1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
6 *
7 * NOHZ implementation for low and high resolution timers
8 *
9 * Started by: Thomas Gleixner and Ingo Molnar
10 */
11 #include <linux/compiler.h>
12 #include <linux/cpu.h>
13 #include <linux/err.h>
14 #include <linux/hrtimer.h>
15 #include <linux/interrupt.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/percpu.h>
18 #include <linux/nmi.h>
19 #include <linux/profile.h>
20 #include <linux/sched/signal.h>
21 #include <linux/sched/clock.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/nohz.h>
24 #include <linux/sched/loadavg.h>
25 #include <linux/module.h>
26 #include <linux/irq_work.h>
27 #include <linux/posix-timers.h>
28 #include <linux/context_tracking.h>
29 #include <linux/mm.h>
30
31 #include <asm/irq_regs.h>
32
33 #include "tick-internal.h"
34
35 #include <trace/events/timer.h>
36
37 /*
38 * Per-CPU nohz control structure
39 */
40 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
41
tick_get_tick_sched(int cpu)42 struct tick_sched *tick_get_tick_sched(int cpu)
43 {
44 return &per_cpu(tick_cpu_sched, cpu);
45 }
46
47 /*
48 * The time when the last jiffy update happened. Write access must hold
49 * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a
50 * consistent view of jiffies and last_jiffies_update.
51 */
52 static ktime_t last_jiffies_update;
53
54 /*
55 * Must be called with interrupts disabled !
56 */
tick_do_update_jiffies64(ktime_t now)57 static void tick_do_update_jiffies64(ktime_t now)
58 {
59 unsigned long ticks = 1;
60 ktime_t delta, nextp;
61
62 /*
63 * 64-bit can do a quick check without holding the jiffies lock and
64 * without looking at the sequence count. The smp_load_acquire()
65 * pairs with the update done later in this function.
66 *
67 * 32-bit cannot do that because the store of 'tick_next_period'
68 * consists of two 32-bit stores, and the first store could be
69 * moved by the CPU to a random point in the future.
70 */
71 if (IS_ENABLED(CONFIG_64BIT)) {
72 if (ktime_before(now, smp_load_acquire(&tick_next_period)))
73 return;
74 } else {
75 unsigned int seq;
76
77 /*
78 * Avoid contention on 'jiffies_lock' and protect the quick
79 * check with the sequence count.
80 */
81 do {
82 seq = read_seqcount_begin(&jiffies_seq);
83 nextp = tick_next_period;
84 } while (read_seqcount_retry(&jiffies_seq, seq));
85
86 if (ktime_before(now, nextp))
87 return;
88 }
89
90 /* Quick check failed, i.e. update is required. */
91 raw_spin_lock(&jiffies_lock);
92 /*
93 * Re-evaluate with the lock held. Another CPU might have done the
94 * update already.
95 */
96 if (ktime_before(now, tick_next_period)) {
97 raw_spin_unlock(&jiffies_lock);
98 return;
99 }
100
101 write_seqcount_begin(&jiffies_seq);
102
103 delta = ktime_sub(now, tick_next_period);
104 if (unlikely(delta >= TICK_NSEC)) {
105 /* Slow path for long idle sleep times */
106 s64 incr = TICK_NSEC;
107
108 ticks += ktime_divns(delta, incr);
109
110 last_jiffies_update = ktime_add_ns(last_jiffies_update,
111 incr * ticks);
112 } else {
113 last_jiffies_update = ktime_add_ns(last_jiffies_update,
114 TICK_NSEC);
115 }
116
117 /* Advance jiffies to complete the 'jiffies_seq' protected job */
118 jiffies_64 += ticks;
119
120 /* Keep the tick_next_period variable up to date */
121 nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC);
122
123 if (IS_ENABLED(CONFIG_64BIT)) {
124 /*
125 * Pairs with smp_load_acquire() in the lockless quick
126 * check above, and ensures that the update to 'jiffies_64' is
127 * not reordered vs. the store to 'tick_next_period', neither
128 * by the compiler nor by the CPU.
129 */
130 smp_store_release(&tick_next_period, nextp);
131 } else {
132 /*
133 * A plain store is good enough on 32-bit, as the quick check
134 * above is protected by the sequence count.
135 */
136 tick_next_period = nextp;
137 }
138
139 /*
140 * Release the sequence count. calc_global_load() below is not
141 * protected by it, but 'jiffies_lock' needs to be held to prevent
142 * concurrent invocations.
143 */
144 write_seqcount_end(&jiffies_seq);
145
146 calc_global_load();
147
148 raw_spin_unlock(&jiffies_lock);
149 update_wall_time();
150 }
151
152 /*
153 * Initialize and return retrieve the jiffies update.
154 */
tick_init_jiffy_update(void)155 static ktime_t tick_init_jiffy_update(void)
156 {
157 ktime_t period;
158
159 raw_spin_lock(&jiffies_lock);
160 write_seqcount_begin(&jiffies_seq);
161
162 /* Have we started the jiffies update yet ? */
163 if (last_jiffies_update == 0) {
164 u32 rem;
165
166 /*
167 * Ensure that the tick is aligned to a multiple of
168 * TICK_NSEC.
169 */
170 div_u64_rem(tick_next_period, TICK_NSEC, &rem);
171 if (rem)
172 tick_next_period += TICK_NSEC - rem;
173
174 last_jiffies_update = tick_next_period;
175 }
176 period = last_jiffies_update;
177
178 write_seqcount_end(&jiffies_seq);
179 raw_spin_unlock(&jiffies_lock);
180
181 return period;
182 }
183
tick_sched_flag_test(struct tick_sched * ts,unsigned long flag)184 static inline int tick_sched_flag_test(struct tick_sched *ts,
185 unsigned long flag)
186 {
187 return !!(ts->flags & flag);
188 }
189
tick_sched_flag_set(struct tick_sched * ts,unsigned long flag)190 static inline void tick_sched_flag_set(struct tick_sched *ts,
191 unsigned long flag)
192 {
193 lockdep_assert_irqs_disabled();
194 ts->flags |= flag;
195 }
196
tick_sched_flag_clear(struct tick_sched * ts,unsigned long flag)197 static inline void tick_sched_flag_clear(struct tick_sched *ts,
198 unsigned long flag)
199 {
200 lockdep_assert_irqs_disabled();
201 ts->flags &= ~flag;
202 }
203
204 #define MAX_STALLED_JIFFIES 5
205
tick_sched_do_timer(struct tick_sched * ts,ktime_t now)206 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
207 {
208 int tick_cpu, cpu = smp_processor_id();
209
210 /*
211 * Check if the do_timer duty was dropped. We don't care about
212 * concurrency: This happens only when the CPU in charge went
213 * into a long sleep. If two CPUs happen to assign themselves to
214 * this duty, then the jiffies update is still serialized by
215 * 'jiffies_lock'.
216 *
217 * If nohz_full is enabled, this should not happen because the
218 * 'tick_do_timer_cpu' CPU never relinquishes.
219 */
220 tick_cpu = READ_ONCE(tick_do_timer_cpu);
221
222 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && unlikely(tick_cpu == TICK_DO_TIMER_NONE)) {
223 #ifdef CONFIG_NO_HZ_FULL
224 WARN_ON_ONCE(tick_nohz_full_running);
225 #endif
226 WRITE_ONCE(tick_do_timer_cpu, cpu);
227 tick_cpu = cpu;
228 }
229
230 /* Check if jiffies need an update */
231 if (tick_cpu == cpu)
232 tick_do_update_jiffies64(now);
233
234 /*
235 * If the jiffies update stalled for too long (timekeeper in stop_machine()
236 * or VMEXIT'ed for several msecs), force an update.
237 */
238 if (ts->last_tick_jiffies != jiffies) {
239 ts->stalled_jiffies = 0;
240 ts->last_tick_jiffies = READ_ONCE(jiffies);
241 } else {
242 if (++ts->stalled_jiffies == MAX_STALLED_JIFFIES) {
243 tick_do_update_jiffies64(now);
244 ts->stalled_jiffies = 0;
245 ts->last_tick_jiffies = READ_ONCE(jiffies);
246 }
247 }
248
249 if (tick_sched_flag_test(ts, TS_FLAG_INIDLE))
250 ts->got_idle_tick = 1;
251 }
252
tick_sched_handle(struct tick_sched * ts,struct pt_regs * regs)253 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
254 {
255 /*
256 * When we are idle and the tick is stopped, we have to touch
257 * the watchdog as we might not schedule for a really long
258 * time. This happens on completely idle SMP systems while
259 * waiting on the login prompt. We also increment the "start of
260 * idle" jiffy stamp so the idle accounting adjustment we do
261 * when we go busy again does not account too many ticks.
262 */
263 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) &&
264 tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
265 touch_softlockup_watchdog_sched();
266 if (is_idle_task(current))
267 ts->idle_jiffies++;
268 /*
269 * In case the current tick fired too early past its expected
270 * expiration, make sure we don't bypass the next clock reprogramming
271 * to the same deadline.
272 */
273 ts->next_tick = 0;
274 }
275
276 update_process_times(user_mode(regs));
277 profile_tick(CPU_PROFILING);
278 }
279
280 /*
281 * We rearm the timer until we get disabled by the idle code.
282 * Called with interrupts disabled.
283 */
tick_nohz_handler(struct hrtimer * timer)284 static enum hrtimer_restart tick_nohz_handler(struct hrtimer *timer)
285 {
286 struct tick_sched *ts = container_of(timer, struct tick_sched, sched_timer);
287 struct pt_regs *regs = get_irq_regs();
288 ktime_t now = ktime_get();
289
290 tick_sched_do_timer(ts, now);
291
292 /*
293 * Do not call when we are not in IRQ context and have
294 * no valid 'regs' pointer
295 */
296 if (regs)
297 tick_sched_handle(ts, regs);
298 else
299 ts->next_tick = 0;
300
301 /*
302 * In dynticks mode, tick reprogram is deferred:
303 * - to the idle task if in dynticks-idle
304 * - to IRQ exit if in full-dynticks.
305 */
306 if (unlikely(tick_sched_flag_test(ts, TS_FLAG_STOPPED)))
307 return HRTIMER_NORESTART;
308
309 hrtimer_forward(timer, now, TICK_NSEC);
310
311 return HRTIMER_RESTART;
312 }
313
tick_sched_timer_cancel(struct tick_sched * ts)314 static void tick_sched_timer_cancel(struct tick_sched *ts)
315 {
316 if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES))
317 hrtimer_cancel(&ts->sched_timer);
318 else if (tick_sched_flag_test(ts, TS_FLAG_NOHZ))
319 tick_program_event(KTIME_MAX, 1);
320 }
321
322 #ifdef CONFIG_NO_HZ_FULL
323 cpumask_var_t tick_nohz_full_mask;
324 EXPORT_SYMBOL_GPL(tick_nohz_full_mask);
325 bool tick_nohz_full_running;
326 EXPORT_SYMBOL_GPL(tick_nohz_full_running);
327 static atomic_t tick_dep_mask;
328
check_tick_dependency(atomic_t * dep)329 static bool check_tick_dependency(atomic_t *dep)
330 {
331 int val = atomic_read(dep);
332
333 if (val & TICK_DEP_MASK_POSIX_TIMER) {
334 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
335 return true;
336 }
337
338 if (val & TICK_DEP_MASK_PERF_EVENTS) {
339 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
340 return true;
341 }
342
343 if (val & TICK_DEP_MASK_SCHED) {
344 trace_tick_stop(0, TICK_DEP_MASK_SCHED);
345 return true;
346 }
347
348 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
349 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
350 return true;
351 }
352
353 if (val & TICK_DEP_MASK_RCU) {
354 trace_tick_stop(0, TICK_DEP_MASK_RCU);
355 return true;
356 }
357
358 if (val & TICK_DEP_MASK_RCU_EXP) {
359 trace_tick_stop(0, TICK_DEP_MASK_RCU_EXP);
360 return true;
361 }
362
363 return false;
364 }
365
can_stop_full_tick(int cpu,struct tick_sched * ts)366 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
367 {
368 lockdep_assert_irqs_disabled();
369
370 if (unlikely(!cpu_online(cpu)))
371 return false;
372
373 if (check_tick_dependency(&tick_dep_mask))
374 return false;
375
376 if (check_tick_dependency(&ts->tick_dep_mask))
377 return false;
378
379 if (check_tick_dependency(¤t->tick_dep_mask))
380 return false;
381
382 if (check_tick_dependency(¤t->signal->tick_dep_mask))
383 return false;
384
385 return true;
386 }
387
nohz_full_kick_func(struct irq_work * work)388 static void nohz_full_kick_func(struct irq_work *work)
389 {
390 /* Empty, the tick restart happens on tick_nohz_irq_exit() */
391 }
392
393 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) =
394 IRQ_WORK_INIT_HARD(nohz_full_kick_func);
395
396 /*
397 * Kick this CPU if it's full dynticks in order to force it to
398 * re-evaluate its dependency on the tick and restart it if necessary.
399 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
400 * is NMI safe.
401 */
tick_nohz_full_kick(void)402 static void tick_nohz_full_kick(void)
403 {
404 if (!tick_nohz_full_cpu(smp_processor_id()))
405 return;
406
407 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
408 }
409
410 /*
411 * Kick the CPU if it's full dynticks in order to force it to
412 * re-evaluate its dependency on the tick and restart it if necessary.
413 */
tick_nohz_full_kick_cpu(int cpu)414 void tick_nohz_full_kick_cpu(int cpu)
415 {
416 if (!tick_nohz_full_cpu(cpu))
417 return;
418
419 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
420 }
421
tick_nohz_kick_task(struct task_struct * tsk)422 static void tick_nohz_kick_task(struct task_struct *tsk)
423 {
424 int cpu;
425
426 /*
427 * If the task is not running, run_posix_cpu_timers()
428 * has nothing to elapse, and an IPI can then be optimized out.
429 *
430 * activate_task() STORE p->tick_dep_mask
431 * STORE p->on_rq
432 * __schedule() (switch to task 'p') smp_mb() (atomic_fetch_or())
433 * LOCK rq->lock LOAD p->on_rq
434 * smp_mb__after_spin_lock()
435 * tick_nohz_task_switch()
436 * LOAD p->tick_dep_mask
437 *
438 * XXX given a task picks up the dependency on schedule(), should we
439 * only care about tasks that are currently on the CPU instead of all
440 * that are on the runqueue?
441 *
442 * That is, does this want to be: task_on_cpu() / task_curr()?
443 */
444 if (!sched_task_on_rq(tsk))
445 return;
446
447 /*
448 * If the task concurrently migrates to another CPU,
449 * we guarantee it sees the new tick dependency upon
450 * schedule.
451 *
452 * set_task_cpu(p, cpu);
453 * STORE p->cpu = @cpu
454 * __schedule() (switch to task 'p')
455 * LOCK rq->lock
456 * smp_mb__after_spin_lock() STORE p->tick_dep_mask
457 * tick_nohz_task_switch() smp_mb() (atomic_fetch_or())
458 * LOAD p->tick_dep_mask LOAD p->cpu
459 */
460 cpu = task_cpu(tsk);
461
462 preempt_disable();
463 if (cpu_online(cpu))
464 tick_nohz_full_kick_cpu(cpu);
465 preempt_enable();
466 }
467
468 /*
469 * Kick all full dynticks CPUs in order to force these to re-evaluate
470 * their dependency on the tick and restart it if necessary.
471 */
tick_nohz_full_kick_all(void)472 static void tick_nohz_full_kick_all(void)
473 {
474 int cpu;
475
476 if (!tick_nohz_full_running)
477 return;
478
479 preempt_disable();
480 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
481 tick_nohz_full_kick_cpu(cpu);
482 preempt_enable();
483 }
484
tick_nohz_dep_set_all(atomic_t * dep,enum tick_dep_bits bit)485 static void tick_nohz_dep_set_all(atomic_t *dep,
486 enum tick_dep_bits bit)
487 {
488 int prev;
489
490 prev = atomic_fetch_or(BIT(bit), dep);
491 if (!prev)
492 tick_nohz_full_kick_all();
493 }
494
495 /*
496 * Set a global tick dependency. Used by perf events that rely on freq and
497 * unstable clocks.
498 */
tick_nohz_dep_set(enum tick_dep_bits bit)499 void tick_nohz_dep_set(enum tick_dep_bits bit)
500 {
501 tick_nohz_dep_set_all(&tick_dep_mask, bit);
502 }
503
tick_nohz_dep_clear(enum tick_dep_bits bit)504 void tick_nohz_dep_clear(enum tick_dep_bits bit)
505 {
506 atomic_andnot(BIT(bit), &tick_dep_mask);
507 }
508
509 /*
510 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
511 * manage event-throttling.
512 */
tick_nohz_dep_set_cpu(int cpu,enum tick_dep_bits bit)513 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
514 {
515 int prev;
516 struct tick_sched *ts;
517
518 ts = per_cpu_ptr(&tick_cpu_sched, cpu);
519
520 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
521 if (!prev) {
522 preempt_disable();
523 /* Perf needs local kick that is NMI safe */
524 if (cpu == smp_processor_id()) {
525 tick_nohz_full_kick();
526 } else {
527 /* Remote IRQ work not NMI-safe */
528 if (!WARN_ON_ONCE(in_nmi()))
529 tick_nohz_full_kick_cpu(cpu);
530 }
531 preempt_enable();
532 }
533 }
534 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
535
tick_nohz_dep_clear_cpu(int cpu,enum tick_dep_bits bit)536 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
537 {
538 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
539
540 atomic_andnot(BIT(bit), &ts->tick_dep_mask);
541 }
542 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
543
544 /*
545 * Set a per-task tick dependency. RCU needs this. Also posix CPU timers
546 * in order to elapse per task timers.
547 */
tick_nohz_dep_set_task(struct task_struct * tsk,enum tick_dep_bits bit)548 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
549 {
550 if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask))
551 tick_nohz_kick_task(tsk);
552 }
553 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
554
tick_nohz_dep_clear_task(struct task_struct * tsk,enum tick_dep_bits bit)555 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
556 {
557 atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
558 }
559 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
560
561 /*
562 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
563 * per process timers.
564 */
tick_nohz_dep_set_signal(struct task_struct * tsk,enum tick_dep_bits bit)565 void tick_nohz_dep_set_signal(struct task_struct *tsk,
566 enum tick_dep_bits bit)
567 {
568 int prev;
569 struct signal_struct *sig = tsk->signal;
570
571 prev = atomic_fetch_or(BIT(bit), &sig->tick_dep_mask);
572 if (!prev) {
573 struct task_struct *t;
574
575 lockdep_assert_held(&tsk->sighand->siglock);
576 __for_each_thread(sig, t)
577 tick_nohz_kick_task(t);
578 }
579 }
580
tick_nohz_dep_clear_signal(struct signal_struct * sig,enum tick_dep_bits bit)581 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
582 {
583 atomic_andnot(BIT(bit), &sig->tick_dep_mask);
584 }
585
586 /*
587 * Re-evaluate the need for the tick as we switch the current task.
588 * It might need the tick due to per task/process properties:
589 * perf events, posix CPU timers, ...
590 */
__tick_nohz_task_switch(void)591 void __tick_nohz_task_switch(void)
592 {
593 struct tick_sched *ts;
594
595 if (!tick_nohz_full_cpu(smp_processor_id()))
596 return;
597
598 ts = this_cpu_ptr(&tick_cpu_sched);
599
600 if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
601 if (atomic_read(¤t->tick_dep_mask) ||
602 atomic_read(¤t->signal->tick_dep_mask))
603 tick_nohz_full_kick();
604 }
605 }
606
607 /* Get the boot-time nohz CPU list from the kernel parameters. */
tick_nohz_full_setup(cpumask_var_t cpumask)608 void __init tick_nohz_full_setup(cpumask_var_t cpumask)
609 {
610 alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
611 cpumask_copy(tick_nohz_full_mask, cpumask);
612 tick_nohz_full_running = true;
613 }
614
tick_nohz_cpu_hotpluggable(unsigned int cpu)615 bool tick_nohz_cpu_hotpluggable(unsigned int cpu)
616 {
617 /*
618 * The 'tick_do_timer_cpu' CPU handles housekeeping duty (unbound
619 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
620 * CPUs. It must remain online when nohz full is enabled.
621 */
622 if (tick_nohz_full_running && READ_ONCE(tick_do_timer_cpu) == cpu)
623 return false;
624 return true;
625 }
626
tick_nohz_cpu_down(unsigned int cpu)627 static int tick_nohz_cpu_down(unsigned int cpu)
628 {
629 return tick_nohz_cpu_hotpluggable(cpu) ? 0 : -EBUSY;
630 }
631
tick_nohz_init(void)632 void __init tick_nohz_init(void)
633 {
634 int cpu, ret;
635
636 if (!tick_nohz_full_running)
637 return;
638
639 /*
640 * Full dynticks uses IRQ work to drive the tick rescheduling on safe
641 * locking contexts. But then we need IRQ work to raise its own
642 * interrupts to avoid circular dependency on the tick.
643 */
644 if (!arch_irq_work_has_interrupt()) {
645 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support IRQ work self-IPIs\n");
646 cpumask_clear(tick_nohz_full_mask);
647 tick_nohz_full_running = false;
648 return;
649 }
650
651 if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
652 !IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
653 cpu = smp_processor_id();
654
655 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
656 pr_warn("NO_HZ: Clearing %d from nohz_full range "
657 "for timekeeping\n", cpu);
658 cpumask_clear_cpu(cpu, tick_nohz_full_mask);
659 }
660 }
661
662 for_each_cpu(cpu, tick_nohz_full_mask)
663 ct_cpu_track_user(cpu);
664
665 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
666 "kernel/nohz:predown", NULL,
667 tick_nohz_cpu_down);
668 WARN_ON(ret < 0);
669 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
670 cpumask_pr_args(tick_nohz_full_mask));
671 }
672 #endif /* #ifdef CONFIG_NO_HZ_FULL */
673
674 /*
675 * NOHZ - aka dynamic tick functionality
676 */
677 #ifdef CONFIG_NO_HZ_COMMON
678 /*
679 * NO HZ enabled ?
680 */
681 bool tick_nohz_enabled __read_mostly = true;
682 unsigned long tick_nohz_active __read_mostly;
683 /*
684 * Enable / Disable tickless mode
685 */
setup_tick_nohz(char * str)686 static int __init setup_tick_nohz(char *str)
687 {
688 return (kstrtobool(str, &tick_nohz_enabled) == 0);
689 }
690
691 __setup("nohz=", setup_tick_nohz);
692
tick_nohz_tick_stopped(void)693 bool tick_nohz_tick_stopped(void)
694 {
695 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
696
697 return tick_sched_flag_test(ts, TS_FLAG_STOPPED);
698 }
699
tick_nohz_tick_stopped_cpu(int cpu)700 bool tick_nohz_tick_stopped_cpu(int cpu)
701 {
702 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
703
704 return tick_sched_flag_test(ts, TS_FLAG_STOPPED);
705 }
706
707 /**
708 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
709 * @now: current ktime_t
710 *
711 * Called from interrupt entry when the CPU was idle
712 *
713 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
714 * must be updated. Otherwise an interrupt handler could use a stale jiffy
715 * value. We do this unconditionally on any CPU, as we don't know whether the
716 * CPU, which has the update task assigned, is in a long sleep.
717 */
tick_nohz_update_jiffies(ktime_t now)718 static void tick_nohz_update_jiffies(ktime_t now)
719 {
720 unsigned long flags;
721
722 __this_cpu_write(tick_cpu_sched.idle_waketime, now);
723
724 local_irq_save(flags);
725 tick_do_update_jiffies64(now);
726 local_irq_restore(flags);
727
728 touch_softlockup_watchdog_sched();
729 }
730
tick_nohz_stop_idle(struct tick_sched * ts,ktime_t now)731 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
732 {
733 ktime_t delta;
734
735 if (WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE)))
736 return;
737
738 delta = ktime_sub(now, ts->idle_entrytime);
739
740 write_seqcount_begin(&ts->idle_sleeptime_seq);
741 if (nr_iowait_cpu(smp_processor_id()) > 0)
742 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
743 else
744 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
745
746 ts->idle_entrytime = now;
747 tick_sched_flag_clear(ts, TS_FLAG_IDLE_ACTIVE);
748 write_seqcount_end(&ts->idle_sleeptime_seq);
749
750 sched_clock_idle_wakeup_event();
751 }
752
tick_nohz_start_idle(struct tick_sched * ts)753 static void tick_nohz_start_idle(struct tick_sched *ts)
754 {
755 write_seqcount_begin(&ts->idle_sleeptime_seq);
756 ts->idle_entrytime = ktime_get();
757 tick_sched_flag_set(ts, TS_FLAG_IDLE_ACTIVE);
758 write_seqcount_end(&ts->idle_sleeptime_seq);
759
760 sched_clock_idle_sleep_event();
761 }
762
get_cpu_sleep_time_us(struct tick_sched * ts,ktime_t * sleeptime,bool compute_delta,u64 * last_update_time)763 static u64 get_cpu_sleep_time_us(struct tick_sched *ts, ktime_t *sleeptime,
764 bool compute_delta, u64 *last_update_time)
765 {
766 ktime_t now, idle;
767 unsigned int seq;
768
769 if (!tick_nohz_active)
770 return -1;
771
772 now = ktime_get();
773 if (last_update_time)
774 *last_update_time = ktime_to_us(now);
775
776 do {
777 seq = read_seqcount_begin(&ts->idle_sleeptime_seq);
778
779 if (tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE) && compute_delta) {
780 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
781
782 idle = ktime_add(*sleeptime, delta);
783 } else {
784 idle = *sleeptime;
785 }
786 } while (read_seqcount_retry(&ts->idle_sleeptime_seq, seq));
787
788 return ktime_to_us(idle);
789
790 }
791
792 /**
793 * get_cpu_idle_time_us - get the total idle time of a CPU
794 * @cpu: CPU number to query
795 * @last_update_time: variable to store update time in. Do not update
796 * counters if NULL.
797 *
798 * Return the cumulative idle time (since boot) for a given
799 * CPU, in microseconds. Note that this is partially broken due to
800 * the counter of iowait tasks that can be remotely updated without
801 * any synchronization. Therefore it is possible to observe backward
802 * values within two consecutive reads.
803 *
804 * This time is measured via accounting rather than sampling,
805 * and is as accurate as ktime_get() is.
806 *
807 * Return: -1 if NOHZ is not enabled, else total idle time of the @cpu
808 */
get_cpu_idle_time_us(int cpu,u64 * last_update_time)809 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
810 {
811 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
812
813 return get_cpu_sleep_time_us(ts, &ts->idle_sleeptime,
814 !nr_iowait_cpu(cpu), last_update_time);
815 }
816 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
817
818 /**
819 * get_cpu_iowait_time_us - get the total iowait time of a CPU
820 * @cpu: CPU number to query
821 * @last_update_time: variable to store update time in. Do not update
822 * counters if NULL.
823 *
824 * Return the cumulative iowait time (since boot) for a given
825 * CPU, in microseconds. Note this is partially broken due to
826 * the counter of iowait tasks that can be remotely updated without
827 * any synchronization. Therefore it is possible to observe backward
828 * values within two consecutive reads.
829 *
830 * This time is measured via accounting rather than sampling,
831 * and is as accurate as ktime_get() is.
832 *
833 * Return: -1 if NOHZ is not enabled, else total iowait time of @cpu
834 */
get_cpu_iowait_time_us(int cpu,u64 * last_update_time)835 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
836 {
837 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
838
839 return get_cpu_sleep_time_us(ts, &ts->iowait_sleeptime,
840 nr_iowait_cpu(cpu), last_update_time);
841 }
842 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
843
tick_nohz_restart(struct tick_sched * ts,ktime_t now)844 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
845 {
846 hrtimer_cancel(&ts->sched_timer);
847 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
848
849 /* Forward the time to expire in the future */
850 hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
851
852 if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) {
853 hrtimer_start_expires(&ts->sched_timer,
854 HRTIMER_MODE_ABS_PINNED_HARD);
855 } else {
856 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
857 }
858
859 /*
860 * Reset to make sure the next tick stop doesn't get fooled by past
861 * cached clock deadline.
862 */
863 ts->next_tick = 0;
864 }
865
local_timer_softirq_pending(void)866 static inline bool local_timer_softirq_pending(void)
867 {
868 return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
869 }
870
871 /*
872 * Read jiffies and the time when jiffies were updated last
873 */
get_jiffies_update(unsigned long * basej)874 u64 get_jiffies_update(unsigned long *basej)
875 {
876 unsigned long basejiff;
877 unsigned int seq;
878 u64 basemono;
879
880 do {
881 seq = read_seqcount_begin(&jiffies_seq);
882 basemono = last_jiffies_update;
883 basejiff = jiffies;
884 } while (read_seqcount_retry(&jiffies_seq, seq));
885 *basej = basejiff;
886 return basemono;
887 }
888
889 /**
890 * tick_nohz_next_event() - return the clock monotonic based next event
891 * @ts: pointer to tick_sched struct
892 * @cpu: CPU number
893 *
894 * Return:
895 * *%0 - When the next event is a maximum of TICK_NSEC in the future
896 * and the tick is not stopped yet
897 * *%next_event - Next event based on clock monotonic
898 */
tick_nohz_next_event(struct tick_sched * ts,int cpu)899 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
900 {
901 u64 basemono, next_tick, delta, expires;
902 unsigned long basejiff;
903 int tick_cpu;
904
905 basemono = get_jiffies_update(&basejiff);
906 ts->last_jiffies = basejiff;
907 ts->timer_expires_base = basemono;
908
909 /*
910 * Keep the periodic tick, when RCU, architecture or irq_work
911 * requests it.
912 * Aside of that, check whether the local timer softirq is
913 * pending. If so, its a bad idea to call get_next_timer_interrupt(),
914 * because there is an already expired timer, so it will request
915 * immediate expiry, which rearms the hardware timer with a
916 * minimal delta, which brings us back to this place
917 * immediately. Lather, rinse and repeat...
918 */
919 if (rcu_needs_cpu() || arch_needs_cpu() ||
920 irq_work_needs_cpu() || local_timer_softirq_pending()) {
921 next_tick = basemono + TICK_NSEC;
922 } else {
923 /*
924 * Get the next pending timer. If high resolution
925 * timers are enabled this only takes the timer wheel
926 * timers into account. If high resolution timers are
927 * disabled this also looks at the next expiring
928 * hrtimer.
929 */
930 next_tick = get_next_timer_interrupt(basejiff, basemono);
931 ts->next_timer = next_tick;
932 }
933
934 /* Make sure next_tick is never before basemono! */
935 if (WARN_ON_ONCE(basemono > next_tick))
936 next_tick = basemono;
937
938 /*
939 * If the tick is due in the next period, keep it ticking or
940 * force prod the timer.
941 */
942 delta = next_tick - basemono;
943 if (delta <= (u64)TICK_NSEC) {
944 /*
945 * We've not stopped the tick yet, and there's a timer in the
946 * next period, so no point in stopping it either, bail.
947 */
948 if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
949 ts->timer_expires = 0;
950 goto out;
951 }
952 }
953
954 /*
955 * If this CPU is the one which had the do_timer() duty last, we limit
956 * the sleep time to the timekeeping 'max_deferment' value.
957 * Otherwise we can sleep as long as we want.
958 */
959 delta = timekeeping_max_deferment();
960 tick_cpu = READ_ONCE(tick_do_timer_cpu);
961 if (tick_cpu != cpu &&
962 (tick_cpu != TICK_DO_TIMER_NONE || !tick_sched_flag_test(ts, TS_FLAG_DO_TIMER_LAST)))
963 delta = KTIME_MAX;
964
965 /* Calculate the next expiry time */
966 if (delta < (KTIME_MAX - basemono))
967 expires = basemono + delta;
968 else
969 expires = KTIME_MAX;
970
971 ts->timer_expires = min_t(u64, expires, next_tick);
972
973 out:
974 return ts->timer_expires;
975 }
976
tick_nohz_stop_tick(struct tick_sched * ts,int cpu)977 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
978 {
979 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
980 unsigned long basejiff = ts->last_jiffies;
981 u64 basemono = ts->timer_expires_base;
982 bool timer_idle = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
983 int tick_cpu;
984 u64 expires;
985
986 /* Make sure we won't be trying to stop it twice in a row. */
987 ts->timer_expires_base = 0;
988
989 /*
990 * Now the tick should be stopped definitely - so the timer base needs
991 * to be marked idle as well to not miss a newly queued timer.
992 */
993 expires = timer_base_try_to_set_idle(basejiff, basemono, &timer_idle);
994 if (expires > ts->timer_expires) {
995 /*
996 * This path could only happen when the first timer was removed
997 * between calculating the possible sleep length and now (when
998 * high resolution mode is not active, timer could also be a
999 * hrtimer).
1000 *
1001 * We have to stick to the original calculated expiry value to
1002 * not stop the tick for too long with a shallow C-state (which
1003 * was programmed by cpuidle because of an early next expiration
1004 * value).
1005 */
1006 expires = ts->timer_expires;
1007 }
1008
1009 /* If the timer base is not idle, retain the not yet stopped tick. */
1010 if (!timer_idle)
1011 return;
1012
1013 /*
1014 * If this CPU is the one which updates jiffies, then give up
1015 * the assignment and let it be taken by the CPU which runs
1016 * the tick timer next, which might be this CPU as well. If we
1017 * don't drop this here, the jiffies might be stale and
1018 * do_timer() never gets invoked. Keep track of the fact that it
1019 * was the one which had the do_timer() duty last.
1020 */
1021 tick_cpu = READ_ONCE(tick_do_timer_cpu);
1022 if (tick_cpu == cpu) {
1023 WRITE_ONCE(tick_do_timer_cpu, TICK_DO_TIMER_NONE);
1024 tick_sched_flag_set(ts, TS_FLAG_DO_TIMER_LAST);
1025 } else if (tick_cpu != TICK_DO_TIMER_NONE) {
1026 tick_sched_flag_clear(ts, TS_FLAG_DO_TIMER_LAST);
1027 }
1028
1029 /* Skip reprogram of event if it's not changed */
1030 if (tick_sched_flag_test(ts, TS_FLAG_STOPPED) && (expires == ts->next_tick)) {
1031 /* Sanity check: make sure clockevent is actually programmed */
1032 if (expires == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
1033 return;
1034
1035 WARN_ONCE(1, "basemono: %llu ts->next_tick: %llu dev->next_event: %llu "
1036 "timer->active: %d timer->expires: %llu\n", basemono, ts->next_tick,
1037 dev->next_event, hrtimer_active(&ts->sched_timer),
1038 hrtimer_get_expires(&ts->sched_timer));
1039 }
1040
1041 /*
1042 * tick_nohz_stop_tick() can be called several times before
1043 * tick_nohz_restart_sched_tick() is called. This happens when
1044 * interrupts arrive which do not cause a reschedule. In the first
1045 * call we save the current tick time, so we can restart the
1046 * scheduler tick in tick_nohz_restart_sched_tick().
1047 */
1048 if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
1049 calc_load_nohz_start();
1050 quiet_vmstat();
1051
1052 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
1053 tick_sched_flag_set(ts, TS_FLAG_STOPPED);
1054 trace_tick_stop(1, TICK_DEP_MASK_NONE);
1055 }
1056
1057 ts->next_tick = expires;
1058
1059 /*
1060 * If the expiration time == KTIME_MAX, then we simply stop
1061 * the tick timer.
1062 */
1063 if (unlikely(expires == KTIME_MAX)) {
1064 tick_sched_timer_cancel(ts);
1065 return;
1066 }
1067
1068 if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) {
1069 hrtimer_start(&ts->sched_timer, expires,
1070 HRTIMER_MODE_ABS_PINNED_HARD);
1071 } else {
1072 hrtimer_set_expires(&ts->sched_timer, expires);
1073 tick_program_event(expires, 1);
1074 }
1075 }
1076
tick_nohz_retain_tick(struct tick_sched * ts)1077 static void tick_nohz_retain_tick(struct tick_sched *ts)
1078 {
1079 ts->timer_expires_base = 0;
1080 }
1081
1082 #ifdef CONFIG_NO_HZ_FULL
tick_nohz_full_stop_tick(struct tick_sched * ts,int cpu)1083 static void tick_nohz_full_stop_tick(struct tick_sched *ts, int cpu)
1084 {
1085 if (tick_nohz_next_event(ts, cpu))
1086 tick_nohz_stop_tick(ts, cpu);
1087 else
1088 tick_nohz_retain_tick(ts);
1089 }
1090 #endif /* CONFIG_NO_HZ_FULL */
1091
tick_nohz_restart_sched_tick(struct tick_sched * ts,ktime_t now)1092 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
1093 {
1094 /* Update jiffies first */
1095 tick_do_update_jiffies64(now);
1096
1097 /*
1098 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
1099 * the clock forward checks in the enqueue path:
1100 */
1101 timer_clear_idle();
1102
1103 calc_load_nohz_stop();
1104 touch_softlockup_watchdog_sched();
1105
1106 /* Cancel the scheduled timer and restore the tick: */
1107 tick_sched_flag_clear(ts, TS_FLAG_STOPPED);
1108 tick_nohz_restart(ts, now);
1109 }
1110
__tick_nohz_full_update_tick(struct tick_sched * ts,ktime_t now)1111 static void __tick_nohz_full_update_tick(struct tick_sched *ts,
1112 ktime_t now)
1113 {
1114 #ifdef CONFIG_NO_HZ_FULL
1115 int cpu = smp_processor_id();
1116
1117 if (can_stop_full_tick(cpu, ts))
1118 tick_nohz_full_stop_tick(ts, cpu);
1119 else if (tick_sched_flag_test(ts, TS_FLAG_STOPPED))
1120 tick_nohz_restart_sched_tick(ts, now);
1121 #endif
1122 }
1123
tick_nohz_full_update_tick(struct tick_sched * ts)1124 static void tick_nohz_full_update_tick(struct tick_sched *ts)
1125 {
1126 if (!tick_nohz_full_cpu(smp_processor_id()))
1127 return;
1128
1129 if (!tick_sched_flag_test(ts, TS_FLAG_NOHZ))
1130 return;
1131
1132 __tick_nohz_full_update_tick(ts, ktime_get());
1133 }
1134
1135 /*
1136 * A pending softirq outside an IRQ (or softirq disabled section) context
1137 * should be waiting for ksoftirqd to handle it. Therefore we shouldn't
1138 * reach this code due to the need_resched() early check in can_stop_idle_tick().
1139 *
1140 * However if we are between CPUHP_AP_SMPBOOT_THREADS and CPU_TEARDOWN_CPU on the
1141 * cpu_down() process, softirqs can still be raised while ksoftirqd is parked,
1142 * triggering the code below, since wakep_softirqd() is ignored.
1143 *
1144 */
report_idle_softirq(void)1145 static bool report_idle_softirq(void)
1146 {
1147 static int ratelimit;
1148 unsigned int pending = local_softirq_pending();
1149
1150 if (likely(!pending))
1151 return false;
1152
1153 /* Some softirqs claim to be safe against hotplug and ksoftirqd parking */
1154 if (!cpu_active(smp_processor_id())) {
1155 pending &= ~SOFTIRQ_HOTPLUG_SAFE_MASK;
1156 if (!pending)
1157 return false;
1158 }
1159
1160 if (ratelimit >= 10)
1161 return false;
1162
1163 /* On RT, softirq handling may be waiting on some lock */
1164 if (local_bh_blocked())
1165 return false;
1166
1167 pr_warn("NOHZ tick-stop error: local softirq work is pending, handler #%02x!!!\n",
1168 pending);
1169 ratelimit++;
1170
1171 return true;
1172 }
1173
can_stop_idle_tick(int cpu,struct tick_sched * ts)1174 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
1175 {
1176 WARN_ON_ONCE(cpu_is_offline(cpu));
1177
1178 if (unlikely(!tick_sched_flag_test(ts, TS_FLAG_NOHZ)))
1179 return false;
1180
1181 if (need_resched())
1182 return false;
1183
1184 if (unlikely(report_idle_softirq()))
1185 return false;
1186
1187 if (tick_nohz_full_enabled()) {
1188 int tick_cpu = READ_ONCE(tick_do_timer_cpu);
1189
1190 /*
1191 * Keep the tick alive to guarantee timekeeping progression
1192 * if there are full dynticks CPUs around
1193 */
1194 if (tick_cpu == cpu)
1195 return false;
1196
1197 /* Should not happen for nohz-full */
1198 if (WARN_ON_ONCE(tick_cpu == TICK_DO_TIMER_NONE))
1199 return false;
1200 }
1201
1202 return true;
1203 }
1204
1205 /**
1206 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
1207 *
1208 * When the next event is more than a tick into the future, stop the idle tick
1209 */
tick_nohz_idle_stop_tick(void)1210 void tick_nohz_idle_stop_tick(void)
1211 {
1212 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1213 int cpu = smp_processor_id();
1214 ktime_t expires;
1215
1216 /*
1217 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
1218 * tick timer expiration time is known already.
1219 */
1220 if (ts->timer_expires_base)
1221 expires = ts->timer_expires;
1222 else if (can_stop_idle_tick(cpu, ts))
1223 expires = tick_nohz_next_event(ts, cpu);
1224 else
1225 return;
1226
1227 ts->idle_calls++;
1228
1229 if (expires > 0LL) {
1230 int was_stopped = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
1231
1232 tick_nohz_stop_tick(ts, cpu);
1233
1234 ts->idle_sleeps++;
1235 ts->idle_expires = expires;
1236
1237 if (!was_stopped && tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
1238 ts->idle_jiffies = ts->last_jiffies;
1239 nohz_balance_enter_idle(cpu);
1240 }
1241 } else {
1242 tick_nohz_retain_tick(ts);
1243 }
1244 }
1245
tick_nohz_idle_retain_tick(void)1246 void tick_nohz_idle_retain_tick(void)
1247 {
1248 tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
1249 }
1250
1251 /**
1252 * tick_nohz_idle_enter - prepare for entering idle on the current CPU
1253 *
1254 * Called when we start the idle loop.
1255 */
tick_nohz_idle_enter(void)1256 void tick_nohz_idle_enter(void)
1257 {
1258 struct tick_sched *ts;
1259
1260 lockdep_assert_irqs_enabled();
1261
1262 local_irq_disable();
1263
1264 ts = this_cpu_ptr(&tick_cpu_sched);
1265
1266 WARN_ON_ONCE(ts->timer_expires_base);
1267
1268 tick_sched_flag_set(ts, TS_FLAG_INIDLE);
1269 tick_nohz_start_idle(ts);
1270
1271 local_irq_enable();
1272 }
1273
1274 /**
1275 * tick_nohz_irq_exit - Notify the tick about IRQ exit
1276 *
1277 * A timer may have been added/modified/deleted either by the current IRQ,
1278 * or by another place using this IRQ as a notification. This IRQ may have
1279 * also updated the RCU callback list. These events may require a
1280 * re-evaluation of the next tick. Depending on the context:
1281 *
1282 * 1) If the CPU is idle and no resched is pending, just proceed with idle
1283 * time accounting. The next tick will be re-evaluated on the next idle
1284 * loop iteration.
1285 *
1286 * 2) If the CPU is nohz_full:
1287 *
1288 * 2.1) If there is any tick dependency, restart the tick if stopped.
1289 *
1290 * 2.2) If there is no tick dependency, (re-)evaluate the next tick and
1291 * stop/update it accordingly.
1292 */
tick_nohz_irq_exit(void)1293 void tick_nohz_irq_exit(void)
1294 {
1295 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1296
1297 if (tick_sched_flag_test(ts, TS_FLAG_INIDLE))
1298 tick_nohz_start_idle(ts);
1299 else
1300 tick_nohz_full_update_tick(ts);
1301 }
1302
1303 /**
1304 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1305 *
1306 * Return: %true if the tick handler has run, otherwise %false
1307 */
tick_nohz_idle_got_tick(void)1308 bool tick_nohz_idle_got_tick(void)
1309 {
1310 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1311
1312 if (ts->got_idle_tick) {
1313 ts->got_idle_tick = 0;
1314 return true;
1315 }
1316 return false;
1317 }
1318
1319 /**
1320 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1321 * or the tick, whichever expires first. Note that, if the tick has been
1322 * stopped, it returns the next hrtimer.
1323 *
1324 * Called from power state control code with interrupts disabled
1325 *
1326 * Return: the next expiration time
1327 */
tick_nohz_get_next_hrtimer(void)1328 ktime_t tick_nohz_get_next_hrtimer(void)
1329 {
1330 return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1331 }
1332
1333 /**
1334 * tick_nohz_get_sleep_length - return the expected length of the current sleep
1335 * @delta_next: duration until the next event if the tick cannot be stopped
1336 *
1337 * Called from power state control code with interrupts disabled.
1338 *
1339 * The return value of this function and/or the value returned by it through the
1340 * @delta_next pointer can be negative which must be taken into account by its
1341 * callers.
1342 *
1343 * Return: the expected length of the current sleep
1344 */
tick_nohz_get_sleep_length(ktime_t * delta_next)1345 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1346 {
1347 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1348 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1349 int cpu = smp_processor_id();
1350 /*
1351 * The idle entry time is expected to be a sufficient approximation of
1352 * the current time at this point.
1353 */
1354 ktime_t now = ts->idle_entrytime;
1355 ktime_t next_event;
1356
1357 WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_INIDLE));
1358
1359 *delta_next = ktime_sub(dev->next_event, now);
1360
1361 if (!can_stop_idle_tick(cpu, ts))
1362 return *delta_next;
1363
1364 next_event = tick_nohz_next_event(ts, cpu);
1365 if (!next_event)
1366 return *delta_next;
1367
1368 /*
1369 * If the next highres timer to expire is earlier than 'next_event', the
1370 * idle governor needs to know that.
1371 */
1372 next_event = min_t(u64, next_event,
1373 hrtimer_next_event_without(&ts->sched_timer));
1374
1375 return ktime_sub(next_event, now);
1376 }
1377
1378 /**
1379 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1380 * for a particular CPU.
1381 * @cpu: target CPU number
1382 *
1383 * Called from the schedutil frequency scaling governor in scheduler context.
1384 *
1385 * Return: the current idle calls counter value for @cpu
1386 */
tick_nohz_get_idle_calls_cpu(int cpu)1387 unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1388 {
1389 struct tick_sched *ts = tick_get_tick_sched(cpu);
1390
1391 return ts->idle_calls;
1392 }
1393
tick_nohz_account_idle_time(struct tick_sched * ts,ktime_t now)1394 static void tick_nohz_account_idle_time(struct tick_sched *ts,
1395 ktime_t now)
1396 {
1397 unsigned long ticks;
1398
1399 ts->idle_exittime = now;
1400
1401 if (vtime_accounting_enabled_this_cpu())
1402 return;
1403 /*
1404 * We stopped the tick in idle. update_process_times() would miss the
1405 * time we slept, as it does only a 1 tick accounting.
1406 * Enforce that this is accounted to idle !
1407 */
1408 ticks = jiffies - ts->idle_jiffies;
1409 /*
1410 * We might be one off. Do not randomly account a huge number of ticks!
1411 */
1412 if (ticks && ticks < LONG_MAX)
1413 account_idle_ticks(ticks);
1414 }
1415
tick_nohz_idle_restart_tick(void)1416 void tick_nohz_idle_restart_tick(void)
1417 {
1418 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1419
1420 if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
1421 ktime_t now = ktime_get();
1422 tick_nohz_restart_sched_tick(ts, now);
1423 tick_nohz_account_idle_time(ts, now);
1424 }
1425 }
1426
tick_nohz_idle_update_tick(struct tick_sched * ts,ktime_t now)1427 static void tick_nohz_idle_update_tick(struct tick_sched *ts, ktime_t now)
1428 {
1429 if (tick_nohz_full_cpu(smp_processor_id()))
1430 __tick_nohz_full_update_tick(ts, now);
1431 else
1432 tick_nohz_restart_sched_tick(ts, now);
1433
1434 tick_nohz_account_idle_time(ts, now);
1435 }
1436
1437 /**
1438 * tick_nohz_idle_exit - Update the tick upon idle task exit
1439 *
1440 * When the idle task exits, update the tick depending on the
1441 * following situations:
1442 *
1443 * 1) If the CPU is not in nohz_full mode (most cases), then
1444 * restart the tick.
1445 *
1446 * 2) If the CPU is in nohz_full mode (corner case):
1447 * 2.1) If the tick can be kept stopped (no tick dependencies)
1448 * then re-evaluate the next tick and try to keep it stopped
1449 * as long as possible.
1450 * 2.2) If the tick has dependencies, restart the tick.
1451 *
1452 */
tick_nohz_idle_exit(void)1453 void tick_nohz_idle_exit(void)
1454 {
1455 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1456 bool idle_active, tick_stopped;
1457 ktime_t now;
1458
1459 local_irq_disable();
1460
1461 WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_INIDLE));
1462 WARN_ON_ONCE(ts->timer_expires_base);
1463
1464 tick_sched_flag_clear(ts, TS_FLAG_INIDLE);
1465 idle_active = tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE);
1466 tick_stopped = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
1467
1468 if (idle_active || tick_stopped)
1469 now = ktime_get();
1470
1471 if (idle_active)
1472 tick_nohz_stop_idle(ts, now);
1473
1474 if (tick_stopped)
1475 tick_nohz_idle_update_tick(ts, now);
1476
1477 local_irq_enable();
1478 }
1479
1480 /*
1481 * In low-resolution mode, the tick handler must be implemented directly
1482 * at the clockevent level. hrtimer can't be used instead, because its
1483 * infrastructure actually relies on the tick itself as a backend in
1484 * low-resolution mode (see hrtimer_run_queues()).
1485 */
tick_nohz_lowres_handler(struct clock_event_device * dev)1486 static void tick_nohz_lowres_handler(struct clock_event_device *dev)
1487 {
1488 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1489
1490 dev->next_event = KTIME_MAX;
1491
1492 if (likely(tick_nohz_handler(&ts->sched_timer) == HRTIMER_RESTART))
1493 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1494 }
1495
tick_nohz_activate(struct tick_sched * ts)1496 static inline void tick_nohz_activate(struct tick_sched *ts)
1497 {
1498 if (!tick_nohz_enabled)
1499 return;
1500 tick_sched_flag_set(ts, TS_FLAG_NOHZ);
1501 /* One update is enough */
1502 if (!test_and_set_bit(0, &tick_nohz_active))
1503 timers_update_nohz();
1504 }
1505
1506 /**
1507 * tick_nohz_switch_to_nohz - switch to NOHZ mode
1508 */
tick_nohz_switch_to_nohz(void)1509 static void tick_nohz_switch_to_nohz(void)
1510 {
1511 if (!tick_nohz_enabled)
1512 return;
1513
1514 if (tick_switch_to_oneshot(tick_nohz_lowres_handler))
1515 return;
1516
1517 /*
1518 * Recycle the hrtimer in 'ts', so we can share the
1519 * highres code.
1520 */
1521 tick_setup_sched_timer(false);
1522 }
1523
tick_nohz_irq_enter(void)1524 static inline void tick_nohz_irq_enter(void)
1525 {
1526 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1527 ktime_t now;
1528
1529 if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED | TS_FLAG_IDLE_ACTIVE))
1530 return;
1531 now = ktime_get();
1532 if (tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE))
1533 tick_nohz_stop_idle(ts, now);
1534 /*
1535 * If all CPUs are idle we may need to update a stale jiffies value.
1536 * Note nohz_full is a special case: a timekeeper is guaranteed to stay
1537 * alive but it might be busy looping with interrupts disabled in some
1538 * rare case (typically stop machine). So we must make sure we have a
1539 * last resort.
1540 */
1541 if (tick_sched_flag_test(ts, TS_FLAG_STOPPED))
1542 tick_nohz_update_jiffies(now);
1543 }
1544
1545 #else
1546
tick_nohz_switch_to_nohz(void)1547 static inline void tick_nohz_switch_to_nohz(void) { }
tick_nohz_irq_enter(void)1548 static inline void tick_nohz_irq_enter(void) { }
tick_nohz_activate(struct tick_sched * ts)1549 static inline void tick_nohz_activate(struct tick_sched *ts) { }
1550
1551 #endif /* CONFIG_NO_HZ_COMMON */
1552
1553 /*
1554 * Called from irq_enter() to notify about the possible interruption of idle()
1555 */
tick_irq_enter(void)1556 void tick_irq_enter(void)
1557 {
1558 tick_check_oneshot_broadcast_this_cpu();
1559 tick_nohz_irq_enter();
1560 }
1561
1562 static int sched_skew_tick;
1563
skew_tick(char * str)1564 static int __init skew_tick(char *str)
1565 {
1566 get_option(&str, &sched_skew_tick);
1567
1568 return 0;
1569 }
1570 early_param("skew_tick", skew_tick);
1571
1572 /**
1573 * tick_setup_sched_timer - setup the tick emulation timer
1574 * @hrtimer: whether to use the hrtimer or not
1575 */
tick_setup_sched_timer(bool hrtimer)1576 void tick_setup_sched_timer(bool hrtimer)
1577 {
1578 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1579
1580 /* Emulate tick processing via per-CPU hrtimers: */
1581 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1582
1583 if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && hrtimer) {
1584 tick_sched_flag_set(ts, TS_FLAG_HIGHRES);
1585 ts->sched_timer.function = tick_nohz_handler;
1586 }
1587
1588 /* Get the next period (per-CPU) */
1589 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1590
1591 /* Offset the tick to avert 'jiffies_lock' contention. */
1592 if (sched_skew_tick) {
1593 u64 offset = TICK_NSEC >> 1;
1594 do_div(offset, num_possible_cpus());
1595 offset *= smp_processor_id();
1596 hrtimer_add_expires_ns(&ts->sched_timer, offset);
1597 }
1598
1599 hrtimer_forward_now(&ts->sched_timer, TICK_NSEC);
1600 if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && hrtimer)
1601 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1602 else
1603 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1604 tick_nohz_activate(ts);
1605 }
1606
1607 /*
1608 * Shut down the tick and make sure the CPU won't try to retake the timekeeping
1609 * duty before disabling IRQs in idle for the last time.
1610 */
tick_sched_timer_dying(int cpu)1611 void tick_sched_timer_dying(int cpu)
1612 {
1613 struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
1614 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1615 struct clock_event_device *dev = td->evtdev;
1616 ktime_t idle_sleeptime, iowait_sleeptime;
1617 unsigned long idle_calls, idle_sleeps;
1618
1619 /* This must happen before hrtimers are migrated! */
1620 tick_sched_timer_cancel(ts);
1621
1622 /*
1623 * If the clockevents doesn't support CLOCK_EVT_STATE_ONESHOT_STOPPED,
1624 * make sure not to call low-res tick handler.
1625 */
1626 if (tick_sched_flag_test(ts, TS_FLAG_NOHZ))
1627 dev->event_handler = clockevents_handle_noop;
1628
1629 idle_sleeptime = ts->idle_sleeptime;
1630 iowait_sleeptime = ts->iowait_sleeptime;
1631 idle_calls = ts->idle_calls;
1632 idle_sleeps = ts->idle_sleeps;
1633 memset(ts, 0, sizeof(*ts));
1634 ts->idle_sleeptime = idle_sleeptime;
1635 ts->iowait_sleeptime = iowait_sleeptime;
1636 ts->idle_calls = idle_calls;
1637 ts->idle_sleeps = idle_sleeps;
1638 }
1639
1640 /*
1641 * Async notification about clocksource changes
1642 */
tick_clock_notify(void)1643 void tick_clock_notify(void)
1644 {
1645 int cpu;
1646
1647 for_each_possible_cpu(cpu)
1648 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1649 }
1650
1651 /*
1652 * Async notification about clock event changes
1653 */
tick_oneshot_notify(void)1654 void tick_oneshot_notify(void)
1655 {
1656 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1657
1658 set_bit(0, &ts->check_clocks);
1659 }
1660
1661 /*
1662 * Check if a change happened, which makes oneshot possible.
1663 *
1664 * Called cyclically from the hrtimer softirq (driven by the timer
1665 * softirq). 'allow_nohz' signals that we can switch into low-res NOHZ
1666 * mode, because high resolution timers are disabled (either compile
1667 * or runtime). Called with interrupts disabled.
1668 */
tick_check_oneshot_change(int allow_nohz)1669 int tick_check_oneshot_change(int allow_nohz)
1670 {
1671 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1672
1673 if (!test_and_clear_bit(0, &ts->check_clocks))
1674 return 0;
1675
1676 if (tick_sched_flag_test(ts, TS_FLAG_NOHZ))
1677 return 0;
1678
1679 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1680 return 0;
1681
1682 if (!allow_nohz)
1683 return 1;
1684
1685 tick_nohz_switch_to_nohz();
1686 return 0;
1687 }
1688