xref: /freebsd/contrib/llvm-project/llvm/include/llvm/CodeGen/MachineFrameInfo.h (revision 36b606ae6aa4b24061096ba18582e0a08ccd5dba)
1 //===-- CodeGen/MachineFrameInfo.h - Abstract Stack Frame Rep. --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The file defines the MachineFrameInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CODEGEN_MACHINEFRAMEINFO_H
14 #define LLVM_CODEGEN_MACHINEFRAMEINFO_H
15 
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/CodeGen/Register.h"
18 #include "llvm/CodeGen/TargetFrameLowering.h"
19 #include "llvm/Support/Alignment.h"
20 #include <cassert>
21 #include <vector>
22 
23 namespace llvm {
24 class raw_ostream;
25 class MachineFunction;
26 class MachineBasicBlock;
27 class BitVector;
28 class AllocaInst;
29 
30 /// The CalleeSavedInfo class tracks the information need to locate where a
31 /// callee saved register is in the current frame.
32 /// Callee saved reg can also be saved to a different register rather than
33 /// on the stack by setting DstReg instead of FrameIdx.
34 class CalleeSavedInfo {
35   Register Reg;
36   union {
37     int FrameIdx;
38     unsigned DstReg;
39   };
40   /// Flag indicating whether the register is actually restored in the epilog.
41   /// In most cases, if a register is saved, it is also restored. There are
42   /// some situations, though, when this is not the case. For example, the
43   /// LR register on ARM is usually saved, but on exit from the function its
44   /// saved value may be loaded directly into PC. Since liveness tracking of
45   /// physical registers treats callee-saved registers are live outside of
46   /// the function, LR would be treated as live-on-exit, even though in these
47   /// scenarios it is not. This flag is added to indicate that the saved
48   /// register described by this object is not restored in the epilog.
49   /// The long-term solution is to model the liveness of callee-saved registers
50   /// by implicit uses on the return instructions, however, the required
51   /// changes in the ARM backend would be quite extensive.
52   bool Restored = true;
53   /// Flag indicating whether the register is spilled to stack or another
54   /// register.
55   bool SpilledToReg = false;
56 
57 public:
Reg(R)58   explicit CalleeSavedInfo(unsigned R, int FI = 0) : Reg(R), FrameIdx(FI) {}
59 
60   // Accessors.
getReg()61   Register getReg()                        const { return Reg; }
getFrameIdx()62   int getFrameIdx()                        const { return FrameIdx; }
getDstReg()63   unsigned getDstReg()                     const { return DstReg; }
setFrameIdx(int FI)64   void setFrameIdx(int FI) {
65     FrameIdx = FI;
66     SpilledToReg = false;
67   }
setDstReg(Register SpillReg)68   void setDstReg(Register SpillReg) {
69     DstReg = SpillReg;
70     SpilledToReg = true;
71   }
isRestored()72   bool isRestored()                        const { return Restored; }
setRestored(bool R)73   void setRestored(bool R)                       { Restored = R; }
isSpilledToReg()74   bool isSpilledToReg()                    const { return SpilledToReg; }
75 };
76 
77 /// The MachineFrameInfo class represents an abstract stack frame until
78 /// prolog/epilog code is inserted.  This class is key to allowing stack frame
79 /// representation optimizations, such as frame pointer elimination.  It also
80 /// allows more mundane (but still important) optimizations, such as reordering
81 /// of abstract objects on the stack frame.
82 ///
83 /// To support this, the class assigns unique integer identifiers to stack
84 /// objects requested clients.  These identifiers are negative integers for
85 /// fixed stack objects (such as arguments passed on the stack) or nonnegative
86 /// for objects that may be reordered.  Instructions which refer to stack
87 /// objects use a special MO_FrameIndex operand to represent these frame
88 /// indexes.
89 ///
90 /// Because this class keeps track of all references to the stack frame, it
91 /// knows when a variable sized object is allocated on the stack.  This is the
92 /// sole condition which prevents frame pointer elimination, which is an
93 /// important optimization on register-poor architectures.  Because original
94 /// variable sized alloca's in the source program are the only source of
95 /// variable sized stack objects, it is safe to decide whether there will be
96 /// any variable sized objects before all stack objects are known (for
97 /// example, register allocator spill code never needs variable sized
98 /// objects).
99 ///
100 /// When prolog/epilog code emission is performed, the final stack frame is
101 /// built and the machine instructions are modified to refer to the actual
102 /// stack offsets of the object, eliminating all MO_FrameIndex operands from
103 /// the program.
104 ///
105 /// Abstract Stack Frame Information
106 class MachineFrameInfo {
107 public:
108   /// Stack Smashing Protection (SSP) rules require that vulnerable stack
109   /// allocations are located close the stack protector.
110   enum SSPLayoutKind {
111     SSPLK_None,       ///< Did not trigger a stack protector.  No effect on data
112                       ///< layout.
113     SSPLK_LargeArray, ///< Array or nested array >= SSP-buffer-size.  Closest
114                       ///< to the stack protector.
115     SSPLK_SmallArray, ///< Array or nested array < SSP-buffer-size. 2nd closest
116                       ///< to the stack protector.
117     SSPLK_AddrOf      ///< The address of this allocation is exposed and
118                       ///< triggered protection.  3rd closest to the protector.
119   };
120 
121 private:
122   // Represent a single object allocated on the stack.
123   struct StackObject {
124     // The offset of this object from the stack pointer on entry to
125     // the function.  This field has no meaning for a variable sized element.
126     int64_t SPOffset;
127 
128     // The size of this object on the stack. 0 means a variable sized object,
129     // ~0ULL means a dead object.
130     uint64_t Size;
131 
132     // The required alignment of this stack slot.
133     Align Alignment;
134 
135     // If true, the value of the stack object is set before
136     // entering the function and is not modified inside the function. By
137     // default, fixed objects are immutable unless marked otherwise.
138     bool isImmutable;
139 
140     // If true the stack object is used as spill slot. It
141     // cannot alias any other memory objects.
142     bool isSpillSlot;
143 
144     /// If true, this stack slot is used to spill a value (could be deopt
145     /// and/or GC related) over a statepoint. We know that the address of the
146     /// slot can't alias any LLVM IR value.  This is very similar to a Spill
147     /// Slot, but is created by statepoint lowering is SelectionDAG, not the
148     /// register allocator.
149     bool isStatepointSpillSlot = false;
150 
151     /// Identifier for stack memory type analagous to address space. If this is
152     /// non-0, the meaning is target defined. Offsets cannot be directly
153     /// compared between objects with different stack IDs. The object may not
154     /// necessarily reside in the same contiguous memory block as other stack
155     /// objects. Objects with differing stack IDs should not be merged or
156     /// replaced substituted for each other.
157     //
158     /// It is assumed a target uses consecutive, increasing stack IDs starting
159     /// from 1.
160     uint8_t StackID;
161 
162     /// If this stack object is originated from an Alloca instruction
163     /// this value saves the original IR allocation. Can be NULL.
164     const AllocaInst *Alloca;
165 
166     // If true, the object was mapped into the local frame
167     // block and doesn't need additional handling for allocation beyond that.
168     bool PreAllocated = false;
169 
170     // If true, an LLVM IR value might point to this object.
171     // Normally, spill slots and fixed-offset objects don't alias IR-accessible
172     // objects, but there are exceptions (on PowerPC, for example, some byval
173     // arguments have ABI-prescribed offsets).
174     bool isAliased;
175 
176     /// If true, the object has been zero-extended.
177     bool isZExt = false;
178 
179     /// If true, the object has been sign-extended.
180     bool isSExt = false;
181 
182     uint8_t SSPLayout = SSPLK_None;
183 
184     StackObject(uint64_t Size, Align Alignment, int64_t SPOffset,
185                 bool IsImmutable, bool IsSpillSlot, const AllocaInst *Alloca,
186                 bool IsAliased, uint8_t StackID = 0)
SPOffsetStackObject187         : SPOffset(SPOffset), Size(Size), Alignment(Alignment),
188           isImmutable(IsImmutable), isSpillSlot(IsSpillSlot), StackID(StackID),
189           Alloca(Alloca), isAliased(IsAliased) {}
190   };
191 
192   /// The alignment of the stack.
193   Align StackAlignment;
194 
195   /// Can the stack be realigned. This can be false if the target does not
196   /// support stack realignment, or if the user asks us not to realign the
197   /// stack. In this situation, overaligned allocas are all treated as dynamic
198   /// allocations and the target must handle them as part of DYNAMIC_STACKALLOC
199   /// lowering. All non-alloca stack objects have their alignment clamped to the
200   /// base ABI stack alignment.
201   /// FIXME: There is room for improvement in this case, in terms of
202   /// grouping overaligned allocas into a "secondary stack frame" and
203   /// then only use a single alloca to allocate this frame and only a
204   /// single virtual register to access it. Currently, without such an
205   /// optimization, each such alloca gets its own dynamic realignment.
206   bool StackRealignable;
207 
208   /// Whether the function has the \c alignstack attribute.
209   bool ForcedRealign;
210 
211   /// The list of stack objects allocated.
212   std::vector<StackObject> Objects;
213 
214   /// This contains the number of fixed objects contained on
215   /// the stack.  Because fixed objects are stored at a negative index in the
216   /// Objects list, this is also the index to the 0th object in the list.
217   unsigned NumFixedObjects = 0;
218 
219   /// This boolean keeps track of whether any variable
220   /// sized objects have been allocated yet.
221   bool HasVarSizedObjects = false;
222 
223   /// This boolean keeps track of whether there is a call
224   /// to builtin \@llvm.frameaddress.
225   bool FrameAddressTaken = false;
226 
227   /// This boolean keeps track of whether there is a call
228   /// to builtin \@llvm.returnaddress.
229   bool ReturnAddressTaken = false;
230 
231   /// This boolean keeps track of whether there is a call
232   /// to builtin \@llvm.experimental.stackmap.
233   bool HasStackMap = false;
234 
235   /// This boolean keeps track of whether there is a call
236   /// to builtin \@llvm.experimental.patchpoint.
237   bool HasPatchPoint = false;
238 
239   /// The prolog/epilog code inserter calculates the final stack
240   /// offsets for all of the fixed size objects, updating the Objects list
241   /// above.  It then updates StackSize to contain the number of bytes that need
242   /// to be allocated on entry to the function.
243   uint64_t StackSize = 0;
244 
245   /// The amount that a frame offset needs to be adjusted to
246   /// have the actual offset from the stack/frame pointer.  The exact usage of
247   /// this is target-dependent, but it is typically used to adjust between
248   /// SP-relative and FP-relative offsets.  E.G., if objects are accessed via
249   /// SP then OffsetAdjustment is zero; if FP is used, OffsetAdjustment is set
250   /// to the distance between the initial SP and the value in FP.  For many
251   /// targets, this value is only used when generating debug info (via
252   /// TargetRegisterInfo::getFrameIndexReference); when generating code, the
253   /// corresponding adjustments are performed directly.
254   int64_t OffsetAdjustment = 0;
255 
256   /// The prolog/epilog code inserter may process objects that require greater
257   /// alignment than the default alignment the target provides.
258   /// To handle this, MaxAlignment is set to the maximum alignment
259   /// needed by the objects on the current frame.  If this is greater than the
260   /// native alignment maintained by the compiler, dynamic alignment code will
261   /// be needed.
262   ///
263   Align MaxAlignment;
264 
265   /// Set to true if this function adjusts the stack -- e.g.,
266   /// when calling another function. This is only valid during and after
267   /// prolog/epilog code insertion.
268   bool AdjustsStack = false;
269 
270   /// Set to true if this function has any function calls.
271   bool HasCalls = false;
272 
273   /// The frame index for the stack protector.
274   int StackProtectorIdx = -1;
275 
276   /// The frame index for the function context. Used for SjLj exceptions.
277   int FunctionContextIdx = -1;
278 
279   /// This contains the size of the largest call frame if the target uses frame
280   /// setup/destroy pseudo instructions (as defined in the TargetFrameInfo
281   /// class).  This information is important for frame pointer elimination.
282   /// It is only valid during and after prolog/epilog code insertion.
283   uint64_t MaxCallFrameSize = ~UINT64_C(0);
284 
285   /// The number of bytes of callee saved registers that the target wants to
286   /// report for the current function in the CodeView S_FRAMEPROC record.
287   unsigned CVBytesOfCalleeSavedRegisters = 0;
288 
289   /// The prolog/epilog code inserter fills in this vector with each
290   /// callee saved register saved in either the frame or a different
291   /// register.  Beyond its use by the prolog/ epilog code inserter,
292   /// this data is used for debug info and exception handling.
293   std::vector<CalleeSavedInfo> CSInfo;
294 
295   /// Has CSInfo been set yet?
296   bool CSIValid = false;
297 
298   /// References to frame indices which are mapped
299   /// into the local frame allocation block. <FrameIdx, LocalOffset>
300   SmallVector<std::pair<int, int64_t>, 32> LocalFrameObjects;
301 
302   /// Size of the pre-allocated local frame block.
303   int64_t LocalFrameSize = 0;
304 
305   /// Required alignment of the local object blob, which is the strictest
306   /// alignment of any object in it.
307   Align LocalFrameMaxAlign;
308 
309   /// Whether the local object blob needs to be allocated together. If not,
310   /// PEI should ignore the isPreAllocated flags on the stack objects and
311   /// just allocate them normally.
312   bool UseLocalStackAllocationBlock = false;
313 
314   /// True if the function dynamically adjusts the stack pointer through some
315   /// opaque mechanism like inline assembly or Win32 EH.
316   bool HasOpaqueSPAdjustment = false;
317 
318   /// True if the function contains operations which will lower down to
319   /// instructions which manipulate the stack pointer.
320   bool HasCopyImplyingStackAdjustment = false;
321 
322   /// True if the function contains a call to the llvm.vastart intrinsic.
323   bool HasVAStart = false;
324 
325   /// True if this is a varargs function that contains a musttail call.
326   bool HasMustTailInVarArgFunc = false;
327 
328   /// True if this function contains a tail call. If so immutable objects like
329   /// function arguments are no longer so. A tail call *can* override fixed
330   /// stack objects like arguments so we can't treat them as immutable.
331   bool HasTailCall = false;
332 
333   /// Not null, if shrink-wrapping found a better place for the prologue.
334   MachineBasicBlock *Save = nullptr;
335   /// Not null, if shrink-wrapping found a better place for the epilogue.
336   MachineBasicBlock *Restore = nullptr;
337 
338   /// Size of the UnsafeStack Frame
339   uint64_t UnsafeStackSize = 0;
340 
341 public:
MachineFrameInfo(Align StackAlignment,bool StackRealignable,bool ForcedRealign)342   explicit MachineFrameInfo(Align StackAlignment, bool StackRealignable,
343                             bool ForcedRealign)
344       : StackAlignment(StackAlignment),
345         StackRealignable(StackRealignable), ForcedRealign(ForcedRealign) {}
346 
347   MachineFrameInfo(const MachineFrameInfo &) = delete;
348 
isStackRealignable()349   bool isStackRealignable() const { return StackRealignable; }
350 
351   /// Return true if there are any stack objects in this function.
hasStackObjects()352   bool hasStackObjects() const { return !Objects.empty(); }
353 
354   /// This method may be called any time after instruction
355   /// selection is complete to determine if the stack frame for this function
356   /// contains any variable sized objects.
hasVarSizedObjects()357   bool hasVarSizedObjects() const { return HasVarSizedObjects; }
358 
359   /// Return the index for the stack protector object.
getStackProtectorIndex()360   int getStackProtectorIndex() const { return StackProtectorIdx; }
setStackProtectorIndex(int I)361   void setStackProtectorIndex(int I) { StackProtectorIdx = I; }
hasStackProtectorIndex()362   bool hasStackProtectorIndex() const { return StackProtectorIdx != -1; }
363 
364   /// Return the index for the function context object.
365   /// This object is used for SjLj exceptions.
getFunctionContextIndex()366   int getFunctionContextIndex() const { return FunctionContextIdx; }
setFunctionContextIndex(int I)367   void setFunctionContextIndex(int I) { FunctionContextIdx = I; }
hasFunctionContextIndex()368   bool hasFunctionContextIndex() const { return FunctionContextIdx != -1; }
369 
370   /// This method may be called any time after instruction
371   /// selection is complete to determine if there is a call to
372   /// \@llvm.frameaddress in this function.
isFrameAddressTaken()373   bool isFrameAddressTaken() const { return FrameAddressTaken; }
setFrameAddressIsTaken(bool T)374   void setFrameAddressIsTaken(bool T) { FrameAddressTaken = T; }
375 
376   /// This method may be called any time after
377   /// instruction selection is complete to determine if there is a call to
378   /// \@llvm.returnaddress in this function.
isReturnAddressTaken()379   bool isReturnAddressTaken() const { return ReturnAddressTaken; }
setReturnAddressIsTaken(bool s)380   void setReturnAddressIsTaken(bool s) { ReturnAddressTaken = s; }
381 
382   /// This method may be called any time after instruction
383   /// selection is complete to determine if there is a call to builtin
384   /// \@llvm.experimental.stackmap.
hasStackMap()385   bool hasStackMap() const { return HasStackMap; }
386   void setHasStackMap(bool s = true) { HasStackMap = s; }
387 
388   /// This method may be called any time after instruction
389   /// selection is complete to determine if there is a call to builtin
390   /// \@llvm.experimental.patchpoint.
hasPatchPoint()391   bool hasPatchPoint() const { return HasPatchPoint; }
392   void setHasPatchPoint(bool s = true) { HasPatchPoint = s; }
393 
394   /// Return true if this function requires a split stack prolog, even if it
395   /// uses no stack space. This is only meaningful for functions where
396   /// MachineFunction::shouldSplitStack() returns true.
397   //
398   // For non-leaf functions we have to allow for the possibility that the call
399   // is to a non-split function, as in PR37807. This function could also take
400   // the address of a non-split function. When the linker tries to adjust its
401   // non-existent prologue, it would fail with an error. Mark the object file so
402   // that such failures are not errors. See this Go language bug-report
403   // https://go-review.googlesource.com/c/go/+/148819/
needsSplitStackProlog()404   bool needsSplitStackProlog() const {
405     return getStackSize() != 0 || hasTailCall();
406   }
407 
408   /// Return the minimum frame object index.
getObjectIndexBegin()409   int getObjectIndexBegin() const { return -NumFixedObjects; }
410 
411   /// Return one past the maximum frame object index.
getObjectIndexEnd()412   int getObjectIndexEnd() const { return (int)Objects.size()-NumFixedObjects; }
413 
414   /// Return the number of fixed objects.
getNumFixedObjects()415   unsigned getNumFixedObjects() const { return NumFixedObjects; }
416 
417   /// Return the number of objects.
getNumObjects()418   unsigned getNumObjects() const { return Objects.size(); }
419 
420   /// Map a frame index into the local object block
mapLocalFrameObject(int ObjectIndex,int64_t Offset)421   void mapLocalFrameObject(int ObjectIndex, int64_t Offset) {
422     LocalFrameObjects.push_back(std::pair<int, int64_t>(ObjectIndex, Offset));
423     Objects[ObjectIndex + NumFixedObjects].PreAllocated = true;
424   }
425 
426   /// Get the local offset mapping for a for an object.
getLocalFrameObjectMap(int i)427   std::pair<int, int64_t> getLocalFrameObjectMap(int i) const {
428     assert (i >= 0 && (unsigned)i < LocalFrameObjects.size() &&
429             "Invalid local object reference!");
430     return LocalFrameObjects[i];
431   }
432 
433   /// Return the number of objects allocated into the local object block.
getLocalFrameObjectCount()434   int64_t getLocalFrameObjectCount() const { return LocalFrameObjects.size(); }
435 
436   /// Set the size of the local object blob.
setLocalFrameSize(int64_t sz)437   void setLocalFrameSize(int64_t sz) { LocalFrameSize = sz; }
438 
439   /// Get the size of the local object blob.
getLocalFrameSize()440   int64_t getLocalFrameSize() const { return LocalFrameSize; }
441 
442   /// Required alignment of the local object blob,
443   /// which is the strictest alignment of any object in it.
setLocalFrameMaxAlign(Align Alignment)444   void setLocalFrameMaxAlign(Align Alignment) {
445     LocalFrameMaxAlign = Alignment;
446   }
447 
448   /// Return the required alignment of the local object blob.
getLocalFrameMaxAlign()449   Align getLocalFrameMaxAlign() const { return LocalFrameMaxAlign; }
450 
451   /// Get whether the local allocation blob should be allocated together or
452   /// let PEI allocate the locals in it directly.
getUseLocalStackAllocationBlock()453   bool getUseLocalStackAllocationBlock() const {
454     return UseLocalStackAllocationBlock;
455   }
456 
457   /// setUseLocalStackAllocationBlock - Set whether the local allocation blob
458   /// should be allocated together or let PEI allocate the locals in it
459   /// directly.
setUseLocalStackAllocationBlock(bool v)460   void setUseLocalStackAllocationBlock(bool v) {
461     UseLocalStackAllocationBlock = v;
462   }
463 
464   /// Return true if the object was pre-allocated into the local block.
isObjectPreAllocated(int ObjectIdx)465   bool isObjectPreAllocated(int ObjectIdx) const {
466     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
467            "Invalid Object Idx!");
468     return Objects[ObjectIdx+NumFixedObjects].PreAllocated;
469   }
470 
471   /// Return the size of the specified object.
getObjectSize(int ObjectIdx)472   int64_t getObjectSize(int ObjectIdx) const {
473     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
474            "Invalid Object Idx!");
475     return Objects[ObjectIdx+NumFixedObjects].Size;
476   }
477 
478   /// Change the size of the specified stack object.
setObjectSize(int ObjectIdx,int64_t Size)479   void setObjectSize(int ObjectIdx, int64_t Size) {
480     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
481            "Invalid Object Idx!");
482     Objects[ObjectIdx+NumFixedObjects].Size = Size;
483   }
484 
485   /// Return the alignment of the specified stack object.
getObjectAlign(int ObjectIdx)486   Align getObjectAlign(int ObjectIdx) const {
487     assert(unsigned(ObjectIdx + NumFixedObjects) < Objects.size() &&
488            "Invalid Object Idx!");
489     return Objects[ObjectIdx + NumFixedObjects].Alignment;
490   }
491 
492   /// Should this stack ID be considered in MaxAlignment.
contributesToMaxAlignment(uint8_t StackID)493   bool contributesToMaxAlignment(uint8_t StackID) {
494     return StackID == TargetStackID::Default ||
495            StackID == TargetStackID::ScalableVector;
496   }
497 
498   /// setObjectAlignment - Change the alignment of the specified stack object.
setObjectAlignment(int ObjectIdx,Align Alignment)499   void setObjectAlignment(int ObjectIdx, Align Alignment) {
500     assert(unsigned(ObjectIdx + NumFixedObjects) < Objects.size() &&
501            "Invalid Object Idx!");
502     Objects[ObjectIdx + NumFixedObjects].Alignment = Alignment;
503 
504     // Only ensure max alignment for the default and scalable vector stack.
505     uint8_t StackID = getStackID(ObjectIdx);
506     if (contributesToMaxAlignment(StackID))
507       ensureMaxAlignment(Alignment);
508   }
509 
510   /// Return the underlying Alloca of the specified
511   /// stack object if it exists. Returns 0 if none exists.
getObjectAllocation(int ObjectIdx)512   const AllocaInst* getObjectAllocation(int ObjectIdx) const {
513     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
514            "Invalid Object Idx!");
515     return Objects[ObjectIdx+NumFixedObjects].Alloca;
516   }
517 
518   /// Remove the underlying Alloca of the specified stack object if it
519   /// exists. This generally should not be used and is for reduction tooling.
clearObjectAllocation(int ObjectIdx)520   void clearObjectAllocation(int ObjectIdx) {
521     assert(unsigned(ObjectIdx + NumFixedObjects) < Objects.size() &&
522            "Invalid Object Idx!");
523     Objects[ObjectIdx + NumFixedObjects].Alloca = nullptr;
524   }
525 
526   /// Return the assigned stack offset of the specified object
527   /// from the incoming stack pointer.
getObjectOffset(int ObjectIdx)528   int64_t getObjectOffset(int ObjectIdx) const {
529     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
530            "Invalid Object Idx!");
531     assert(!isDeadObjectIndex(ObjectIdx) &&
532            "Getting frame offset for a dead object?");
533     return Objects[ObjectIdx+NumFixedObjects].SPOffset;
534   }
535 
isObjectZExt(int ObjectIdx)536   bool isObjectZExt(int ObjectIdx) const {
537     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
538            "Invalid Object Idx!");
539     return Objects[ObjectIdx+NumFixedObjects].isZExt;
540   }
541 
setObjectZExt(int ObjectIdx,bool IsZExt)542   void setObjectZExt(int ObjectIdx, bool IsZExt) {
543     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
544            "Invalid Object Idx!");
545     Objects[ObjectIdx+NumFixedObjects].isZExt = IsZExt;
546   }
547 
isObjectSExt(int ObjectIdx)548   bool isObjectSExt(int ObjectIdx) const {
549     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
550            "Invalid Object Idx!");
551     return Objects[ObjectIdx+NumFixedObjects].isSExt;
552   }
553 
setObjectSExt(int ObjectIdx,bool IsSExt)554   void setObjectSExt(int ObjectIdx, bool IsSExt) {
555     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
556            "Invalid Object Idx!");
557     Objects[ObjectIdx+NumFixedObjects].isSExt = IsSExt;
558   }
559 
560   /// Set the stack frame offset of the specified object. The
561   /// offset is relative to the stack pointer on entry to the function.
setObjectOffset(int ObjectIdx,int64_t SPOffset)562   void setObjectOffset(int ObjectIdx, int64_t SPOffset) {
563     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
564            "Invalid Object Idx!");
565     assert(!isDeadObjectIndex(ObjectIdx) &&
566            "Setting frame offset for a dead object?");
567     Objects[ObjectIdx+NumFixedObjects].SPOffset = SPOffset;
568   }
569 
getObjectSSPLayout(int ObjectIdx)570   SSPLayoutKind getObjectSSPLayout(int ObjectIdx) const {
571     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
572            "Invalid Object Idx!");
573     return (SSPLayoutKind)Objects[ObjectIdx+NumFixedObjects].SSPLayout;
574   }
575 
setObjectSSPLayout(int ObjectIdx,SSPLayoutKind Kind)576   void setObjectSSPLayout(int ObjectIdx, SSPLayoutKind Kind) {
577     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
578            "Invalid Object Idx!");
579     assert(!isDeadObjectIndex(ObjectIdx) &&
580            "Setting SSP layout for a dead object?");
581     Objects[ObjectIdx+NumFixedObjects].SSPLayout = Kind;
582   }
583 
584   /// Return the number of bytes that must be allocated to hold
585   /// all of the fixed size frame objects.  This is only valid after
586   /// Prolog/Epilog code insertion has finalized the stack frame layout.
getStackSize()587   uint64_t getStackSize() const { return StackSize; }
588 
589   /// Set the size of the stack.
setStackSize(uint64_t Size)590   void setStackSize(uint64_t Size) { StackSize = Size; }
591 
592   /// Estimate and return the size of the stack frame.
593   uint64_t estimateStackSize(const MachineFunction &MF) const;
594 
595   /// Return the correction for frame offsets.
getOffsetAdjustment()596   int64_t getOffsetAdjustment() const { return OffsetAdjustment; }
597 
598   /// Set the correction for frame offsets.
setOffsetAdjustment(int64_t Adj)599   void setOffsetAdjustment(int64_t Adj) { OffsetAdjustment = Adj; }
600 
601   /// Return the alignment in bytes that this function must be aligned to,
602   /// which is greater than the default stack alignment provided by the target.
getMaxAlign()603   Align getMaxAlign() const { return MaxAlignment; }
604 
605   /// Make sure the function is at least Align bytes aligned.
606   void ensureMaxAlignment(Align Alignment);
607 
608   /// Return true if stack realignment is forced by function attributes or if
609   /// the stack alignment.
shouldRealignStack()610   bool shouldRealignStack() const {
611     return ForcedRealign || MaxAlignment > StackAlignment;
612   }
613 
614   /// Return true if this function adjusts the stack -- e.g.,
615   /// when calling another function. This is only valid during and after
616   /// prolog/epilog code insertion.
adjustsStack()617   bool adjustsStack() const { return AdjustsStack; }
setAdjustsStack(bool V)618   void setAdjustsStack(bool V) { AdjustsStack = V; }
619 
620   /// Return true if the current function has any function calls.
hasCalls()621   bool hasCalls() const { return HasCalls; }
setHasCalls(bool V)622   void setHasCalls(bool V) { HasCalls = V; }
623 
624   /// Returns true if the function contains opaque dynamic stack adjustments.
hasOpaqueSPAdjustment()625   bool hasOpaqueSPAdjustment() const { return HasOpaqueSPAdjustment; }
setHasOpaqueSPAdjustment(bool B)626   void setHasOpaqueSPAdjustment(bool B) { HasOpaqueSPAdjustment = B; }
627 
628   /// Returns true if the function contains operations which will lower down to
629   /// instructions which manipulate the stack pointer.
hasCopyImplyingStackAdjustment()630   bool hasCopyImplyingStackAdjustment() const {
631     return HasCopyImplyingStackAdjustment;
632   }
setHasCopyImplyingStackAdjustment(bool B)633   void setHasCopyImplyingStackAdjustment(bool B) {
634     HasCopyImplyingStackAdjustment = B;
635   }
636 
637   /// Returns true if the function calls the llvm.va_start intrinsic.
hasVAStart()638   bool hasVAStart() const { return HasVAStart; }
setHasVAStart(bool B)639   void setHasVAStart(bool B) { HasVAStart = B; }
640 
641   /// Returns true if the function is variadic and contains a musttail call.
hasMustTailInVarArgFunc()642   bool hasMustTailInVarArgFunc() const { return HasMustTailInVarArgFunc; }
setHasMustTailInVarArgFunc(bool B)643   void setHasMustTailInVarArgFunc(bool B) { HasMustTailInVarArgFunc = B; }
644 
645   /// Returns true if the function contains a tail call.
hasTailCall()646   bool hasTailCall() const { return HasTailCall; }
647   void setHasTailCall(bool V = true) { HasTailCall = V; }
648 
649   /// Computes the maximum size of a callframe.
650   /// This only works for targets defining
651   /// TargetInstrInfo::getCallFrameSetupOpcode(), getCallFrameDestroyOpcode(),
652   /// and getFrameSize().
653   /// This is usually computed by the prologue epilogue inserter but some
654   /// targets may call this to compute it earlier.
655   /// If FrameSDOps is passed, the frame instructions in the MF will be
656   /// inserted into it.
657   void computeMaxCallFrameSize(
658       MachineFunction &MF,
659       std::vector<MachineBasicBlock::iterator> *FrameSDOps = nullptr);
660 
661   /// Return the maximum size of a call frame that must be
662   /// allocated for an outgoing function call.  This is only available if
663   /// CallFrameSetup/Destroy pseudo instructions are used by the target, and
664   /// then only during or after prolog/epilog code insertion.
665   ///
getMaxCallFrameSize()666   uint64_t getMaxCallFrameSize() const {
667     // TODO: Enable this assert when targets are fixed.
668     //assert(isMaxCallFrameSizeComputed() && "MaxCallFrameSize not computed yet");
669     if (!isMaxCallFrameSizeComputed())
670       return 0;
671     return MaxCallFrameSize;
672   }
isMaxCallFrameSizeComputed()673   bool isMaxCallFrameSizeComputed() const {
674     return MaxCallFrameSize != ~UINT64_C(0);
675   }
setMaxCallFrameSize(uint64_t S)676   void setMaxCallFrameSize(uint64_t S) { MaxCallFrameSize = S; }
677 
678   /// Returns how many bytes of callee-saved registers the target pushed in the
679   /// prologue. Only used for debug info.
getCVBytesOfCalleeSavedRegisters()680   unsigned getCVBytesOfCalleeSavedRegisters() const {
681     return CVBytesOfCalleeSavedRegisters;
682   }
setCVBytesOfCalleeSavedRegisters(unsigned S)683   void setCVBytesOfCalleeSavedRegisters(unsigned S) {
684     CVBytesOfCalleeSavedRegisters = S;
685   }
686 
687   /// Create a new object at a fixed location on the stack.
688   /// All fixed objects should be created before other objects are created for
689   /// efficiency. By default, fixed objects are not pointed to by LLVM IR
690   /// values. This returns an index with a negative value.
691   int CreateFixedObject(uint64_t Size, int64_t SPOffset, bool IsImmutable,
692                         bool isAliased = false);
693 
694   /// Create a spill slot at a fixed location on the stack.
695   /// Returns an index with a negative value.
696   int CreateFixedSpillStackObject(uint64_t Size, int64_t SPOffset,
697                                   bool IsImmutable = false);
698 
699   /// Returns true if the specified index corresponds to a fixed stack object.
isFixedObjectIndex(int ObjectIdx)700   bool isFixedObjectIndex(int ObjectIdx) const {
701     return ObjectIdx < 0 && (ObjectIdx >= -(int)NumFixedObjects);
702   }
703 
704   /// Returns true if the specified index corresponds
705   /// to an object that might be pointed to by an LLVM IR value.
isAliasedObjectIndex(int ObjectIdx)706   bool isAliasedObjectIndex(int ObjectIdx) const {
707     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
708            "Invalid Object Idx!");
709     return Objects[ObjectIdx+NumFixedObjects].isAliased;
710   }
711 
712   /// Set "maybe pointed to by an LLVM IR value" for an object.
setIsAliasedObjectIndex(int ObjectIdx,bool IsAliased)713   void setIsAliasedObjectIndex(int ObjectIdx, bool IsAliased) {
714     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
715            "Invalid Object Idx!");
716     Objects[ObjectIdx+NumFixedObjects].isAliased = IsAliased;
717   }
718 
719   /// Returns true if the specified index corresponds to an immutable object.
isImmutableObjectIndex(int ObjectIdx)720   bool isImmutableObjectIndex(int ObjectIdx) const {
721     // Tail calling functions can clobber their function arguments.
722     if (HasTailCall)
723       return false;
724     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
725            "Invalid Object Idx!");
726     return Objects[ObjectIdx+NumFixedObjects].isImmutable;
727   }
728 
729   /// Marks the immutability of an object.
setIsImmutableObjectIndex(int ObjectIdx,bool IsImmutable)730   void setIsImmutableObjectIndex(int ObjectIdx, bool IsImmutable) {
731     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
732            "Invalid Object Idx!");
733     Objects[ObjectIdx+NumFixedObjects].isImmutable = IsImmutable;
734   }
735 
736   /// Returns true if the specified index corresponds to a spill slot.
isSpillSlotObjectIndex(int ObjectIdx)737   bool isSpillSlotObjectIndex(int ObjectIdx) const {
738     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
739            "Invalid Object Idx!");
740     return Objects[ObjectIdx+NumFixedObjects].isSpillSlot;
741   }
742 
isStatepointSpillSlotObjectIndex(int ObjectIdx)743   bool isStatepointSpillSlotObjectIndex(int ObjectIdx) const {
744     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
745            "Invalid Object Idx!");
746     return Objects[ObjectIdx+NumFixedObjects].isStatepointSpillSlot;
747   }
748 
749   /// \see StackID
getStackID(int ObjectIdx)750   uint8_t getStackID(int ObjectIdx) const {
751     return Objects[ObjectIdx+NumFixedObjects].StackID;
752   }
753 
754   /// \see StackID
setStackID(int ObjectIdx,uint8_t ID)755   void setStackID(int ObjectIdx, uint8_t ID) {
756     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
757            "Invalid Object Idx!");
758     Objects[ObjectIdx+NumFixedObjects].StackID = ID;
759     // If ID > 0, MaxAlignment may now be overly conservative.
760     // If ID == 0, MaxAlignment will need to be updated separately.
761   }
762 
763   /// Returns true if the specified index corresponds to a dead object.
isDeadObjectIndex(int ObjectIdx)764   bool isDeadObjectIndex(int ObjectIdx) const {
765     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
766            "Invalid Object Idx!");
767     return Objects[ObjectIdx+NumFixedObjects].Size == ~0ULL;
768   }
769 
770   /// Returns true if the specified index corresponds to a variable sized
771   /// object.
isVariableSizedObjectIndex(int ObjectIdx)772   bool isVariableSizedObjectIndex(int ObjectIdx) const {
773     assert(unsigned(ObjectIdx + NumFixedObjects) < Objects.size() &&
774            "Invalid Object Idx!");
775     return Objects[ObjectIdx + NumFixedObjects].Size == 0;
776   }
777 
markAsStatepointSpillSlotObjectIndex(int ObjectIdx)778   void markAsStatepointSpillSlotObjectIndex(int ObjectIdx) {
779     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
780            "Invalid Object Idx!");
781     Objects[ObjectIdx+NumFixedObjects].isStatepointSpillSlot = true;
782     assert(isStatepointSpillSlotObjectIndex(ObjectIdx) && "inconsistent");
783   }
784 
785   /// Create a new statically sized stack object, returning
786   /// a nonnegative identifier to represent it.
787   int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot,
788                         const AllocaInst *Alloca = nullptr, uint8_t ID = 0);
789 
790   /// Create a new statically sized stack object that represents a spill slot,
791   /// returning a nonnegative identifier to represent it.
792   int CreateSpillStackObject(uint64_t Size, Align Alignment);
793 
794   /// Remove or mark dead a statically sized stack object.
RemoveStackObject(int ObjectIdx)795   void RemoveStackObject(int ObjectIdx) {
796     // Mark it dead.
797     Objects[ObjectIdx+NumFixedObjects].Size = ~0ULL;
798   }
799 
800   /// Notify the MachineFrameInfo object that a variable sized object has been
801   /// created.  This must be created whenever a variable sized object is
802   /// created, whether or not the index returned is actually used.
803   int CreateVariableSizedObject(Align Alignment, const AllocaInst *Alloca);
804 
805   /// Returns a reference to call saved info vector for the current function.
getCalleeSavedInfo()806   const std::vector<CalleeSavedInfo> &getCalleeSavedInfo() const {
807     return CSInfo;
808   }
809   /// \copydoc getCalleeSavedInfo()
getCalleeSavedInfo()810   std::vector<CalleeSavedInfo> &getCalleeSavedInfo() { return CSInfo; }
811 
812   /// Used by prolog/epilog inserter to set the function's callee saved
813   /// information.
setCalleeSavedInfo(std::vector<CalleeSavedInfo> CSI)814   void setCalleeSavedInfo(std::vector<CalleeSavedInfo> CSI) {
815     CSInfo = std::move(CSI);
816   }
817 
818   /// Has the callee saved info been calculated yet?
isCalleeSavedInfoValid()819   bool isCalleeSavedInfoValid() const { return CSIValid; }
820 
setCalleeSavedInfoValid(bool v)821   void setCalleeSavedInfoValid(bool v) { CSIValid = v; }
822 
getSavePoint()823   MachineBasicBlock *getSavePoint() const { return Save; }
setSavePoint(MachineBasicBlock * NewSave)824   void setSavePoint(MachineBasicBlock *NewSave) { Save = NewSave; }
getRestorePoint()825   MachineBasicBlock *getRestorePoint() const { return Restore; }
setRestorePoint(MachineBasicBlock * NewRestore)826   void setRestorePoint(MachineBasicBlock *NewRestore) { Restore = NewRestore; }
827 
getUnsafeStackSize()828   uint64_t getUnsafeStackSize() const { return UnsafeStackSize; }
setUnsafeStackSize(uint64_t Size)829   void setUnsafeStackSize(uint64_t Size) { UnsafeStackSize = Size; }
830 
831   /// Return a set of physical registers that are pristine.
832   ///
833   /// Pristine registers hold a value that is useless to the current function,
834   /// but that must be preserved - they are callee saved registers that are not
835   /// saved.
836   ///
837   /// Before the PrologueEpilogueInserter has placed the CSR spill code, this
838   /// method always returns an empty set.
839   BitVector getPristineRegs(const MachineFunction &MF) const;
840 
841   /// Used by the MachineFunction printer to print information about
842   /// stack objects. Implemented in MachineFunction.cpp.
843   void print(const MachineFunction &MF, raw_ostream &OS) const;
844 
845   /// dump - Print the function to stderr.
846   void dump(const MachineFunction &MF) const;
847 };
848 
849 } // End llvm namespace
850 
851 #endif
852