1 //===-- llvm/Target/TargetMachine.h - Target Information --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the TargetMachine and LLVMTargetMachine classes.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #ifndef LLVM_TARGET_TARGETMACHINE_H
14 #define LLVM_TARGET_TARGETMACHINE_H
15
16 #include "llvm/ADT/StringRef.h"
17 #include "llvm/IR/DataLayout.h"
18 #include "llvm/IR/PassManager.h"
19 #include "llvm/Support/Allocator.h"
20 #include "llvm/Support/CodeGen.h"
21 #include "llvm/Support/Error.h"
22 #include "llvm/Support/PGOOptions.h"
23 #include "llvm/Target/CGPassBuilderOption.h"
24 #include "llvm/Target/TargetOptions.h"
25 #include "llvm/TargetParser/Triple.h"
26 #include <optional>
27 #include <string>
28 #include <utility>
29
30 namespace llvm {
31
32 class AAManager;
33 using ModulePassManager = PassManager<Module>;
34
35 class Function;
36 class GlobalValue;
37 class MachineModuleInfoWrapperPass;
38 class Mangler;
39 class MCAsmInfo;
40 class MCContext;
41 class MCInstrInfo;
42 class MCRegisterInfo;
43 class MCStreamer;
44 class MCSubtargetInfo;
45 class MCSymbol;
46 class raw_pwrite_stream;
47 class PassBuilder;
48 class PassInstrumentationCallbacks;
49 struct PerFunctionMIParsingState;
50 class SMDiagnostic;
51 class SMRange;
52 class Target;
53 class TargetIntrinsicInfo;
54 class TargetIRAnalysis;
55 class TargetTransformInfo;
56 class TargetLoweringObjectFile;
57 class TargetPassConfig;
58 class TargetSubtargetInfo;
59
60 // The old pass manager infrastructure is hidden in a legacy namespace now.
61 namespace legacy {
62 class PassManagerBase;
63 }
64 using legacy::PassManagerBase;
65
66 struct MachineFunctionInfo;
67 namespace yaml {
68 struct MachineFunctionInfo;
69 }
70
71 //===----------------------------------------------------------------------===//
72 ///
73 /// Primary interface to the complete machine description for the target
74 /// machine. All target-specific information should be accessible through this
75 /// interface.
76 ///
77 class TargetMachine {
78 protected: // Can only create subclasses.
79 TargetMachine(const Target &T, StringRef DataLayoutString,
80 const Triple &TargetTriple, StringRef CPU, StringRef FS,
81 const TargetOptions &Options);
82
83 /// The Target that this machine was created for.
84 const Target &TheTarget;
85
86 /// DataLayout for the target: keep ABI type size and alignment.
87 ///
88 /// The DataLayout is created based on the string representation provided
89 /// during construction. It is kept here only to avoid reparsing the string
90 /// but should not really be used during compilation, because it has an
91 /// internal cache that is context specific.
92 const DataLayout DL;
93
94 /// Triple string, CPU name, and target feature strings the TargetMachine
95 /// instance is created with.
96 Triple TargetTriple;
97 std::string TargetCPU;
98 std::string TargetFS;
99
100 Reloc::Model RM = Reloc::Static;
101 CodeModel::Model CMModel = CodeModel::Small;
102 uint64_t LargeDataThreshold = 0;
103 CodeGenOptLevel OptLevel = CodeGenOptLevel::Default;
104
105 /// Contains target specific asm information.
106 std::unique_ptr<const MCAsmInfo> AsmInfo;
107 std::unique_ptr<const MCRegisterInfo> MRI;
108 std::unique_ptr<const MCInstrInfo> MII;
109 std::unique_ptr<const MCSubtargetInfo> STI;
110
111 unsigned RequireStructuredCFG : 1;
112 unsigned O0WantsFastISel : 1;
113
114 // PGO related tunables.
115 std::optional<PGOOptions> PGOOption;
116
117 public:
118 mutable TargetOptions Options;
119
120 TargetMachine(const TargetMachine &) = delete;
121 void operator=(const TargetMachine &) = delete;
122 virtual ~TargetMachine();
123
getTarget()124 const Target &getTarget() const { return TheTarget; }
125
getTargetTriple()126 const Triple &getTargetTriple() const { return TargetTriple; }
getTargetCPU()127 StringRef getTargetCPU() const { return TargetCPU; }
getTargetFeatureString()128 StringRef getTargetFeatureString() const { return TargetFS; }
setTargetFeatureString(StringRef FS)129 void setTargetFeatureString(StringRef FS) { TargetFS = std::string(FS); }
130
131 /// Virtual method implemented by subclasses that returns a reference to that
132 /// target's TargetSubtargetInfo-derived member variable.
getSubtargetImpl(const Function &)133 virtual const TargetSubtargetInfo *getSubtargetImpl(const Function &) const {
134 return nullptr;
135 }
getObjFileLowering()136 virtual TargetLoweringObjectFile *getObjFileLowering() const {
137 return nullptr;
138 }
139
140 /// Create the target's instance of MachineFunctionInfo
141 virtual MachineFunctionInfo *
createMachineFunctionInfo(BumpPtrAllocator & Allocator,const Function & F,const TargetSubtargetInfo * STI)142 createMachineFunctionInfo(BumpPtrAllocator &Allocator, const Function &F,
143 const TargetSubtargetInfo *STI) const {
144 return nullptr;
145 }
146
147 /// Allocate and return a default initialized instance of the YAML
148 /// representation for the MachineFunctionInfo.
createDefaultFuncInfoYAML()149 virtual yaml::MachineFunctionInfo *createDefaultFuncInfoYAML() const {
150 return nullptr;
151 }
152
153 /// Allocate and initialize an instance of the YAML representation of the
154 /// MachineFunctionInfo.
155 virtual yaml::MachineFunctionInfo *
convertFuncInfoToYAML(const MachineFunction & MF)156 convertFuncInfoToYAML(const MachineFunction &MF) const {
157 return nullptr;
158 }
159
160 /// Parse out the target's MachineFunctionInfo from the YAML reprsentation.
parseMachineFunctionInfo(const yaml::MachineFunctionInfo &,PerFunctionMIParsingState & PFS,SMDiagnostic & Error,SMRange & SourceRange)161 virtual bool parseMachineFunctionInfo(const yaml::MachineFunctionInfo &,
162 PerFunctionMIParsingState &PFS,
163 SMDiagnostic &Error,
164 SMRange &SourceRange) const {
165 return false;
166 }
167
168 /// This method returns a pointer to the specified type of
169 /// TargetSubtargetInfo. In debug builds, it verifies that the object being
170 /// returned is of the correct type.
getSubtarget(const Function & F)171 template <typename STC> const STC &getSubtarget(const Function &F) const {
172 return *static_cast<const STC*>(getSubtargetImpl(F));
173 }
174
175 /// Create a DataLayout.
createDataLayout()176 const DataLayout createDataLayout() const { return DL; }
177
178 /// Test if a DataLayout if compatible with the CodeGen for this target.
179 ///
180 /// The LLVM Module owns a DataLayout that is used for the target independent
181 /// optimizations and code generation. This hook provides a target specific
182 /// check on the validity of this DataLayout.
isCompatibleDataLayout(const DataLayout & Candidate)183 bool isCompatibleDataLayout(const DataLayout &Candidate) const {
184 return DL == Candidate;
185 }
186
187 /// Get the pointer size for this target.
188 ///
189 /// This is the only time the DataLayout in the TargetMachine is used.
getPointerSize(unsigned AS)190 unsigned getPointerSize(unsigned AS) const {
191 return DL.getPointerSize(AS);
192 }
193
getPointerSizeInBits(unsigned AS)194 unsigned getPointerSizeInBits(unsigned AS) const {
195 return DL.getPointerSizeInBits(AS);
196 }
197
getProgramPointerSize()198 unsigned getProgramPointerSize() const {
199 return DL.getPointerSize(DL.getProgramAddressSpace());
200 }
201
getAllocaPointerSize()202 unsigned getAllocaPointerSize() const {
203 return DL.getPointerSize(DL.getAllocaAddrSpace());
204 }
205
206 /// Reset the target options based on the function's attributes.
207 // FIXME: Remove TargetOptions that affect per-function code generation
208 // from TargetMachine.
209 void resetTargetOptions(const Function &F) const;
210
211 /// Return target specific asm information.
getMCAsmInfo()212 const MCAsmInfo *getMCAsmInfo() const { return AsmInfo.get(); }
213
getMCRegisterInfo()214 const MCRegisterInfo *getMCRegisterInfo() const { return MRI.get(); }
getMCInstrInfo()215 const MCInstrInfo *getMCInstrInfo() const { return MII.get(); }
getMCSubtargetInfo()216 const MCSubtargetInfo *getMCSubtargetInfo() const { return STI.get(); }
217
218 /// If intrinsic information is available, return it. If not, return null.
getIntrinsicInfo()219 virtual const TargetIntrinsicInfo *getIntrinsicInfo() const {
220 return nullptr;
221 }
222
requiresStructuredCFG()223 bool requiresStructuredCFG() const { return RequireStructuredCFG; }
setRequiresStructuredCFG(bool Value)224 void setRequiresStructuredCFG(bool Value) { RequireStructuredCFG = Value; }
225
226 /// Returns the code generation relocation model. The choices are static, PIC,
227 /// and dynamic-no-pic, and target default.
228 Reloc::Model getRelocationModel() const;
229
230 /// Returns the code model. The choices are small, kernel, medium, large, and
231 /// target default.
getCodeModel()232 CodeModel::Model getCodeModel() const { return CMModel; }
233
234 /// Returns the maximum code size possible under the code model.
235 uint64_t getMaxCodeSize() const;
236
237 /// Set the code model.
setCodeModel(CodeModel::Model CM)238 void setCodeModel(CodeModel::Model CM) { CMModel = CM; }
239
setLargeDataThreshold(uint64_t LDT)240 void setLargeDataThreshold(uint64_t LDT) { LargeDataThreshold = LDT; }
241 bool isLargeGlobalValue(const GlobalValue *GV) const;
242
243 bool isPositionIndependent() const;
244
245 bool shouldAssumeDSOLocal(const GlobalValue *GV) const;
246
247 /// Returns true if this target uses emulated TLS.
248 bool useEmulatedTLS() const;
249
250 /// Returns true if this target uses TLS Descriptors.
251 bool useTLSDESC() const;
252
253 /// Returns the TLS model which should be used for the given global variable.
254 TLSModel::Model getTLSModel(const GlobalValue *GV) const;
255
256 /// Returns the optimization level: None, Less, Default, or Aggressive.
257 CodeGenOptLevel getOptLevel() const;
258
259 /// Overrides the optimization level.
260 void setOptLevel(CodeGenOptLevel Level);
261
setFastISel(bool Enable)262 void setFastISel(bool Enable) { Options.EnableFastISel = Enable; }
getO0WantsFastISel()263 bool getO0WantsFastISel() { return O0WantsFastISel; }
setO0WantsFastISel(bool Enable)264 void setO0WantsFastISel(bool Enable) { O0WantsFastISel = Enable; }
setGlobalISel(bool Enable)265 void setGlobalISel(bool Enable) { Options.EnableGlobalISel = Enable; }
setGlobalISelAbort(GlobalISelAbortMode Mode)266 void setGlobalISelAbort(GlobalISelAbortMode Mode) {
267 Options.GlobalISelAbort = Mode;
268 }
setMachineOutliner(bool Enable)269 void setMachineOutliner(bool Enable) {
270 Options.EnableMachineOutliner = Enable;
271 }
setSupportsDefaultOutlining(bool Enable)272 void setSupportsDefaultOutlining(bool Enable) {
273 Options.SupportsDefaultOutlining = Enable;
274 }
setSupportsDebugEntryValues(bool Enable)275 void setSupportsDebugEntryValues(bool Enable) {
276 Options.SupportsDebugEntryValues = Enable;
277 }
278
setCFIFixup(bool Enable)279 void setCFIFixup(bool Enable) { Options.EnableCFIFixup = Enable; }
280
getAIXExtendedAltivecABI()281 bool getAIXExtendedAltivecABI() const {
282 return Options.EnableAIXExtendedAltivecABI;
283 }
284
getUniqueSectionNames()285 bool getUniqueSectionNames() const { return Options.UniqueSectionNames; }
286
287 /// Return true if unique basic block section names must be generated.
getUniqueBasicBlockSectionNames()288 bool getUniqueBasicBlockSectionNames() const {
289 return Options.UniqueBasicBlockSectionNames;
290 }
291
getSeparateNamedSections()292 bool getSeparateNamedSections() const {
293 return Options.SeparateNamedSections;
294 }
295
296 /// Return true if data objects should be emitted into their own section,
297 /// corresponds to -fdata-sections.
getDataSections()298 bool getDataSections() const {
299 return Options.DataSections;
300 }
301
302 /// Return true if functions should be emitted into their own section,
303 /// corresponding to -ffunction-sections.
getFunctionSections()304 bool getFunctionSections() const {
305 return Options.FunctionSections;
306 }
307
308 /// Return true if visibility attribute should not be emitted in XCOFF,
309 /// corresponding to -mignore-xcoff-visibility.
getIgnoreXCOFFVisibility()310 bool getIgnoreXCOFFVisibility() const {
311 return Options.IgnoreXCOFFVisibility;
312 }
313
314 /// Return true if XCOFF traceback table should be emitted,
315 /// corresponding to -xcoff-traceback-table.
getXCOFFTracebackTable()316 bool getXCOFFTracebackTable() const { return Options.XCOFFTracebackTable; }
317
318 /// If basic blocks should be emitted into their own section,
319 /// corresponding to -fbasic-block-sections.
getBBSectionsType()320 llvm::BasicBlockSection getBBSectionsType() const {
321 return Options.BBSections;
322 }
323
324 /// Get the list of functions and basic block ids that need unique sections.
getBBSectionsFuncListBuf()325 const MemoryBuffer *getBBSectionsFuncListBuf() const {
326 return Options.BBSectionsFuncListBuf.get();
327 }
328
329 /// Returns true if a cast between SrcAS and DestAS is a noop.
isNoopAddrSpaceCast(unsigned SrcAS,unsigned DestAS)330 virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const {
331 return false;
332 }
333
setPGOOption(std::optional<PGOOptions> PGOOpt)334 void setPGOOption(std::optional<PGOOptions> PGOOpt) { PGOOption = PGOOpt; }
getPGOOption()335 const std::optional<PGOOptions> &getPGOOption() const { return PGOOption; }
336
337 /// If the specified generic pointer could be assumed as a pointer to a
338 /// specific address space, return that address space.
339 ///
340 /// Under offloading programming, the offloading target may be passed with
341 /// values only prepared on the host side and could assume certain
342 /// properties.
getAssumedAddrSpace(const Value * V)343 virtual unsigned getAssumedAddrSpace(const Value *V) const { return -1; }
344
345 /// If the specified predicate checks whether a generic pointer falls within
346 /// a specified address space, return that generic pointer and the address
347 /// space being queried.
348 ///
349 /// Such predicates could be specified in @llvm.assume intrinsics for the
350 /// optimizer to assume that the given generic pointer always falls within
351 /// the address space based on that predicate.
352 virtual std::pair<const Value *, unsigned>
getPredicatedAddrSpace(const Value * V)353 getPredicatedAddrSpace(const Value *V) const {
354 return std::make_pair(nullptr, -1);
355 }
356
357 /// Get a \c TargetIRAnalysis appropriate for the target.
358 ///
359 /// This is used to construct the new pass manager's target IR analysis pass,
360 /// set up appropriately for this target machine. Even the old pass manager
361 /// uses this to answer queries about the IR.
362 TargetIRAnalysis getTargetIRAnalysis() const;
363
364 /// Return a TargetTransformInfo for a given function.
365 ///
366 /// The returned TargetTransformInfo is specialized to the subtarget
367 /// corresponding to \p F.
368 virtual TargetTransformInfo getTargetTransformInfo(const Function &F) const;
369
370 /// Allow the target to modify the pass pipeline.
371 // TODO: Populate all pass names by using <Target>PassRegistry.def.
registerPassBuilderCallbacks(PassBuilder &)372 virtual void registerPassBuilderCallbacks(PassBuilder &) {}
373
374 /// Allow the target to register alias analyses with the AAManager for use
375 /// with the new pass manager. Only affects the "default" AAManager.
registerDefaultAliasAnalyses(AAManager &)376 virtual void registerDefaultAliasAnalyses(AAManager &) {}
377
378 /// Add passes to the specified pass manager to get the specified file
379 /// emitted. Typically this will involve several steps of code generation.
380 /// This method should return true if emission of this file type is not
381 /// supported, or false on success.
382 /// \p MMIWP is an optional parameter that, if set to non-nullptr,
383 /// will be used to set the MachineModuloInfo for this PM.
384 virtual bool
385 addPassesToEmitFile(PassManagerBase &, raw_pwrite_stream &,
386 raw_pwrite_stream *, CodeGenFileType,
387 bool /*DisableVerify*/ = true,
388 MachineModuleInfoWrapperPass *MMIWP = nullptr) {
389 return true;
390 }
391
392 /// Add passes to the specified pass manager to get machine code emitted with
393 /// the MCJIT. This method returns true if machine code is not supported. It
394 /// fills the MCContext Ctx pointer which can be used to build custom
395 /// MCStreamer.
396 ///
397 virtual bool addPassesToEmitMC(PassManagerBase &, MCContext *&,
398 raw_pwrite_stream &,
399 bool /*DisableVerify*/ = true) {
400 return true;
401 }
402
403 /// True if subtarget inserts the final scheduling pass on its own.
404 ///
405 /// Branch relaxation, which must happen after block placement, can
406 /// on some targets (e.g. SystemZ) expose additional post-RA
407 /// scheduling opportunities.
targetSchedulesPostRAScheduling()408 virtual bool targetSchedulesPostRAScheduling() const { return false; };
409
410 void getNameWithPrefix(SmallVectorImpl<char> &Name, const GlobalValue *GV,
411 Mangler &Mang, bool MayAlwaysUsePrivate = false) const;
412 MCSymbol *getSymbol(const GlobalValue *GV) const;
413
414 /// The integer bit size to use for SjLj based exception handling.
415 static constexpr unsigned DefaultSjLjDataSize = 32;
getSjLjDataSize()416 virtual unsigned getSjLjDataSize() const { return DefaultSjLjDataSize; }
417
418 static std::pair<int, int> parseBinutilsVersion(StringRef Version);
419
420 /// getAddressSpaceForPseudoSourceKind - Given the kind of memory
421 /// (e.g. stack) the target returns the corresponding address space.
getAddressSpaceForPseudoSourceKind(unsigned Kind)422 virtual unsigned getAddressSpaceForPseudoSourceKind(unsigned Kind) const {
423 return 0;
424 }
425
426 /// Entry point for module splitting. Targets can implement custom module
427 /// splitting logic, mainly used by LTO for --lto-partitions.
428 ///
429 /// \returns `true` if the module was split, `false` otherwise. When `false`
430 /// is returned, it is assumed that \p ModuleCallback has never been called
431 /// and \p M has not been modified.
splitModule(Module & M,unsigned NumParts,function_ref<void (std::unique_ptr<Module> MPart)> ModuleCallback)432 virtual bool splitModule(
433 Module &M, unsigned NumParts,
434 function_ref<void(std::unique_ptr<Module> MPart)> ModuleCallback) {
435 return false;
436 }
437 };
438
439 /// This class describes a target machine that is implemented with the LLVM
440 /// target-independent code generator.
441 ///
442 class LLVMTargetMachine : public TargetMachine {
443 protected: // Can only create subclasses.
444 LLVMTargetMachine(const Target &T, StringRef DataLayoutString,
445 const Triple &TT, StringRef CPU, StringRef FS,
446 const TargetOptions &Options, Reloc::Model RM,
447 CodeModel::Model CM, CodeGenOptLevel OL);
448
449 void initAsmInfo();
450
451 public:
452 /// Get a TargetTransformInfo implementation for the target.
453 ///
454 /// The TTI returned uses the common code generator to answer queries about
455 /// the IR.
456 TargetTransformInfo getTargetTransformInfo(const Function &F) const override;
457
458 /// Create a pass configuration object to be used by addPassToEmitX methods
459 /// for generating a pipeline of CodeGen passes.
460 virtual TargetPassConfig *createPassConfig(PassManagerBase &PM);
461
462 /// Add passes to the specified pass manager to get the specified file
463 /// emitted. Typically this will involve several steps of code generation.
464 /// \p MMIWP is an optional parameter that, if set to non-nullptr,
465 /// will be used to set the MachineModuloInfo for this PM.
466 bool
467 addPassesToEmitFile(PassManagerBase &PM, raw_pwrite_stream &Out,
468 raw_pwrite_stream *DwoOut, CodeGenFileType FileType,
469 bool DisableVerify = true,
470 MachineModuleInfoWrapperPass *MMIWP = nullptr) override;
471
buildCodeGenPipeline(ModulePassManager &,raw_pwrite_stream &,raw_pwrite_stream *,CodeGenFileType,const CGPassBuilderOption &,PassInstrumentationCallbacks *)472 virtual Error buildCodeGenPipeline(ModulePassManager &, raw_pwrite_stream &,
473 raw_pwrite_stream *, CodeGenFileType,
474 const CGPassBuilderOption &,
475 PassInstrumentationCallbacks *) {
476 return make_error<StringError>("buildCodeGenPipeline is not overridden",
477 inconvertibleErrorCode());
478 }
479
480 /// Add passes to the specified pass manager to get machine code emitted with
481 /// the MCJIT. This method returns true if machine code is not supported. It
482 /// fills the MCContext Ctx pointer which can be used to build custom
483 /// MCStreamer.
484 bool addPassesToEmitMC(PassManagerBase &PM, MCContext *&Ctx,
485 raw_pwrite_stream &Out,
486 bool DisableVerify = true) override;
487
488 /// Returns true if the target is expected to pass all machine verifier
489 /// checks. This is a stopgap measure to fix targets one by one. We will
490 /// remove this at some point and always enable the verifier when
491 /// EXPENSIVE_CHECKS is enabled.
isMachineVerifierClean()492 virtual bool isMachineVerifierClean() const { return true; }
493
494 /// Adds an AsmPrinter pass to the pipeline that prints assembly or
495 /// machine code from the MI representation.
496 bool addAsmPrinter(PassManagerBase &PM, raw_pwrite_stream &Out,
497 raw_pwrite_stream *DwoOut, CodeGenFileType FileType,
498 MCContext &Context);
499
500 Expected<std::unique_ptr<MCStreamer>>
501 createMCStreamer(raw_pwrite_stream &Out, raw_pwrite_stream *DwoOut,
502 CodeGenFileType FileType, MCContext &Ctx);
503
504 /// True if the target uses physical regs (as nearly all targets do). False
505 /// for stack machines such as WebAssembly and other virtual-register
506 /// machines. If true, all vregs must be allocated before PEI. If false, then
507 /// callee-save register spilling and scavenging are not needed or used. If
508 /// false, implicitly defined registers will still be assumed to be physical
509 /// registers, except that variadic defs will be allocated vregs.
usesPhysRegsForValues()510 virtual bool usesPhysRegsForValues() const { return true; }
511
512 /// True if the target wants to use interprocedural register allocation by
513 /// default. The -enable-ipra flag can be used to override this.
useIPRA()514 virtual bool useIPRA() const {
515 return false;
516 }
517
518 /// The default variant to use in unqualified `asm` instructions.
519 /// If this returns 0, `asm "$(foo$|bar$)"` will evaluate to `asm "foo"`.
unqualifiedInlineAsmVariant()520 virtual int unqualifiedInlineAsmVariant() const { return 0; }
521
522 // MachineRegisterInfo callback function
registerMachineRegisterInfoCallback(MachineFunction & MF)523 virtual void registerMachineRegisterInfoCallback(MachineFunction &MF) const {}
524 };
525
526 /// Helper method for getting the code model, returning Default if
527 /// CM does not have a value. The tiny and kernel models will produce
528 /// an error, so targets that support them or require more complex codemodel
529 /// selection logic should implement and call their own getEffectiveCodeModel.
530 inline CodeModel::Model
getEffectiveCodeModel(std::optional<CodeModel::Model> CM,CodeModel::Model Default)531 getEffectiveCodeModel(std::optional<CodeModel::Model> CM,
532 CodeModel::Model Default) {
533 if (CM) {
534 // By default, targets do not support the tiny and kernel models.
535 if (*CM == CodeModel::Tiny)
536 report_fatal_error("Target does not support the tiny CodeModel", false);
537 if (*CM == CodeModel::Kernel)
538 report_fatal_error("Target does not support the kernel CodeModel", false);
539 return *CM;
540 }
541 return Default;
542 }
543
544 } // end namespace llvm
545
546 #endif // LLVM_TARGET_TARGETMACHINE_H
547