xref: /freebsd/contrib/llvm-project/llvm/include/llvm/Support/GenericLoopInfo.h (revision 7a6dacaca14b62ca4b74406814becb87a3fefac0)
1 //===- GenericLoopInfo - Generic Loop Info for graphs -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the LoopInfoBase class that is used to identify natural
10 // loops and determine the loop depth of various nodes in a generic graph of
11 // blocks.  A natural loop has exactly one entry-point, which is called the
12 // header. Note that natural loops may actually be several loops that share the
13 // same header node.
14 //
15 // This analysis calculates the nesting structure of loops in a function.  For
16 // each natural loop identified, this analysis identifies natural loops
17 // contained entirely within the loop and the basic blocks that make up the
18 // loop.
19 //
20 // It can calculate on the fly various bits of information, for example:
21 //
22 //  * whether there is a preheader for the loop
23 //  * the number of back edges to the header
24 //  * whether or not a particular block branches out of the loop
25 //  * the successor blocks of the loop
26 //  * the loop depth
27 //  * etc...
28 //
29 // Note that this analysis specifically identifies *Loops* not cycles or SCCs
30 // in the graph.  There can be strongly connected components in the graph which
31 // this analysis will not recognize and that will not be represented by a Loop
32 // instance.  In particular, a Loop might be inside such a non-loop SCC, or a
33 // non-loop SCC might contain a sub-SCC which is a Loop.
34 //
35 // For an overview of terminology used in this API (and thus all of our loop
36 // analyses or transforms), see docs/LoopTerminology.rst.
37 //
38 //===----------------------------------------------------------------------===//
39 
40 #ifndef LLVM_SUPPORT_GENERICLOOPINFO_H
41 #define LLVM_SUPPORT_GENERICLOOPINFO_H
42 
43 #include "llvm/ADT/DenseSet.h"
44 #include "llvm/ADT/PostOrderIterator.h"
45 #include "llvm/ADT/STLExtras.h"
46 #include "llvm/ADT/SetOperations.h"
47 #include "llvm/Support/Allocator.h"
48 #include "llvm/Support/GenericDomTree.h"
49 
50 namespace llvm {
51 
52 template <class N, class M> class LoopInfoBase;
53 template <class N, class M> class LoopBase;
54 
55 //===----------------------------------------------------------------------===//
56 /// Instances of this class are used to represent loops that are detected in the
57 /// flow graph.
58 ///
59 template <class BlockT, class LoopT> class LoopBase {
60   LoopT *ParentLoop;
61   // Loops contained entirely within this one.
62   std::vector<LoopT *> SubLoops;
63 
64   // The list of blocks in this loop. First entry is the header node.
65   std::vector<BlockT *> Blocks;
66 
67   SmallPtrSet<const BlockT *, 8> DenseBlockSet;
68 
69 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
70   /// Indicator that this loop is no longer a valid loop.
71   bool IsInvalid = false;
72 #endif
73 
74   LoopBase(const LoopBase<BlockT, LoopT> &) = delete;
75   const LoopBase<BlockT, LoopT> &
76   operator=(const LoopBase<BlockT, LoopT> &) = delete;
77 
78 public:
79   /// Return the nesting level of this loop.  An outer-most loop has depth 1,
80   /// for consistency with loop depth values used for basic blocks, where depth
81   /// 0 is used for blocks not inside any loops.
82   unsigned getLoopDepth() const {
83     assert(!isInvalid() && "Loop not in a valid state!");
84     unsigned D = 1;
85     for (const LoopT *CurLoop = ParentLoop; CurLoop;
86          CurLoop = CurLoop->ParentLoop)
87       ++D;
88     return D;
89   }
90   BlockT *getHeader() const { return getBlocks().front(); }
91   /// Return the parent loop if it exists or nullptr for top
92   /// level loops.
93 
94   /// A loop is either top-level in a function (that is, it is not
95   /// contained in any other loop) or it is entirely enclosed in
96   /// some other loop.
97   /// If a loop is top-level, it has no parent, otherwise its
98   /// parent is the innermost loop in which it is enclosed.
99   LoopT *getParentLoop() const { return ParentLoop; }
100 
101   /// Get the outermost loop in which this loop is contained.
102   /// This may be the loop itself, if it already is the outermost loop.
103   const LoopT *getOutermostLoop() const {
104     const LoopT *L = static_cast<const LoopT *>(this);
105     while (L->ParentLoop)
106       L = L->ParentLoop;
107     return L;
108   }
109 
110   LoopT *getOutermostLoop() {
111     LoopT *L = static_cast<LoopT *>(this);
112     while (L->ParentLoop)
113       L = L->ParentLoop;
114     return L;
115   }
116 
117   /// This is a raw interface for bypassing addChildLoop.
118   void setParentLoop(LoopT *L) {
119     assert(!isInvalid() && "Loop not in a valid state!");
120     ParentLoop = L;
121   }
122 
123   /// Return true if the specified loop is contained within in this loop.
124   bool contains(const LoopT *L) const {
125     assert(!isInvalid() && "Loop not in a valid state!");
126     if (L == this)
127       return true;
128     if (!L)
129       return false;
130     return contains(L->getParentLoop());
131   }
132 
133   /// Return true if the specified basic block is in this loop.
134   bool contains(const BlockT *BB) const {
135     assert(!isInvalid() && "Loop not in a valid state!");
136     return DenseBlockSet.count(BB);
137   }
138 
139   /// Return true if the specified instruction is in this loop.
140   template <class InstT> bool contains(const InstT *Inst) const {
141     return contains(Inst->getParent());
142   }
143 
144   /// Return the loops contained entirely within this loop.
145   const std::vector<LoopT *> &getSubLoops() const {
146     assert(!isInvalid() && "Loop not in a valid state!");
147     return SubLoops;
148   }
149   std::vector<LoopT *> &getSubLoopsVector() {
150     assert(!isInvalid() && "Loop not in a valid state!");
151     return SubLoops;
152   }
153   typedef typename std::vector<LoopT *>::const_iterator iterator;
154   typedef
155       typename std::vector<LoopT *>::const_reverse_iterator reverse_iterator;
156   iterator begin() const { return getSubLoops().begin(); }
157   iterator end() const { return getSubLoops().end(); }
158   reverse_iterator rbegin() const { return getSubLoops().rbegin(); }
159   reverse_iterator rend() const { return getSubLoops().rend(); }
160 
161   // LoopInfo does not detect irreducible control flow, just natural
162   // loops. That is, it is possible that there is cyclic control
163   // flow within the "innermost loop" or around the "outermost
164   // loop".
165 
166   /// Return true if the loop does not contain any (natural) loops.
167   bool isInnermost() const { return getSubLoops().empty(); }
168   /// Return true if the loop does not have a parent (natural) loop
169   // (i.e. it is outermost, which is the same as top-level).
170   bool isOutermost() const { return getParentLoop() == nullptr; }
171 
172   /// Get a list of the basic blocks which make up this loop.
173   ArrayRef<BlockT *> getBlocks() const {
174     assert(!isInvalid() && "Loop not in a valid state!");
175     return Blocks;
176   }
177   typedef typename ArrayRef<BlockT *>::const_iterator block_iterator;
178   block_iterator block_begin() const { return getBlocks().begin(); }
179   block_iterator block_end() const { return getBlocks().end(); }
180   inline iterator_range<block_iterator> blocks() const {
181     assert(!isInvalid() && "Loop not in a valid state!");
182     return make_range(block_begin(), block_end());
183   }
184 
185   /// Get the number of blocks in this loop in constant time.
186   /// Invalidate the loop, indicating that it is no longer a loop.
187   unsigned getNumBlocks() const {
188     assert(!isInvalid() && "Loop not in a valid state!");
189     return Blocks.size();
190   }
191 
192   /// Return a direct, mutable handle to the blocks vector so that we can
193   /// mutate it efficiently with techniques like `std::remove`.
194   std::vector<BlockT *> &getBlocksVector() {
195     assert(!isInvalid() && "Loop not in a valid state!");
196     return Blocks;
197   }
198   /// Return a direct, mutable handle to the blocks set so that we can
199   /// mutate it efficiently.
200   SmallPtrSetImpl<const BlockT *> &getBlocksSet() {
201     assert(!isInvalid() && "Loop not in a valid state!");
202     return DenseBlockSet;
203   }
204 
205   /// Return a direct, immutable handle to the blocks set.
206   const SmallPtrSetImpl<const BlockT *> &getBlocksSet() const {
207     assert(!isInvalid() && "Loop not in a valid state!");
208     return DenseBlockSet;
209   }
210 
211   /// Return true if this loop is no longer valid.  The only valid use of this
212   /// helper is "assert(L.isInvalid())" or equivalent, since IsInvalid is set to
213   /// true by the destructor.  In other words, if this accessor returns true,
214   /// the caller has already triggered UB by calling this accessor; and so it
215   /// can only be called in a context where a return value of true indicates a
216   /// programmer error.
217   bool isInvalid() const {
218 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
219     return IsInvalid;
220 #else
221     return false;
222 #endif
223   }
224 
225   /// True if terminator in the block can branch to another block that is
226   /// outside of the current loop. \p BB must be inside the loop.
227   bool isLoopExiting(const BlockT *BB) const {
228     assert(!isInvalid() && "Loop not in a valid state!");
229     assert(contains(BB) && "Exiting block must be part of the loop");
230     for (const auto *Succ : children<const BlockT *>(BB)) {
231       if (!contains(Succ))
232         return true;
233     }
234     return false;
235   }
236 
237   /// Returns true if \p BB is a loop-latch.
238   /// A latch block is a block that contains a branch back to the header.
239   /// This function is useful when there are multiple latches in a loop
240   /// because \fn getLoopLatch will return nullptr in that case.
241   bool isLoopLatch(const BlockT *BB) const {
242     assert(!isInvalid() && "Loop not in a valid state!");
243     assert(contains(BB) && "block does not belong to the loop");
244     return llvm::is_contained(inverse_children<BlockT *>(getHeader()), BB);
245   }
246 
247   /// Calculate the number of back edges to the loop header.
248   unsigned getNumBackEdges() const {
249     assert(!isInvalid() && "Loop not in a valid state!");
250     return llvm::count_if(inverse_children<BlockT *>(getHeader()),
251                           [&](BlockT *Pred) { return contains(Pred); });
252   }
253 
254   //===--------------------------------------------------------------------===//
255   // APIs for simple analysis of the loop.
256   //
257   // Note that all of these methods can fail on general loops (ie, there may not
258   // be a preheader, etc).  For best success, the loop simplification and
259   // induction variable canonicalization pass should be used to normalize loops
260   // for easy analysis.  These methods assume canonical loops.
261 
262   /// Return all blocks inside the loop that have successors outside of the
263   /// loop. These are the blocks _inside of the current loop_ which branch out.
264   /// The returned list is always unique.
265   void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const;
266 
267   /// If getExitingBlocks would return exactly one block, return that block.
268   /// Otherwise return null.
269   BlockT *getExitingBlock() const;
270 
271   /// Return all of the successor blocks of this loop. These are the blocks
272   /// _outside of the current loop_ which are branched to.
273   void getExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const;
274 
275   /// If getExitBlocks would return exactly one block, return that block.
276   /// Otherwise return null.
277   BlockT *getExitBlock() const;
278 
279   /// Return true if no exit block for the loop has a predecessor that is
280   /// outside the loop.
281   bool hasDedicatedExits() const;
282 
283   /// Return all unique successor blocks of this loop.
284   /// These are the blocks _outside of the current loop_ which are branched to.
285   void getUniqueExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const;
286 
287   /// Return all unique successor blocks of this loop except successors from
288   /// Latch block are not considered. If the exit comes from Latch has also
289   /// non Latch predecessor in a loop it will be added to ExitBlocks.
290   /// These are the blocks _outside of the current loop_ which are branched to.
291   void getUniqueNonLatchExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const;
292 
293   /// If getUniqueExitBlocks would return exactly one block, return that block.
294   /// Otherwise return null.
295   BlockT *getUniqueExitBlock() const;
296 
297   /// Return true if this loop does not have any exit blocks.
298   bool hasNoExitBlocks() const;
299 
300   /// Edge type.
301   typedef std::pair<BlockT *, BlockT *> Edge;
302 
303   /// Return all pairs of (_inside_block_,_outside_block_).
304   void getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const;
305 
306   /// If there is a preheader for this loop, return it. A loop has a preheader
307   /// if there is only one edge to the header of the loop from outside of the
308   /// loop. If this is the case, the block branching to the header of the loop
309   /// is the preheader node.
310   ///
311   /// This method returns null if there is no preheader for the loop.
312   BlockT *getLoopPreheader() const;
313 
314   /// If the given loop's header has exactly one unique predecessor outside the
315   /// loop, return it. Otherwise return null.
316   ///  This is less strict that the loop "preheader" concept, which requires
317   /// the predecessor to have exactly one successor.
318   BlockT *getLoopPredecessor() const;
319 
320   /// If there is a single latch block for this loop, return it.
321   /// A latch block is a block that contains a branch back to the header.
322   BlockT *getLoopLatch() const;
323 
324   /// Return all loop latch blocks of this loop. A latch block is a block that
325   /// contains a branch back to the header.
326   void getLoopLatches(SmallVectorImpl<BlockT *> &LoopLatches) const {
327     assert(!isInvalid() && "Loop not in a valid state!");
328     BlockT *H = getHeader();
329     for (const auto Pred : inverse_children<BlockT *>(H))
330       if (contains(Pred))
331         LoopLatches.push_back(Pred);
332   }
333 
334   /// Return all inner loops in the loop nest rooted by the loop in preorder,
335   /// with siblings in forward program order.
336   template <class Type>
337   static void getInnerLoopsInPreorder(const LoopT &L,
338                                       SmallVectorImpl<Type> &PreOrderLoops) {
339     SmallVector<LoopT *, 4> PreOrderWorklist;
340     PreOrderWorklist.append(L.rbegin(), L.rend());
341 
342     while (!PreOrderWorklist.empty()) {
343       LoopT *L = PreOrderWorklist.pop_back_val();
344       // Sub-loops are stored in forward program order, but will process the
345       // worklist backwards so append them in reverse order.
346       PreOrderWorklist.append(L->rbegin(), L->rend());
347       PreOrderLoops.push_back(L);
348     }
349   }
350 
351   /// Return all loops in the loop nest rooted by the loop in preorder, with
352   /// siblings in forward program order.
353   SmallVector<const LoopT *, 4> getLoopsInPreorder() const {
354     SmallVector<const LoopT *, 4> PreOrderLoops;
355     const LoopT *CurLoop = static_cast<const LoopT *>(this);
356     PreOrderLoops.push_back(CurLoop);
357     getInnerLoopsInPreorder(*CurLoop, PreOrderLoops);
358     return PreOrderLoops;
359   }
360   SmallVector<LoopT *, 4> getLoopsInPreorder() {
361     SmallVector<LoopT *, 4> PreOrderLoops;
362     LoopT *CurLoop = static_cast<LoopT *>(this);
363     PreOrderLoops.push_back(CurLoop);
364     getInnerLoopsInPreorder(*CurLoop, PreOrderLoops);
365     return PreOrderLoops;
366   }
367 
368   //===--------------------------------------------------------------------===//
369   // APIs for updating loop information after changing the CFG
370   //
371 
372   /// This method is used by other analyses to update loop information.
373   /// NewBB is set to be a new member of the current loop.
374   /// Because of this, it is added as a member of all parent loops, and is added
375   /// to the specified LoopInfo object as being in the current basic block.  It
376   /// is not valid to replace the loop header with this method.
377   void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI);
378 
379   /// This is used when splitting loops up. It replaces the OldChild entry in
380   /// our children list with NewChild, and updates the parent pointer of
381   /// OldChild to be null and the NewChild to be this loop.
382   /// This updates the loop depth of the new child.
383   void replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild);
384 
385   /// Add the specified loop to be a child of this loop.
386   /// This updates the loop depth of the new child.
387   void addChildLoop(LoopT *NewChild) {
388     assert(!isInvalid() && "Loop not in a valid state!");
389     assert(!NewChild->ParentLoop && "NewChild already has a parent!");
390     NewChild->ParentLoop = static_cast<LoopT *>(this);
391     SubLoops.push_back(NewChild);
392   }
393 
394   /// This removes the specified child from being a subloop of this loop. The
395   /// loop is not deleted, as it will presumably be inserted into another loop.
396   LoopT *removeChildLoop(iterator I) {
397     assert(!isInvalid() && "Loop not in a valid state!");
398     assert(I != SubLoops.end() && "Cannot remove end iterator!");
399     LoopT *Child = *I;
400     assert(Child->ParentLoop == this && "Child is not a child of this loop!");
401     SubLoops.erase(SubLoops.begin() + (I - begin()));
402     Child->ParentLoop = nullptr;
403     return Child;
404   }
405 
406   /// This removes the specified child from being a subloop of this loop. The
407   /// loop is not deleted, as it will presumably be inserted into another loop.
408   LoopT *removeChildLoop(LoopT *Child) {
409     return removeChildLoop(llvm::find(*this, Child));
410   }
411 
412   /// This adds a basic block directly to the basic block list.
413   /// This should only be used by transformations that create new loops.  Other
414   /// transformations should use addBasicBlockToLoop.
415   void addBlockEntry(BlockT *BB) {
416     assert(!isInvalid() && "Loop not in a valid state!");
417     Blocks.push_back(BB);
418     DenseBlockSet.insert(BB);
419   }
420 
421   /// interface to reverse Blocks[from, end of loop] in this loop
422   void reverseBlock(unsigned from) {
423     assert(!isInvalid() && "Loop not in a valid state!");
424     std::reverse(Blocks.begin() + from, Blocks.end());
425   }
426 
427   /// interface to do reserve() for Blocks
428   void reserveBlocks(unsigned size) {
429     assert(!isInvalid() && "Loop not in a valid state!");
430     Blocks.reserve(size);
431   }
432 
433   /// This method is used to move BB (which must be part of this loop) to be the
434   /// loop header of the loop (the block that dominates all others).
435   void moveToHeader(BlockT *BB) {
436     assert(!isInvalid() && "Loop not in a valid state!");
437     if (Blocks[0] == BB)
438       return;
439     for (unsigned i = 0;; ++i) {
440       assert(i != Blocks.size() && "Loop does not contain BB!");
441       if (Blocks[i] == BB) {
442         Blocks[i] = Blocks[0];
443         Blocks[0] = BB;
444         return;
445       }
446     }
447   }
448 
449   /// This removes the specified basic block from the current loop, updating the
450   /// Blocks as appropriate. This does not update the mapping in the LoopInfo
451   /// class.
452   void removeBlockFromLoop(BlockT *BB) {
453     assert(!isInvalid() && "Loop not in a valid state!");
454     auto I = find(Blocks, BB);
455     assert(I != Blocks.end() && "N is not in this list!");
456     Blocks.erase(I);
457 
458     DenseBlockSet.erase(BB);
459   }
460 
461   /// Verify loop structure
462   void verifyLoop() const;
463 
464   /// Verify loop structure of this loop and all nested loops.
465   void verifyLoopNest(DenseSet<const LoopT *> *Loops) const;
466 
467   /// Returns true if the loop is annotated parallel.
468   ///
469   /// Derived classes can override this method using static template
470   /// polymorphism.
471   bool isAnnotatedParallel() const { return false; }
472 
473   /// Print loop with all the BBs inside it.
474   void print(raw_ostream &OS, bool Verbose = false, bool PrintNested = true,
475              unsigned Depth = 0) const;
476 
477 protected:
478   friend class LoopInfoBase<BlockT, LoopT>;
479 
480   /// This creates an empty loop.
481   LoopBase() : ParentLoop(nullptr) {}
482 
483   explicit LoopBase(BlockT *BB) : ParentLoop(nullptr) {
484     Blocks.push_back(BB);
485     DenseBlockSet.insert(BB);
486   }
487 
488   // Since loop passes like SCEV are allowed to key analysis results off of
489   // `Loop` pointers, we cannot re-use pointers within a loop pass manager.
490   // This means loop passes should not be `delete` ing `Loop` objects directly
491   // (and risk a later `Loop` allocation re-using the address of a previous one)
492   // but should be using LoopInfo::markAsRemoved, which keeps around the `Loop`
493   // pointer till the end of the lifetime of the `LoopInfo` object.
494   //
495   // To make it easier to follow this rule, we mark the destructor as
496   // non-public.
497   ~LoopBase() {
498     for (auto *SubLoop : SubLoops)
499       SubLoop->~LoopT();
500 
501 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
502     IsInvalid = true;
503 #endif
504     SubLoops.clear();
505     Blocks.clear();
506     DenseBlockSet.clear();
507     ParentLoop = nullptr;
508   }
509 };
510 
511 template <class BlockT, class LoopT>
512 raw_ostream &operator<<(raw_ostream &OS, const LoopBase<BlockT, LoopT> &Loop) {
513   Loop.print(OS);
514   return OS;
515 }
516 
517 //===----------------------------------------------------------------------===//
518 /// This class builds and contains all of the top-level loop
519 /// structures in the specified function.
520 ///
521 
522 template <class BlockT, class LoopT> class LoopInfoBase {
523   // BBMap - Mapping of basic blocks to the inner most loop they occur in
524   DenseMap<const BlockT *, LoopT *> BBMap;
525   std::vector<LoopT *> TopLevelLoops;
526   BumpPtrAllocator LoopAllocator;
527 
528   friend class LoopBase<BlockT, LoopT>;
529   friend class LoopInfo;
530 
531   void operator=(const LoopInfoBase &) = delete;
532   LoopInfoBase(const LoopInfoBase &) = delete;
533 
534 public:
535   LoopInfoBase() = default;
536   ~LoopInfoBase() { releaseMemory(); }
537 
538   LoopInfoBase(LoopInfoBase &&Arg)
539       : BBMap(std::move(Arg.BBMap)),
540         TopLevelLoops(std::move(Arg.TopLevelLoops)),
541         LoopAllocator(std::move(Arg.LoopAllocator)) {
542     // We have to clear the arguments top level loops as we've taken ownership.
543     Arg.TopLevelLoops.clear();
544   }
545   LoopInfoBase &operator=(LoopInfoBase &&RHS) {
546     BBMap = std::move(RHS.BBMap);
547 
548     for (auto *L : TopLevelLoops)
549       L->~LoopT();
550 
551     TopLevelLoops = std::move(RHS.TopLevelLoops);
552     LoopAllocator = std::move(RHS.LoopAllocator);
553     RHS.TopLevelLoops.clear();
554     return *this;
555   }
556 
557   void releaseMemory() {
558     BBMap.clear();
559 
560     for (auto *L : TopLevelLoops)
561       L->~LoopT();
562     TopLevelLoops.clear();
563     LoopAllocator.Reset();
564   }
565 
566   template <typename... ArgsTy> LoopT *AllocateLoop(ArgsTy &&...Args) {
567     LoopT *Storage = LoopAllocator.Allocate<LoopT>();
568     return new (Storage) LoopT(std::forward<ArgsTy>(Args)...);
569   }
570 
571   /// iterator/begin/end - The interface to the top-level loops in the current
572   /// function.
573   ///
574   typedef typename std::vector<LoopT *>::const_iterator iterator;
575   typedef
576       typename std::vector<LoopT *>::const_reverse_iterator reverse_iterator;
577   iterator begin() const { return TopLevelLoops.begin(); }
578   iterator end() const { return TopLevelLoops.end(); }
579   reverse_iterator rbegin() const { return TopLevelLoops.rbegin(); }
580   reverse_iterator rend() const { return TopLevelLoops.rend(); }
581   bool empty() const { return TopLevelLoops.empty(); }
582 
583   /// Return all of the loops in the function in preorder across the loop
584   /// nests, with siblings in forward program order.
585   ///
586   /// Note that because loops form a forest of trees, preorder is equivalent to
587   /// reverse postorder.
588   SmallVector<LoopT *, 4> getLoopsInPreorder() const;
589 
590   /// Return all of the loops in the function in preorder across the loop
591   /// nests, with siblings in *reverse* program order.
592   ///
593   /// Note that because loops form a forest of trees, preorder is equivalent to
594   /// reverse postorder.
595   ///
596   /// Also note that this is *not* a reverse preorder. Only the siblings are in
597   /// reverse program order.
598   SmallVector<LoopT *, 4> getLoopsInReverseSiblingPreorder() const;
599 
600   /// Return the inner most loop that BB lives in. If a basic block is in no
601   /// loop (for example the entry node), null is returned.
602   LoopT *getLoopFor(const BlockT *BB) const { return BBMap.lookup(BB); }
603 
604   /// Same as getLoopFor.
605   const LoopT *operator[](const BlockT *BB) const { return getLoopFor(BB); }
606 
607   /// Return the loop nesting level of the specified block. A depth of 0 means
608   /// the block is not inside any loop.
609   unsigned getLoopDepth(const BlockT *BB) const {
610     const LoopT *L = getLoopFor(BB);
611     return L ? L->getLoopDepth() : 0;
612   }
613 
614   // True if the block is a loop header node
615   bool isLoopHeader(const BlockT *BB) const {
616     const LoopT *L = getLoopFor(BB);
617     return L && L->getHeader() == BB;
618   }
619 
620   /// Return the top-level loops.
621   const std::vector<LoopT *> &getTopLevelLoops() const { return TopLevelLoops; }
622 
623   /// Return the top-level loops.
624   std::vector<LoopT *> &getTopLevelLoopsVector() { return TopLevelLoops; }
625 
626   /// This removes the specified top-level loop from this loop info object.
627   /// The loop is not deleted, as it will presumably be inserted into
628   /// another loop.
629   LoopT *removeLoop(iterator I) {
630     assert(I != end() && "Cannot remove end iterator!");
631     LoopT *L = *I;
632     assert(L->isOutermost() && "Not a top-level loop!");
633     TopLevelLoops.erase(TopLevelLoops.begin() + (I - begin()));
634     return L;
635   }
636 
637   /// Change the top-level loop that contains BB to the specified loop.
638   /// This should be used by transformations that restructure the loop hierarchy
639   /// tree.
640   void changeLoopFor(BlockT *BB, LoopT *L) {
641     if (!L) {
642       BBMap.erase(BB);
643       return;
644     }
645     BBMap[BB] = L;
646   }
647 
648   /// Replace the specified loop in the top-level loops list with the indicated
649   /// loop.
650   void changeTopLevelLoop(LoopT *OldLoop, LoopT *NewLoop) {
651     auto I = find(TopLevelLoops, OldLoop);
652     assert(I != TopLevelLoops.end() && "Old loop not at top level!");
653     *I = NewLoop;
654     assert(!NewLoop->ParentLoop && !OldLoop->ParentLoop &&
655            "Loops already embedded into a subloop!");
656   }
657 
658   /// This adds the specified loop to the collection of top-level loops.
659   void addTopLevelLoop(LoopT *New) {
660     assert(New->isOutermost() && "Loop already in subloop!");
661     TopLevelLoops.push_back(New);
662   }
663 
664   /// This method completely removes BB from all data structures,
665   /// including all of the Loop objects it is nested in and our mapping from
666   /// BasicBlocks to loops.
667   void removeBlock(BlockT *BB) {
668     auto I = BBMap.find(BB);
669     if (I != BBMap.end()) {
670       for (LoopT *L = I->second; L; L = L->getParentLoop())
671         L->removeBlockFromLoop(BB);
672 
673       BBMap.erase(I);
674     }
675   }
676 
677   // Internals
678 
679   static bool isNotAlreadyContainedIn(const LoopT *SubLoop,
680                                       const LoopT *ParentLoop) {
681     if (!SubLoop)
682       return true;
683     if (SubLoop == ParentLoop)
684       return false;
685     return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
686   }
687 
688   /// Create the loop forest using a stable algorithm.
689   void analyze(const DominatorTreeBase<BlockT, false> &DomTree);
690 
691   // Debugging
692   void print(raw_ostream &OS) const;
693 
694   void verify(const DominatorTreeBase<BlockT, false> &DomTree) const;
695 
696   /// Destroy a loop that has been removed from the `LoopInfo` nest.
697   ///
698   /// This runs the destructor of the loop object making it invalid to
699   /// reference afterward. The memory is retained so that the *pointer* to the
700   /// loop remains valid.
701   ///
702   /// The caller is responsible for removing this loop from the loop nest and
703   /// otherwise disconnecting it from the broader `LoopInfo` data structures.
704   /// Callers that don't naturally handle this themselves should probably call
705   /// `erase' instead.
706   void destroy(LoopT *L) {
707     L->~LoopT();
708 
709     // Since LoopAllocator is a BumpPtrAllocator, this Deallocate only poisons
710     // \c L, but the pointer remains valid for non-dereferencing uses.
711     LoopAllocator.Deallocate(L);
712   }
713 };
714 
715 } // namespace llvm
716 
717 #endif // LLVM_SUPPORT_GENERICLOOPINFO_H
718