xref: /freebsd/contrib/llvm-project/clang/lib/StaticAnalyzer/Core/CallEvent.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===- CallEvent.cpp - Wrapper for all function and method calls ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file defines CallEvent and its subclasses, which represent path-
10 /// sensitive instances of different kinds of function and method calls
11 /// (C, C++, and Objective-C).
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/AST/DeclBase.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/ParentMap.h"
26 #include "clang/AST/Stmt.h"
27 #include "clang/AST/Type.h"
28 #include "clang/Analysis/AnalysisDeclContext.h"
29 #include "clang/Analysis/CFG.h"
30 #include "clang/Analysis/CFGStmtMap.h"
31 #include "clang/Analysis/PathDiagnostic.h"
32 #include "clang/Analysis/ProgramPoint.h"
33 #include "clang/Basic/IdentifierTable.h"
34 #include "clang/Basic/LLVM.h"
35 #include "clang/Basic/SourceLocation.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/Specifiers.h"
38 #include "clang/CrossTU/CrossTranslationUnit.h"
39 #include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h"
40 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
41 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h"
42 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h"
43 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
44 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
45 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
46 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
47 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
48 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
49 #include "llvm/ADT/ArrayRef.h"
50 #include "llvm/ADT/DenseMap.h"
51 #include "llvm/ADT/ImmutableList.h"
52 #include "llvm/ADT/PointerIntPair.h"
53 #include "llvm/ADT/SmallSet.h"
54 #include "llvm/ADT/SmallVector.h"
55 #include "llvm/ADT/StringExtras.h"
56 #include "llvm/ADT/StringRef.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/Compiler.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include <cassert>
63 #include <optional>
64 #include <utility>
65 
66 #define DEBUG_TYPE "static-analyzer-call-event"
67 
68 using namespace clang;
69 using namespace ento;
70 
getResultType() const71 QualType CallEvent::getResultType() const {
72   ASTContext &Ctx = getState()->getStateManager().getContext();
73   const Expr *E = getOriginExpr();
74   if (!E)
75     return Ctx.VoidTy;
76   return Ctx.getReferenceQualifiedType(E);
77 }
78 
isCallback(QualType T)79 static bool isCallback(QualType T) {
80   // If a parameter is a block or a callback, assume it can modify pointer.
81   if (T->isBlockPointerType() ||
82       T->isFunctionPointerType() ||
83       T->isObjCSelType())
84     return true;
85 
86   // Check if a callback is passed inside a struct (for both, struct passed by
87   // reference and by value). Dig just one level into the struct for now.
88 
89   if (T->isAnyPointerType() || T->isReferenceType())
90     T = T->getPointeeType();
91 
92   if (const RecordType *RT = T->getAsStructureType()) {
93     const RecordDecl *RD = RT->getDecl();
94     for (const auto *I : RD->fields()) {
95       QualType FieldT = I->getType();
96       if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType())
97         return true;
98     }
99   }
100   return false;
101 }
102 
isVoidPointerToNonConst(QualType T)103 static bool isVoidPointerToNonConst(QualType T) {
104   if (const auto *PT = T->getAs<PointerType>()) {
105     QualType PointeeTy = PT->getPointeeType();
106     if (PointeeTy.isConstQualified())
107       return false;
108     return PointeeTy->isVoidType();
109   } else
110     return false;
111 }
112 
hasNonNullArgumentsWithType(bool (* Condition)(QualType)) const113 bool CallEvent::hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const {
114   unsigned NumOfArgs = getNumArgs();
115 
116   // If calling using a function pointer, assume the function does not
117   // satisfy the callback.
118   // TODO: We could check the types of the arguments here.
119   if (!getDecl())
120     return false;
121 
122   unsigned Idx = 0;
123   for (CallEvent::param_type_iterator I = param_type_begin(),
124                                       E = param_type_end();
125        I != E && Idx < NumOfArgs; ++I, ++Idx) {
126     // If the parameter is 0, it's harmless.
127     if (getArgSVal(Idx).isZeroConstant())
128       continue;
129 
130     if (Condition(*I))
131       return true;
132   }
133   return false;
134 }
135 
hasNonZeroCallbackArg() const136 bool CallEvent::hasNonZeroCallbackArg() const {
137   return hasNonNullArgumentsWithType(isCallback);
138 }
139 
hasVoidPointerToNonConstArg() const140 bool CallEvent::hasVoidPointerToNonConstArg() const {
141   return hasNonNullArgumentsWithType(isVoidPointerToNonConst);
142 }
143 
isGlobalCFunction(StringRef FunctionName) const144 bool CallEvent::isGlobalCFunction(StringRef FunctionName) const {
145   const auto *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
146   if (!FD)
147     return false;
148 
149   return CheckerContext::isCLibraryFunction(FD, FunctionName);
150 }
151 
getCalleeAnalysisDeclContext() const152 AnalysisDeclContext *CallEvent::getCalleeAnalysisDeclContext() const {
153   const Decl *D = getDecl();
154   if (!D)
155     return nullptr;
156 
157   AnalysisDeclContext *ADC =
158       LCtx->getAnalysisDeclContext()->getManager()->getContext(D);
159 
160   return ADC;
161 }
162 
163 const StackFrameContext *
getCalleeStackFrame(unsigned BlockCount) const164 CallEvent::getCalleeStackFrame(unsigned BlockCount) const {
165   AnalysisDeclContext *ADC = getCalleeAnalysisDeclContext();
166   if (!ADC)
167     return nullptr;
168 
169   const Expr *E = getOriginExpr();
170   if (!E)
171     return nullptr;
172 
173   // Recover CFG block via reverse lookup.
174   // TODO: If we were to keep CFG element information as part of the CallEvent
175   // instead of doing this reverse lookup, we would be able to build the stack
176   // frame for non-expression-based calls, and also we wouldn't need the reverse
177   // lookup.
178   CFGStmtMap *Map = LCtx->getAnalysisDeclContext()->getCFGStmtMap();
179   const CFGBlock *B = Map->getBlock(E);
180   assert(B);
181 
182   // Also recover CFG index by scanning the CFG block.
183   unsigned Idx = 0, Sz = B->size();
184   for (; Idx < Sz; ++Idx)
185     if (auto StmtElem = (*B)[Idx].getAs<CFGStmt>())
186       if (StmtElem->getStmt() == E)
187         break;
188   assert(Idx < Sz);
189 
190   return ADC->getManager()->getStackFrame(ADC, LCtx, E, B, BlockCount, Idx);
191 }
192 
193 const ParamVarRegion
getParameterLocation(unsigned Index,unsigned BlockCount) const194 *CallEvent::getParameterLocation(unsigned Index, unsigned BlockCount) const {
195   const StackFrameContext *SFC = getCalleeStackFrame(BlockCount);
196   // We cannot construct a VarRegion without a stack frame.
197   if (!SFC)
198     return nullptr;
199 
200   const ParamVarRegion *PVR =
201     State->getStateManager().getRegionManager().getParamVarRegion(
202         getOriginExpr(), Index, SFC);
203   return PVR;
204 }
205 
206 /// Returns true if a type is a pointer-to-const or reference-to-const
207 /// with no further indirection.
isPointerToConst(QualType Ty)208 static bool isPointerToConst(QualType Ty) {
209   QualType PointeeTy = Ty->getPointeeType();
210   if (PointeeTy == QualType())
211     return false;
212   if (!PointeeTy.isConstQualified())
213     return false;
214   if (PointeeTy->isAnyPointerType())
215     return false;
216   return true;
217 }
218 
219 // Try to retrieve the function declaration and find the function parameter
220 // types which are pointers/references to a non-pointer const.
221 // We will not invalidate the corresponding argument regions.
findPtrToConstParams(llvm::SmallSet<unsigned,4> & PreserveArgs,const CallEvent & Call)222 static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs,
223                                  const CallEvent &Call) {
224   unsigned Idx = 0;
225   for (CallEvent::param_type_iterator I = Call.param_type_begin(),
226                                       E = Call.param_type_end();
227        I != E; ++I, ++Idx) {
228     if (isPointerToConst(*I))
229       PreserveArgs.insert(Idx);
230   }
231 }
232 
invalidateRegions(unsigned BlockCount,ProgramStateRef Orig) const233 ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount,
234                                              ProgramStateRef Orig) const {
235   ProgramStateRef Result = (Orig ? Orig : getState());
236 
237   // Don't invalidate anything if the callee is marked pure/const.
238   if (const Decl *callee = getDecl())
239     if (callee->hasAttr<PureAttr>() || callee->hasAttr<ConstAttr>())
240       return Result;
241 
242   SmallVector<SVal, 8> ValuesToInvalidate;
243   RegionAndSymbolInvalidationTraits ETraits;
244 
245   getExtraInvalidatedValues(ValuesToInvalidate, &ETraits);
246 
247   // Indexes of arguments whose values will be preserved by the call.
248   llvm::SmallSet<unsigned, 4> PreserveArgs;
249   if (!argumentsMayEscape())
250     findPtrToConstParams(PreserveArgs, *this);
251 
252   for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) {
253     // Mark this region for invalidation.  We batch invalidate regions
254     // below for efficiency.
255     if (PreserveArgs.count(Idx))
256       if (const MemRegion *MR = getArgSVal(Idx).getAsRegion())
257         ETraits.setTrait(MR->getBaseRegion(),
258                         RegionAndSymbolInvalidationTraits::TK_PreserveContents);
259         // TODO: Factor this out + handle the lower level const pointers.
260 
261     ValuesToInvalidate.push_back(getArgSVal(Idx));
262 
263     // If a function accepts an object by argument (which would of course be a
264     // temporary that isn't lifetime-extended), invalidate the object itself,
265     // not only other objects reachable from it. This is necessary because the
266     // destructor has access to the temporary object after the call.
267     // TODO: Support placement arguments once we start
268     // constructing them directly.
269     // TODO: This is unnecessary when there's no destructor, but that's
270     // currently hard to figure out.
271     if (getKind() != CE_CXXAllocator)
272       if (isArgumentConstructedDirectly(Idx))
273         if (auto AdjIdx = getAdjustedParameterIndex(Idx))
274           if (const TypedValueRegion *TVR =
275                   getParameterLocation(*AdjIdx, BlockCount))
276             ValuesToInvalidate.push_back(loc::MemRegionVal(TVR));
277   }
278 
279   // Invalidate designated regions using the batch invalidation API.
280   // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
281   //  global variables.
282   return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(),
283                                    BlockCount, getLocationContext(),
284                                    /*CausedByPointerEscape*/ true,
285                                    /*Symbols=*/nullptr, this, &ETraits);
286 }
287 
getProgramPoint(bool IsPreVisit,const ProgramPointTag * Tag) const288 ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit,
289                                         const ProgramPointTag *Tag) const {
290 
291   if (const Expr *E = getOriginExpr()) {
292     if (IsPreVisit)
293       return PreStmt(E, getLocationContext(), Tag);
294     return PostStmt(E, getLocationContext(), Tag);
295   }
296 
297   const Decl *D = getDecl();
298   assert(D && "Cannot get a program point without a statement or decl");
299   assert(ElemRef.getParent() &&
300          "Cannot get a program point without a CFGElementRef");
301 
302   SourceLocation Loc = getSourceRange().getBegin();
303   if (IsPreVisit)
304     return PreImplicitCall(D, Loc, getLocationContext(), ElemRef, Tag);
305   return PostImplicitCall(D, Loc, getLocationContext(), ElemRef, Tag);
306 }
307 
getArgSVal(unsigned Index) const308 SVal CallEvent::getArgSVal(unsigned Index) const {
309   const Expr *ArgE = getArgExpr(Index);
310   if (!ArgE)
311     return UnknownVal();
312   return getSVal(ArgE);
313 }
314 
getArgSourceRange(unsigned Index) const315 SourceRange CallEvent::getArgSourceRange(unsigned Index) const {
316   const Expr *ArgE = getArgExpr(Index);
317   if (!ArgE)
318     return {};
319   return ArgE->getSourceRange();
320 }
321 
getReturnValue() const322 SVal CallEvent::getReturnValue() const {
323   const Expr *E = getOriginExpr();
324   if (!E)
325     return UndefinedVal();
326   return getSVal(E);
327 }
328 
dump() const329 LLVM_DUMP_METHOD void CallEvent::dump() const { dump(llvm::errs()); }
330 
dump(raw_ostream & Out) const331 void CallEvent::dump(raw_ostream &Out) const {
332   ASTContext &Ctx = getState()->getStateManager().getContext();
333   if (const Expr *E = getOriginExpr()) {
334     E->printPretty(Out, nullptr, Ctx.getPrintingPolicy());
335     return;
336   }
337 
338   if (const Decl *D = getDecl()) {
339     Out << "Call to ";
340     D->print(Out, Ctx.getPrintingPolicy());
341     return;
342   }
343 
344   Out << "Unknown call (type " << getKindAsString() << ")";
345 }
346 
isCallStmt(const Stmt * S)347 bool CallEvent::isCallStmt(const Stmt *S) {
348   return isa<CallExpr, ObjCMessageExpr, CXXConstructExpr, CXXNewExpr>(S);
349 }
350 
getDeclaredResultType(const Decl * D)351 QualType CallEvent::getDeclaredResultType(const Decl *D) {
352   assert(D);
353   if (const auto *FD = dyn_cast<FunctionDecl>(D))
354     return FD->getReturnType();
355   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
356     return MD->getReturnType();
357   if (const auto *BD = dyn_cast<BlockDecl>(D)) {
358     // Blocks are difficult because the return type may not be stored in the
359     // BlockDecl itself. The AST should probably be enhanced, but for now we
360     // just do what we can.
361     // If the block is declared without an explicit argument list, the
362     // signature-as-written just includes the return type, not the entire
363     // function type.
364     // FIXME: All blocks should have signatures-as-written, even if the return
365     // type is inferred. (That's signified with a dependent result type.)
366     if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) {
367       QualType Ty = TSI->getType();
368       if (const FunctionType *FT = Ty->getAs<FunctionType>())
369         Ty = FT->getReturnType();
370       if (!Ty->isDependentType())
371         return Ty;
372     }
373 
374     return {};
375   }
376 
377   llvm_unreachable("unknown callable kind");
378 }
379 
isVariadic(const Decl * D)380 bool CallEvent::isVariadic(const Decl *D) {
381   assert(D);
382 
383   if (const auto *FD = dyn_cast<FunctionDecl>(D))
384     return FD->isVariadic();
385   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
386     return MD->isVariadic();
387   if (const auto *BD = dyn_cast<BlockDecl>(D))
388     return BD->isVariadic();
389 
390   llvm_unreachable("unknown callable kind");
391 }
392 
isTransparentUnion(QualType T)393 static bool isTransparentUnion(QualType T) {
394   const RecordType *UT = T->getAsUnionType();
395   return UT && UT->getDecl()->hasAttr<TransparentUnionAttr>();
396 }
397 
398 // In some cases, symbolic cases should be transformed before we associate
399 // them with parameters.  This function incapsulates such cases.
processArgument(SVal Value,const Expr * ArgumentExpr,const ParmVarDecl * Parameter,SValBuilder & SVB)400 static SVal processArgument(SVal Value, const Expr *ArgumentExpr,
401                             const ParmVarDecl *Parameter, SValBuilder &SVB) {
402   QualType ParamType = Parameter->getType();
403   QualType ArgumentType = ArgumentExpr->getType();
404 
405   // Transparent unions allow users to easily convert values of union field
406   // types into union-typed objects.
407   //
408   // Also, more importantly, they allow users to define functions with different
409   // different parameter types, substituting types matching transparent union
410   // field types with the union type itself.
411   //
412   // Here, we check specifically for latter cases and prevent binding
413   // field-typed values to union-typed regions.
414   if (isTransparentUnion(ParamType) &&
415       // Let's check that we indeed trying to bind different types.
416       !isTransparentUnion(ArgumentType)) {
417     BasicValueFactory &BVF = SVB.getBasicValueFactory();
418 
419     llvm::ImmutableList<SVal> CompoundSVals = BVF.getEmptySValList();
420     CompoundSVals = BVF.prependSVal(Value, CompoundSVals);
421 
422     // Wrap it with compound value.
423     return SVB.makeCompoundVal(ParamType, CompoundSVals);
424   }
425 
426   return Value;
427 }
428 
429 /// Cast the argument value to the type of the parameter at the function
430 /// declaration.
431 /// Returns the argument value if it didn't need a cast.
432 /// Or returns the cast argument if it needed a cast.
433 /// Or returns 'Unknown' if it would need a cast but the callsite and the
434 /// runtime definition don't match in terms of argument and parameter count.
castArgToParamTypeIfNeeded(const CallEvent & Call,unsigned ArgIdx,SVal ArgVal,SValBuilder & SVB)435 static SVal castArgToParamTypeIfNeeded(const CallEvent &Call, unsigned ArgIdx,
436                                        SVal ArgVal, SValBuilder &SVB) {
437   const FunctionDecl *RTDecl =
438       Call.getRuntimeDefinition().getDecl()->getAsFunction();
439   const auto *CallExprDecl = dyn_cast_or_null<FunctionDecl>(Call.getDecl());
440 
441   if (!RTDecl || !CallExprDecl)
442     return ArgVal;
443 
444   // The function decl of the Call (in the AST) will not have any parameter
445   // declarations, if it was 'only' declared without a prototype. However, the
446   // engine will find the appropriate runtime definition - basically a
447   // redeclaration, which has a function body (and a function prototype).
448   if (CallExprDecl->hasPrototype() || !RTDecl->hasPrototype())
449     return ArgVal;
450 
451   // Only do this cast if the number arguments at the callsite matches with
452   // the parameters at the runtime definition.
453   if (Call.getNumArgs() != RTDecl->getNumParams())
454     return UnknownVal();
455 
456   const Expr *ArgExpr = Call.getArgExpr(ArgIdx);
457   const ParmVarDecl *Param = RTDecl->getParamDecl(ArgIdx);
458   return SVB.evalCast(ArgVal, Param->getType(), ArgExpr->getType());
459 }
460 
addParameterValuesToBindings(const StackFrameContext * CalleeCtx,CallEvent::BindingsTy & Bindings,SValBuilder & SVB,const CallEvent & Call,ArrayRef<ParmVarDecl * > parameters)461 static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx,
462                                          CallEvent::BindingsTy &Bindings,
463                                          SValBuilder &SVB,
464                                          const CallEvent &Call,
465                                          ArrayRef<ParmVarDecl*> parameters) {
466   MemRegionManager &MRMgr = SVB.getRegionManager();
467 
468   // If the function has fewer parameters than the call has arguments, we simply
469   // do not bind any values to them.
470   unsigned NumArgs = Call.getNumArgs();
471   unsigned Idx = 0;
472   ArrayRef<ParmVarDecl*>::iterator I = parameters.begin(), E = parameters.end();
473   for (; I != E && Idx < NumArgs; ++I, ++Idx) {
474     assert(*I && "Formal parameter has no decl?");
475 
476     // TODO: Support allocator calls.
477     if (Call.getKind() != CE_CXXAllocator)
478       if (Call.isArgumentConstructedDirectly(Call.getASTArgumentIndex(Idx)))
479         continue;
480 
481     // TODO: Allocators should receive the correct size and possibly alignment,
482     // determined in compile-time but not represented as arg-expressions,
483     // which makes getArgSVal() fail and return UnknownVal.
484     SVal ArgVal = Call.getArgSVal(Idx);
485     const Expr *ArgExpr = Call.getArgExpr(Idx);
486 
487     if (ArgVal.isUnknown())
488       continue;
489 
490     // Cast the argument value to match the type of the parameter in some
491     // edge-cases.
492     ArgVal = castArgToParamTypeIfNeeded(Call, Idx, ArgVal, SVB);
493 
494     Loc ParamLoc = SVB.makeLoc(
495         MRMgr.getParamVarRegion(Call.getOriginExpr(), Idx, CalleeCtx));
496     Bindings.push_back(
497         std::make_pair(ParamLoc, processArgument(ArgVal, ArgExpr, *I, SVB)));
498   }
499 
500   // FIXME: Variadic arguments are not handled at all right now.
501 }
502 
getConstructionContext() const503 const ConstructionContext *CallEvent::getConstructionContext() const {
504   const StackFrameContext *StackFrame = getCalleeStackFrame(0);
505   if (!StackFrame)
506     return nullptr;
507 
508   const CFGElement Element = StackFrame->getCallSiteCFGElement();
509   if (const auto Ctor = Element.getAs<CFGConstructor>()) {
510     return Ctor->getConstructionContext();
511   }
512 
513   if (const auto RecCall = Element.getAs<CFGCXXRecordTypedCall>()) {
514     return RecCall->getConstructionContext();
515   }
516 
517   return nullptr;
518 }
519 
getCaller() const520 const CallEventRef<> CallEvent::getCaller() const {
521   const auto *CallLocationContext = this->getLocationContext();
522   if (!CallLocationContext || CallLocationContext->inTopFrame())
523     return nullptr;
524 
525   const auto *CallStackFrameContext = CallLocationContext->getStackFrame();
526   if (!CallStackFrameContext)
527     return nullptr;
528 
529   CallEventManager &CEMgr = State->getStateManager().getCallEventManager();
530   return CEMgr.getCaller(CallStackFrameContext, State);
531 }
532 
isCalledFromSystemHeader() const533 bool CallEvent::isCalledFromSystemHeader() const {
534   if (const CallEventRef<> Caller = getCaller())
535     return Caller->isInSystemHeader();
536 
537   return false;
538 }
539 
getReturnValueUnderConstruction() const540 std::optional<SVal> CallEvent::getReturnValueUnderConstruction() const {
541   const auto *CC = getConstructionContext();
542   if (!CC)
543     return std::nullopt;
544 
545   EvalCallOptions CallOpts;
546   ExprEngine &Engine = getState()->getStateManager().getOwningEngine();
547   SVal RetVal = Engine.computeObjectUnderConstruction(
548       getOriginExpr(), getState(), &Engine.getBuilderContext(),
549       getLocationContext(), CC, CallOpts);
550   return RetVal;
551 }
552 
parameters() const553 ArrayRef<ParmVarDecl*> AnyFunctionCall::parameters() const {
554   const FunctionDecl *D = getDecl();
555   if (!D)
556     return std::nullopt;
557   return D->parameters();
558 }
559 
getRuntimeDefinition() const560 RuntimeDefinition AnyFunctionCall::getRuntimeDefinition() const {
561   const FunctionDecl *FD = getDecl();
562   if (!FD)
563     return {};
564 
565   // Note that the AnalysisDeclContext will have the FunctionDecl with
566   // the definition (if one exists).
567   AnalysisDeclContext *AD =
568     getLocationContext()->getAnalysisDeclContext()->
569     getManager()->getContext(FD);
570   bool IsAutosynthesized;
571   Stmt* Body = AD->getBody(IsAutosynthesized);
572   LLVM_DEBUG({
573     if (IsAutosynthesized)
574       llvm::dbgs() << "Using autosynthesized body for " << FD->getName()
575                    << "\n";
576   });
577 
578   ExprEngine &Engine = getState()->getStateManager().getOwningEngine();
579   cross_tu::CrossTranslationUnitContext &CTUCtx =
580       *Engine.getCrossTranslationUnitContext();
581 
582   AnalyzerOptions &Opts = Engine.getAnalysisManager().options;
583 
584   if (Body) {
585     const Decl* Decl = AD->getDecl();
586     if (Opts.IsNaiveCTUEnabled && CTUCtx.isImportedAsNew(Decl)) {
587       // A newly created definition, but we had error(s) during the import.
588       if (CTUCtx.hasError(Decl))
589         return {};
590       return RuntimeDefinition(Decl, /*Foreign=*/true);
591     }
592     return RuntimeDefinition(Decl, /*Foreign=*/false);
593   }
594 
595   // Try to get CTU definition only if CTUDir is provided.
596   if (!Opts.IsNaiveCTUEnabled)
597     return {};
598 
599   llvm::Expected<const FunctionDecl *> CTUDeclOrError =
600       CTUCtx.getCrossTUDefinition(FD, Opts.CTUDir, Opts.CTUIndexName,
601                                   Opts.DisplayCTUProgress);
602 
603   if (!CTUDeclOrError) {
604     handleAllErrors(CTUDeclOrError.takeError(),
605                     [&](const cross_tu::IndexError &IE) {
606                       CTUCtx.emitCrossTUDiagnostics(IE);
607                     });
608     return {};
609   }
610 
611   return RuntimeDefinition(*CTUDeclOrError, /*Foreign=*/true);
612 }
613 
getInitialStackFrameContents(const StackFrameContext * CalleeCtx,BindingsTy & Bindings) const614 void AnyFunctionCall::getInitialStackFrameContents(
615                                         const StackFrameContext *CalleeCtx,
616                                         BindingsTy &Bindings) const {
617   const auto *D = cast<FunctionDecl>(CalleeCtx->getDecl());
618   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
619   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
620                                D->parameters());
621 }
622 
argumentsMayEscape() const623 bool AnyFunctionCall::argumentsMayEscape() const {
624   if (CallEvent::argumentsMayEscape() || hasVoidPointerToNonConstArg())
625     return true;
626 
627   const FunctionDecl *D = getDecl();
628   if (!D)
629     return true;
630 
631   const IdentifierInfo *II = D->getIdentifier();
632   if (!II)
633     return false;
634 
635   // This set of "escaping" APIs is
636 
637   // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
638   //   value into thread local storage. The value can later be retrieved with
639   //   'void *ptheread_getspecific(pthread_key)'. So even thought the
640   //   parameter is 'const void *', the region escapes through the call.
641   if (II->isStr("pthread_setspecific"))
642     return true;
643 
644   // - xpc_connection_set_context stores a value which can be retrieved later
645   //   with xpc_connection_get_context.
646   if (II->isStr("xpc_connection_set_context"))
647     return true;
648 
649   // - funopen - sets a buffer for future IO calls.
650   if (II->isStr("funopen"))
651     return true;
652 
653   // - __cxa_demangle - can reallocate memory and can return the pointer to
654   // the input buffer.
655   if (II->isStr("__cxa_demangle"))
656     return true;
657 
658   StringRef FName = II->getName();
659 
660   // - CoreFoundation functions that end with "NoCopy" can free a passed-in
661   //   buffer even if it is const.
662   if (FName.ends_with("NoCopy"))
663     return true;
664 
665   // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
666   //   be deallocated by NSMapRemove.
667   if (FName.starts_with("NS") && FName.contains("Insert"))
668     return true;
669 
670   // - Many CF containers allow objects to escape through custom
671   //   allocators/deallocators upon container construction. (PR12101)
672   if (FName.starts_with("CF") || FName.starts_with("CG")) {
673     return StrInStrNoCase(FName, "InsertValue")  != StringRef::npos ||
674            StrInStrNoCase(FName, "AddValue")     != StringRef::npos ||
675            StrInStrNoCase(FName, "SetValue")     != StringRef::npos ||
676            StrInStrNoCase(FName, "WithData")     != StringRef::npos ||
677            StrInStrNoCase(FName, "AppendValue")  != StringRef::npos ||
678            StrInStrNoCase(FName, "SetAttribute") != StringRef::npos;
679   }
680 
681   return false;
682 }
683 
getDecl() const684 const FunctionDecl *SimpleFunctionCall::getDecl() const {
685   const FunctionDecl *D = getOriginExpr()->getDirectCallee();
686   if (D)
687     return D;
688 
689   return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl();
690 }
691 
getDecl() const692 const FunctionDecl *CXXInstanceCall::getDecl() const {
693   const auto *CE = cast_or_null<CallExpr>(getOriginExpr());
694   if (!CE)
695     return AnyFunctionCall::getDecl();
696 
697   const FunctionDecl *D = CE->getDirectCallee();
698   if (D)
699     return D;
700 
701   return getSVal(CE->getCallee()).getAsFunctionDecl();
702 }
703 
getExtraInvalidatedValues(ValueList & Values,RegionAndSymbolInvalidationTraits * ETraits) const704 void CXXInstanceCall::getExtraInvalidatedValues(
705     ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
706   SVal ThisVal = getCXXThisVal();
707   Values.push_back(ThisVal);
708 
709   // Don't invalidate if the method is const and there are no mutable fields.
710   if (const auto *D = cast_or_null<CXXMethodDecl>(getDecl())) {
711     if (!D->isConst())
712       return;
713     // Get the record decl for the class of 'This'. D->getParent() may return a
714     // base class decl, rather than the class of the instance which needs to be
715     // checked for mutable fields.
716     // TODO: We might as well look at the dynamic type of the object.
717     const Expr *Ex = getCXXThisExpr()->IgnoreParenBaseCasts();
718     QualType T = Ex->getType();
719     if (T->isPointerType()) // Arrow or implicit-this syntax?
720       T = T->getPointeeType();
721     const CXXRecordDecl *ParentRecord = T->getAsCXXRecordDecl();
722     assert(ParentRecord);
723     if (ParentRecord->hasMutableFields())
724       return;
725     // Preserve CXXThis.
726     const MemRegion *ThisRegion = ThisVal.getAsRegion();
727     if (!ThisRegion)
728       return;
729 
730     ETraits->setTrait(ThisRegion->getBaseRegion(),
731                       RegionAndSymbolInvalidationTraits::TK_PreserveContents);
732   }
733 }
734 
getCXXThisVal() const735 SVal CXXInstanceCall::getCXXThisVal() const {
736   const Expr *Base = getCXXThisExpr();
737   // FIXME: This doesn't handle an overloaded ->* operator.
738   SVal ThisVal = Base ? getSVal(Base) : UnknownVal();
739 
740   if (isa<NonLoc>(ThisVal)) {
741     SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
742     QualType OriginalTy = ThisVal.getType(SVB.getContext());
743     return SVB.evalCast(ThisVal, Base->getType(), OriginalTy);
744   }
745 
746   assert(ThisVal.isUnknownOrUndef() || isa<Loc>(ThisVal));
747   return ThisVal;
748 }
749 
getRuntimeDefinition() const750 RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const {
751   // Do we have a decl at all?
752   const Decl *D = getDecl();
753   if (!D)
754     return {};
755 
756   // If the method is non-virtual, we know we can inline it.
757   const auto *MD = cast<CXXMethodDecl>(D);
758   if (!MD->isVirtual())
759     return AnyFunctionCall::getRuntimeDefinition();
760 
761   // Do we know the implicit 'this' object being called?
762   const MemRegion *R = getCXXThisVal().getAsRegion();
763   if (!R)
764     return {};
765 
766   // Do we know anything about the type of 'this'?
767   DynamicTypeInfo DynType = getDynamicTypeInfo(getState(), R);
768   if (!DynType.isValid())
769     return {};
770 
771   // Is the type a C++ class? (This is mostly a defensive check.)
772   QualType RegionType = DynType.getType()->getPointeeType();
773   assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer.");
774 
775   const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl();
776   if (!RD || !RD->hasDefinition())
777     return {};
778 
779   // Find the decl for this method in that class.
780   const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true);
781   if (!Result) {
782     // We might not even get the original statically-resolved method due to
783     // some particularly nasty casting (e.g. casts to sister classes).
784     // However, we should at least be able to search up and down our own class
785     // hierarchy, and some real bugs have been caught by checking this.
786     assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method");
787 
788     // FIXME: This is checking that our DynamicTypeInfo is at least as good as
789     // the static type. However, because we currently don't update
790     // DynamicTypeInfo when an object is cast, we can't actually be sure the
791     // DynamicTypeInfo is up to date. This assert should be re-enabled once
792     // this is fixed.
793     //
794     // assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo");
795 
796     return {};
797   }
798 
799   // Does the decl that we found have an implementation?
800   const FunctionDecl *Definition;
801   if (!Result->hasBody(Definition)) {
802     if (!DynType.canBeASubClass())
803       return AnyFunctionCall::getRuntimeDefinition();
804     return {};
805   }
806 
807   // We found a definition. If we're not sure that this devirtualization is
808   // actually what will happen at runtime, make sure to provide the region so
809   // that ExprEngine can decide what to do with it.
810   if (DynType.canBeASubClass())
811     return RuntimeDefinition(Definition, R->StripCasts());
812   return RuntimeDefinition(Definition, /*DispatchRegion=*/nullptr);
813 }
814 
getInitialStackFrameContents(const StackFrameContext * CalleeCtx,BindingsTy & Bindings) const815 void CXXInstanceCall::getInitialStackFrameContents(
816                                             const StackFrameContext *CalleeCtx,
817                                             BindingsTy &Bindings) const {
818   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
819 
820   // Handle the binding of 'this' in the new stack frame.
821   SVal ThisVal = getCXXThisVal();
822   if (!ThisVal.isUnknown()) {
823     ProgramStateManager &StateMgr = getState()->getStateManager();
824     SValBuilder &SVB = StateMgr.getSValBuilder();
825 
826     const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
827     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
828 
829     // If we devirtualized to a different member function, we need to make sure
830     // we have the proper layering of CXXBaseObjectRegions.
831     if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) {
832       ASTContext &Ctx = SVB.getContext();
833       const CXXRecordDecl *Class = MD->getParent();
834       QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class));
835 
836       // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager.
837       std::optional<SVal> V =
838           StateMgr.getStoreManager().evalBaseToDerived(ThisVal, Ty);
839       if (!V) {
840         // We might have suffered some sort of placement new earlier, so
841         // we're constructing in a completely unexpected storage.
842         // Fall back to a generic pointer cast for this-value.
843         const CXXMethodDecl *StaticMD = cast<CXXMethodDecl>(getDecl());
844         const CXXRecordDecl *StaticClass = StaticMD->getParent();
845         QualType StaticTy = Ctx.getPointerType(Ctx.getRecordType(StaticClass));
846         ThisVal = SVB.evalCast(ThisVal, Ty, StaticTy);
847       } else
848         ThisVal = *V;
849     }
850 
851     if (!ThisVal.isUnknown())
852       Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
853   }
854 }
855 
getCXXThisExpr() const856 const Expr *CXXMemberCall::getCXXThisExpr() const {
857   return getOriginExpr()->getImplicitObjectArgument();
858 }
859 
getRuntimeDefinition() const860 RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const {
861   // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the
862   // id-expression in the class member access expression is a qualified-id,
863   // that function is called. Otherwise, its final overrider in the dynamic type
864   // of the object expression is called.
865   if (const auto *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee()))
866     if (ME->hasQualifier())
867       return AnyFunctionCall::getRuntimeDefinition();
868 
869   return CXXInstanceCall::getRuntimeDefinition();
870 }
871 
getCXXThisExpr() const872 const Expr *CXXMemberOperatorCall::getCXXThisExpr() const {
873   return getOriginExpr()->getArg(0);
874 }
875 
getBlockRegion() const876 const BlockDataRegion *BlockCall::getBlockRegion() const {
877   const Expr *Callee = getOriginExpr()->getCallee();
878   const MemRegion *DataReg = getSVal(Callee).getAsRegion();
879 
880   return dyn_cast_or_null<BlockDataRegion>(DataReg);
881 }
882 
parameters() const883 ArrayRef<ParmVarDecl*> BlockCall::parameters() const {
884   const BlockDecl *D = getDecl();
885   if (!D)
886     return std::nullopt;
887   return D->parameters();
888 }
889 
getExtraInvalidatedValues(ValueList & Values,RegionAndSymbolInvalidationTraits * ETraits) const890 void BlockCall::getExtraInvalidatedValues(ValueList &Values,
891                   RegionAndSymbolInvalidationTraits *ETraits) const {
892   // FIXME: This also needs to invalidate captured globals.
893   if (const MemRegion *R = getBlockRegion())
894     Values.push_back(loc::MemRegionVal(R));
895 }
896 
getInitialStackFrameContents(const StackFrameContext * CalleeCtx,BindingsTy & Bindings) const897 void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
898                                              BindingsTy &Bindings) const {
899   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
900   ArrayRef<ParmVarDecl*> Params;
901   if (isConversionFromLambda()) {
902     auto *LambdaOperatorDecl = cast<CXXMethodDecl>(CalleeCtx->getDecl());
903     Params = LambdaOperatorDecl->parameters();
904 
905     // For blocks converted from a C++ lambda, the callee declaration is the
906     // operator() method on the lambda so we bind "this" to
907     // the lambda captured by the block.
908     const VarRegion *CapturedLambdaRegion = getRegionStoringCapturedLambda();
909     SVal ThisVal = loc::MemRegionVal(CapturedLambdaRegion);
910     Loc ThisLoc = SVB.getCXXThis(LambdaOperatorDecl, CalleeCtx);
911     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
912   } else {
913     Params = cast<BlockDecl>(CalleeCtx->getDecl())->parameters();
914   }
915 
916   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
917                                Params);
918 }
919 
getCXXThisVal() const920 SVal AnyCXXConstructorCall::getCXXThisVal() const {
921   if (Data)
922     return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
923   return UnknownVal();
924 }
925 
getExtraInvalidatedValues(ValueList & Values,RegionAndSymbolInvalidationTraits * ETraits) const926 void AnyCXXConstructorCall::getExtraInvalidatedValues(ValueList &Values,
927                            RegionAndSymbolInvalidationTraits *ETraits) const {
928   SVal V = getCXXThisVal();
929   if (SymbolRef Sym = V.getAsSymbol(true))
930     ETraits->setTrait(Sym,
931                       RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
932   Values.push_back(V);
933 }
934 
getInitialStackFrameContents(const StackFrameContext * CalleeCtx,BindingsTy & Bindings) const935 void AnyCXXConstructorCall::getInitialStackFrameContents(
936                                              const StackFrameContext *CalleeCtx,
937                                              BindingsTy &Bindings) const {
938   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
939 
940   SVal ThisVal = getCXXThisVal();
941   if (!ThisVal.isUnknown()) {
942     SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
943     const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
944     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
945     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
946   }
947 }
948 
949 const StackFrameContext *
getInheritingStackFrame() const950 CXXInheritedConstructorCall::getInheritingStackFrame() const {
951   const StackFrameContext *SFC = getLocationContext()->getStackFrame();
952   while (isa<CXXInheritedCtorInitExpr>(SFC->getCallSite()))
953     SFC = SFC->getParent()->getStackFrame();
954   return SFC;
955 }
956 
getCXXThisVal() const957 SVal CXXDestructorCall::getCXXThisVal() const {
958   if (Data)
959     return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer());
960   return UnknownVal();
961 }
962 
getRuntimeDefinition() const963 RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const {
964   // Base destructors are always called non-virtually.
965   // Skip CXXInstanceCall's devirtualization logic in this case.
966   if (isBaseDestructor())
967     return AnyFunctionCall::getRuntimeDefinition();
968 
969   return CXXInstanceCall::getRuntimeDefinition();
970 }
971 
parameters() const972 ArrayRef<ParmVarDecl*> ObjCMethodCall::parameters() const {
973   const ObjCMethodDecl *D = getDecl();
974   if (!D)
975     return std::nullopt;
976   return D->parameters();
977 }
978 
getExtraInvalidatedValues(ValueList & Values,RegionAndSymbolInvalidationTraits * ETraits) const979 void ObjCMethodCall::getExtraInvalidatedValues(
980     ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
981 
982   // If the method call is a setter for property known to be backed by
983   // an instance variable, don't invalidate the entire receiver, just
984   // the storage for that instance variable.
985   if (const ObjCPropertyDecl *PropDecl = getAccessedProperty()) {
986     if (const ObjCIvarDecl *PropIvar = PropDecl->getPropertyIvarDecl()) {
987       SVal IvarLVal = getState()->getLValue(PropIvar, getReceiverSVal());
988       if (const MemRegion *IvarRegion = IvarLVal.getAsRegion()) {
989         ETraits->setTrait(
990           IvarRegion,
991           RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
992         ETraits->setTrait(
993           IvarRegion,
994           RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
995         Values.push_back(IvarLVal);
996       }
997       return;
998     }
999   }
1000 
1001   Values.push_back(getReceiverSVal());
1002 }
1003 
getReceiverSVal() const1004 SVal ObjCMethodCall::getReceiverSVal() const {
1005   // FIXME: Is this the best way to handle class receivers?
1006   if (!isInstanceMessage())
1007     return UnknownVal();
1008 
1009   if (const Expr *RecE = getOriginExpr()->getInstanceReceiver())
1010     return getSVal(RecE);
1011 
1012   // An instance message with no expression means we are sending to super.
1013   // In this case the object reference is the same as 'self'.
1014   assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance);
1015   SVal SelfVal = getState()->getSelfSVal(getLocationContext());
1016   assert(SelfVal.isValid() && "Calling super but not in ObjC method");
1017   return SelfVal;
1018 }
1019 
isReceiverSelfOrSuper() const1020 bool ObjCMethodCall::isReceiverSelfOrSuper() const {
1021   if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance ||
1022       getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass)
1023       return true;
1024 
1025   if (!isInstanceMessage())
1026     return false;
1027 
1028   SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver());
1029   SVal SelfVal = getState()->getSelfSVal(getLocationContext());
1030 
1031   return (RecVal == SelfVal);
1032 }
1033 
getSourceRange() const1034 SourceRange ObjCMethodCall::getSourceRange() const {
1035   switch (getMessageKind()) {
1036   case OCM_Message:
1037     return getOriginExpr()->getSourceRange();
1038   case OCM_PropertyAccess:
1039   case OCM_Subscript:
1040     return getContainingPseudoObjectExpr()->getSourceRange();
1041   }
1042   llvm_unreachable("unknown message kind");
1043 }
1044 
1045 using ObjCMessageDataTy = llvm::PointerIntPair<const PseudoObjectExpr *, 2>;
1046 
getContainingPseudoObjectExpr() const1047 const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const {
1048   assert(Data && "Lazy lookup not yet performed.");
1049   assert(getMessageKind() != OCM_Message && "Explicit message send.");
1050   return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer();
1051 }
1052 
1053 static const Expr *
getSyntacticFromForPseudoObjectExpr(const PseudoObjectExpr * POE)1054 getSyntacticFromForPseudoObjectExpr(const PseudoObjectExpr *POE) {
1055   const Expr *Syntactic = POE->getSyntacticForm()->IgnoreParens();
1056 
1057   // This handles the funny case of assigning to the result of a getter.
1058   // This can happen if the getter returns a non-const reference.
1059   if (const auto *BO = dyn_cast<BinaryOperator>(Syntactic))
1060     Syntactic = BO->getLHS()->IgnoreParens();
1061 
1062   return Syntactic;
1063 }
1064 
getMessageKind() const1065 ObjCMessageKind ObjCMethodCall::getMessageKind() const {
1066   if (!Data) {
1067     // Find the parent, ignoring implicit casts.
1068     const ParentMap &PM = getLocationContext()->getParentMap();
1069     const Stmt *S = PM.getParentIgnoreParenCasts(getOriginExpr());
1070 
1071     // Check if parent is a PseudoObjectExpr.
1072     if (const auto *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) {
1073       const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
1074 
1075       ObjCMessageKind K;
1076       switch (Syntactic->getStmtClass()) {
1077       case Stmt::ObjCPropertyRefExprClass:
1078         K = OCM_PropertyAccess;
1079         break;
1080       case Stmt::ObjCSubscriptRefExprClass:
1081         K = OCM_Subscript;
1082         break;
1083       default:
1084         // FIXME: Can this ever happen?
1085         K = OCM_Message;
1086         break;
1087       }
1088 
1089       if (K != OCM_Message) {
1090         const_cast<ObjCMethodCall *>(this)->Data
1091           = ObjCMessageDataTy(POE, K).getOpaqueValue();
1092         assert(getMessageKind() == K);
1093         return K;
1094       }
1095     }
1096 
1097     const_cast<ObjCMethodCall *>(this)->Data
1098       = ObjCMessageDataTy(nullptr, 1).getOpaqueValue();
1099     assert(getMessageKind() == OCM_Message);
1100     return OCM_Message;
1101   }
1102 
1103   ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data);
1104   if (!Info.getPointer())
1105     return OCM_Message;
1106   return static_cast<ObjCMessageKind>(Info.getInt());
1107 }
1108 
getAccessedProperty() const1109 const ObjCPropertyDecl *ObjCMethodCall::getAccessedProperty() const {
1110   // Look for properties accessed with property syntax (foo.bar = ...)
1111   if (getMessageKind() == OCM_PropertyAccess) {
1112     const PseudoObjectExpr *POE = getContainingPseudoObjectExpr();
1113     assert(POE && "Property access without PseudoObjectExpr?");
1114 
1115     const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
1116     auto *RefExpr = cast<ObjCPropertyRefExpr>(Syntactic);
1117 
1118     if (RefExpr->isExplicitProperty())
1119       return RefExpr->getExplicitProperty();
1120   }
1121 
1122   // Look for properties accessed with method syntax ([foo setBar:...]).
1123   const ObjCMethodDecl *MD = getDecl();
1124   if (!MD || !MD->isPropertyAccessor())
1125     return nullptr;
1126 
1127   // Note: This is potentially quite slow.
1128   return MD->findPropertyDecl();
1129 }
1130 
canBeOverridenInSubclass(ObjCInterfaceDecl * IDecl,Selector Sel) const1131 bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl,
1132                                              Selector Sel) const {
1133   assert(IDecl);
1134   AnalysisManager &AMgr =
1135       getState()->getStateManager().getOwningEngine().getAnalysisManager();
1136   // If the class interface is declared inside the main file, assume it is not
1137   // subcassed.
1138   // TODO: It could actually be subclassed if the subclass is private as well.
1139   // This is probably very rare.
1140   SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc();
1141   if (InterfLoc.isValid() && AMgr.isInCodeFile(InterfLoc))
1142     return false;
1143 
1144   // Assume that property accessors are not overridden.
1145   if (getMessageKind() == OCM_PropertyAccess)
1146     return false;
1147 
1148   // We assume that if the method is public (declared outside of main file) or
1149   // has a parent which publicly declares the method, the method could be
1150   // overridden in a subclass.
1151 
1152   // Find the first declaration in the class hierarchy that declares
1153   // the selector.
1154   ObjCMethodDecl *D = nullptr;
1155   while (true) {
1156     D = IDecl->lookupMethod(Sel, true);
1157 
1158     // Cannot find a public definition.
1159     if (!D)
1160       return false;
1161 
1162     // If outside the main file,
1163     if (D->getLocation().isValid() && !AMgr.isInCodeFile(D->getLocation()))
1164       return true;
1165 
1166     if (D->isOverriding()) {
1167       // Search in the superclass on the next iteration.
1168       IDecl = D->getClassInterface();
1169       if (!IDecl)
1170         return false;
1171 
1172       IDecl = IDecl->getSuperClass();
1173       if (!IDecl)
1174         return false;
1175 
1176       continue;
1177     }
1178 
1179     return false;
1180   };
1181 
1182   llvm_unreachable("The while loop should always terminate.");
1183 }
1184 
findDefiningRedecl(const ObjCMethodDecl * MD)1185 static const ObjCMethodDecl *findDefiningRedecl(const ObjCMethodDecl *MD) {
1186   if (!MD)
1187     return MD;
1188 
1189   // Find the redeclaration that defines the method.
1190   if (!MD->hasBody()) {
1191     for (auto *I : MD->redecls())
1192       if (I->hasBody())
1193         MD = cast<ObjCMethodDecl>(I);
1194   }
1195   return MD;
1196 }
1197 
1198 struct PrivateMethodKey {
1199   const ObjCInterfaceDecl *Interface;
1200   Selector LookupSelector;
1201   bool IsClassMethod;
1202 };
1203 
1204 namespace llvm {
1205 template <> struct DenseMapInfo<PrivateMethodKey> {
1206   using InterfaceInfo = DenseMapInfo<const ObjCInterfaceDecl *>;
1207   using SelectorInfo = DenseMapInfo<Selector>;
1208 
getEmptyKeyllvm::DenseMapInfo1209   static inline PrivateMethodKey getEmptyKey() {
1210     return {InterfaceInfo::getEmptyKey(), SelectorInfo::getEmptyKey(), false};
1211   }
1212 
getTombstoneKeyllvm::DenseMapInfo1213   static inline PrivateMethodKey getTombstoneKey() {
1214     return {InterfaceInfo::getTombstoneKey(), SelectorInfo::getTombstoneKey(),
1215             true};
1216   }
1217 
getHashValuellvm::DenseMapInfo1218   static unsigned getHashValue(const PrivateMethodKey &Key) {
1219     return llvm::hash_combine(
1220         llvm::hash_code(InterfaceInfo::getHashValue(Key.Interface)),
1221         llvm::hash_code(SelectorInfo::getHashValue(Key.LookupSelector)),
1222         Key.IsClassMethod);
1223   }
1224 
isEqualllvm::DenseMapInfo1225   static bool isEqual(const PrivateMethodKey &LHS,
1226                       const PrivateMethodKey &RHS) {
1227     return InterfaceInfo::isEqual(LHS.Interface, RHS.Interface) &&
1228            SelectorInfo::isEqual(LHS.LookupSelector, RHS.LookupSelector) &&
1229            LHS.IsClassMethod == RHS.IsClassMethod;
1230   }
1231 };
1232 } // end namespace llvm
1233 
1234 static const ObjCMethodDecl *
lookupRuntimeDefinition(const ObjCInterfaceDecl * Interface,Selector LookupSelector,bool InstanceMethod)1235 lookupRuntimeDefinition(const ObjCInterfaceDecl *Interface,
1236                         Selector LookupSelector, bool InstanceMethod) {
1237   // Repeatedly calling lookupPrivateMethod() is expensive, especially
1238   // when in many cases it returns null.  We cache the results so
1239   // that repeated queries on the same ObjCIntefaceDecl and Selector
1240   // don't incur the same cost.  On some test cases, we can see the
1241   // same query being issued thousands of times.
1242   //
1243   // NOTE: This cache is essentially a "global" variable, but it
1244   // only gets lazily created when we get here.  The value of the
1245   // cache probably comes from it being global across ExprEngines,
1246   // where the same queries may get issued.  If we are worried about
1247   // concurrency, or possibly loading/unloading ASTs, etc., we may
1248   // need to revisit this someday.  In terms of memory, this table
1249   // stays around until clang quits, which also may be bad if we
1250   // need to release memory.
1251   using PrivateMethodCache =
1252       llvm::DenseMap<PrivateMethodKey, std::optional<const ObjCMethodDecl *>>;
1253 
1254   static PrivateMethodCache PMC;
1255   std::optional<const ObjCMethodDecl *> &Val =
1256       PMC[{Interface, LookupSelector, InstanceMethod}];
1257 
1258   // Query lookupPrivateMethod() if the cache does not hit.
1259   if (!Val) {
1260     Val = Interface->lookupPrivateMethod(LookupSelector, InstanceMethod);
1261 
1262     if (!*Val) {
1263       // Query 'lookupMethod' as a backup.
1264       Val = Interface->lookupMethod(LookupSelector, InstanceMethod);
1265     }
1266   }
1267 
1268   return *Val;
1269 }
1270 
getRuntimeDefinition() const1271 RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const {
1272   const ObjCMessageExpr *E = getOriginExpr();
1273   assert(E);
1274   Selector Sel = E->getSelector();
1275 
1276   if (E->isInstanceMessage()) {
1277     // Find the receiver type.
1278     const ObjCObjectType *ReceiverT = nullptr;
1279     bool CanBeSubClassed = false;
1280     bool LookingForInstanceMethod = true;
1281     QualType SupersType = E->getSuperType();
1282     const MemRegion *Receiver = nullptr;
1283 
1284     if (!SupersType.isNull()) {
1285       // The receiver is guaranteed to be 'super' in this case.
1286       // Super always means the type of immediate predecessor to the method
1287       // where the call occurs.
1288       ReceiverT = cast<ObjCObjectPointerType>(SupersType)->getObjectType();
1289     } else {
1290       Receiver = getReceiverSVal().getAsRegion();
1291       if (!Receiver)
1292         return {};
1293 
1294       DynamicTypeInfo DTI = getDynamicTypeInfo(getState(), Receiver);
1295       if (!DTI.isValid()) {
1296         assert(isa<AllocaRegion>(Receiver) &&
1297                "Unhandled untyped region class!");
1298         return {};
1299       }
1300 
1301       QualType DynType = DTI.getType();
1302       CanBeSubClassed = DTI.canBeASubClass();
1303 
1304       const auto *ReceiverDynT =
1305           dyn_cast<ObjCObjectPointerType>(DynType.getCanonicalType());
1306 
1307       if (ReceiverDynT) {
1308         ReceiverT = ReceiverDynT->getObjectType();
1309 
1310         // It can be actually class methods called with Class object as a
1311         // receiver. This type of messages is treated by the compiler as
1312         // instance (not class).
1313         if (ReceiverT->isObjCClass()) {
1314 
1315           SVal SelfVal = getState()->getSelfSVal(getLocationContext());
1316           // For [self classMethod], return compiler visible declaration.
1317           if (Receiver == SelfVal.getAsRegion()) {
1318             return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl()));
1319           }
1320 
1321           // Otherwise, let's check if we know something about the type
1322           // inside of this class object.
1323           if (SymbolRef ReceiverSym = getReceiverSVal().getAsSymbol()) {
1324             DynamicTypeInfo DTI =
1325                 getClassObjectDynamicTypeInfo(getState(), ReceiverSym);
1326             if (DTI.isValid()) {
1327               // Let's use this type for lookup.
1328               ReceiverT =
1329                   cast<ObjCObjectType>(DTI.getType().getCanonicalType());
1330 
1331               CanBeSubClassed = DTI.canBeASubClass();
1332               // And it should be a class method instead.
1333               LookingForInstanceMethod = false;
1334             }
1335           }
1336         }
1337 
1338         if (CanBeSubClassed)
1339           if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterface())
1340             // Even if `DynamicTypeInfo` told us that it can be
1341             // not necessarily this type, but its descendants, we still want
1342             // to check again if this selector can be actually overridden.
1343             CanBeSubClassed = canBeOverridenInSubclass(IDecl, Sel);
1344       }
1345     }
1346 
1347     // Lookup the instance method implementation.
1348     if (ReceiverT)
1349       if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterface()) {
1350         const ObjCMethodDecl *MD =
1351             lookupRuntimeDefinition(IDecl, Sel, LookingForInstanceMethod);
1352 
1353         if (MD && !MD->hasBody())
1354           MD = MD->getCanonicalDecl();
1355 
1356         if (CanBeSubClassed)
1357           return RuntimeDefinition(MD, Receiver);
1358         else
1359           return RuntimeDefinition(MD, nullptr);
1360       }
1361   } else {
1362     // This is a class method.
1363     // If we have type info for the receiver class, we are calling via
1364     // class name.
1365     if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) {
1366       // Find/Return the method implementation.
1367       return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel));
1368     }
1369   }
1370 
1371   return {};
1372 }
1373 
argumentsMayEscape() const1374 bool ObjCMethodCall::argumentsMayEscape() const {
1375   if (isInSystemHeader() && !isInstanceMessage()) {
1376     Selector Sel = getSelector();
1377     if (Sel.getNumArgs() == 1 &&
1378         Sel.getIdentifierInfoForSlot(0)->isStr("valueWithPointer"))
1379       return true;
1380   }
1381 
1382   return CallEvent::argumentsMayEscape();
1383 }
1384 
getInitialStackFrameContents(const StackFrameContext * CalleeCtx,BindingsTy & Bindings) const1385 void ObjCMethodCall::getInitialStackFrameContents(
1386                                              const StackFrameContext *CalleeCtx,
1387                                              BindingsTy &Bindings) const {
1388   const auto *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl());
1389   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
1390   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
1391                                D->parameters());
1392 
1393   SVal SelfVal = getReceiverSVal();
1394   if (!SelfVal.isUnknown()) {
1395     const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl();
1396     MemRegionManager &MRMgr = SVB.getRegionManager();
1397     Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx));
1398     Bindings.push_back(std::make_pair(SelfLoc, SelfVal));
1399   }
1400 }
1401 
1402 CallEventRef<>
getSimpleCall(const CallExpr * CE,ProgramStateRef State,const LocationContext * LCtx,CFGBlock::ConstCFGElementRef ElemRef)1403 CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State,
1404                                 const LocationContext *LCtx,
1405                                 CFGBlock::ConstCFGElementRef ElemRef) {
1406   if (const auto *MCE = dyn_cast<CXXMemberCallExpr>(CE))
1407     return create<CXXMemberCall>(MCE, State, LCtx, ElemRef);
1408 
1409   if (const auto *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
1410     const FunctionDecl *DirectCallee = OpCE->getDirectCallee();
1411     if (const auto *MD = dyn_cast<CXXMethodDecl>(DirectCallee)) {
1412       if (MD->isImplicitObjectMemberFunction())
1413         return create<CXXMemberOperatorCall>(OpCE, State, LCtx, ElemRef);
1414       if (MD->isStatic())
1415         return create<CXXStaticOperatorCall>(OpCE, State, LCtx, ElemRef);
1416     }
1417 
1418   } else if (CE->getCallee()->getType()->isBlockPointerType()) {
1419     return create<BlockCall>(CE, State, LCtx, ElemRef);
1420   }
1421 
1422   // Otherwise, it's a normal function call, static member function call, or
1423   // something we can't reason about.
1424   return create<SimpleFunctionCall>(CE, State, LCtx, ElemRef);
1425 }
1426 
1427 CallEventRef<>
getCaller(const StackFrameContext * CalleeCtx,ProgramStateRef State)1428 CallEventManager::getCaller(const StackFrameContext *CalleeCtx,
1429                             ProgramStateRef State) {
1430   const LocationContext *ParentCtx = CalleeCtx->getParent();
1431   const LocationContext *CallerCtx = ParentCtx->getStackFrame();
1432   CFGBlock::ConstCFGElementRef ElemRef = {CalleeCtx->getCallSiteBlock(),
1433                                           CalleeCtx->getIndex()};
1434   assert(CallerCtx && "This should not be used for top-level stack frames");
1435 
1436   const Stmt *CallSite = CalleeCtx->getCallSite();
1437 
1438   if (CallSite) {
1439     if (CallEventRef<> Out = getCall(CallSite, State, CallerCtx, ElemRef))
1440       return Out;
1441 
1442     SValBuilder &SVB = State->getStateManager().getSValBuilder();
1443     const auto *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl());
1444     Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx);
1445     SVal ThisVal = State->getSVal(ThisPtr);
1446 
1447     if (const auto *CE = dyn_cast<CXXConstructExpr>(CallSite))
1448       return getCXXConstructorCall(CE, ThisVal.getAsRegion(), State, CallerCtx,
1449                                    ElemRef);
1450     else if (const auto *CIE = dyn_cast<CXXInheritedCtorInitExpr>(CallSite))
1451       return getCXXInheritedConstructorCall(CIE, ThisVal.getAsRegion(), State,
1452                                             CallerCtx, ElemRef);
1453     else {
1454       // All other cases are handled by getCall.
1455       llvm_unreachable("This is not an inlineable statement");
1456     }
1457   }
1458 
1459   // Fall back to the CFG. The only thing we haven't handled yet is
1460   // destructors, though this could change in the future.
1461   const CFGBlock *B = CalleeCtx->getCallSiteBlock();
1462   CFGElement E = (*B)[CalleeCtx->getIndex()];
1463   assert((E.getAs<CFGImplicitDtor>() || E.getAs<CFGTemporaryDtor>()) &&
1464          "All other CFG elements should have exprs");
1465 
1466   SValBuilder &SVB = State->getStateManager().getSValBuilder();
1467   const auto *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl());
1468   Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx);
1469   SVal ThisVal = State->getSVal(ThisPtr);
1470 
1471   const Stmt *Trigger;
1472   if (std::optional<CFGAutomaticObjDtor> AutoDtor =
1473           E.getAs<CFGAutomaticObjDtor>())
1474     Trigger = AutoDtor->getTriggerStmt();
1475   else if (std::optional<CFGDeleteDtor> DeleteDtor = E.getAs<CFGDeleteDtor>())
1476     Trigger = DeleteDtor->getDeleteExpr();
1477   else
1478     Trigger = Dtor->getBody();
1479 
1480   return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(),
1481                               E.getAs<CFGBaseDtor>().has_value(), State,
1482                               CallerCtx, ElemRef);
1483 }
1484 
getCall(const Stmt * S,ProgramStateRef State,const LocationContext * LC,CFGBlock::ConstCFGElementRef ElemRef)1485 CallEventRef<> CallEventManager::getCall(const Stmt *S, ProgramStateRef State,
1486                                          const LocationContext *LC,
1487                                          CFGBlock::ConstCFGElementRef ElemRef) {
1488   if (const auto *CE = dyn_cast<CallExpr>(S)) {
1489     return getSimpleCall(CE, State, LC, ElemRef);
1490   } else if (const auto *NE = dyn_cast<CXXNewExpr>(S)) {
1491     return getCXXAllocatorCall(NE, State, LC, ElemRef);
1492   } else if (const auto *DE = dyn_cast<CXXDeleteExpr>(S)) {
1493     return getCXXDeallocatorCall(DE, State, LC, ElemRef);
1494   } else if (const auto *ME = dyn_cast<ObjCMessageExpr>(S)) {
1495     return getObjCMethodCall(ME, State, LC, ElemRef);
1496   } else {
1497     return nullptr;
1498   }
1499 }
1500