xref: /freebsd/contrib/llvm-project/llvm/include/llvm/Target/TargetMachine.h (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===-- llvm/Target/TargetMachine.h - Target Information --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the TargetMachine and LLVMTargetMachine classes.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_TARGET_TARGETMACHINE_H
14 #define LLVM_TARGET_TARGETMACHINE_H
15 
16 #include "llvm/ADT/StringRef.h"
17 #include "llvm/IR/DataLayout.h"
18 #include "llvm/IR/PassManager.h"
19 #include "llvm/Support/Allocator.h"
20 #include "llvm/Support/CodeGen.h"
21 #include "llvm/Support/Error.h"
22 #include "llvm/Support/PGOOptions.h"
23 #include "llvm/Target/CGPassBuilderOption.h"
24 #include "llvm/Target/TargetOptions.h"
25 #include "llvm/TargetParser/Triple.h"
26 #include <optional>
27 #include <string>
28 #include <utility>
29 
30 namespace llvm {
31 
32 class AAManager;
33 using ModulePassManager = PassManager<Module>;
34 
35 class Function;
36 class GlobalValue;
37 class MachineModuleInfoWrapperPass;
38 class Mangler;
39 class MCAsmInfo;
40 class MCContext;
41 class MCInstrInfo;
42 class MCRegisterInfo;
43 class MCStreamer;
44 class MCSubtargetInfo;
45 class MCSymbol;
46 class raw_pwrite_stream;
47 class PassBuilder;
48 class PassInstrumentationCallbacks;
49 struct PerFunctionMIParsingState;
50 class SMDiagnostic;
51 class SMRange;
52 class Target;
53 class TargetIntrinsicInfo;
54 class TargetIRAnalysis;
55 class TargetTransformInfo;
56 class TargetLoweringObjectFile;
57 class TargetPassConfig;
58 class TargetSubtargetInfo;
59 
60 // The old pass manager infrastructure is hidden in a legacy namespace now.
61 namespace legacy {
62 class PassManagerBase;
63 }
64 using legacy::PassManagerBase;
65 
66 struct MachineFunctionInfo;
67 namespace yaml {
68 struct MachineFunctionInfo;
69 }
70 
71 //===----------------------------------------------------------------------===//
72 ///
73 /// Primary interface to the complete machine description for the target
74 /// machine.  All target-specific information should be accessible through this
75 /// interface.
76 ///
77 class TargetMachine {
78 protected: // Can only create subclasses.
79   TargetMachine(const Target &T, StringRef DataLayoutString,
80                 const Triple &TargetTriple, StringRef CPU, StringRef FS,
81                 const TargetOptions &Options);
82 
83   /// The Target that this machine was created for.
84   const Target &TheTarget;
85 
86   /// DataLayout for the target: keep ABI type size and alignment.
87   ///
88   /// The DataLayout is created based on the string representation provided
89   /// during construction. It is kept here only to avoid reparsing the string
90   /// but should not really be used during compilation, because it has an
91   /// internal cache that is context specific.
92   const DataLayout DL;
93 
94   /// Triple string, CPU name, and target feature strings the TargetMachine
95   /// instance is created with.
96   Triple TargetTriple;
97   std::string TargetCPU;
98   std::string TargetFS;
99 
100   Reloc::Model RM = Reloc::Static;
101   CodeModel::Model CMModel = CodeModel::Small;
102   uint64_t LargeDataThreshold = 0;
103   CodeGenOptLevel OptLevel = CodeGenOptLevel::Default;
104 
105   /// Contains target specific asm information.
106   std::unique_ptr<const MCAsmInfo> AsmInfo;
107   std::unique_ptr<const MCRegisterInfo> MRI;
108   std::unique_ptr<const MCInstrInfo> MII;
109   std::unique_ptr<const MCSubtargetInfo> STI;
110 
111   unsigned RequireStructuredCFG : 1;
112   unsigned O0WantsFastISel : 1;
113 
114   // PGO related tunables.
115   std::optional<PGOOptions> PGOOption;
116 
117 public:
118   mutable TargetOptions Options;
119 
120   TargetMachine(const TargetMachine &) = delete;
121   void operator=(const TargetMachine &) = delete;
122   virtual ~TargetMachine();
123 
getTarget()124   const Target &getTarget() const { return TheTarget; }
125 
getTargetTriple()126   const Triple &getTargetTriple() const { return TargetTriple; }
getTargetCPU()127   StringRef getTargetCPU() const { return TargetCPU; }
getTargetFeatureString()128   StringRef getTargetFeatureString() const { return TargetFS; }
setTargetFeatureString(StringRef FS)129   void setTargetFeatureString(StringRef FS) { TargetFS = std::string(FS); }
130 
131   /// Virtual method implemented by subclasses that returns a reference to that
132   /// target's TargetSubtargetInfo-derived member variable.
getSubtargetImpl(const Function &)133   virtual const TargetSubtargetInfo *getSubtargetImpl(const Function &) const {
134     return nullptr;
135   }
getObjFileLowering()136   virtual TargetLoweringObjectFile *getObjFileLowering() const {
137     return nullptr;
138   }
139 
140   /// Create the target's instance of MachineFunctionInfo
141   virtual MachineFunctionInfo *
createMachineFunctionInfo(BumpPtrAllocator & Allocator,const Function & F,const TargetSubtargetInfo * STI)142   createMachineFunctionInfo(BumpPtrAllocator &Allocator, const Function &F,
143                             const TargetSubtargetInfo *STI) const {
144     return nullptr;
145   }
146 
147   /// Allocate and return a default initialized instance of the YAML
148   /// representation for the MachineFunctionInfo.
createDefaultFuncInfoYAML()149   virtual yaml::MachineFunctionInfo *createDefaultFuncInfoYAML() const {
150     return nullptr;
151   }
152 
153   /// Allocate and initialize an instance of the YAML representation of the
154   /// MachineFunctionInfo.
155   virtual yaml::MachineFunctionInfo *
convertFuncInfoToYAML(const MachineFunction & MF)156   convertFuncInfoToYAML(const MachineFunction &MF) const {
157     return nullptr;
158   }
159 
160   /// Parse out the target's MachineFunctionInfo from the YAML reprsentation.
parseMachineFunctionInfo(const yaml::MachineFunctionInfo &,PerFunctionMIParsingState & PFS,SMDiagnostic & Error,SMRange & SourceRange)161   virtual bool parseMachineFunctionInfo(const yaml::MachineFunctionInfo &,
162                                         PerFunctionMIParsingState &PFS,
163                                         SMDiagnostic &Error,
164                                         SMRange &SourceRange) const {
165     return false;
166   }
167 
168   /// This method returns a pointer to the specified type of
169   /// TargetSubtargetInfo.  In debug builds, it verifies that the object being
170   /// returned is of the correct type.
getSubtarget(const Function & F)171   template <typename STC> const STC &getSubtarget(const Function &F) const {
172     return *static_cast<const STC*>(getSubtargetImpl(F));
173   }
174 
175   /// Create a DataLayout.
createDataLayout()176   const DataLayout createDataLayout() const { return DL; }
177 
178   /// Test if a DataLayout if compatible with the CodeGen for this target.
179   ///
180   /// The LLVM Module owns a DataLayout that is used for the target independent
181   /// optimizations and code generation. This hook provides a target specific
182   /// check on the validity of this DataLayout.
isCompatibleDataLayout(const DataLayout & Candidate)183   bool isCompatibleDataLayout(const DataLayout &Candidate) const {
184     return DL == Candidate;
185   }
186 
187   /// Get the pointer size for this target.
188   ///
189   /// This is the only time the DataLayout in the TargetMachine is used.
getPointerSize(unsigned AS)190   unsigned getPointerSize(unsigned AS) const {
191     return DL.getPointerSize(AS);
192   }
193 
getPointerSizeInBits(unsigned AS)194   unsigned getPointerSizeInBits(unsigned AS) const {
195     return DL.getPointerSizeInBits(AS);
196   }
197 
getProgramPointerSize()198   unsigned getProgramPointerSize() const {
199     return DL.getPointerSize(DL.getProgramAddressSpace());
200   }
201 
getAllocaPointerSize()202   unsigned getAllocaPointerSize() const {
203     return DL.getPointerSize(DL.getAllocaAddrSpace());
204   }
205 
206   /// Reset the target options based on the function's attributes.
207   // FIXME: Remove TargetOptions that affect per-function code generation
208   // from TargetMachine.
209   void resetTargetOptions(const Function &F) const;
210 
211   /// Return target specific asm information.
getMCAsmInfo()212   const MCAsmInfo *getMCAsmInfo() const { return AsmInfo.get(); }
213 
getMCRegisterInfo()214   const MCRegisterInfo *getMCRegisterInfo() const { return MRI.get(); }
getMCInstrInfo()215   const MCInstrInfo *getMCInstrInfo() const { return MII.get(); }
getMCSubtargetInfo()216   const MCSubtargetInfo *getMCSubtargetInfo() const { return STI.get(); }
217 
218   /// If intrinsic information is available, return it.  If not, return null.
getIntrinsicInfo()219   virtual const TargetIntrinsicInfo *getIntrinsicInfo() const {
220     return nullptr;
221   }
222 
requiresStructuredCFG()223   bool requiresStructuredCFG() const { return RequireStructuredCFG; }
setRequiresStructuredCFG(bool Value)224   void setRequiresStructuredCFG(bool Value) { RequireStructuredCFG = Value; }
225 
226   /// Returns the code generation relocation model. The choices are static, PIC,
227   /// and dynamic-no-pic, and target default.
228   Reloc::Model getRelocationModel() const;
229 
230   /// Returns the code model. The choices are small, kernel, medium, large, and
231   /// target default.
getCodeModel()232   CodeModel::Model getCodeModel() const { return CMModel; }
233 
234   /// Returns the maximum code size possible under the code model.
235   uint64_t getMaxCodeSize() const;
236 
237   /// Set the code model.
setCodeModel(CodeModel::Model CM)238   void setCodeModel(CodeModel::Model CM) { CMModel = CM; }
239 
setLargeDataThreshold(uint64_t LDT)240   void setLargeDataThreshold(uint64_t LDT) { LargeDataThreshold = LDT; }
241   bool isLargeGlobalValue(const GlobalValue *GV) const;
242 
243   bool isPositionIndependent() const;
244 
245   bool shouldAssumeDSOLocal(const GlobalValue *GV) const;
246 
247   /// Returns true if this target uses emulated TLS.
248   bool useEmulatedTLS() const;
249 
250   /// Returns true if this target uses TLS Descriptors.
251   bool useTLSDESC() const;
252 
253   /// Returns the TLS model which should be used for the given global variable.
254   TLSModel::Model getTLSModel(const GlobalValue *GV) const;
255 
256   /// Returns the optimization level: None, Less, Default, or Aggressive.
257   CodeGenOptLevel getOptLevel() const;
258 
259   /// Overrides the optimization level.
260   void setOptLevel(CodeGenOptLevel Level);
261 
setFastISel(bool Enable)262   void setFastISel(bool Enable) { Options.EnableFastISel = Enable; }
getO0WantsFastISel()263   bool getO0WantsFastISel() { return O0WantsFastISel; }
setO0WantsFastISel(bool Enable)264   void setO0WantsFastISel(bool Enable) { O0WantsFastISel = Enable; }
setGlobalISel(bool Enable)265   void setGlobalISel(bool Enable) { Options.EnableGlobalISel = Enable; }
setGlobalISelAbort(GlobalISelAbortMode Mode)266   void setGlobalISelAbort(GlobalISelAbortMode Mode) {
267     Options.GlobalISelAbort = Mode;
268   }
setMachineOutliner(bool Enable)269   void setMachineOutliner(bool Enable) {
270     Options.EnableMachineOutliner = Enable;
271   }
setSupportsDefaultOutlining(bool Enable)272   void setSupportsDefaultOutlining(bool Enable) {
273     Options.SupportsDefaultOutlining = Enable;
274   }
setSupportsDebugEntryValues(bool Enable)275   void setSupportsDebugEntryValues(bool Enable) {
276     Options.SupportsDebugEntryValues = Enable;
277   }
278 
setCFIFixup(bool Enable)279   void setCFIFixup(bool Enable) { Options.EnableCFIFixup = Enable; }
280 
getAIXExtendedAltivecABI()281   bool getAIXExtendedAltivecABI() const {
282     return Options.EnableAIXExtendedAltivecABI;
283   }
284 
getUniqueSectionNames()285   bool getUniqueSectionNames() const { return Options.UniqueSectionNames; }
286 
287   /// Return true if unique basic block section names must be generated.
getUniqueBasicBlockSectionNames()288   bool getUniqueBasicBlockSectionNames() const {
289     return Options.UniqueBasicBlockSectionNames;
290   }
291 
getSeparateNamedSections()292   bool getSeparateNamedSections() const {
293     return Options.SeparateNamedSections;
294   }
295 
296   /// Return true if data objects should be emitted into their own section,
297   /// corresponds to -fdata-sections.
getDataSections()298   bool getDataSections() const {
299     return Options.DataSections;
300   }
301 
302   /// Return true if functions should be emitted into their own section,
303   /// corresponding to -ffunction-sections.
getFunctionSections()304   bool getFunctionSections() const {
305     return Options.FunctionSections;
306   }
307 
308   /// Return true if visibility attribute should not be emitted in XCOFF,
309   /// corresponding to -mignore-xcoff-visibility.
getIgnoreXCOFFVisibility()310   bool getIgnoreXCOFFVisibility() const {
311     return Options.IgnoreXCOFFVisibility;
312   }
313 
314   /// Return true if XCOFF traceback table should be emitted,
315   /// corresponding to -xcoff-traceback-table.
getXCOFFTracebackTable()316   bool getXCOFFTracebackTable() const { return Options.XCOFFTracebackTable; }
317 
318   /// If basic blocks should be emitted into their own section,
319   /// corresponding to -fbasic-block-sections.
getBBSectionsType()320   llvm::BasicBlockSection getBBSectionsType() const {
321     return Options.BBSections;
322   }
323 
324   /// Get the list of functions and basic block ids that need unique sections.
getBBSectionsFuncListBuf()325   const MemoryBuffer *getBBSectionsFuncListBuf() const {
326     return Options.BBSectionsFuncListBuf.get();
327   }
328 
329   /// Returns true if a cast between SrcAS and DestAS is a noop.
isNoopAddrSpaceCast(unsigned SrcAS,unsigned DestAS)330   virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const {
331     return false;
332   }
333 
setPGOOption(std::optional<PGOOptions> PGOOpt)334   void setPGOOption(std::optional<PGOOptions> PGOOpt) { PGOOption = PGOOpt; }
getPGOOption()335   const std::optional<PGOOptions> &getPGOOption() const { return PGOOption; }
336 
337   /// If the specified generic pointer could be assumed as a pointer to a
338   /// specific address space, return that address space.
339   ///
340   /// Under offloading programming, the offloading target may be passed with
341   /// values only prepared on the host side and could assume certain
342   /// properties.
getAssumedAddrSpace(const Value * V)343   virtual unsigned getAssumedAddrSpace(const Value *V) const { return -1; }
344 
345   /// If the specified predicate checks whether a generic pointer falls within
346   /// a specified address space, return that generic pointer and the address
347   /// space being queried.
348   ///
349   /// Such predicates could be specified in @llvm.assume intrinsics for the
350   /// optimizer to assume that the given generic pointer always falls within
351   /// the address space based on that predicate.
352   virtual std::pair<const Value *, unsigned>
getPredicatedAddrSpace(const Value * V)353   getPredicatedAddrSpace(const Value *V) const {
354     return std::make_pair(nullptr, -1);
355   }
356 
357   /// Get a \c TargetIRAnalysis appropriate for the target.
358   ///
359   /// This is used to construct the new pass manager's target IR analysis pass,
360   /// set up appropriately for this target machine. Even the old pass manager
361   /// uses this to answer queries about the IR.
362   TargetIRAnalysis getTargetIRAnalysis() const;
363 
364   /// Return a TargetTransformInfo for a given function.
365   ///
366   /// The returned TargetTransformInfo is specialized to the subtarget
367   /// corresponding to \p F.
368   virtual TargetTransformInfo getTargetTransformInfo(const Function &F) const;
369 
370   /// Allow the target to modify the pass pipeline.
371   // TODO: Populate all pass names by using <Target>PassRegistry.def.
registerPassBuilderCallbacks(PassBuilder &)372   virtual void registerPassBuilderCallbacks(PassBuilder &) {}
373 
374   /// Allow the target to register alias analyses with the AAManager for use
375   /// with the new pass manager. Only affects the "default" AAManager.
registerDefaultAliasAnalyses(AAManager &)376   virtual void registerDefaultAliasAnalyses(AAManager &) {}
377 
378   /// Add passes to the specified pass manager to get the specified file
379   /// emitted.  Typically this will involve several steps of code generation.
380   /// This method should return true if emission of this file type is not
381   /// supported, or false on success.
382   /// \p MMIWP is an optional parameter that, if set to non-nullptr,
383   /// will be used to set the MachineModuloInfo for this PM.
384   virtual bool
385   addPassesToEmitFile(PassManagerBase &, raw_pwrite_stream &,
386                       raw_pwrite_stream *, CodeGenFileType,
387                       bool /*DisableVerify*/ = true,
388                       MachineModuleInfoWrapperPass *MMIWP = nullptr) {
389     return true;
390   }
391 
392   /// Add passes to the specified pass manager to get machine code emitted with
393   /// the MCJIT. This method returns true if machine code is not supported. It
394   /// fills the MCContext Ctx pointer which can be used to build custom
395   /// MCStreamer.
396   ///
397   virtual bool addPassesToEmitMC(PassManagerBase &, MCContext *&,
398                                  raw_pwrite_stream &,
399                                  bool /*DisableVerify*/ = true) {
400     return true;
401   }
402 
403   /// True if subtarget inserts the final scheduling pass on its own.
404   ///
405   /// Branch relaxation, which must happen after block placement, can
406   /// on some targets (e.g. SystemZ) expose additional post-RA
407   /// scheduling opportunities.
targetSchedulesPostRAScheduling()408   virtual bool targetSchedulesPostRAScheduling() const { return false; };
409 
410   void getNameWithPrefix(SmallVectorImpl<char> &Name, const GlobalValue *GV,
411                          Mangler &Mang, bool MayAlwaysUsePrivate = false) const;
412   MCSymbol *getSymbol(const GlobalValue *GV) const;
413 
414   /// The integer bit size to use for SjLj based exception handling.
415   static constexpr unsigned DefaultSjLjDataSize = 32;
getSjLjDataSize()416   virtual unsigned getSjLjDataSize() const { return DefaultSjLjDataSize; }
417 
418   static std::pair<int, int> parseBinutilsVersion(StringRef Version);
419 
420   /// getAddressSpaceForPseudoSourceKind - Given the kind of memory
421   /// (e.g. stack) the target returns the corresponding address space.
getAddressSpaceForPseudoSourceKind(unsigned Kind)422   virtual unsigned getAddressSpaceForPseudoSourceKind(unsigned Kind) const {
423     return 0;
424   }
425 
426   /// Entry point for module splitting. Targets can implement custom module
427   /// splitting logic, mainly used by LTO for --lto-partitions.
428   ///
429   /// \returns `true` if the module was split, `false` otherwise. When  `false`
430   /// is returned, it is assumed that \p ModuleCallback has never been called
431   /// and \p M has not been modified.
splitModule(Module & M,unsigned NumParts,function_ref<void (std::unique_ptr<Module> MPart)> ModuleCallback)432   virtual bool splitModule(
433       Module &M, unsigned NumParts,
434       function_ref<void(std::unique_ptr<Module> MPart)> ModuleCallback) {
435     return false;
436   }
437 };
438 
439 /// This class describes a target machine that is implemented with the LLVM
440 /// target-independent code generator.
441 ///
442 class LLVMTargetMachine : public TargetMachine {
443 protected: // Can only create subclasses.
444   LLVMTargetMachine(const Target &T, StringRef DataLayoutString,
445                     const Triple &TT, StringRef CPU, StringRef FS,
446                     const TargetOptions &Options, Reloc::Model RM,
447                     CodeModel::Model CM, CodeGenOptLevel OL);
448 
449   void initAsmInfo();
450 
451 public:
452   /// Get a TargetTransformInfo implementation for the target.
453   ///
454   /// The TTI returned uses the common code generator to answer queries about
455   /// the IR.
456   TargetTransformInfo getTargetTransformInfo(const Function &F) const override;
457 
458   /// Create a pass configuration object to be used by addPassToEmitX methods
459   /// for generating a pipeline of CodeGen passes.
460   virtual TargetPassConfig *createPassConfig(PassManagerBase &PM);
461 
462   /// Add passes to the specified pass manager to get the specified file
463   /// emitted.  Typically this will involve several steps of code generation.
464   /// \p MMIWP is an optional parameter that, if set to non-nullptr,
465   /// will be used to set the MachineModuloInfo for this PM.
466   bool
467   addPassesToEmitFile(PassManagerBase &PM, raw_pwrite_stream &Out,
468                       raw_pwrite_stream *DwoOut, CodeGenFileType FileType,
469                       bool DisableVerify = true,
470                       MachineModuleInfoWrapperPass *MMIWP = nullptr) override;
471 
buildCodeGenPipeline(ModulePassManager &,raw_pwrite_stream &,raw_pwrite_stream *,CodeGenFileType,const CGPassBuilderOption &,PassInstrumentationCallbacks *)472   virtual Error buildCodeGenPipeline(ModulePassManager &, raw_pwrite_stream &,
473                                      raw_pwrite_stream *, CodeGenFileType,
474                                      const CGPassBuilderOption &,
475                                      PassInstrumentationCallbacks *) {
476     return make_error<StringError>("buildCodeGenPipeline is not overridden",
477                                    inconvertibleErrorCode());
478   }
479 
480   /// Add passes to the specified pass manager to get machine code emitted with
481   /// the MCJIT. This method returns true if machine code is not supported. It
482   /// fills the MCContext Ctx pointer which can be used to build custom
483   /// MCStreamer.
484   bool addPassesToEmitMC(PassManagerBase &PM, MCContext *&Ctx,
485                          raw_pwrite_stream &Out,
486                          bool DisableVerify = true) override;
487 
488   /// Returns true if the target is expected to pass all machine verifier
489   /// checks. This is a stopgap measure to fix targets one by one. We will
490   /// remove this at some point and always enable the verifier when
491   /// EXPENSIVE_CHECKS is enabled.
isMachineVerifierClean()492   virtual bool isMachineVerifierClean() const { return true; }
493 
494   /// Adds an AsmPrinter pass to the pipeline that prints assembly or
495   /// machine code from the MI representation.
496   bool addAsmPrinter(PassManagerBase &PM, raw_pwrite_stream &Out,
497                      raw_pwrite_stream *DwoOut, CodeGenFileType FileType,
498                      MCContext &Context);
499 
500   Expected<std::unique_ptr<MCStreamer>>
501   createMCStreamer(raw_pwrite_stream &Out, raw_pwrite_stream *DwoOut,
502                    CodeGenFileType FileType, MCContext &Ctx);
503 
504   /// True if the target uses physical regs (as nearly all targets do). False
505   /// for stack machines such as WebAssembly and other virtual-register
506   /// machines. If true, all vregs must be allocated before PEI. If false, then
507   /// callee-save register spilling and scavenging are not needed or used. If
508   /// false, implicitly defined registers will still be assumed to be physical
509   /// registers, except that variadic defs will be allocated vregs.
usesPhysRegsForValues()510   virtual bool usesPhysRegsForValues() const { return true; }
511 
512   /// True if the target wants to use interprocedural register allocation by
513   /// default. The -enable-ipra flag can be used to override this.
useIPRA()514   virtual bool useIPRA() const {
515     return false;
516   }
517 
518   /// The default variant to use in unqualified `asm` instructions.
519   /// If this returns 0, `asm "$(foo$|bar$)"` will evaluate to `asm "foo"`.
unqualifiedInlineAsmVariant()520   virtual int unqualifiedInlineAsmVariant() const { return 0; }
521 
522   // MachineRegisterInfo callback function
registerMachineRegisterInfoCallback(MachineFunction & MF)523   virtual void registerMachineRegisterInfoCallback(MachineFunction &MF) const {}
524 };
525 
526 /// Helper method for getting the code model, returning Default if
527 /// CM does not have a value. The tiny and kernel models will produce
528 /// an error, so targets that support them or require more complex codemodel
529 /// selection logic should implement and call their own getEffectiveCodeModel.
530 inline CodeModel::Model
getEffectiveCodeModel(std::optional<CodeModel::Model> CM,CodeModel::Model Default)531 getEffectiveCodeModel(std::optional<CodeModel::Model> CM,
532                       CodeModel::Model Default) {
533   if (CM) {
534     // By default, targets do not support the tiny and kernel models.
535     if (*CM == CodeModel::Tiny)
536       report_fatal_error("Target does not support the tiny CodeModel", false);
537     if (*CM == CodeModel::Kernel)
538       report_fatal_error("Target does not support the kernel CodeModel", false);
539     return *CM;
540   }
541   return Default;
542 }
543 
544 } // end namespace llvm
545 
546 #endif // LLVM_TARGET_TARGETMACHINE_H
547