1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * drivers/of/property.c - Procedures for accessing and interpreting
4 * Devicetree properties and graphs.
5 *
6 * Initially created by copying procedures from drivers/of/base.c. This
7 * file contains the OF property as well as the OF graph interface
8 * functions.
9 *
10 * Paul Mackerras August 1996.
11 * Copyright (C) 1996-2005 Paul Mackerras.
12 *
13 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
14 * {engebret|bergner}@us.ibm.com
15 *
16 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
17 *
18 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
19 * Grant Likely.
20 */
21
22 #define pr_fmt(fmt) "OF: " fmt
23
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_device.h>
27 #include <linux/of_graph.h>
28 #include <linux/of_irq.h>
29 #include <linux/string.h>
30 #include <linux/moduleparam.h>
31
32 #include "of_private.h"
33
34 /**
35 * of_graph_is_present() - check graph's presence
36 * @node: pointer to device_node containing graph port
37 *
38 * Return: True if @node has a port or ports (with a port) sub-node,
39 * false otherwise.
40 */
of_graph_is_present(const struct device_node * node)41 bool of_graph_is_present(const struct device_node *node)
42 {
43 struct device_node *ports __free(device_node) = of_get_child_by_name(node, "ports");
44
45 if (ports)
46 node = ports;
47
48 struct device_node *port __free(device_node) = of_get_child_by_name(node, "port");
49
50 return !!port;
51 }
52 EXPORT_SYMBOL(of_graph_is_present);
53
54 /**
55 * of_property_count_elems_of_size - Count the number of elements in a property
56 *
57 * @np: device node from which the property value is to be read.
58 * @propname: name of the property to be searched.
59 * @elem_size: size of the individual element
60 *
61 * Search for a property in a device node and count the number of elements of
62 * size elem_size in it.
63 *
64 * Return: The number of elements on sucess, -EINVAL if the property does not
65 * exist or its length does not match a multiple of elem_size and -ENODATA if
66 * the property does not have a value.
67 */
of_property_count_elems_of_size(const struct device_node * np,const char * propname,int elem_size)68 int of_property_count_elems_of_size(const struct device_node *np,
69 const char *propname, int elem_size)
70 {
71 struct property *prop = of_find_property(np, propname, NULL);
72
73 if (!prop)
74 return -EINVAL;
75 if (!prop->value)
76 return -ENODATA;
77
78 if (prop->length % elem_size != 0) {
79 pr_err("size of %s in node %pOF is not a multiple of %d\n",
80 propname, np, elem_size);
81 return -EINVAL;
82 }
83
84 return prop->length / elem_size;
85 }
86 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
87
88 /**
89 * of_find_property_value_of_size
90 *
91 * @np: device node from which the property value is to be read.
92 * @propname: name of the property to be searched.
93 * @min: minimum allowed length of property value
94 * @max: maximum allowed length of property value (0 means unlimited)
95 * @len: if !=NULL, actual length is written to here
96 *
97 * Search for a property in a device node and valid the requested size.
98 *
99 * Return: The property value on success, -EINVAL if the property does not
100 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
101 * property data is too small or too large.
102 *
103 */
of_find_property_value_of_size(const struct device_node * np,const char * propname,u32 min,u32 max,size_t * len)104 static void *of_find_property_value_of_size(const struct device_node *np,
105 const char *propname, u32 min, u32 max, size_t *len)
106 {
107 struct property *prop = of_find_property(np, propname, NULL);
108
109 if (!prop)
110 return ERR_PTR(-EINVAL);
111 if (!prop->value)
112 return ERR_PTR(-ENODATA);
113 if (prop->length < min)
114 return ERR_PTR(-EOVERFLOW);
115 if (max && prop->length > max)
116 return ERR_PTR(-EOVERFLOW);
117
118 if (len)
119 *len = prop->length;
120
121 return prop->value;
122 }
123
124 /**
125 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
126 *
127 * @np: device node from which the property value is to be read.
128 * @propname: name of the property to be searched.
129 * @index: index of the u32 in the list of values
130 * @out_value: pointer to return value, modified only if no error.
131 *
132 * Search for a property in a device node and read nth 32-bit value from
133 * it.
134 *
135 * Return: 0 on success, -EINVAL if the property does not exist,
136 * -ENODATA if property does not have a value, and -EOVERFLOW if the
137 * property data isn't large enough.
138 *
139 * The out_value is modified only if a valid u32 value can be decoded.
140 */
of_property_read_u32_index(const struct device_node * np,const char * propname,u32 index,u32 * out_value)141 int of_property_read_u32_index(const struct device_node *np,
142 const char *propname,
143 u32 index, u32 *out_value)
144 {
145 const u32 *val = of_find_property_value_of_size(np, propname,
146 ((index + 1) * sizeof(*out_value)),
147 0,
148 NULL);
149
150 if (IS_ERR(val))
151 return PTR_ERR(val);
152
153 *out_value = be32_to_cpup(((__be32 *)val) + index);
154 return 0;
155 }
156 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
157
158 /**
159 * of_property_read_u64_index - Find and read a u64 from a multi-value property.
160 *
161 * @np: device node from which the property value is to be read.
162 * @propname: name of the property to be searched.
163 * @index: index of the u64 in the list of values
164 * @out_value: pointer to return value, modified only if no error.
165 *
166 * Search for a property in a device node and read nth 64-bit value from
167 * it.
168 *
169 * Return: 0 on success, -EINVAL if the property does not exist,
170 * -ENODATA if property does not have a value, and -EOVERFLOW if the
171 * property data isn't large enough.
172 *
173 * The out_value is modified only if a valid u64 value can be decoded.
174 */
of_property_read_u64_index(const struct device_node * np,const char * propname,u32 index,u64 * out_value)175 int of_property_read_u64_index(const struct device_node *np,
176 const char *propname,
177 u32 index, u64 *out_value)
178 {
179 const u64 *val = of_find_property_value_of_size(np, propname,
180 ((index + 1) * sizeof(*out_value)),
181 0, NULL);
182
183 if (IS_ERR(val))
184 return PTR_ERR(val);
185
186 *out_value = be64_to_cpup(((__be64 *)val) + index);
187 return 0;
188 }
189 EXPORT_SYMBOL_GPL(of_property_read_u64_index);
190
191 /**
192 * of_property_read_variable_u8_array - Find and read an array of u8 from a
193 * property, with bounds on the minimum and maximum array size.
194 *
195 * @np: device node from which the property value is to be read.
196 * @propname: name of the property to be searched.
197 * @out_values: pointer to found values.
198 * @sz_min: minimum number of array elements to read
199 * @sz_max: maximum number of array elements to read, if zero there is no
200 * upper limit on the number of elements in the dts entry but only
201 * sz_min will be read.
202 *
203 * Search for a property in a device node and read 8-bit value(s) from
204 * it.
205 *
206 * dts entry of array should be like:
207 * ``property = /bits/ 8 <0x50 0x60 0x70>;``
208 *
209 * Return: The number of elements read on success, -EINVAL if the property
210 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
211 * if the property data is smaller than sz_min or longer than sz_max.
212 *
213 * The out_values is modified only if a valid u8 value can be decoded.
214 */
of_property_read_variable_u8_array(const struct device_node * np,const char * propname,u8 * out_values,size_t sz_min,size_t sz_max)215 int of_property_read_variable_u8_array(const struct device_node *np,
216 const char *propname, u8 *out_values,
217 size_t sz_min, size_t sz_max)
218 {
219 size_t sz, count;
220 const u8 *val = of_find_property_value_of_size(np, propname,
221 (sz_min * sizeof(*out_values)),
222 (sz_max * sizeof(*out_values)),
223 &sz);
224
225 if (IS_ERR(val))
226 return PTR_ERR(val);
227
228 if (!sz_max)
229 sz = sz_min;
230 else
231 sz /= sizeof(*out_values);
232
233 count = sz;
234 while (count--)
235 *out_values++ = *val++;
236
237 return sz;
238 }
239 EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array);
240
241 /**
242 * of_property_read_variable_u16_array - Find and read an array of u16 from a
243 * property, with bounds on the minimum and maximum array size.
244 *
245 * @np: device node from which the property value is to be read.
246 * @propname: name of the property to be searched.
247 * @out_values: pointer to found values.
248 * @sz_min: minimum number of array elements to read
249 * @sz_max: maximum number of array elements to read, if zero there is no
250 * upper limit on the number of elements in the dts entry but only
251 * sz_min will be read.
252 *
253 * Search for a property in a device node and read 16-bit value(s) from
254 * it.
255 *
256 * dts entry of array should be like:
257 * ``property = /bits/ 16 <0x5000 0x6000 0x7000>;``
258 *
259 * Return: The number of elements read on success, -EINVAL if the property
260 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
261 * if the property data is smaller than sz_min or longer than sz_max.
262 *
263 * The out_values is modified only if a valid u16 value can be decoded.
264 */
of_property_read_variable_u16_array(const struct device_node * np,const char * propname,u16 * out_values,size_t sz_min,size_t sz_max)265 int of_property_read_variable_u16_array(const struct device_node *np,
266 const char *propname, u16 *out_values,
267 size_t sz_min, size_t sz_max)
268 {
269 size_t sz, count;
270 const __be16 *val = of_find_property_value_of_size(np, propname,
271 (sz_min * sizeof(*out_values)),
272 (sz_max * sizeof(*out_values)),
273 &sz);
274
275 if (IS_ERR(val))
276 return PTR_ERR(val);
277
278 if (!sz_max)
279 sz = sz_min;
280 else
281 sz /= sizeof(*out_values);
282
283 count = sz;
284 while (count--)
285 *out_values++ = be16_to_cpup(val++);
286
287 return sz;
288 }
289 EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array);
290
291 /**
292 * of_property_read_variable_u32_array - Find and read an array of 32 bit
293 * integers from a property, with bounds on the minimum and maximum array size.
294 *
295 * @np: device node from which the property value is to be read.
296 * @propname: name of the property to be searched.
297 * @out_values: pointer to return found values.
298 * @sz_min: minimum number of array elements to read
299 * @sz_max: maximum number of array elements to read, if zero there is no
300 * upper limit on the number of elements in the dts entry but only
301 * sz_min will be read.
302 *
303 * Search for a property in a device node and read 32-bit value(s) from
304 * it.
305 *
306 * Return: The number of elements read on success, -EINVAL if the property
307 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
308 * if the property data is smaller than sz_min or longer than sz_max.
309 *
310 * The out_values is modified only if a valid u32 value can be decoded.
311 */
of_property_read_variable_u32_array(const struct device_node * np,const char * propname,u32 * out_values,size_t sz_min,size_t sz_max)312 int of_property_read_variable_u32_array(const struct device_node *np,
313 const char *propname, u32 *out_values,
314 size_t sz_min, size_t sz_max)
315 {
316 size_t sz, count;
317 const __be32 *val = of_find_property_value_of_size(np, propname,
318 (sz_min * sizeof(*out_values)),
319 (sz_max * sizeof(*out_values)),
320 &sz);
321
322 if (IS_ERR(val))
323 return PTR_ERR(val);
324
325 if (!sz_max)
326 sz = sz_min;
327 else
328 sz /= sizeof(*out_values);
329
330 count = sz;
331 while (count--)
332 *out_values++ = be32_to_cpup(val++);
333
334 return sz;
335 }
336 EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array);
337
338 /**
339 * of_property_read_u64 - Find and read a 64 bit integer from a property
340 * @np: device node from which the property value is to be read.
341 * @propname: name of the property to be searched.
342 * @out_value: pointer to return value, modified only if return value is 0.
343 *
344 * Search for a property in a device node and read a 64-bit value from
345 * it.
346 *
347 * Return: 0 on success, -EINVAL if the property does not exist,
348 * -ENODATA if property does not have a value, and -EOVERFLOW if the
349 * property data isn't large enough.
350 *
351 * The out_value is modified only if a valid u64 value can be decoded.
352 */
of_property_read_u64(const struct device_node * np,const char * propname,u64 * out_value)353 int of_property_read_u64(const struct device_node *np, const char *propname,
354 u64 *out_value)
355 {
356 const __be32 *val = of_find_property_value_of_size(np, propname,
357 sizeof(*out_value),
358 0,
359 NULL);
360
361 if (IS_ERR(val))
362 return PTR_ERR(val);
363
364 *out_value = of_read_number(val, 2);
365 return 0;
366 }
367 EXPORT_SYMBOL_GPL(of_property_read_u64);
368
369 /**
370 * of_property_read_variable_u64_array - Find and read an array of 64 bit
371 * integers from a property, with bounds on the minimum and maximum array size.
372 *
373 * @np: device node from which the property value is to be read.
374 * @propname: name of the property to be searched.
375 * @out_values: pointer to found values.
376 * @sz_min: minimum number of array elements to read
377 * @sz_max: maximum number of array elements to read, if zero there is no
378 * upper limit on the number of elements in the dts entry but only
379 * sz_min will be read.
380 *
381 * Search for a property in a device node and read 64-bit value(s) from
382 * it.
383 *
384 * Return: The number of elements read on success, -EINVAL if the property
385 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
386 * if the property data is smaller than sz_min or longer than sz_max.
387 *
388 * The out_values is modified only if a valid u64 value can be decoded.
389 */
of_property_read_variable_u64_array(const struct device_node * np,const char * propname,u64 * out_values,size_t sz_min,size_t sz_max)390 int of_property_read_variable_u64_array(const struct device_node *np,
391 const char *propname, u64 *out_values,
392 size_t sz_min, size_t sz_max)
393 {
394 size_t sz, count;
395 const __be32 *val = of_find_property_value_of_size(np, propname,
396 (sz_min * sizeof(*out_values)),
397 (sz_max * sizeof(*out_values)),
398 &sz);
399
400 if (IS_ERR(val))
401 return PTR_ERR(val);
402
403 if (!sz_max)
404 sz = sz_min;
405 else
406 sz /= sizeof(*out_values);
407
408 count = sz;
409 while (count--) {
410 *out_values++ = of_read_number(val, 2);
411 val += 2;
412 }
413
414 return sz;
415 }
416 EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array);
417
418 /**
419 * of_property_read_string - Find and read a string from a property
420 * @np: device node from which the property value is to be read.
421 * @propname: name of the property to be searched.
422 * @out_string: pointer to null terminated return string, modified only if
423 * return value is 0.
424 *
425 * Search for a property in a device tree node and retrieve a null
426 * terminated string value (pointer to data, not a copy).
427 *
428 * Return: 0 on success, -EINVAL if the property does not exist, -ENODATA if
429 * property does not have a value, and -EILSEQ if the string is not
430 * null-terminated within the length of the property data.
431 *
432 * Note that the empty string "" has length of 1, thus -ENODATA cannot
433 * be interpreted as an empty string.
434 *
435 * The out_string pointer is modified only if a valid string can be decoded.
436 */
of_property_read_string(const struct device_node * np,const char * propname,const char ** out_string)437 int of_property_read_string(const struct device_node *np, const char *propname,
438 const char **out_string)
439 {
440 const struct property *prop = of_find_property(np, propname, NULL);
441
442 if (!prop)
443 return -EINVAL;
444 if (!prop->length)
445 return -ENODATA;
446 if (strnlen(prop->value, prop->length) >= prop->length)
447 return -EILSEQ;
448 *out_string = prop->value;
449 return 0;
450 }
451 EXPORT_SYMBOL_GPL(of_property_read_string);
452
453 /**
454 * of_property_match_string() - Find string in a list and return index
455 * @np: pointer to the node containing the string list property
456 * @propname: string list property name
457 * @string: pointer to the string to search for in the string list
458 *
459 * Search for an exact match of string in a device node property which is a
460 * string of lists.
461 *
462 * Return: the index of the first occurrence of the string on success, -EINVAL
463 * if the property does not exist, -ENODATA if the property does not have a
464 * value, and -EILSEQ if the string is not null-terminated within the length of
465 * the property data.
466 */
of_property_match_string(const struct device_node * np,const char * propname,const char * string)467 int of_property_match_string(const struct device_node *np, const char *propname,
468 const char *string)
469 {
470 const struct property *prop = of_find_property(np, propname, NULL);
471 size_t l;
472 int i;
473 const char *p, *end;
474
475 if (!prop)
476 return -EINVAL;
477 if (!prop->value)
478 return -ENODATA;
479
480 p = prop->value;
481 end = p + prop->length;
482
483 for (i = 0; p < end; i++, p += l) {
484 l = strnlen(p, end - p) + 1;
485 if (p + l > end)
486 return -EILSEQ;
487 pr_debug("comparing %s with %s\n", string, p);
488 if (strcmp(string, p) == 0)
489 return i; /* Found it; return index */
490 }
491 return -ENODATA;
492 }
493 EXPORT_SYMBOL_GPL(of_property_match_string);
494
495 /**
496 * of_property_read_string_helper() - Utility helper for parsing string properties
497 * @np: device node from which the property value is to be read.
498 * @propname: name of the property to be searched.
499 * @out_strs: output array of string pointers.
500 * @sz: number of array elements to read.
501 * @skip: Number of strings to skip over at beginning of list.
502 *
503 * Don't call this function directly. It is a utility helper for the
504 * of_property_read_string*() family of functions.
505 */
of_property_read_string_helper(const struct device_node * np,const char * propname,const char ** out_strs,size_t sz,int skip)506 int of_property_read_string_helper(const struct device_node *np,
507 const char *propname, const char **out_strs,
508 size_t sz, int skip)
509 {
510 const struct property *prop = of_find_property(np, propname, NULL);
511 int l = 0, i = 0;
512 const char *p, *end;
513
514 if (!prop)
515 return -EINVAL;
516 if (!prop->value)
517 return -ENODATA;
518 p = prop->value;
519 end = p + prop->length;
520
521 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
522 l = strnlen(p, end - p) + 1;
523 if (p + l > end)
524 return -EILSEQ;
525 if (out_strs && i >= skip)
526 *out_strs++ = p;
527 }
528 i -= skip;
529 return i <= 0 ? -ENODATA : i;
530 }
531 EXPORT_SYMBOL_GPL(of_property_read_string_helper);
532
of_prop_next_u32(struct property * prop,const __be32 * cur,u32 * pu)533 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
534 u32 *pu)
535 {
536 const void *curv = cur;
537
538 if (!prop)
539 return NULL;
540
541 if (!cur) {
542 curv = prop->value;
543 goto out_val;
544 }
545
546 curv += sizeof(*cur);
547 if (curv >= prop->value + prop->length)
548 return NULL;
549
550 out_val:
551 *pu = be32_to_cpup(curv);
552 return curv;
553 }
554 EXPORT_SYMBOL_GPL(of_prop_next_u32);
555
of_prop_next_string(struct property * prop,const char * cur)556 const char *of_prop_next_string(struct property *prop, const char *cur)
557 {
558 const void *curv = cur;
559
560 if (!prop)
561 return NULL;
562
563 if (!cur)
564 return prop->value;
565
566 curv += strlen(cur) + 1;
567 if (curv >= prop->value + prop->length)
568 return NULL;
569
570 return curv;
571 }
572 EXPORT_SYMBOL_GPL(of_prop_next_string);
573
574 /**
575 * of_graph_parse_endpoint() - parse common endpoint node properties
576 * @node: pointer to endpoint device_node
577 * @endpoint: pointer to the OF endpoint data structure
578 *
579 * The caller should hold a reference to @node.
580 */
of_graph_parse_endpoint(const struct device_node * node,struct of_endpoint * endpoint)581 int of_graph_parse_endpoint(const struct device_node *node,
582 struct of_endpoint *endpoint)
583 {
584 struct device_node *port_node __free(device_node) =
585 of_get_parent(node);
586
587 WARN_ONCE(!port_node, "%s(): endpoint %pOF has no parent node\n",
588 __func__, node);
589
590 memset(endpoint, 0, sizeof(*endpoint));
591
592 endpoint->local_node = node;
593 /*
594 * It doesn't matter whether the two calls below succeed.
595 * If they don't then the default value 0 is used.
596 */
597 of_property_read_u32(port_node, "reg", &endpoint->port);
598 of_property_read_u32(node, "reg", &endpoint->id);
599
600 return 0;
601 }
602 EXPORT_SYMBOL(of_graph_parse_endpoint);
603
604 /**
605 * of_graph_get_port_by_id() - get the port matching a given id
606 * @parent: pointer to the parent device node
607 * @id: id of the port
608 *
609 * Return: A 'port' node pointer with refcount incremented. The caller
610 * has to use of_node_put() on it when done.
611 */
of_graph_get_port_by_id(struct device_node * parent,u32 id)612 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
613 {
614 struct device_node *node __free(device_node) = of_get_child_by_name(parent, "ports");
615
616 if (node)
617 parent = node;
618
619 for_each_child_of_node_scoped(parent, port) {
620 u32 port_id = 0;
621
622 if (!of_node_name_eq(port, "port"))
623 continue;
624 of_property_read_u32(port, "reg", &port_id);
625 if (id == port_id)
626 return_ptr(port);
627 }
628
629 return NULL;
630 }
631 EXPORT_SYMBOL(of_graph_get_port_by_id);
632
633 /**
634 * of_graph_get_next_endpoint() - get next endpoint node
635 * @parent: pointer to the parent device node
636 * @prev: previous endpoint node, or NULL to get first
637 *
638 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
639 * of the passed @prev node is decremented.
640 */
of_graph_get_next_endpoint(const struct device_node * parent,struct device_node * prev)641 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
642 struct device_node *prev)
643 {
644 struct device_node *endpoint;
645 struct device_node *port;
646
647 if (!parent)
648 return NULL;
649
650 /*
651 * Start by locating the port node. If no previous endpoint is specified
652 * search for the first port node, otherwise get the previous endpoint
653 * parent port node.
654 */
655 if (!prev) {
656 struct device_node *node __free(device_node) =
657 of_get_child_by_name(parent, "ports");
658
659 if (node)
660 parent = node;
661
662 port = of_get_child_by_name(parent, "port");
663 if (!port) {
664 pr_debug("graph: no port node found in %pOF\n", parent);
665 return NULL;
666 }
667 } else {
668 port = of_get_parent(prev);
669 if (WARN_ONCE(!port, "%s(): endpoint %pOF has no parent node\n",
670 __func__, prev))
671 return NULL;
672 }
673
674 while (1) {
675 /*
676 * Now that we have a port node, get the next endpoint by
677 * getting the next child. If the previous endpoint is NULL this
678 * will return the first child.
679 */
680 endpoint = of_get_next_child(port, prev);
681 if (endpoint) {
682 of_node_put(port);
683 return endpoint;
684 }
685
686 /* No more endpoints under this port, try the next one. */
687 prev = NULL;
688
689 do {
690 port = of_get_next_child(parent, port);
691 if (!port)
692 return NULL;
693 } while (!of_node_name_eq(port, "port"));
694 }
695 }
696 EXPORT_SYMBOL(of_graph_get_next_endpoint);
697
698 /**
699 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
700 * @parent: pointer to the parent device node
701 * @port_reg: identifier (value of reg property) of the parent port node
702 * @reg: identifier (value of reg property) of the endpoint node
703 *
704 * Return: An 'endpoint' node pointer which is identified by reg and at the same
705 * is the child of a port node identified by port_reg. reg and port_reg are
706 * ignored when they are -1. Use of_node_put() on the pointer when done.
707 */
of_graph_get_endpoint_by_regs(const struct device_node * parent,int port_reg,int reg)708 struct device_node *of_graph_get_endpoint_by_regs(
709 const struct device_node *parent, int port_reg, int reg)
710 {
711 struct of_endpoint endpoint;
712 struct device_node *node = NULL;
713
714 for_each_endpoint_of_node(parent, node) {
715 of_graph_parse_endpoint(node, &endpoint);
716 if (((port_reg == -1) || (endpoint.port == port_reg)) &&
717 ((reg == -1) || (endpoint.id == reg)))
718 return node;
719 }
720
721 return NULL;
722 }
723 EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
724
725 /**
726 * of_graph_get_remote_endpoint() - get remote endpoint node
727 * @node: pointer to a local endpoint device_node
728 *
729 * Return: Remote endpoint node associated with remote endpoint node linked
730 * to @node. Use of_node_put() on it when done.
731 */
of_graph_get_remote_endpoint(const struct device_node * node)732 struct device_node *of_graph_get_remote_endpoint(const struct device_node *node)
733 {
734 /* Get remote endpoint node. */
735 return of_parse_phandle(node, "remote-endpoint", 0);
736 }
737 EXPORT_SYMBOL(of_graph_get_remote_endpoint);
738
739 /**
740 * of_graph_get_port_parent() - get port's parent node
741 * @node: pointer to a local endpoint device_node
742 *
743 * Return: device node associated with endpoint node linked
744 * to @node. Use of_node_put() on it when done.
745 */
of_graph_get_port_parent(struct device_node * node)746 struct device_node *of_graph_get_port_parent(struct device_node *node)
747 {
748 unsigned int depth;
749
750 if (!node)
751 return NULL;
752
753 /*
754 * Preserve usecount for passed in node as of_get_next_parent()
755 * will do of_node_put() on it.
756 */
757 of_node_get(node);
758
759 /* Walk 3 levels up only if there is 'ports' node. */
760 for (depth = 3; depth && node; depth--) {
761 node = of_get_next_parent(node);
762 if (depth == 2 && !of_node_name_eq(node, "ports") &&
763 !of_node_name_eq(node, "in-ports") &&
764 !of_node_name_eq(node, "out-ports"))
765 break;
766 }
767 return node;
768 }
769 EXPORT_SYMBOL(of_graph_get_port_parent);
770
771 /**
772 * of_graph_get_remote_port_parent() - get remote port's parent node
773 * @node: pointer to a local endpoint device_node
774 *
775 * Return: Remote device node associated with remote endpoint node linked
776 * to @node. Use of_node_put() on it when done.
777 */
of_graph_get_remote_port_parent(const struct device_node * node)778 struct device_node *of_graph_get_remote_port_parent(
779 const struct device_node *node)
780 {
781 /* Get remote endpoint node. */
782 struct device_node *np __free(device_node) =
783 of_graph_get_remote_endpoint(node);
784
785 return of_graph_get_port_parent(np);
786 }
787 EXPORT_SYMBOL(of_graph_get_remote_port_parent);
788
789 /**
790 * of_graph_get_remote_port() - get remote port node
791 * @node: pointer to a local endpoint device_node
792 *
793 * Return: Remote port node associated with remote endpoint node linked
794 * to @node. Use of_node_put() on it when done.
795 */
of_graph_get_remote_port(const struct device_node * node)796 struct device_node *of_graph_get_remote_port(const struct device_node *node)
797 {
798 struct device_node *np;
799
800 /* Get remote endpoint node. */
801 np = of_graph_get_remote_endpoint(node);
802 if (!np)
803 return NULL;
804 return of_get_next_parent(np);
805 }
806 EXPORT_SYMBOL(of_graph_get_remote_port);
807
808 /**
809 * of_graph_get_endpoint_count() - get the number of endpoints in a device node
810 * @np: parent device node containing ports and endpoints
811 *
812 * Return: count of endpoint of this device node
813 */
of_graph_get_endpoint_count(const struct device_node * np)814 unsigned int of_graph_get_endpoint_count(const struct device_node *np)
815 {
816 struct device_node *endpoint;
817 unsigned int num = 0;
818
819 for_each_endpoint_of_node(np, endpoint)
820 num++;
821
822 return num;
823 }
824 EXPORT_SYMBOL(of_graph_get_endpoint_count);
825
826 /**
827 * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint
828 * @node: pointer to parent device_node containing graph port/endpoint
829 * @port: identifier (value of reg property) of the parent port node
830 * @endpoint: identifier (value of reg property) of the endpoint node
831 *
832 * Return: Remote device node associated with remote endpoint node linked
833 * to @node. Use of_node_put() on it when done.
834 */
of_graph_get_remote_node(const struct device_node * node,u32 port,u32 endpoint)835 struct device_node *of_graph_get_remote_node(const struct device_node *node,
836 u32 port, u32 endpoint)
837 {
838 struct device_node *endpoint_node, *remote;
839
840 endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint);
841 if (!endpoint_node) {
842 pr_debug("no valid endpoint (%d, %d) for node %pOF\n",
843 port, endpoint, node);
844 return NULL;
845 }
846
847 remote = of_graph_get_remote_port_parent(endpoint_node);
848 of_node_put(endpoint_node);
849 if (!remote) {
850 pr_debug("no valid remote node\n");
851 return NULL;
852 }
853
854 if (!of_device_is_available(remote)) {
855 pr_debug("not available for remote node\n");
856 of_node_put(remote);
857 return NULL;
858 }
859
860 return remote;
861 }
862 EXPORT_SYMBOL(of_graph_get_remote_node);
863
of_fwnode_get(struct fwnode_handle * fwnode)864 static struct fwnode_handle *of_fwnode_get(struct fwnode_handle *fwnode)
865 {
866 return of_fwnode_handle(of_node_get(to_of_node(fwnode)));
867 }
868
of_fwnode_put(struct fwnode_handle * fwnode)869 static void of_fwnode_put(struct fwnode_handle *fwnode)
870 {
871 of_node_put(to_of_node(fwnode));
872 }
873
of_fwnode_device_is_available(const struct fwnode_handle * fwnode)874 static bool of_fwnode_device_is_available(const struct fwnode_handle *fwnode)
875 {
876 return of_device_is_available(to_of_node(fwnode));
877 }
878
of_fwnode_device_dma_supported(const struct fwnode_handle * fwnode)879 static bool of_fwnode_device_dma_supported(const struct fwnode_handle *fwnode)
880 {
881 return true;
882 }
883
884 static enum dev_dma_attr
of_fwnode_device_get_dma_attr(const struct fwnode_handle * fwnode)885 of_fwnode_device_get_dma_attr(const struct fwnode_handle *fwnode)
886 {
887 if (of_dma_is_coherent(to_of_node(fwnode)))
888 return DEV_DMA_COHERENT;
889 else
890 return DEV_DMA_NON_COHERENT;
891 }
892
of_fwnode_property_present(const struct fwnode_handle * fwnode,const char * propname)893 static bool of_fwnode_property_present(const struct fwnode_handle *fwnode,
894 const char *propname)
895 {
896 return of_property_read_bool(to_of_node(fwnode), propname);
897 }
898
of_fwnode_property_read_int_array(const struct fwnode_handle * fwnode,const char * propname,unsigned int elem_size,void * val,size_t nval)899 static int of_fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
900 const char *propname,
901 unsigned int elem_size, void *val,
902 size_t nval)
903 {
904 const struct device_node *node = to_of_node(fwnode);
905
906 if (!val)
907 return of_property_count_elems_of_size(node, propname,
908 elem_size);
909
910 switch (elem_size) {
911 case sizeof(u8):
912 return of_property_read_u8_array(node, propname, val, nval);
913 case sizeof(u16):
914 return of_property_read_u16_array(node, propname, val, nval);
915 case sizeof(u32):
916 return of_property_read_u32_array(node, propname, val, nval);
917 case sizeof(u64):
918 return of_property_read_u64_array(node, propname, val, nval);
919 }
920
921 return -ENXIO;
922 }
923
924 static int
of_fwnode_property_read_string_array(const struct fwnode_handle * fwnode,const char * propname,const char ** val,size_t nval)925 of_fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
926 const char *propname, const char **val,
927 size_t nval)
928 {
929 const struct device_node *node = to_of_node(fwnode);
930
931 return val ?
932 of_property_read_string_array(node, propname, val, nval) :
933 of_property_count_strings(node, propname);
934 }
935
of_fwnode_get_name(const struct fwnode_handle * fwnode)936 static const char *of_fwnode_get_name(const struct fwnode_handle *fwnode)
937 {
938 return kbasename(to_of_node(fwnode)->full_name);
939 }
940
of_fwnode_get_name_prefix(const struct fwnode_handle * fwnode)941 static const char *of_fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
942 {
943 /* Root needs no prefix here (its name is "/"). */
944 if (!to_of_node(fwnode)->parent)
945 return "";
946
947 return "/";
948 }
949
950 static struct fwnode_handle *
of_fwnode_get_parent(const struct fwnode_handle * fwnode)951 of_fwnode_get_parent(const struct fwnode_handle *fwnode)
952 {
953 return of_fwnode_handle(of_get_parent(to_of_node(fwnode)));
954 }
955
956 static struct fwnode_handle *
of_fwnode_get_next_child_node(const struct fwnode_handle * fwnode,struct fwnode_handle * child)957 of_fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
958 struct fwnode_handle *child)
959 {
960 return of_fwnode_handle(of_get_next_available_child(to_of_node(fwnode),
961 to_of_node(child)));
962 }
963
964 static struct fwnode_handle *
of_fwnode_get_named_child_node(const struct fwnode_handle * fwnode,const char * childname)965 of_fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
966 const char *childname)
967 {
968 const struct device_node *node = to_of_node(fwnode);
969 struct device_node *child;
970
971 for_each_available_child_of_node(node, child)
972 if (of_node_name_eq(child, childname))
973 return of_fwnode_handle(child);
974
975 return NULL;
976 }
977
978 static int
of_fwnode_get_reference_args(const struct fwnode_handle * fwnode,const char * prop,const char * nargs_prop,unsigned int nargs,unsigned int index,struct fwnode_reference_args * args)979 of_fwnode_get_reference_args(const struct fwnode_handle *fwnode,
980 const char *prop, const char *nargs_prop,
981 unsigned int nargs, unsigned int index,
982 struct fwnode_reference_args *args)
983 {
984 struct of_phandle_args of_args;
985 unsigned int i;
986 int ret;
987
988 if (nargs_prop)
989 ret = of_parse_phandle_with_args(to_of_node(fwnode), prop,
990 nargs_prop, index, &of_args);
991 else
992 ret = of_parse_phandle_with_fixed_args(to_of_node(fwnode), prop,
993 nargs, index, &of_args);
994 if (ret < 0)
995 return ret;
996 if (!args) {
997 of_node_put(of_args.np);
998 return 0;
999 }
1000
1001 args->nargs = of_args.args_count;
1002 args->fwnode = of_fwnode_handle(of_args.np);
1003
1004 for (i = 0; i < NR_FWNODE_REFERENCE_ARGS; i++)
1005 args->args[i] = i < of_args.args_count ? of_args.args[i] : 0;
1006
1007 return 0;
1008 }
1009
1010 static struct fwnode_handle *
of_fwnode_graph_get_next_endpoint(const struct fwnode_handle * fwnode,struct fwnode_handle * prev)1011 of_fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1012 struct fwnode_handle *prev)
1013 {
1014 return of_fwnode_handle(of_graph_get_next_endpoint(to_of_node(fwnode),
1015 to_of_node(prev)));
1016 }
1017
1018 static struct fwnode_handle *
of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle * fwnode)1019 of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1020 {
1021 return of_fwnode_handle(
1022 of_graph_get_remote_endpoint(to_of_node(fwnode)));
1023 }
1024
1025 static struct fwnode_handle *
of_fwnode_graph_get_port_parent(struct fwnode_handle * fwnode)1026 of_fwnode_graph_get_port_parent(struct fwnode_handle *fwnode)
1027 {
1028 struct device_node *np;
1029
1030 /* Get the parent of the port */
1031 np = of_get_parent(to_of_node(fwnode));
1032 if (!np)
1033 return NULL;
1034
1035 /* Is this the "ports" node? If not, it's the port parent. */
1036 if (!of_node_name_eq(np, "ports"))
1037 return of_fwnode_handle(np);
1038
1039 return of_fwnode_handle(of_get_next_parent(np));
1040 }
1041
of_fwnode_graph_parse_endpoint(const struct fwnode_handle * fwnode,struct fwnode_endpoint * endpoint)1042 static int of_fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1043 struct fwnode_endpoint *endpoint)
1044 {
1045 const struct device_node *node = to_of_node(fwnode);
1046 struct device_node *port_node __free(device_node) = of_get_parent(node);
1047
1048 endpoint->local_fwnode = fwnode;
1049
1050 of_property_read_u32(port_node, "reg", &endpoint->port);
1051 of_property_read_u32(node, "reg", &endpoint->id);
1052
1053 return 0;
1054 }
1055
1056 static const void *
of_fwnode_device_get_match_data(const struct fwnode_handle * fwnode,const struct device * dev)1057 of_fwnode_device_get_match_data(const struct fwnode_handle *fwnode,
1058 const struct device *dev)
1059 {
1060 return of_device_get_match_data(dev);
1061 }
1062
of_link_to_phandle(struct device_node * con_np,struct device_node * sup_np,u8 flags)1063 static void of_link_to_phandle(struct device_node *con_np,
1064 struct device_node *sup_np,
1065 u8 flags)
1066 {
1067 struct device_node *tmp_np __free(device_node) = of_node_get(sup_np);
1068
1069 /* Check that sup_np and its ancestors are available. */
1070 while (tmp_np) {
1071 if (of_fwnode_handle(tmp_np)->dev)
1072 break;
1073
1074 if (!of_device_is_available(tmp_np))
1075 return;
1076
1077 tmp_np = of_get_next_parent(tmp_np);
1078 }
1079
1080 fwnode_link_add(of_fwnode_handle(con_np), of_fwnode_handle(sup_np), flags);
1081 }
1082
1083 /**
1084 * parse_prop_cells - Property parsing function for suppliers
1085 *
1086 * @np: Pointer to device tree node containing a list
1087 * @prop_name: Name of property to be parsed. Expected to hold phandle values
1088 * @index: For properties holding a list of phandles, this is the index
1089 * into the list.
1090 * @list_name: Property name that is known to contain list of phandle(s) to
1091 * supplier(s)
1092 * @cells_name: property name that specifies phandles' arguments count
1093 *
1094 * This is a helper function to parse properties that have a known fixed name
1095 * and are a list of phandles and phandle arguments.
1096 *
1097 * Returns:
1098 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1099 * on it when done.
1100 * - NULL if no phandle found at index
1101 */
parse_prop_cells(struct device_node * np,const char * prop_name,int index,const char * list_name,const char * cells_name)1102 static struct device_node *parse_prop_cells(struct device_node *np,
1103 const char *prop_name, int index,
1104 const char *list_name,
1105 const char *cells_name)
1106 {
1107 struct of_phandle_args sup_args;
1108
1109 if (strcmp(prop_name, list_name))
1110 return NULL;
1111
1112 if (__of_parse_phandle_with_args(np, list_name, cells_name, 0, index,
1113 &sup_args))
1114 return NULL;
1115
1116 return sup_args.np;
1117 }
1118
1119 #define DEFINE_SIMPLE_PROP(fname, name, cells) \
1120 static struct device_node *parse_##fname(struct device_node *np, \
1121 const char *prop_name, int index) \
1122 { \
1123 return parse_prop_cells(np, prop_name, index, name, cells); \
1124 }
1125
strcmp_suffix(const char * str,const char * suffix)1126 static int strcmp_suffix(const char *str, const char *suffix)
1127 {
1128 unsigned int len, suffix_len;
1129
1130 len = strlen(str);
1131 suffix_len = strlen(suffix);
1132 if (len <= suffix_len)
1133 return -1;
1134 return strcmp(str + len - suffix_len, suffix);
1135 }
1136
1137 /**
1138 * parse_suffix_prop_cells - Suffix property parsing function for suppliers
1139 *
1140 * @np: Pointer to device tree node containing a list
1141 * @prop_name: Name of property to be parsed. Expected to hold phandle values
1142 * @index: For properties holding a list of phandles, this is the index
1143 * into the list.
1144 * @suffix: Property suffix that is known to contain list of phandle(s) to
1145 * supplier(s)
1146 * @cells_name: property name that specifies phandles' arguments count
1147 *
1148 * This is a helper function to parse properties that have a known fixed suffix
1149 * and are a list of phandles and phandle arguments.
1150 *
1151 * Returns:
1152 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1153 * on it when done.
1154 * - NULL if no phandle found at index
1155 */
parse_suffix_prop_cells(struct device_node * np,const char * prop_name,int index,const char * suffix,const char * cells_name)1156 static struct device_node *parse_suffix_prop_cells(struct device_node *np,
1157 const char *prop_name, int index,
1158 const char *suffix,
1159 const char *cells_name)
1160 {
1161 struct of_phandle_args sup_args;
1162
1163 if (strcmp_suffix(prop_name, suffix))
1164 return NULL;
1165
1166 if (of_parse_phandle_with_args(np, prop_name, cells_name, index,
1167 &sup_args))
1168 return NULL;
1169
1170 return sup_args.np;
1171 }
1172
1173 #define DEFINE_SUFFIX_PROP(fname, suffix, cells) \
1174 static struct device_node *parse_##fname(struct device_node *np, \
1175 const char *prop_name, int index) \
1176 { \
1177 return parse_suffix_prop_cells(np, prop_name, index, suffix, cells); \
1178 }
1179
1180 /**
1181 * struct supplier_bindings - Property parsing functions for suppliers
1182 *
1183 * @parse_prop: function name
1184 * parse_prop() finds the node corresponding to a supplier phandle
1185 * parse_prop.np: Pointer to device node holding supplier phandle property
1186 * parse_prop.prop_name: Name of property holding a phandle value
1187 * parse_prop.index: For properties holding a list of phandles, this is the
1188 * index into the list
1189 * @get_con_dev: If the consumer node containing the property is never converted
1190 * to a struct device, implement this ops so fw_devlink can use it
1191 * to find the true consumer.
1192 * @optional: Describes whether a supplier is mandatory or not
1193 * @fwlink_flags: Optional fwnode link flags to use when creating a fwnode link
1194 * for this property.
1195 *
1196 * Returns:
1197 * parse_prop() return values are
1198 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1199 * on it when done.
1200 * - NULL if no phandle found at index
1201 */
1202 struct supplier_bindings {
1203 struct device_node *(*parse_prop)(struct device_node *np,
1204 const char *prop_name, int index);
1205 struct device_node *(*get_con_dev)(struct device_node *np);
1206 bool optional;
1207 u8 fwlink_flags;
1208 };
1209
1210 DEFINE_SIMPLE_PROP(clocks, "clocks", "#clock-cells")
1211 DEFINE_SIMPLE_PROP(interconnects, "interconnects", "#interconnect-cells")
1212 DEFINE_SIMPLE_PROP(iommus, "iommus", "#iommu-cells")
1213 DEFINE_SIMPLE_PROP(mboxes, "mboxes", "#mbox-cells")
1214 DEFINE_SIMPLE_PROP(io_channels, "io-channels", "#io-channel-cells")
1215 DEFINE_SIMPLE_PROP(io_backends, "io-backends", "#io-backend-cells")
1216 DEFINE_SIMPLE_PROP(interrupt_parent, "interrupt-parent", NULL)
1217 DEFINE_SIMPLE_PROP(dmas, "dmas", "#dma-cells")
1218 DEFINE_SIMPLE_PROP(power_domains, "power-domains", "#power-domain-cells")
1219 DEFINE_SIMPLE_PROP(hwlocks, "hwlocks", "#hwlock-cells")
1220 DEFINE_SIMPLE_PROP(extcon, "extcon", NULL)
1221 DEFINE_SIMPLE_PROP(nvmem_cells, "nvmem-cells", "#nvmem-cell-cells")
1222 DEFINE_SIMPLE_PROP(phys, "phys", "#phy-cells")
1223 DEFINE_SIMPLE_PROP(wakeup_parent, "wakeup-parent", NULL)
1224 DEFINE_SIMPLE_PROP(pinctrl0, "pinctrl-0", NULL)
1225 DEFINE_SIMPLE_PROP(pinctrl1, "pinctrl-1", NULL)
1226 DEFINE_SIMPLE_PROP(pinctrl2, "pinctrl-2", NULL)
1227 DEFINE_SIMPLE_PROP(pinctrl3, "pinctrl-3", NULL)
1228 DEFINE_SIMPLE_PROP(pinctrl4, "pinctrl-4", NULL)
1229 DEFINE_SIMPLE_PROP(pinctrl5, "pinctrl-5", NULL)
1230 DEFINE_SIMPLE_PROP(pinctrl6, "pinctrl-6", NULL)
1231 DEFINE_SIMPLE_PROP(pinctrl7, "pinctrl-7", NULL)
1232 DEFINE_SIMPLE_PROP(pinctrl8, "pinctrl-8", NULL)
1233 DEFINE_SIMPLE_PROP(pwms, "pwms", "#pwm-cells")
1234 DEFINE_SIMPLE_PROP(resets, "resets", "#reset-cells")
1235 DEFINE_SIMPLE_PROP(leds, "leds", NULL)
1236 DEFINE_SIMPLE_PROP(backlight, "backlight", NULL)
1237 DEFINE_SIMPLE_PROP(panel, "panel", NULL)
1238 DEFINE_SIMPLE_PROP(msi_parent, "msi-parent", "#msi-cells")
1239 DEFINE_SIMPLE_PROP(post_init_providers, "post-init-providers", NULL)
1240 DEFINE_SIMPLE_PROP(access_controllers, "access-controllers", "#access-controller-cells")
1241 DEFINE_SIMPLE_PROP(pses, "pses", "#pse-cells")
1242 DEFINE_SIMPLE_PROP(power_supplies, "power-supplies", NULL)
1243 DEFINE_SUFFIX_PROP(regulators, "-supply", NULL)
1244 DEFINE_SUFFIX_PROP(gpio, "-gpio", "#gpio-cells")
1245
parse_gpios(struct device_node * np,const char * prop_name,int index)1246 static struct device_node *parse_gpios(struct device_node *np,
1247 const char *prop_name, int index)
1248 {
1249 if (!strcmp_suffix(prop_name, ",nr-gpios"))
1250 return NULL;
1251
1252 return parse_suffix_prop_cells(np, prop_name, index, "-gpios",
1253 "#gpio-cells");
1254 }
1255
parse_iommu_maps(struct device_node * np,const char * prop_name,int index)1256 static struct device_node *parse_iommu_maps(struct device_node *np,
1257 const char *prop_name, int index)
1258 {
1259 if (strcmp(prop_name, "iommu-map"))
1260 return NULL;
1261
1262 return of_parse_phandle(np, prop_name, (index * 4) + 1);
1263 }
1264
parse_gpio_compat(struct device_node * np,const char * prop_name,int index)1265 static struct device_node *parse_gpio_compat(struct device_node *np,
1266 const char *prop_name, int index)
1267 {
1268 struct of_phandle_args sup_args;
1269
1270 if (strcmp(prop_name, "gpio") && strcmp(prop_name, "gpios"))
1271 return NULL;
1272
1273 /*
1274 * Ignore node with gpio-hog property since its gpios are all provided
1275 * by its parent.
1276 */
1277 if (of_property_read_bool(np, "gpio-hog"))
1278 return NULL;
1279
1280 if (of_parse_phandle_with_args(np, prop_name, "#gpio-cells", index,
1281 &sup_args))
1282 return NULL;
1283
1284 return sup_args.np;
1285 }
1286
parse_interrupts(struct device_node * np,const char * prop_name,int index)1287 static struct device_node *parse_interrupts(struct device_node *np,
1288 const char *prop_name, int index)
1289 {
1290 struct of_phandle_args sup_args;
1291
1292 if (!IS_ENABLED(CONFIG_OF_IRQ) || IS_ENABLED(CONFIG_PPC))
1293 return NULL;
1294
1295 if (strcmp(prop_name, "interrupts") &&
1296 strcmp(prop_name, "interrupts-extended"))
1297 return NULL;
1298
1299 return of_irq_parse_one(np, index, &sup_args) ? NULL : sup_args.np;
1300 }
1301
parse_interrupt_map(struct device_node * np,const char * prop_name,int index)1302 static struct device_node *parse_interrupt_map(struct device_node *np,
1303 const char *prop_name, int index)
1304 {
1305 const __be32 *imap, *imap_end;
1306 struct of_phandle_args sup_args;
1307 u32 addrcells, intcells;
1308 int imaplen;
1309
1310 if (!IS_ENABLED(CONFIG_OF_IRQ))
1311 return NULL;
1312
1313 if (strcmp(prop_name, "interrupt-map"))
1314 return NULL;
1315
1316 if (of_property_read_u32(np, "#interrupt-cells", &intcells))
1317 return NULL;
1318 addrcells = of_bus_n_addr_cells(np);
1319
1320 imap = of_get_property(np, "interrupt-map", &imaplen);
1321 imaplen /= sizeof(*imap);
1322 if (!imap)
1323 return NULL;
1324
1325 imap_end = imap + imaplen;
1326
1327 for (int i = 0; imap + addrcells + intcells + 1 < imap_end; i++) {
1328 imap += addrcells + intcells;
1329
1330 imap = of_irq_parse_imap_parent(imap, imap_end - imap, &sup_args);
1331 if (!imap)
1332 return NULL;
1333
1334 if (i == index)
1335 return sup_args.np;
1336
1337 of_node_put(sup_args.np);
1338 }
1339
1340 return NULL;
1341 }
1342
parse_remote_endpoint(struct device_node * np,const char * prop_name,int index)1343 static struct device_node *parse_remote_endpoint(struct device_node *np,
1344 const char *prop_name,
1345 int index)
1346 {
1347 /* Return NULL for index > 0 to signify end of remote-endpoints. */
1348 if (index > 0 || strcmp(prop_name, "remote-endpoint"))
1349 return NULL;
1350
1351 return of_graph_get_remote_port_parent(np);
1352 }
1353
1354 static const struct supplier_bindings of_supplier_bindings[] = {
1355 { .parse_prop = parse_clocks, },
1356 { .parse_prop = parse_interconnects, },
1357 { .parse_prop = parse_iommus, .optional = true, },
1358 { .parse_prop = parse_iommu_maps, .optional = true, },
1359 { .parse_prop = parse_mboxes, },
1360 { .parse_prop = parse_io_channels, },
1361 { .parse_prop = parse_io_backends, },
1362 { .parse_prop = parse_interrupt_parent, },
1363 { .parse_prop = parse_dmas, .optional = true, },
1364 { .parse_prop = parse_power_domains, },
1365 { .parse_prop = parse_hwlocks, },
1366 { .parse_prop = parse_extcon, },
1367 { .parse_prop = parse_nvmem_cells, },
1368 { .parse_prop = parse_phys, },
1369 { .parse_prop = parse_wakeup_parent, },
1370 { .parse_prop = parse_pinctrl0, },
1371 { .parse_prop = parse_pinctrl1, },
1372 { .parse_prop = parse_pinctrl2, },
1373 { .parse_prop = parse_pinctrl3, },
1374 { .parse_prop = parse_pinctrl4, },
1375 { .parse_prop = parse_pinctrl5, },
1376 { .parse_prop = parse_pinctrl6, },
1377 { .parse_prop = parse_pinctrl7, },
1378 { .parse_prop = parse_pinctrl8, },
1379 {
1380 .parse_prop = parse_remote_endpoint,
1381 .get_con_dev = of_graph_get_port_parent,
1382 },
1383 { .parse_prop = parse_pwms, },
1384 { .parse_prop = parse_resets, },
1385 { .parse_prop = parse_leds, },
1386 { .parse_prop = parse_backlight, },
1387 { .parse_prop = parse_panel, },
1388 { .parse_prop = parse_msi_parent, },
1389 { .parse_prop = parse_pses, },
1390 { .parse_prop = parse_power_supplies, },
1391 { .parse_prop = parse_gpio_compat, },
1392 { .parse_prop = parse_interrupts, },
1393 { .parse_prop = parse_interrupt_map, },
1394 { .parse_prop = parse_access_controllers, },
1395 { .parse_prop = parse_regulators, },
1396 { .parse_prop = parse_gpio, },
1397 { .parse_prop = parse_gpios, },
1398 {
1399 .parse_prop = parse_post_init_providers,
1400 .fwlink_flags = FWLINK_FLAG_IGNORE,
1401 },
1402 {}
1403 };
1404
1405 /**
1406 * of_link_property - Create device links to suppliers listed in a property
1407 * @con_np: The consumer device tree node which contains the property
1408 * @prop_name: Name of property to be parsed
1409 *
1410 * This function checks if the property @prop_name that is present in the
1411 * @con_np device tree node is one of the known common device tree bindings
1412 * that list phandles to suppliers. If @prop_name isn't one, this function
1413 * doesn't do anything.
1414 *
1415 * If @prop_name is one, this function attempts to create fwnode links from the
1416 * consumer device tree node @con_np to all the suppliers device tree nodes
1417 * listed in @prop_name.
1418 *
1419 * Any failed attempt to create a fwnode link will NOT result in an immediate
1420 * return. of_link_property() must create links to all the available supplier
1421 * device tree nodes even when attempts to create a link to one or more
1422 * suppliers fail.
1423 */
of_link_property(struct device_node * con_np,const char * prop_name)1424 static int of_link_property(struct device_node *con_np, const char *prop_name)
1425 {
1426 struct device_node *phandle;
1427 const struct supplier_bindings *s = of_supplier_bindings;
1428 unsigned int i = 0;
1429 bool matched = false;
1430
1431 /* Do not stop at first failed link, link all available suppliers. */
1432 while (!matched && s->parse_prop) {
1433 if (s->optional && !fw_devlink_is_strict()) {
1434 s++;
1435 continue;
1436 }
1437
1438 while ((phandle = s->parse_prop(con_np, prop_name, i))) {
1439 struct device_node *con_dev_np __free(device_node) =
1440 s->get_con_dev ? s->get_con_dev(con_np) : of_node_get(con_np);
1441
1442 matched = true;
1443 i++;
1444 of_link_to_phandle(con_dev_np, phandle, s->fwlink_flags);
1445 of_node_put(phandle);
1446 }
1447 s++;
1448 }
1449 return 0;
1450 }
1451
of_fwnode_iomap(struct fwnode_handle * fwnode,int index)1452 static void __iomem *of_fwnode_iomap(struct fwnode_handle *fwnode, int index)
1453 {
1454 #ifdef CONFIG_OF_ADDRESS
1455 return of_iomap(to_of_node(fwnode), index);
1456 #else
1457 return NULL;
1458 #endif
1459 }
1460
of_fwnode_irq_get(const struct fwnode_handle * fwnode,unsigned int index)1461 static int of_fwnode_irq_get(const struct fwnode_handle *fwnode,
1462 unsigned int index)
1463 {
1464 return of_irq_get(to_of_node(fwnode), index);
1465 }
1466
of_fwnode_add_links(struct fwnode_handle * fwnode)1467 static int of_fwnode_add_links(struct fwnode_handle *fwnode)
1468 {
1469 struct property *p;
1470 struct device_node *con_np = to_of_node(fwnode);
1471
1472 if (IS_ENABLED(CONFIG_X86))
1473 return 0;
1474
1475 if (!con_np)
1476 return -EINVAL;
1477
1478 for_each_property_of_node(con_np, p)
1479 of_link_property(con_np, p->name);
1480
1481 return 0;
1482 }
1483
1484 const struct fwnode_operations of_fwnode_ops = {
1485 .get = of_fwnode_get,
1486 .put = of_fwnode_put,
1487 .device_is_available = of_fwnode_device_is_available,
1488 .device_get_match_data = of_fwnode_device_get_match_data,
1489 .device_dma_supported = of_fwnode_device_dma_supported,
1490 .device_get_dma_attr = of_fwnode_device_get_dma_attr,
1491 .property_present = of_fwnode_property_present,
1492 .property_read_int_array = of_fwnode_property_read_int_array,
1493 .property_read_string_array = of_fwnode_property_read_string_array,
1494 .get_name = of_fwnode_get_name,
1495 .get_name_prefix = of_fwnode_get_name_prefix,
1496 .get_parent = of_fwnode_get_parent,
1497 .get_next_child_node = of_fwnode_get_next_child_node,
1498 .get_named_child_node = of_fwnode_get_named_child_node,
1499 .get_reference_args = of_fwnode_get_reference_args,
1500 .graph_get_next_endpoint = of_fwnode_graph_get_next_endpoint,
1501 .graph_get_remote_endpoint = of_fwnode_graph_get_remote_endpoint,
1502 .graph_get_port_parent = of_fwnode_graph_get_port_parent,
1503 .graph_parse_endpoint = of_fwnode_graph_parse_endpoint,
1504 .iomap = of_fwnode_iomap,
1505 .irq_get = of_fwnode_irq_get,
1506 .add_links = of_fwnode_add_links,
1507 };
1508 EXPORT_SYMBOL_GPL(of_fwnode_ops);
1509