1 /*-
2 * Copyright (c) 2002-2006 Sam Leffler. All rights reserved.
3 * Copyright (c) 2021 The FreeBSD Foundation
4 *
5 * Portions of this software were developed by Ararat River
6 * Consulting, LLC under sponsorship of the FreeBSD Foundation.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 /*
31 * Cryptographic Subsystem.
32 *
33 * This code is derived from the Openbsd Cryptographic Framework (OCF)
34 * that has the copyright shown below. Very little of the original
35 * code remains.
36 */
37
38 /*-
39 * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
40 *
41 * This code was written by Angelos D. Keromytis in Athens, Greece, in
42 * February 2000. Network Security Technologies Inc. (NSTI) kindly
43 * supported the development of this code.
44 *
45 * Copyright (c) 2000, 2001 Angelos D. Keromytis
46 *
47 * Permission to use, copy, and modify this software with or without fee
48 * is hereby granted, provided that this entire notice is included in
49 * all source code copies of any software which is or includes a copy or
50 * modification of this software.
51 *
52 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
53 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
54 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
55 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
56 * PURPOSE.
57 */
58
59 #include "opt_ddb.h"
60
61 #include <sys/param.h>
62 #include <sys/systm.h>
63 #include <sys/counter.h>
64 #include <sys/kernel.h>
65 #include <sys/kthread.h>
66 #include <sys/linker.h>
67 #include <sys/lock.h>
68 #include <sys/module.h>
69 #include <sys/mutex.h>
70 #include <sys/malloc.h>
71 #include <sys/mbuf.h>
72 #include <sys/proc.h>
73 #include <sys/refcount.h>
74 #include <sys/sdt.h>
75 #include <sys/smp.h>
76 #include <sys/sysctl.h>
77 #include <sys/taskqueue.h>
78 #include <sys/uio.h>
79
80 #include <ddb/ddb.h>
81
82 #include <machine/vmparam.h>
83 #include <vm/uma.h>
84
85 #include <crypto/intake.h>
86 #include <opencrypto/cryptodev.h>
87 #include <opencrypto/xform_auth.h>
88 #include <opencrypto/xform_enc.h>
89
90 #include <sys/kobj.h>
91 #include <sys/bus.h>
92 #include "cryptodev_if.h"
93
94 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
95 #include <machine/pcb.h>
96 #endif
97
98 SDT_PROVIDER_DEFINE(opencrypto);
99
100 /*
101 * Crypto drivers register themselves by allocating a slot in the
102 * crypto_drivers table with crypto_get_driverid().
103 */
104 static struct mtx crypto_drivers_mtx; /* lock on driver table */
105 #define CRYPTO_DRIVER_LOCK() mtx_lock(&crypto_drivers_mtx)
106 #define CRYPTO_DRIVER_UNLOCK() mtx_unlock(&crypto_drivers_mtx)
107 #define CRYPTO_DRIVER_ASSERT() mtx_assert(&crypto_drivers_mtx, MA_OWNED)
108
109 /*
110 * Crypto device/driver capabilities structure.
111 *
112 * Synchronization:
113 * (d) - protected by CRYPTO_DRIVER_LOCK()
114 * (q) - protected by CRYPTO_Q_LOCK()
115 * Not tagged fields are read-only.
116 */
117 struct cryptocap {
118 device_t cc_dev;
119 uint32_t cc_hid;
120 uint32_t cc_sessions; /* (d) # of sessions */
121
122 int cc_flags; /* (d) flags */
123 #define CRYPTOCAP_F_CLEANUP 0x80000000 /* needs resource cleanup */
124 int cc_qblocked; /* (q) symmetric q blocked */
125 size_t cc_session_size;
126 volatile int cc_refs;
127 };
128
129 static struct cryptocap **crypto_drivers = NULL;
130 static int crypto_drivers_size = 0;
131
132 struct crypto_session {
133 struct cryptocap *cap;
134 struct crypto_session_params csp;
135 uint64_t id;
136 /* Driver softc follows. */
137 };
138
139 static int crp_sleep = 0;
140 static TAILQ_HEAD(cryptop_q ,cryptop) crp_q; /* request queues */
141 static struct mtx crypto_q_mtx;
142 #define CRYPTO_Q_LOCK() mtx_lock(&crypto_q_mtx)
143 #define CRYPTO_Q_UNLOCK() mtx_unlock(&crypto_q_mtx)
144
145 SYSCTL_NODE(_kern, OID_AUTO, crypto, CTLFLAG_RW, 0,
146 "In-kernel cryptography");
147
148 /*
149 * Taskqueue used to dispatch the crypto requests submitted with
150 * crypto_dispatch_async .
151 */
152 static struct taskqueue *crypto_tq;
153
154 /*
155 * Crypto seq numbers are operated on with modular arithmetic
156 */
157 #define CRYPTO_SEQ_GT(a,b) ((int)((a)-(b)) > 0)
158
159 struct crypto_ret_worker {
160 struct mtx crypto_ret_mtx;
161
162 TAILQ_HEAD(,cryptop) crp_ordered_ret_q; /* ordered callback queue for symetric jobs */
163 TAILQ_HEAD(,cryptop) crp_ret_q; /* callback queue for symetric jobs */
164
165 uint32_t reorder_ops; /* total ordered sym jobs received */
166 uint32_t reorder_cur_seq; /* current sym job dispatched */
167
168 struct thread *td;
169 };
170 static struct crypto_ret_worker *crypto_ret_workers = NULL;
171
172 #define CRYPTO_RETW(i) (&crypto_ret_workers[i])
173 #define CRYPTO_RETW_ID(w) ((w) - crypto_ret_workers)
174 #define FOREACH_CRYPTO_RETW(w) \
175 for (w = crypto_ret_workers; w < crypto_ret_workers + crypto_workers_num; ++w)
176
177 #define CRYPTO_RETW_LOCK(w) mtx_lock(&w->crypto_ret_mtx)
178 #define CRYPTO_RETW_UNLOCK(w) mtx_unlock(&w->crypto_ret_mtx)
179
180 static int crypto_workers_num = 0;
181 SYSCTL_INT(_kern_crypto, OID_AUTO, num_workers, CTLFLAG_RDTUN,
182 &crypto_workers_num, 0,
183 "Number of crypto workers used to dispatch crypto jobs");
184 #ifdef COMPAT_FREEBSD12
185 SYSCTL_INT(_kern, OID_AUTO, crypto_workers_num, CTLFLAG_RDTUN,
186 &crypto_workers_num, 0,
187 "Number of crypto workers used to dispatch crypto jobs");
188 #endif
189
190 static uma_zone_t cryptop_zone;
191
192 int crypto_devallowsoft = 0;
193 SYSCTL_INT(_kern_crypto, OID_AUTO, allow_soft, CTLFLAG_RWTUN,
194 &crypto_devallowsoft, 0,
195 "Enable use of software crypto by /dev/crypto");
196 #ifdef COMPAT_FREEBSD12
197 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RWTUN,
198 &crypto_devallowsoft, 0,
199 "Enable/disable use of software crypto by /dev/crypto");
200 #endif
201
202 #ifdef DIAGNOSTIC
203 bool crypto_destroyreq_check;
204 SYSCTL_BOOL(_kern_crypto, OID_AUTO, destroyreq_check, CTLFLAG_RWTUN,
205 &crypto_destroyreq_check, 0,
206 "Enable checks when destroying a request");
207 #endif
208
209 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
210
211 static void crypto_dispatch_thread(void *arg);
212 static struct thread *cryptotd;
213 static void crypto_ret_thread(void *arg);
214 static void crypto_destroy(void);
215 static int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint);
216 static void crypto_task_invoke(void *ctx, int pending);
217 static void crypto_batch_enqueue(struct cryptop *crp);
218
219 static counter_u64_t cryptostats[sizeof(struct cryptostats) / sizeof(uint64_t)];
220 SYSCTL_COUNTER_U64_ARRAY(_kern_crypto, OID_AUTO, stats, CTLFLAG_RW,
221 cryptostats, nitems(cryptostats),
222 "Crypto system statistics");
223
224 #define CRYPTOSTAT_INC(stat) do { \
225 counter_u64_add( \
226 cryptostats[offsetof(struct cryptostats, stat) / sizeof(uint64_t)],\
227 1); \
228 } while (0)
229
230 static void
cryptostats_init(void * arg __unused)231 cryptostats_init(void *arg __unused)
232 {
233 COUNTER_ARRAY_ALLOC(cryptostats, nitems(cryptostats), M_WAITOK);
234 }
235 SYSINIT(cryptostats_init, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_init, NULL);
236
237 static void
cryptostats_fini(void * arg __unused)238 cryptostats_fini(void *arg __unused)
239 {
240 COUNTER_ARRAY_FREE(cryptostats, nitems(cryptostats));
241 }
242 SYSUNINIT(cryptostats_fini, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_fini,
243 NULL);
244
245 /* Try to avoid directly exposing the key buffer as a symbol */
246 static struct keybuf *keybuf;
247
248 static struct keybuf empty_keybuf = {
249 .kb_nents = 0
250 };
251
252 /* Obtain the key buffer from boot metadata */
253 static void
keybuf_init(void)254 keybuf_init(void)
255 {
256 keybuf = (struct keybuf *)preload_search_info(preload_kmdp,
257 MODINFO_METADATA | MODINFOMD_KEYBUF);
258
259 if (keybuf == NULL)
260 keybuf = &empty_keybuf;
261 }
262
263 /* It'd be nice if we could store these in some kind of secure memory... */
264 struct keybuf *
get_keybuf(void)265 get_keybuf(void)
266 {
267
268 return (keybuf);
269 }
270
271 static struct cryptocap *
cap_ref(struct cryptocap * cap)272 cap_ref(struct cryptocap *cap)
273 {
274
275 refcount_acquire(&cap->cc_refs);
276 return (cap);
277 }
278
279 static void
cap_rele(struct cryptocap * cap)280 cap_rele(struct cryptocap *cap)
281 {
282
283 if (refcount_release(&cap->cc_refs) == 0)
284 return;
285
286 KASSERT(cap->cc_sessions == 0,
287 ("freeing crypto driver with active sessions"));
288
289 free(cap, M_CRYPTO_DATA);
290 }
291
292 static int
crypto_init(void)293 crypto_init(void)
294 {
295 struct crypto_ret_worker *ret_worker;
296 struct proc *p;
297 int error;
298
299 mtx_init(&crypto_drivers_mtx, "crypto driver table", NULL, MTX_DEF);
300
301 TAILQ_INIT(&crp_q);
302 mtx_init(&crypto_q_mtx, "crypto op queues", NULL, MTX_DEF);
303
304 cryptop_zone = uma_zcreate("cryptop",
305 sizeof(struct cryptop), NULL, NULL, NULL, NULL,
306 UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
307
308 crypto_drivers_size = CRYPTO_DRIVERS_INITIAL;
309 crypto_drivers = malloc(crypto_drivers_size *
310 sizeof(struct cryptocap), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
311
312 if (crypto_workers_num < 1 || crypto_workers_num > mp_ncpus)
313 crypto_workers_num = mp_ncpus;
314
315 crypto_tq = taskqueue_create("crypto", M_WAITOK | M_ZERO,
316 taskqueue_thread_enqueue, &crypto_tq);
317
318 taskqueue_start_threads(&crypto_tq, crypto_workers_num, PRI_MIN_KERN,
319 "crypto");
320
321 p = NULL;
322 error = kproc_kthread_add(crypto_dispatch_thread, NULL, &p, &cryptotd,
323 0, 0, "crypto", "crypto");
324 if (error) {
325 printf("crypto_init: cannot start crypto thread; error %d",
326 error);
327 goto bad;
328 }
329
330 crypto_ret_workers = mallocarray(crypto_workers_num,
331 sizeof(struct crypto_ret_worker), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
332
333 FOREACH_CRYPTO_RETW(ret_worker) {
334 TAILQ_INIT(&ret_worker->crp_ordered_ret_q);
335 TAILQ_INIT(&ret_worker->crp_ret_q);
336
337 ret_worker->reorder_ops = 0;
338 ret_worker->reorder_cur_seq = 0;
339
340 mtx_init(&ret_worker->crypto_ret_mtx, "crypto return queues",
341 NULL, MTX_DEF);
342
343 error = kthread_add(crypto_ret_thread, ret_worker, p,
344 &ret_worker->td, 0, 0, "crypto returns %td",
345 CRYPTO_RETW_ID(ret_worker));
346 if (error) {
347 printf("crypto_init: cannot start cryptoret thread; error %d",
348 error);
349 goto bad;
350 }
351 }
352
353 keybuf_init();
354
355 return 0;
356 bad:
357 crypto_destroy();
358 return error;
359 }
360
361 /*
362 * Signal a crypto thread to terminate. We use the driver
363 * table lock to synchronize the sleep/wakeups so that we
364 * are sure the threads have terminated before we release
365 * the data structures they use. See crypto_finis below
366 * for the other half of this song-and-dance.
367 */
368 static void
crypto_terminate(struct thread ** tdp,void * q)369 crypto_terminate(struct thread **tdp, void *q)
370 {
371 struct thread *td;
372
373 mtx_assert(&crypto_drivers_mtx, MA_OWNED);
374 td = *tdp;
375 *tdp = NULL;
376 if (td != NULL) {
377 wakeup_one(q);
378 mtx_sleep(td, &crypto_drivers_mtx, PWAIT, "crypto_destroy", 0);
379 }
380 }
381
382 static void
hmac_init_pad(const struct auth_hash * axf,const char * key,int klen,void * auth_ctx,uint8_t padval)383 hmac_init_pad(const struct auth_hash *axf, const char *key, int klen,
384 void *auth_ctx, uint8_t padval)
385 {
386 uint8_t hmac_key[HMAC_MAX_BLOCK_LEN];
387 u_int i;
388
389 KASSERT(axf->blocksize <= sizeof(hmac_key),
390 ("Invalid HMAC block size %d", axf->blocksize));
391
392 /*
393 * If the key is larger than the block size, use the digest of
394 * the key as the key instead.
395 */
396 memset(hmac_key, 0, sizeof(hmac_key));
397 if (klen > axf->blocksize) {
398 axf->Init(auth_ctx);
399 axf->Update(auth_ctx, key, klen);
400 axf->Final(hmac_key, auth_ctx);
401 klen = axf->hashsize;
402 } else
403 memcpy(hmac_key, key, klen);
404
405 for (i = 0; i < axf->blocksize; i++)
406 hmac_key[i] ^= padval;
407
408 axf->Init(auth_ctx);
409 axf->Update(auth_ctx, hmac_key, axf->blocksize);
410 explicit_bzero(hmac_key, sizeof(hmac_key));
411 }
412
413 void
hmac_init_ipad(const struct auth_hash * axf,const char * key,int klen,void * auth_ctx)414 hmac_init_ipad(const struct auth_hash *axf, const char *key, int klen,
415 void *auth_ctx)
416 {
417
418 hmac_init_pad(axf, key, klen, auth_ctx, HMAC_IPAD_VAL);
419 }
420
421 void
hmac_init_opad(const struct auth_hash * axf,const char * key,int klen,void * auth_ctx)422 hmac_init_opad(const struct auth_hash *axf, const char *key, int klen,
423 void *auth_ctx)
424 {
425
426 hmac_init_pad(axf, key, klen, auth_ctx, HMAC_OPAD_VAL);
427 }
428
429 static void
crypto_destroy(void)430 crypto_destroy(void)
431 {
432 struct crypto_ret_worker *ret_worker;
433 int i;
434
435 /*
436 * Terminate any crypto threads.
437 */
438 if (crypto_tq != NULL)
439 taskqueue_drain_all(crypto_tq);
440 CRYPTO_DRIVER_LOCK();
441 crypto_terminate(&cryptotd, &crp_q);
442 FOREACH_CRYPTO_RETW(ret_worker)
443 crypto_terminate(&ret_worker->td, &ret_worker->crp_ret_q);
444 CRYPTO_DRIVER_UNLOCK();
445
446 /* XXX flush queues??? */
447
448 /*
449 * Reclaim dynamically allocated resources.
450 */
451 for (i = 0; i < crypto_drivers_size; i++) {
452 if (crypto_drivers[i] != NULL)
453 cap_rele(crypto_drivers[i]);
454 }
455 free(crypto_drivers, M_CRYPTO_DATA);
456
457 if (cryptop_zone != NULL)
458 uma_zdestroy(cryptop_zone);
459 mtx_destroy(&crypto_q_mtx);
460 FOREACH_CRYPTO_RETW(ret_worker)
461 mtx_destroy(&ret_worker->crypto_ret_mtx);
462 free(crypto_ret_workers, M_CRYPTO_DATA);
463 if (crypto_tq != NULL)
464 taskqueue_free(crypto_tq);
465 mtx_destroy(&crypto_drivers_mtx);
466 }
467
468 uint32_t
crypto_ses2hid(crypto_session_t crypto_session)469 crypto_ses2hid(crypto_session_t crypto_session)
470 {
471 return (crypto_session->cap->cc_hid);
472 }
473
474 uint32_t
crypto_ses2caps(crypto_session_t crypto_session)475 crypto_ses2caps(crypto_session_t crypto_session)
476 {
477 return (crypto_session->cap->cc_flags & 0xff000000);
478 }
479
480 void *
crypto_get_driver_session(crypto_session_t crypto_session)481 crypto_get_driver_session(crypto_session_t crypto_session)
482 {
483 return (crypto_session + 1);
484 }
485
486 const struct crypto_session_params *
crypto_get_params(crypto_session_t crypto_session)487 crypto_get_params(crypto_session_t crypto_session)
488 {
489 return (&crypto_session->csp);
490 }
491
492 const struct auth_hash *
crypto_auth_hash(const struct crypto_session_params * csp)493 crypto_auth_hash(const struct crypto_session_params *csp)
494 {
495
496 switch (csp->csp_auth_alg) {
497 case CRYPTO_SHA1_HMAC:
498 return (&auth_hash_hmac_sha1);
499 case CRYPTO_SHA2_224_HMAC:
500 return (&auth_hash_hmac_sha2_224);
501 case CRYPTO_SHA2_256_HMAC:
502 return (&auth_hash_hmac_sha2_256);
503 case CRYPTO_SHA2_384_HMAC:
504 return (&auth_hash_hmac_sha2_384);
505 case CRYPTO_SHA2_512_HMAC:
506 return (&auth_hash_hmac_sha2_512);
507 case CRYPTO_NULL_HMAC:
508 return (&auth_hash_null);
509 case CRYPTO_RIPEMD160_HMAC:
510 return (&auth_hash_hmac_ripemd_160);
511 case CRYPTO_RIPEMD160:
512 return (&auth_hash_ripemd_160);
513 case CRYPTO_SHA1:
514 return (&auth_hash_sha1);
515 case CRYPTO_SHA2_224:
516 return (&auth_hash_sha2_224);
517 case CRYPTO_SHA2_256:
518 return (&auth_hash_sha2_256);
519 case CRYPTO_SHA2_384:
520 return (&auth_hash_sha2_384);
521 case CRYPTO_SHA2_512:
522 return (&auth_hash_sha2_512);
523 case CRYPTO_AES_NIST_GMAC:
524 switch (csp->csp_auth_klen) {
525 case 128 / 8:
526 return (&auth_hash_nist_gmac_aes_128);
527 case 192 / 8:
528 return (&auth_hash_nist_gmac_aes_192);
529 case 256 / 8:
530 return (&auth_hash_nist_gmac_aes_256);
531 default:
532 return (NULL);
533 }
534 case CRYPTO_BLAKE2B:
535 return (&auth_hash_blake2b);
536 case CRYPTO_BLAKE2S:
537 return (&auth_hash_blake2s);
538 case CRYPTO_POLY1305:
539 return (&auth_hash_poly1305);
540 case CRYPTO_AES_CCM_CBC_MAC:
541 switch (csp->csp_auth_klen) {
542 case 128 / 8:
543 return (&auth_hash_ccm_cbc_mac_128);
544 case 192 / 8:
545 return (&auth_hash_ccm_cbc_mac_192);
546 case 256 / 8:
547 return (&auth_hash_ccm_cbc_mac_256);
548 default:
549 return (NULL);
550 }
551 default:
552 return (NULL);
553 }
554 }
555
556 const struct enc_xform *
crypto_cipher(const struct crypto_session_params * csp)557 crypto_cipher(const struct crypto_session_params *csp)
558 {
559
560 switch (csp->csp_cipher_alg) {
561 case CRYPTO_AES_CBC:
562 return (&enc_xform_aes_cbc);
563 case CRYPTO_AES_XTS:
564 return (&enc_xform_aes_xts);
565 case CRYPTO_AES_ICM:
566 return (&enc_xform_aes_icm);
567 case CRYPTO_AES_NIST_GCM_16:
568 return (&enc_xform_aes_nist_gcm);
569 case CRYPTO_CAMELLIA_CBC:
570 return (&enc_xform_camellia);
571 case CRYPTO_NULL_CBC:
572 return (&enc_xform_null);
573 case CRYPTO_CHACHA20:
574 return (&enc_xform_chacha20);
575 case CRYPTO_AES_CCM_16:
576 return (&enc_xform_ccm);
577 case CRYPTO_CHACHA20_POLY1305:
578 return (&enc_xform_chacha20_poly1305);
579 case CRYPTO_XCHACHA20_POLY1305:
580 return (&enc_xform_xchacha20_poly1305);
581 default:
582 return (NULL);
583 }
584 }
585
586 static struct cryptocap *
crypto_checkdriver(uint32_t hid)587 crypto_checkdriver(uint32_t hid)
588 {
589
590 return (hid >= crypto_drivers_size ? NULL : crypto_drivers[hid]);
591 }
592
593 /*
594 * Select a driver for a new session that supports the specified
595 * algorithms and, optionally, is constrained according to the flags.
596 */
597 static struct cryptocap *
crypto_select_driver(const struct crypto_session_params * csp,int flags)598 crypto_select_driver(const struct crypto_session_params *csp, int flags)
599 {
600 struct cryptocap *cap, *best;
601 int best_match, error, hid;
602
603 CRYPTO_DRIVER_ASSERT();
604
605 best = NULL;
606 for (hid = 0; hid < crypto_drivers_size; hid++) {
607 /*
608 * If there is no driver for this slot, or the driver
609 * is not appropriate (hardware or software based on
610 * match), then skip.
611 */
612 cap = crypto_drivers[hid];
613 if (cap == NULL ||
614 (cap->cc_flags & flags) == 0)
615 continue;
616
617 error = CRYPTODEV_PROBESESSION(cap->cc_dev, csp);
618 if (error >= 0)
619 continue;
620
621 /*
622 * Use the driver with the highest probe value.
623 * Hardware drivers use a higher probe value than
624 * software. In case of a tie, prefer the driver with
625 * the fewest active sessions.
626 */
627 if (best == NULL || error > best_match ||
628 (error == best_match &&
629 cap->cc_sessions < best->cc_sessions)) {
630 best = cap;
631 best_match = error;
632 }
633 }
634 return best;
635 }
636
637 static enum alg_type {
638 ALG_NONE = 0,
639 ALG_CIPHER,
640 ALG_DIGEST,
641 ALG_KEYED_DIGEST,
642 ALG_COMPRESSION,
643 ALG_AEAD
644 } alg_types[] = {
645 [CRYPTO_SHA1_HMAC] = ALG_KEYED_DIGEST,
646 [CRYPTO_RIPEMD160_HMAC] = ALG_KEYED_DIGEST,
647 [CRYPTO_AES_CBC] = ALG_CIPHER,
648 [CRYPTO_SHA1] = ALG_DIGEST,
649 [CRYPTO_NULL_HMAC] = ALG_DIGEST,
650 [CRYPTO_NULL_CBC] = ALG_CIPHER,
651 [CRYPTO_DEFLATE_COMP] = ALG_COMPRESSION,
652 [CRYPTO_SHA2_256_HMAC] = ALG_KEYED_DIGEST,
653 [CRYPTO_SHA2_384_HMAC] = ALG_KEYED_DIGEST,
654 [CRYPTO_SHA2_512_HMAC] = ALG_KEYED_DIGEST,
655 [CRYPTO_CAMELLIA_CBC] = ALG_CIPHER,
656 [CRYPTO_AES_XTS] = ALG_CIPHER,
657 [CRYPTO_AES_ICM] = ALG_CIPHER,
658 [CRYPTO_AES_NIST_GMAC] = ALG_KEYED_DIGEST,
659 [CRYPTO_AES_NIST_GCM_16] = ALG_AEAD,
660 [CRYPTO_BLAKE2B] = ALG_KEYED_DIGEST,
661 [CRYPTO_BLAKE2S] = ALG_KEYED_DIGEST,
662 [CRYPTO_CHACHA20] = ALG_CIPHER,
663 [CRYPTO_SHA2_224_HMAC] = ALG_KEYED_DIGEST,
664 [CRYPTO_RIPEMD160] = ALG_DIGEST,
665 [CRYPTO_SHA2_224] = ALG_DIGEST,
666 [CRYPTO_SHA2_256] = ALG_DIGEST,
667 [CRYPTO_SHA2_384] = ALG_DIGEST,
668 [CRYPTO_SHA2_512] = ALG_DIGEST,
669 [CRYPTO_POLY1305] = ALG_KEYED_DIGEST,
670 [CRYPTO_AES_CCM_CBC_MAC] = ALG_KEYED_DIGEST,
671 [CRYPTO_AES_CCM_16] = ALG_AEAD,
672 [CRYPTO_CHACHA20_POLY1305] = ALG_AEAD,
673 [CRYPTO_XCHACHA20_POLY1305] = ALG_AEAD,
674 };
675
676 static enum alg_type
alg_type(int alg)677 alg_type(int alg)
678 {
679
680 if (alg < nitems(alg_types))
681 return (alg_types[alg]);
682 return (ALG_NONE);
683 }
684
685 static bool
alg_is_compression(int alg)686 alg_is_compression(int alg)
687 {
688
689 return (alg_type(alg) == ALG_COMPRESSION);
690 }
691
692 static bool
alg_is_cipher(int alg)693 alg_is_cipher(int alg)
694 {
695
696 return (alg_type(alg) == ALG_CIPHER);
697 }
698
699 static bool
alg_is_digest(int alg)700 alg_is_digest(int alg)
701 {
702
703 return (alg_type(alg) == ALG_DIGEST ||
704 alg_type(alg) == ALG_KEYED_DIGEST);
705 }
706
707 static bool
alg_is_keyed_digest(int alg)708 alg_is_keyed_digest(int alg)
709 {
710
711 return (alg_type(alg) == ALG_KEYED_DIGEST);
712 }
713
714 static bool
alg_is_aead(int alg)715 alg_is_aead(int alg)
716 {
717
718 return (alg_type(alg) == ALG_AEAD);
719 }
720
721 static bool
ccm_tag_length_valid(int len)722 ccm_tag_length_valid(int len)
723 {
724 /* RFC 3610 */
725 switch (len) {
726 case 4:
727 case 6:
728 case 8:
729 case 10:
730 case 12:
731 case 14:
732 case 16:
733 return (true);
734 default:
735 return (false);
736 }
737 }
738
739 #define SUPPORTED_SES (CSP_F_SEPARATE_OUTPUT | CSP_F_SEPARATE_AAD | CSP_F_ESN)
740
741 /* Various sanity checks on crypto session parameters. */
742 static bool
check_csp(const struct crypto_session_params * csp)743 check_csp(const struct crypto_session_params *csp)
744 {
745 const struct auth_hash *axf;
746
747 /* Mode-independent checks. */
748 if ((csp->csp_flags & ~(SUPPORTED_SES)) != 0)
749 return (false);
750 if (csp->csp_ivlen < 0 || csp->csp_cipher_klen < 0 ||
751 csp->csp_auth_klen < 0 || csp->csp_auth_mlen < 0)
752 return (false);
753 if (csp->csp_auth_key != NULL && csp->csp_auth_klen == 0)
754 return (false);
755 if (csp->csp_cipher_key != NULL && csp->csp_cipher_klen == 0)
756 return (false);
757
758 switch (csp->csp_mode) {
759 case CSP_MODE_COMPRESS:
760 if (!alg_is_compression(csp->csp_cipher_alg))
761 return (false);
762 if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT)
763 return (false);
764 if (csp->csp_flags & CSP_F_SEPARATE_AAD)
765 return (false);
766 if (csp->csp_cipher_klen != 0 || csp->csp_ivlen != 0 ||
767 csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
768 csp->csp_auth_mlen != 0)
769 return (false);
770 break;
771 case CSP_MODE_CIPHER:
772 if (!alg_is_cipher(csp->csp_cipher_alg))
773 return (false);
774 if (csp->csp_flags & CSP_F_SEPARATE_AAD)
775 return (false);
776 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
777 if (csp->csp_cipher_klen == 0)
778 return (false);
779 if (csp->csp_ivlen == 0)
780 return (false);
781 }
782 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
783 return (false);
784 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
785 csp->csp_auth_mlen != 0)
786 return (false);
787 break;
788 case CSP_MODE_DIGEST:
789 if (csp->csp_cipher_alg != 0 || csp->csp_cipher_klen != 0)
790 return (false);
791
792 if (csp->csp_flags & CSP_F_SEPARATE_AAD)
793 return (false);
794
795 /* IV is optional for digests (e.g. GMAC). */
796 switch (csp->csp_auth_alg) {
797 case CRYPTO_AES_CCM_CBC_MAC:
798 if (csp->csp_ivlen < 7 || csp->csp_ivlen > 13)
799 return (false);
800 break;
801 case CRYPTO_AES_NIST_GMAC:
802 if (csp->csp_ivlen != AES_GCM_IV_LEN)
803 return (false);
804 break;
805 default:
806 if (csp->csp_ivlen != 0)
807 return (false);
808 break;
809 }
810
811 if (!alg_is_digest(csp->csp_auth_alg))
812 return (false);
813
814 /* Key is optional for BLAKE2 digests. */
815 if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
816 csp->csp_auth_alg == CRYPTO_BLAKE2S)
817 ;
818 else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
819 if (csp->csp_auth_klen == 0)
820 return (false);
821 } else {
822 if (csp->csp_auth_klen != 0)
823 return (false);
824 }
825 if (csp->csp_auth_mlen != 0) {
826 axf = crypto_auth_hash(csp);
827 if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
828 return (false);
829
830 if (csp->csp_auth_alg == CRYPTO_AES_CCM_CBC_MAC &&
831 !ccm_tag_length_valid(csp->csp_auth_mlen))
832 return (false);
833 }
834 break;
835 case CSP_MODE_AEAD:
836 if (!alg_is_aead(csp->csp_cipher_alg))
837 return (false);
838 if (csp->csp_cipher_klen == 0)
839 return (false);
840 if (csp->csp_ivlen == 0 ||
841 csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
842 return (false);
843 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0)
844 return (false);
845
846 switch (csp->csp_cipher_alg) {
847 case CRYPTO_AES_CCM_16:
848 if (csp->csp_auth_mlen != 0 &&
849 !ccm_tag_length_valid(csp->csp_auth_mlen))
850 return (false);
851
852 if (csp->csp_ivlen < 7 || csp->csp_ivlen > 13)
853 return (false);
854 break;
855 case CRYPTO_AES_NIST_GCM_16:
856 if (csp->csp_auth_mlen > AES_GMAC_HASH_LEN)
857 return (false);
858
859 if (csp->csp_ivlen != AES_GCM_IV_LEN)
860 return (false);
861 break;
862 case CRYPTO_CHACHA20_POLY1305:
863 if (csp->csp_ivlen != 8 && csp->csp_ivlen != 12)
864 return (false);
865 if (csp->csp_auth_mlen > POLY1305_HASH_LEN)
866 return (false);
867 break;
868 case CRYPTO_XCHACHA20_POLY1305:
869 if (csp->csp_ivlen != XCHACHA20_POLY1305_IV_LEN)
870 return (false);
871 if (csp->csp_auth_mlen > POLY1305_HASH_LEN)
872 return (false);
873 break;
874 }
875 break;
876 case CSP_MODE_ETA:
877 if (!alg_is_cipher(csp->csp_cipher_alg))
878 return (false);
879 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
880 if (csp->csp_cipher_klen == 0)
881 return (false);
882 if (csp->csp_ivlen == 0)
883 return (false);
884 }
885 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
886 return (false);
887 if (!alg_is_digest(csp->csp_auth_alg))
888 return (false);
889
890 /* Key is optional for BLAKE2 digests. */
891 if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
892 csp->csp_auth_alg == CRYPTO_BLAKE2S)
893 ;
894 else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
895 if (csp->csp_auth_klen == 0)
896 return (false);
897 } else {
898 if (csp->csp_auth_klen != 0)
899 return (false);
900 }
901 if (csp->csp_auth_mlen != 0) {
902 axf = crypto_auth_hash(csp);
903 if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
904 return (false);
905 }
906 break;
907 default:
908 return (false);
909 }
910
911 return (true);
912 }
913
914 /*
915 * Delete a session after it has been detached from its driver.
916 */
917 static void
crypto_deletesession(crypto_session_t cses)918 crypto_deletesession(crypto_session_t cses)
919 {
920 struct cryptocap *cap;
921
922 cap = cses->cap;
923
924 zfree(cses, M_CRYPTO_DATA);
925
926 CRYPTO_DRIVER_LOCK();
927 cap->cc_sessions--;
928 if (cap->cc_sessions == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP)
929 wakeup(cap);
930 CRYPTO_DRIVER_UNLOCK();
931 cap_rele(cap);
932 }
933
934 /*
935 * Create a new session. The crid argument specifies a crypto
936 * driver to use or constraints on a driver to select (hardware
937 * only, software only, either). Whatever driver is selected
938 * must be capable of the requested crypto algorithms.
939 */
940 int
crypto_newsession(crypto_session_t * cses,const struct crypto_session_params * csp,int crid)941 crypto_newsession(crypto_session_t *cses,
942 const struct crypto_session_params *csp, int crid)
943 {
944 static uint64_t sessid = 0;
945 crypto_session_t res;
946 struct cryptocap *cap;
947 int err;
948
949 if (!check_csp(csp))
950 return (EINVAL);
951
952 res = NULL;
953
954 CRYPTO_DRIVER_LOCK();
955 if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
956 /*
957 * Use specified driver; verify it is capable.
958 */
959 cap = crypto_checkdriver(crid);
960 if (cap != NULL && CRYPTODEV_PROBESESSION(cap->cc_dev, csp) > 0)
961 cap = NULL;
962 } else {
963 /*
964 * No requested driver; select based on crid flags.
965 */
966 cap = crypto_select_driver(csp, crid);
967 }
968 if (cap == NULL) {
969 CRYPTO_DRIVER_UNLOCK();
970 CRYPTDEB("no driver");
971 return (EOPNOTSUPP);
972 }
973 cap_ref(cap);
974 cap->cc_sessions++;
975 CRYPTO_DRIVER_UNLOCK();
976
977 /* Allocate a single block for the generic session and driver softc. */
978 res = malloc(sizeof(*res) + cap->cc_session_size, M_CRYPTO_DATA,
979 M_WAITOK | M_ZERO);
980 res->cap = cap;
981 res->csp = *csp;
982 res->id = atomic_fetchadd_64(&sessid, 1);
983
984 /* Call the driver initialization routine. */
985 err = CRYPTODEV_NEWSESSION(cap->cc_dev, res, csp);
986 if (err != 0) {
987 CRYPTDEB("dev newsession failed: %d", err);
988 crypto_deletesession(res);
989 return (err);
990 }
991
992 *cses = res;
993 return (0);
994 }
995
996 /*
997 * Delete an existing session (or a reserved session on an unregistered
998 * driver).
999 */
1000 void
crypto_freesession(crypto_session_t cses)1001 crypto_freesession(crypto_session_t cses)
1002 {
1003 struct cryptocap *cap;
1004
1005 if (cses == NULL)
1006 return;
1007
1008 cap = cses->cap;
1009
1010 /* Call the driver cleanup routine, if available. */
1011 CRYPTODEV_FREESESSION(cap->cc_dev, cses);
1012
1013 crypto_deletesession(cses);
1014 }
1015
1016 /*
1017 * Return a new driver id. Registers a driver with the system so that
1018 * it can be probed by subsequent sessions.
1019 */
1020 int32_t
crypto_get_driverid(device_t dev,size_t sessionsize,int flags)1021 crypto_get_driverid(device_t dev, size_t sessionsize, int flags)
1022 {
1023 struct cryptocap *cap, **newdrv;
1024 int i;
1025
1026 if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
1027 device_printf(dev,
1028 "no flags specified when registering driver\n");
1029 return -1;
1030 }
1031
1032 cap = malloc(sizeof(*cap), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
1033 cap->cc_dev = dev;
1034 cap->cc_session_size = sessionsize;
1035 cap->cc_flags = flags;
1036 refcount_init(&cap->cc_refs, 1);
1037
1038 CRYPTO_DRIVER_LOCK();
1039 for (;;) {
1040 for (i = 0; i < crypto_drivers_size; i++) {
1041 if (crypto_drivers[i] == NULL)
1042 break;
1043 }
1044
1045 if (i < crypto_drivers_size)
1046 break;
1047
1048 /* Out of entries, allocate some more. */
1049
1050 if (2 * crypto_drivers_size <= crypto_drivers_size) {
1051 CRYPTO_DRIVER_UNLOCK();
1052 printf("crypto: driver count wraparound!\n");
1053 cap_rele(cap);
1054 return (-1);
1055 }
1056 CRYPTO_DRIVER_UNLOCK();
1057
1058 newdrv = malloc(2 * crypto_drivers_size *
1059 sizeof(*crypto_drivers), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
1060
1061 CRYPTO_DRIVER_LOCK();
1062 memcpy(newdrv, crypto_drivers,
1063 crypto_drivers_size * sizeof(*crypto_drivers));
1064
1065 crypto_drivers_size *= 2;
1066
1067 free(crypto_drivers, M_CRYPTO_DATA);
1068 crypto_drivers = newdrv;
1069 }
1070
1071 cap->cc_hid = i;
1072 crypto_drivers[i] = cap;
1073 CRYPTO_DRIVER_UNLOCK();
1074
1075 if (bootverbose)
1076 printf("crypto: assign %s driver id %u, flags 0x%x\n",
1077 device_get_nameunit(dev), i, flags);
1078
1079 return i;
1080 }
1081
1082 /*
1083 * Lookup a driver by name. We match against the full device
1084 * name and unit, and against just the name. The latter gives
1085 * us a simple widlcarding by device name. On success return the
1086 * driver/hardware identifier; otherwise return -1.
1087 */
1088 int
crypto_find_driver(const char * match)1089 crypto_find_driver(const char *match)
1090 {
1091 struct cryptocap *cap;
1092 int i, len = strlen(match);
1093
1094 CRYPTO_DRIVER_LOCK();
1095 for (i = 0; i < crypto_drivers_size; i++) {
1096 if (crypto_drivers[i] == NULL)
1097 continue;
1098 cap = crypto_drivers[i];
1099 if (strncmp(match, device_get_nameunit(cap->cc_dev), len) == 0 ||
1100 strncmp(match, device_get_name(cap->cc_dev), len) == 0) {
1101 CRYPTO_DRIVER_UNLOCK();
1102 return (i);
1103 }
1104 }
1105 CRYPTO_DRIVER_UNLOCK();
1106 return (-1);
1107 }
1108
1109 /*
1110 * Return the device_t for the specified driver or NULL
1111 * if the driver identifier is invalid.
1112 */
1113 device_t
crypto_find_device_byhid(int hid)1114 crypto_find_device_byhid(int hid)
1115 {
1116 struct cryptocap *cap;
1117 device_t dev;
1118
1119 dev = NULL;
1120 CRYPTO_DRIVER_LOCK();
1121 cap = crypto_checkdriver(hid);
1122 if (cap != NULL)
1123 dev = cap->cc_dev;
1124 CRYPTO_DRIVER_UNLOCK();
1125 return (dev);
1126 }
1127
1128 /*
1129 * Return the device/driver capabilities.
1130 */
1131 int
crypto_getcaps(int hid)1132 crypto_getcaps(int hid)
1133 {
1134 struct cryptocap *cap;
1135 int flags;
1136
1137 flags = 0;
1138 CRYPTO_DRIVER_LOCK();
1139 cap = crypto_checkdriver(hid);
1140 if (cap != NULL)
1141 flags = cap->cc_flags;
1142 CRYPTO_DRIVER_UNLOCK();
1143 return (flags);
1144 }
1145
1146 /*
1147 * Unregister all algorithms associated with a crypto driver.
1148 * If there are pending sessions using it, leave enough information
1149 * around so that subsequent calls using those sessions will
1150 * correctly detect the driver has been unregistered and reroute
1151 * requests.
1152 */
1153 int
crypto_unregister_all(uint32_t driverid)1154 crypto_unregister_all(uint32_t driverid)
1155 {
1156 struct cryptocap *cap;
1157
1158 CRYPTO_DRIVER_LOCK();
1159 cap = crypto_checkdriver(driverid);
1160 if (cap == NULL) {
1161 CRYPTO_DRIVER_UNLOCK();
1162 return (EINVAL);
1163 }
1164
1165 cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
1166 crypto_drivers[driverid] = NULL;
1167
1168 /*
1169 * XXX: This doesn't do anything to kick sessions that
1170 * have no pending operations.
1171 */
1172 while (cap->cc_sessions != 0)
1173 mtx_sleep(cap, &crypto_drivers_mtx, 0, "cryunreg", 0);
1174 CRYPTO_DRIVER_UNLOCK();
1175 cap_rele(cap);
1176
1177 return (0);
1178 }
1179
1180 /*
1181 * Clear blockage on a driver. The what parameter indicates whether
1182 * the driver is now ready for cryptop's and/or cryptokop's.
1183 */
1184 int
crypto_unblock(uint32_t driverid,int what)1185 crypto_unblock(uint32_t driverid, int what)
1186 {
1187 struct cryptocap *cap;
1188 int err;
1189
1190 CRYPTO_Q_LOCK();
1191 cap = crypto_checkdriver(driverid);
1192 if (cap != NULL) {
1193 if (what & CRYPTO_SYMQ)
1194 cap->cc_qblocked = 0;
1195 if (crp_sleep)
1196 wakeup_one(&crp_q);
1197 err = 0;
1198 } else
1199 err = EINVAL;
1200 CRYPTO_Q_UNLOCK();
1201
1202 return err;
1203 }
1204
1205 size_t
crypto_buffer_len(struct crypto_buffer * cb)1206 crypto_buffer_len(struct crypto_buffer *cb)
1207 {
1208 switch (cb->cb_type) {
1209 case CRYPTO_BUF_CONTIG:
1210 return (cb->cb_buf_len);
1211 case CRYPTO_BUF_MBUF:
1212 if (cb->cb_mbuf->m_flags & M_PKTHDR)
1213 return (cb->cb_mbuf->m_pkthdr.len);
1214 return (m_length(cb->cb_mbuf, NULL));
1215 case CRYPTO_BUF_SINGLE_MBUF:
1216 return (cb->cb_mbuf->m_len);
1217 case CRYPTO_BUF_VMPAGE:
1218 return (cb->cb_vm_page_len);
1219 case CRYPTO_BUF_UIO:
1220 return (cb->cb_uio->uio_resid);
1221 default:
1222 return (0);
1223 }
1224 }
1225
1226 #ifdef INVARIANTS
1227 /* Various sanity checks on crypto requests. */
1228 static void
cb_sanity(struct crypto_buffer * cb,const char * name)1229 cb_sanity(struct crypto_buffer *cb, const char *name)
1230 {
1231 KASSERT(cb->cb_type > CRYPTO_BUF_NONE && cb->cb_type <= CRYPTO_BUF_LAST,
1232 ("incoming crp with invalid %s buffer type", name));
1233 switch (cb->cb_type) {
1234 case CRYPTO_BUF_CONTIG:
1235 KASSERT(cb->cb_buf_len >= 0,
1236 ("incoming crp with -ve %s buffer length", name));
1237 break;
1238 case CRYPTO_BUF_VMPAGE:
1239 KASSERT(CRYPTO_HAS_VMPAGE,
1240 ("incoming crp uses dmap on supported arch"));
1241 KASSERT(cb->cb_vm_page_len >= 0,
1242 ("incoming crp with -ve %s buffer length", name));
1243 KASSERT(cb->cb_vm_page_offset >= 0,
1244 ("incoming crp with -ve %s buffer offset", name));
1245 KASSERT(cb->cb_vm_page_offset < PAGE_SIZE,
1246 ("incoming crp with %s buffer offset greater than page size"
1247 , name));
1248 break;
1249 default:
1250 break;
1251 }
1252 }
1253
1254 static void
crp_sanity(struct cryptop * crp)1255 crp_sanity(struct cryptop *crp)
1256 {
1257 struct crypto_session_params *csp;
1258 struct crypto_buffer *out;
1259 size_t ilen, len, olen;
1260
1261 KASSERT(crp->crp_session != NULL, ("incoming crp without a session"));
1262 KASSERT(crp->crp_obuf.cb_type >= CRYPTO_BUF_NONE &&
1263 crp->crp_obuf.cb_type <= CRYPTO_BUF_LAST,
1264 ("incoming crp with invalid output buffer type"));
1265 KASSERT(crp->crp_etype == 0, ("incoming crp with error"));
1266 KASSERT(!(crp->crp_flags & CRYPTO_F_DONE),
1267 ("incoming crp already done"));
1268
1269 csp = &crp->crp_session->csp;
1270 cb_sanity(&crp->crp_buf, "input");
1271 ilen = crypto_buffer_len(&crp->crp_buf);
1272 olen = ilen;
1273 out = NULL;
1274 if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT) {
1275 if (crp->crp_obuf.cb_type != CRYPTO_BUF_NONE) {
1276 cb_sanity(&crp->crp_obuf, "output");
1277 out = &crp->crp_obuf;
1278 olen = crypto_buffer_len(out);
1279 }
1280 } else
1281 KASSERT(crp->crp_obuf.cb_type == CRYPTO_BUF_NONE,
1282 ("incoming crp with separate output buffer "
1283 "but no session support"));
1284
1285 switch (csp->csp_mode) {
1286 case CSP_MODE_COMPRESS:
1287 KASSERT(crp->crp_op == CRYPTO_OP_COMPRESS ||
1288 crp->crp_op == CRYPTO_OP_DECOMPRESS,
1289 ("invalid compression op %x", crp->crp_op));
1290 break;
1291 case CSP_MODE_CIPHER:
1292 KASSERT(crp->crp_op == CRYPTO_OP_ENCRYPT ||
1293 crp->crp_op == CRYPTO_OP_DECRYPT,
1294 ("invalid cipher op %x", crp->crp_op));
1295 break;
1296 case CSP_MODE_DIGEST:
1297 KASSERT(crp->crp_op == CRYPTO_OP_COMPUTE_DIGEST ||
1298 crp->crp_op == CRYPTO_OP_VERIFY_DIGEST,
1299 ("invalid digest op %x", crp->crp_op));
1300 break;
1301 case CSP_MODE_AEAD:
1302 KASSERT(crp->crp_op ==
1303 (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
1304 crp->crp_op ==
1305 (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
1306 ("invalid AEAD op %x", crp->crp_op));
1307 KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE,
1308 ("AEAD without a separate IV"));
1309 break;
1310 case CSP_MODE_ETA:
1311 KASSERT(crp->crp_op ==
1312 (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
1313 crp->crp_op ==
1314 (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
1315 ("invalid ETA op %x", crp->crp_op));
1316 break;
1317 }
1318 if (csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
1319 if (crp->crp_aad == NULL) {
1320 KASSERT(crp->crp_aad_start == 0 ||
1321 crp->crp_aad_start < ilen,
1322 ("invalid AAD start"));
1323 KASSERT(crp->crp_aad_length != 0 ||
1324 crp->crp_aad_start == 0,
1325 ("AAD with zero length and non-zero start"));
1326 KASSERT(crp->crp_aad_length == 0 ||
1327 crp->crp_aad_start + crp->crp_aad_length <= ilen,
1328 ("AAD outside input length"));
1329 } else {
1330 KASSERT(csp->csp_flags & CSP_F_SEPARATE_AAD,
1331 ("session doesn't support separate AAD buffer"));
1332 KASSERT(crp->crp_aad_start == 0,
1333 ("separate AAD buffer with non-zero AAD start"));
1334 KASSERT(crp->crp_aad_length != 0,
1335 ("separate AAD buffer with zero length"));
1336 }
1337 } else {
1338 KASSERT(crp->crp_aad == NULL && crp->crp_aad_start == 0 &&
1339 crp->crp_aad_length == 0,
1340 ("AAD region in request not supporting AAD"));
1341 }
1342 if (csp->csp_ivlen == 0) {
1343 KASSERT((crp->crp_flags & CRYPTO_F_IV_SEPARATE) == 0,
1344 ("IV_SEPARATE set when IV isn't used"));
1345 KASSERT(crp->crp_iv_start == 0,
1346 ("crp_iv_start set when IV isn't used"));
1347 } else if (crp->crp_flags & CRYPTO_F_IV_SEPARATE) {
1348 KASSERT(crp->crp_iv_start == 0,
1349 ("IV_SEPARATE used with non-zero IV start"));
1350 } else {
1351 KASSERT(crp->crp_iv_start < ilen,
1352 ("invalid IV start"));
1353 KASSERT(crp->crp_iv_start + csp->csp_ivlen <= ilen,
1354 ("IV outside buffer length"));
1355 }
1356 /* XXX: payload_start of 0 should always be < ilen? */
1357 KASSERT(crp->crp_payload_start == 0 ||
1358 crp->crp_payload_start < ilen,
1359 ("invalid payload start"));
1360 KASSERT(crp->crp_payload_start + crp->crp_payload_length <=
1361 ilen, ("payload outside input buffer"));
1362 if (out == NULL) {
1363 KASSERT(crp->crp_payload_output_start == 0,
1364 ("payload output start non-zero without output buffer"));
1365 } else if (csp->csp_mode == CSP_MODE_DIGEST) {
1366 KASSERT(!(crp->crp_op & CRYPTO_OP_VERIFY_DIGEST),
1367 ("digest verify with separate output buffer"));
1368 KASSERT(crp->crp_payload_output_start == 0,
1369 ("digest operation with non-zero payload output start"));
1370 } else {
1371 KASSERT(crp->crp_payload_output_start == 0 ||
1372 crp->crp_payload_output_start < olen,
1373 ("invalid payload output start"));
1374 KASSERT(crp->crp_payload_output_start +
1375 crp->crp_payload_length <= olen,
1376 ("payload outside output buffer"));
1377 }
1378 if (csp->csp_mode == CSP_MODE_DIGEST ||
1379 csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
1380 if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST)
1381 len = ilen;
1382 else
1383 len = olen;
1384 KASSERT(crp->crp_digest_start == 0 ||
1385 crp->crp_digest_start < len,
1386 ("invalid digest start"));
1387 /* XXX: For the mlen == 0 case this check isn't perfect. */
1388 KASSERT(crp->crp_digest_start + csp->csp_auth_mlen <= len,
1389 ("digest outside buffer"));
1390 } else {
1391 KASSERT(crp->crp_digest_start == 0,
1392 ("non-zero digest start for request without a digest"));
1393 }
1394 if (csp->csp_cipher_klen != 0)
1395 KASSERT(csp->csp_cipher_key != NULL ||
1396 crp->crp_cipher_key != NULL,
1397 ("cipher request without a key"));
1398 if (csp->csp_auth_klen != 0)
1399 KASSERT(csp->csp_auth_key != NULL || crp->crp_auth_key != NULL,
1400 ("auth request without a key"));
1401 KASSERT(crp->crp_callback != NULL, ("incoming crp without callback"));
1402 }
1403 #endif
1404
1405 static int
crypto_dispatch_one(struct cryptop * crp,int hint)1406 crypto_dispatch_one(struct cryptop *crp, int hint)
1407 {
1408 struct cryptocap *cap;
1409 int result;
1410
1411 #ifdef INVARIANTS
1412 crp_sanity(crp);
1413 #endif
1414 CRYPTOSTAT_INC(cs_ops);
1415
1416 crp->crp_retw_id = crp->crp_session->id % crypto_workers_num;
1417
1418 /*
1419 * Caller marked the request to be processed immediately; dispatch it
1420 * directly to the driver unless the driver is currently blocked, in
1421 * which case it is queued for deferred dispatch.
1422 */
1423 cap = crp->crp_session->cap;
1424 if (!atomic_load_int(&cap->cc_qblocked)) {
1425 result = crypto_invoke(cap, crp, hint);
1426 if (result != ERESTART)
1427 return (result);
1428
1429 /*
1430 * The driver ran out of resources, put the request on the
1431 * queue.
1432 */
1433 }
1434 crypto_batch_enqueue(crp);
1435 return (0);
1436 }
1437
1438 int
crypto_dispatch(struct cryptop * crp)1439 crypto_dispatch(struct cryptop *crp)
1440 {
1441 return (crypto_dispatch_one(crp, 0));
1442 }
1443
1444 int
crypto_dispatch_async(struct cryptop * crp,int flags)1445 crypto_dispatch_async(struct cryptop *crp, int flags)
1446 {
1447 struct crypto_ret_worker *ret_worker;
1448
1449 if (!CRYPTO_SESS_SYNC(crp->crp_session)) {
1450 /*
1451 * The driver issues completions asynchonously, don't bother
1452 * deferring dispatch to a worker thread.
1453 */
1454 return (crypto_dispatch(crp));
1455 }
1456
1457 #ifdef INVARIANTS
1458 crp_sanity(crp);
1459 #endif
1460 CRYPTOSTAT_INC(cs_ops);
1461
1462 crp->crp_retw_id = crp->crp_session->id % crypto_workers_num;
1463 if ((flags & CRYPTO_ASYNC_ORDERED) != 0) {
1464 crp->crp_flags |= CRYPTO_F_ASYNC_ORDERED;
1465 ret_worker = CRYPTO_RETW(crp->crp_retw_id);
1466 CRYPTO_RETW_LOCK(ret_worker);
1467 crp->crp_seq = ret_worker->reorder_ops++;
1468 CRYPTO_RETW_UNLOCK(ret_worker);
1469 }
1470 TASK_INIT(&crp->crp_task, 0, crypto_task_invoke, crp);
1471 taskqueue_enqueue(crypto_tq, &crp->crp_task);
1472 return (0);
1473 }
1474
1475 void
crypto_dispatch_batch(struct cryptopq * crpq,int flags)1476 crypto_dispatch_batch(struct cryptopq *crpq, int flags)
1477 {
1478 struct cryptop *crp;
1479 int hint;
1480
1481 while ((crp = TAILQ_FIRST(crpq)) != NULL) {
1482 hint = TAILQ_NEXT(crp, crp_next) != NULL ? CRYPTO_HINT_MORE : 0;
1483 TAILQ_REMOVE(crpq, crp, crp_next);
1484 if (crypto_dispatch_one(crp, hint) != 0)
1485 crypto_batch_enqueue(crp);
1486 }
1487 }
1488
1489 static void
crypto_batch_enqueue(struct cryptop * crp)1490 crypto_batch_enqueue(struct cryptop *crp)
1491 {
1492
1493 CRYPTO_Q_LOCK();
1494 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
1495 if (crp_sleep)
1496 wakeup_one(&crp_q);
1497 CRYPTO_Q_UNLOCK();
1498 }
1499
1500 static void
crypto_task_invoke(void * ctx,int pending)1501 crypto_task_invoke(void *ctx, int pending)
1502 {
1503 struct cryptocap *cap;
1504 struct cryptop *crp;
1505 int result;
1506
1507 crp = (struct cryptop *)ctx;
1508 cap = crp->crp_session->cap;
1509 result = crypto_invoke(cap, crp, 0);
1510 if (result == ERESTART)
1511 crypto_batch_enqueue(crp);
1512 }
1513
1514 /*
1515 * Dispatch a crypto request to the appropriate crypto devices.
1516 */
1517 static int
crypto_invoke(struct cryptocap * cap,struct cryptop * crp,int hint)1518 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint)
1519 {
1520 int error;
1521
1522 KASSERT(crp != NULL, ("%s: crp == NULL", __func__));
1523 KASSERT(crp->crp_callback != NULL,
1524 ("%s: crp->crp_callback == NULL", __func__));
1525 KASSERT(crp->crp_session != NULL,
1526 ("%s: crp->crp_session == NULL", __func__));
1527
1528 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1529 struct crypto_session_params csp;
1530 crypto_session_t nses;
1531
1532 /*
1533 * Driver has unregistered; migrate the session and return
1534 * an error to the caller so they'll resubmit the op.
1535 *
1536 * XXX: What if there are more already queued requests for this
1537 * session?
1538 *
1539 * XXX: Real solution is to make sessions refcounted
1540 * and force callers to hold a reference when
1541 * assigning to crp_session. Could maybe change
1542 * crypto_getreq to accept a session pointer to make
1543 * that work. Alternatively, we could abandon the
1544 * notion of rewriting crp_session in requests forcing
1545 * the caller to deal with allocating a new session.
1546 * Perhaps provide a method to allow a crp's session to
1547 * be swapped that callers could use.
1548 */
1549 csp = crp->crp_session->csp;
1550 crypto_freesession(crp->crp_session);
1551
1552 /*
1553 * XXX: Key pointers may no longer be valid. If we
1554 * really want to support this we need to define the
1555 * KPI such that 'csp' is required to be valid for the
1556 * duration of a session by the caller perhaps.
1557 *
1558 * XXX: If the keys have been changed this will reuse
1559 * the old keys. This probably suggests making
1560 * rekeying more explicit and updating the key
1561 * pointers in 'csp' when the keys change.
1562 */
1563 if (crypto_newsession(&nses, &csp,
1564 CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0)
1565 crp->crp_session = nses;
1566
1567 crp->crp_etype = EAGAIN;
1568 crypto_done(crp);
1569 error = 0;
1570 } else {
1571 /*
1572 * Invoke the driver to process the request. Errors are
1573 * signaled by setting crp_etype before invoking the completion
1574 * callback.
1575 */
1576 error = CRYPTODEV_PROCESS(cap->cc_dev, crp, hint);
1577 KASSERT(error == 0 || error == ERESTART,
1578 ("%s: invalid error %d from CRYPTODEV_PROCESS",
1579 __func__, error));
1580 }
1581 return (error);
1582 }
1583
1584 void
crypto_destroyreq(struct cryptop * crp)1585 crypto_destroyreq(struct cryptop *crp)
1586 {
1587 #ifdef DIAGNOSTIC
1588 {
1589 struct cryptop *crp2;
1590 struct crypto_ret_worker *ret_worker;
1591
1592 if (!crypto_destroyreq_check)
1593 return;
1594
1595 CRYPTO_Q_LOCK();
1596 TAILQ_FOREACH(crp2, &crp_q, crp_next) {
1597 KASSERT(crp2 != crp,
1598 ("Freeing cryptop from the crypto queue (%p).",
1599 crp));
1600 }
1601 CRYPTO_Q_UNLOCK();
1602
1603 FOREACH_CRYPTO_RETW(ret_worker) {
1604 CRYPTO_RETW_LOCK(ret_worker);
1605 TAILQ_FOREACH(crp2, &ret_worker->crp_ret_q, crp_next) {
1606 KASSERT(crp2 != crp,
1607 ("Freeing cryptop from the return queue (%p).",
1608 crp));
1609 }
1610 CRYPTO_RETW_UNLOCK(ret_worker);
1611 }
1612 }
1613 #endif
1614 }
1615
1616 void
crypto_freereq(struct cryptop * crp)1617 crypto_freereq(struct cryptop *crp)
1618 {
1619 if (crp == NULL)
1620 return;
1621
1622 crypto_destroyreq(crp);
1623 uma_zfree(cryptop_zone, crp);
1624 }
1625
1626 void
crypto_initreq(struct cryptop * crp,crypto_session_t cses)1627 crypto_initreq(struct cryptop *crp, crypto_session_t cses)
1628 {
1629 memset(crp, 0, sizeof(*crp));
1630 crp->crp_session = cses;
1631 }
1632
1633 struct cryptop *
crypto_getreq(crypto_session_t cses,int how)1634 crypto_getreq(crypto_session_t cses, int how)
1635 {
1636 struct cryptop *crp;
1637
1638 MPASS(how == M_WAITOK || how == M_NOWAIT);
1639 crp = uma_zalloc(cryptop_zone, how);
1640 if (crp != NULL)
1641 crypto_initreq(crp, cses);
1642 return (crp);
1643 }
1644
1645 /*
1646 * Clone a crypto request, but associate it with the specified session
1647 * rather than inheriting the session from the original request. The
1648 * fields describing the request buffers are copied, but not the
1649 * opaque field or callback function.
1650 */
1651 struct cryptop *
crypto_clonereq(struct cryptop * crp,crypto_session_t cses,int how)1652 crypto_clonereq(struct cryptop *crp, crypto_session_t cses, int how)
1653 {
1654 struct cryptop *new;
1655
1656 MPASS((crp->crp_flags & CRYPTO_F_DONE) == 0);
1657 new = crypto_getreq(cses, how);
1658 if (new == NULL)
1659 return (NULL);
1660
1661 memcpy(&new->crp_startcopy, &crp->crp_startcopy,
1662 __rangeof(struct cryptop, crp_startcopy, crp_endcopy));
1663 return (new);
1664 }
1665
1666 /*
1667 * Invoke the callback on behalf of the driver.
1668 */
1669 void
crypto_done(struct cryptop * crp)1670 crypto_done(struct cryptop *crp)
1671 {
1672 KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0,
1673 ("crypto_done: op already done, flags 0x%x", crp->crp_flags));
1674 crp->crp_flags |= CRYPTO_F_DONE;
1675 if (crp->crp_etype != 0)
1676 CRYPTOSTAT_INC(cs_errs);
1677
1678 /*
1679 * CBIMM means unconditionally do the callback immediately;
1680 * CBIFSYNC means do the callback immediately only if the
1681 * operation was done synchronously. Both are used to avoid
1682 * doing extraneous context switches; the latter is mostly
1683 * used with the software crypto driver.
1684 */
1685 if ((crp->crp_flags & CRYPTO_F_ASYNC_ORDERED) == 0 &&
1686 ((crp->crp_flags & CRYPTO_F_CBIMM) != 0 ||
1687 ((crp->crp_flags & CRYPTO_F_CBIFSYNC) != 0 &&
1688 CRYPTO_SESS_SYNC(crp->crp_session)))) {
1689 /*
1690 * Do the callback directly. This is ok when the
1691 * callback routine does very little (e.g. the
1692 * /dev/crypto callback method just does a wakeup).
1693 */
1694 crp->crp_callback(crp);
1695 } else {
1696 struct crypto_ret_worker *ret_worker;
1697 bool wake;
1698
1699 ret_worker = CRYPTO_RETW(crp->crp_retw_id);
1700
1701 /*
1702 * Normal case; queue the callback for the thread.
1703 */
1704 CRYPTO_RETW_LOCK(ret_worker);
1705 if ((crp->crp_flags & CRYPTO_F_ASYNC_ORDERED) != 0) {
1706 struct cryptop *tmp;
1707
1708 TAILQ_FOREACH_REVERSE(tmp,
1709 &ret_worker->crp_ordered_ret_q, cryptop_q,
1710 crp_next) {
1711 if (CRYPTO_SEQ_GT(crp->crp_seq, tmp->crp_seq)) {
1712 TAILQ_INSERT_AFTER(
1713 &ret_worker->crp_ordered_ret_q, tmp,
1714 crp, crp_next);
1715 break;
1716 }
1717 }
1718 if (tmp == NULL) {
1719 TAILQ_INSERT_HEAD(
1720 &ret_worker->crp_ordered_ret_q, crp,
1721 crp_next);
1722 }
1723
1724 wake = crp->crp_seq == ret_worker->reorder_cur_seq;
1725 } else {
1726 wake = TAILQ_EMPTY(&ret_worker->crp_ret_q);
1727 TAILQ_INSERT_TAIL(&ret_worker->crp_ret_q, crp,
1728 crp_next);
1729 }
1730
1731 if (wake)
1732 wakeup_one(&ret_worker->crp_ret_q); /* shared wait channel */
1733 CRYPTO_RETW_UNLOCK(ret_worker);
1734 }
1735 }
1736
1737 /*
1738 * Terminate a thread at module unload. The process that
1739 * initiated this is waiting for us to signal that we're gone;
1740 * wake it up and exit. We use the driver table lock to insure
1741 * we don't do the wakeup before they're waiting. There is no
1742 * race here because the waiter sleeps on the proc lock for the
1743 * thread so it gets notified at the right time because of an
1744 * extra wakeup that's done in exit1().
1745 */
1746 static void
crypto_finis(void * chan)1747 crypto_finis(void *chan)
1748 {
1749 CRYPTO_DRIVER_LOCK();
1750 wakeup_one(chan);
1751 CRYPTO_DRIVER_UNLOCK();
1752 kthread_exit();
1753 }
1754
1755 /*
1756 * Crypto thread, dispatches crypto requests.
1757 */
1758 static void
crypto_dispatch_thread(void * arg __unused)1759 crypto_dispatch_thread(void *arg __unused)
1760 {
1761 struct cryptop *crp, *submit;
1762 struct cryptocap *cap;
1763 int result, hint;
1764
1765 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
1766 fpu_kern_thread(FPU_KERN_NORMAL);
1767 #endif
1768
1769 CRYPTO_Q_LOCK();
1770 for (;;) {
1771 /*
1772 * Find the first element in the queue that can be
1773 * processed and look-ahead to see if multiple ops
1774 * are ready for the same driver.
1775 */
1776 submit = NULL;
1777 hint = 0;
1778 TAILQ_FOREACH(crp, &crp_q, crp_next) {
1779 cap = crp->crp_session->cap;
1780 /*
1781 * Driver cannot disappeared when there is an active
1782 * session.
1783 */
1784 KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1785 __func__, __LINE__));
1786 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1787 /* Op needs to be migrated, process it. */
1788 if (submit == NULL)
1789 submit = crp;
1790 break;
1791 }
1792 if (!cap->cc_qblocked) {
1793 if (submit != NULL) {
1794 /*
1795 * We stop on finding another op,
1796 * regardless whether its for the same
1797 * driver or not. We could keep
1798 * searching the queue but it might be
1799 * better to just use a per-driver
1800 * queue instead.
1801 */
1802 if (submit->crp_session->cap == cap)
1803 hint = CRYPTO_HINT_MORE;
1804 } else {
1805 submit = crp;
1806 }
1807 break;
1808 }
1809 }
1810 if (submit != NULL) {
1811 TAILQ_REMOVE(&crp_q, submit, crp_next);
1812 cap = submit->crp_session->cap;
1813 KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1814 __func__, __LINE__));
1815 CRYPTO_Q_UNLOCK();
1816 result = crypto_invoke(cap, submit, hint);
1817 CRYPTO_Q_LOCK();
1818 if (result == ERESTART) {
1819 /*
1820 * The driver ran out of resources, mark the
1821 * driver ``blocked'' for cryptop's and put
1822 * the request back in the queue. It would
1823 * best to put the request back where we got
1824 * it but that's hard so for now we put it
1825 * at the front. This should be ok; putting
1826 * it at the end does not work.
1827 */
1828 cap->cc_qblocked = 1;
1829 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
1830 CRYPTOSTAT_INC(cs_blocks);
1831 }
1832 } else {
1833 /*
1834 * Nothing more to be processed. Sleep until we're
1835 * woken because there are more ops to process.
1836 * This happens either by submission or by a driver
1837 * becoming unblocked and notifying us through
1838 * crypto_unblock. Note that when we wakeup we
1839 * start processing each queue again from the
1840 * front. It's not clear that it's important to
1841 * preserve this ordering since ops may finish
1842 * out of order if dispatched to different devices
1843 * and some become blocked while others do not.
1844 */
1845 crp_sleep = 1;
1846 msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0);
1847 crp_sleep = 0;
1848 if (cryptotd == NULL)
1849 break;
1850 CRYPTOSTAT_INC(cs_intrs);
1851 }
1852 }
1853 CRYPTO_Q_UNLOCK();
1854
1855 crypto_finis(&crp_q);
1856 }
1857
1858 /*
1859 * Crypto returns thread, does callbacks for processed crypto requests.
1860 * Callbacks are done here, rather than in the crypto drivers, because
1861 * callbacks typically are expensive and would slow interrupt handling.
1862 */
1863 static void
crypto_ret_thread(void * arg)1864 crypto_ret_thread(void *arg)
1865 {
1866 struct crypto_ret_worker *ret_worker = arg;
1867 struct cryptop *crpt;
1868
1869 CRYPTO_RETW_LOCK(ret_worker);
1870 for (;;) {
1871 /* Harvest return q's for completed ops */
1872 crpt = TAILQ_FIRST(&ret_worker->crp_ordered_ret_q);
1873 if (crpt != NULL) {
1874 if (crpt->crp_seq == ret_worker->reorder_cur_seq) {
1875 TAILQ_REMOVE(&ret_worker->crp_ordered_ret_q, crpt, crp_next);
1876 ret_worker->reorder_cur_seq++;
1877 } else {
1878 crpt = NULL;
1879 }
1880 }
1881
1882 if (crpt == NULL) {
1883 crpt = TAILQ_FIRST(&ret_worker->crp_ret_q);
1884 if (crpt != NULL)
1885 TAILQ_REMOVE(&ret_worker->crp_ret_q, crpt, crp_next);
1886 }
1887
1888 if (crpt != NULL) {
1889 CRYPTO_RETW_UNLOCK(ret_worker);
1890 /*
1891 * Run callbacks unlocked.
1892 */
1893 if (crpt != NULL)
1894 crpt->crp_callback(crpt);
1895 CRYPTO_RETW_LOCK(ret_worker);
1896 } else {
1897 /*
1898 * Nothing more to be processed. Sleep until we're
1899 * woken because there are more returns to process.
1900 */
1901 msleep(&ret_worker->crp_ret_q, &ret_worker->crypto_ret_mtx, PWAIT,
1902 "crypto_ret_wait", 0);
1903 if (ret_worker->td == NULL)
1904 break;
1905 CRYPTOSTAT_INC(cs_rets);
1906 }
1907 }
1908 CRYPTO_RETW_UNLOCK(ret_worker);
1909
1910 crypto_finis(&ret_worker->crp_ret_q);
1911 }
1912
1913 #ifdef DDB
1914 static void
db_show_drivers(void)1915 db_show_drivers(void)
1916 {
1917 int hid;
1918
1919 db_printf("%12s %4s %8s %2s\n"
1920 , "Device"
1921 , "Ses"
1922 , "Flags"
1923 , "QB"
1924 );
1925 for (hid = 0; hid < crypto_drivers_size; hid++) {
1926 const struct cryptocap *cap = crypto_drivers[hid];
1927 if (cap == NULL)
1928 continue;
1929 db_printf("%-12s %4u %08x %2u\n"
1930 , device_get_nameunit(cap->cc_dev)
1931 , cap->cc_sessions
1932 , cap->cc_flags
1933 , cap->cc_qblocked
1934 );
1935 }
1936 }
1937
DB_SHOW_COMMAND_FLAGS(crypto,db_show_crypto,DB_CMD_MEMSAFE)1938 DB_SHOW_COMMAND_FLAGS(crypto, db_show_crypto, DB_CMD_MEMSAFE)
1939 {
1940 struct cryptop *crp;
1941 struct crypto_ret_worker *ret_worker;
1942
1943 db_show_drivers();
1944 db_printf("\n");
1945
1946 db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n",
1947 "HID", "Caps", "Ilen", "Olen", "Etype", "Flags",
1948 "Device", "Callback");
1949 TAILQ_FOREACH(crp, &crp_q, crp_next) {
1950 db_printf("%4u %08x %4u %4u %04x %8p %8p\n"
1951 , crp->crp_session->cap->cc_hid
1952 , (int) crypto_ses2caps(crp->crp_session)
1953 , crp->crp_olen
1954 , crp->crp_etype
1955 , crp->crp_flags
1956 , device_get_nameunit(crp->crp_session->cap->cc_dev)
1957 , crp->crp_callback
1958 );
1959 }
1960 FOREACH_CRYPTO_RETW(ret_worker) {
1961 db_printf("\n%8s %4s %4s %4s %8s\n",
1962 "ret_worker", "HID", "Etype", "Flags", "Callback");
1963 if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) {
1964 TAILQ_FOREACH(crp, &ret_worker->crp_ret_q, crp_next) {
1965 db_printf("%8td %4u %4u %04x %8p\n"
1966 , CRYPTO_RETW_ID(ret_worker)
1967 , crp->crp_session->cap->cc_hid
1968 , crp->crp_etype
1969 , crp->crp_flags
1970 , crp->crp_callback
1971 );
1972 }
1973 }
1974 }
1975 }
1976 #endif
1977
1978 int crypto_modevent(module_t mod, int type, void *unused);
1979
1980 /*
1981 * Initialization code, both for static and dynamic loading.
1982 * Note this is not invoked with the usual MODULE_DECLARE
1983 * mechanism but instead is listed as a dependency by the
1984 * cryptosoft driver. This guarantees proper ordering of
1985 * calls on module load/unload.
1986 */
1987 int
crypto_modevent(module_t mod,int type,void * unused)1988 crypto_modevent(module_t mod, int type, void *unused)
1989 {
1990 int error = EINVAL;
1991
1992 switch (type) {
1993 case MOD_LOAD:
1994 error = crypto_init();
1995 if (error == 0 && bootverbose)
1996 printf("crypto: <crypto core>\n");
1997 break;
1998 case MOD_UNLOAD:
1999 /*XXX disallow if active sessions */
2000 error = 0;
2001 crypto_destroy();
2002 return 0;
2003 }
2004 return error;
2005 }
2006 MODULE_VERSION(crypto, 1);
2007 MODULE_DEPEND(crypto, zlib, 1, 1, 1);
2008