
send_hole(struct send_ctx * sctx,u64 end)5473 static int send_hole(struct send_ctx *sctx, u64 end)
5474 {
5475 struct fs_path *p = NULL;
5476 u64 read_size = max_send_read_size(sctx);
5477 u64 offset = sctx->cur_inode_last_extent;
5478 int ret = 0;
5479
5480 /*
5481 * A hole that starts at EOF or beyond it. Since we do not yet support
5482 * fallocate (for extent preallocation and hole punching), sending a
5483 * write of zeroes starting at EOF or beyond would later require issuing
5484 * a truncate operation which would undo the write and achieve nothing.
5485 */
5486 if (offset >= sctx->cur_inode_size)
5487 return 0;
5488
5489 /*
5490 * Don't go beyond the inode's i_size due to prealloc extents that start
5491 * after the i_size.
5492 */
5493 end = min_t(u64, end, sctx->cur_inode_size);
5494
5495 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5496 return send_update_extent(sctx, offset, end - offset);
5497
5498 p = fs_path_alloc();
5499 if (!p)
5500 return -ENOMEM;
5501 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5502 if (ret < 0)
5503 goto tlv_put_failure;
5504 while (offset < end) {
5505 u64 len = min(end - offset, read_size);
5506
5507 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5508 if (ret < 0)
5509 break;
5510 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5511 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5512 ret = put_data_header(sctx, len);
5513 if (ret < 0)
5514 break;
5515 memset(sctx->send_buf + sctx->send_size, 0, len);
5516 sctx->send_size += len;
5517 ret = send_cmd(sctx);
5518 if (ret < 0)
5519 break;
5520 offset += len;
5521 }
5522 sctx->cur_inode_next_write_offset = offset;
5523 tlv_put_failure:
5524 fs_path_free(p);
5525 return ret;
5526 }
5527
send_encoded_inline_extent(struct send_ctx * sctx,struct btrfs_path * path,u64 offset,u64 len)5528 static int send_encoded_inline_extent(struct send_ctx *sctx,
5529 struct btrfs_path *path, u64 offset,
5530 u64 len)
5531 {
5532 struct btrfs_root *root = sctx->send_root;
5533 struct btrfs_fs_info *fs_info = root->fs_info;
5534 struct inode *inode;
5535 struct fs_path *fspath;
5536 struct extent_buffer *leaf = path->nodes[0];
5537 struct btrfs_key key;
5538 struct btrfs_file_extent_item *ei;
5539 u64 ram_bytes;
5540 size_t inline_size;
5541 int ret;
5542
5543 inode = btrfs_iget(sctx->cur_ino, root);
5544 if (IS_ERR(inode))
5545 return PTR_ERR(inode);
5546
5547 fspath = fs_path_alloc();
5548 if (!fspath) {
5549 ret = -ENOMEM;
5550 goto out;
5551 }
5552
5553 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5554 if (ret < 0)
5555 goto out;
5556
5557 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5558 if (ret < 0)
5559 goto out;
5560
5561 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5562 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5563 ram_bytes = btrfs_file_extent_ram_bytes(leaf, ei);
5564 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
5565
5566 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5567 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5568 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5569 min(key.offset + ram_bytes - offset, len));
5570 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes);
5571 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset);
5572 ret = btrfs_encoded_io_compression_from_extent(fs_info,
5573 btrfs_file_extent_compression(leaf, ei));
5574 if (ret < 0)
5575 goto out;
5576 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5577
5578 ret = put_data_header(sctx, inline_size);
5579 if (ret < 0)
5580 goto out;
5581 read_extent_buffer(leaf, sctx->send_buf + sctx->send_size,
5582 btrfs_file_extent_inline_start(ei), inline_size);
5583 sctx->send_size += inline_size;
5584
5585 ret = send_cmd(sctx);
5586
5587 tlv_put_failure:
5588 out:
5589 fs_path_free(fspath);
5590 iput(inode);
5591 return ret;
5592 }
5593
send_encoded_extent(struct send_ctx * sctx,struct btrfs_path * path,u64 offset,u64 len)5594 static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path,
5595 u64 offset, u64 len)
5596 {
5597 struct btrfs_root *root = sctx->send_root;
5598 struct btrfs_fs_info *fs_info = root->fs_info;
5599 struct inode *inode;
5600 struct fs_path *fspath;
5601 struct extent_buffer *leaf = path->nodes[0];
5602 struct btrfs_key key;
5603 struct btrfs_file_extent_item *ei;
5604 u64 disk_bytenr, disk_num_bytes;
5605 u32 data_offset;
5606 struct btrfs_cmd_header *hdr;
5607 u32 crc;
5608 int ret;
5609
5610 inode = btrfs_iget(sctx->cur_ino, root);
5611 if (IS_ERR(inode))
5612 return PTR_ERR(inode);
5613
5614 fspath = fs_path_alloc();
5615 if (!fspath) {
5616 ret = -ENOMEM;
5617 goto out;
5618 }
5619
5620 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5621 if (ret < 0)
5622 goto out;
5623
5624 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5625 if (ret < 0)
5626 goto out;
5627
5628 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5629 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5630 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
5631 disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, ei);
5632
5633 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5634 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5635 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5636 min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset,
5637 len));
5638 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN,
5639 btrfs_file_extent_ram_bytes(leaf, ei));
5640 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET,
5641 offset - key.offset + btrfs_file_extent_offset(leaf, ei));
5642 ret = btrfs_encoded_io_compression_from_extent(fs_info,
5643 btrfs_file_extent_compression(leaf, ei));
5644 if (ret < 0)
5645 goto out;
5646 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5647 TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0);
5648
5649 ret = put_data_header(sctx, disk_num_bytes);
5650 if (ret < 0)
5651 goto out;
5652
5653 /*
5654 * We want to do I/O directly into the send buffer, so get the next page
5655 * boundary in the send buffer. This means that there may be a gap
5656 * between the beginning of the command and the file data.
5657 */
5658 data_offset = PAGE_ALIGN(sctx->send_size);
5659 if (data_offset > sctx->send_max_size ||
5660 sctx->send_max_size - data_offset < disk_num_bytes) {
5661 ret = -EOVERFLOW;
5662 goto out;
5663 }
5664
5665 /*
5666 * Note that send_buf is a mapping of send_buf_pages, so this is really
5667 * reading into send_buf.
5668 */
5669 ret = btrfs_encoded_read_regular_fill_pages(BTRFS_I(inode),
5670 disk_bytenr, disk_num_bytes,
5671 sctx->send_buf_pages +
5672 (data_offset >> PAGE_SHIFT),
5673 NULL);
5674 if (ret)
5675 goto out;
5676
5677 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
5678 hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr));
5679 hdr->crc = 0;
5680 crc = crc32c(0, sctx->send_buf, sctx->send_size);
5681 crc = crc32c(crc, sctx->send_buf + data_offset, disk_num_bytes);
5682 hdr->crc = cpu_to_le32(crc);
5683
5684 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
5685 &sctx->send_off);
5686 if (!ret) {
5687 ret = write_buf(sctx->send_filp, sctx->send_buf + data_offset,
5688 disk_num_bytes, &sctx->send_off);
5689 }
5690 sctx->send_size = 0;
5691 sctx->put_data = false;
5692
5693 tlv_put_failure:
5694 out:
5695 fs_path_free(fspath);
5696 iput(inode);
5697 return ret;
5698 }
5699
send_extent_data(struct send_ctx * sctx,struct btrfs_path * path,const u64 offset,const u64 len)5700 static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path,
5701 const u64 offset, const u64 len)
5702 {
5703 const u64 end = offset + len;
5704 struct extent_buffer *leaf = path->nodes[0];
5705 struct btrfs_file_extent_item *ei;
5706 u64 read_size = max_send_read_size(sctx);
5707 u64 sent = 0;
5708
5709 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5710 return send_update_extent(sctx, offset, len);
5711
5712 ei = btrfs_item_ptr(leaf, path->slots[0],
5713 struct btrfs_file_extent_item);
5714 if ((sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) &&
5715 btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) {
5716 bool is_inline = (btrfs_file_extent_type(leaf, ei) ==
5717 BTRFS_FILE_EXTENT_INLINE);
5718
5719 /*
5720 * Send the compressed extent unless the compressed data is
5721 * larger than the decompressed data. This can happen if we're
5722 * not sending the entire extent, either because it has been
5723 * partially overwritten/truncated or because this is a part of
5724 * the extent that we couldn't clone in clone_range().
5725 */
5726 if (is_inline &&
5727 btrfs_file_extent_inline_item_len(leaf,
5728 path->slots[0]) <= len) {
5729 return send_encoded_inline_extent(sctx, path, offset,
5730 len);
5731 } else if (!is_inline &&
5732 btrfs_file_extent_disk_num_bytes(leaf, ei) <= len) {
5733 return send_encoded_extent(sctx, path, offset, len);
5734 }
5735 }
5736
5737 if (sctx->cur_inode == NULL) {
5738 struct btrfs_root *root = sctx->send_root;
5739
5740 sctx->cur_inode = btrfs_iget(sctx->cur_ino, root);
5741 if (IS_ERR(sctx->cur_inode)) {
5742 int err = PTR_ERR(sctx->cur_inode);
5743
5744 sctx->cur_inode = NULL;
5745 return err;
5746 }
5747 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
5748 file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping);
5749
5750 /*
5751 * It's very likely there are no pages from this inode in the page
5752 * cache, so after reading extents and sending their data, we clean
5753 * the page cache to avoid trashing the page cache (adding pressure
5754 * to the page cache and forcing eviction of other data more useful
5755 * for applications).
5756 *
5757 * We decide if we should clean the page cache simply by checking
5758 * if the inode's mapping nrpages is 0 when we first open it, and
5759 * not by using something like filemap_range_has_page() before
5760 * reading an extent because when we ask the readahead code to
5761 * read a given file range, it may (and almost always does) read
5762 * pages from beyond that range (see the documentation for
5763 * page_cache_sync_readahead()), so it would not be reliable,
5764 * because after reading the first extent future calls to
5765 * filemap_range_has_page() would return true because the readahead
5766 * on the previous extent resulted in reading pages of the current
5767 * extent as well.
5768 */
5769 sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0);
5770 sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE);
5771 }
5772
5773 while (sent < len) {
5774 u64 size = min(len - sent, read_size);
5775 int ret;
5776
5777 ret = send_write(sctx, offset + sent, size);
5778 if (ret < 0)
5779 return ret;
5780 sent += size;
5781 }
5782
5783 if (sctx->clean_page_cache && PAGE_ALIGNED(end)) {
5784 /*
5785 * Always operate only on ranges that are a multiple of the page
5786 * size. This is not only to prevent zeroing parts of a page in
5787 * the case of subpage sector size, but also to guarantee we evict
5788 * pages, as passing a range that is smaller than page size does
5789 * not evict the respective page (only zeroes part of its content).
5790 *
5791 * Always start from the end offset of the last range cleared.
5792 * This is because the readahead code may (and very often does)
5793 * reads pages beyond the range we request for readahead. So if
5794 * we have an extent layout like this:
5795 *
5796 * [ extent A ] [ extent B ] [ extent C ]
5797 *
5798 * When we ask page_cache_sync_readahead() to read extent A, it
5799 * may also trigger reads for pages of extent B. If we are doing
5800 * an incremental send and extent B has not changed between the
5801 * parent and send snapshots, some or all of its pages may end
5802 * up being read and placed in the page cache. So when truncating
5803 * the page cache we always start from the end offset of the
5804 * previously processed extent up to the end of the current
5805 * extent.
5806 */
5807 truncate_inode_pages_range(&sctx->cur_inode->i_data,
5808 sctx->page_cache_clear_start,
5809 end - 1);
5810 sctx->page_cache_clear_start = end;
5811 }
5812
5813 return 0;
5814 }
5815
5816 /*
5817 * Search for a capability xattr related to sctx->cur_ino. If the capability is
5818 * found, call send_set_xattr function to emit it.
5819 *
5820 * Return 0 if there isn't a capability, or when the capability was emitted
5821 * successfully, or < 0 if an error occurred.
5822 */
send_capabilities(struct send_ctx * sctx)5823 static int send_capabilities(struct send_ctx *sctx)
5824 {
5825 struct fs_path *fspath = NULL;
5826 struct btrfs_path *path;
5827 struct btrfs_dir_item *di;
5828 struct extent_buffer *leaf;
5829 unsigned long data_ptr;
5830 char *buf = NULL;
5831 int buf_len;
5832 int ret = 0;
5833
5834 path = alloc_path_for_send();
5835 if (!path)
5836 return -ENOMEM;
5837
5838 di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
5839 XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
5840 if (!di) {
5841 /* There is no xattr for this inode */
5842 goto out;
5843 } else if (IS_ERR(di)) {
5844 ret = PTR_ERR(di);
5845 goto out;
5846 }
5847
5848 leaf = path->nodes[0];
5849 buf_len = btrfs_dir_data_len(leaf, di);
5850
5851 fspath = fs_path_alloc();
5852 buf = kmalloc(buf_len, GFP_KERNEL);
5853 if (!fspath || !buf) {
5854 ret = -ENOMEM;
5855 goto out;
5856 }
5857
5858 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5859 if (ret < 0)
5860 goto out;
5861
5862 data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
5863 read_extent_buffer(leaf, buf, data_ptr, buf_len);
5864
5865 ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS,
5866 strlen(XATTR_NAME_CAPS), buf, buf_len);
5867 out:
5868 kfree(buf);
5869 fs_path_free(fspath);
5870 btrfs_free_path(path);
5871 return ret;
5872 }
5873
clone_range(struct send_ctx * sctx,struct btrfs_path * dst_path,struct clone_root * clone_root,const u64 disk_byte,u64 data_offset,u64 offset,u64 len)5874 static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path,
5875 struct clone_root *clone_root, const u64 disk_byte,
5876 u64 data_offset, u64 offset, u64 len)
5877 {
5878 struct btrfs_path *path;
5879 struct btrfs_key key;
5880 int ret;
5881 struct btrfs_inode_info info;
5882 u64 clone_src_i_size = 0;
5883
5884 /*
5885 * Prevent cloning from a zero offset with a length matching the sector
5886 * size because in some scenarios this will make the receiver fail.
5887 *
5888 * For example, if in the source filesystem the extent at offset 0
5889 * has a length of sectorsize and it was written using direct IO, then
5890 * it can never be an inline extent (even if compression is enabled).
5891 * Then this extent can be cloned in the original filesystem to a non
5892 * zero file offset, but it may not be possible to clone in the
5893 * destination filesystem because it can be inlined due to compression
5894 * on the destination filesystem (as the receiver's write operations are
5895 * always done using buffered IO). The same happens when the original
5896 * filesystem does not have compression enabled but the destination
5897 * filesystem has.
5898 */
5899 if (clone_root->offset == 0 &&
5900 len == sctx->send_root->fs_info->sectorsize)
5901 return send_extent_data(sctx, dst_path, offset, len);
5902
5903 path = alloc_path_for_send();
5904 if (!path)
5905 return -ENOMEM;
5906
5907 /*
5908 * There are inodes that have extents that lie behind its i_size. Don't
5909 * accept clones from these extents.
5910 */
5911 ret = get_inode_info(clone_root->root, clone_root->ino, &info);
5912 btrfs_release_path(path);
5913 if (ret < 0)
5914 goto out;
5915 clone_src_i_size = info.size;
5916
5917 /*
5918 * We can't send a clone operation for the entire range if we find
5919 * extent items in the respective range in the source file that
5920 * refer to different extents or if we find holes.
5921 * So check for that and do a mix of clone and regular write/copy
5922 * operations if needed.
5923 *
5924 * Example:
5925 *
5926 * mkfs.btrfs -f /dev/sda
5927 * mount /dev/sda /mnt
5928 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5929 * cp --reflink=always /mnt/foo /mnt/bar
5930 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5931 * btrfs subvolume snapshot -r /mnt /mnt/snap
5932 *
5933 * If when we send the snapshot and we are processing file bar (which
5934 * has a higher inode number than foo) we blindly send a clone operation
5935 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5936 * a file bar that matches the content of file foo - iow, doesn't match
5937 * the content from bar in the original filesystem.
5938 */
5939 key.objectid = clone_root->ino;
5940 key.type = BTRFS_EXTENT_DATA_KEY;
5941 key.offset = clone_root->offset;
5942 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5943 if (ret < 0)
5944 goto out;
5945 if (ret > 0 && path->slots[0] > 0) {
5946 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5947 if (key.objectid == clone_root->ino &&
5948 key.type == BTRFS_EXTENT_DATA_KEY)
5949 path->slots[0]--;
5950 }
5951
5952 while (true) {
5953 struct extent_buffer *leaf = path->nodes[0];
5954 int slot = path->slots[0];
5955 struct btrfs_file_extent_item *ei;
5956 u8 type;
5957 u64 ext_len;
5958 u64 clone_len;
5959 u64 clone_data_offset;
5960 bool crossed_src_i_size = false;
5961
5962 if (slot >= btrfs_header_nritems(leaf)) {
5963 ret = btrfs_next_leaf(clone_root->root, path);
5964 if (ret < 0)
5965 goto out;
5966 else if (ret > 0)
5967 break;
5968 continue;
5969 }
5970
5971 btrfs_item_key_to_cpu(leaf, &key, slot);
5972
5973 /*
5974 * We might have an implicit trailing hole (NO_HOLES feature
5975 * enabled). We deal with it after leaving this loop.
5976 */
5977 if (key.objectid != clone_root->ino ||
5978 key.type != BTRFS_EXTENT_DATA_KEY)
5979 break;
5980
5981 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5982 type = btrfs_file_extent_type(leaf, ei);
5983 if (type == BTRFS_FILE_EXTENT_INLINE) {
5984 ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5985 ext_len = PAGE_ALIGN(ext_len);
5986 } else {
5987 ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5988 }
5989
5990 if (key.offset + ext_len <= clone_root->offset)
5991 goto next;
5992
5993 if (key.offset > clone_root->offset) {
5994 /* Implicit hole, NO_HOLES feature enabled. */
5995 u64 hole_len = key.offset - clone_root->offset;
5996
5997 if (hole_len > len)
5998 hole_len = len;
5999 ret = send_extent_data(sctx, dst_path, offset,
6000 hole_len);
6001 if (ret < 0)
6002 goto out;
6003
6004 len -= hole_len;
6005 if (len == 0)
6006 break;
6007 offset += hole_len;
6008 clone_root->offset += hole_len;
6009 data_offset += hole_len;
6010 }
6011
6012 if (key.offset >= clone_root->offset + len)
6013 break;
6014
6015 if (key.offset >= clone_src_i_size)
6016 break;
6017
6018 if (key.offset + ext_len > clone_src_i_size) {
6019 ext_len = clone_src_i_size - key.offset;
6020 crossed_src_i_size = true;
6021 }
6022
6023 clone_data_offset = btrfs_file_extent_offset(leaf, ei);
6024 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
6025 clone_root->offset = key.offset;
6026 if (clone_data_offset < data_offset &&
6027 clone_data_offset + ext_len > data_offset) {
6028 u64 extent_offset;
6029
6030 extent_offset = data_offset - clone_data_offset;
6031 ext_len -= extent_offset;
6032 clone_data_offset += extent_offset;
6033 clone_root->offset += extent_offset;
6034 }
6035 }
6036
6037 clone_len = min_t(u64, ext_len, len);
6038
6039 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
6040 clone_data_offset == data_offset) {
6041 const u64 src_end = clone_root->offset + clone_len;
6042 const u64 sectorsize = SZ_64K;
6043
6044 /*
6045 * We can't clone the last block, when its size is not
6046 * sector size aligned, into the middle of a file. If we
6047 * do so, the receiver will get a failure (-EINVAL) when
6048 * trying to clone or will silently corrupt the data in
6049 * the destination file if it's on a kernel without the
6050 * fix introduced by commit ac765f83f1397646
6051 * ("Btrfs: fix data corruption due to cloning of eof
6052 * block).
6053 *
6054 * So issue a clone of the aligned down range plus a
6055 * regular write for the eof block, if we hit that case.
6056 *
6057 * Also, we use the maximum possible sector size, 64K,
6058 * because we don't know what's the sector size of the
6059 * filesystem that receives the stream, so we have to
6060 * assume the largest possible sector size.
6061 */
6062 if (src_end == clone_src_i_size &&
6063 !IS_ALIGNED(src_end, sectorsize) &&
6064 offset + clone_len < sctx->cur_inode_size) {
6065 u64 slen;
6066
6067 slen = ALIGN_DOWN(src_end - clone_root->offset,
6068 sectorsize);
6069 if (slen > 0) {
6070 ret = send_clone(sctx, offset, slen,
6071 clone_root);
6072 if (ret < 0)
6073 goto out;
6074 }
6075 ret = send_extent_data(sctx, dst_path,
6076 offset + slen,
6077 clone_len - slen);
6078 } else {
6079 ret = send_clone(sctx, offset, clone_len,
6080 clone_root);
6081 }
6082 } else if (crossed_src_i_size && clone_len < len) {
6083 /*
6084 * If we are at i_size of the clone source inode and we
6085 * can not clone from it, terminate the loop. This is
6086 * to avoid sending two write operations, one with a
6087 * length matching clone_len and the final one after
6088 * this loop with a length of len - clone_len.
6089 *
6090 * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED
6091 * was passed to the send ioctl), this helps avoid
6092 * sending an encoded write for an offset that is not
6093 * sector size aligned, in case the i_size of the source
6094 * inode is not sector size aligned. That will make the
6095 * receiver fallback to decompression of the data and
6096 * writing it using regular buffered IO, therefore while
6097 * not incorrect, it's not optimal due decompression and
6098 * possible re-compression at the receiver.
6099 */
6100 break;
6101 } else {
6102 ret = send_extent_data(sctx, dst_path, offset,
6103 clone_len);
6104 }
6105
6106 if (ret < 0)
6107 goto out;
6108
6109 len -= clone_len;
6110 if (len == 0)
6111 break;
6112 offset += clone_len;
6113 clone_root->offset += clone_len;
6114
6115 /*
6116 * If we are cloning from the file we are currently processing,
6117 * and using the send root as the clone root, we must stop once
6118 * the current clone offset reaches the current eof of the file
6119 * at the receiver, otherwise we would issue an invalid clone
6120 * operation (source range going beyond eof) and cause the
6121 * receiver to fail. So if we reach the current eof, bail out
6122 * and fallback to a regular write.
6123 */
6124 if (clone_root->root == sctx->send_root &&
6125 clone_root->ino == sctx->cur_ino &&
6126 clone_root->offset >= sctx->cur_inode_next_write_offset)
6127 break;
6128
6129 data_offset += clone_len;
6130 next:
6131 path->slots[0]++;
6132 }
6133
6134 if (len > 0)
6135 ret = send_extent_data(sctx, dst_path, offset, len);
6136 else
6137 ret = 0;
6138 out:
6139 btrfs_free_path(path);
6140 return ret;
6141 }
6142
send_write_or_clone(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key,struct clone_root * clone_root)6143 static int send_write_or_clone(struct send_ctx *sctx,
6144 struct btrfs_path *path,
6145 struct btrfs_key *key,
6146 struct clone_root *clone_root)
6147 {
6148 int ret = 0;
6149 u64 offset = key->offset;
6150 u64 end;
6151 u64 bs = sctx->send_root->fs_info->sectorsize;
6152 struct btrfs_file_extent_item *ei;
6153 u64 disk_byte;
6154 u64 data_offset;
6155 u64 num_bytes;
6156 struct btrfs_inode_info info = { 0 };
6157
6158 end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size);
6159 if (offset >= end)
6160 return 0;
6161
6162 num_bytes = end - offset;
6163
6164 if (!clone_root)
6165 goto write_data;
6166
6167 if (IS_ALIGNED(end, bs))
6168 goto clone_data;
6169
6170 /*
6171 * If the extent end is not aligned, we can clone if the extent ends at
6172 * the i_size of the inode and the clone range ends at the i_size of the
6173 * source inode, otherwise the clone operation fails with -EINVAL.
6174 */
6175 if (end != sctx->cur_inode_size)
6176 goto write_data;
6177
6178 ret = get_inode_info(clone_root->root, clone_root->ino, &info);
6179 if (ret < 0)
6180 return ret;
6181
6182 if (clone_root->offset + num_bytes == info.size) {
6183 /*
6184 * The final size of our file matches the end offset, but it may
6185 * be that its current size is larger, so we have to truncate it
6186 * to any value between the start offset of the range and the
6187 * final i_size, otherwise the clone operation is invalid
6188 * because it's unaligned and it ends before the current EOF.
6189 * We do this truncate to the final i_size when we finish
6190 * processing the inode, but it's too late by then. And here we
6191 * truncate to the start offset of the range because it's always
6192 * sector size aligned while if it were the final i_size it
6193 * would result in dirtying part of a page, filling part of a
6194 * page with zeroes and then having the clone operation at the
6195 * receiver trigger IO and wait for it due to the dirty page.
6196 */
6197 if (sctx->parent_root != NULL) {
6198 ret = send_truncate(sctx, sctx->cur_ino,
6199 sctx->cur_inode_gen, offset);
6200 if (ret < 0)
6201 return ret;
6202 }
6203 goto clone_data;
6204 }
6205
6206 write_data:
6207 ret = send_extent_data(sctx, path, offset, num_bytes);
6208 sctx->cur_inode_next_write_offset = end;
6209 return ret;
6210
6211 clone_data:
6212 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6213 struct btrfs_file_extent_item);
6214 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
6215 data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
6216 ret = clone_range(sctx, path, clone_root, disk_byte, data_offset, offset,
6217 num_bytes);
6218 sctx->cur_inode_next_write_offset = end;
6219 return ret;
6220 }
6221
is_extent_unchanged(struct send_ctx * sctx,struct btrfs_path * left_path,struct btrfs_key * ekey)6222 static int is_extent_unchanged(struct send_ctx *sctx,
6223 struct btrfs_path *left_path,
6224 struct btrfs_key *ekey)
6225 {
6226 int ret = 0;
6227 struct btrfs_key key;
6228 struct btrfs_path *path = NULL;
6229 struct extent_buffer *eb;
6230 int slot;
6231 struct btrfs_key found_key;
6232 struct btrfs_file_extent_item *ei;
6233 u64 left_disknr;
6234 u64 right_disknr;
6235 u64 left_offset;
6236 u64 right_offset;
6237 u64 left_offset_fixed;
6238 u64 left_len;
6239 u64 right_len;
6240 u64 left_gen;
6241 u64 right_gen;
6242 u8 left_type;
6243 u8 right_type;
6244
6245 path = alloc_path_for_send();
6246 if (!path)
6247 return -ENOMEM;
6248
6249 eb = left_path->nodes[0];
6250 slot = left_path->slots[0];
6251 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6252 left_type = btrfs_file_extent_type(eb, ei);
6253
6254 if (left_type != BTRFS_FILE_EXTENT_REG) {
6255 ret = 0;
6256 goto out;
6257 }
6258 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6259 left_len = btrfs_file_extent_num_bytes(eb, ei);
6260 left_offset = btrfs_file_extent_offset(eb, ei);
6261 left_gen = btrfs_file_extent_generation(eb, ei);
6262
6263 /*
6264 * Following comments will refer to these graphics. L is the left
6265 * extents which we are checking at the moment. 1-8 are the right
6266 * extents that we iterate.
6267 *
6268 * |-----L-----|
6269 * |-1-|-2a-|-3-|-4-|-5-|-6-|
6270 *
6271 * |-----L-----|
6272 * |--1--|-2b-|...(same as above)
6273 *
6274 * Alternative situation. Happens on files where extents got split.
6275 * |-----L-----|
6276 * |-----------7-----------|-6-|
6277 *
6278 * Alternative situation. Happens on files which got larger.
6279 * |-----L-----|
6280 * |-8-|
6281 * Nothing follows after 8.
6282 */
6283
6284 key.objectid = ekey->objectid;
6285 key.type = BTRFS_EXTENT_DATA_KEY;
6286 key.offset = ekey->offset;
6287 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
6288 if (ret < 0)
6289 goto out;
6290 if (ret) {
6291 ret = 0;
6292 goto out;
6293 }
6294
6295 /*
6296 * Handle special case where the right side has no extents at all.
6297 */
6298 eb = path->nodes[0];
6299 slot = path->slots[0];
6300 btrfs_item_key_to_cpu(eb, &found_key, slot);
6301 if (found_key.objectid != key.objectid ||
6302 found_key.type != key.type) {
6303 /* If we're a hole then just pretend nothing changed */
6304 ret = (left_disknr) ? 0 : 1;
6305 goto out;
6306 }
6307
6308 /*
6309 * We're now on 2a, 2b or 7.
6310 */
6311 key = found_key;
6312 while (key.offset < ekey->offset + left_len) {
6313 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6314 right_type = btrfs_file_extent_type(eb, ei);
6315 if (right_type != BTRFS_FILE_EXTENT_REG &&
6316 right_type != BTRFS_FILE_EXTENT_INLINE) {
6317 ret = 0;
6318 goto out;
6319 }
6320
6321 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6322 right_len = btrfs_file_extent_ram_bytes(eb, ei);
6323 right_len = PAGE_ALIGN(right_len);
6324 } else {
6325 right_len = btrfs_file_extent_num_bytes(eb, ei);
6326 }
6327
6328 /*
6329 * Are we at extent 8? If yes, we know the extent is changed.
6330 * This may only happen on the first iteration.
6331 */
6332 if (found_key.offset + right_len <= ekey->offset) {
6333 /* If we're a hole just pretend nothing changed */
6334 ret = (left_disknr) ? 0 : 1;
6335 goto out;
6336 }
6337
6338 /*
6339 * We just wanted to see if when we have an inline extent, what
6340 * follows it is a regular extent (wanted to check the above
6341 * condition for inline extents too). This should normally not
6342 * happen but it's possible for example when we have an inline
6343 * compressed extent representing data with a size matching
6344 * the page size (currently the same as sector size).
6345 */
6346 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6347 ret = 0;
6348 goto out;
6349 }
6350
6351 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6352 right_offset = btrfs_file_extent_offset(eb, ei);
6353 right_gen = btrfs_file_extent_generation(eb, ei);
6354
6355 left_offset_fixed = left_offset;
6356 if (key.offset < ekey->offset) {
6357 /* Fix the right offset for 2a and 7. */
6358 right_offset += ekey->offset - key.offset;
6359 } else {
6360 /* Fix the left offset for all behind 2a and 2b */
6361 left_offset_fixed += key.offset - ekey->offset;
6362 }
6363
6364 /*
6365 * Check if we have the same extent.
6366 */
6367 if (left_disknr != right_disknr ||
6368 left_offset_fixed != right_offset ||
6369 left_gen != right_gen) {
6370 ret = 0;
6371 goto out;
6372 }
6373
6374 /*
6375 * Go to the next extent.
6376 */
6377 ret = btrfs_next_item(sctx->parent_root, path);
6378 if (ret < 0)
6379 goto out;
6380 if (!ret) {
6381 eb = path->nodes[0];
6382 slot = path->slots[0];
6383 btrfs_item_key_to_cpu(eb, &found_key, slot);
6384 }
6385 if (ret || found_key.objectid != key.objectid ||
6386 found_key.type != key.type) {
6387 key.offset += right_len;
6388 break;
6389 }
6390 if (found_key.offset != key.offset + right_len) {
6391 ret = 0;
6392 goto out;
6393 }
6394 key = found_key;
6395 }
6396
6397 /*
6398 * We're now behind the left extent (treat as unchanged) or at the end
6399 * of the right side (treat as changed).
6400 */
6401 if (key.offset >= ekey->offset + left_len)
6402 ret = 1;
6403 else
6404 ret = 0;
6405
6406
6407 out:
6408 btrfs_free_path(path);
6409 return ret;
6410 }
6411
get_last_extent(struct send_ctx * sctx,u64 offset)6412 static int get_last_extent(struct send_ctx *sctx, u64 offset)
6413 {
6414 struct btrfs_path *path;
6415 struct btrfs_root *root = sctx->send_root;
6416 struct btrfs_key key;
6417 int ret;
6418
6419 path = alloc_path_for_send();
6420 if (!path)
6421 return -ENOMEM;
6422
6423 sctx->cur_inode_last_extent = 0;
6424
6425 key.objectid = sctx->cur_ino;
6426 key.type = BTRFS_EXTENT_DATA_KEY;
6427 key.offset = offset;
6428 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
6429 if (ret < 0)
6430 goto out;
6431 ret = 0;
6432 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
6433 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
6434 goto out;
6435
6436 sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6437 out:
6438 btrfs_free_path(path);
6439 return ret;
6440 }
6441
range_is_hole_in_parent(struct send_ctx * sctx,const u64 start,const u64 end)6442 static int range_is_hole_in_parent(struct send_ctx *sctx,
6443 const u64 start,
6444 const u64 end)
6445 {
6446 struct btrfs_path *path;
6447 struct btrfs_key key;
6448 struct btrfs_root *root = sctx->parent_root;
6449 u64 search_start = start;
6450 int ret;
6451
6452 path = alloc_path_for_send();
6453 if (!path)
6454 return -ENOMEM;
6455
6456 key.objectid = sctx->cur_ino;
6457 key.type = BTRFS_EXTENT_DATA_KEY;
6458 key.offset = search_start;
6459 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6460 if (ret < 0)
6461 goto out;
6462 if (ret > 0 && path->slots[0] > 0)
6463 path->slots[0]--;
6464
6465 while (search_start < end) {
6466 struct extent_buffer *leaf = path->nodes[0];
6467 int slot = path->slots[0];
6468 struct btrfs_file_extent_item *fi;
6469 u64 extent_end;
6470
6471 if (slot >= btrfs_header_nritems(leaf)) {
6472 ret = btrfs_next_leaf(root, path);
6473 if (ret < 0)
6474 goto out;
6475 else if (ret > 0)
6476 break;
6477 continue;
6478 }
6479
6480 btrfs_item_key_to_cpu(leaf, &key, slot);
6481 if (key.objectid < sctx->cur_ino ||
6482 key.type < BTRFS_EXTENT_DATA_KEY)
6483 goto next;
6484 if (key.objectid > sctx->cur_ino ||
6485 key.type > BTRFS_EXTENT_DATA_KEY ||
6486 key.offset >= end)
6487 break;
6488
6489 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6490 extent_end = btrfs_file_extent_end(path);
6491 if (extent_end <= start)
6492 goto next;
6493 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
6494 search_start = extent_end;
6495 goto next;
6496 }
6497 ret = 0;
6498 goto out;
6499 next:
6500 path->slots[0]++;
6501 }
6502 ret = 1;
6503 out:
6504 btrfs_free_path(path);
6505 return ret;
6506 }
6507
maybe_send_hole(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)6508 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
6509 struct btrfs_key *key)
6510 {
6511 int ret = 0;
6512
6513 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
6514 return 0;
6515
6516 /*
6517 * Get last extent's end offset (exclusive) if we haven't determined it
6518 * yet (we're processing the first file extent item that is new), or if
6519 * we're at the first slot of a leaf and the last extent's end is less
6520 * than the current extent's offset, because we might have skipped
6521 * entire leaves that contained only file extent items for our current
6522 * inode. These leaves have a generation number smaller (older) than the
6523 * one in the current leaf and the leaf our last extent came from, and
6524 * are located between these 2 leaves.
6525 */
6526 if ((sctx->cur_inode_last_extent == (u64)-1) ||
6527 (path->slots[0] == 0 && sctx->cur_inode_last_extent < key->offset)) {
6528 ret = get_last_extent(sctx, key->offset - 1);
6529 if (ret)
6530 return ret;
6531 }
6532
6533 if (sctx->cur_inode_last_extent < key->offset) {
6534 ret = range_is_hole_in_parent(sctx,
6535 sctx->cur_inode_last_extent,
6536 key->offset);
6537 if (ret < 0)
6538 return ret;
6539 else if (ret == 0)
6540 ret = send_hole(sctx, key->offset);
6541 else
6542 ret = 0;
6543 }
6544 sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6545 return ret;
6546 }
6547
process_extent(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)6548 static int process_extent(struct send_ctx *sctx,
6549 struct btrfs_path *path,
6550 struct btrfs_key *key)
6551 {
6552 struct clone_root *found_clone = NULL;
6553 int ret = 0;
6554
6555 if (S_ISLNK(sctx->cur_inode_mode))
6556 return 0;
6557
6558 if (sctx->parent_root && !sctx->cur_inode_new) {
6559 ret = is_extent_unchanged(sctx, path, key);
6560 if (ret < 0)
6561 goto out;
6562 if (ret) {
6563 ret = 0;
6564 goto out_hole;
6565 }
6566 } else {
6567 struct btrfs_file_extent_item *ei;
6568 u8 type;
6569
6570 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6571 struct btrfs_file_extent_item);
6572 type = btrfs_file_extent_type(path->nodes[0], ei);
6573 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
6574 type == BTRFS_FILE_EXTENT_REG) {
6575 /*
6576 * The send spec does not have a prealloc command yet,
6577 * so just leave a hole for prealloc'ed extents until
6578 * we have enough commands queued up to justify rev'ing
6579 * the send spec.
6580 */
6581 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
6582 ret = 0;
6583 goto out;
6584 }
6585
6586 /* Have a hole, just skip it. */
6587 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
6588 ret = 0;
6589 goto out;
6590 }
6591 }
6592 }
6593
6594 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
6595 sctx->cur_inode_size, &found_clone);
6596 if (ret != -ENOENT && ret < 0)
6597 goto out;
6598
6599 ret = send_write_or_clone(sctx, path, key, found_clone);
6600 if (ret)
6601 goto out;
6602 out_hole:
6603 ret = maybe_send_hole(sctx, path, key);
6604 out:
6605 return ret;
6606 }
6607
process_all_extents(struct send_ctx * sctx)6608 static int process_all_extents(struct send_ctx *sctx)
6609 {
6610 int ret = 0;
6611 int iter_ret = 0;
6612 struct btrfs_root *root;
6613 struct btrfs_path *path;
6614 struct btrfs_key key;
6615 struct btrfs_key found_key;
6616
6617 root = sctx->send_root;
6618 path = alloc_path_for_send();
6619 if (!path)
6620 return -ENOMEM;
6621
6622 key.objectid = sctx->cmp_key->objectid;
6623 key.type = BTRFS_EXTENT_DATA_KEY;
6624 key.offset = 0;
6625 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
6626 if (found_key.objectid != key.objectid ||
6627 found_key.type != key.type) {
6628 ret = 0;
6629 break;
6630 }
6631
6632 ret = process_extent(sctx, path, &found_key);
6633 if (ret < 0)
6634 break;
6635 }
6636 /* Catch error found during iteration */
6637 if (iter_ret < 0)
6638 ret = iter_ret;
6639
6640 btrfs_free_path(path);
6641 return ret;
6642 }
6643
process_recorded_refs_if_needed(struct send_ctx * sctx,int at_end,int * pending_move,int * refs_processed)6644 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
6645 int *pending_move,
6646 int *refs_processed)
6647 {
6648 int ret = 0;
6649
6650 if (sctx->cur_ino == 0)
6651 goto out;
6652 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
6653 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
6654 goto out;
6655 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
6656 goto out;
6657
6658 ret = process_recorded_refs(sctx, pending_move);
6659 if (ret < 0)
6660 goto out;
6661
6662 *refs_processed = 1;
6663 out:
6664 return ret;
6665 }
6666
finish_inode_if_needed(struct send_ctx * sctx,int at_end)6667 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
6668 {
6669 int ret = 0;
6670 struct btrfs_inode_info info;
6671 u64 left_mode;
6672 u64 left_uid;
6673 u64 left_gid;
6674 u64 left_fileattr;
6675 u64 right_mode;
6676 u64 right_uid;
6677 u64 right_gid;
6678 u64 right_fileattr;
6679 int need_chmod = 0;
6680 int need_chown = 0;
6681 bool need_fileattr = false;
6682 int need_truncate = 1;
6683 int pending_move = 0;
6684 int refs_processed = 0;
6685
6686 if (sctx->ignore_cur_inode)
6687 return 0;
6688
6689 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
6690 &refs_processed);
6691 if (ret < 0)
6692 goto out;
6693
6694 /*
6695 * We have processed the refs and thus need to advance send_progress.
6696 * Now, calls to get_cur_xxx will take the updated refs of the current
6697 * inode into account.
6698 *
6699 * On the other hand, if our current inode is a directory and couldn't
6700 * be moved/renamed because its parent was renamed/moved too and it has
6701 * a higher inode number, we can only move/rename our current inode
6702 * after we moved/renamed its parent. Therefore in this case operate on
6703 * the old path (pre move/rename) of our current inode, and the
6704 * move/rename will be performed later.
6705 */
6706 if (refs_processed && !pending_move)
6707 sctx->send_progress = sctx->cur_ino + 1;
6708
6709 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
6710 goto out;
6711 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
6712 goto out;
6713 ret = get_inode_info(sctx->send_root, sctx->cur_ino, &info);
6714 if (ret < 0)
6715 goto out;
6716 left_mode = info.mode;
6717 left_uid = info.uid;
6718 left_gid = info.gid;
6719 left_fileattr = info.fileattr;
6720
6721 if (!sctx->parent_root || sctx->cur_inode_new) {
6722 need_chown = 1;
6723 if (!S_ISLNK(sctx->cur_inode_mode))
6724 need_chmod = 1;
6725 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
6726 need_truncate = 0;
6727 } else {
6728 u64 old_size;
6729
6730 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, &info);
6731 if (ret < 0)
6732 goto out;
6733 old_size = info.size;
6734 right_mode = info.mode;
6735 right_uid = info.uid;
6736 right_gid = info.gid;
6737 right_fileattr = info.fileattr;
6738
6739 if (left_uid != right_uid || left_gid != right_gid)
6740 need_chown = 1;
6741 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
6742 need_chmod = 1;
6743 if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr)
6744 need_fileattr = true;
6745 if ((old_size == sctx->cur_inode_size) ||
6746 (sctx->cur_inode_size > old_size &&
6747 sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
6748 need_truncate = 0;
6749 }
6750
6751 if (S_ISREG(sctx->cur_inode_mode)) {
6752 if (need_send_hole(sctx)) {
6753 if (sctx->cur_inode_last_extent == (u64)-1 ||
6754 sctx->cur_inode_last_extent <
6755 sctx->cur_inode_size) {
6756 ret = get_last_extent(sctx, (u64)-1);
6757 if (ret)
6758 goto out;
6759 }
6760 if (sctx->cur_inode_last_extent < sctx->cur_inode_size) {
6761 ret = range_is_hole_in_parent(sctx,
6762 sctx->cur_inode_last_extent,
6763 sctx->cur_inode_size);
6764 if (ret < 0) {
6765 goto out;
6766 } else if (ret == 0) {
6767 ret = send_hole(sctx, sctx->cur_inode_size);
6768 if (ret < 0)
6769 goto out;
6770 } else {
6771 /* Range is already a hole, skip. */
6772 ret = 0;
6773 }
6774 }
6775 }
6776 if (need_truncate) {
6777 ret = send_truncate(sctx, sctx->cur_ino,
6778 sctx->cur_inode_gen,
6779 sctx->cur_inode_size);
6780 if (ret < 0)
6781 goto out;
6782 }
6783 }
6784
6785 if (need_chown) {
6786 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6787 left_uid, left_gid);
6788 if (ret < 0)
6789 goto out;
6790 }
6791 if (need_chmod) {
6792 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6793 left_mode);
6794 if (ret < 0)
6795 goto out;
6796 }
6797 if (need_fileattr) {
6798 ret = send_fileattr(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6799 left_fileattr);
6800 if (ret < 0)
6801 goto out;
6802 }
6803
6804 if (proto_cmd_ok(sctx, BTRFS_SEND_C_ENABLE_VERITY)
6805 && sctx->cur_inode_needs_verity) {
6806 ret = process_verity(sctx);
6807 if (ret < 0)
6808 goto out;
6809 }
6810
6811 ret = send_capabilities(sctx);
6812 if (ret < 0)
6813 goto out;
6814
6815 /*
6816 * If other directory inodes depended on our current directory
6817 * inode's move/rename, now do their move/rename operations.
6818 */
6819 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6820 ret = apply_children_dir_moves(sctx);
6821 if (ret)
6822 goto out;
6823 /*
6824 * Need to send that every time, no matter if it actually
6825 * changed between the two trees as we have done changes to
6826 * the inode before. If our inode is a directory and it's
6827 * waiting to be moved/renamed, we will send its utimes when
6828 * it's moved/renamed, therefore we don't need to do it here.
6829 */
6830 sctx->send_progress = sctx->cur_ino + 1;
6831
6832 /*
6833 * If the current inode is a non-empty directory, delay issuing
6834 * the utimes command for it, as it's very likely we have inodes
6835 * with an higher number inside it. We want to issue the utimes
6836 * command only after adding all dentries to it.
6837 */
6838 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_size > 0)
6839 ret = cache_dir_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6840 else
6841 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6842
6843 if (ret < 0)
6844 goto out;
6845 }
6846
6847 out:
6848 if (!ret)
6849 ret = trim_dir_utimes_cache(sctx);
6850
6851 return ret;
6852 }
6853
close_current_inode(struct send_ctx * sctx)6854 static void close_current_inode(struct send_ctx *sctx)
6855 {
6856 u64 i_size;
6857
6858 if (sctx->cur_inode == NULL)
6859 return;
6860
6861 i_size = i_size_read(sctx->cur_inode);
6862
6863 /*
6864 * If we are doing an incremental send, we may have extents between the
6865 * last processed extent and the i_size that have not been processed
6866 * because they haven't changed but we may have read some of their pages
6867 * through readahead, see the comments at send_extent_data().
6868 */
6869 if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size)
6870 truncate_inode_pages_range(&sctx->cur_inode->i_data,
6871 sctx->page_cache_clear_start,
6872 round_up(i_size, PAGE_SIZE) - 1);
6873
6874 iput(sctx->cur_inode);
6875 sctx->cur_inode = NULL;
6876 }
6877
changed_inode(struct send_ctx * sctx,enum btrfs_compare_tree_result result)6878 static int changed_inode(struct send_ctx *sctx,
6879 enum btrfs_compare_tree_result result)
6880 {
6881 int ret = 0;
6882 struct btrfs_key *key = sctx->cmp_key;
6883 struct btrfs_inode_item *left_ii = NULL;
6884 struct btrfs_inode_item *right_ii = NULL;
6885 u64 left_gen = 0;
6886 u64 right_gen = 0;
6887
6888 close_current_inode(sctx);
6889
6890 sctx->cur_ino = key->objectid;
6891 sctx->cur_inode_new_gen = false;
6892 sctx->cur_inode_last_extent = (u64)-1;
6893 sctx->cur_inode_next_write_offset = 0;
6894 sctx->ignore_cur_inode = false;
6895
6896 /*
6897 * Set send_progress to current inode. This will tell all get_cur_xxx
6898 * functions that the current inode's refs are not updated yet. Later,
6899 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6900 */
6901 sctx->send_progress = sctx->cur_ino;
6902
6903 if (result == BTRFS_COMPARE_TREE_NEW ||
6904 result == BTRFS_COMPARE_TREE_CHANGED) {
6905 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6906 sctx->left_path->slots[0],
6907 struct btrfs_inode_item);
6908 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6909 left_ii);
6910 } else {
6911 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6912 sctx->right_path->slots[0],
6913 struct btrfs_inode_item);
6914 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6915 right_ii);
6916 }
6917 if (result == BTRFS_COMPARE_TREE_CHANGED) {
6918 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6919 sctx->right_path->slots[0],
6920 struct btrfs_inode_item);
6921
6922 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6923 right_ii);
6924
6925 /*
6926 * The cur_ino = root dir case is special here. We can't treat
6927 * the inode as deleted+reused because it would generate a
6928 * stream that tries to delete/mkdir the root dir.
6929 */
6930 if (left_gen != right_gen &&
6931 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6932 sctx->cur_inode_new_gen = true;
6933 }
6934
6935 /*
6936 * Normally we do not find inodes with a link count of zero (orphans)
6937 * because the most common case is to create a snapshot and use it
6938 * for a send operation. However other less common use cases involve
6939 * using a subvolume and send it after turning it to RO mode just
6940 * after deleting all hard links of a file while holding an open
6941 * file descriptor against it or turning a RO snapshot into RW mode,
6942 * keep an open file descriptor against a file, delete it and then
6943 * turn the snapshot back to RO mode before using it for a send
6944 * operation. The former is what the receiver operation does.
6945 * Therefore, if we want to send these snapshots soon after they're
6946 * received, we need to handle orphan inodes as well. Moreover, orphans
6947 * can appear not only in the send snapshot but also in the parent
6948 * snapshot. Here are several cases:
6949 *
6950 * Case 1: BTRFS_COMPARE_TREE_NEW
6951 * | send snapshot | action
6952 * --------------------------------
6953 * nlink | 0 | ignore
6954 *
6955 * Case 2: BTRFS_COMPARE_TREE_DELETED
6956 * | parent snapshot | action
6957 * ----------------------------------
6958 * nlink | 0 | as usual
6959 * Note: No unlinks will be sent because there're no paths for it.
6960 *
6961 * Case 3: BTRFS_COMPARE_TREE_CHANGED
6962 * | | parent snapshot | send snapshot | action
6963 * -----------------------------------------------------------------------
6964 * subcase 1 | nlink | 0 | 0 | ignore
6965 * subcase 2 | nlink | >0 | 0 | new_gen(deletion)
6966 * subcase 3 | nlink | 0 | >0 | new_gen(creation)
6967 *
6968 */
6969 if (result == BTRFS_COMPARE_TREE_NEW) {
6970 if (btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii) == 0) {
6971 sctx->ignore_cur_inode = true;
6972 goto out;
6973 }
6974 sctx->cur_inode_gen = left_gen;
6975 sctx->cur_inode_new = true;
6976 sctx->cur_inode_deleted = false;
6977 sctx->cur_inode_size = btrfs_inode_size(
6978 sctx->left_path->nodes[0], left_ii);
6979 sctx->cur_inode_mode = btrfs_inode_mode(
6980 sctx->left_path->nodes[0], left_ii);
6981 sctx->cur_inode_rdev = btrfs_inode_rdev(
6982 sctx->left_path->nodes[0], left_ii);
6983 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6984 ret = send_create_inode_if_needed(sctx);
6985 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
6986 sctx->cur_inode_gen = right_gen;
6987 sctx->cur_inode_new = false;
6988 sctx->cur_inode_deleted = true;
6989 sctx->cur_inode_size = btrfs_inode_size(
6990 sctx->right_path->nodes[0], right_ii);
6991 sctx->cur_inode_mode = btrfs_inode_mode(
6992 sctx->right_path->nodes[0], right_ii);
6993 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
6994 u32 new_nlinks, old_nlinks;
6995
6996 new_nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6997 old_nlinks = btrfs_inode_nlink(sctx->right_path->nodes[0], right_ii);
6998 if (new_nlinks == 0 && old_nlinks == 0) {
6999 sctx->ignore_cur_inode = true;
7000 goto out;
7001 } else if (new_nlinks == 0 || old_nlinks == 0) {
7002 sctx->cur_inode_new_gen = 1;
7003 }
7004 /*
7005 * We need to do some special handling in case the inode was
7006 * reported as changed with a changed generation number. This
7007 * means that the original inode was deleted and new inode
7008 * reused the same inum. So we have to treat the old inode as
7009 * deleted and the new one as new.
7010 */
7011 if (sctx->cur_inode_new_gen) {
7012 /*
7013 * First, process the inode as if it was deleted.
7014 */
7015 if (old_nlinks > 0) {
7016 sctx->cur_inode_gen = right_gen;
7017 sctx->cur_inode_new = false;
7018 sctx->cur_inode_deleted = true;
7019 sctx->cur_inode_size = btrfs_inode_size(
7020 sctx->right_path->nodes[0], right_ii);
7021 sctx->cur_inode_mode = btrfs_inode_mode(
7022 sctx->right_path->nodes[0], right_ii);
7023 ret = process_all_refs(sctx,
7024 BTRFS_COMPARE_TREE_DELETED);
7025 if (ret < 0)
7026 goto out;
7027 }
7028
7029 /*
7030 * Now process the inode as if it was new.
7031 */
7032 if (new_nlinks > 0) {
7033 sctx->cur_inode_gen = left_gen;
7034 sctx->cur_inode_new = true;
7035 sctx->cur_inode_deleted = false;
7036 sctx->cur_inode_size = btrfs_inode_size(
7037 sctx->left_path->nodes[0],
7038 left_ii);
7039 sctx->cur_inode_mode = btrfs_inode_mode(
7040 sctx->left_path->nodes[0],
7041 left_ii);
7042 sctx->cur_inode_rdev = btrfs_inode_rdev(
7043 sctx->left_path->nodes[0],
7044 left_ii);
7045 ret = send_create_inode_if_needed(sctx);
7046 if (ret < 0)
7047 goto out;
7048
7049 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
7050 if (ret < 0)
7051 goto out;
7052 /*
7053 * Advance send_progress now as we did not get
7054 * into process_recorded_refs_if_needed in the
7055 * new_gen case.
7056 */
7057 sctx->send_progress = sctx->cur_ino + 1;
7058
7059 /*
7060 * Now process all extents and xattrs of the
7061 * inode as if they were all new.
7062 */
7063 ret = process_all_extents(sctx);
7064 if (ret < 0)
7065 goto out;
7066 ret = process_all_new_xattrs(sctx);
7067 if (ret < 0)
7068 goto out;
7069 }
7070 } else {
7071 sctx->cur_inode_gen = left_gen;
7072 sctx->cur_inode_new = false;
7073 sctx->cur_inode_new_gen = false;
7074 sctx->cur_inode_deleted = false;
7075 sctx->cur_inode_size = btrfs_inode_size(
7076 sctx->left_path->nodes[0], left_ii);
7077 sctx->cur_inode_mode = btrfs_inode_mode(
7078 sctx->left_path->nodes[0], left_ii);
7079 }
7080 }
7081
7082 out:
7083 return ret;
7084 }
7085
7086 /*
7087 * We have to process new refs before deleted refs, but compare_trees gives us
7088 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
7089 * first and later process them in process_recorded_refs.
7090 * For the cur_inode_new_gen case, we skip recording completely because
7091 * changed_inode did already initiate processing of refs. The reason for this is
7092 * that in this case, compare_tree actually compares the refs of 2 different
7093 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
7094 * refs of the right tree as deleted and all refs of the left tree as new.
7095 */
changed_ref(struct send_ctx * sctx,enum btrfs_compare_tree_result result)7096 static int changed_ref(struct send_ctx *sctx,
7097 enum btrfs_compare_tree_result result)
7098 {
7099 int ret = 0;
7100
7101 if (sctx->cur_ino != sctx->cmp_key->objectid) {
7102 inconsistent_snapshot_error(sctx, result, "reference");
7103 return -EIO;
7104 }
7105
7106 if (!sctx->cur_inode_new_gen &&
7107 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
7108 if (result == BTRFS_COMPARE_TREE_NEW)
7109 ret = record_new_ref(sctx);
7110 else if (result == BTRFS_COMPARE_TREE_DELETED)
7111 ret = record_deleted_ref(sctx);
7112 else if (result == BTRFS_COMPARE_TREE_CHANGED)
7113 ret = record_changed_ref(sctx);
7114 }
7115
7116 return ret;
7117 }
7118
7119 /*
7120 * Process new/deleted/changed xattrs. We skip processing in the
7121 * cur_inode_new_gen case because changed_inode did already initiate processing
7122 * of xattrs. The reason is the same as in changed_ref
7123 */
changed_xattr(struct send_ctx * sctx,enum btrfs_compare_tree_result result)7124 static int changed_xattr(struct send_ctx *sctx,
7125 enum btrfs_compare_tree_result result)
7126 {
7127 int ret = 0;
7128
7129 if (sctx->cur_ino != sctx->cmp_key->objectid) {
7130 inconsistent_snapshot_error(sctx, result, "xattr");
7131 return -EIO;
7132 }
7133
7134 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7135 if (result == BTRFS_COMPARE_TREE_NEW)
7136 ret = process_new_xattr(sctx);
7137 else if (result == BTRFS_COMPARE_TREE_DELETED)
7138 ret = process_deleted_xattr(sctx);
7139 else if (result == BTRFS_COMPARE_TREE_CHANGED)
7140 ret = process_changed_xattr(sctx);
7141 }
7142
7143 return ret;
7144 }
7145
7146 /*
7147 * Process new/deleted/changed extents. We skip processing in the
7148 * cur_inode_new_gen case because changed_inode did already initiate processing
7149 * of extents. The reason is the same as in changed_ref
7150 */
changed_extent(struct send_ctx * sctx,enum btrfs_compare_tree_result result)7151 static int changed_extent(struct send_ctx *sctx,
7152 enum btrfs_compare_tree_result result)
7153 {
7154 int ret = 0;
7155
7156 /*
7157 * We have found an extent item that changed without the inode item
7158 * having changed. This can happen either after relocation (where the
7159 * disk_bytenr of an extent item is replaced at
7160 * relocation.c:replace_file_extents()) or after deduplication into a
7161 * file in both the parent and send snapshots (where an extent item can
7162 * get modified or replaced with a new one). Note that deduplication
7163 * updates the inode item, but it only changes the iversion (sequence
7164 * field in the inode item) of the inode, so if a file is deduplicated
7165 * the same amount of times in both the parent and send snapshots, its
7166 * iversion becomes the same in both snapshots, whence the inode item is
7167 * the same on both snapshots.
7168 */
7169 if (sctx->cur_ino != sctx->cmp_key->objectid)
7170 return 0;
7171
7172 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7173 if (result != BTRFS_COMPARE_TREE_DELETED)
7174 ret = process_extent(sctx, sctx->left_path,
7175 sctx->cmp_key);
7176 }
7177
7178 return ret;
7179 }
7180
changed_verity(struct send_ctx * sctx,enum btrfs_compare_tree_result result)7181 static int changed_verity(struct send_ctx *sctx, enum btrfs_compare_tree_result result)
7182 {
7183 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7184 if (result == BTRFS_COMPARE_TREE_NEW)
7185 sctx->cur_inode_needs_verity = true;
7186 }
7187 return 0;
7188 }
7189
dir_changed(struct send_ctx * sctx,u64 dir)7190 static int dir_changed(struct send_ctx *sctx, u64 dir)
7191 {
7192 u64 orig_gen, new_gen;
7193 int ret;
7194
7195 ret = get_inode_gen(sctx->send_root, dir, &new_gen);
7196 if (ret)
7197 return ret;
7198
7199 ret = get_inode_gen(sctx->parent_root, dir, &orig_gen);
7200 if (ret)
7201 return ret;
7202
7203 return (orig_gen != new_gen) ? 1 : 0;
7204 }
7205
compare_refs(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)7206 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
7207 struct btrfs_key *key)
7208 {
7209 struct btrfs_inode_extref *extref;
7210 struct extent_buffer *leaf;
7211 u64 dirid = 0, last_dirid = 0;
7212 unsigned long ptr;
7213 u32 item_size;
7214 u32 cur_offset = 0;
7215 int ref_name_len;
7216 int ret = 0;
7217
7218 /* Easy case, just check this one dirid */
7219 if (key->type == BTRFS_INODE_REF_KEY) {
7220 dirid = key->offset;
7221
7222 ret = dir_changed(sctx, dirid);
7223 goto out;
7224 }
7225
7226 leaf = path->nodes[0];
7227 item_size = btrfs_item_size(leaf, path->slots[0]);
7228 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
7229 while (cur_offset < item_size) {
7230 extref = (struct btrfs_inode_extref *)(ptr +
7231 cur_offset);
7232 dirid = btrfs_inode_extref_parent(leaf, extref);
7233 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
7234 cur_offset += ref_name_len + sizeof(*extref);
7235 if (dirid == last_dirid)
7236 continue;
7237 ret = dir_changed(sctx, dirid);
7238 if (ret)
7239 break;
7240 last_dirid = dirid;
7241 }
7242 out:
7243 return ret;
7244 }
7245
7246 /*
7247 * Updates compare related fields in sctx and simply forwards to the actual
7248 * changed_xxx functions.
7249 */
changed_cb(struct btrfs_path * left_path,struct btrfs_path * right_path,struct btrfs_key * key,enum btrfs_compare_tree_result result,struct send_ctx * sctx)7250 static int changed_cb(struct btrfs_path *left_path,
7251 struct btrfs_path *right_path,
7252 struct btrfs_key *key,
7253 enum btrfs_compare_tree_result result,
7254 struct send_ctx *sctx)
7255 {
7256 int ret = 0;
7257
7258 /*
7259 * We can not hold the commit root semaphore here. This is because in
7260 * the case of sending and receiving to the same filesystem, using a
7261 * pipe, could result in a deadlock:
7262 *
7263 * 1) The task running send blocks on the pipe because it's full;
7264 *
7265 * 2) The task running receive, which is the only consumer of the pipe,
7266 * is waiting for a transaction commit (for example due to a space
7267 * reservation when doing a write or triggering a transaction commit
7268 * when creating a subvolume);
7269 *
7270 * 3) The transaction is waiting to write lock the commit root semaphore,
7271 * but can not acquire it since it's being held at 1).
7272 *
7273 * Down this call chain we write to the pipe through kernel_write().
7274 * The same type of problem can also happen when sending to a file that
7275 * is stored in the same filesystem - when reserving space for a write
7276 * into the file, we can trigger a transaction commit.
7277 *
7278 * Our caller has supplied us with clones of leaves from the send and
7279 * parent roots, so we're safe here from a concurrent relocation and
7280 * further reallocation of metadata extents while we are here. Below we
7281 * also assert that the leaves are clones.
7282 */
7283 lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem);
7284
7285 /*
7286 * We always have a send root, so left_path is never NULL. We will not
7287 * have a leaf when we have reached the end of the send root but have
7288 * not yet reached the end of the parent root.
7289 */
7290 if (left_path->nodes[0])
7291 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7292 &left_path->nodes[0]->bflags));
7293 /*
7294 * When doing a full send we don't have a parent root, so right_path is
7295 * NULL. When doing an incremental send, we may have reached the end of
7296 * the parent root already, so we don't have a leaf at right_path.
7297 */
7298 if (right_path && right_path->nodes[0])
7299 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7300 &right_path->nodes[0]->bflags));
7301
7302 if (result == BTRFS_COMPARE_TREE_SAME) {
7303 if (key->type == BTRFS_INODE_REF_KEY ||
7304 key->type == BTRFS_INODE_EXTREF_KEY) {
7305 ret = compare_refs(sctx, left_path, key);
7306 if (!ret)
7307 return 0;
7308 if (ret < 0)
7309 return ret;
7310 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
7311 return maybe_send_hole(sctx, left_path, key);
7312 } else {
7313 return 0;
7314 }
7315 result = BTRFS_COMPARE_TREE_CHANGED;
7316 ret = 0;
7317 }
7318
7319 sctx->left_path = left_path;
7320 sctx->right_path = right_path;
7321 sctx->cmp_key = key;
7322
7323 ret = finish_inode_if_needed(sctx, 0);
7324 if (ret < 0)
7325 goto out;
7326
7327 /* Ignore non-FS objects */
7328 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
7329 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
7330 goto out;
7331
7332 if (key->type == BTRFS_INODE_ITEM_KEY) {
7333 ret = changed_inode(sctx, result);
7334 } else if (!sctx->ignore_cur_inode) {
7335 if (key->type == BTRFS_INODE_REF_KEY ||
7336 key->type == BTRFS_INODE_EXTREF_KEY)
7337 ret = changed_ref(sctx, result);
7338 else if (key->type == BTRFS_XATTR_ITEM_KEY)
7339 ret = changed_xattr(sctx, result);
7340 else if (key->type == BTRFS_EXTENT_DATA_KEY)
7341 ret = changed_extent(sctx, result);
7342 else if (key->type == BTRFS_VERITY_DESC_ITEM_KEY &&
7343 key->offset == 0)
7344 ret = changed_verity(sctx, result);
7345 }
7346
7347 out:
7348 return ret;
7349 }
7350
search_key_again(const struct send_ctx * sctx,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * key)7351 static int search_key_again(const struct send_ctx *sctx,
7352 struct btrfs_root *root,
7353 struct btrfs_path *path,
7354 const struct btrfs_key *key)
7355 {
7356 int ret;
7357
7358 if (!path->need_commit_sem)
7359 lockdep_assert_held_read(&root->fs_info->commit_root_sem);
7360
7361 /*
7362 * Roots used for send operations are readonly and no one can add,
7363 * update or remove keys from them, so we should be able to find our
7364 * key again. The only exception is deduplication, which can operate on
7365 * readonly roots and add, update or remove keys to/from them - but at
7366 * the moment we don't allow it to run in parallel with send.
7367 */
7368 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7369 ASSERT(ret <= 0);
7370 if (ret > 0) {
7371 btrfs_print_tree(path->nodes[path->lowest_level], false);
7372 btrfs_err(root->fs_info,
7373 "send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d",
7374 key->objectid, key->type, key->offset,
7375 (root == sctx->parent_root ? "parent" : "send"),
7376 btrfs_root_id(root), path->lowest_level,
7377 path->slots[path->lowest_level]);
7378 return -EUCLEAN;
7379 }
7380
7381 return ret;
7382 }
7383
full_send_tree(struct send_ctx * sctx)7384 static int full_send_tree(struct send_ctx *sctx)
7385 {
7386 int ret;
7387 struct btrfs_root *send_root = sctx->send_root;
7388 struct btrfs_key key;
7389 struct btrfs_fs_info *fs_info = send_root->fs_info;
7390 struct btrfs_path *path;
7391
7392 path = alloc_path_for_send();
7393 if (!path)
7394 return -ENOMEM;
7395 path->reada = READA_FORWARD_ALWAYS;
7396
7397 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
7398 key.type = BTRFS_INODE_ITEM_KEY;
7399 key.offset = 0;
7400
7401 down_read(&fs_info->commit_root_sem);
7402 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7403 up_read(&fs_info->commit_root_sem);
7404
7405 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
7406 if (ret < 0)
7407 goto out;
7408 if (ret)
7409 goto out_finish;
7410
7411 while (1) {
7412 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
7413
7414 ret = changed_cb(path, NULL, &key,
7415 BTRFS_COMPARE_TREE_NEW, sctx);
7416 if (ret < 0)
7417 goto out;
7418
7419 down_read(&fs_info->commit_root_sem);
7420 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7421 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7422 up_read(&fs_info->commit_root_sem);
7423 /*
7424 * A transaction used for relocating a block group was
7425 * committed or is about to finish its commit. Release
7426 * our path (leaf) and restart the search, so that we
7427 * avoid operating on any file extent items that are
7428 * stale, with a disk_bytenr that reflects a pre
7429 * relocation value. This way we avoid as much as
7430 * possible to fallback to regular writes when checking
7431 * if we can clone file ranges.
7432 */
7433 btrfs_release_path(path);
7434 ret = search_key_again(sctx, send_root, path, &key);
7435 if (ret < 0)
7436 goto out;
7437 } else {
7438 up_read(&fs_info->commit_root_sem);
7439 }
7440
7441 ret = btrfs_next_item(send_root, path);
7442 if (ret < 0)
7443 goto out;
7444 if (ret) {
7445 ret = 0;
7446 break;
7447 }
7448 }
7449
7450 out_finish:
7451 ret = finish_inode_if_needed(sctx, 1);
7452
7453 out:
7454 btrfs_free_path(path);
7455 return ret;
7456 }
7457
replace_node_with_clone(struct btrfs_path * path,int level)7458 static int replace_node_with_clone(struct btrfs_path *path, int level)
7459 {
7460 struct extent_buffer *clone;
7461
7462 clone = btrfs_clone_extent_buffer(path->nodes[level]);
7463 if (!clone)
7464 return -ENOMEM;
7465
7466 free_extent_buffer(path->nodes[level]);
7467 path->nodes[level] = clone;
7468
7469 return 0;
7470 }
7471
tree_move_down(struct btrfs_path * path,int * level,u64 reada_min_gen)7472 static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen)
7473 {
7474 struct extent_buffer *eb;
7475 struct extent_buffer *parent = path->nodes[*level];
7476 int slot = path->slots[*level];
7477 const int nritems = btrfs_header_nritems(parent);
7478 u64 reada_max;
7479 u64 reada_done = 0;
7480
7481 lockdep_assert_held_read(&parent->fs_info->commit_root_sem);
7482 ASSERT(*level != 0);
7483
7484 eb = btrfs_read_node_slot(parent, slot);
7485 if (IS_ERR(eb))
7486 return PTR_ERR(eb);
7487
7488 /*
7489 * Trigger readahead for the next leaves we will process, so that it is
7490 * very likely that when we need them they are already in memory and we
7491 * will not block on disk IO. For nodes we only do readahead for one,
7492 * since the time window between processing nodes is typically larger.
7493 */
7494 reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize);
7495
7496 for (slot++; slot < nritems && reada_done < reada_max; slot++) {
7497 if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) {
7498 btrfs_readahead_node_child(parent, slot);
7499 reada_done += eb->fs_info->nodesize;
7500 }
7501 }
7502
7503 path->nodes[*level - 1] = eb;
7504 path->slots[*level - 1] = 0;
7505 (*level)--;
7506
7507 if (*level == 0)
7508 return replace_node_with_clone(path, 0);
7509
7510 return 0;
7511 }
7512
tree_move_next_or_upnext(struct btrfs_path * path,int * level,int root_level)7513 static int tree_move_next_or_upnext(struct btrfs_path *path,
7514 int *level, int root_level)
7515 {
7516 int ret = 0;
7517 int nritems;
7518 nritems = btrfs_header_nritems(path->nodes[*level]);
7519
7520 path->slots[*level]++;
7521
7522 while (path->slots[*level] >= nritems) {
7523 if (*level == root_level) {
7524 path->slots[*level] = nritems - 1;
7525 return -1;
7526 }
7527
7528 /* move upnext */
7529 path->slots[*level] = 0;
7530 free_extent_buffer(path->nodes[*level]);
7531 path->nodes[*level] = NULL;
7532 (*level)++;
7533 path->slots[*level]++;
7534
7535 nritems = btrfs_header_nritems(path->nodes[*level]);
7536 ret = 1;
7537 }
7538 return ret;
7539 }
7540
7541 /*
7542 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
7543 * or down.
7544 */
tree_advance(struct btrfs_path * path,int * level,int root_level,int allow_down,struct btrfs_key * key,u64 reada_min_gen)7545 static int tree_advance(struct btrfs_path *path,
7546 int *level, int root_level,
7547 int allow_down,
7548 struct btrfs_key *key,
7549 u64 reada_min_gen)
7550 {
7551 int ret;
7552
7553 if (*level == 0 || !allow_down) {
7554 ret = tree_move_next_or_upnext(path, level, root_level);
7555 } else {
7556 ret = tree_move_down(path, level, reada_min_gen);
7557 }
7558
7559 /*
7560 * Even if we have reached the end of a tree, ret is -1, update the key
7561 * anyway, so that in case we need to restart due to a block group
7562 * relocation, we can assert that the last key of the root node still
7563 * exists in the tree.
7564 */
7565 if (*level == 0)
7566 btrfs_item_key_to_cpu(path->nodes[*level], key,
7567 path->slots[*level]);
7568 else
7569 btrfs_node_key_to_cpu(path->nodes[*level], key,
7570 path->slots[*level]);
7571
7572 return ret;
7573 }
7574
tree_compare_item(struct btrfs_path * left_path,struct btrfs_path * right_path,char * tmp_buf)7575 static int tree_compare_item(struct btrfs_path *left_path,
7576 struct btrfs_path *right_path,
7577 char *tmp_buf)
7578 {
7579 int cmp;
7580 int len1, len2;
7581 unsigned long off1, off2;
7582
7583 len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]);
7584 len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]);
7585 if (len1 != len2)
7586 return 1;
7587
7588 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
7589 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
7590 right_path->slots[0]);
7591
7592 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
7593
7594 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
7595 if (cmp)
7596 return 1;
7597 return 0;
7598 }
7599
7600 /*
7601 * A transaction used for relocating a block group was committed or is about to
7602 * finish its commit. Release our paths and restart the search, so that we are
7603 * not using stale extent buffers:
7604 *
7605 * 1) For levels > 0, we are only holding references of extent buffers, without
7606 * any locks on them, which does not prevent them from having been relocated
7607 * and reallocated after the last time we released the commit root semaphore.
7608 * The exception are the root nodes, for which we always have a clone, see
7609 * the comment at btrfs_compare_trees();
7610 *
7611 * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so
7612 * we are safe from the concurrent relocation and reallocation. However they
7613 * can have file extent items with a pre relocation disk_bytenr value, so we
7614 * restart the start from the current commit roots and clone the new leaves so
7615 * that we get the post relocation disk_bytenr values. Not doing so, could
7616 * make us clone the wrong data in case there are new extents using the old
7617 * disk_bytenr that happen to be shared.
7618 */
restart_after_relocation(struct btrfs_path * left_path,struct btrfs_path * right_path,const struct btrfs_key * left_key,const struct btrfs_key * right_key,int left_level,int right_level,const struct send_ctx * sctx)7619 static int restart_after_relocation(struct btrfs_path *left_path,
7620 struct btrfs_path *right_path,
7621 const struct btrfs_key *left_key,
7622 const struct btrfs_key *right_key,
7623 int left_level,
7624 int right_level,
7625 const struct send_ctx *sctx)
7626 {
7627 int root_level;
7628 int ret;
7629
7630 lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem);
7631
7632 btrfs_release_path(left_path);
7633 btrfs_release_path(right_path);
7634
7635 /*
7636 * Since keys can not be added or removed to/from our roots because they
7637 * are readonly and we do not allow deduplication to run in parallel
7638 * (which can add, remove or change keys), the layout of the trees should
7639 * not change.
7640 */
7641 left_path->lowest_level = left_level;
7642 ret = search_key_again(sctx, sctx->send_root, left_path, left_key);
7643 if (ret < 0)
7644 return ret;
7645
7646 right_path->lowest_level = right_level;
7647 ret = search_key_again(sctx, sctx->parent_root, right_path, right_key);
7648 if (ret < 0)
7649 return ret;
7650
7651 /*
7652 * If the lowest level nodes are leaves, clone them so that they can be
7653 * safely used by changed_cb() while not under the protection of the
7654 * commit root semaphore, even if relocation and reallocation happens in
7655 * parallel.
7656 */
7657 if (left_level == 0) {
7658 ret = replace_node_with_clone(left_path, 0);
7659 if (ret < 0)
7660 return ret;
7661 }
7662
7663 if (right_level == 0) {
7664 ret = replace_node_with_clone(right_path, 0);
7665 if (ret < 0)
7666 return ret;
7667 }
7668
7669 /*
7670 * Now clone the root nodes (unless they happen to be the leaves we have
7671 * already cloned). This is to protect against concurrent snapshotting of
7672 * the send and parent roots (see the comment at btrfs_compare_trees()).
7673 */
7674 root_level = btrfs_header_level(sctx->send_root->commit_root);
7675 if (root_level > 0) {
7676 ret = replace_node_with_clone(left_path, root_level);
7677 if (ret < 0)
7678 return ret;
7679 }
7680
7681 root_level = btrfs_header_level(sctx->parent_root->commit_root);
7682 if (root_level > 0) {
7683 ret = replace_node_with_clone(right_path, root_level);
7684 if (ret < 0)
7685 return ret;
7686 }
7687
7688 return 0;
7689 }
7690
7691 /*
7692 * This function compares two trees and calls the provided callback for
7693 * every changed/new/deleted item it finds.
7694 * If shared tree blocks are encountered, whole subtrees are skipped, making
7695 * the compare pretty fast on snapshotted subvolumes.
7696 *
7697 * This currently works on commit roots only. As commit roots are read only,
7698 * we don't do any locking. The commit roots are protected with transactions.
7699 * Transactions are ended and rejoined when a commit is tried in between.
7700 *
7701 * This function checks for modifications done to the trees while comparing.
7702 * If it detects a change, it aborts immediately.
7703 */
btrfs_compare_trees(struct btrfs_root * left_root,struct btrfs_root * right_root,struct send_ctx * sctx)7704 static int btrfs_compare_trees(struct btrfs_root *left_root,
7705 struct btrfs_root *right_root, struct send_ctx *sctx)
7706 {
7707 struct btrfs_fs_info *fs_info = left_root->fs_info;
7708 int ret;
7709 int cmp;
7710 struct btrfs_path *left_path = NULL;
7711 struct btrfs_path *right_path = NULL;
7712 struct btrfs_key left_key;
7713 struct btrfs_key right_key;
7714 char *tmp_buf = NULL;
7715 int left_root_level;
7716 int right_root_level;
7717 int left_level;
7718 int right_level;
7719 int left_end_reached = 0;
7720 int right_end_reached = 0;
7721 int advance_left = 0;
7722 int advance_right = 0;
7723 u64 left_blockptr;
7724 u64 right_blockptr;
7725 u64 left_gen;
7726 u64 right_gen;
7727 u64 reada_min_gen;
7728
7729 left_path = btrfs_alloc_path();
7730 if (!left_path) {
7731 ret = -ENOMEM;
7732 goto out;
7733 }
7734 right_path = btrfs_alloc_path();
7735 if (!right_path) {
7736 ret = -ENOMEM;
7737 goto out;
7738 }
7739
7740 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
7741 if (!tmp_buf) {
7742 ret = -ENOMEM;
7743 goto out;
7744 }
7745
7746 left_path->search_commit_root = 1;
7747 left_path->skip_locking = 1;
7748 right_path->search_commit_root = 1;
7749 right_path->skip_locking = 1;
7750
7751 /*
7752 * Strategy: Go to the first items of both trees. Then do
7753 *
7754 * If both trees are at level 0
7755 * Compare keys of current items
7756 * If left < right treat left item as new, advance left tree
7757 * and repeat
7758 * If left > right treat right item as deleted, advance right tree
7759 * and repeat
7760 * If left == right do deep compare of items, treat as changed if
7761 * needed, advance both trees and repeat
7762 * If both trees are at the same level but not at level 0
7763 * Compare keys of current nodes/leafs
7764 * If left < right advance left tree and repeat
7765 * If left > right advance right tree and repeat
7766 * If left == right compare blockptrs of the next nodes/leafs
7767 * If they match advance both trees but stay at the same level
7768 * and repeat
7769 * If they don't match advance both trees while allowing to go
7770 * deeper and repeat
7771 * If tree levels are different
7772 * Advance the tree that needs it and repeat
7773 *
7774 * Advancing a tree means:
7775 * If we are at level 0, try to go to the next slot. If that's not
7776 * possible, go one level up and repeat. Stop when we found a level
7777 * where we could go to the next slot. We may at this point be on a
7778 * node or a leaf.
7779 *
7780 * If we are not at level 0 and not on shared tree blocks, go one
7781 * level deeper.
7782 *
7783 * If we are not at level 0 and on shared tree blocks, go one slot to
7784 * the right if possible or go up and right.
7785 */
7786
7787 down_read(&fs_info->commit_root_sem);
7788 left_level = btrfs_header_level(left_root->commit_root);
7789 left_root_level = left_level;
7790 /*
7791 * We clone the root node of the send and parent roots to prevent races
7792 * with snapshot creation of these roots. Snapshot creation COWs the
7793 * root node of a tree, so after the transaction is committed the old
7794 * extent can be reallocated while this send operation is still ongoing.
7795 * So we clone them, under the commit root semaphore, to be race free.
7796 */
7797 left_path->nodes[left_level] =
7798 btrfs_clone_extent_buffer(left_root->commit_root);
7799 if (!left_path->nodes[left_level]) {
7800 ret = -ENOMEM;
7801 goto out_unlock;
7802 }
7803
7804 right_level = btrfs_header_level(right_root->commit_root);
7805 right_root_level = right_level;
7806 right_path->nodes[right_level] =
7807 btrfs_clone_extent_buffer(right_root->commit_root);
7808 if (!right_path->nodes[right_level]) {
7809 ret = -ENOMEM;
7810 goto out_unlock;
7811 }
7812 /*
7813 * Our right root is the parent root, while the left root is the "send"
7814 * root. We know that all new nodes/leaves in the left root must have
7815 * a generation greater than the right root's generation, so we trigger
7816 * readahead for those nodes and leaves of the left root, as we know we
7817 * will need to read them at some point.
7818 */
7819 reada_min_gen = btrfs_header_generation(right_root->commit_root);
7820
7821 if (left_level == 0)
7822 btrfs_item_key_to_cpu(left_path->nodes[left_level],
7823 &left_key, left_path->slots[left_level]);
7824 else
7825 btrfs_node_key_to_cpu(left_path->nodes[left_level],
7826 &left_key, left_path->slots[left_level]);
7827 if (right_level == 0)
7828 btrfs_item_key_to_cpu(right_path->nodes[right_level],
7829 &right_key, right_path->slots[right_level]);
7830 else
7831 btrfs_node_key_to_cpu(right_path->nodes[right_level],
7832 &right_key, right_path->slots[right_level]);
7833
7834 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7835
7836 while (1) {
7837 if (need_resched() ||
7838 rwsem_is_contended(&fs_info->commit_root_sem)) {
7839 up_read(&fs_info->commit_root_sem);
7840 cond_resched();
7841 down_read(&fs_info->commit_root_sem);
7842 }
7843
7844 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7845 ret = restart_after_relocation(left_path, right_path,
7846 &left_key, &right_key,
7847 left_level, right_level,
7848 sctx);
7849 if (ret < 0)
7850 goto out_unlock;
7851 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7852 }
7853
7854 if (advance_left && !left_end_reached) {
7855 ret = tree_advance(left_path, &left_level,
7856 left_root_level,
7857 advance_left != ADVANCE_ONLY_NEXT,
7858 &left_key, reada_min_gen);
7859 if (ret == -1)
7860 left_end_reached = ADVANCE;
7861 else if (ret < 0)
7862 goto out_unlock;
7863 advance_left = 0;
7864 }
7865 if (advance_right && !right_end_reached) {
7866 ret = tree_advance(right_path, &right_level,
7867 right_root_level,
7868 advance_right != ADVANCE_ONLY_NEXT,
7869 &right_key, reada_min_gen);
7870 if (ret == -1)
7871 right_end_reached = ADVANCE;
7872 else if (ret < 0)
7873 goto out_unlock;
7874 advance_right = 0;
7875 }
7876
7877 if (left_end_reached && right_end_reached) {
7878 ret = 0;
7879 goto out_unlock;
7880 } else if (left_end_reached) {
7881 if (right_level == 0) {
7882 up_read(&fs_info->commit_root_sem);
7883 ret = changed_cb(left_path, right_path,
7884 &right_key,
7885 BTRFS_COMPARE_TREE_DELETED,
7886 sctx);
7887 if (ret < 0)
7888 goto out;
7889 down_read(&fs_info->commit_root_sem);
7890 }
7891 advance_right = ADVANCE;
7892 continue;
7893 } else if (right_end_reached) {
7894 if (left_level == 0) {
7895 up_read(&fs_info->commit_root_sem);
7896 ret = changed_cb(left_path, right_path,
7897 &left_key,
7898 BTRFS_COMPARE_TREE_NEW,
7899 sctx);
7900 if (ret < 0)
7901 goto out;
7902 down_read(&fs_info->commit_root_sem);
7903 }
7904 advance_left = ADVANCE;
7905 continue;
7906 }
7907
7908 if (left_level == 0 && right_level == 0) {
7909 up_read(&fs_info->commit_root_sem);
7910 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7911 if (cmp < 0) {
7912 ret = changed_cb(left_path, right_path,
7913 &left_key,
7914 BTRFS_COMPARE_TREE_NEW,
7915 sctx);
7916 advance_left = ADVANCE;
7917 } else if (cmp > 0) {
7918 ret = changed_cb(left_path, right_path,
7919 &right_key,
7920 BTRFS_COMPARE_TREE_DELETED,
7921 sctx);
7922 advance_right = ADVANCE;
7923 } else {
7924 enum btrfs_compare_tree_result result;
7925
7926 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7927 ret = tree_compare_item(left_path, right_path,
7928 tmp_buf);
7929 if (ret)
7930 result = BTRFS_COMPARE_TREE_CHANGED;
7931 else
7932 result = BTRFS_COMPARE_TREE_SAME;
7933 ret = changed_cb(left_path, right_path,
7934 &left_key, result, sctx);
7935 advance_left = ADVANCE;
7936 advance_right = ADVANCE;
7937 }
7938
7939 if (ret < 0)
7940 goto out;
7941 down_read(&fs_info->commit_root_sem);
7942 } else if (left_level == right_level) {
7943 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7944 if (cmp < 0) {
7945 advance_left = ADVANCE;
7946 } else if (cmp > 0) {
7947 advance_right = ADVANCE;
7948 } else {
7949 left_blockptr = btrfs_node_blockptr(
7950 left_path->nodes[left_level],
7951 left_path->slots[left_level]);
7952 right_blockptr = btrfs_node_blockptr(
7953 right_path->nodes[right_level],
7954 right_path->slots[right_level]);
7955 left_gen = btrfs_node_ptr_generation(
7956 left_path->nodes[left_level],
7957 left_path->slots[left_level]);
7958 right_gen = btrfs_node_ptr_generation(
7959 right_path->nodes[right_level],
7960 right_path->slots[right_level]);
7961 if (left_blockptr == right_blockptr &&
7962 left_gen == right_gen) {
7963 /*
7964 * As we're on a shared block, don't
7965 * allow to go deeper.
7966 */
7967 advance_left = ADVANCE_ONLY_NEXT;
7968 advance_right = ADVANCE_ONLY_NEXT;
7969 } else {
7970 advance_left = ADVANCE;
7971 advance_right = ADVANCE;
7972 }
7973 }
7974 } else if (left_level < right_level) {
7975 advance_right = ADVANCE;
7976 } else {
7977 advance_left = ADVANCE;
7978 }
7979 }
7980
7981 out_unlock:
7982 up_read(&fs_info->commit_root_sem);
7983 out:
7984 btrfs_free_path(left_path);
7985 btrfs_free_path(right_path);
7986 kvfree(tmp_buf);
7987 return ret;
7988 }
7989
send_subvol(struct send_ctx * sctx)7990 static int send_subvol(struct send_ctx *sctx)
7991 {
7992 int ret;
7993
7994 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
7995 ret = send_header(sctx);
7996 if (ret < 0)
7997 goto out;
7998 }
7999
8000 ret = send_subvol_begin(sctx);
8001 if (ret < 0)
8002 goto out;
8003
8004 if (sctx->parent_root) {
8005 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx);
8006 if (ret < 0)
8007 goto out;
8008 ret = finish_inode_if_needed(sctx, 1);
8009 if (ret < 0)
8010 goto out;
8011 } else {
8012 ret = full_send_tree(sctx);
8013 if (ret < 0)
8014 goto out;
8015 }
8016
8017 out:
8018 free_recorded_refs(sctx);
8019 return ret;
8020 }
8021
8022 /*
8023 * If orphan cleanup did remove any orphans from a root, it means the tree
8024 * was modified and therefore the commit root is not the same as the current
8025 * root anymore. This is a problem, because send uses the commit root and
8026 * therefore can see inode items that don't exist in the current root anymore,
8027 * and for example make calls to btrfs_iget, which will do tree lookups based
8028 * on the current root and not on the commit root. Those lookups will fail,
8029 * returning a -ESTALE error, and making send fail with that error. So make
8030 * sure a send does not see any orphans we have just removed, and that it will
8031 * see the same inodes regardless of whether a transaction commit happened
8032 * before it started (meaning that the commit root will be the same as the
8033 * current root) or not.
8034 */
ensure_commit_roots_uptodate(struct send_ctx * sctx)8035 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
8036 {
8037 struct btrfs_root *root = sctx->parent_root;
8038
8039 if (root && root->node != root->commit_root)
8040 return btrfs_commit_current_transaction(root);
8041
8042 for (int i = 0; i < sctx->clone_roots_cnt; i++) {
8043 root = sctx->clone_roots[i].root;
8044 if (root->node != root->commit_root)
8045 return btrfs_commit_current_transaction(root);
8046 }
8047
8048 return 0;
8049 }
8050
8051 /*
8052 * Make sure any existing dellaloc is flushed for any root used by a send
8053 * operation so that we do not miss any data and we do not race with writeback
8054 * finishing and changing a tree while send is using the tree. This could
8055 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
8056 * a send operation then uses the subvolume.
8057 * After flushing delalloc ensure_commit_roots_uptodate() must be called.
8058 */
flush_delalloc_roots(struct send_ctx * sctx)8059 static int flush_delalloc_roots(struct send_ctx *sctx)
8060 {
8061 struct btrfs_root *root = sctx->parent_root;
8062 int ret;
8063 int i;
8064
8065 if (root) {
8066 ret = btrfs_start_delalloc_snapshot(root, false);
8067 if (ret)
8068 return ret;
8069 btrfs_wait_ordered_extents(root, U64_MAX, NULL);
8070 }
8071
8072 for (i = 0; i < sctx->clone_roots_cnt; i++) {
8073 root = sctx->clone_roots[i].root;
8074 ret = btrfs_start_delalloc_snapshot(root, false);
8075 if (ret)
8076 return ret;
8077 btrfs_wait_ordered_extents(root, U64_MAX, NULL);
8078 }
8079
8080 return 0;
8081 }
8082
btrfs_root_dec_send_in_progress(struct btrfs_root * root)8083 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
8084 {
8085 spin_lock(&root->root_item_lock);
8086 root->send_in_progress--;
8087 /*
8088 * Not much left to do, we don't know why it's unbalanced and
8089 * can't blindly reset it to 0.
8090 */
8091 if (root->send_in_progress < 0)
8092 btrfs_err(root->fs_info,
8093 "send_in_progress unbalanced %d root %llu",
8094 root->send_in_progress, btrfs_root_id(root));
8095 spin_unlock(&root->root_item_lock);
8096 }
8097
dedupe_in_progress_warn(const struct btrfs_root * root)8098 static void dedupe_in_progress_warn(const struct btrfs_root *root)
8099 {
8100 btrfs_warn_rl(root->fs_info,
8101 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
8102 btrfs_root_id(root), root->dedupe_in_progress);
8103 }
8104
btrfs_ioctl_send(struct btrfs_inode * inode,const struct btrfs_ioctl_send_args * arg)8105 long btrfs_ioctl_send(struct btrfs_inode *inode, const struct btrfs_ioctl_send_args *arg)
8106 {
8107 int ret = 0;
8108 struct btrfs_root *send_root = inode->root;
8109 struct btrfs_fs_info *fs_info = send_root->fs_info;
8110 struct btrfs_root *clone_root;
8111 struct send_ctx *sctx = NULL;
8112 u32 i;
8113 u64 *clone_sources_tmp = NULL;
8114 int clone_sources_to_rollback = 0;
8115 size_t alloc_size;
8116 int sort_clone_roots = 0;
8117 struct btrfs_lru_cache_entry *entry;
8118 struct btrfs_lru_cache_entry *tmp;
8119
8120 if (!capable(CAP_SYS_ADMIN))
8121 return -EPERM;
8122
8123 /*
8124 * The subvolume must remain read-only during send, protect against
8125 * making it RW. This also protects against deletion.
8126 */
8127 spin_lock(&send_root->root_item_lock);
8128 /*
8129 * Unlikely but possible, if the subvolume is marked for deletion but
8130 * is slow to remove the directory entry, send can still be started.
8131 */
8132 if (btrfs_root_dead(send_root)) {
8133 spin_unlock(&send_root->root_item_lock);
8134 return -EPERM;
8135 }
8136 /* Userspace tools do the checks and warn the user if it's not RO. */
8137 if (!btrfs_root_readonly(send_root)) {
8138 spin_unlock(&send_root->root_item_lock);
8139 return -EPERM;
8140 }
8141 if (send_root->dedupe_in_progress) {
8142 dedupe_in_progress_warn(send_root);
8143 spin_unlock(&send_root->root_item_lock);
8144 return -EAGAIN;
8145 }
8146 send_root->send_in_progress++;
8147 spin_unlock(&send_root->root_item_lock);
8148
8149 /*
8150 * Check that we don't overflow at later allocations, we request
8151 * clone_sources_count + 1 items, and compare to unsigned long inside
8152 * access_ok. Also set an upper limit for allocation size so this can't
8153 * easily exhaust memory. Max number of clone sources is about 200K.
8154 */
8155 if (arg->clone_sources_count > SZ_8M / sizeof(struct clone_root)) {
8156 ret = -EINVAL;
8157 goto out;
8158 }
8159
8160 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
8161 ret = -EOPNOTSUPP;
8162 goto out;
8163 }
8164
8165 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
8166 if (!sctx) {
8167 ret = -ENOMEM;
8168 goto out;
8169 }
8170
8171 INIT_LIST_HEAD(&sctx->new_refs);
8172 INIT_LIST_HEAD(&sctx->deleted_refs);
8173
8174 btrfs_lru_cache_init(&sctx->name_cache, SEND_MAX_NAME_CACHE_SIZE);
8175 btrfs_lru_cache_init(&sctx->backref_cache, SEND_MAX_BACKREF_CACHE_SIZE);
8176 btrfs_lru_cache_init(&sctx->dir_created_cache,
8177 SEND_MAX_DIR_CREATED_CACHE_SIZE);
8178 /*
8179 * This cache is periodically trimmed to a fixed size elsewhere, see
8180 * cache_dir_utimes() and trim_dir_utimes_cache().
8181 */
8182 btrfs_lru_cache_init(&sctx->dir_utimes_cache, 0);
8183
8184 sctx->pending_dir_moves = RB_ROOT;
8185 sctx->waiting_dir_moves = RB_ROOT;
8186 sctx->orphan_dirs = RB_ROOT;
8187 sctx->rbtree_new_refs = RB_ROOT;
8188 sctx->rbtree_deleted_refs = RB_ROOT;
8189
8190 sctx->flags = arg->flags;
8191
8192 if (arg->flags & BTRFS_SEND_FLAG_VERSION) {
8193 if (arg->version > BTRFS_SEND_STREAM_VERSION) {
8194 ret = -EPROTO;
8195 goto out;
8196 }
8197 /* Zero means "use the highest version" */
8198 sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION;
8199 } else {
8200 sctx->proto = 1;
8201 }
8202 if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) {
8203 ret = -EINVAL;
8204 goto out;
8205 }
8206
8207 sctx->send_filp = fget(arg->send_fd);
8208 if (!sctx->send_filp || !(sctx->send_filp->f_mode & FMODE_WRITE)) {
8209 ret = -EBADF;
8210 goto out;
8211 }
8212
8213 sctx->send_root = send_root;
8214 sctx->clone_roots_cnt = arg->clone_sources_count;
8215
8216 if (sctx->proto >= 2) {
8217 u32 send_buf_num_pages;
8218
8219 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V2;
8220 sctx->send_buf = vmalloc(sctx->send_max_size);
8221 if (!sctx->send_buf) {
8222 ret = -ENOMEM;
8223 goto out;
8224 }
8225 send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT;
8226 sctx->send_buf_pages = kcalloc(send_buf_num_pages,
8227 sizeof(*sctx->send_buf_pages),
8228 GFP_KERNEL);
8229 if (!sctx->send_buf_pages) {
8230 ret = -ENOMEM;
8231 goto out;
8232 }
8233 for (i = 0; i < send_buf_num_pages; i++) {
8234 sctx->send_buf_pages[i] =
8235 vmalloc_to_page(sctx->send_buf + (i << PAGE_SHIFT));
8236 }
8237 } else {
8238 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1;
8239 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
8240 }
8241 if (!sctx->send_buf) {
8242 ret = -ENOMEM;
8243 goto out;
8244 }
8245
8246 sctx->clone_roots = kvcalloc(arg->clone_sources_count + 1,
8247 sizeof(*sctx->clone_roots),
8248 GFP_KERNEL);
8249 if (!sctx->clone_roots) {
8250 ret = -ENOMEM;
8251 goto out;
8252 }
8253
8254 alloc_size = array_size(sizeof(*arg->clone_sources),
8255 arg->clone_sources_count);
8256
8257 if (arg->clone_sources_count) {
8258 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
8259 if (!clone_sources_tmp) {
8260 ret = -ENOMEM;
8261 goto out;
8262 }
8263
8264 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
8265 alloc_size);
8266 if (ret) {
8267 ret = -EFAULT;
8268 goto out;
8269 }
8270
8271 for (i = 0; i < arg->clone_sources_count; i++) {
8272 clone_root = btrfs_get_fs_root(fs_info,
8273 clone_sources_tmp[i], true);
8274 if (IS_ERR(clone_root)) {
8275 ret = PTR_ERR(clone_root);
8276 goto out;
8277 }
8278 spin_lock(&clone_root->root_item_lock);
8279 if (!btrfs_root_readonly(clone_root) ||
8280 btrfs_root_dead(clone_root)) {
8281 spin_unlock(&clone_root->root_item_lock);
8282 btrfs_put_root(clone_root);
8283 ret = -EPERM;
8284 goto out;
8285 }
8286 if (clone_root->dedupe_in_progress) {
8287 dedupe_in_progress_warn(clone_root);
8288 spin_unlock(&clone_root->root_item_lock);
8289 btrfs_put_root(clone_root);
8290 ret = -EAGAIN;
8291 goto out;
8292 }
8293 clone_root->send_in_progress++;
8294 spin_unlock(&clone_root->root_item_lock);
8295
8296 sctx->clone_roots[i].root = clone_root;
8297 clone_sources_to_rollback = i + 1;
8298 }
8299 kvfree(clone_sources_tmp);
8300 clone_sources_tmp = NULL;
8301 }
8302
8303 if (arg->parent_root) {
8304 sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root,
8305 true);
8306 if (IS_ERR(sctx->parent_root)) {
8307 ret = PTR_ERR(sctx->parent_root);
8308 goto out;
8309 }
8310
8311 spin_lock(&sctx->parent_root->root_item_lock);
8312 sctx->parent_root->send_in_progress++;
8313 if (!btrfs_root_readonly(sctx->parent_root) ||
8314 btrfs_root_dead(sctx->parent_root)) {
8315 spin_unlock(&sctx->parent_root->root_item_lock);
8316 ret = -EPERM;
8317 goto out;
8318 }
8319 if (sctx->parent_root->dedupe_in_progress) {
8320 dedupe_in_progress_warn(sctx->parent_root);
8321 spin_unlock(&sctx->parent_root->root_item_lock);
8322 ret = -EAGAIN;
8323 goto out;
8324 }
8325 spin_unlock(&sctx->parent_root->root_item_lock);
8326 }
8327
8328 /*
8329 * Clones from send_root are allowed, but only if the clone source
8330 * is behind the current send position. This is checked while searching
8331 * for possible clone sources.
8332 */
8333 sctx->clone_roots[sctx->clone_roots_cnt++].root =
8334 btrfs_grab_root(sctx->send_root);
8335
8336 /* We do a bsearch later */
8337 sort(sctx->clone_roots, sctx->clone_roots_cnt,
8338 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
8339 NULL);
8340 sort_clone_roots = 1;
8341
8342 ret = flush_delalloc_roots(sctx);
8343 if (ret)
8344 goto out;
8345
8346 ret = ensure_commit_roots_uptodate(sctx);
8347 if (ret)
8348 goto out;
8349
8350 ret = send_subvol(sctx);
8351 if (ret < 0)
8352 goto out;
8353
8354 btrfs_lru_cache_for_each_entry_safe(&sctx->dir_utimes_cache, entry, tmp) {
8355 ret = send_utimes(sctx, entry->key, entry->gen);
8356 if (ret < 0)
8357 goto out;
8358 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, entry);
8359 }
8360
8361 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
8362 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
8363 if (ret < 0)
8364 goto out;
8365 ret = send_cmd(sctx);
8366 if (ret < 0)
8367 goto out;
8368 }
8369
8370 out:
8371 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
8372 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
8373 struct rb_node *n;
8374 struct pending_dir_move *pm;
8375
8376 n = rb_first(&sctx->pending_dir_moves);
8377 pm = rb_entry(n, struct pending_dir_move, node);
8378 while (!list_empty(&pm->list)) {
8379 struct pending_dir_move *pm2;
8380
8381 pm2 = list_first_entry(&pm->list,
8382 struct pending_dir_move, list);
8383 free_pending_move(sctx, pm2);
8384 }
8385 free_pending_move(sctx, pm);
8386 }
8387
8388 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
8389 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
8390 struct rb_node *n;
8391 struct waiting_dir_move *dm;
8392
8393 n = rb_first(&sctx->waiting_dir_moves);
8394 dm = rb_entry(n, struct waiting_dir_move, node);
8395 rb_erase(&dm->node, &sctx->waiting_dir_moves);
8396 kfree(dm);
8397 }
8398
8399 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
8400 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
8401 struct rb_node *n;
8402 struct orphan_dir_info *odi;
8403
8404 n = rb_first(&sctx->orphan_dirs);
8405 odi = rb_entry(n, struct orphan_dir_info, node);
8406 free_orphan_dir_info(sctx, odi);
8407 }
8408
8409 if (sort_clone_roots) {
8410 for (i = 0; i < sctx->clone_roots_cnt; i++) {
8411 btrfs_root_dec_send_in_progress(
8412 sctx->clone_roots[i].root);
8413 btrfs_put_root(sctx->clone_roots[i].root);
8414 }
8415 } else {
8416 for (i = 0; sctx && i < clone_sources_to_rollback; i++) {
8417 btrfs_root_dec_send_in_progress(
8418 sctx->clone_roots[i].root);
8419 btrfs_put_root(sctx->clone_roots[i].root);
8420 }
8421
8422 btrfs_root_dec_send_in_progress(send_root);
8423 }
8424 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) {
8425 btrfs_root_dec_send_in_progress(sctx->parent_root);
8426 btrfs_put_root(sctx->parent_root);
8427 }
8428
8429 kvfree(clone_sources_tmp);
8430
8431 if (sctx) {
8432 if (sctx->send_filp)
8433 fput(sctx->send_filp);
8434
8435 kvfree(sctx->clone_roots);
8436 kfree(sctx->send_buf_pages);
8437 kvfree(sctx->send_buf);
8438 kvfree(sctx->verity_descriptor);
8439
8440 close_current_inode(sctx);
8441
8442 btrfs_lru_cache_clear(&sctx->name_cache);
8443 btrfs_lru_cache_clear(&sctx->backref_cache);
8444 btrfs_lru_cache_clear(&sctx->dir_created_cache);
8445 btrfs_lru_cache_clear(&sctx->dir_utimes_cache);
8446
8447 kfree(sctx);
8448 }
8449
8450 return ret;
8451 }
8452