xref: /linux/include/linux/mmzone.h (revision 6fea5fabd3323cd27b2ab5143263f37ff29550cb)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4 
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7 
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/list_nulls.h>
11 #include <linux/wait.h>
12 #include <linux/bitops.h>
13 #include <linux/cache.h>
14 #include <linux/threads.h>
15 #include <linux/numa.h>
16 #include <linux/init.h>
17 #include <linux/seqlock.h>
18 #include <linux/nodemask.h>
19 #include <linux/pageblock-flags.h>
20 #include <linux/page-flags-layout.h>
21 #include <linux/atomic.h>
22 #include <linux/mm_types.h>
23 #include <linux/page-flags.h>
24 #include <linux/local_lock.h>
25 #include <linux/zswap.h>
26 #include <asm/page.h>
27 
28 /* Free memory management - zoned buddy allocator.  */
29 #ifndef CONFIG_ARCH_FORCE_MAX_ORDER
30 #define MAX_PAGE_ORDER 10
31 #else
32 #define MAX_PAGE_ORDER CONFIG_ARCH_FORCE_MAX_ORDER
33 #endif
34 #define MAX_ORDER_NR_PAGES (1 << MAX_PAGE_ORDER)
35 
36 #define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES)
37 
38 #define NR_PAGE_ORDERS (MAX_PAGE_ORDER + 1)
39 
40 /*
41  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
42  * costly to service.  That is between allocation orders which should
43  * coalesce naturally under reasonable reclaim pressure and those which
44  * will not.
45  */
46 #define PAGE_ALLOC_COSTLY_ORDER 3
47 
48 enum migratetype {
49 	MIGRATE_UNMOVABLE,
50 	MIGRATE_MOVABLE,
51 	MIGRATE_RECLAIMABLE,
52 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
53 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
54 #ifdef CONFIG_CMA
55 	/*
56 	 * MIGRATE_CMA migration type is designed to mimic the way
57 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
58 	 * from MIGRATE_CMA pageblocks and page allocator never
59 	 * implicitly change migration type of MIGRATE_CMA pageblock.
60 	 *
61 	 * The way to use it is to change migratetype of a range of
62 	 * pageblocks to MIGRATE_CMA which can be done by
63 	 * __free_pageblock_cma() function.
64 	 */
65 	MIGRATE_CMA,
66 #endif
67 #ifdef CONFIG_MEMORY_ISOLATION
68 	MIGRATE_ISOLATE,	/* can't allocate from here */
69 #endif
70 	MIGRATE_TYPES
71 };
72 
73 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
74 extern const char * const migratetype_names[MIGRATE_TYPES];
75 
76 #ifdef CONFIG_CMA
77 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
78 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
79 #  define is_migrate_cma_folio(folio, pfn)	(MIGRATE_CMA ==		\
80 	get_pfnblock_flags_mask(&folio->page, pfn, MIGRATETYPE_MASK))
81 #else
82 #  define is_migrate_cma(migratetype) false
83 #  define is_migrate_cma_page(_page) false
84 #  define is_migrate_cma_folio(folio, pfn) false
85 #endif
86 
is_migrate_movable(int mt)87 static inline bool is_migrate_movable(int mt)
88 {
89 	return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
90 }
91 
92 /*
93  * Check whether a migratetype can be merged with another migratetype.
94  *
95  * It is only mergeable when it can fall back to other migratetypes for
96  * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c.
97  */
migratetype_is_mergeable(int mt)98 static inline bool migratetype_is_mergeable(int mt)
99 {
100 	return mt < MIGRATE_PCPTYPES;
101 }
102 
103 #define for_each_migratetype_order(order, type) \
104 	for (order = 0; order < NR_PAGE_ORDERS; order++) \
105 		for (type = 0; type < MIGRATE_TYPES; type++)
106 
107 extern int page_group_by_mobility_disabled;
108 
109 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
110 
111 #define get_pageblock_migratetype(page)					\
112 	get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
113 
114 #define folio_migratetype(folio)				\
115 	get_pfnblock_flags_mask(&folio->page, folio_pfn(folio),		\
116 			MIGRATETYPE_MASK)
117 struct free_area {
118 	struct list_head	free_list[MIGRATE_TYPES];
119 	unsigned long		nr_free;
120 };
121 
122 struct pglist_data;
123 
124 #ifdef CONFIG_NUMA
125 enum numa_stat_item {
126 	NUMA_HIT,		/* allocated in intended node */
127 	NUMA_MISS,		/* allocated in non intended node */
128 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
129 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
130 	NUMA_LOCAL,		/* allocation from local node */
131 	NUMA_OTHER,		/* allocation from other node */
132 	NR_VM_NUMA_EVENT_ITEMS
133 };
134 #else
135 #define NR_VM_NUMA_EVENT_ITEMS 0
136 #endif
137 
138 enum zone_stat_item {
139 	/* First 128 byte cacheline (assuming 64 bit words) */
140 	NR_FREE_PAGES,
141 	NR_FREE_PAGES_BLOCKS,
142 	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
143 	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
144 	NR_ZONE_ACTIVE_ANON,
145 	NR_ZONE_INACTIVE_FILE,
146 	NR_ZONE_ACTIVE_FILE,
147 	NR_ZONE_UNEVICTABLE,
148 	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
149 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
150 	/* Second 128 byte cacheline */
151 	NR_BOUNCE,
152 #if IS_ENABLED(CONFIG_ZSMALLOC)
153 	NR_ZSPAGES,		/* allocated in zsmalloc */
154 #endif
155 	NR_FREE_CMA_PAGES,
156 #ifdef CONFIG_UNACCEPTED_MEMORY
157 	NR_UNACCEPTED,
158 #endif
159 	NR_VM_ZONE_STAT_ITEMS };
160 
161 enum node_stat_item {
162 	NR_LRU_BASE,
163 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
164 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
165 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
166 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
167 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
168 	NR_SLAB_RECLAIMABLE_B,
169 	NR_SLAB_UNRECLAIMABLE_B,
170 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
171 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
172 	WORKINGSET_NODES,
173 	WORKINGSET_REFAULT_BASE,
174 	WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
175 	WORKINGSET_REFAULT_FILE,
176 	WORKINGSET_ACTIVATE_BASE,
177 	WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
178 	WORKINGSET_ACTIVATE_FILE,
179 	WORKINGSET_RESTORE_BASE,
180 	WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
181 	WORKINGSET_RESTORE_FILE,
182 	WORKINGSET_NODERECLAIM,
183 	NR_ANON_MAPPED,	/* Mapped anonymous pages */
184 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
185 			   only modified from process context */
186 	NR_FILE_PAGES,
187 	NR_FILE_DIRTY,
188 	NR_WRITEBACK,
189 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
190 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
191 	NR_SHMEM_THPS,
192 	NR_SHMEM_PMDMAPPED,
193 	NR_FILE_THPS,
194 	NR_FILE_PMDMAPPED,
195 	NR_ANON_THPS,
196 	NR_VMSCAN_WRITE,
197 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
198 	NR_DIRTIED,		/* page dirtyings since bootup */
199 	NR_WRITTEN,		/* page writings since bootup */
200 	NR_THROTTLED_WRITTEN,	/* NR_WRITTEN while reclaim throttled */
201 	NR_KERNEL_MISC_RECLAIMABLE,	/* reclaimable non-slab kernel pages */
202 	NR_FOLL_PIN_ACQUIRED,	/* via: pin_user_page(), gup flag: FOLL_PIN */
203 	NR_FOLL_PIN_RELEASED,	/* pages returned via unpin_user_page() */
204 	NR_KERNEL_STACK_KB,	/* measured in KiB */
205 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
206 	NR_KERNEL_SCS_KB,	/* measured in KiB */
207 #endif
208 	NR_PAGETABLE,		/* used for pagetables */
209 	NR_SECONDARY_PAGETABLE, /* secondary pagetables, KVM & IOMMU */
210 #ifdef CONFIG_IOMMU_SUPPORT
211 	NR_IOMMU_PAGES,		/* # of pages allocated by IOMMU */
212 #endif
213 #ifdef CONFIG_SWAP
214 	NR_SWAPCACHE,
215 #endif
216 #ifdef CONFIG_NUMA_BALANCING
217 	PGPROMOTE_SUCCESS,	/* promote successfully */
218 	PGPROMOTE_CANDIDATE,	/* candidate pages to promote */
219 #endif
220 	/* PGDEMOTE_*: pages demoted */
221 	PGDEMOTE_KSWAPD,
222 	PGDEMOTE_DIRECT,
223 	PGDEMOTE_KHUGEPAGED,
224 	PGDEMOTE_PROACTIVE,
225 #ifdef CONFIG_HUGETLB_PAGE
226 	NR_HUGETLB,
227 #endif
228 	NR_BALLOON_PAGES,
229 	NR_VM_NODE_STAT_ITEMS
230 };
231 
232 /*
233  * Returns true if the item should be printed in THPs (/proc/vmstat
234  * currently prints number of anon, file and shmem THPs. But the item
235  * is charged in pages).
236  */
vmstat_item_print_in_thp(enum node_stat_item item)237 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
238 {
239 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
240 		return false;
241 
242 	return item == NR_ANON_THPS ||
243 	       item == NR_FILE_THPS ||
244 	       item == NR_SHMEM_THPS ||
245 	       item == NR_SHMEM_PMDMAPPED ||
246 	       item == NR_FILE_PMDMAPPED;
247 }
248 
249 /*
250  * Returns true if the value is measured in bytes (most vmstat values are
251  * measured in pages). This defines the API part, the internal representation
252  * might be different.
253  */
vmstat_item_in_bytes(int idx)254 static __always_inline bool vmstat_item_in_bytes(int idx)
255 {
256 	/*
257 	 * Global and per-node slab counters track slab pages.
258 	 * It's expected that changes are multiples of PAGE_SIZE.
259 	 * Internally values are stored in pages.
260 	 *
261 	 * Per-memcg and per-lruvec counters track memory, consumed
262 	 * by individual slab objects. These counters are actually
263 	 * byte-precise.
264 	 */
265 	return (idx == NR_SLAB_RECLAIMABLE_B ||
266 		idx == NR_SLAB_UNRECLAIMABLE_B);
267 }
268 
269 /*
270  * We do arithmetic on the LRU lists in various places in the code,
271  * so it is important to keep the active lists LRU_ACTIVE higher in
272  * the array than the corresponding inactive lists, and to keep
273  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
274  *
275  * This has to be kept in sync with the statistics in zone_stat_item
276  * above and the descriptions in vmstat_text in mm/vmstat.c
277  */
278 #define LRU_BASE 0
279 #define LRU_ACTIVE 1
280 #define LRU_FILE 2
281 
282 enum lru_list {
283 	LRU_INACTIVE_ANON = LRU_BASE,
284 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
285 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
286 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
287 	LRU_UNEVICTABLE,
288 	NR_LRU_LISTS
289 };
290 
291 enum vmscan_throttle_state {
292 	VMSCAN_THROTTLE_WRITEBACK,
293 	VMSCAN_THROTTLE_ISOLATED,
294 	VMSCAN_THROTTLE_NOPROGRESS,
295 	VMSCAN_THROTTLE_CONGESTED,
296 	NR_VMSCAN_THROTTLE,
297 };
298 
299 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
300 
301 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
302 
is_file_lru(enum lru_list lru)303 static inline bool is_file_lru(enum lru_list lru)
304 {
305 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
306 }
307 
is_active_lru(enum lru_list lru)308 static inline bool is_active_lru(enum lru_list lru)
309 {
310 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
311 }
312 
313 #define WORKINGSET_ANON 0
314 #define WORKINGSET_FILE 1
315 #define ANON_AND_FILE 2
316 
317 enum lruvec_flags {
318 	/*
319 	 * An lruvec has many dirty pages backed by a congested BDI:
320 	 * 1. LRUVEC_CGROUP_CONGESTED is set by cgroup-level reclaim.
321 	 *    It can be cleared by cgroup reclaim or kswapd.
322 	 * 2. LRUVEC_NODE_CONGESTED is set by kswapd node-level reclaim.
323 	 *    It can only be cleared by kswapd.
324 	 *
325 	 * Essentially, kswapd can unthrottle an lruvec throttled by cgroup
326 	 * reclaim, but not vice versa. This only applies to the root cgroup.
327 	 * The goal is to prevent cgroup reclaim on the root cgroup (e.g.
328 	 * memory.reclaim) to unthrottle an unbalanced node (that was throttled
329 	 * by kswapd).
330 	 */
331 	LRUVEC_CGROUP_CONGESTED,
332 	LRUVEC_NODE_CONGESTED,
333 };
334 
335 #endif /* !__GENERATING_BOUNDS_H */
336 
337 /*
338  * Evictable folios are divided into multiple generations. The youngest and the
339  * oldest generation numbers, max_seq and min_seq, are monotonically increasing.
340  * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An
341  * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the
342  * corresponding generation. The gen counter in folio->flags stores gen+1 while
343  * a folio is on one of lrugen->folios[]. Otherwise it stores 0.
344  *
345  * After a folio is faulted in, the aging needs to check the accessed bit at
346  * least twice before handing this folio over to the eviction. The first check
347  * clears the accessed bit from the initial fault; the second check makes sure
348  * this folio hasn't been used since then. This process, AKA second chance,
349  * requires a minimum of two generations, hence MIN_NR_GENS. And to maintain ABI
350  * compatibility with the active/inactive LRU, e.g., /proc/vmstat, these two
351  * generations are considered active; the rest of generations, if they exist,
352  * are considered inactive. See lru_gen_is_active().
353  *
354  * PG_active is always cleared while a folio is on one of lrugen->folios[] so
355  * that the sliding window needs not to worry about it. And it's set again when
356  * a folio considered active is isolated for non-reclaiming purposes, e.g.,
357  * migration. See lru_gen_add_folio() and lru_gen_del_folio().
358  *
359  * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the
360  * number of categories of the active/inactive LRU when keeping track of
361  * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits
362  * in folio->flags, masked by LRU_GEN_MASK.
363  */
364 #define MIN_NR_GENS		2U
365 #define MAX_NR_GENS		4U
366 
367 /*
368  * Each generation is divided into multiple tiers. A folio accessed N times
369  * through file descriptors is in tier order_base_2(N). A folio in the first
370  * tier (N=0,1) is marked by PG_referenced unless it was faulted in through page
371  * tables or read ahead. A folio in the last tier (MAX_NR_TIERS-1) is marked by
372  * PG_workingset. A folio in any other tier (1<N<5) between the first and last
373  * is marked by additional bits of LRU_REFS_WIDTH in folio->flags.
374  *
375  * In contrast to moving across generations which requires the LRU lock, moving
376  * across tiers only involves atomic operations on folio->flags and therefore
377  * has a negligible cost in the buffered access path. In the eviction path,
378  * comparisons of refaulted/(evicted+protected) from the first tier and the rest
379  * infer whether folios accessed multiple times through file descriptors are
380  * statistically hot and thus worth protecting.
381  *
382  * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the
383  * number of categories of the active/inactive LRU when keeping track of
384  * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in
385  * folio->flags, masked by LRU_REFS_MASK.
386  */
387 #define MAX_NR_TIERS		4U
388 
389 #ifndef __GENERATING_BOUNDS_H
390 
391 #define LRU_GEN_MASK		((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF)
392 #define LRU_REFS_MASK		((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF)
393 
394 /*
395  * For folios accessed multiple times through file descriptors,
396  * lru_gen_inc_refs() sets additional bits of LRU_REFS_WIDTH in folio->flags
397  * after PG_referenced, then PG_workingset after LRU_REFS_WIDTH. After all its
398  * bits are set, i.e., LRU_REFS_FLAGS|BIT(PG_workingset), a folio is lazily
399  * promoted into the second oldest generation in the eviction path. And when
400  * folio_inc_gen() does that, it clears LRU_REFS_FLAGS so that
401  * lru_gen_inc_refs() can start over. Note that for this case, LRU_REFS_MASK is
402  * only valid when PG_referenced is set.
403  *
404  * For folios accessed multiple times through page tables, folio_update_gen()
405  * from a page table walk or lru_gen_set_refs() from a rmap walk sets
406  * PG_referenced after the accessed bit is cleared for the first time.
407  * Thereafter, those two paths set PG_workingset and promote folios to the
408  * youngest generation. Like folio_inc_gen(), folio_update_gen() also clears
409  * PG_referenced. Note that for this case, LRU_REFS_MASK is not used.
410  *
411  * For both cases above, after PG_workingset is set on a folio, it remains until
412  * this folio is either reclaimed, or "deactivated" by lru_gen_clear_refs(). It
413  * can be set again if lru_gen_test_recent() returns true upon a refault.
414  */
415 #define LRU_REFS_FLAGS		(LRU_REFS_MASK | BIT(PG_referenced))
416 
417 struct lruvec;
418 struct page_vma_mapped_walk;
419 
420 #ifdef CONFIG_LRU_GEN
421 
422 enum {
423 	LRU_GEN_ANON,
424 	LRU_GEN_FILE,
425 };
426 
427 enum {
428 	LRU_GEN_CORE,
429 	LRU_GEN_MM_WALK,
430 	LRU_GEN_NONLEAF_YOUNG,
431 	NR_LRU_GEN_CAPS
432 };
433 
434 #define MIN_LRU_BATCH		BITS_PER_LONG
435 #define MAX_LRU_BATCH		(MIN_LRU_BATCH * 64)
436 
437 /* whether to keep historical stats from evicted generations */
438 #ifdef CONFIG_LRU_GEN_STATS
439 #define NR_HIST_GENS		MAX_NR_GENS
440 #else
441 #define NR_HIST_GENS		1U
442 #endif
443 
444 /*
445  * The youngest generation number is stored in max_seq for both anon and file
446  * types as they are aged on an equal footing. The oldest generation numbers are
447  * stored in min_seq[] separately for anon and file types so that they can be
448  * incremented independently. Ideally min_seq[] are kept in sync when both anon
449  * and file types are evictable. However, to adapt to situations like extreme
450  * swappiness, they are allowed to be out of sync by at most
451  * MAX_NR_GENS-MIN_NR_GENS-1.
452  *
453  * The number of pages in each generation is eventually consistent and therefore
454  * can be transiently negative when reset_batch_size() is pending.
455  */
456 struct lru_gen_folio {
457 	/* the aging increments the youngest generation number */
458 	unsigned long max_seq;
459 	/* the eviction increments the oldest generation numbers */
460 	unsigned long min_seq[ANON_AND_FILE];
461 	/* the birth time of each generation in jiffies */
462 	unsigned long timestamps[MAX_NR_GENS];
463 	/* the multi-gen LRU lists, lazily sorted on eviction */
464 	struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
465 	/* the multi-gen LRU sizes, eventually consistent */
466 	long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
467 	/* the exponential moving average of refaulted */
468 	unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS];
469 	/* the exponential moving average of evicted+protected */
470 	unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS];
471 	/* can only be modified under the LRU lock */
472 	unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
473 	/* can be modified without holding the LRU lock */
474 	atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
475 	atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
476 	/* whether the multi-gen LRU is enabled */
477 	bool enabled;
478 	/* the memcg generation this lru_gen_folio belongs to */
479 	u8 gen;
480 	/* the list segment this lru_gen_folio belongs to */
481 	u8 seg;
482 	/* per-node lru_gen_folio list for global reclaim */
483 	struct hlist_nulls_node list;
484 };
485 
486 enum {
487 	MM_LEAF_TOTAL,		/* total leaf entries */
488 	MM_LEAF_YOUNG,		/* young leaf entries */
489 	MM_NONLEAF_FOUND,	/* non-leaf entries found in Bloom filters */
490 	MM_NONLEAF_ADDED,	/* non-leaf entries added to Bloom filters */
491 	NR_MM_STATS
492 };
493 
494 /* double-buffering Bloom filters */
495 #define NR_BLOOM_FILTERS	2
496 
497 struct lru_gen_mm_state {
498 	/* synced with max_seq after each iteration */
499 	unsigned long seq;
500 	/* where the current iteration continues after */
501 	struct list_head *head;
502 	/* where the last iteration ended before */
503 	struct list_head *tail;
504 	/* Bloom filters flip after each iteration */
505 	unsigned long *filters[NR_BLOOM_FILTERS];
506 	/* the mm stats for debugging */
507 	unsigned long stats[NR_HIST_GENS][NR_MM_STATS];
508 };
509 
510 struct lru_gen_mm_walk {
511 	/* the lruvec under reclaim */
512 	struct lruvec *lruvec;
513 	/* max_seq from lru_gen_folio: can be out of date */
514 	unsigned long seq;
515 	/* the next address within an mm to scan */
516 	unsigned long next_addr;
517 	/* to batch promoted pages */
518 	int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
519 	/* to batch the mm stats */
520 	int mm_stats[NR_MM_STATS];
521 	/* total batched items */
522 	int batched;
523 	int swappiness;
524 	bool force_scan;
525 };
526 
527 /*
528  * For each node, memcgs are divided into two generations: the old and the
529  * young. For each generation, memcgs are randomly sharded into multiple bins
530  * to improve scalability. For each bin, the hlist_nulls is virtually divided
531  * into three segments: the head, the tail and the default.
532  *
533  * An onlining memcg is added to the tail of a random bin in the old generation.
534  * The eviction starts at the head of a random bin in the old generation. The
535  * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes
536  * the old generation, is incremented when all its bins become empty.
537  *
538  * There are four operations:
539  * 1. MEMCG_LRU_HEAD, which moves a memcg to the head of a random bin in its
540  *    current generation (old or young) and updates its "seg" to "head";
541  * 2. MEMCG_LRU_TAIL, which moves a memcg to the tail of a random bin in its
542  *    current generation (old or young) and updates its "seg" to "tail";
543  * 3. MEMCG_LRU_OLD, which moves a memcg to the head of a random bin in the old
544  *    generation, updates its "gen" to "old" and resets its "seg" to "default";
545  * 4. MEMCG_LRU_YOUNG, which moves a memcg to the tail of a random bin in the
546  *    young generation, updates its "gen" to "young" and resets its "seg" to
547  *    "default".
548  *
549  * The events that trigger the above operations are:
550  * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD;
551  * 2. The first attempt to reclaim a memcg below low, which triggers
552  *    MEMCG_LRU_TAIL;
553  * 3. The first attempt to reclaim a memcg offlined or below reclaimable size
554  *    threshold, which triggers MEMCG_LRU_TAIL;
555  * 4. The second attempt to reclaim a memcg offlined or below reclaimable size
556  *    threshold, which triggers MEMCG_LRU_YOUNG;
557  * 5. Attempting to reclaim a memcg below min, which triggers MEMCG_LRU_YOUNG;
558  * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG;
559  * 7. Offlining a memcg, which triggers MEMCG_LRU_OLD.
560  *
561  * Notes:
562  * 1. Memcg LRU only applies to global reclaim, and the round-robin incrementing
563  *    of their max_seq counters ensures the eventual fairness to all eligible
564  *    memcgs. For memcg reclaim, it still relies on mem_cgroup_iter().
565  * 2. There are only two valid generations: old (seq) and young (seq+1).
566  *    MEMCG_NR_GENS is set to three so that when reading the generation counter
567  *    locklessly, a stale value (seq-1) does not wraparound to young.
568  */
569 #define MEMCG_NR_GENS	3
570 #define MEMCG_NR_BINS	8
571 
572 struct lru_gen_memcg {
573 	/* the per-node memcg generation counter */
574 	unsigned long seq;
575 	/* each memcg has one lru_gen_folio per node */
576 	unsigned long nr_memcgs[MEMCG_NR_GENS];
577 	/* per-node lru_gen_folio list for global reclaim */
578 	struct hlist_nulls_head	fifo[MEMCG_NR_GENS][MEMCG_NR_BINS];
579 	/* protects the above */
580 	spinlock_t lock;
581 };
582 
583 void lru_gen_init_pgdat(struct pglist_data *pgdat);
584 void lru_gen_init_lruvec(struct lruvec *lruvec);
585 bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw);
586 
587 void lru_gen_init_memcg(struct mem_cgroup *memcg);
588 void lru_gen_exit_memcg(struct mem_cgroup *memcg);
589 void lru_gen_online_memcg(struct mem_cgroup *memcg);
590 void lru_gen_offline_memcg(struct mem_cgroup *memcg);
591 void lru_gen_release_memcg(struct mem_cgroup *memcg);
592 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid);
593 
594 #else /* !CONFIG_LRU_GEN */
595 
lru_gen_init_pgdat(struct pglist_data * pgdat)596 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
597 {
598 }
599 
lru_gen_init_lruvec(struct lruvec * lruvec)600 static inline void lru_gen_init_lruvec(struct lruvec *lruvec)
601 {
602 }
603 
lru_gen_look_around(struct page_vma_mapped_walk * pvmw)604 static inline bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
605 {
606 	return false;
607 }
608 
lru_gen_init_memcg(struct mem_cgroup * memcg)609 static inline void lru_gen_init_memcg(struct mem_cgroup *memcg)
610 {
611 }
612 
lru_gen_exit_memcg(struct mem_cgroup * memcg)613 static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg)
614 {
615 }
616 
lru_gen_online_memcg(struct mem_cgroup * memcg)617 static inline void lru_gen_online_memcg(struct mem_cgroup *memcg)
618 {
619 }
620 
lru_gen_offline_memcg(struct mem_cgroup * memcg)621 static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg)
622 {
623 }
624 
lru_gen_release_memcg(struct mem_cgroup * memcg)625 static inline void lru_gen_release_memcg(struct mem_cgroup *memcg)
626 {
627 }
628 
lru_gen_soft_reclaim(struct mem_cgroup * memcg,int nid)629 static inline void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
630 {
631 }
632 
633 #endif /* CONFIG_LRU_GEN */
634 
635 struct lruvec {
636 	struct list_head		lists[NR_LRU_LISTS];
637 	/* per lruvec lru_lock for memcg */
638 	spinlock_t			lru_lock;
639 	/*
640 	 * These track the cost of reclaiming one LRU - file or anon -
641 	 * over the other. As the observed cost of reclaiming one LRU
642 	 * increases, the reclaim scan balance tips toward the other.
643 	 */
644 	unsigned long			anon_cost;
645 	unsigned long			file_cost;
646 	/* Non-resident age, driven by LRU movement */
647 	atomic_long_t			nonresident_age;
648 	/* Refaults at the time of last reclaim cycle */
649 	unsigned long			refaults[ANON_AND_FILE];
650 	/* Various lruvec state flags (enum lruvec_flags) */
651 	unsigned long			flags;
652 #ifdef CONFIG_LRU_GEN
653 	/* evictable pages divided into generations */
654 	struct lru_gen_folio		lrugen;
655 #ifdef CONFIG_LRU_GEN_WALKS_MMU
656 	/* to concurrently iterate lru_gen_mm_list */
657 	struct lru_gen_mm_state		mm_state;
658 #endif
659 #endif /* CONFIG_LRU_GEN */
660 #ifdef CONFIG_MEMCG
661 	struct pglist_data *pgdat;
662 #endif
663 	struct zswap_lruvec_state zswap_lruvec_state;
664 };
665 
666 /* Isolate for asynchronous migration */
667 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
668 /* Isolate unevictable pages */
669 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
670 
671 /* LRU Isolation modes. */
672 typedef unsigned __bitwise isolate_mode_t;
673 
674 enum zone_watermarks {
675 	WMARK_MIN,
676 	WMARK_LOW,
677 	WMARK_HIGH,
678 	WMARK_PROMO,
679 	NR_WMARK
680 };
681 
682 /*
683  * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. Two additional lists
684  * are added for THP. One PCP list is used by GPF_MOVABLE, and the other PCP list
685  * is used by GFP_UNMOVABLE and GFP_RECLAIMABLE.
686  */
687 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
688 #define NR_PCP_THP 2
689 #else
690 #define NR_PCP_THP 0
691 #endif
692 #define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1))
693 #define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP)
694 
695 /*
696  * Flags used in pcp->flags field.
697  *
698  * PCPF_PREV_FREE_HIGH_ORDER: a high-order page is freed in the
699  * previous page freeing.  To avoid to drain PCP for an accident
700  * high-order page freeing.
701  *
702  * PCPF_FREE_HIGH_BATCH: preserve "pcp->batch" pages in PCP before
703  * draining PCP for consecutive high-order pages freeing without
704  * allocation if data cache slice of CPU is large enough.  To reduce
705  * zone lock contention and keep cache-hot pages reusing.
706  */
707 #define	PCPF_PREV_FREE_HIGH_ORDER	BIT(0)
708 #define	PCPF_FREE_HIGH_BATCH		BIT(1)
709 
710 struct per_cpu_pages {
711 	spinlock_t lock;	/* Protects lists field */
712 	int count;		/* number of pages in the list */
713 	int high;		/* high watermark, emptying needed */
714 	int high_min;		/* min high watermark */
715 	int high_max;		/* max high watermark */
716 	int batch;		/* chunk size for buddy add/remove */
717 	u8 flags;		/* protected by pcp->lock */
718 	u8 alloc_factor;	/* batch scaling factor during allocate */
719 #ifdef CONFIG_NUMA
720 	u8 expire;		/* When 0, remote pagesets are drained */
721 #endif
722 	short free_count;	/* consecutive free count */
723 
724 	/* Lists of pages, one per migrate type stored on the pcp-lists */
725 	struct list_head lists[NR_PCP_LISTS];
726 } ____cacheline_aligned_in_smp;
727 
728 struct per_cpu_zonestat {
729 #ifdef CONFIG_SMP
730 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
731 	s8 stat_threshold;
732 #endif
733 #ifdef CONFIG_NUMA
734 	/*
735 	 * Low priority inaccurate counters that are only folded
736 	 * on demand. Use a large type to avoid the overhead of
737 	 * folding during refresh_cpu_vm_stats.
738 	 */
739 	unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
740 #endif
741 };
742 
743 struct per_cpu_nodestat {
744 	s8 stat_threshold;
745 	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
746 };
747 
748 #endif /* !__GENERATING_BOUNDS.H */
749 
750 enum zone_type {
751 	/*
752 	 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
753 	 * to DMA to all of the addressable memory (ZONE_NORMAL).
754 	 * On architectures where this area covers the whole 32 bit address
755 	 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
756 	 * DMA addressing constraints. This distinction is important as a 32bit
757 	 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
758 	 * platforms may need both zones as they support peripherals with
759 	 * different DMA addressing limitations.
760 	 */
761 #ifdef CONFIG_ZONE_DMA
762 	ZONE_DMA,
763 #endif
764 #ifdef CONFIG_ZONE_DMA32
765 	ZONE_DMA32,
766 #endif
767 	/*
768 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
769 	 * performed on pages in ZONE_NORMAL if the DMA devices support
770 	 * transfers to all addressable memory.
771 	 */
772 	ZONE_NORMAL,
773 #ifdef CONFIG_HIGHMEM
774 	/*
775 	 * A memory area that is only addressable by the kernel through
776 	 * mapping portions into its own address space. This is for example
777 	 * used by i386 to allow the kernel to address the memory beyond
778 	 * 900MB. The kernel will set up special mappings (page
779 	 * table entries on i386) for each page that the kernel needs to
780 	 * access.
781 	 */
782 	ZONE_HIGHMEM,
783 #endif
784 	/*
785 	 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
786 	 * movable pages with few exceptional cases described below. Main use
787 	 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
788 	 * likely to succeed, and to locally limit unmovable allocations - e.g.,
789 	 * to increase the number of THP/huge pages. Notable special cases are:
790 	 *
791 	 * 1. Pinned pages: (long-term) pinning of movable pages might
792 	 *    essentially turn such pages unmovable. Therefore, we do not allow
793 	 *    pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
794 	 *    faulted, they come from the right zone right away. However, it is
795 	 *    still possible that address space already has pages in
796 	 *    ZONE_MOVABLE at the time when pages are pinned (i.e. user has
797 	 *    touches that memory before pinning). In such case we migrate them
798 	 *    to a different zone. When migration fails - pinning fails.
799 	 * 2. memblock allocations: kernelcore/movablecore setups might create
800 	 *    situations where ZONE_MOVABLE contains unmovable allocations
801 	 *    after boot. Memory offlining and allocations fail early.
802 	 * 3. Memory holes: kernelcore/movablecore setups might create very rare
803 	 *    situations where ZONE_MOVABLE contains memory holes after boot,
804 	 *    for example, if we have sections that are only partially
805 	 *    populated. Memory offlining and allocations fail early.
806 	 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
807 	 *    memory offlining, such pages cannot be allocated.
808 	 * 5. Unmovable PG_offline pages: in paravirtualized environments,
809 	 *    hotplugged memory blocks might only partially be managed by the
810 	 *    buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
811 	 *    parts not manged by the buddy are unmovable PG_offline pages. In
812 	 *    some cases (virtio-mem), such pages can be skipped during
813 	 *    memory offlining, however, cannot be moved/allocated. These
814 	 *    techniques might use alloc_contig_range() to hide previously
815 	 *    exposed pages from the buddy again (e.g., to implement some sort
816 	 *    of memory unplug in virtio-mem).
817 	 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
818 	 *    situations where ZERO_PAGE(0) which is allocated differently
819 	 *    on different platforms may end up in a movable zone. ZERO_PAGE(0)
820 	 *    cannot be migrated.
821 	 * 7. Memory-hotplug: when using memmap_on_memory and onlining the
822 	 *    memory to the MOVABLE zone, the vmemmap pages are also placed in
823 	 *    such zone. Such pages cannot be really moved around as they are
824 	 *    self-stored in the range, but they are treated as movable when
825 	 *    the range they describe is about to be offlined.
826 	 *
827 	 * In general, no unmovable allocations that degrade memory offlining
828 	 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
829 	 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
830 	 * if has_unmovable_pages() states that there are no unmovable pages,
831 	 * there can be false negatives).
832 	 */
833 	ZONE_MOVABLE,
834 #ifdef CONFIG_ZONE_DEVICE
835 	ZONE_DEVICE,
836 #endif
837 	__MAX_NR_ZONES
838 
839 };
840 
841 #ifndef __GENERATING_BOUNDS_H
842 
843 #define ASYNC_AND_SYNC 2
844 
845 struct zone {
846 	/* Read-mostly fields */
847 
848 	/* zone watermarks, access with *_wmark_pages(zone) macros */
849 	unsigned long _watermark[NR_WMARK];
850 	unsigned long watermark_boost;
851 
852 	unsigned long nr_reserved_highatomic;
853 	unsigned long nr_free_highatomic;
854 
855 	/*
856 	 * We don't know if the memory that we're going to allocate will be
857 	 * freeable or/and it will be released eventually, so to avoid totally
858 	 * wasting several GB of ram we must reserve some of the lower zone
859 	 * memory (otherwise we risk to run OOM on the lower zones despite
860 	 * there being tons of freeable ram on the higher zones).  This array is
861 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
862 	 * changes.
863 	 */
864 	long lowmem_reserve[MAX_NR_ZONES];
865 
866 #ifdef CONFIG_NUMA
867 	int node;
868 #endif
869 	struct pglist_data	*zone_pgdat;
870 	struct per_cpu_pages	__percpu *per_cpu_pageset;
871 	struct per_cpu_zonestat	__percpu *per_cpu_zonestats;
872 	/*
873 	 * the high and batch values are copied to individual pagesets for
874 	 * faster access
875 	 */
876 	int pageset_high_min;
877 	int pageset_high_max;
878 	int pageset_batch;
879 
880 #ifndef CONFIG_SPARSEMEM
881 	/*
882 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
883 	 * In SPARSEMEM, this map is stored in struct mem_section
884 	 */
885 	unsigned long		*pageblock_flags;
886 #endif /* CONFIG_SPARSEMEM */
887 
888 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
889 	unsigned long		zone_start_pfn;
890 
891 	/*
892 	 * spanned_pages is the total pages spanned by the zone, including
893 	 * holes, which is calculated as:
894 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
895 	 *
896 	 * present_pages is physical pages existing within the zone, which
897 	 * is calculated as:
898 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
899 	 *
900 	 * present_early_pages is present pages existing within the zone
901 	 * located on memory available since early boot, excluding hotplugged
902 	 * memory.
903 	 *
904 	 * managed_pages is present pages managed by the buddy system, which
905 	 * is calculated as (reserved_pages includes pages allocated by the
906 	 * bootmem allocator):
907 	 *	managed_pages = present_pages - reserved_pages;
908 	 *
909 	 * cma pages is present pages that are assigned for CMA use
910 	 * (MIGRATE_CMA).
911 	 *
912 	 * So present_pages may be used by memory hotplug or memory power
913 	 * management logic to figure out unmanaged pages by checking
914 	 * (present_pages - managed_pages). And managed_pages should be used
915 	 * by page allocator and vm scanner to calculate all kinds of watermarks
916 	 * and thresholds.
917 	 *
918 	 * Locking rules:
919 	 *
920 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
921 	 * It is a seqlock because it has to be read outside of zone->lock,
922 	 * and it is done in the main allocator path.  But, it is written
923 	 * quite infrequently.
924 	 *
925 	 * The span_seq lock is declared along with zone->lock because it is
926 	 * frequently read in proximity to zone->lock.  It's good to
927 	 * give them a chance of being in the same cacheline.
928 	 *
929 	 * Write access to present_pages at runtime should be protected by
930 	 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of
931 	 * present_pages should use get_online_mems() to get a stable value.
932 	 */
933 	atomic_long_t		managed_pages;
934 	unsigned long		spanned_pages;
935 	unsigned long		present_pages;
936 #if defined(CONFIG_MEMORY_HOTPLUG)
937 	unsigned long		present_early_pages;
938 #endif
939 #ifdef CONFIG_CMA
940 	unsigned long		cma_pages;
941 #endif
942 
943 	const char		*name;
944 
945 #ifdef CONFIG_MEMORY_ISOLATION
946 	/*
947 	 * Number of isolated pageblock. It is used to solve incorrect
948 	 * freepage counting problem due to racy retrieving migratetype
949 	 * of pageblock. Protected by zone->lock.
950 	 */
951 	unsigned long		nr_isolate_pageblock;
952 #endif
953 
954 #ifdef CONFIG_MEMORY_HOTPLUG
955 	/* see spanned/present_pages for more description */
956 	seqlock_t		span_seqlock;
957 #endif
958 
959 	int initialized;
960 
961 	/* Write-intensive fields used from the page allocator */
962 	CACHELINE_PADDING(_pad1_);
963 
964 	/* free areas of different sizes */
965 	struct free_area	free_area[NR_PAGE_ORDERS];
966 
967 #ifdef CONFIG_UNACCEPTED_MEMORY
968 	/* Pages to be accepted. All pages on the list are MAX_PAGE_ORDER */
969 	struct list_head	unaccepted_pages;
970 
971 	/* To be called once the last page in the zone is accepted */
972 	struct work_struct	unaccepted_cleanup;
973 #endif
974 
975 	/* zone flags, see below */
976 	unsigned long		flags;
977 
978 	/* Primarily protects free_area */
979 	spinlock_t		lock;
980 
981 	/* Pages to be freed when next trylock succeeds */
982 	struct llist_head	trylock_free_pages;
983 
984 	/* Write-intensive fields used by compaction and vmstats. */
985 	CACHELINE_PADDING(_pad2_);
986 
987 	/*
988 	 * When free pages are below this point, additional steps are taken
989 	 * when reading the number of free pages to avoid per-cpu counter
990 	 * drift allowing watermarks to be breached
991 	 */
992 	unsigned long percpu_drift_mark;
993 
994 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
995 	/* pfn where compaction free scanner should start */
996 	unsigned long		compact_cached_free_pfn;
997 	/* pfn where compaction migration scanner should start */
998 	unsigned long		compact_cached_migrate_pfn[ASYNC_AND_SYNC];
999 	unsigned long		compact_init_migrate_pfn;
1000 	unsigned long		compact_init_free_pfn;
1001 #endif
1002 
1003 #ifdef CONFIG_COMPACTION
1004 	/*
1005 	 * On compaction failure, 1<<compact_defer_shift compactions
1006 	 * are skipped before trying again. The number attempted since
1007 	 * last failure is tracked with compact_considered.
1008 	 * compact_order_failed is the minimum compaction failed order.
1009 	 */
1010 	unsigned int		compact_considered;
1011 	unsigned int		compact_defer_shift;
1012 	int			compact_order_failed;
1013 #endif
1014 
1015 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
1016 	/* Set to true when the PG_migrate_skip bits should be cleared */
1017 	bool			compact_blockskip_flush;
1018 #endif
1019 
1020 	bool			contiguous;
1021 
1022 	CACHELINE_PADDING(_pad3_);
1023 	/* Zone statistics */
1024 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
1025 	atomic_long_t		vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
1026 } ____cacheline_internodealigned_in_smp;
1027 
1028 enum pgdat_flags {
1029 	PGDAT_DIRTY,			/* reclaim scanning has recently found
1030 					 * many dirty file pages at the tail
1031 					 * of the LRU.
1032 					 */
1033 	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
1034 					 * many pages under writeback
1035 					 */
1036 	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
1037 };
1038 
1039 enum zone_flags {
1040 	ZONE_BOOSTED_WATERMARK,		/* zone recently boosted watermarks.
1041 					 * Cleared when kswapd is woken.
1042 					 */
1043 	ZONE_RECLAIM_ACTIVE,		/* kswapd may be scanning the zone. */
1044 	ZONE_BELOW_HIGH,		/* zone is below high watermark. */
1045 };
1046 
wmark_pages(const struct zone * z,enum zone_watermarks w)1047 static inline unsigned long wmark_pages(const struct zone *z,
1048 					enum zone_watermarks w)
1049 {
1050 	return z->_watermark[w] + z->watermark_boost;
1051 }
1052 
min_wmark_pages(const struct zone * z)1053 static inline unsigned long min_wmark_pages(const struct zone *z)
1054 {
1055 	return wmark_pages(z, WMARK_MIN);
1056 }
1057 
low_wmark_pages(const struct zone * z)1058 static inline unsigned long low_wmark_pages(const struct zone *z)
1059 {
1060 	return wmark_pages(z, WMARK_LOW);
1061 }
1062 
high_wmark_pages(const struct zone * z)1063 static inline unsigned long high_wmark_pages(const struct zone *z)
1064 {
1065 	return wmark_pages(z, WMARK_HIGH);
1066 }
1067 
promo_wmark_pages(const struct zone * z)1068 static inline unsigned long promo_wmark_pages(const struct zone *z)
1069 {
1070 	return wmark_pages(z, WMARK_PROMO);
1071 }
1072 
zone_managed_pages(struct zone * zone)1073 static inline unsigned long zone_managed_pages(struct zone *zone)
1074 {
1075 	return (unsigned long)atomic_long_read(&zone->managed_pages);
1076 }
1077 
zone_cma_pages(struct zone * zone)1078 static inline unsigned long zone_cma_pages(struct zone *zone)
1079 {
1080 #ifdef CONFIG_CMA
1081 	return zone->cma_pages;
1082 #else
1083 	return 0;
1084 #endif
1085 }
1086 
zone_end_pfn(const struct zone * zone)1087 static inline unsigned long zone_end_pfn(const struct zone *zone)
1088 {
1089 	return zone->zone_start_pfn + zone->spanned_pages;
1090 }
1091 
zone_spans_pfn(const struct zone * zone,unsigned long pfn)1092 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
1093 {
1094 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
1095 }
1096 
zone_is_initialized(struct zone * zone)1097 static inline bool zone_is_initialized(struct zone *zone)
1098 {
1099 	return zone->initialized;
1100 }
1101 
zone_is_empty(struct zone * zone)1102 static inline bool zone_is_empty(struct zone *zone)
1103 {
1104 	return zone->spanned_pages == 0;
1105 }
1106 
1107 #ifndef BUILD_VDSO32_64
1108 /*
1109  * The zone field is never updated after free_area_init_core()
1110  * sets it, so none of the operations on it need to be atomic.
1111  */
1112 
1113 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1114 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1115 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
1116 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
1117 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
1118 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1119 #define LRU_GEN_PGOFF		(KASAN_TAG_PGOFF - LRU_GEN_WIDTH)
1120 #define LRU_REFS_PGOFF		(LRU_GEN_PGOFF - LRU_REFS_WIDTH)
1121 
1122 /*
1123  * Define the bit shifts to access each section.  For non-existent
1124  * sections we define the shift as 0; that plus a 0 mask ensures
1125  * the compiler will optimise away reference to them.
1126  */
1127 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1128 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
1129 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
1130 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1131 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1132 
1133 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1134 #ifdef NODE_NOT_IN_PAGE_FLAGS
1135 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
1136 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF) ? \
1137 						SECTIONS_PGOFF : ZONES_PGOFF)
1138 #else
1139 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
1140 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF) ? \
1141 						NODES_PGOFF : ZONES_PGOFF)
1142 #endif
1143 
1144 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1145 
1146 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
1147 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
1148 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
1149 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
1150 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
1151 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
1152 
page_zonenum(const struct page * page)1153 static inline enum zone_type page_zonenum(const struct page *page)
1154 {
1155 	ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1156 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1157 }
1158 
folio_zonenum(const struct folio * folio)1159 static inline enum zone_type folio_zonenum(const struct folio *folio)
1160 {
1161 	return page_zonenum(&folio->page);
1162 }
1163 
1164 #ifdef CONFIG_ZONE_DEVICE
is_zone_device_page(const struct page * page)1165 static inline bool is_zone_device_page(const struct page *page)
1166 {
1167 	return page_zonenum(page) == ZONE_DEVICE;
1168 }
1169 
page_pgmap(const struct page * page)1170 static inline struct dev_pagemap *page_pgmap(const struct page *page)
1171 {
1172 	VM_WARN_ON_ONCE_PAGE(!is_zone_device_page(page), page);
1173 	return page_folio(page)->pgmap;
1174 }
1175 
1176 /*
1177  * Consecutive zone device pages should not be merged into the same sgl
1178  * or bvec segment with other types of pages or if they belong to different
1179  * pgmaps. Otherwise getting the pgmap of a given segment is not possible
1180  * without scanning the entire segment. This helper returns true either if
1181  * both pages are not zone device pages or both pages are zone device pages
1182  * with the same pgmap.
1183  */
zone_device_pages_have_same_pgmap(const struct page * a,const struct page * b)1184 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1185 						     const struct page *b)
1186 {
1187 	if (is_zone_device_page(a) != is_zone_device_page(b))
1188 		return false;
1189 	if (!is_zone_device_page(a))
1190 		return true;
1191 	return page_pgmap(a) == page_pgmap(b);
1192 }
1193 
1194 extern void memmap_init_zone_device(struct zone *, unsigned long,
1195 				    unsigned long, struct dev_pagemap *);
1196 #else
is_zone_device_page(const struct page * page)1197 static inline bool is_zone_device_page(const struct page *page)
1198 {
1199 	return false;
1200 }
zone_device_pages_have_same_pgmap(const struct page * a,const struct page * b)1201 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1202 						     const struct page *b)
1203 {
1204 	return true;
1205 }
page_pgmap(const struct page * page)1206 static inline struct dev_pagemap *page_pgmap(const struct page *page)
1207 {
1208 	return NULL;
1209 }
1210 #endif
1211 
folio_is_zone_device(const struct folio * folio)1212 static inline bool folio_is_zone_device(const struct folio *folio)
1213 {
1214 	return is_zone_device_page(&folio->page);
1215 }
1216 
is_zone_movable_page(const struct page * page)1217 static inline bool is_zone_movable_page(const struct page *page)
1218 {
1219 	return page_zonenum(page) == ZONE_MOVABLE;
1220 }
1221 
folio_is_zone_movable(const struct folio * folio)1222 static inline bool folio_is_zone_movable(const struct folio *folio)
1223 {
1224 	return folio_zonenum(folio) == ZONE_MOVABLE;
1225 }
1226 #endif
1227 
1228 /*
1229  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
1230  * intersection with the given zone
1231  */
zone_intersects(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)1232 static inline bool zone_intersects(struct zone *zone,
1233 		unsigned long start_pfn, unsigned long nr_pages)
1234 {
1235 	if (zone_is_empty(zone))
1236 		return false;
1237 	if (start_pfn >= zone_end_pfn(zone) ||
1238 	    start_pfn + nr_pages <= zone->zone_start_pfn)
1239 		return false;
1240 
1241 	return true;
1242 }
1243 
1244 /*
1245  * The "priority" of VM scanning is how much of the queues we will scan in one
1246  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
1247  * queues ("queue_length >> 12") during an aging round.
1248  */
1249 #define DEF_PRIORITY 12
1250 
1251 /* Maximum number of zones on a zonelist */
1252 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
1253 
1254 enum {
1255 	ZONELIST_FALLBACK,	/* zonelist with fallback */
1256 #ifdef CONFIG_NUMA
1257 	/*
1258 	 * The NUMA zonelists are doubled because we need zonelists that
1259 	 * restrict the allocations to a single node for __GFP_THISNODE.
1260 	 */
1261 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
1262 #endif
1263 	MAX_ZONELISTS
1264 };
1265 
1266 /*
1267  * This struct contains information about a zone in a zonelist. It is stored
1268  * here to avoid dereferences into large structures and lookups of tables
1269  */
1270 struct zoneref {
1271 	struct zone *zone;	/* Pointer to actual zone */
1272 	int zone_idx;		/* zone_idx(zoneref->zone) */
1273 };
1274 
1275 /*
1276  * One allocation request operates on a zonelist. A zonelist
1277  * is a list of zones, the first one is the 'goal' of the
1278  * allocation, the other zones are fallback zones, in decreasing
1279  * priority.
1280  *
1281  * To speed the reading of the zonelist, the zonerefs contain the zone index
1282  * of the entry being read. Helper functions to access information given
1283  * a struct zoneref are
1284  *
1285  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
1286  * zonelist_zone_idx()	- Return the index of the zone for an entry
1287  * zonelist_node_idx()	- Return the index of the node for an entry
1288  */
1289 struct zonelist {
1290 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
1291 };
1292 
1293 /*
1294  * The array of struct pages for flatmem.
1295  * It must be declared for SPARSEMEM as well because there are configurations
1296  * that rely on that.
1297  */
1298 extern struct page *mem_map;
1299 
1300 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1301 struct deferred_split {
1302 	spinlock_t split_queue_lock;
1303 	struct list_head split_queue;
1304 	unsigned long split_queue_len;
1305 };
1306 #endif
1307 
1308 #ifdef CONFIG_MEMORY_FAILURE
1309 /*
1310  * Per NUMA node memory failure handling statistics.
1311  */
1312 struct memory_failure_stats {
1313 	/*
1314 	 * Number of raw pages poisoned.
1315 	 * Cases not accounted: memory outside kernel control, offline page,
1316 	 * arch-specific memory_failure (SGX), hwpoison_filter() filtered
1317 	 * error events, and unpoison actions from hwpoison_unpoison.
1318 	 */
1319 	unsigned long total;
1320 	/*
1321 	 * Recovery results of poisoned raw pages handled by memory_failure,
1322 	 * in sync with mf_result.
1323 	 * total = ignored + failed + delayed + recovered.
1324 	 * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted.
1325 	 */
1326 	unsigned long ignored;
1327 	unsigned long failed;
1328 	unsigned long delayed;
1329 	unsigned long recovered;
1330 };
1331 #endif
1332 
1333 /*
1334  * On NUMA machines, each NUMA node would have a pg_data_t to describe
1335  * it's memory layout. On UMA machines there is a single pglist_data which
1336  * describes the whole memory.
1337  *
1338  * Memory statistics and page replacement data structures are maintained on a
1339  * per-zone basis.
1340  */
1341 typedef struct pglist_data {
1342 	/*
1343 	 * node_zones contains just the zones for THIS node. Not all of the
1344 	 * zones may be populated, but it is the full list. It is referenced by
1345 	 * this node's node_zonelists as well as other node's node_zonelists.
1346 	 */
1347 	struct zone node_zones[MAX_NR_ZONES];
1348 
1349 	/*
1350 	 * node_zonelists contains references to all zones in all nodes.
1351 	 * Generally the first zones will be references to this node's
1352 	 * node_zones.
1353 	 */
1354 	struct zonelist node_zonelists[MAX_ZONELISTS];
1355 
1356 	int nr_zones; /* number of populated zones in this node */
1357 #ifdef CONFIG_FLATMEM	/* means !SPARSEMEM */
1358 	struct page *node_mem_map;
1359 #ifdef CONFIG_PAGE_EXTENSION
1360 	struct page_ext *node_page_ext;
1361 #endif
1362 #endif
1363 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
1364 	/*
1365 	 * Must be held any time you expect node_start_pfn,
1366 	 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
1367 	 * Also synchronizes pgdat->first_deferred_pfn during deferred page
1368 	 * init.
1369 	 *
1370 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
1371 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
1372 	 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
1373 	 *
1374 	 * Nests above zone->lock and zone->span_seqlock
1375 	 */
1376 	spinlock_t node_size_lock;
1377 #endif
1378 	unsigned long node_start_pfn;
1379 	unsigned long node_present_pages; /* total number of physical pages */
1380 	unsigned long node_spanned_pages; /* total size of physical page
1381 					     range, including holes */
1382 	int node_id;
1383 	wait_queue_head_t kswapd_wait;
1384 	wait_queue_head_t pfmemalloc_wait;
1385 
1386 	/* workqueues for throttling reclaim for different reasons. */
1387 	wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
1388 
1389 	atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
1390 	unsigned long nr_reclaim_start;	/* nr pages written while throttled
1391 					 * when throttling started. */
1392 #ifdef CONFIG_MEMORY_HOTPLUG
1393 	struct mutex kswapd_lock;
1394 #endif
1395 	struct task_struct *kswapd;	/* Protected by kswapd_lock */
1396 	int kswapd_order;
1397 	enum zone_type kswapd_highest_zoneidx;
1398 
1399 	int kswapd_failures;		/* Number of 'reclaimed == 0' runs */
1400 
1401 #ifdef CONFIG_COMPACTION
1402 	int kcompactd_max_order;
1403 	enum zone_type kcompactd_highest_zoneidx;
1404 	wait_queue_head_t kcompactd_wait;
1405 	struct task_struct *kcompactd;
1406 	bool proactive_compact_trigger;
1407 #endif
1408 	/*
1409 	 * This is a per-node reserve of pages that are not available
1410 	 * to userspace allocations.
1411 	 */
1412 	unsigned long		totalreserve_pages;
1413 
1414 #ifdef CONFIG_NUMA
1415 	/*
1416 	 * node reclaim becomes active if more unmapped pages exist.
1417 	 */
1418 	unsigned long		min_unmapped_pages;
1419 	unsigned long		min_slab_pages;
1420 #endif /* CONFIG_NUMA */
1421 
1422 	/* Write-intensive fields used by page reclaim */
1423 	CACHELINE_PADDING(_pad1_);
1424 
1425 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1426 	/*
1427 	 * If memory initialisation on large machines is deferred then this
1428 	 * is the first PFN that needs to be initialised.
1429 	 */
1430 	unsigned long first_deferred_pfn;
1431 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1432 
1433 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1434 	struct deferred_split deferred_split_queue;
1435 #endif
1436 
1437 #ifdef CONFIG_NUMA_BALANCING
1438 	/* start time in ms of current promote rate limit period */
1439 	unsigned int nbp_rl_start;
1440 	/* number of promote candidate pages at start time of current rate limit period */
1441 	unsigned long nbp_rl_nr_cand;
1442 	/* promote threshold in ms */
1443 	unsigned int nbp_threshold;
1444 	/* start time in ms of current promote threshold adjustment period */
1445 	unsigned int nbp_th_start;
1446 	/*
1447 	 * number of promote candidate pages at start time of current promote
1448 	 * threshold adjustment period
1449 	 */
1450 	unsigned long nbp_th_nr_cand;
1451 #endif
1452 	/* Fields commonly accessed by the page reclaim scanner */
1453 
1454 	/*
1455 	 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
1456 	 *
1457 	 * Use mem_cgroup_lruvec() to look up lruvecs.
1458 	 */
1459 	struct lruvec		__lruvec;
1460 
1461 	unsigned long		flags;
1462 
1463 #ifdef CONFIG_LRU_GEN
1464 	/* kswap mm walk data */
1465 	struct lru_gen_mm_walk mm_walk;
1466 	/* lru_gen_folio list */
1467 	struct lru_gen_memcg memcg_lru;
1468 #endif
1469 
1470 	CACHELINE_PADDING(_pad2_);
1471 
1472 	/* Per-node vmstats */
1473 	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
1474 	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
1475 #ifdef CONFIG_NUMA
1476 	struct memory_tier __rcu *memtier;
1477 #endif
1478 #ifdef CONFIG_MEMORY_FAILURE
1479 	struct memory_failure_stats mf_stats;
1480 #endif
1481 } pg_data_t;
1482 
1483 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
1484 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
1485 
1486 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
1487 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
1488 
pgdat_end_pfn(pg_data_t * pgdat)1489 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
1490 {
1491 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
1492 }
1493 
1494 #include <linux/memory_hotplug.h>
1495 
1496 void build_all_zonelists(pg_data_t *pgdat);
1497 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
1498 		   enum zone_type highest_zoneidx);
1499 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1500 			 int highest_zoneidx, unsigned int alloc_flags,
1501 			 long free_pages);
1502 bool zone_watermark_ok(struct zone *z, unsigned int order,
1503 		unsigned long mark, int highest_zoneidx,
1504 		unsigned int alloc_flags);
1505 /*
1506  * Memory initialization context, use to differentiate memory added by
1507  * the platform statically or via memory hotplug interface.
1508  */
1509 enum meminit_context {
1510 	MEMINIT_EARLY,
1511 	MEMINIT_HOTPLUG,
1512 };
1513 
1514 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
1515 				     unsigned long size);
1516 
1517 extern void lruvec_init(struct lruvec *lruvec);
1518 
lruvec_pgdat(struct lruvec * lruvec)1519 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
1520 {
1521 #ifdef CONFIG_MEMCG
1522 	return lruvec->pgdat;
1523 #else
1524 	return container_of(lruvec, struct pglist_data, __lruvec);
1525 #endif
1526 }
1527 
1528 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
1529 int local_memory_node(int node_id);
1530 #else
local_memory_node(int node_id)1531 static inline int local_memory_node(int node_id) { return node_id; };
1532 #endif
1533 
1534 /*
1535  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
1536  */
1537 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
1538 
1539 #ifdef CONFIG_ZONE_DEVICE
zone_is_zone_device(struct zone * zone)1540 static inline bool zone_is_zone_device(struct zone *zone)
1541 {
1542 	return zone_idx(zone) == ZONE_DEVICE;
1543 }
1544 #else
zone_is_zone_device(struct zone * zone)1545 static inline bool zone_is_zone_device(struct zone *zone)
1546 {
1547 	return false;
1548 }
1549 #endif
1550 
1551 /*
1552  * Returns true if a zone has pages managed by the buddy allocator.
1553  * All the reclaim decisions have to use this function rather than
1554  * populated_zone(). If the whole zone is reserved then we can easily
1555  * end up with populated_zone() && !managed_zone().
1556  */
managed_zone(struct zone * zone)1557 static inline bool managed_zone(struct zone *zone)
1558 {
1559 	return zone_managed_pages(zone);
1560 }
1561 
1562 /* Returns true if a zone has memory */
populated_zone(struct zone * zone)1563 static inline bool populated_zone(struct zone *zone)
1564 {
1565 	return zone->present_pages;
1566 }
1567 
1568 #ifdef CONFIG_NUMA
zone_to_nid(struct zone * zone)1569 static inline int zone_to_nid(struct zone *zone)
1570 {
1571 	return zone->node;
1572 }
1573 
zone_set_nid(struct zone * zone,int nid)1574 static inline void zone_set_nid(struct zone *zone, int nid)
1575 {
1576 	zone->node = nid;
1577 }
1578 #else
zone_to_nid(struct zone * zone)1579 static inline int zone_to_nid(struct zone *zone)
1580 {
1581 	return 0;
1582 }
1583 
zone_set_nid(struct zone * zone,int nid)1584 static inline void zone_set_nid(struct zone *zone, int nid) {}
1585 #endif
1586 
1587 extern int movable_zone;
1588 
is_highmem_idx(enum zone_type idx)1589 static inline int is_highmem_idx(enum zone_type idx)
1590 {
1591 #ifdef CONFIG_HIGHMEM
1592 	return (idx == ZONE_HIGHMEM ||
1593 		(idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
1594 #else
1595 	return 0;
1596 #endif
1597 }
1598 
1599 /**
1600  * is_highmem - helper function to quickly check if a struct zone is a
1601  *              highmem zone or not.  This is an attempt to keep references
1602  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
1603  * @zone: pointer to struct zone variable
1604  * Return: 1 for a highmem zone, 0 otherwise
1605  */
is_highmem(struct zone * zone)1606 static inline int is_highmem(struct zone *zone)
1607 {
1608 	return is_highmem_idx(zone_idx(zone));
1609 }
1610 
1611 #ifdef CONFIG_ZONE_DMA
1612 bool has_managed_dma(void);
1613 #else
has_managed_dma(void)1614 static inline bool has_managed_dma(void)
1615 {
1616 	return false;
1617 }
1618 #endif
1619 
1620 
1621 #ifndef CONFIG_NUMA
1622 
1623 extern struct pglist_data contig_page_data;
NODE_DATA(int nid)1624 static inline struct pglist_data *NODE_DATA(int nid)
1625 {
1626 	return &contig_page_data;
1627 }
1628 
1629 #else /* CONFIG_NUMA */
1630 
1631 #include <asm/mmzone.h>
1632 
1633 #endif /* !CONFIG_NUMA */
1634 
1635 extern struct pglist_data *first_online_pgdat(void);
1636 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1637 extern struct zone *next_zone(struct zone *zone);
1638 
1639 /**
1640  * for_each_online_pgdat - helper macro to iterate over all online nodes
1641  * @pgdat: pointer to a pg_data_t variable
1642  */
1643 #define for_each_online_pgdat(pgdat)			\
1644 	for (pgdat = first_online_pgdat();		\
1645 	     pgdat;					\
1646 	     pgdat = next_online_pgdat(pgdat))
1647 /**
1648  * for_each_zone - helper macro to iterate over all memory zones
1649  * @zone: pointer to struct zone variable
1650  *
1651  * The user only needs to declare the zone variable, for_each_zone
1652  * fills it in.
1653  */
1654 #define for_each_zone(zone)			        \
1655 	for (zone = (first_online_pgdat())->node_zones; \
1656 	     zone;					\
1657 	     zone = next_zone(zone))
1658 
1659 #define for_each_populated_zone(zone)		        \
1660 	for (zone = (first_online_pgdat())->node_zones; \
1661 	     zone;					\
1662 	     zone = next_zone(zone))			\
1663 		if (!populated_zone(zone))		\
1664 			; /* do nothing */		\
1665 		else
1666 
zonelist_zone(struct zoneref * zoneref)1667 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1668 {
1669 	return zoneref->zone;
1670 }
1671 
zonelist_zone_idx(struct zoneref * zoneref)1672 static inline int zonelist_zone_idx(struct zoneref *zoneref)
1673 {
1674 	return zoneref->zone_idx;
1675 }
1676 
zonelist_node_idx(struct zoneref * zoneref)1677 static inline int zonelist_node_idx(struct zoneref *zoneref)
1678 {
1679 	return zone_to_nid(zoneref->zone);
1680 }
1681 
1682 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1683 					enum zone_type highest_zoneidx,
1684 					nodemask_t *nodes);
1685 
1686 /**
1687  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1688  * @z: The cursor used as a starting point for the search
1689  * @highest_zoneidx: The zone index of the highest zone to return
1690  * @nodes: An optional nodemask to filter the zonelist with
1691  *
1692  * This function returns the next zone at or below a given zone index that is
1693  * within the allowed nodemask using a cursor as the starting point for the
1694  * search. The zoneref returned is a cursor that represents the current zone
1695  * being examined. It should be advanced by one before calling
1696  * next_zones_zonelist again.
1697  *
1698  * Return: the next zone at or below highest_zoneidx within the allowed
1699  * nodemask using a cursor within a zonelist as a starting point
1700  */
next_zones_zonelist(struct zoneref * z,enum zone_type highest_zoneidx,nodemask_t * nodes)1701 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1702 					enum zone_type highest_zoneidx,
1703 					nodemask_t *nodes)
1704 {
1705 	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1706 		return z;
1707 	return __next_zones_zonelist(z, highest_zoneidx, nodes);
1708 }
1709 
1710 /**
1711  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1712  * @zonelist: The zonelist to search for a suitable zone
1713  * @highest_zoneidx: The zone index of the highest zone to return
1714  * @nodes: An optional nodemask to filter the zonelist with
1715  *
1716  * This function returns the first zone at or below a given zone index that is
1717  * within the allowed nodemask. The zoneref returned is a cursor that can be
1718  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1719  * one before calling.
1720  *
1721  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1722  * never NULL). This may happen either genuinely, or due to concurrent nodemask
1723  * update due to cpuset modification.
1724  *
1725  * Return: Zoneref pointer for the first suitable zone found
1726  */
first_zones_zonelist(struct zonelist * zonelist,enum zone_type highest_zoneidx,nodemask_t * nodes)1727 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1728 					enum zone_type highest_zoneidx,
1729 					nodemask_t *nodes)
1730 {
1731 	return next_zones_zonelist(zonelist->_zonerefs,
1732 							highest_zoneidx, nodes);
1733 }
1734 
1735 /**
1736  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1737  * @zone: The current zone in the iterator
1738  * @z: The current pointer within zonelist->_zonerefs being iterated
1739  * @zlist: The zonelist being iterated
1740  * @highidx: The zone index of the highest zone to return
1741  * @nodemask: Nodemask allowed by the allocator
1742  *
1743  * This iterator iterates though all zones at or below a given zone index and
1744  * within a given nodemask
1745  */
1746 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1747 	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1748 		zone;							\
1749 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1750 			zone = zonelist_zone(z))
1751 
1752 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
1753 	for (zone = zonelist_zone(z);	\
1754 		zone;							\
1755 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1756 			zone = zonelist_zone(z))
1757 
1758 
1759 /**
1760  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1761  * @zone: The current zone in the iterator
1762  * @z: The current pointer within zonelist->zones being iterated
1763  * @zlist: The zonelist being iterated
1764  * @highidx: The zone index of the highest zone to return
1765  *
1766  * This iterator iterates though all zones at or below a given zone index.
1767  */
1768 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1769 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1770 
1771 /* Whether the 'nodes' are all movable nodes */
movable_only_nodes(nodemask_t * nodes)1772 static inline bool movable_only_nodes(nodemask_t *nodes)
1773 {
1774 	struct zonelist *zonelist;
1775 	struct zoneref *z;
1776 	int nid;
1777 
1778 	if (nodes_empty(*nodes))
1779 		return false;
1780 
1781 	/*
1782 	 * We can chose arbitrary node from the nodemask to get a
1783 	 * zonelist as they are interlinked. We just need to find
1784 	 * at least one zone that can satisfy kernel allocations.
1785 	 */
1786 	nid = first_node(*nodes);
1787 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
1788 	z = first_zones_zonelist(zonelist, ZONE_NORMAL,	nodes);
1789 	return (!zonelist_zone(z)) ? true : false;
1790 }
1791 
1792 
1793 #ifdef CONFIG_SPARSEMEM
1794 #include <asm/sparsemem.h>
1795 #endif
1796 
1797 #ifdef CONFIG_FLATMEM
1798 #define pfn_to_nid(pfn)		(0)
1799 #endif
1800 
1801 #ifdef CONFIG_SPARSEMEM
1802 
1803 /*
1804  * PA_SECTION_SHIFT		physical address to/from section number
1805  * PFN_SECTION_SHIFT		pfn to/from section number
1806  */
1807 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1808 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1809 
1810 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1811 
1812 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1813 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1814 
1815 #define SECTION_BLOCKFLAGS_BITS \
1816 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1817 
1818 #if (MAX_PAGE_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS
1819 #error Allocator MAX_PAGE_ORDER exceeds SECTION_SIZE
1820 #endif
1821 
pfn_to_section_nr(unsigned long pfn)1822 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1823 {
1824 	return pfn >> PFN_SECTION_SHIFT;
1825 }
section_nr_to_pfn(unsigned long sec)1826 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1827 {
1828 	return sec << PFN_SECTION_SHIFT;
1829 }
1830 
1831 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1832 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1833 
1834 #define SUBSECTION_SHIFT 21
1835 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1836 
1837 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1838 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1839 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1840 
1841 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1842 #error Subsection size exceeds section size
1843 #else
1844 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1845 #endif
1846 
1847 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1848 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1849 
1850 struct mem_section_usage {
1851 	struct rcu_head rcu;
1852 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1853 	DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1854 #endif
1855 	/* See declaration of similar field in struct zone */
1856 	unsigned long pageblock_flags[0];
1857 };
1858 
1859 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1860 
1861 struct page;
1862 struct page_ext;
1863 struct mem_section {
1864 	/*
1865 	 * This is, logically, a pointer to an array of struct
1866 	 * pages.  However, it is stored with some other magic.
1867 	 * (see sparse.c::sparse_init_one_section())
1868 	 *
1869 	 * Additionally during early boot we encode node id of
1870 	 * the location of the section here to guide allocation.
1871 	 * (see sparse.c::memory_present())
1872 	 *
1873 	 * Making it a UL at least makes someone do a cast
1874 	 * before using it wrong.
1875 	 */
1876 	unsigned long section_mem_map;
1877 
1878 	struct mem_section_usage *usage;
1879 #ifdef CONFIG_PAGE_EXTENSION
1880 	/*
1881 	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1882 	 * section. (see page_ext.h about this.)
1883 	 */
1884 	struct page_ext *page_ext;
1885 	unsigned long pad;
1886 #endif
1887 	/*
1888 	 * WARNING: mem_section must be a power-of-2 in size for the
1889 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1890 	 */
1891 };
1892 
1893 #ifdef CONFIG_SPARSEMEM_EXTREME
1894 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1895 #else
1896 #define SECTIONS_PER_ROOT	1
1897 #endif
1898 
1899 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1900 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1901 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1902 
1903 #ifdef CONFIG_SPARSEMEM_EXTREME
1904 extern struct mem_section **mem_section;
1905 #else
1906 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1907 #endif
1908 
section_to_usemap(struct mem_section * ms)1909 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1910 {
1911 	return ms->usage->pageblock_flags;
1912 }
1913 
__nr_to_section(unsigned long nr)1914 static inline struct mem_section *__nr_to_section(unsigned long nr)
1915 {
1916 	unsigned long root = SECTION_NR_TO_ROOT(nr);
1917 
1918 	if (unlikely(root >= NR_SECTION_ROOTS))
1919 		return NULL;
1920 
1921 #ifdef CONFIG_SPARSEMEM_EXTREME
1922 	if (!mem_section || !mem_section[root])
1923 		return NULL;
1924 #endif
1925 	return &mem_section[root][nr & SECTION_ROOT_MASK];
1926 }
1927 extern size_t mem_section_usage_size(void);
1928 
1929 /*
1930  * We use the lower bits of the mem_map pointer to store
1931  * a little bit of information.  The pointer is calculated
1932  * as mem_map - section_nr_to_pfn(pnum).  The result is
1933  * aligned to the minimum alignment of the two values:
1934  *   1. All mem_map arrays are page-aligned.
1935  *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1936  *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1937  *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1938  *      worst combination is powerpc with 256k pages,
1939  *      which results in PFN_SECTION_SHIFT equal 6.
1940  * To sum it up, at least 6 bits are available on all architectures.
1941  * However, we can exceed 6 bits on some other architectures except
1942  * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available
1943  * with the worst case of 64K pages on arm64) if we make sure the
1944  * exceeded bit is not applicable to powerpc.
1945  */
1946 enum {
1947 	SECTION_MARKED_PRESENT_BIT,
1948 	SECTION_HAS_MEM_MAP_BIT,
1949 	SECTION_IS_ONLINE_BIT,
1950 	SECTION_IS_EARLY_BIT,
1951 #ifdef CONFIG_ZONE_DEVICE
1952 	SECTION_TAINT_ZONE_DEVICE_BIT,
1953 #endif
1954 #ifdef CONFIG_SPARSEMEM_VMEMMAP_PREINIT
1955 	SECTION_IS_VMEMMAP_PREINIT_BIT,
1956 #endif
1957 	SECTION_MAP_LAST_BIT,
1958 };
1959 
1960 #define SECTION_MARKED_PRESENT		BIT(SECTION_MARKED_PRESENT_BIT)
1961 #define SECTION_HAS_MEM_MAP		BIT(SECTION_HAS_MEM_MAP_BIT)
1962 #define SECTION_IS_ONLINE		BIT(SECTION_IS_ONLINE_BIT)
1963 #define SECTION_IS_EARLY		BIT(SECTION_IS_EARLY_BIT)
1964 #ifdef CONFIG_ZONE_DEVICE
1965 #define SECTION_TAINT_ZONE_DEVICE	BIT(SECTION_TAINT_ZONE_DEVICE_BIT)
1966 #endif
1967 #ifdef CONFIG_SPARSEMEM_VMEMMAP_PREINIT
1968 #define SECTION_IS_VMEMMAP_PREINIT	BIT(SECTION_IS_VMEMMAP_PREINIT_BIT)
1969 #endif
1970 #define SECTION_MAP_MASK		(~(BIT(SECTION_MAP_LAST_BIT) - 1))
1971 #define SECTION_NID_SHIFT		SECTION_MAP_LAST_BIT
1972 
__section_mem_map_addr(struct mem_section * section)1973 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1974 {
1975 	unsigned long map = section->section_mem_map;
1976 	map &= SECTION_MAP_MASK;
1977 	return (struct page *)map;
1978 }
1979 
present_section(struct mem_section * section)1980 static inline int present_section(struct mem_section *section)
1981 {
1982 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1983 }
1984 
present_section_nr(unsigned long nr)1985 static inline int present_section_nr(unsigned long nr)
1986 {
1987 	return present_section(__nr_to_section(nr));
1988 }
1989 
valid_section(struct mem_section * section)1990 static inline int valid_section(struct mem_section *section)
1991 {
1992 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1993 }
1994 
early_section(struct mem_section * section)1995 static inline int early_section(struct mem_section *section)
1996 {
1997 	return (section && (section->section_mem_map & SECTION_IS_EARLY));
1998 }
1999 
valid_section_nr(unsigned long nr)2000 static inline int valid_section_nr(unsigned long nr)
2001 {
2002 	return valid_section(__nr_to_section(nr));
2003 }
2004 
online_section(struct mem_section * section)2005 static inline int online_section(struct mem_section *section)
2006 {
2007 	return (section && (section->section_mem_map & SECTION_IS_ONLINE));
2008 }
2009 
2010 #ifdef CONFIG_ZONE_DEVICE
online_device_section(struct mem_section * section)2011 static inline int online_device_section(struct mem_section *section)
2012 {
2013 	unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
2014 
2015 	return section && ((section->section_mem_map & flags) == flags);
2016 }
2017 #else
online_device_section(struct mem_section * section)2018 static inline int online_device_section(struct mem_section *section)
2019 {
2020 	return 0;
2021 }
2022 #endif
2023 
2024 #ifdef CONFIG_SPARSEMEM_VMEMMAP_PREINIT
preinited_vmemmap_section(struct mem_section * section)2025 static inline int preinited_vmemmap_section(struct mem_section *section)
2026 {
2027 	return (section &&
2028 		(section->section_mem_map & SECTION_IS_VMEMMAP_PREINIT));
2029 }
2030 
2031 void sparse_vmemmap_init_nid_early(int nid);
2032 void sparse_vmemmap_init_nid_late(int nid);
2033 
2034 #else
preinited_vmemmap_section(struct mem_section * section)2035 static inline int preinited_vmemmap_section(struct mem_section *section)
2036 {
2037 	return 0;
2038 }
sparse_vmemmap_init_nid_early(int nid)2039 static inline void sparse_vmemmap_init_nid_early(int nid)
2040 {
2041 }
2042 
sparse_vmemmap_init_nid_late(int nid)2043 static inline void sparse_vmemmap_init_nid_late(int nid)
2044 {
2045 }
2046 #endif
2047 
online_section_nr(unsigned long nr)2048 static inline int online_section_nr(unsigned long nr)
2049 {
2050 	return online_section(__nr_to_section(nr));
2051 }
2052 
2053 #ifdef CONFIG_MEMORY_HOTPLUG
2054 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
2055 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
2056 #endif
2057 
__pfn_to_section(unsigned long pfn)2058 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
2059 {
2060 	return __nr_to_section(pfn_to_section_nr(pfn));
2061 }
2062 
2063 extern unsigned long __highest_present_section_nr;
2064 
subsection_map_index(unsigned long pfn)2065 static inline int subsection_map_index(unsigned long pfn)
2066 {
2067 	return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
2068 }
2069 
2070 #ifdef CONFIG_SPARSEMEM_VMEMMAP
pfn_section_valid(struct mem_section * ms,unsigned long pfn)2071 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
2072 {
2073 	int idx = subsection_map_index(pfn);
2074 	struct mem_section_usage *usage = READ_ONCE(ms->usage);
2075 
2076 	return usage ? test_bit(idx, usage->subsection_map) : 0;
2077 }
2078 #else
pfn_section_valid(struct mem_section * ms,unsigned long pfn)2079 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
2080 {
2081 	return 1;
2082 }
2083 #endif
2084 
2085 void sparse_init_early_section(int nid, struct page *map, unsigned long pnum,
2086 			       unsigned long flags);
2087 
2088 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
2089 /**
2090  * pfn_valid - check if there is a valid memory map entry for a PFN
2091  * @pfn: the page frame number to check
2092  *
2093  * Check if there is a valid memory map entry aka struct page for the @pfn.
2094  * Note, that availability of the memory map entry does not imply that
2095  * there is actual usable memory at that @pfn. The struct page may
2096  * represent a hole or an unusable page frame.
2097  *
2098  * Return: 1 for PFNs that have memory map entries and 0 otherwise
2099  */
pfn_valid(unsigned long pfn)2100 static inline int pfn_valid(unsigned long pfn)
2101 {
2102 	struct mem_section *ms;
2103 	int ret;
2104 
2105 	/*
2106 	 * Ensure the upper PAGE_SHIFT bits are clear in the
2107 	 * pfn. Else it might lead to false positives when
2108 	 * some of the upper bits are set, but the lower bits
2109 	 * match a valid pfn.
2110 	 */
2111 	if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
2112 		return 0;
2113 
2114 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2115 		return 0;
2116 	ms = __pfn_to_section(pfn);
2117 	rcu_read_lock_sched();
2118 	if (!valid_section(ms)) {
2119 		rcu_read_unlock_sched();
2120 		return 0;
2121 	}
2122 	/*
2123 	 * Traditionally early sections always returned pfn_valid() for
2124 	 * the entire section-sized span.
2125 	 */
2126 	ret = early_section(ms) || pfn_section_valid(ms, pfn);
2127 	rcu_read_unlock_sched();
2128 
2129 	return ret;
2130 }
2131 #endif
2132 
pfn_in_present_section(unsigned long pfn)2133 static inline int pfn_in_present_section(unsigned long pfn)
2134 {
2135 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2136 		return 0;
2137 	return present_section(__pfn_to_section(pfn));
2138 }
2139 
next_present_section_nr(unsigned long section_nr)2140 static inline unsigned long next_present_section_nr(unsigned long section_nr)
2141 {
2142 	while (++section_nr <= __highest_present_section_nr) {
2143 		if (present_section_nr(section_nr))
2144 			return section_nr;
2145 	}
2146 
2147 	return -1;
2148 }
2149 
2150 #define for_each_present_section_nr(start, section_nr)		\
2151 	for (section_nr = next_present_section_nr(start - 1);	\
2152 	     section_nr != -1;					\
2153 	     section_nr = next_present_section_nr(section_nr))
2154 
2155 /*
2156  * These are _only_ used during initialisation, therefore they
2157  * can use __initdata ...  They could have names to indicate
2158  * this restriction.
2159  */
2160 #ifdef CONFIG_NUMA
2161 #define pfn_to_nid(pfn)							\
2162 ({									\
2163 	unsigned long __pfn_to_nid_pfn = (pfn);				\
2164 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
2165 })
2166 #else
2167 #define pfn_to_nid(pfn)		(0)
2168 #endif
2169 
2170 void sparse_init(void);
2171 #else
2172 #define sparse_init()	do {} while (0)
2173 #define sparse_index_init(_sec, _nid)  do {} while (0)
2174 #define sparse_vmemmap_init_nid_early(_nid, _use) do {} while (0)
2175 #define sparse_vmemmap_init_nid_late(_nid) do {} while (0)
2176 #define pfn_in_present_section pfn_valid
2177 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
2178 #endif /* CONFIG_SPARSEMEM */
2179 
2180 #endif /* !__GENERATING_BOUNDS.H */
2181 #endif /* !__ASSEMBLY__ */
2182 #endif /* _LINUX_MMZONE_H */
2183