1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * drivers/of/property.c - Procedures for accessing and interpreting
4 * Devicetree properties and graphs.
5 *
6 * Initially created by copying procedures from drivers/of/base.c. This
7 * file contains the OF property as well as the OF graph interface
8 * functions.
9 *
10 * Paul Mackerras August 1996.
11 * Copyright (C) 1996-2005 Paul Mackerras.
12 *
13 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
14 * {engebret|bergner}@us.ibm.com
15 *
16 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
17 *
18 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
19 * Grant Likely.
20 */
21
22 #define pr_fmt(fmt) "OF: " fmt
23
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_device.h>
27 #include <linux/of_graph.h>
28 #include <linux/of_irq.h>
29 #include <linux/string.h>
30 #include <linux/moduleparam.h>
31
32 #include "of_private.h"
33
34 /**
35 * of_property_read_bool - Find a property
36 * @np: device node from which the property value is to be read.
37 * @propname: name of the property to be searched.
38 *
39 * Search for a boolean property in a device node. Usage on non-boolean
40 * property types is deprecated.
41 *
42 * Return: true if the property exists false otherwise.
43 */
of_property_read_bool(const struct device_node * np,const char * propname)44 bool of_property_read_bool(const struct device_node *np, const char *propname)
45 {
46 struct property *prop = of_find_property(np, propname, NULL);
47
48 /*
49 * Boolean properties should not have a value. Testing for property
50 * presence should either use of_property_present() or just read the
51 * property value and check the returned error code.
52 */
53 if (prop && prop->length)
54 pr_warn("%pOF: Read of boolean property '%s' with a value.\n", np, propname);
55
56 return prop ? true : false;
57 }
58 EXPORT_SYMBOL(of_property_read_bool);
59
60 /**
61 * of_graph_is_present() - check graph's presence
62 * @node: pointer to device_node containing graph port
63 *
64 * Return: True if @node has a port or ports (with a port) sub-node,
65 * false otherwise.
66 */
of_graph_is_present(const struct device_node * node)67 bool of_graph_is_present(const struct device_node *node)
68 {
69 struct device_node *ports __free(device_node) = of_get_child_by_name(node, "ports");
70
71 if (ports)
72 node = ports;
73
74 struct device_node *port __free(device_node) = of_get_child_by_name(node, "port");
75
76 return !!port;
77 }
78 EXPORT_SYMBOL(of_graph_is_present);
79
80 /**
81 * of_property_count_elems_of_size - Count the number of elements in a property
82 *
83 * @np: device node from which the property value is to be read.
84 * @propname: name of the property to be searched.
85 * @elem_size: size of the individual element
86 *
87 * Search for a property in a device node and count the number of elements of
88 * size elem_size in it.
89 *
90 * Return: The number of elements on sucess, -EINVAL if the property does not
91 * exist or its length does not match a multiple of elem_size and -ENODATA if
92 * the property does not have a value.
93 */
of_property_count_elems_of_size(const struct device_node * np,const char * propname,int elem_size)94 int of_property_count_elems_of_size(const struct device_node *np,
95 const char *propname, int elem_size)
96 {
97 const struct property *prop = of_find_property(np, propname, NULL);
98
99 if (!prop)
100 return -EINVAL;
101 if (!prop->value)
102 return -ENODATA;
103
104 if (prop->length % elem_size != 0) {
105 pr_err("size of %s in node %pOF is not a multiple of %d\n",
106 propname, np, elem_size);
107 return -EINVAL;
108 }
109
110 return prop->length / elem_size;
111 }
112 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
113
114 /**
115 * of_find_property_value_of_size
116 *
117 * @np: device node from which the property value is to be read.
118 * @propname: name of the property to be searched.
119 * @min: minimum allowed length of property value
120 * @max: maximum allowed length of property value (0 means unlimited)
121 * @len: if !=NULL, actual length is written to here
122 *
123 * Search for a property in a device node and valid the requested size.
124 *
125 * Return: The property value on success, -EINVAL if the property does not
126 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
127 * property data is too small or too large.
128 *
129 */
of_find_property_value_of_size(const struct device_node * np,const char * propname,u32 min,u32 max,size_t * len)130 static void *of_find_property_value_of_size(const struct device_node *np,
131 const char *propname, u32 min, u32 max, size_t *len)
132 {
133 const struct property *prop = of_find_property(np, propname, NULL);
134
135 if (!prop)
136 return ERR_PTR(-EINVAL);
137 if (!prop->value)
138 return ERR_PTR(-ENODATA);
139 if (prop->length < min)
140 return ERR_PTR(-EOVERFLOW);
141 if (max && prop->length > max)
142 return ERR_PTR(-EOVERFLOW);
143
144 if (len)
145 *len = prop->length;
146
147 return prop->value;
148 }
149
150 /**
151 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
152 *
153 * @np: device node from which the property value is to be read.
154 * @propname: name of the property to be searched.
155 * @index: index of the u32 in the list of values
156 * @out_value: pointer to return value, modified only if no error.
157 *
158 * Search for a property in a device node and read nth 32-bit value from
159 * it.
160 *
161 * Return: 0 on success, -EINVAL if the property does not exist,
162 * -ENODATA if property does not have a value, and -EOVERFLOW if the
163 * property data isn't large enough.
164 *
165 * The out_value is modified only if a valid u32 value can be decoded.
166 */
of_property_read_u32_index(const struct device_node * np,const char * propname,u32 index,u32 * out_value)167 int of_property_read_u32_index(const struct device_node *np,
168 const char *propname,
169 u32 index, u32 *out_value)
170 {
171 const u32 *val = of_find_property_value_of_size(np, propname,
172 ((index + 1) * sizeof(*out_value)),
173 0,
174 NULL);
175
176 if (IS_ERR(val))
177 return PTR_ERR(val);
178
179 *out_value = be32_to_cpup(((__be32 *)val) + index);
180 return 0;
181 }
182 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
183
184 /**
185 * of_property_read_u64_index - Find and read a u64 from a multi-value property.
186 *
187 * @np: device node from which the property value is to be read.
188 * @propname: name of the property to be searched.
189 * @index: index of the u64 in the list of values
190 * @out_value: pointer to return value, modified only if no error.
191 *
192 * Search for a property in a device node and read nth 64-bit value from
193 * it.
194 *
195 * Return: 0 on success, -EINVAL if the property does not exist,
196 * -ENODATA if property does not have a value, and -EOVERFLOW if the
197 * property data isn't large enough.
198 *
199 * The out_value is modified only if a valid u64 value can be decoded.
200 */
of_property_read_u64_index(const struct device_node * np,const char * propname,u32 index,u64 * out_value)201 int of_property_read_u64_index(const struct device_node *np,
202 const char *propname,
203 u32 index, u64 *out_value)
204 {
205 const u64 *val = of_find_property_value_of_size(np, propname,
206 ((index + 1) * sizeof(*out_value)),
207 0, NULL);
208
209 if (IS_ERR(val))
210 return PTR_ERR(val);
211
212 *out_value = be64_to_cpup(((__be64 *)val) + index);
213 return 0;
214 }
215 EXPORT_SYMBOL_GPL(of_property_read_u64_index);
216
217 /**
218 * of_property_read_variable_u8_array - Find and read an array of u8 from a
219 * property, with bounds on the minimum and maximum array size.
220 *
221 * @np: device node from which the property value is to be read.
222 * @propname: name of the property to be searched.
223 * @out_values: pointer to found values.
224 * @sz_min: minimum number of array elements to read
225 * @sz_max: maximum number of array elements to read, if zero there is no
226 * upper limit on the number of elements in the dts entry but only
227 * sz_min will be read.
228 *
229 * Search for a property in a device node and read 8-bit value(s) from
230 * it.
231 *
232 * dts entry of array should be like:
233 * ``property = /bits/ 8 <0x50 0x60 0x70>;``
234 *
235 * Return: The number of elements read on success, -EINVAL if the property
236 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
237 * if the property data is smaller than sz_min or longer than sz_max.
238 *
239 * The out_values is modified only if a valid u8 value can be decoded.
240 */
of_property_read_variable_u8_array(const struct device_node * np,const char * propname,u8 * out_values,size_t sz_min,size_t sz_max)241 int of_property_read_variable_u8_array(const struct device_node *np,
242 const char *propname, u8 *out_values,
243 size_t sz_min, size_t sz_max)
244 {
245 size_t sz, count;
246 const u8 *val = of_find_property_value_of_size(np, propname,
247 (sz_min * sizeof(*out_values)),
248 (sz_max * sizeof(*out_values)),
249 &sz);
250
251 if (IS_ERR(val))
252 return PTR_ERR(val);
253
254 if (!sz_max)
255 sz = sz_min;
256 else
257 sz /= sizeof(*out_values);
258
259 count = sz;
260 while (count--)
261 *out_values++ = *val++;
262
263 return sz;
264 }
265 EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array);
266
267 /**
268 * of_property_read_variable_u16_array - Find and read an array of u16 from a
269 * property, with bounds on the minimum and maximum array size.
270 *
271 * @np: device node from which the property value is to be read.
272 * @propname: name of the property to be searched.
273 * @out_values: pointer to found values.
274 * @sz_min: minimum number of array elements to read
275 * @sz_max: maximum number of array elements to read, if zero there is no
276 * upper limit on the number of elements in the dts entry but only
277 * sz_min will be read.
278 *
279 * Search for a property in a device node and read 16-bit value(s) from
280 * it.
281 *
282 * dts entry of array should be like:
283 * ``property = /bits/ 16 <0x5000 0x6000 0x7000>;``
284 *
285 * Return: The number of elements read on success, -EINVAL if the property
286 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
287 * if the property data is smaller than sz_min or longer than sz_max.
288 *
289 * The out_values is modified only if a valid u16 value can be decoded.
290 */
of_property_read_variable_u16_array(const struct device_node * np,const char * propname,u16 * out_values,size_t sz_min,size_t sz_max)291 int of_property_read_variable_u16_array(const struct device_node *np,
292 const char *propname, u16 *out_values,
293 size_t sz_min, size_t sz_max)
294 {
295 size_t sz, count;
296 const __be16 *val = of_find_property_value_of_size(np, propname,
297 (sz_min * sizeof(*out_values)),
298 (sz_max * sizeof(*out_values)),
299 &sz);
300
301 if (IS_ERR(val))
302 return PTR_ERR(val);
303
304 if (!sz_max)
305 sz = sz_min;
306 else
307 sz /= sizeof(*out_values);
308
309 count = sz;
310 while (count--)
311 *out_values++ = be16_to_cpup(val++);
312
313 return sz;
314 }
315 EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array);
316
317 /**
318 * of_property_read_variable_u32_array - Find and read an array of 32 bit
319 * integers from a property, with bounds on the minimum and maximum array size.
320 *
321 * @np: device node from which the property value is to be read.
322 * @propname: name of the property to be searched.
323 * @out_values: pointer to return found values.
324 * @sz_min: minimum number of array elements to read
325 * @sz_max: maximum number of array elements to read, if zero there is no
326 * upper limit on the number of elements in the dts entry but only
327 * sz_min will be read.
328 *
329 * Search for a property in a device node and read 32-bit value(s) from
330 * it.
331 *
332 * Return: The number of elements read on success, -EINVAL if the property
333 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
334 * if the property data is smaller than sz_min or longer than sz_max.
335 *
336 * The out_values is modified only if a valid u32 value can be decoded.
337 */
of_property_read_variable_u32_array(const struct device_node * np,const char * propname,u32 * out_values,size_t sz_min,size_t sz_max)338 int of_property_read_variable_u32_array(const struct device_node *np,
339 const char *propname, u32 *out_values,
340 size_t sz_min, size_t sz_max)
341 {
342 size_t sz, count;
343 const __be32 *val = of_find_property_value_of_size(np, propname,
344 (sz_min * sizeof(*out_values)),
345 (sz_max * sizeof(*out_values)),
346 &sz);
347
348 if (IS_ERR(val))
349 return PTR_ERR(val);
350
351 if (!sz_max)
352 sz = sz_min;
353 else
354 sz /= sizeof(*out_values);
355
356 count = sz;
357 while (count--)
358 *out_values++ = be32_to_cpup(val++);
359
360 return sz;
361 }
362 EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array);
363
364 /**
365 * of_property_read_u64 - Find and read a 64 bit integer from a property
366 * @np: device node from which the property value is to be read.
367 * @propname: name of the property to be searched.
368 * @out_value: pointer to return value, modified only if return value is 0.
369 *
370 * Search for a property in a device node and read a 64-bit value from
371 * it.
372 *
373 * Return: 0 on success, -EINVAL if the property does not exist,
374 * -ENODATA if property does not have a value, and -EOVERFLOW if the
375 * property data isn't large enough.
376 *
377 * The out_value is modified only if a valid u64 value can be decoded.
378 */
of_property_read_u64(const struct device_node * np,const char * propname,u64 * out_value)379 int of_property_read_u64(const struct device_node *np, const char *propname,
380 u64 *out_value)
381 {
382 const __be32 *val = of_find_property_value_of_size(np, propname,
383 sizeof(*out_value),
384 0,
385 NULL);
386
387 if (IS_ERR(val))
388 return PTR_ERR(val);
389
390 *out_value = of_read_number(val, 2);
391 return 0;
392 }
393 EXPORT_SYMBOL_GPL(of_property_read_u64);
394
395 /**
396 * of_property_read_variable_u64_array - Find and read an array of 64 bit
397 * integers from a property, with bounds on the minimum and maximum array size.
398 *
399 * @np: device node from which the property value is to be read.
400 * @propname: name of the property to be searched.
401 * @out_values: pointer to found values.
402 * @sz_min: minimum number of array elements to read
403 * @sz_max: maximum number of array elements to read, if zero there is no
404 * upper limit on the number of elements in the dts entry but only
405 * sz_min will be read.
406 *
407 * Search for a property in a device node and read 64-bit value(s) from
408 * it.
409 *
410 * Return: The number of elements read on success, -EINVAL if the property
411 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
412 * if the property data is smaller than sz_min or longer than sz_max.
413 *
414 * The out_values is modified only if a valid u64 value can be decoded.
415 */
of_property_read_variable_u64_array(const struct device_node * np,const char * propname,u64 * out_values,size_t sz_min,size_t sz_max)416 int of_property_read_variable_u64_array(const struct device_node *np,
417 const char *propname, u64 *out_values,
418 size_t sz_min, size_t sz_max)
419 {
420 size_t sz, count;
421 const __be32 *val = of_find_property_value_of_size(np, propname,
422 (sz_min * sizeof(*out_values)),
423 (sz_max * sizeof(*out_values)),
424 &sz);
425
426 if (IS_ERR(val))
427 return PTR_ERR(val);
428
429 if (!sz_max)
430 sz = sz_min;
431 else
432 sz /= sizeof(*out_values);
433
434 count = sz;
435 while (count--) {
436 *out_values++ = of_read_number(val, 2);
437 val += 2;
438 }
439
440 return sz;
441 }
442 EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array);
443
444 /**
445 * of_property_read_string - Find and read a string from a property
446 * @np: device node from which the property value is to be read.
447 * @propname: name of the property to be searched.
448 * @out_string: pointer to null terminated return string, modified only if
449 * return value is 0.
450 *
451 * Search for a property in a device tree node and retrieve a null
452 * terminated string value (pointer to data, not a copy).
453 *
454 * Return: 0 on success, -EINVAL if the property does not exist, -ENODATA if
455 * property does not have a value, and -EILSEQ if the string is not
456 * null-terminated within the length of the property data.
457 *
458 * Note that the empty string "" has length of 1, thus -ENODATA cannot
459 * be interpreted as an empty string.
460 *
461 * The out_string pointer is modified only if a valid string can be decoded.
462 */
of_property_read_string(const struct device_node * np,const char * propname,const char ** out_string)463 int of_property_read_string(const struct device_node *np, const char *propname,
464 const char **out_string)
465 {
466 const struct property *prop = of_find_property(np, propname, NULL);
467
468 if (!prop)
469 return -EINVAL;
470 if (!prop->length)
471 return -ENODATA;
472 if (strnlen(prop->value, prop->length) >= prop->length)
473 return -EILSEQ;
474 *out_string = prop->value;
475 return 0;
476 }
477 EXPORT_SYMBOL_GPL(of_property_read_string);
478
479 /**
480 * of_property_match_string() - Find string in a list and return index
481 * @np: pointer to the node containing the string list property
482 * @propname: string list property name
483 * @string: pointer to the string to search for in the string list
484 *
485 * Search for an exact match of string in a device node property which is a
486 * string of lists.
487 *
488 * Return: the index of the first occurrence of the string on success, -EINVAL
489 * if the property does not exist, -ENODATA if the property does not have a
490 * value, and -EILSEQ if the string is not null-terminated within the length of
491 * the property data.
492 */
of_property_match_string(const struct device_node * np,const char * propname,const char * string)493 int of_property_match_string(const struct device_node *np, const char *propname,
494 const char *string)
495 {
496 const struct property *prop = of_find_property(np, propname, NULL);
497 size_t l;
498 int i;
499 const char *p, *end;
500
501 if (!prop)
502 return -EINVAL;
503 if (!prop->value)
504 return -ENODATA;
505
506 p = prop->value;
507 end = p + prop->length;
508
509 for (i = 0; p < end; i++, p += l) {
510 l = strnlen(p, end - p) + 1;
511 if (p + l > end)
512 return -EILSEQ;
513 pr_debug("comparing %s with %s\n", string, p);
514 if (strcmp(string, p) == 0)
515 return i; /* Found it; return index */
516 }
517 return -ENODATA;
518 }
519 EXPORT_SYMBOL_GPL(of_property_match_string);
520
521 /**
522 * of_property_read_string_helper() - Utility helper for parsing string properties
523 * @np: device node from which the property value is to be read.
524 * @propname: name of the property to be searched.
525 * @out_strs: output array of string pointers.
526 * @sz: number of array elements to read.
527 * @skip: Number of strings to skip over at beginning of list.
528 *
529 * Don't call this function directly. It is a utility helper for the
530 * of_property_read_string*() family of functions.
531 */
of_property_read_string_helper(const struct device_node * np,const char * propname,const char ** out_strs,size_t sz,int skip)532 int of_property_read_string_helper(const struct device_node *np,
533 const char *propname, const char **out_strs,
534 size_t sz, int skip)
535 {
536 const struct property *prop = of_find_property(np, propname, NULL);
537 int l = 0, i = 0;
538 const char *p, *end;
539
540 if (!prop)
541 return -EINVAL;
542 if (!prop->value)
543 return -ENODATA;
544 p = prop->value;
545 end = p + prop->length;
546
547 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
548 l = strnlen(p, end - p) + 1;
549 if (p + l > end)
550 return -EILSEQ;
551 if (out_strs && i >= skip)
552 *out_strs++ = p;
553 }
554 i -= skip;
555 return i <= 0 ? -ENODATA : i;
556 }
557 EXPORT_SYMBOL_GPL(of_property_read_string_helper);
558
of_prop_next_u32(const struct property * prop,const __be32 * cur,u32 * pu)559 const __be32 *of_prop_next_u32(const struct property *prop, const __be32 *cur,
560 u32 *pu)
561 {
562 const void *curv = cur;
563
564 if (!prop)
565 return NULL;
566
567 if (!cur) {
568 curv = prop->value;
569 goto out_val;
570 }
571
572 curv += sizeof(*cur);
573 if (curv >= prop->value + prop->length)
574 return NULL;
575
576 out_val:
577 *pu = be32_to_cpup(curv);
578 return curv;
579 }
580 EXPORT_SYMBOL_GPL(of_prop_next_u32);
581
of_prop_next_string(const struct property * prop,const char * cur)582 const char *of_prop_next_string(const struct property *prop, const char *cur)
583 {
584 const void *curv = cur;
585
586 if (!prop)
587 return NULL;
588
589 if (!cur)
590 return prop->value;
591
592 curv += strlen(cur) + 1;
593 if (curv >= prop->value + prop->length)
594 return NULL;
595
596 return curv;
597 }
598 EXPORT_SYMBOL_GPL(of_prop_next_string);
599
600 /**
601 * of_graph_parse_endpoint() - parse common endpoint node properties
602 * @node: pointer to endpoint device_node
603 * @endpoint: pointer to the OF endpoint data structure
604 *
605 * The caller should hold a reference to @node.
606 */
of_graph_parse_endpoint(const struct device_node * node,struct of_endpoint * endpoint)607 int of_graph_parse_endpoint(const struct device_node *node,
608 struct of_endpoint *endpoint)
609 {
610 struct device_node *port_node __free(device_node) =
611 of_get_parent(node);
612
613 WARN_ONCE(!port_node, "%s(): endpoint %pOF has no parent node\n",
614 __func__, node);
615
616 memset(endpoint, 0, sizeof(*endpoint));
617
618 endpoint->local_node = node;
619 /*
620 * It doesn't matter whether the two calls below succeed.
621 * If they don't then the default value 0 is used.
622 */
623 of_property_read_u32(port_node, "reg", &endpoint->port);
624 of_property_read_u32(node, "reg", &endpoint->id);
625
626 return 0;
627 }
628 EXPORT_SYMBOL(of_graph_parse_endpoint);
629
630 /**
631 * of_graph_get_port_by_id() - get the port matching a given id
632 * @parent: pointer to the parent device node
633 * @id: id of the port
634 *
635 * Return: A 'port' node pointer with refcount incremented. The caller
636 * has to use of_node_put() on it when done.
637 */
of_graph_get_port_by_id(struct device_node * parent,u32 id)638 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
639 {
640 struct device_node *node __free(device_node) = of_get_child_by_name(parent, "ports");
641
642 if (node)
643 parent = node;
644
645 for_each_child_of_node_scoped(parent, port) {
646 u32 port_id = 0;
647
648 if (!of_node_name_eq(port, "port"))
649 continue;
650 of_property_read_u32(port, "reg", &port_id);
651 if (id == port_id)
652 return_ptr(port);
653 }
654
655 return NULL;
656 }
657 EXPORT_SYMBOL(of_graph_get_port_by_id);
658
659 /**
660 * of_graph_get_next_port() - get next port node.
661 * @parent: pointer to the parent device node, or parent ports node
662 * @prev: previous port node, or NULL to get first
663 *
664 * Parent device node can be used as @parent whether device node has ports node
665 * or not. It will work same as ports@0 node.
666 *
667 * Return: A 'port' node pointer with refcount incremented. Refcount
668 * of the passed @prev node is decremented.
669 */
of_graph_get_next_port(const struct device_node * parent,struct device_node * prev)670 struct device_node *of_graph_get_next_port(const struct device_node *parent,
671 struct device_node *prev)
672 {
673 if (!parent)
674 return NULL;
675
676 if (!prev) {
677 struct device_node *node __free(device_node) =
678 of_get_child_by_name(parent, "ports");
679
680 if (node)
681 parent = node;
682
683 return of_get_child_by_name(parent, "port");
684 }
685
686 do {
687 prev = of_get_next_child(parent, prev);
688 if (!prev)
689 break;
690 } while (!of_node_name_eq(prev, "port"));
691
692 return prev;
693 }
694 EXPORT_SYMBOL(of_graph_get_next_port);
695
696 /**
697 * of_graph_get_next_port_endpoint() - get next endpoint node in port.
698 * If it reached to end of the port, it will return NULL.
699 * @port: pointer to the target port node
700 * @prev: previous endpoint node, or NULL to get first
701 *
702 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
703 * of the passed @prev node is decremented.
704 */
of_graph_get_next_port_endpoint(const struct device_node * port,struct device_node * prev)705 struct device_node *of_graph_get_next_port_endpoint(const struct device_node *port,
706 struct device_node *prev)
707 {
708 while (1) {
709 prev = of_get_next_child(port, prev);
710 if (!prev)
711 break;
712 if (WARN(!of_node_name_eq(prev, "endpoint"),
713 "non endpoint node is used (%pOF)", prev))
714 continue;
715
716 break;
717 }
718
719 return prev;
720 }
721 EXPORT_SYMBOL(of_graph_get_next_port_endpoint);
722
723 /**
724 * of_graph_get_next_endpoint() - get next endpoint node
725 * @parent: pointer to the parent device node
726 * @prev: previous endpoint node, or NULL to get first
727 *
728 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
729 * of the passed @prev node is decremented.
730 */
of_graph_get_next_endpoint(const struct device_node * parent,struct device_node * prev)731 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
732 struct device_node *prev)
733 {
734 struct device_node *endpoint;
735 struct device_node *port;
736
737 if (!parent)
738 return NULL;
739
740 /*
741 * Start by locating the port node. If no previous endpoint is specified
742 * search for the first port node, otherwise get the previous endpoint
743 * parent port node.
744 */
745 if (!prev) {
746 port = of_graph_get_next_port(parent, NULL);
747 if (!port) {
748 pr_debug("graph: no port node found in %pOF\n", parent);
749 return NULL;
750 }
751 } else {
752 port = of_get_parent(prev);
753 if (WARN_ONCE(!port, "%s(): endpoint %pOF has no parent node\n",
754 __func__, prev))
755 return NULL;
756 }
757
758 while (1) {
759 /*
760 * Now that we have a port node, get the next endpoint by
761 * getting the next child. If the previous endpoint is NULL this
762 * will return the first child.
763 */
764 endpoint = of_graph_get_next_port_endpoint(port, prev);
765 if (endpoint) {
766 of_node_put(port);
767 return endpoint;
768 }
769
770 /* No more endpoints under this port, try the next one. */
771 prev = NULL;
772
773 port = of_graph_get_next_port(parent, port);
774 if (!port)
775 return NULL;
776 }
777 }
778 EXPORT_SYMBOL(of_graph_get_next_endpoint);
779
780 /**
781 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
782 * @parent: pointer to the parent device node
783 * @port_reg: identifier (value of reg property) of the parent port node
784 * @reg: identifier (value of reg property) of the endpoint node
785 *
786 * Return: An 'endpoint' node pointer which is identified by reg and at the same
787 * is the child of a port node identified by port_reg. reg and port_reg are
788 * ignored when they are -1. Use of_node_put() on the pointer when done.
789 */
of_graph_get_endpoint_by_regs(const struct device_node * parent,int port_reg,int reg)790 struct device_node *of_graph_get_endpoint_by_regs(
791 const struct device_node *parent, int port_reg, int reg)
792 {
793 struct of_endpoint endpoint;
794 struct device_node *node = NULL;
795
796 for_each_endpoint_of_node(parent, node) {
797 of_graph_parse_endpoint(node, &endpoint);
798 if (((port_reg == -1) || (endpoint.port == port_reg)) &&
799 ((reg == -1) || (endpoint.id == reg)))
800 return node;
801 }
802
803 return NULL;
804 }
805 EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
806
807 /**
808 * of_graph_get_remote_endpoint() - get remote endpoint node
809 * @node: pointer to a local endpoint device_node
810 *
811 * Return: Remote endpoint node associated with remote endpoint node linked
812 * to @node. Use of_node_put() on it when done.
813 */
of_graph_get_remote_endpoint(const struct device_node * node)814 struct device_node *of_graph_get_remote_endpoint(const struct device_node *node)
815 {
816 /* Get remote endpoint node. */
817 return of_parse_phandle(node, "remote-endpoint", 0);
818 }
819 EXPORT_SYMBOL(of_graph_get_remote_endpoint);
820
821 /**
822 * of_graph_get_port_parent() - get port's parent node
823 * @node: pointer to a local endpoint device_node
824 *
825 * Return: device node associated with endpoint node linked
826 * to @node. Use of_node_put() on it when done.
827 */
of_graph_get_port_parent(struct device_node * node)828 struct device_node *of_graph_get_port_parent(struct device_node *node)
829 {
830 unsigned int depth;
831
832 if (!node)
833 return NULL;
834
835 /*
836 * Preserve usecount for passed in node as of_get_next_parent()
837 * will do of_node_put() on it.
838 */
839 of_node_get(node);
840
841 /* Walk 3 levels up only if there is 'ports' node. */
842 for (depth = 3; depth && node; depth--) {
843 node = of_get_next_parent(node);
844 if (depth == 2 && !of_node_name_eq(node, "ports") &&
845 !of_node_name_eq(node, "in-ports") &&
846 !of_node_name_eq(node, "out-ports"))
847 break;
848 }
849 return node;
850 }
851 EXPORT_SYMBOL(of_graph_get_port_parent);
852
853 /**
854 * of_graph_get_remote_port_parent() - get remote port's parent node
855 * @node: pointer to a local endpoint device_node
856 *
857 * Return: Remote device node associated with remote endpoint node linked
858 * to @node. Use of_node_put() on it when done.
859 */
of_graph_get_remote_port_parent(const struct device_node * node)860 struct device_node *of_graph_get_remote_port_parent(
861 const struct device_node *node)
862 {
863 /* Get remote endpoint node. */
864 struct device_node *np __free(device_node) =
865 of_graph_get_remote_endpoint(node);
866
867 return of_graph_get_port_parent(np);
868 }
869 EXPORT_SYMBOL(of_graph_get_remote_port_parent);
870
871 /**
872 * of_graph_get_remote_port() - get remote port node
873 * @node: pointer to a local endpoint device_node
874 *
875 * Return: Remote port node associated with remote endpoint node linked
876 * to @node. Use of_node_put() on it when done.
877 */
of_graph_get_remote_port(const struct device_node * node)878 struct device_node *of_graph_get_remote_port(const struct device_node *node)
879 {
880 struct device_node *np;
881
882 /* Get remote endpoint node. */
883 np = of_graph_get_remote_endpoint(node);
884 if (!np)
885 return NULL;
886 return of_get_next_parent(np);
887 }
888 EXPORT_SYMBOL(of_graph_get_remote_port);
889
890 /**
891 * of_graph_get_endpoint_count() - get the number of endpoints in a device node
892 * @np: parent device node containing ports and endpoints
893 *
894 * Return: count of endpoint of this device node
895 */
of_graph_get_endpoint_count(const struct device_node * np)896 unsigned int of_graph_get_endpoint_count(const struct device_node *np)
897 {
898 struct device_node *endpoint;
899 unsigned int num = 0;
900
901 for_each_endpoint_of_node(np, endpoint)
902 num++;
903
904 return num;
905 }
906 EXPORT_SYMBOL(of_graph_get_endpoint_count);
907
908 /**
909 * of_graph_get_port_count() - get the number of port in a device or ports node
910 * @np: pointer to the device or ports node
911 *
912 * Return: count of port of this device or ports node
913 */
of_graph_get_port_count(struct device_node * np)914 unsigned int of_graph_get_port_count(struct device_node *np)
915 {
916 unsigned int num = 0;
917
918 for_each_of_graph_port(np, port)
919 num++;
920
921 return num;
922 }
923 EXPORT_SYMBOL(of_graph_get_port_count);
924
925 /**
926 * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint
927 * @node: pointer to parent device_node containing graph port/endpoint
928 * @port: identifier (value of reg property) of the parent port node
929 * @endpoint: identifier (value of reg property) of the endpoint node
930 *
931 * Return: Remote device node associated with remote endpoint node linked
932 * to @node. Use of_node_put() on it when done.
933 */
of_graph_get_remote_node(const struct device_node * node,u32 port,u32 endpoint)934 struct device_node *of_graph_get_remote_node(const struct device_node *node,
935 u32 port, u32 endpoint)
936 {
937 struct device_node *endpoint_node, *remote;
938
939 endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint);
940 if (!endpoint_node) {
941 pr_debug("no valid endpoint (%d, %d) for node %pOF\n",
942 port, endpoint, node);
943 return NULL;
944 }
945
946 remote = of_graph_get_remote_port_parent(endpoint_node);
947 of_node_put(endpoint_node);
948 if (!remote) {
949 pr_debug("no valid remote node\n");
950 return NULL;
951 }
952
953 if (!of_device_is_available(remote)) {
954 pr_debug("not available for remote node\n");
955 of_node_put(remote);
956 return NULL;
957 }
958
959 return remote;
960 }
961 EXPORT_SYMBOL(of_graph_get_remote_node);
962
of_fwnode_get(struct fwnode_handle * fwnode)963 static struct fwnode_handle *of_fwnode_get(struct fwnode_handle *fwnode)
964 {
965 return of_fwnode_handle(of_node_get(to_of_node(fwnode)));
966 }
967
of_fwnode_put(struct fwnode_handle * fwnode)968 static void of_fwnode_put(struct fwnode_handle *fwnode)
969 {
970 of_node_put(to_of_node(fwnode));
971 }
972
of_fwnode_device_is_available(const struct fwnode_handle * fwnode)973 static bool of_fwnode_device_is_available(const struct fwnode_handle *fwnode)
974 {
975 return of_device_is_available(to_of_node(fwnode));
976 }
977
of_fwnode_device_dma_supported(const struct fwnode_handle * fwnode)978 static bool of_fwnode_device_dma_supported(const struct fwnode_handle *fwnode)
979 {
980 return true;
981 }
982
983 static enum dev_dma_attr
of_fwnode_device_get_dma_attr(const struct fwnode_handle * fwnode)984 of_fwnode_device_get_dma_attr(const struct fwnode_handle *fwnode)
985 {
986 if (of_dma_is_coherent(to_of_node(fwnode)))
987 return DEV_DMA_COHERENT;
988 else
989 return DEV_DMA_NON_COHERENT;
990 }
991
of_fwnode_property_present(const struct fwnode_handle * fwnode,const char * propname)992 static bool of_fwnode_property_present(const struct fwnode_handle *fwnode,
993 const char *propname)
994 {
995 return of_property_present(to_of_node(fwnode), propname);
996 }
997
of_fwnode_property_read_bool(const struct fwnode_handle * fwnode,const char * propname)998 static bool of_fwnode_property_read_bool(const struct fwnode_handle *fwnode,
999 const char *propname)
1000 {
1001 return of_property_read_bool(to_of_node(fwnode), propname);
1002 }
1003
of_fwnode_property_read_int_array(const struct fwnode_handle * fwnode,const char * propname,unsigned int elem_size,void * val,size_t nval)1004 static int of_fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
1005 const char *propname,
1006 unsigned int elem_size, void *val,
1007 size_t nval)
1008 {
1009 const struct device_node *node = to_of_node(fwnode);
1010
1011 if (!val)
1012 return of_property_count_elems_of_size(node, propname,
1013 elem_size);
1014
1015 switch (elem_size) {
1016 case sizeof(u8):
1017 return of_property_read_u8_array(node, propname, val, nval);
1018 case sizeof(u16):
1019 return of_property_read_u16_array(node, propname, val, nval);
1020 case sizeof(u32):
1021 return of_property_read_u32_array(node, propname, val, nval);
1022 case sizeof(u64):
1023 return of_property_read_u64_array(node, propname, val, nval);
1024 }
1025
1026 return -ENXIO;
1027 }
1028
1029 static int
of_fwnode_property_read_string_array(const struct fwnode_handle * fwnode,const char * propname,const char ** val,size_t nval)1030 of_fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
1031 const char *propname, const char **val,
1032 size_t nval)
1033 {
1034 const struct device_node *node = to_of_node(fwnode);
1035
1036 return val ?
1037 of_property_read_string_array(node, propname, val, nval) :
1038 of_property_count_strings(node, propname);
1039 }
1040
of_fwnode_get_name(const struct fwnode_handle * fwnode)1041 static const char *of_fwnode_get_name(const struct fwnode_handle *fwnode)
1042 {
1043 return kbasename(to_of_node(fwnode)->full_name);
1044 }
1045
of_fwnode_get_name_prefix(const struct fwnode_handle * fwnode)1046 static const char *of_fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
1047 {
1048 /* Root needs no prefix here (its name is "/"). */
1049 if (!to_of_node(fwnode)->parent)
1050 return "";
1051
1052 return "/";
1053 }
1054
1055 static struct fwnode_handle *
of_fwnode_get_parent(const struct fwnode_handle * fwnode)1056 of_fwnode_get_parent(const struct fwnode_handle *fwnode)
1057 {
1058 return of_fwnode_handle(of_get_parent(to_of_node(fwnode)));
1059 }
1060
1061 static struct fwnode_handle *
of_fwnode_get_next_child_node(const struct fwnode_handle * fwnode,struct fwnode_handle * child)1062 of_fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
1063 struct fwnode_handle *child)
1064 {
1065 return of_fwnode_handle(of_get_next_available_child(to_of_node(fwnode),
1066 to_of_node(child)));
1067 }
1068
1069 static struct fwnode_handle *
of_fwnode_get_named_child_node(const struct fwnode_handle * fwnode,const char * childname)1070 of_fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
1071 const char *childname)
1072 {
1073 const struct device_node *node = to_of_node(fwnode);
1074 struct device_node *child;
1075
1076 for_each_available_child_of_node(node, child)
1077 if (of_node_name_eq(child, childname))
1078 return of_fwnode_handle(child);
1079
1080 return NULL;
1081 }
1082
1083 static int
of_fwnode_get_reference_args(const struct fwnode_handle * fwnode,const char * prop,const char * nargs_prop,unsigned int nargs,unsigned int index,struct fwnode_reference_args * args)1084 of_fwnode_get_reference_args(const struct fwnode_handle *fwnode,
1085 const char *prop, const char *nargs_prop,
1086 unsigned int nargs, unsigned int index,
1087 struct fwnode_reference_args *args)
1088 {
1089 struct of_phandle_args of_args;
1090 unsigned int i;
1091 int ret;
1092
1093 if (nargs_prop)
1094 ret = of_parse_phandle_with_args(to_of_node(fwnode), prop,
1095 nargs_prop, index, &of_args);
1096 else
1097 ret = of_parse_phandle_with_fixed_args(to_of_node(fwnode), prop,
1098 nargs, index, &of_args);
1099 if (ret < 0)
1100 return ret;
1101 if (!args) {
1102 of_node_put(of_args.np);
1103 return 0;
1104 }
1105
1106 args->nargs = of_args.args_count;
1107 args->fwnode = of_fwnode_handle(of_args.np);
1108
1109 for (i = 0; i < NR_FWNODE_REFERENCE_ARGS; i++)
1110 args->args[i] = i < of_args.args_count ? of_args.args[i] : 0;
1111
1112 return 0;
1113 }
1114
1115 static struct fwnode_handle *
of_fwnode_graph_get_next_endpoint(const struct fwnode_handle * fwnode,struct fwnode_handle * prev)1116 of_fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1117 struct fwnode_handle *prev)
1118 {
1119 return of_fwnode_handle(of_graph_get_next_endpoint(to_of_node(fwnode),
1120 to_of_node(prev)));
1121 }
1122
1123 static struct fwnode_handle *
of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle * fwnode)1124 of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1125 {
1126 return of_fwnode_handle(
1127 of_graph_get_remote_endpoint(to_of_node(fwnode)));
1128 }
1129
1130 static struct fwnode_handle *
of_fwnode_graph_get_port_parent(struct fwnode_handle * fwnode)1131 of_fwnode_graph_get_port_parent(struct fwnode_handle *fwnode)
1132 {
1133 struct device_node *np;
1134
1135 /* Get the parent of the port */
1136 np = of_get_parent(to_of_node(fwnode));
1137 if (!np)
1138 return NULL;
1139
1140 /* Is this the "ports" node? If not, it's the port parent. */
1141 if (!of_node_name_eq(np, "ports"))
1142 return of_fwnode_handle(np);
1143
1144 return of_fwnode_handle(of_get_next_parent(np));
1145 }
1146
of_fwnode_graph_parse_endpoint(const struct fwnode_handle * fwnode,struct fwnode_endpoint * endpoint)1147 static int of_fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1148 struct fwnode_endpoint *endpoint)
1149 {
1150 const struct device_node *node = to_of_node(fwnode);
1151 struct device_node *port_node __free(device_node) = of_get_parent(node);
1152
1153 endpoint->local_fwnode = fwnode;
1154
1155 of_property_read_u32(port_node, "reg", &endpoint->port);
1156 of_property_read_u32(node, "reg", &endpoint->id);
1157
1158 return 0;
1159 }
1160
1161 static const void *
of_fwnode_device_get_match_data(const struct fwnode_handle * fwnode,const struct device * dev)1162 of_fwnode_device_get_match_data(const struct fwnode_handle *fwnode,
1163 const struct device *dev)
1164 {
1165 return of_device_get_match_data(dev);
1166 }
1167
of_link_to_phandle(struct device_node * con_np,struct device_node * sup_np,u8 flags)1168 static void of_link_to_phandle(struct device_node *con_np,
1169 struct device_node *sup_np,
1170 u8 flags)
1171 {
1172 struct device_node *tmp_np __free(device_node) = of_node_get(sup_np);
1173
1174 /* Check that sup_np and its ancestors are available. */
1175 while (tmp_np) {
1176 if (of_fwnode_handle(tmp_np)->dev)
1177 break;
1178
1179 if (!of_device_is_available(tmp_np))
1180 return;
1181
1182 tmp_np = of_get_next_parent(tmp_np);
1183 }
1184
1185 fwnode_link_add(of_fwnode_handle(con_np), of_fwnode_handle(sup_np), flags);
1186 }
1187
1188 /**
1189 * parse_prop_cells - Property parsing function for suppliers
1190 *
1191 * @np: Pointer to device tree node containing a list
1192 * @prop_name: Name of property to be parsed. Expected to hold phandle values
1193 * @index: For properties holding a list of phandles, this is the index
1194 * into the list.
1195 * @list_name: Property name that is known to contain list of phandle(s) to
1196 * supplier(s)
1197 * @cells_name: property name that specifies phandles' arguments count
1198 *
1199 * This is a helper function to parse properties that have a known fixed name
1200 * and are a list of phandles and phandle arguments.
1201 *
1202 * Returns:
1203 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1204 * on it when done.
1205 * - NULL if no phandle found at index
1206 */
parse_prop_cells(struct device_node * np,const char * prop_name,int index,const char * list_name,const char * cells_name)1207 static struct device_node *parse_prop_cells(struct device_node *np,
1208 const char *prop_name, int index,
1209 const char *list_name,
1210 const char *cells_name)
1211 {
1212 struct of_phandle_args sup_args;
1213
1214 if (strcmp(prop_name, list_name))
1215 return NULL;
1216
1217 if (__of_parse_phandle_with_args(np, list_name, cells_name, 0, index,
1218 &sup_args))
1219 return NULL;
1220
1221 return sup_args.np;
1222 }
1223
1224 #define DEFINE_SIMPLE_PROP(fname, name, cells) \
1225 static struct device_node *parse_##fname(struct device_node *np, \
1226 const char *prop_name, int index) \
1227 { \
1228 return parse_prop_cells(np, prop_name, index, name, cells); \
1229 }
1230
strcmp_suffix(const char * str,const char * suffix)1231 static int strcmp_suffix(const char *str, const char *suffix)
1232 {
1233 unsigned int len, suffix_len;
1234
1235 len = strlen(str);
1236 suffix_len = strlen(suffix);
1237 if (len <= suffix_len)
1238 return -1;
1239 return strcmp(str + len - suffix_len, suffix);
1240 }
1241
1242 /**
1243 * parse_suffix_prop_cells - Suffix property parsing function for suppliers
1244 *
1245 * @np: Pointer to device tree node containing a list
1246 * @prop_name: Name of property to be parsed. Expected to hold phandle values
1247 * @index: For properties holding a list of phandles, this is the index
1248 * into the list.
1249 * @suffix: Property suffix that is known to contain list of phandle(s) to
1250 * supplier(s)
1251 * @cells_name: property name that specifies phandles' arguments count
1252 *
1253 * This is a helper function to parse properties that have a known fixed suffix
1254 * and are a list of phandles and phandle arguments.
1255 *
1256 * Returns:
1257 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1258 * on it when done.
1259 * - NULL if no phandle found at index
1260 */
parse_suffix_prop_cells(struct device_node * np,const char * prop_name,int index,const char * suffix,const char * cells_name)1261 static struct device_node *parse_suffix_prop_cells(struct device_node *np,
1262 const char *prop_name, int index,
1263 const char *suffix,
1264 const char *cells_name)
1265 {
1266 struct of_phandle_args sup_args;
1267
1268 if (strcmp_suffix(prop_name, suffix))
1269 return NULL;
1270
1271 if (of_parse_phandle_with_args(np, prop_name, cells_name, index,
1272 &sup_args))
1273 return NULL;
1274
1275 return sup_args.np;
1276 }
1277
1278 #define DEFINE_SUFFIX_PROP(fname, suffix, cells) \
1279 static struct device_node *parse_##fname(struct device_node *np, \
1280 const char *prop_name, int index) \
1281 { \
1282 return parse_suffix_prop_cells(np, prop_name, index, suffix, cells); \
1283 }
1284
1285 /**
1286 * struct supplier_bindings - Property parsing functions for suppliers
1287 *
1288 * @parse_prop: function name
1289 * parse_prop() finds the node corresponding to a supplier phandle
1290 * parse_prop.np: Pointer to device node holding supplier phandle property
1291 * parse_prop.prop_name: Name of property holding a phandle value
1292 * parse_prop.index: For properties holding a list of phandles, this is the
1293 * index into the list
1294 * @get_con_dev: If the consumer node containing the property is never converted
1295 * to a struct device, implement this ops so fw_devlink can use it
1296 * to find the true consumer.
1297 * @optional: Describes whether a supplier is mandatory or not
1298 * @fwlink_flags: Optional fwnode link flags to use when creating a fwnode link
1299 * for this property.
1300 *
1301 * Returns:
1302 * parse_prop() return values are
1303 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1304 * on it when done.
1305 * - NULL if no phandle found at index
1306 */
1307 struct supplier_bindings {
1308 struct device_node *(*parse_prop)(struct device_node *np,
1309 const char *prop_name, int index);
1310 struct device_node *(*get_con_dev)(struct device_node *np);
1311 bool optional;
1312 u8 fwlink_flags;
1313 };
1314
1315 DEFINE_SIMPLE_PROP(clocks, "clocks", "#clock-cells")
1316 DEFINE_SIMPLE_PROP(interconnects, "interconnects", "#interconnect-cells")
1317 DEFINE_SIMPLE_PROP(iommus, "iommus", "#iommu-cells")
1318 DEFINE_SIMPLE_PROP(mboxes, "mboxes", "#mbox-cells")
1319 DEFINE_SIMPLE_PROP(io_channels, "io-channels", "#io-channel-cells")
1320 DEFINE_SIMPLE_PROP(io_backends, "io-backends", "#io-backend-cells")
1321 DEFINE_SIMPLE_PROP(dmas, "dmas", "#dma-cells")
1322 DEFINE_SIMPLE_PROP(power_domains, "power-domains", "#power-domain-cells")
1323 DEFINE_SIMPLE_PROP(hwlocks, "hwlocks", "#hwlock-cells")
1324 DEFINE_SIMPLE_PROP(extcon, "extcon", NULL)
1325 DEFINE_SIMPLE_PROP(nvmem_cells, "nvmem-cells", "#nvmem-cell-cells")
1326 DEFINE_SIMPLE_PROP(phys, "phys", "#phy-cells")
1327 DEFINE_SIMPLE_PROP(wakeup_parent, "wakeup-parent", NULL)
1328 DEFINE_SIMPLE_PROP(pinctrl0, "pinctrl-0", NULL)
1329 DEFINE_SIMPLE_PROP(pinctrl1, "pinctrl-1", NULL)
1330 DEFINE_SIMPLE_PROP(pinctrl2, "pinctrl-2", NULL)
1331 DEFINE_SIMPLE_PROP(pinctrl3, "pinctrl-3", NULL)
1332 DEFINE_SIMPLE_PROP(pinctrl4, "pinctrl-4", NULL)
1333 DEFINE_SIMPLE_PROP(pinctrl5, "pinctrl-5", NULL)
1334 DEFINE_SIMPLE_PROP(pinctrl6, "pinctrl-6", NULL)
1335 DEFINE_SIMPLE_PROP(pinctrl7, "pinctrl-7", NULL)
1336 DEFINE_SIMPLE_PROP(pinctrl8, "pinctrl-8", NULL)
1337 DEFINE_SIMPLE_PROP(pwms, "pwms", "#pwm-cells")
1338 DEFINE_SIMPLE_PROP(resets, "resets", "#reset-cells")
1339 DEFINE_SIMPLE_PROP(leds, "leds", NULL)
1340 DEFINE_SIMPLE_PROP(backlight, "backlight", NULL)
1341 DEFINE_SIMPLE_PROP(panel, "panel", NULL)
1342 DEFINE_SIMPLE_PROP(msi_parent, "msi-parent", "#msi-cells")
1343 DEFINE_SIMPLE_PROP(post_init_providers, "post-init-providers", NULL)
1344 DEFINE_SIMPLE_PROP(access_controllers, "access-controllers", "#access-controller-cells")
1345 DEFINE_SIMPLE_PROP(pses, "pses", "#pse-cells")
1346 DEFINE_SIMPLE_PROP(power_supplies, "power-supplies", NULL)
1347 DEFINE_SUFFIX_PROP(regulators, "-supply", NULL)
1348 DEFINE_SUFFIX_PROP(gpio, "-gpio", "#gpio-cells")
1349
parse_gpios(struct device_node * np,const char * prop_name,int index)1350 static struct device_node *parse_gpios(struct device_node *np,
1351 const char *prop_name, int index)
1352 {
1353 if (!strcmp_suffix(prop_name, ",nr-gpios"))
1354 return NULL;
1355
1356 return parse_suffix_prop_cells(np, prop_name, index, "-gpios",
1357 "#gpio-cells");
1358 }
1359
parse_iommu_maps(struct device_node * np,const char * prop_name,int index)1360 static struct device_node *parse_iommu_maps(struct device_node *np,
1361 const char *prop_name, int index)
1362 {
1363 if (strcmp(prop_name, "iommu-map"))
1364 return NULL;
1365
1366 return of_parse_phandle(np, prop_name, (index * 4) + 1);
1367 }
1368
parse_gpio_compat(struct device_node * np,const char * prop_name,int index)1369 static struct device_node *parse_gpio_compat(struct device_node *np,
1370 const char *prop_name, int index)
1371 {
1372 struct of_phandle_args sup_args;
1373
1374 if (strcmp(prop_name, "gpio") && strcmp(prop_name, "gpios"))
1375 return NULL;
1376
1377 /*
1378 * Ignore node with gpio-hog property since its gpios are all provided
1379 * by its parent.
1380 */
1381 if (of_property_read_bool(np, "gpio-hog"))
1382 return NULL;
1383
1384 if (of_parse_phandle_with_args(np, prop_name, "#gpio-cells", index,
1385 &sup_args))
1386 return NULL;
1387
1388 return sup_args.np;
1389 }
1390
parse_interrupts(struct device_node * np,const char * prop_name,int index)1391 static struct device_node *parse_interrupts(struct device_node *np,
1392 const char *prop_name, int index)
1393 {
1394 struct of_phandle_args sup_args;
1395
1396 if (!IS_ENABLED(CONFIG_OF_IRQ) || IS_ENABLED(CONFIG_PPC))
1397 return NULL;
1398
1399 if (strcmp(prop_name, "interrupts") &&
1400 strcmp(prop_name, "interrupts-extended"))
1401 return NULL;
1402
1403 return of_irq_parse_one(np, index, &sup_args) ? NULL : sup_args.np;
1404 }
1405
parse_interrupt_map(struct device_node * np,const char * prop_name,int index)1406 static struct device_node *parse_interrupt_map(struct device_node *np,
1407 const char *prop_name, int index)
1408 {
1409 const __be32 *imap, *imap_end;
1410 struct of_phandle_args sup_args;
1411 u32 addrcells, intcells;
1412 int imaplen;
1413
1414 if (!IS_ENABLED(CONFIG_OF_IRQ))
1415 return NULL;
1416
1417 if (strcmp(prop_name, "interrupt-map"))
1418 return NULL;
1419
1420 if (of_property_read_u32(np, "#interrupt-cells", &intcells))
1421 return NULL;
1422 addrcells = of_bus_n_addr_cells(np);
1423
1424 imap = of_get_property(np, "interrupt-map", &imaplen);
1425 if (!imap)
1426 return NULL;
1427 imaplen /= sizeof(*imap);
1428
1429 imap_end = imap + imaplen;
1430
1431 for (int i = 0; imap + addrcells + intcells + 1 < imap_end; i++) {
1432 imap += addrcells + intcells;
1433
1434 imap = of_irq_parse_imap_parent(imap, imap_end - imap, &sup_args);
1435 if (!imap)
1436 return NULL;
1437
1438 if (i == index)
1439 return sup_args.np;
1440
1441 of_node_put(sup_args.np);
1442 }
1443
1444 return NULL;
1445 }
1446
parse_remote_endpoint(struct device_node * np,const char * prop_name,int index)1447 static struct device_node *parse_remote_endpoint(struct device_node *np,
1448 const char *prop_name,
1449 int index)
1450 {
1451 /* Return NULL for index > 0 to signify end of remote-endpoints. */
1452 if (index > 0 || strcmp(prop_name, "remote-endpoint"))
1453 return NULL;
1454
1455 return of_graph_get_remote_port_parent(np);
1456 }
1457
1458 static const struct supplier_bindings of_supplier_bindings[] = {
1459 { .parse_prop = parse_clocks, },
1460 { .parse_prop = parse_interconnects, },
1461 { .parse_prop = parse_iommus, .optional = true, },
1462 { .parse_prop = parse_iommu_maps, .optional = true, },
1463 { .parse_prop = parse_mboxes, },
1464 { .parse_prop = parse_io_channels, },
1465 { .parse_prop = parse_io_backends, },
1466 { .parse_prop = parse_dmas, .optional = true, },
1467 { .parse_prop = parse_power_domains, },
1468 { .parse_prop = parse_hwlocks, },
1469 { .parse_prop = parse_extcon, },
1470 { .parse_prop = parse_nvmem_cells, },
1471 { .parse_prop = parse_phys, },
1472 { .parse_prop = parse_wakeup_parent, },
1473 { .parse_prop = parse_pinctrl0, },
1474 { .parse_prop = parse_pinctrl1, },
1475 { .parse_prop = parse_pinctrl2, },
1476 { .parse_prop = parse_pinctrl3, },
1477 { .parse_prop = parse_pinctrl4, },
1478 { .parse_prop = parse_pinctrl5, },
1479 { .parse_prop = parse_pinctrl6, },
1480 { .parse_prop = parse_pinctrl7, },
1481 { .parse_prop = parse_pinctrl8, },
1482 {
1483 .parse_prop = parse_remote_endpoint,
1484 .get_con_dev = of_graph_get_port_parent,
1485 },
1486 { .parse_prop = parse_pwms, },
1487 { .parse_prop = parse_resets, },
1488 { .parse_prop = parse_leds, },
1489 { .parse_prop = parse_backlight, },
1490 { .parse_prop = parse_panel, },
1491 { .parse_prop = parse_msi_parent, },
1492 { .parse_prop = parse_pses, },
1493 { .parse_prop = parse_power_supplies, },
1494 { .parse_prop = parse_gpio_compat, },
1495 { .parse_prop = parse_interrupts, },
1496 { .parse_prop = parse_interrupt_map, },
1497 { .parse_prop = parse_access_controllers, },
1498 { .parse_prop = parse_regulators, },
1499 { .parse_prop = parse_gpio, },
1500 { .parse_prop = parse_gpios, },
1501 {
1502 .parse_prop = parse_post_init_providers,
1503 .fwlink_flags = FWLINK_FLAG_IGNORE,
1504 },
1505 {}
1506 };
1507
1508 /**
1509 * of_link_property - Create device links to suppliers listed in a property
1510 * @con_np: The consumer device tree node which contains the property
1511 * @prop_name: Name of property to be parsed
1512 *
1513 * This function checks if the property @prop_name that is present in the
1514 * @con_np device tree node is one of the known common device tree bindings
1515 * that list phandles to suppliers. If @prop_name isn't one, this function
1516 * doesn't do anything.
1517 *
1518 * If @prop_name is one, this function attempts to create fwnode links from the
1519 * consumer device tree node @con_np to all the suppliers device tree nodes
1520 * listed in @prop_name.
1521 *
1522 * Any failed attempt to create a fwnode link will NOT result in an immediate
1523 * return. of_link_property() must create links to all the available supplier
1524 * device tree nodes even when attempts to create a link to one or more
1525 * suppliers fail.
1526 */
of_link_property(struct device_node * con_np,const char * prop_name)1527 static int of_link_property(struct device_node *con_np, const char *prop_name)
1528 {
1529 struct device_node *phandle;
1530 const struct supplier_bindings *s = of_supplier_bindings;
1531 unsigned int i = 0;
1532 bool matched = false;
1533
1534 /* Do not stop at first failed link, link all available suppliers. */
1535 while (!matched && s->parse_prop) {
1536 if (s->optional && !fw_devlink_is_strict()) {
1537 s++;
1538 continue;
1539 }
1540
1541 while ((phandle = s->parse_prop(con_np, prop_name, i))) {
1542 struct device_node *con_dev_np __free(device_node) =
1543 s->get_con_dev ? s->get_con_dev(con_np) : of_node_get(con_np);
1544
1545 matched = true;
1546 i++;
1547 of_link_to_phandle(con_dev_np, phandle, s->fwlink_flags);
1548 of_node_put(phandle);
1549 }
1550 s++;
1551 }
1552 return 0;
1553 }
1554
of_fwnode_iomap(struct fwnode_handle * fwnode,int index)1555 static void __iomem *of_fwnode_iomap(struct fwnode_handle *fwnode, int index)
1556 {
1557 #ifdef CONFIG_OF_ADDRESS
1558 return of_iomap(to_of_node(fwnode), index);
1559 #else
1560 return NULL;
1561 #endif
1562 }
1563
of_fwnode_irq_get(const struct fwnode_handle * fwnode,unsigned int index)1564 static int of_fwnode_irq_get(const struct fwnode_handle *fwnode,
1565 unsigned int index)
1566 {
1567 return of_irq_get(to_of_node(fwnode), index);
1568 }
1569
of_fwnode_add_links(struct fwnode_handle * fwnode)1570 static int of_fwnode_add_links(struct fwnode_handle *fwnode)
1571 {
1572 const struct property *p;
1573 struct device_node *con_np = to_of_node(fwnode);
1574
1575 if (IS_ENABLED(CONFIG_X86))
1576 return 0;
1577
1578 if (!con_np)
1579 return -EINVAL;
1580
1581 for_each_property_of_node(con_np, p)
1582 of_link_property(con_np, p->name);
1583
1584 return 0;
1585 }
1586
1587 const struct fwnode_operations of_fwnode_ops = {
1588 .get = of_fwnode_get,
1589 .put = of_fwnode_put,
1590 .device_is_available = of_fwnode_device_is_available,
1591 .device_get_match_data = of_fwnode_device_get_match_data,
1592 .device_dma_supported = of_fwnode_device_dma_supported,
1593 .device_get_dma_attr = of_fwnode_device_get_dma_attr,
1594 .property_present = of_fwnode_property_present,
1595 .property_read_bool = of_fwnode_property_read_bool,
1596 .property_read_int_array = of_fwnode_property_read_int_array,
1597 .property_read_string_array = of_fwnode_property_read_string_array,
1598 .get_name = of_fwnode_get_name,
1599 .get_name_prefix = of_fwnode_get_name_prefix,
1600 .get_parent = of_fwnode_get_parent,
1601 .get_next_child_node = of_fwnode_get_next_child_node,
1602 .get_named_child_node = of_fwnode_get_named_child_node,
1603 .get_reference_args = of_fwnode_get_reference_args,
1604 .graph_get_next_endpoint = of_fwnode_graph_get_next_endpoint,
1605 .graph_get_remote_endpoint = of_fwnode_graph_get_remote_endpoint,
1606 .graph_get_port_parent = of_fwnode_graph_get_port_parent,
1607 .graph_parse_endpoint = of_fwnode_graph_parse_endpoint,
1608 .iomap = of_fwnode_iomap,
1609 .irq_get = of_fwnode_irq_get,
1610 .add_links = of_fwnode_add_links,
1611 };
1612 EXPORT_SYMBOL_GPL(of_fwnode_ops);
1613