1 //===- OpenMPIRBuilder.cpp - Builder for LLVM-IR for OpenMP directives ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// This file implements the OpenMPIRBuilder class, which is used as a
11 /// convenient way to create LLVM instructions for OpenMP directives.
12 ///
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
16 #include "llvm/ADT/SmallSet.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/CodeMetrics.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
23 #include "llvm/Analysis/ScalarEvolution.h"
24 #include "llvm/Analysis/TargetLibraryInfo.h"
25 #include "llvm/Bitcode/BitcodeReader.h"
26 #include "llvm/Frontend/Offloading/Utility.h"
27 #include "llvm/Frontend/OpenMP/OMPGridValues.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CFG.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DebugInfoMetadata.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GlobalVariable.h"
38 #include "llvm/IR/IRBuilder.h"
39 #include "llvm/IR/LLVMContext.h"
40 #include "llvm/IR/MDBuilder.h"
41 #include "llvm/IR/Metadata.h"
42 #include "llvm/IR/PassManager.h"
43 #include "llvm/IR/PassInstrumentation.h"
44 #include "llvm/IR/ReplaceConstant.h"
45 #include "llvm/IR/Value.h"
46 #include "llvm/MC/TargetRegistry.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/FileSystem.h"
50 #include "llvm/Target/TargetMachine.h"
51 #include "llvm/Target/TargetOptions.h"
52 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
53 #include "llvm/Transforms/Utils/Cloning.h"
54 #include "llvm/Transforms/Utils/CodeExtractor.h"
55 #include "llvm/Transforms/Utils/LoopPeel.h"
56 #include "llvm/Transforms/Utils/UnrollLoop.h"
57
58 #include <cstdint>
59 #include <optional>
60 #include <stack>
61
62 #define DEBUG_TYPE "openmp-ir-builder"
63
64 using namespace llvm;
65 using namespace omp;
66
67 static cl::opt<bool>
68 OptimisticAttributes("openmp-ir-builder-optimistic-attributes", cl::Hidden,
69 cl::desc("Use optimistic attributes describing "
70 "'as-if' properties of runtime calls."),
71 cl::init(false));
72
73 static cl::opt<double> UnrollThresholdFactor(
74 "openmp-ir-builder-unroll-threshold-factor", cl::Hidden,
75 cl::desc("Factor for the unroll threshold to account for code "
76 "simplifications still taking place"),
77 cl::init(1.5));
78
79 #ifndef NDEBUG
80 /// Return whether IP1 and IP2 are ambiguous, i.e. that inserting instructions
81 /// at position IP1 may change the meaning of IP2 or vice-versa. This is because
82 /// an InsertPoint stores the instruction before something is inserted. For
83 /// instance, if both point to the same instruction, two IRBuilders alternating
84 /// creating instruction will cause the instructions to be interleaved.
isConflictIP(IRBuilder<>::InsertPoint IP1,IRBuilder<>::InsertPoint IP2)85 static bool isConflictIP(IRBuilder<>::InsertPoint IP1,
86 IRBuilder<>::InsertPoint IP2) {
87 if (!IP1.isSet() || !IP2.isSet())
88 return false;
89 return IP1.getBlock() == IP2.getBlock() && IP1.getPoint() == IP2.getPoint();
90 }
91
isValidWorkshareLoopScheduleType(OMPScheduleType SchedType)92 static bool isValidWorkshareLoopScheduleType(OMPScheduleType SchedType) {
93 // Valid ordered/unordered and base algorithm combinations.
94 switch (SchedType & ~OMPScheduleType::MonotonicityMask) {
95 case OMPScheduleType::UnorderedStaticChunked:
96 case OMPScheduleType::UnorderedStatic:
97 case OMPScheduleType::UnorderedDynamicChunked:
98 case OMPScheduleType::UnorderedGuidedChunked:
99 case OMPScheduleType::UnorderedRuntime:
100 case OMPScheduleType::UnorderedAuto:
101 case OMPScheduleType::UnorderedTrapezoidal:
102 case OMPScheduleType::UnorderedGreedy:
103 case OMPScheduleType::UnorderedBalanced:
104 case OMPScheduleType::UnorderedGuidedIterativeChunked:
105 case OMPScheduleType::UnorderedGuidedAnalyticalChunked:
106 case OMPScheduleType::UnorderedSteal:
107 case OMPScheduleType::UnorderedStaticBalancedChunked:
108 case OMPScheduleType::UnorderedGuidedSimd:
109 case OMPScheduleType::UnorderedRuntimeSimd:
110 case OMPScheduleType::OrderedStaticChunked:
111 case OMPScheduleType::OrderedStatic:
112 case OMPScheduleType::OrderedDynamicChunked:
113 case OMPScheduleType::OrderedGuidedChunked:
114 case OMPScheduleType::OrderedRuntime:
115 case OMPScheduleType::OrderedAuto:
116 case OMPScheduleType::OrderdTrapezoidal:
117 case OMPScheduleType::NomergeUnorderedStaticChunked:
118 case OMPScheduleType::NomergeUnorderedStatic:
119 case OMPScheduleType::NomergeUnorderedDynamicChunked:
120 case OMPScheduleType::NomergeUnorderedGuidedChunked:
121 case OMPScheduleType::NomergeUnorderedRuntime:
122 case OMPScheduleType::NomergeUnorderedAuto:
123 case OMPScheduleType::NomergeUnorderedTrapezoidal:
124 case OMPScheduleType::NomergeUnorderedGreedy:
125 case OMPScheduleType::NomergeUnorderedBalanced:
126 case OMPScheduleType::NomergeUnorderedGuidedIterativeChunked:
127 case OMPScheduleType::NomergeUnorderedGuidedAnalyticalChunked:
128 case OMPScheduleType::NomergeUnorderedSteal:
129 case OMPScheduleType::NomergeOrderedStaticChunked:
130 case OMPScheduleType::NomergeOrderedStatic:
131 case OMPScheduleType::NomergeOrderedDynamicChunked:
132 case OMPScheduleType::NomergeOrderedGuidedChunked:
133 case OMPScheduleType::NomergeOrderedRuntime:
134 case OMPScheduleType::NomergeOrderedAuto:
135 case OMPScheduleType::NomergeOrderedTrapezoidal:
136 break;
137 default:
138 return false;
139 }
140
141 // Must not set both monotonicity modifiers at the same time.
142 OMPScheduleType MonotonicityFlags =
143 SchedType & OMPScheduleType::MonotonicityMask;
144 if (MonotonicityFlags == OMPScheduleType::MonotonicityMask)
145 return false;
146
147 return true;
148 }
149 #endif
150
getGridValue(const Triple & T,Function * Kernel)151 static const omp::GV &getGridValue(const Triple &T, Function *Kernel) {
152 if (T.isAMDGPU()) {
153 StringRef Features =
154 Kernel->getFnAttribute("target-features").getValueAsString();
155 if (Features.count("+wavefrontsize64"))
156 return omp::getAMDGPUGridValues<64>();
157 return omp::getAMDGPUGridValues<32>();
158 }
159 if (T.isNVPTX())
160 return omp::NVPTXGridValues;
161 llvm_unreachable("No grid value available for this architecture!");
162 }
163
164 /// Determine which scheduling algorithm to use, determined from schedule clause
165 /// arguments.
166 static OMPScheduleType
getOpenMPBaseScheduleType(llvm::omp::ScheduleKind ClauseKind,bool HasChunks,bool HasSimdModifier)167 getOpenMPBaseScheduleType(llvm::omp::ScheduleKind ClauseKind, bool HasChunks,
168 bool HasSimdModifier) {
169 // Currently, the default schedule it static.
170 switch (ClauseKind) {
171 case OMP_SCHEDULE_Default:
172 case OMP_SCHEDULE_Static:
173 return HasChunks ? OMPScheduleType::BaseStaticChunked
174 : OMPScheduleType::BaseStatic;
175 case OMP_SCHEDULE_Dynamic:
176 return OMPScheduleType::BaseDynamicChunked;
177 case OMP_SCHEDULE_Guided:
178 return HasSimdModifier ? OMPScheduleType::BaseGuidedSimd
179 : OMPScheduleType::BaseGuidedChunked;
180 case OMP_SCHEDULE_Auto:
181 return llvm::omp::OMPScheduleType::BaseAuto;
182 case OMP_SCHEDULE_Runtime:
183 return HasSimdModifier ? OMPScheduleType::BaseRuntimeSimd
184 : OMPScheduleType::BaseRuntime;
185 }
186 llvm_unreachable("unhandled schedule clause argument");
187 }
188
189 /// Adds ordering modifier flags to schedule type.
190 static OMPScheduleType
getOpenMPOrderingScheduleType(OMPScheduleType BaseScheduleType,bool HasOrderedClause)191 getOpenMPOrderingScheduleType(OMPScheduleType BaseScheduleType,
192 bool HasOrderedClause) {
193 assert((BaseScheduleType & OMPScheduleType::ModifierMask) ==
194 OMPScheduleType::None &&
195 "Must not have ordering nor monotonicity flags already set");
196
197 OMPScheduleType OrderingModifier = HasOrderedClause
198 ? OMPScheduleType::ModifierOrdered
199 : OMPScheduleType::ModifierUnordered;
200 OMPScheduleType OrderingScheduleType = BaseScheduleType | OrderingModifier;
201
202 // Unsupported combinations
203 if (OrderingScheduleType ==
204 (OMPScheduleType::BaseGuidedSimd | OMPScheduleType::ModifierOrdered))
205 return OMPScheduleType::OrderedGuidedChunked;
206 else if (OrderingScheduleType == (OMPScheduleType::BaseRuntimeSimd |
207 OMPScheduleType::ModifierOrdered))
208 return OMPScheduleType::OrderedRuntime;
209
210 return OrderingScheduleType;
211 }
212
213 /// Adds monotonicity modifier flags to schedule type.
214 static OMPScheduleType
getOpenMPMonotonicityScheduleType(OMPScheduleType ScheduleType,bool HasSimdModifier,bool HasMonotonic,bool HasNonmonotonic,bool HasOrderedClause)215 getOpenMPMonotonicityScheduleType(OMPScheduleType ScheduleType,
216 bool HasSimdModifier, bool HasMonotonic,
217 bool HasNonmonotonic, bool HasOrderedClause) {
218 assert((ScheduleType & OMPScheduleType::MonotonicityMask) ==
219 OMPScheduleType::None &&
220 "Must not have monotonicity flags already set");
221 assert((!HasMonotonic || !HasNonmonotonic) &&
222 "Monotonic and Nonmonotonic are contradicting each other");
223
224 if (HasMonotonic) {
225 return ScheduleType | OMPScheduleType::ModifierMonotonic;
226 } else if (HasNonmonotonic) {
227 return ScheduleType | OMPScheduleType::ModifierNonmonotonic;
228 } else {
229 // OpenMP 5.1, 2.11.4 Worksharing-Loop Construct, Description.
230 // If the static schedule kind is specified or if the ordered clause is
231 // specified, and if the nonmonotonic modifier is not specified, the
232 // effect is as if the monotonic modifier is specified. Otherwise, unless
233 // the monotonic modifier is specified, the effect is as if the
234 // nonmonotonic modifier is specified.
235 OMPScheduleType BaseScheduleType =
236 ScheduleType & ~OMPScheduleType::ModifierMask;
237 if ((BaseScheduleType == OMPScheduleType::BaseStatic) ||
238 (BaseScheduleType == OMPScheduleType::BaseStaticChunked) ||
239 HasOrderedClause) {
240 // The monotonic is used by default in openmp runtime library, so no need
241 // to set it.
242 return ScheduleType;
243 } else {
244 return ScheduleType | OMPScheduleType::ModifierNonmonotonic;
245 }
246 }
247 }
248
249 /// Determine the schedule type using schedule and ordering clause arguments.
250 static OMPScheduleType
computeOpenMPScheduleType(ScheduleKind ClauseKind,bool HasChunks,bool HasSimdModifier,bool HasMonotonicModifier,bool HasNonmonotonicModifier,bool HasOrderedClause)251 computeOpenMPScheduleType(ScheduleKind ClauseKind, bool HasChunks,
252 bool HasSimdModifier, bool HasMonotonicModifier,
253 bool HasNonmonotonicModifier, bool HasOrderedClause) {
254 OMPScheduleType BaseSchedule =
255 getOpenMPBaseScheduleType(ClauseKind, HasChunks, HasSimdModifier);
256 OMPScheduleType OrderedSchedule =
257 getOpenMPOrderingScheduleType(BaseSchedule, HasOrderedClause);
258 OMPScheduleType Result = getOpenMPMonotonicityScheduleType(
259 OrderedSchedule, HasSimdModifier, HasMonotonicModifier,
260 HasNonmonotonicModifier, HasOrderedClause);
261
262 assert(isValidWorkshareLoopScheduleType(Result));
263 return Result;
264 }
265
266 /// Make \p Source branch to \p Target.
267 ///
268 /// Handles two situations:
269 /// * \p Source already has an unconditional branch.
270 /// * \p Source is a degenerate block (no terminator because the BB is
271 /// the current head of the IR construction).
redirectTo(BasicBlock * Source,BasicBlock * Target,DebugLoc DL)272 static void redirectTo(BasicBlock *Source, BasicBlock *Target, DebugLoc DL) {
273 if (Instruction *Term = Source->getTerminator()) {
274 auto *Br = cast<BranchInst>(Term);
275 assert(!Br->isConditional() &&
276 "BB's terminator must be an unconditional branch (or degenerate)");
277 BasicBlock *Succ = Br->getSuccessor(0);
278 Succ->removePredecessor(Source, /*KeepOneInputPHIs=*/true);
279 Br->setSuccessor(0, Target);
280 return;
281 }
282
283 auto *NewBr = BranchInst::Create(Target, Source);
284 NewBr->setDebugLoc(DL);
285 }
286
spliceBB(IRBuilderBase::InsertPoint IP,BasicBlock * New,bool CreateBranch)287 void llvm::spliceBB(IRBuilderBase::InsertPoint IP, BasicBlock *New,
288 bool CreateBranch) {
289 assert(New->getFirstInsertionPt() == New->begin() &&
290 "Target BB must not have PHI nodes");
291
292 // Move instructions to new block.
293 BasicBlock *Old = IP.getBlock();
294 New->splice(New->begin(), Old, IP.getPoint(), Old->end());
295
296 if (CreateBranch)
297 BranchInst::Create(New, Old);
298 }
299
spliceBB(IRBuilder<> & Builder,BasicBlock * New,bool CreateBranch)300 void llvm::spliceBB(IRBuilder<> &Builder, BasicBlock *New, bool CreateBranch) {
301 DebugLoc DebugLoc = Builder.getCurrentDebugLocation();
302 BasicBlock *Old = Builder.GetInsertBlock();
303
304 spliceBB(Builder.saveIP(), New, CreateBranch);
305 if (CreateBranch)
306 Builder.SetInsertPoint(Old->getTerminator());
307 else
308 Builder.SetInsertPoint(Old);
309
310 // SetInsertPoint also updates the Builder's debug location, but we want to
311 // keep the one the Builder was configured to use.
312 Builder.SetCurrentDebugLocation(DebugLoc);
313 }
314
splitBB(IRBuilderBase::InsertPoint IP,bool CreateBranch,llvm::Twine Name)315 BasicBlock *llvm::splitBB(IRBuilderBase::InsertPoint IP, bool CreateBranch,
316 llvm::Twine Name) {
317 BasicBlock *Old = IP.getBlock();
318 BasicBlock *New = BasicBlock::Create(
319 Old->getContext(), Name.isTriviallyEmpty() ? Old->getName() : Name,
320 Old->getParent(), Old->getNextNode());
321 spliceBB(IP, New, CreateBranch);
322 New->replaceSuccessorsPhiUsesWith(Old, New);
323 return New;
324 }
325
splitBB(IRBuilderBase & Builder,bool CreateBranch,llvm::Twine Name)326 BasicBlock *llvm::splitBB(IRBuilderBase &Builder, bool CreateBranch,
327 llvm::Twine Name) {
328 DebugLoc DebugLoc = Builder.getCurrentDebugLocation();
329 BasicBlock *New = splitBB(Builder.saveIP(), CreateBranch, Name);
330 if (CreateBranch)
331 Builder.SetInsertPoint(Builder.GetInsertBlock()->getTerminator());
332 else
333 Builder.SetInsertPoint(Builder.GetInsertBlock());
334 // SetInsertPoint also updates the Builder's debug location, but we want to
335 // keep the one the Builder was configured to use.
336 Builder.SetCurrentDebugLocation(DebugLoc);
337 return New;
338 }
339
splitBB(IRBuilder<> & Builder,bool CreateBranch,llvm::Twine Name)340 BasicBlock *llvm::splitBB(IRBuilder<> &Builder, bool CreateBranch,
341 llvm::Twine Name) {
342 DebugLoc DebugLoc = Builder.getCurrentDebugLocation();
343 BasicBlock *New = splitBB(Builder.saveIP(), CreateBranch, Name);
344 if (CreateBranch)
345 Builder.SetInsertPoint(Builder.GetInsertBlock()->getTerminator());
346 else
347 Builder.SetInsertPoint(Builder.GetInsertBlock());
348 // SetInsertPoint also updates the Builder's debug location, but we want to
349 // keep the one the Builder was configured to use.
350 Builder.SetCurrentDebugLocation(DebugLoc);
351 return New;
352 }
353
splitBBWithSuffix(IRBuilderBase & Builder,bool CreateBranch,llvm::Twine Suffix)354 BasicBlock *llvm::splitBBWithSuffix(IRBuilderBase &Builder, bool CreateBranch,
355 llvm::Twine Suffix) {
356 BasicBlock *Old = Builder.GetInsertBlock();
357 return splitBB(Builder, CreateBranch, Old->getName() + Suffix);
358 }
359
360 // This function creates a fake integer value and a fake use for the integer
361 // value. It returns the fake value created. This is useful in modeling the
362 // extra arguments to the outlined functions.
createFakeIntVal(IRBuilderBase & Builder,OpenMPIRBuilder::InsertPointTy OuterAllocaIP,llvm::SmallVectorImpl<Instruction * > & ToBeDeleted,OpenMPIRBuilder::InsertPointTy InnerAllocaIP,const Twine & Name="",bool AsPtr=true)363 Value *createFakeIntVal(IRBuilderBase &Builder,
364 OpenMPIRBuilder::InsertPointTy OuterAllocaIP,
365 llvm::SmallVectorImpl<Instruction *> &ToBeDeleted,
366 OpenMPIRBuilder::InsertPointTy InnerAllocaIP,
367 const Twine &Name = "", bool AsPtr = true) {
368 Builder.restoreIP(OuterAllocaIP);
369 Instruction *FakeVal;
370 AllocaInst *FakeValAddr =
371 Builder.CreateAlloca(Builder.getInt32Ty(), nullptr, Name + ".addr");
372 ToBeDeleted.push_back(FakeValAddr);
373
374 if (AsPtr) {
375 FakeVal = FakeValAddr;
376 } else {
377 FakeVal =
378 Builder.CreateLoad(Builder.getInt32Ty(), FakeValAddr, Name + ".val");
379 ToBeDeleted.push_back(FakeVal);
380 }
381
382 // Generate a fake use of this value
383 Builder.restoreIP(InnerAllocaIP);
384 Instruction *UseFakeVal;
385 if (AsPtr) {
386 UseFakeVal =
387 Builder.CreateLoad(Builder.getInt32Ty(), FakeVal, Name + ".use");
388 } else {
389 UseFakeVal =
390 cast<BinaryOperator>(Builder.CreateAdd(FakeVal, Builder.getInt32(10)));
391 }
392 ToBeDeleted.push_back(UseFakeVal);
393 return FakeVal;
394 }
395
396 //===----------------------------------------------------------------------===//
397 // OpenMPIRBuilderConfig
398 //===----------------------------------------------------------------------===//
399
400 namespace {
401 LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
402 /// Values for bit flags for marking which requires clauses have been used.
403 enum OpenMPOffloadingRequiresDirFlags {
404 /// flag undefined.
405 OMP_REQ_UNDEFINED = 0x000,
406 /// no requires directive present.
407 OMP_REQ_NONE = 0x001,
408 /// reverse_offload clause.
409 OMP_REQ_REVERSE_OFFLOAD = 0x002,
410 /// unified_address clause.
411 OMP_REQ_UNIFIED_ADDRESS = 0x004,
412 /// unified_shared_memory clause.
413 OMP_REQ_UNIFIED_SHARED_MEMORY = 0x008,
414 /// dynamic_allocators clause.
415 OMP_REQ_DYNAMIC_ALLOCATORS = 0x010,
416 LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/OMP_REQ_DYNAMIC_ALLOCATORS)
417 };
418
419 } // anonymous namespace
420
OpenMPIRBuilderConfig()421 OpenMPIRBuilderConfig::OpenMPIRBuilderConfig()
422 : RequiresFlags(OMP_REQ_UNDEFINED) {}
423
OpenMPIRBuilderConfig(bool IsTargetDevice,bool IsGPU,bool OpenMPOffloadMandatory,bool HasRequiresReverseOffload,bool HasRequiresUnifiedAddress,bool HasRequiresUnifiedSharedMemory,bool HasRequiresDynamicAllocators)424 OpenMPIRBuilderConfig::OpenMPIRBuilderConfig(
425 bool IsTargetDevice, bool IsGPU, bool OpenMPOffloadMandatory,
426 bool HasRequiresReverseOffload, bool HasRequiresUnifiedAddress,
427 bool HasRequiresUnifiedSharedMemory, bool HasRequiresDynamicAllocators)
428 : IsTargetDevice(IsTargetDevice), IsGPU(IsGPU),
429 OpenMPOffloadMandatory(OpenMPOffloadMandatory),
430 RequiresFlags(OMP_REQ_UNDEFINED) {
431 if (HasRequiresReverseOffload)
432 RequiresFlags |= OMP_REQ_REVERSE_OFFLOAD;
433 if (HasRequiresUnifiedAddress)
434 RequiresFlags |= OMP_REQ_UNIFIED_ADDRESS;
435 if (HasRequiresUnifiedSharedMemory)
436 RequiresFlags |= OMP_REQ_UNIFIED_SHARED_MEMORY;
437 if (HasRequiresDynamicAllocators)
438 RequiresFlags |= OMP_REQ_DYNAMIC_ALLOCATORS;
439 }
440
hasRequiresReverseOffload() const441 bool OpenMPIRBuilderConfig::hasRequiresReverseOffload() const {
442 return RequiresFlags & OMP_REQ_REVERSE_OFFLOAD;
443 }
444
hasRequiresUnifiedAddress() const445 bool OpenMPIRBuilderConfig::hasRequiresUnifiedAddress() const {
446 return RequiresFlags & OMP_REQ_UNIFIED_ADDRESS;
447 }
448
hasRequiresUnifiedSharedMemory() const449 bool OpenMPIRBuilderConfig::hasRequiresUnifiedSharedMemory() const {
450 return RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY;
451 }
452
hasRequiresDynamicAllocators() const453 bool OpenMPIRBuilderConfig::hasRequiresDynamicAllocators() const {
454 return RequiresFlags & OMP_REQ_DYNAMIC_ALLOCATORS;
455 }
456
getRequiresFlags() const457 int64_t OpenMPIRBuilderConfig::getRequiresFlags() const {
458 return hasRequiresFlags() ? RequiresFlags
459 : static_cast<int64_t>(OMP_REQ_NONE);
460 }
461
setHasRequiresReverseOffload(bool Value)462 void OpenMPIRBuilderConfig::setHasRequiresReverseOffload(bool Value) {
463 if (Value)
464 RequiresFlags |= OMP_REQ_REVERSE_OFFLOAD;
465 else
466 RequiresFlags &= ~OMP_REQ_REVERSE_OFFLOAD;
467 }
468
setHasRequiresUnifiedAddress(bool Value)469 void OpenMPIRBuilderConfig::setHasRequiresUnifiedAddress(bool Value) {
470 if (Value)
471 RequiresFlags |= OMP_REQ_UNIFIED_ADDRESS;
472 else
473 RequiresFlags &= ~OMP_REQ_UNIFIED_ADDRESS;
474 }
475
setHasRequiresUnifiedSharedMemory(bool Value)476 void OpenMPIRBuilderConfig::setHasRequiresUnifiedSharedMemory(bool Value) {
477 if (Value)
478 RequiresFlags |= OMP_REQ_UNIFIED_SHARED_MEMORY;
479 else
480 RequiresFlags &= ~OMP_REQ_UNIFIED_SHARED_MEMORY;
481 }
482
setHasRequiresDynamicAllocators(bool Value)483 void OpenMPIRBuilderConfig::setHasRequiresDynamicAllocators(bool Value) {
484 if (Value)
485 RequiresFlags |= OMP_REQ_DYNAMIC_ALLOCATORS;
486 else
487 RequiresFlags &= ~OMP_REQ_DYNAMIC_ALLOCATORS;
488 }
489
490 //===----------------------------------------------------------------------===//
491 // OpenMPIRBuilder
492 //===----------------------------------------------------------------------===//
493
getKernelArgsVector(TargetKernelArgs & KernelArgs,IRBuilderBase & Builder,SmallVector<Value * > & ArgsVector)494 void OpenMPIRBuilder::getKernelArgsVector(TargetKernelArgs &KernelArgs,
495 IRBuilderBase &Builder,
496 SmallVector<Value *> &ArgsVector) {
497 Value *Version = Builder.getInt32(OMP_KERNEL_ARG_VERSION);
498 Value *PointerNum = Builder.getInt32(KernelArgs.NumTargetItems);
499 auto Int32Ty = Type::getInt32Ty(Builder.getContext());
500 Value *ZeroArray = Constant::getNullValue(ArrayType::get(Int32Ty, 3));
501 Value *Flags = Builder.getInt64(KernelArgs.HasNoWait);
502
503 Value *NumTeams3D =
504 Builder.CreateInsertValue(ZeroArray, KernelArgs.NumTeams, {0});
505 Value *NumThreads3D =
506 Builder.CreateInsertValue(ZeroArray, KernelArgs.NumThreads, {0});
507
508 ArgsVector = {Version,
509 PointerNum,
510 KernelArgs.RTArgs.BasePointersArray,
511 KernelArgs.RTArgs.PointersArray,
512 KernelArgs.RTArgs.SizesArray,
513 KernelArgs.RTArgs.MapTypesArray,
514 KernelArgs.RTArgs.MapNamesArray,
515 KernelArgs.RTArgs.MappersArray,
516 KernelArgs.NumIterations,
517 Flags,
518 NumTeams3D,
519 NumThreads3D,
520 KernelArgs.DynCGGroupMem};
521 }
522
addAttributes(omp::RuntimeFunction FnID,Function & Fn)523 void OpenMPIRBuilder::addAttributes(omp::RuntimeFunction FnID, Function &Fn) {
524 LLVMContext &Ctx = Fn.getContext();
525
526 // Get the function's current attributes.
527 auto Attrs = Fn.getAttributes();
528 auto FnAttrs = Attrs.getFnAttrs();
529 auto RetAttrs = Attrs.getRetAttrs();
530 SmallVector<AttributeSet, 4> ArgAttrs;
531 for (size_t ArgNo = 0; ArgNo < Fn.arg_size(); ++ArgNo)
532 ArgAttrs.emplace_back(Attrs.getParamAttrs(ArgNo));
533
534 // Add AS to FnAS while taking special care with integer extensions.
535 auto addAttrSet = [&](AttributeSet &FnAS, const AttributeSet &AS,
536 bool Param = true) -> void {
537 bool HasSignExt = AS.hasAttribute(Attribute::SExt);
538 bool HasZeroExt = AS.hasAttribute(Attribute::ZExt);
539 if (HasSignExt || HasZeroExt) {
540 assert(AS.getNumAttributes() == 1 &&
541 "Currently not handling extension attr combined with others.");
542 if (Param) {
543 if (auto AK = TargetLibraryInfo::getExtAttrForI32Param(T, HasSignExt))
544 FnAS = FnAS.addAttribute(Ctx, AK);
545 } else if (auto AK =
546 TargetLibraryInfo::getExtAttrForI32Return(T, HasSignExt))
547 FnAS = FnAS.addAttribute(Ctx, AK);
548 } else {
549 FnAS = FnAS.addAttributes(Ctx, AS);
550 }
551 };
552
553 #define OMP_ATTRS_SET(VarName, AttrSet) AttributeSet VarName = AttrSet;
554 #include "llvm/Frontend/OpenMP/OMPKinds.def"
555
556 // Add attributes to the function declaration.
557 switch (FnID) {
558 #define OMP_RTL_ATTRS(Enum, FnAttrSet, RetAttrSet, ArgAttrSets) \
559 case Enum: \
560 FnAttrs = FnAttrs.addAttributes(Ctx, FnAttrSet); \
561 addAttrSet(RetAttrs, RetAttrSet, /*Param*/ false); \
562 for (size_t ArgNo = 0; ArgNo < ArgAttrSets.size(); ++ArgNo) \
563 addAttrSet(ArgAttrs[ArgNo], ArgAttrSets[ArgNo]); \
564 Fn.setAttributes(AttributeList::get(Ctx, FnAttrs, RetAttrs, ArgAttrs)); \
565 break;
566 #include "llvm/Frontend/OpenMP/OMPKinds.def"
567 default:
568 // Attributes are optional.
569 break;
570 }
571 }
572
573 FunctionCallee
getOrCreateRuntimeFunction(Module & M,RuntimeFunction FnID)574 OpenMPIRBuilder::getOrCreateRuntimeFunction(Module &M, RuntimeFunction FnID) {
575 FunctionType *FnTy = nullptr;
576 Function *Fn = nullptr;
577
578 // Try to find the declation in the module first.
579 switch (FnID) {
580 #define OMP_RTL(Enum, Str, IsVarArg, ReturnType, ...) \
581 case Enum: \
582 FnTy = FunctionType::get(ReturnType, ArrayRef<Type *>{__VA_ARGS__}, \
583 IsVarArg); \
584 Fn = M.getFunction(Str); \
585 break;
586 #include "llvm/Frontend/OpenMP/OMPKinds.def"
587 }
588
589 if (!Fn) {
590 // Create a new declaration if we need one.
591 switch (FnID) {
592 #define OMP_RTL(Enum, Str, ...) \
593 case Enum: \
594 Fn = Function::Create(FnTy, GlobalValue::ExternalLinkage, Str, M); \
595 break;
596 #include "llvm/Frontend/OpenMP/OMPKinds.def"
597 }
598
599 // Add information if the runtime function takes a callback function
600 if (FnID == OMPRTL___kmpc_fork_call || FnID == OMPRTL___kmpc_fork_teams) {
601 if (!Fn->hasMetadata(LLVMContext::MD_callback)) {
602 LLVMContext &Ctx = Fn->getContext();
603 MDBuilder MDB(Ctx);
604 // Annotate the callback behavior of the runtime function:
605 // - The callback callee is argument number 2 (microtask).
606 // - The first two arguments of the callback callee are unknown (-1).
607 // - All variadic arguments to the runtime function are passed to the
608 // callback callee.
609 Fn->addMetadata(
610 LLVMContext::MD_callback,
611 *MDNode::get(Ctx, {MDB.createCallbackEncoding(
612 2, {-1, -1}, /* VarArgsArePassed */ true)}));
613 }
614 }
615
616 LLVM_DEBUG(dbgs() << "Created OpenMP runtime function " << Fn->getName()
617 << " with type " << *Fn->getFunctionType() << "\n");
618 addAttributes(FnID, *Fn);
619
620 } else {
621 LLVM_DEBUG(dbgs() << "Found OpenMP runtime function " << Fn->getName()
622 << " with type " << *Fn->getFunctionType() << "\n");
623 }
624
625 assert(Fn && "Failed to create OpenMP runtime function");
626
627 return {FnTy, Fn};
628 }
629
getOrCreateRuntimeFunctionPtr(RuntimeFunction FnID)630 Function *OpenMPIRBuilder::getOrCreateRuntimeFunctionPtr(RuntimeFunction FnID) {
631 FunctionCallee RTLFn = getOrCreateRuntimeFunction(M, FnID);
632 auto *Fn = dyn_cast<llvm::Function>(RTLFn.getCallee());
633 assert(Fn && "Failed to create OpenMP runtime function pointer");
634 return Fn;
635 }
636
initialize()637 void OpenMPIRBuilder::initialize() { initializeTypes(M); }
638
raiseUserConstantDataAllocasToEntryBlock(IRBuilderBase & Builder,Function * Function)639 static void raiseUserConstantDataAllocasToEntryBlock(IRBuilderBase &Builder,
640 Function *Function) {
641 BasicBlock &EntryBlock = Function->getEntryBlock();
642 Instruction *MoveLocInst = EntryBlock.getFirstNonPHI();
643
644 // Loop over blocks looking for constant allocas, skipping the entry block
645 // as any allocas there are already in the desired location.
646 for (auto Block = std::next(Function->begin(), 1); Block != Function->end();
647 Block++) {
648 for (auto Inst = Block->getReverseIterator()->begin();
649 Inst != Block->getReverseIterator()->end();) {
650 if (auto *AllocaInst = dyn_cast_if_present<llvm::AllocaInst>(Inst)) {
651 Inst++;
652 if (!isa<ConstantData>(AllocaInst->getArraySize()))
653 continue;
654 AllocaInst->moveBeforePreserving(MoveLocInst);
655 } else {
656 Inst++;
657 }
658 }
659 }
660 }
661
finalize(Function * Fn)662 void OpenMPIRBuilder::finalize(Function *Fn) {
663 SmallPtrSet<BasicBlock *, 32> ParallelRegionBlockSet;
664 SmallVector<BasicBlock *, 32> Blocks;
665 SmallVector<OutlineInfo, 16> DeferredOutlines;
666 for (OutlineInfo &OI : OutlineInfos) {
667 // Skip functions that have not finalized yet; may happen with nested
668 // function generation.
669 if (Fn && OI.getFunction() != Fn) {
670 DeferredOutlines.push_back(OI);
671 continue;
672 }
673
674 ParallelRegionBlockSet.clear();
675 Blocks.clear();
676 OI.collectBlocks(ParallelRegionBlockSet, Blocks);
677
678 Function *OuterFn = OI.getFunction();
679 CodeExtractorAnalysisCache CEAC(*OuterFn);
680 // If we generate code for the target device, we need to allocate
681 // struct for aggregate params in the device default alloca address space.
682 // OpenMP runtime requires that the params of the extracted functions are
683 // passed as zero address space pointers. This flag ensures that
684 // CodeExtractor generates correct code for extracted functions
685 // which are used by OpenMP runtime.
686 bool ArgsInZeroAddressSpace = Config.isTargetDevice();
687 CodeExtractor Extractor(Blocks, /* DominatorTree */ nullptr,
688 /* AggregateArgs */ true,
689 /* BlockFrequencyInfo */ nullptr,
690 /* BranchProbabilityInfo */ nullptr,
691 /* AssumptionCache */ nullptr,
692 /* AllowVarArgs */ true,
693 /* AllowAlloca */ true,
694 /* AllocaBlock*/ OI.OuterAllocaBB,
695 /* Suffix */ ".omp_par", ArgsInZeroAddressSpace);
696
697 LLVM_DEBUG(dbgs() << "Before outlining: " << *OuterFn << "\n");
698 LLVM_DEBUG(dbgs() << "Entry " << OI.EntryBB->getName()
699 << " Exit: " << OI.ExitBB->getName() << "\n");
700 assert(Extractor.isEligible() &&
701 "Expected OpenMP outlining to be possible!");
702
703 for (auto *V : OI.ExcludeArgsFromAggregate)
704 Extractor.excludeArgFromAggregate(V);
705
706 Function *OutlinedFn = Extractor.extractCodeRegion(CEAC);
707
708 // Forward target-cpu, target-features attributes to the outlined function.
709 auto TargetCpuAttr = OuterFn->getFnAttribute("target-cpu");
710 if (TargetCpuAttr.isStringAttribute())
711 OutlinedFn->addFnAttr(TargetCpuAttr);
712
713 auto TargetFeaturesAttr = OuterFn->getFnAttribute("target-features");
714 if (TargetFeaturesAttr.isStringAttribute())
715 OutlinedFn->addFnAttr(TargetFeaturesAttr);
716
717 LLVM_DEBUG(dbgs() << "After outlining: " << *OuterFn << "\n");
718 LLVM_DEBUG(dbgs() << " Outlined function: " << *OutlinedFn << "\n");
719 assert(OutlinedFn->getReturnType()->isVoidTy() &&
720 "OpenMP outlined functions should not return a value!");
721
722 // For compability with the clang CG we move the outlined function after the
723 // one with the parallel region.
724 OutlinedFn->removeFromParent();
725 M.getFunctionList().insertAfter(OuterFn->getIterator(), OutlinedFn);
726
727 // Remove the artificial entry introduced by the extractor right away, we
728 // made our own entry block after all.
729 {
730 BasicBlock &ArtificialEntry = OutlinedFn->getEntryBlock();
731 assert(ArtificialEntry.getUniqueSuccessor() == OI.EntryBB);
732 assert(OI.EntryBB->getUniquePredecessor() == &ArtificialEntry);
733 // Move instructions from the to-be-deleted ArtificialEntry to the entry
734 // basic block of the parallel region. CodeExtractor generates
735 // instructions to unwrap the aggregate argument and may sink
736 // allocas/bitcasts for values that are solely used in the outlined region
737 // and do not escape.
738 assert(!ArtificialEntry.empty() &&
739 "Expected instructions to add in the outlined region entry");
740 for (BasicBlock::reverse_iterator It = ArtificialEntry.rbegin(),
741 End = ArtificialEntry.rend();
742 It != End;) {
743 Instruction &I = *It;
744 It++;
745
746 if (I.isTerminator())
747 continue;
748
749 I.moveBeforePreserving(*OI.EntryBB, OI.EntryBB->getFirstInsertionPt());
750 }
751
752 OI.EntryBB->moveBefore(&ArtificialEntry);
753 ArtificialEntry.eraseFromParent();
754 }
755 assert(&OutlinedFn->getEntryBlock() == OI.EntryBB);
756 assert(OutlinedFn && OutlinedFn->getNumUses() == 1);
757
758 // Run a user callback, e.g. to add attributes.
759 if (OI.PostOutlineCB)
760 OI.PostOutlineCB(*OutlinedFn);
761 }
762
763 // Remove work items that have been completed.
764 OutlineInfos = std::move(DeferredOutlines);
765
766 // The createTarget functions embeds user written code into
767 // the target region which may inject allocas which need to
768 // be moved to the entry block of our target or risk malformed
769 // optimisations by later passes, this is only relevant for
770 // the device pass which appears to be a little more delicate
771 // when it comes to optimisations (however, we do not block on
772 // that here, it's up to the inserter to the list to do so).
773 // This notbaly has to occur after the OutlinedInfo candidates
774 // have been extracted so we have an end product that will not
775 // be implicitly adversely affected by any raises unless
776 // intentionally appended to the list.
777 // NOTE: This only does so for ConstantData, it could be extended
778 // to ConstantExpr's with further effort, however, they should
779 // largely be folded when they get here. Extending it to runtime
780 // defined/read+writeable allocation sizes would be non-trivial
781 // (need to factor in movement of any stores to variables the
782 // allocation size depends on, as well as the usual loads,
783 // otherwise it'll yield the wrong result after movement) and
784 // likely be more suitable as an LLVM optimisation pass.
785 for (Function *F : ConstantAllocaRaiseCandidates)
786 raiseUserConstantDataAllocasToEntryBlock(Builder, F);
787
788 EmitMetadataErrorReportFunctionTy &&ErrorReportFn =
789 [](EmitMetadataErrorKind Kind,
790 const TargetRegionEntryInfo &EntryInfo) -> void {
791 errs() << "Error of kind: " << Kind
792 << " when emitting offload entries and metadata during "
793 "OMPIRBuilder finalization \n";
794 };
795
796 if (!OffloadInfoManager.empty())
797 createOffloadEntriesAndInfoMetadata(ErrorReportFn);
798
799 if (Config.EmitLLVMUsedMetaInfo.value_or(false)) {
800 std::vector<WeakTrackingVH> LLVMCompilerUsed = {
801 M.getGlobalVariable("__openmp_nvptx_data_transfer_temporary_storage")};
802 emitUsed("llvm.compiler.used", LLVMCompilerUsed);
803 }
804 }
805
~OpenMPIRBuilder()806 OpenMPIRBuilder::~OpenMPIRBuilder() {
807 assert(OutlineInfos.empty() && "There must be no outstanding outlinings");
808 }
809
createGlobalFlag(unsigned Value,StringRef Name)810 GlobalValue *OpenMPIRBuilder::createGlobalFlag(unsigned Value, StringRef Name) {
811 IntegerType *I32Ty = Type::getInt32Ty(M.getContext());
812 auto *GV =
813 new GlobalVariable(M, I32Ty,
814 /* isConstant = */ true, GlobalValue::WeakODRLinkage,
815 ConstantInt::get(I32Ty, Value), Name);
816 GV->setVisibility(GlobalValue::HiddenVisibility);
817
818 return GV;
819 }
820
getOrCreateIdent(Constant * SrcLocStr,uint32_t SrcLocStrSize,IdentFlag LocFlags,unsigned Reserve2Flags)821 Constant *OpenMPIRBuilder::getOrCreateIdent(Constant *SrcLocStr,
822 uint32_t SrcLocStrSize,
823 IdentFlag LocFlags,
824 unsigned Reserve2Flags) {
825 // Enable "C-mode".
826 LocFlags |= OMP_IDENT_FLAG_KMPC;
827
828 Constant *&Ident =
829 IdentMap[{SrcLocStr, uint64_t(LocFlags) << 31 | Reserve2Flags}];
830 if (!Ident) {
831 Constant *I32Null = ConstantInt::getNullValue(Int32);
832 Constant *IdentData[] = {I32Null,
833 ConstantInt::get(Int32, uint32_t(LocFlags)),
834 ConstantInt::get(Int32, Reserve2Flags),
835 ConstantInt::get(Int32, SrcLocStrSize), SrcLocStr};
836 Constant *Initializer =
837 ConstantStruct::get(OpenMPIRBuilder::Ident, IdentData);
838
839 // Look for existing encoding of the location + flags, not needed but
840 // minimizes the difference to the existing solution while we transition.
841 for (GlobalVariable &GV : M.globals())
842 if (GV.getValueType() == OpenMPIRBuilder::Ident && GV.hasInitializer())
843 if (GV.getInitializer() == Initializer)
844 Ident = &GV;
845
846 if (!Ident) {
847 auto *GV = new GlobalVariable(
848 M, OpenMPIRBuilder::Ident,
849 /* isConstant = */ true, GlobalValue::PrivateLinkage, Initializer, "",
850 nullptr, GlobalValue::NotThreadLocal,
851 M.getDataLayout().getDefaultGlobalsAddressSpace());
852 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
853 GV->setAlignment(Align(8));
854 Ident = GV;
855 }
856 }
857
858 return ConstantExpr::getPointerBitCastOrAddrSpaceCast(Ident, IdentPtr);
859 }
860
getOrCreateSrcLocStr(StringRef LocStr,uint32_t & SrcLocStrSize)861 Constant *OpenMPIRBuilder::getOrCreateSrcLocStr(StringRef LocStr,
862 uint32_t &SrcLocStrSize) {
863 SrcLocStrSize = LocStr.size();
864 Constant *&SrcLocStr = SrcLocStrMap[LocStr];
865 if (!SrcLocStr) {
866 Constant *Initializer =
867 ConstantDataArray::getString(M.getContext(), LocStr);
868
869 // Look for existing encoding of the location, not needed but minimizes the
870 // difference to the existing solution while we transition.
871 for (GlobalVariable &GV : M.globals())
872 if (GV.isConstant() && GV.hasInitializer() &&
873 GV.getInitializer() == Initializer)
874 return SrcLocStr = ConstantExpr::getPointerCast(&GV, Int8Ptr);
875
876 SrcLocStr = Builder.CreateGlobalStringPtr(LocStr, /* Name */ "",
877 /* AddressSpace */ 0, &M);
878 }
879 return SrcLocStr;
880 }
881
getOrCreateSrcLocStr(StringRef FunctionName,StringRef FileName,unsigned Line,unsigned Column,uint32_t & SrcLocStrSize)882 Constant *OpenMPIRBuilder::getOrCreateSrcLocStr(StringRef FunctionName,
883 StringRef FileName,
884 unsigned Line, unsigned Column,
885 uint32_t &SrcLocStrSize) {
886 SmallString<128> Buffer;
887 Buffer.push_back(';');
888 Buffer.append(FileName);
889 Buffer.push_back(';');
890 Buffer.append(FunctionName);
891 Buffer.push_back(';');
892 Buffer.append(std::to_string(Line));
893 Buffer.push_back(';');
894 Buffer.append(std::to_string(Column));
895 Buffer.push_back(';');
896 Buffer.push_back(';');
897 return getOrCreateSrcLocStr(Buffer.str(), SrcLocStrSize);
898 }
899
900 Constant *
getOrCreateDefaultSrcLocStr(uint32_t & SrcLocStrSize)901 OpenMPIRBuilder::getOrCreateDefaultSrcLocStr(uint32_t &SrcLocStrSize) {
902 StringRef UnknownLoc = ";unknown;unknown;0;0;;";
903 return getOrCreateSrcLocStr(UnknownLoc, SrcLocStrSize);
904 }
905
getOrCreateSrcLocStr(DebugLoc DL,uint32_t & SrcLocStrSize,Function * F)906 Constant *OpenMPIRBuilder::getOrCreateSrcLocStr(DebugLoc DL,
907 uint32_t &SrcLocStrSize,
908 Function *F) {
909 DILocation *DIL = DL.get();
910 if (!DIL)
911 return getOrCreateDefaultSrcLocStr(SrcLocStrSize);
912 StringRef FileName = M.getName();
913 if (DIFile *DIF = DIL->getFile())
914 if (std::optional<StringRef> Source = DIF->getSource())
915 FileName = *Source;
916 StringRef Function = DIL->getScope()->getSubprogram()->getName();
917 if (Function.empty() && F)
918 Function = F->getName();
919 return getOrCreateSrcLocStr(Function, FileName, DIL->getLine(),
920 DIL->getColumn(), SrcLocStrSize);
921 }
922
getOrCreateSrcLocStr(const LocationDescription & Loc,uint32_t & SrcLocStrSize)923 Constant *OpenMPIRBuilder::getOrCreateSrcLocStr(const LocationDescription &Loc,
924 uint32_t &SrcLocStrSize) {
925 return getOrCreateSrcLocStr(Loc.DL, SrcLocStrSize,
926 Loc.IP.getBlock()->getParent());
927 }
928
getOrCreateThreadID(Value * Ident)929 Value *OpenMPIRBuilder::getOrCreateThreadID(Value *Ident) {
930 return Builder.CreateCall(
931 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_global_thread_num), Ident,
932 "omp_global_thread_num");
933 }
934
935 OpenMPIRBuilder::InsertPointTy
createBarrier(const LocationDescription & Loc,Directive Kind,bool ForceSimpleCall,bool CheckCancelFlag)936 OpenMPIRBuilder::createBarrier(const LocationDescription &Loc, Directive Kind,
937 bool ForceSimpleCall, bool CheckCancelFlag) {
938 if (!updateToLocation(Loc))
939 return Loc.IP;
940
941 // Build call __kmpc_cancel_barrier(loc, thread_id) or
942 // __kmpc_barrier(loc, thread_id);
943
944 IdentFlag BarrierLocFlags;
945 switch (Kind) {
946 case OMPD_for:
947 BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_IMPL_FOR;
948 break;
949 case OMPD_sections:
950 BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_IMPL_SECTIONS;
951 break;
952 case OMPD_single:
953 BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_IMPL_SINGLE;
954 break;
955 case OMPD_barrier:
956 BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_EXPL;
957 break;
958 default:
959 BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_IMPL;
960 break;
961 }
962
963 uint32_t SrcLocStrSize;
964 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
965 Value *Args[] = {
966 getOrCreateIdent(SrcLocStr, SrcLocStrSize, BarrierLocFlags),
967 getOrCreateThreadID(getOrCreateIdent(SrcLocStr, SrcLocStrSize))};
968
969 // If we are in a cancellable parallel region, barriers are cancellation
970 // points.
971 // TODO: Check why we would force simple calls or to ignore the cancel flag.
972 bool UseCancelBarrier =
973 !ForceSimpleCall && isLastFinalizationInfoCancellable(OMPD_parallel);
974
975 Value *Result =
976 Builder.CreateCall(getOrCreateRuntimeFunctionPtr(
977 UseCancelBarrier ? OMPRTL___kmpc_cancel_barrier
978 : OMPRTL___kmpc_barrier),
979 Args);
980
981 if (UseCancelBarrier && CheckCancelFlag)
982 emitCancelationCheckImpl(Result, OMPD_parallel);
983
984 return Builder.saveIP();
985 }
986
987 OpenMPIRBuilder::InsertPointTy
createCancel(const LocationDescription & Loc,Value * IfCondition,omp::Directive CanceledDirective)988 OpenMPIRBuilder::createCancel(const LocationDescription &Loc,
989 Value *IfCondition,
990 omp::Directive CanceledDirective) {
991 if (!updateToLocation(Loc))
992 return Loc.IP;
993
994 // LLVM utilities like blocks with terminators.
995 auto *UI = Builder.CreateUnreachable();
996
997 Instruction *ThenTI = UI, *ElseTI = nullptr;
998 if (IfCondition)
999 SplitBlockAndInsertIfThenElse(IfCondition, UI, &ThenTI, &ElseTI);
1000 Builder.SetInsertPoint(ThenTI);
1001
1002 Value *CancelKind = nullptr;
1003 switch (CanceledDirective) {
1004 #define OMP_CANCEL_KIND(Enum, Str, DirectiveEnum, Value) \
1005 case DirectiveEnum: \
1006 CancelKind = Builder.getInt32(Value); \
1007 break;
1008 #include "llvm/Frontend/OpenMP/OMPKinds.def"
1009 default:
1010 llvm_unreachable("Unknown cancel kind!");
1011 }
1012
1013 uint32_t SrcLocStrSize;
1014 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
1015 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
1016 Value *Args[] = {Ident, getOrCreateThreadID(Ident), CancelKind};
1017 Value *Result = Builder.CreateCall(
1018 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_cancel), Args);
1019 auto ExitCB = [this, CanceledDirective, Loc](InsertPointTy IP) {
1020 if (CanceledDirective == OMPD_parallel) {
1021 IRBuilder<>::InsertPointGuard IPG(Builder);
1022 Builder.restoreIP(IP);
1023 createBarrier(LocationDescription(Builder.saveIP(), Loc.DL),
1024 omp::Directive::OMPD_unknown, /* ForceSimpleCall */ false,
1025 /* CheckCancelFlag */ false);
1026 }
1027 };
1028
1029 // The actual cancel logic is shared with others, e.g., cancel_barriers.
1030 emitCancelationCheckImpl(Result, CanceledDirective, ExitCB);
1031
1032 // Update the insertion point and remove the terminator we introduced.
1033 Builder.SetInsertPoint(UI->getParent());
1034 UI->eraseFromParent();
1035
1036 return Builder.saveIP();
1037 }
1038
emitTargetKernel(const LocationDescription & Loc,InsertPointTy AllocaIP,Value * & Return,Value * Ident,Value * DeviceID,Value * NumTeams,Value * NumThreads,Value * HostPtr,ArrayRef<Value * > KernelArgs)1039 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::emitTargetKernel(
1040 const LocationDescription &Loc, InsertPointTy AllocaIP, Value *&Return,
1041 Value *Ident, Value *DeviceID, Value *NumTeams, Value *NumThreads,
1042 Value *HostPtr, ArrayRef<Value *> KernelArgs) {
1043 if (!updateToLocation(Loc))
1044 return Loc.IP;
1045
1046 Builder.restoreIP(AllocaIP);
1047 auto *KernelArgsPtr =
1048 Builder.CreateAlloca(OpenMPIRBuilder::KernelArgs, nullptr, "kernel_args");
1049 Builder.restoreIP(Loc.IP);
1050
1051 for (unsigned I = 0, Size = KernelArgs.size(); I != Size; ++I) {
1052 llvm::Value *Arg =
1053 Builder.CreateStructGEP(OpenMPIRBuilder::KernelArgs, KernelArgsPtr, I);
1054 Builder.CreateAlignedStore(
1055 KernelArgs[I], Arg,
1056 M.getDataLayout().getPrefTypeAlign(KernelArgs[I]->getType()));
1057 }
1058
1059 SmallVector<Value *> OffloadingArgs{Ident, DeviceID, NumTeams,
1060 NumThreads, HostPtr, KernelArgsPtr};
1061
1062 Return = Builder.CreateCall(
1063 getOrCreateRuntimeFunction(M, OMPRTL___tgt_target_kernel),
1064 OffloadingArgs);
1065
1066 return Builder.saveIP();
1067 }
1068
emitKernelLaunch(const LocationDescription & Loc,Function * OutlinedFn,Value * OutlinedFnID,EmitFallbackCallbackTy emitTargetCallFallbackCB,TargetKernelArgs & Args,Value * DeviceID,Value * RTLoc,InsertPointTy AllocaIP)1069 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::emitKernelLaunch(
1070 const LocationDescription &Loc, Function *OutlinedFn, Value *OutlinedFnID,
1071 EmitFallbackCallbackTy emitTargetCallFallbackCB, TargetKernelArgs &Args,
1072 Value *DeviceID, Value *RTLoc, InsertPointTy AllocaIP) {
1073
1074 if (!updateToLocation(Loc))
1075 return Loc.IP;
1076
1077 Builder.restoreIP(Loc.IP);
1078 // On top of the arrays that were filled up, the target offloading call
1079 // takes as arguments the device id as well as the host pointer. The host
1080 // pointer is used by the runtime library to identify the current target
1081 // region, so it only has to be unique and not necessarily point to
1082 // anything. It could be the pointer to the outlined function that
1083 // implements the target region, but we aren't using that so that the
1084 // compiler doesn't need to keep that, and could therefore inline the host
1085 // function if proven worthwhile during optimization.
1086
1087 // From this point on, we need to have an ID of the target region defined.
1088 assert(OutlinedFnID && "Invalid outlined function ID!");
1089 (void)OutlinedFnID;
1090
1091 // Return value of the runtime offloading call.
1092 Value *Return = nullptr;
1093
1094 // Arguments for the target kernel.
1095 SmallVector<Value *> ArgsVector;
1096 getKernelArgsVector(Args, Builder, ArgsVector);
1097
1098 // The target region is an outlined function launched by the runtime
1099 // via calls to __tgt_target_kernel().
1100 //
1101 // Note that on the host and CPU targets, the runtime implementation of
1102 // these calls simply call the outlined function without forking threads.
1103 // The outlined functions themselves have runtime calls to
1104 // __kmpc_fork_teams() and __kmpc_fork() for this purpose, codegen'd by
1105 // the compiler in emitTeamsCall() and emitParallelCall().
1106 //
1107 // In contrast, on the NVPTX target, the implementation of
1108 // __tgt_target_teams() launches a GPU kernel with the requested number
1109 // of teams and threads so no additional calls to the runtime are required.
1110 // Check the error code and execute the host version if required.
1111 Builder.restoreIP(emitTargetKernel(Builder, AllocaIP, Return, RTLoc, DeviceID,
1112 Args.NumTeams, Args.NumThreads,
1113 OutlinedFnID, ArgsVector));
1114
1115 BasicBlock *OffloadFailedBlock =
1116 BasicBlock::Create(Builder.getContext(), "omp_offload.failed");
1117 BasicBlock *OffloadContBlock =
1118 BasicBlock::Create(Builder.getContext(), "omp_offload.cont");
1119 Value *Failed = Builder.CreateIsNotNull(Return);
1120 Builder.CreateCondBr(Failed, OffloadFailedBlock, OffloadContBlock);
1121
1122 auto CurFn = Builder.GetInsertBlock()->getParent();
1123 emitBlock(OffloadFailedBlock, CurFn);
1124 Builder.restoreIP(emitTargetCallFallbackCB(Builder.saveIP()));
1125 emitBranch(OffloadContBlock);
1126 emitBlock(OffloadContBlock, CurFn, /*IsFinished=*/true);
1127 return Builder.saveIP();
1128 }
1129
emitCancelationCheckImpl(Value * CancelFlag,omp::Directive CanceledDirective,FinalizeCallbackTy ExitCB)1130 void OpenMPIRBuilder::emitCancelationCheckImpl(Value *CancelFlag,
1131 omp::Directive CanceledDirective,
1132 FinalizeCallbackTy ExitCB) {
1133 assert(isLastFinalizationInfoCancellable(CanceledDirective) &&
1134 "Unexpected cancellation!");
1135
1136 // For a cancel barrier we create two new blocks.
1137 BasicBlock *BB = Builder.GetInsertBlock();
1138 BasicBlock *NonCancellationBlock;
1139 if (Builder.GetInsertPoint() == BB->end()) {
1140 // TODO: This branch will not be needed once we moved to the
1141 // OpenMPIRBuilder codegen completely.
1142 NonCancellationBlock = BasicBlock::Create(
1143 BB->getContext(), BB->getName() + ".cont", BB->getParent());
1144 } else {
1145 NonCancellationBlock = SplitBlock(BB, &*Builder.GetInsertPoint());
1146 BB->getTerminator()->eraseFromParent();
1147 Builder.SetInsertPoint(BB);
1148 }
1149 BasicBlock *CancellationBlock = BasicBlock::Create(
1150 BB->getContext(), BB->getName() + ".cncl", BB->getParent());
1151
1152 // Jump to them based on the return value.
1153 Value *Cmp = Builder.CreateIsNull(CancelFlag);
1154 Builder.CreateCondBr(Cmp, NonCancellationBlock, CancellationBlock,
1155 /* TODO weight */ nullptr, nullptr);
1156
1157 // From the cancellation block we finalize all variables and go to the
1158 // post finalization block that is known to the FiniCB callback.
1159 Builder.SetInsertPoint(CancellationBlock);
1160 if (ExitCB)
1161 ExitCB(Builder.saveIP());
1162 auto &FI = FinalizationStack.back();
1163 FI.FiniCB(Builder.saveIP());
1164
1165 // The continuation block is where code generation continues.
1166 Builder.SetInsertPoint(NonCancellationBlock, NonCancellationBlock->begin());
1167 }
1168
1169 // Callback used to create OpenMP runtime calls to support
1170 // omp parallel clause for the device.
1171 // We need to use this callback to replace call to the OutlinedFn in OuterFn
1172 // by the call to the OpenMP DeviceRTL runtime function (kmpc_parallel_51)
targetParallelCallback(OpenMPIRBuilder * OMPIRBuilder,Function & OutlinedFn,Function * OuterFn,BasicBlock * OuterAllocaBB,Value * Ident,Value * IfCondition,Value * NumThreads,Instruction * PrivTID,AllocaInst * PrivTIDAddr,Value * ThreadID,const SmallVector<Instruction *,4> & ToBeDeleted)1173 static void targetParallelCallback(
1174 OpenMPIRBuilder *OMPIRBuilder, Function &OutlinedFn, Function *OuterFn,
1175 BasicBlock *OuterAllocaBB, Value *Ident, Value *IfCondition,
1176 Value *NumThreads, Instruction *PrivTID, AllocaInst *PrivTIDAddr,
1177 Value *ThreadID, const SmallVector<Instruction *, 4> &ToBeDeleted) {
1178 // Add some known attributes.
1179 IRBuilder<> &Builder = OMPIRBuilder->Builder;
1180 OutlinedFn.addParamAttr(0, Attribute::NoAlias);
1181 OutlinedFn.addParamAttr(1, Attribute::NoAlias);
1182 OutlinedFn.addParamAttr(0, Attribute::NoUndef);
1183 OutlinedFn.addParamAttr(1, Attribute::NoUndef);
1184 OutlinedFn.addFnAttr(Attribute::NoUnwind);
1185
1186 assert(OutlinedFn.arg_size() >= 2 &&
1187 "Expected at least tid and bounded tid as arguments");
1188 unsigned NumCapturedVars = OutlinedFn.arg_size() - /* tid & bounded tid */ 2;
1189
1190 CallInst *CI = cast<CallInst>(OutlinedFn.user_back());
1191 assert(CI && "Expected call instruction to outlined function");
1192 CI->getParent()->setName("omp_parallel");
1193
1194 Builder.SetInsertPoint(CI);
1195 Type *PtrTy = OMPIRBuilder->VoidPtr;
1196 Value *NullPtrValue = Constant::getNullValue(PtrTy);
1197
1198 // Add alloca for kernel args
1199 OpenMPIRBuilder ::InsertPointTy CurrentIP = Builder.saveIP();
1200 Builder.SetInsertPoint(OuterAllocaBB, OuterAllocaBB->getFirstInsertionPt());
1201 AllocaInst *ArgsAlloca =
1202 Builder.CreateAlloca(ArrayType::get(PtrTy, NumCapturedVars));
1203 Value *Args = ArgsAlloca;
1204 // Add address space cast if array for storing arguments is not allocated
1205 // in address space 0
1206 if (ArgsAlloca->getAddressSpace())
1207 Args = Builder.CreatePointerCast(ArgsAlloca, PtrTy);
1208 Builder.restoreIP(CurrentIP);
1209
1210 // Store captured vars which are used by kmpc_parallel_51
1211 for (unsigned Idx = 0; Idx < NumCapturedVars; Idx++) {
1212 Value *V = *(CI->arg_begin() + 2 + Idx);
1213 Value *StoreAddress = Builder.CreateConstInBoundsGEP2_64(
1214 ArrayType::get(PtrTy, NumCapturedVars), Args, 0, Idx);
1215 Builder.CreateStore(V, StoreAddress);
1216 }
1217
1218 Value *Cond =
1219 IfCondition ? Builder.CreateSExtOrTrunc(IfCondition, OMPIRBuilder->Int32)
1220 : Builder.getInt32(1);
1221
1222 // Build kmpc_parallel_51 call
1223 Value *Parallel51CallArgs[] = {
1224 /* identifier*/ Ident,
1225 /* global thread num*/ ThreadID,
1226 /* if expression */ Cond,
1227 /* number of threads */ NumThreads ? NumThreads : Builder.getInt32(-1),
1228 /* Proc bind */ Builder.getInt32(-1),
1229 /* outlined function */
1230 Builder.CreateBitCast(&OutlinedFn, OMPIRBuilder->ParallelTaskPtr),
1231 /* wrapper function */ NullPtrValue,
1232 /* arguments of the outlined funciton*/ Args,
1233 /* number of arguments */ Builder.getInt64(NumCapturedVars)};
1234
1235 FunctionCallee RTLFn =
1236 OMPIRBuilder->getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_parallel_51);
1237
1238 Builder.CreateCall(RTLFn, Parallel51CallArgs);
1239
1240 LLVM_DEBUG(dbgs() << "With kmpc_parallel_51 placed: "
1241 << *Builder.GetInsertBlock()->getParent() << "\n");
1242
1243 // Initialize the local TID stack location with the argument value.
1244 Builder.SetInsertPoint(PrivTID);
1245 Function::arg_iterator OutlinedAI = OutlinedFn.arg_begin();
1246 Builder.CreateStore(Builder.CreateLoad(OMPIRBuilder->Int32, OutlinedAI),
1247 PrivTIDAddr);
1248
1249 // Remove redundant call to the outlined function.
1250 CI->eraseFromParent();
1251
1252 for (Instruction *I : ToBeDeleted) {
1253 I->eraseFromParent();
1254 }
1255 }
1256
1257 // Callback used to create OpenMP runtime calls to support
1258 // omp parallel clause for the host.
1259 // We need to use this callback to replace call to the OutlinedFn in OuterFn
1260 // by the call to the OpenMP host runtime function ( __kmpc_fork_call[_if])
1261 static void
hostParallelCallback(OpenMPIRBuilder * OMPIRBuilder,Function & OutlinedFn,Function * OuterFn,Value * Ident,Value * IfCondition,Instruction * PrivTID,AllocaInst * PrivTIDAddr,const SmallVector<Instruction *,4> & ToBeDeleted)1262 hostParallelCallback(OpenMPIRBuilder *OMPIRBuilder, Function &OutlinedFn,
1263 Function *OuterFn, Value *Ident, Value *IfCondition,
1264 Instruction *PrivTID, AllocaInst *PrivTIDAddr,
1265 const SmallVector<Instruction *, 4> &ToBeDeleted) {
1266 IRBuilder<> &Builder = OMPIRBuilder->Builder;
1267 FunctionCallee RTLFn;
1268 if (IfCondition) {
1269 RTLFn =
1270 OMPIRBuilder->getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_fork_call_if);
1271 } else {
1272 RTLFn =
1273 OMPIRBuilder->getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_fork_call);
1274 }
1275 if (auto *F = dyn_cast<Function>(RTLFn.getCallee())) {
1276 if (!F->hasMetadata(LLVMContext::MD_callback)) {
1277 LLVMContext &Ctx = F->getContext();
1278 MDBuilder MDB(Ctx);
1279 // Annotate the callback behavior of the __kmpc_fork_call:
1280 // - The callback callee is argument number 2 (microtask).
1281 // - The first two arguments of the callback callee are unknown (-1).
1282 // - All variadic arguments to the __kmpc_fork_call are passed to the
1283 // callback callee.
1284 F->addMetadata(LLVMContext::MD_callback,
1285 *MDNode::get(Ctx, {MDB.createCallbackEncoding(
1286 2, {-1, -1},
1287 /* VarArgsArePassed */ true)}));
1288 }
1289 }
1290 // Add some known attributes.
1291 OutlinedFn.addParamAttr(0, Attribute::NoAlias);
1292 OutlinedFn.addParamAttr(1, Attribute::NoAlias);
1293 OutlinedFn.addFnAttr(Attribute::NoUnwind);
1294
1295 assert(OutlinedFn.arg_size() >= 2 &&
1296 "Expected at least tid and bounded tid as arguments");
1297 unsigned NumCapturedVars = OutlinedFn.arg_size() - /* tid & bounded tid */ 2;
1298
1299 CallInst *CI = cast<CallInst>(OutlinedFn.user_back());
1300 CI->getParent()->setName("omp_parallel");
1301 Builder.SetInsertPoint(CI);
1302
1303 // Build call __kmpc_fork_call[_if](Ident, n, microtask, var1, .., varn);
1304 Value *ForkCallArgs[] = {
1305 Ident, Builder.getInt32(NumCapturedVars),
1306 Builder.CreateBitCast(&OutlinedFn, OMPIRBuilder->ParallelTaskPtr)};
1307
1308 SmallVector<Value *, 16> RealArgs;
1309 RealArgs.append(std::begin(ForkCallArgs), std::end(ForkCallArgs));
1310 if (IfCondition) {
1311 Value *Cond = Builder.CreateSExtOrTrunc(IfCondition, OMPIRBuilder->Int32);
1312 RealArgs.push_back(Cond);
1313 }
1314 RealArgs.append(CI->arg_begin() + /* tid & bound tid */ 2, CI->arg_end());
1315
1316 // __kmpc_fork_call_if always expects a void ptr as the last argument
1317 // If there are no arguments, pass a null pointer.
1318 auto PtrTy = OMPIRBuilder->VoidPtr;
1319 if (IfCondition && NumCapturedVars == 0) {
1320 Value *NullPtrValue = Constant::getNullValue(PtrTy);
1321 RealArgs.push_back(NullPtrValue);
1322 }
1323 if (IfCondition && RealArgs.back()->getType() != PtrTy)
1324 RealArgs.back() = Builder.CreateBitCast(RealArgs.back(), PtrTy);
1325
1326 Builder.CreateCall(RTLFn, RealArgs);
1327
1328 LLVM_DEBUG(dbgs() << "With fork_call placed: "
1329 << *Builder.GetInsertBlock()->getParent() << "\n");
1330
1331 // Initialize the local TID stack location with the argument value.
1332 Builder.SetInsertPoint(PrivTID);
1333 Function::arg_iterator OutlinedAI = OutlinedFn.arg_begin();
1334 Builder.CreateStore(Builder.CreateLoad(OMPIRBuilder->Int32, OutlinedAI),
1335 PrivTIDAddr);
1336
1337 // Remove redundant call to the outlined function.
1338 CI->eraseFromParent();
1339
1340 for (Instruction *I : ToBeDeleted) {
1341 I->eraseFromParent();
1342 }
1343 }
1344
createParallel(const LocationDescription & Loc,InsertPointTy OuterAllocaIP,BodyGenCallbackTy BodyGenCB,PrivatizeCallbackTy PrivCB,FinalizeCallbackTy FiniCB,Value * IfCondition,Value * NumThreads,omp::ProcBindKind ProcBind,bool IsCancellable)1345 IRBuilder<>::InsertPoint OpenMPIRBuilder::createParallel(
1346 const LocationDescription &Loc, InsertPointTy OuterAllocaIP,
1347 BodyGenCallbackTy BodyGenCB, PrivatizeCallbackTy PrivCB,
1348 FinalizeCallbackTy FiniCB, Value *IfCondition, Value *NumThreads,
1349 omp::ProcBindKind ProcBind, bool IsCancellable) {
1350 assert(!isConflictIP(Loc.IP, OuterAllocaIP) && "IPs must not be ambiguous");
1351
1352 if (!updateToLocation(Loc))
1353 return Loc.IP;
1354
1355 uint32_t SrcLocStrSize;
1356 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
1357 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
1358 Value *ThreadID = getOrCreateThreadID(Ident);
1359 // If we generate code for the target device, we need to allocate
1360 // struct for aggregate params in the device default alloca address space.
1361 // OpenMP runtime requires that the params of the extracted functions are
1362 // passed as zero address space pointers. This flag ensures that extracted
1363 // function arguments are declared in zero address space
1364 bool ArgsInZeroAddressSpace = Config.isTargetDevice();
1365
1366 // Build call __kmpc_push_num_threads(&Ident, global_tid, num_threads)
1367 // only if we compile for host side.
1368 if (NumThreads && !Config.isTargetDevice()) {
1369 Value *Args[] = {
1370 Ident, ThreadID,
1371 Builder.CreateIntCast(NumThreads, Int32, /*isSigned*/ false)};
1372 Builder.CreateCall(
1373 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_push_num_threads), Args);
1374 }
1375
1376 if (ProcBind != OMP_PROC_BIND_default) {
1377 // Build call __kmpc_push_proc_bind(&Ident, global_tid, proc_bind)
1378 Value *Args[] = {
1379 Ident, ThreadID,
1380 ConstantInt::get(Int32, unsigned(ProcBind), /*isSigned=*/true)};
1381 Builder.CreateCall(
1382 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_push_proc_bind), Args);
1383 }
1384
1385 BasicBlock *InsertBB = Builder.GetInsertBlock();
1386 Function *OuterFn = InsertBB->getParent();
1387
1388 // Save the outer alloca block because the insertion iterator may get
1389 // invalidated and we still need this later.
1390 BasicBlock *OuterAllocaBlock = OuterAllocaIP.getBlock();
1391
1392 // Vector to remember instructions we used only during the modeling but which
1393 // we want to delete at the end.
1394 SmallVector<Instruction *, 4> ToBeDeleted;
1395
1396 // Change the location to the outer alloca insertion point to create and
1397 // initialize the allocas we pass into the parallel region.
1398 InsertPointTy NewOuter(OuterAllocaBlock, OuterAllocaBlock->begin());
1399 Builder.restoreIP(NewOuter);
1400 AllocaInst *TIDAddrAlloca = Builder.CreateAlloca(Int32, nullptr, "tid.addr");
1401 AllocaInst *ZeroAddrAlloca =
1402 Builder.CreateAlloca(Int32, nullptr, "zero.addr");
1403 Instruction *TIDAddr = TIDAddrAlloca;
1404 Instruction *ZeroAddr = ZeroAddrAlloca;
1405 if (ArgsInZeroAddressSpace && M.getDataLayout().getAllocaAddrSpace() != 0) {
1406 // Add additional casts to enforce pointers in zero address space
1407 TIDAddr = new AddrSpaceCastInst(
1408 TIDAddrAlloca, PointerType ::get(M.getContext(), 0), "tid.addr.ascast");
1409 TIDAddr->insertAfter(TIDAddrAlloca);
1410 ToBeDeleted.push_back(TIDAddr);
1411 ZeroAddr = new AddrSpaceCastInst(ZeroAddrAlloca,
1412 PointerType ::get(M.getContext(), 0),
1413 "zero.addr.ascast");
1414 ZeroAddr->insertAfter(ZeroAddrAlloca);
1415 ToBeDeleted.push_back(ZeroAddr);
1416 }
1417
1418 // We only need TIDAddr and ZeroAddr for modeling purposes to get the
1419 // associated arguments in the outlined function, so we delete them later.
1420 ToBeDeleted.push_back(TIDAddrAlloca);
1421 ToBeDeleted.push_back(ZeroAddrAlloca);
1422
1423 // Create an artificial insertion point that will also ensure the blocks we
1424 // are about to split are not degenerated.
1425 auto *UI = new UnreachableInst(Builder.getContext(), InsertBB);
1426
1427 BasicBlock *EntryBB = UI->getParent();
1428 BasicBlock *PRegEntryBB = EntryBB->splitBasicBlock(UI, "omp.par.entry");
1429 BasicBlock *PRegBodyBB = PRegEntryBB->splitBasicBlock(UI, "omp.par.region");
1430 BasicBlock *PRegPreFiniBB =
1431 PRegBodyBB->splitBasicBlock(UI, "omp.par.pre_finalize");
1432 BasicBlock *PRegExitBB = PRegPreFiniBB->splitBasicBlock(UI, "omp.par.exit");
1433
1434 auto FiniCBWrapper = [&](InsertPointTy IP) {
1435 // Hide "open-ended" blocks from the given FiniCB by setting the right jump
1436 // target to the region exit block.
1437 if (IP.getBlock()->end() == IP.getPoint()) {
1438 IRBuilder<>::InsertPointGuard IPG(Builder);
1439 Builder.restoreIP(IP);
1440 Instruction *I = Builder.CreateBr(PRegExitBB);
1441 IP = InsertPointTy(I->getParent(), I->getIterator());
1442 }
1443 assert(IP.getBlock()->getTerminator()->getNumSuccessors() == 1 &&
1444 IP.getBlock()->getTerminator()->getSuccessor(0) == PRegExitBB &&
1445 "Unexpected insertion point for finalization call!");
1446 return FiniCB(IP);
1447 };
1448
1449 FinalizationStack.push_back({FiniCBWrapper, OMPD_parallel, IsCancellable});
1450
1451 // Generate the privatization allocas in the block that will become the entry
1452 // of the outlined function.
1453 Builder.SetInsertPoint(PRegEntryBB->getTerminator());
1454 InsertPointTy InnerAllocaIP = Builder.saveIP();
1455
1456 AllocaInst *PrivTIDAddr =
1457 Builder.CreateAlloca(Int32, nullptr, "tid.addr.local");
1458 Instruction *PrivTID = Builder.CreateLoad(Int32, PrivTIDAddr, "tid");
1459
1460 // Add some fake uses for OpenMP provided arguments.
1461 ToBeDeleted.push_back(Builder.CreateLoad(Int32, TIDAddr, "tid.addr.use"));
1462 Instruction *ZeroAddrUse =
1463 Builder.CreateLoad(Int32, ZeroAddr, "zero.addr.use");
1464 ToBeDeleted.push_back(ZeroAddrUse);
1465
1466 // EntryBB
1467 // |
1468 // V
1469 // PRegionEntryBB <- Privatization allocas are placed here.
1470 // |
1471 // V
1472 // PRegionBodyBB <- BodeGen is invoked here.
1473 // |
1474 // V
1475 // PRegPreFiniBB <- The block we will start finalization from.
1476 // |
1477 // V
1478 // PRegionExitBB <- A common exit to simplify block collection.
1479 //
1480
1481 LLVM_DEBUG(dbgs() << "Before body codegen: " << *OuterFn << "\n");
1482
1483 // Let the caller create the body.
1484 assert(BodyGenCB && "Expected body generation callback!");
1485 InsertPointTy CodeGenIP(PRegBodyBB, PRegBodyBB->begin());
1486 BodyGenCB(InnerAllocaIP, CodeGenIP);
1487
1488 LLVM_DEBUG(dbgs() << "After body codegen: " << *OuterFn << "\n");
1489
1490 OutlineInfo OI;
1491 if (Config.isTargetDevice()) {
1492 // Generate OpenMP target specific runtime call
1493 OI.PostOutlineCB = [=, ToBeDeletedVec =
1494 std::move(ToBeDeleted)](Function &OutlinedFn) {
1495 targetParallelCallback(this, OutlinedFn, OuterFn, OuterAllocaBlock, Ident,
1496 IfCondition, NumThreads, PrivTID, PrivTIDAddr,
1497 ThreadID, ToBeDeletedVec);
1498 };
1499 } else {
1500 // Generate OpenMP host runtime call
1501 OI.PostOutlineCB = [=, ToBeDeletedVec =
1502 std::move(ToBeDeleted)](Function &OutlinedFn) {
1503 hostParallelCallback(this, OutlinedFn, OuterFn, Ident, IfCondition,
1504 PrivTID, PrivTIDAddr, ToBeDeletedVec);
1505 };
1506 }
1507
1508 OI.OuterAllocaBB = OuterAllocaBlock;
1509 OI.EntryBB = PRegEntryBB;
1510 OI.ExitBB = PRegExitBB;
1511
1512 SmallPtrSet<BasicBlock *, 32> ParallelRegionBlockSet;
1513 SmallVector<BasicBlock *, 32> Blocks;
1514 OI.collectBlocks(ParallelRegionBlockSet, Blocks);
1515
1516 // Ensure a single exit node for the outlined region by creating one.
1517 // We might have multiple incoming edges to the exit now due to finalizations,
1518 // e.g., cancel calls that cause the control flow to leave the region.
1519 BasicBlock *PRegOutlinedExitBB = PRegExitBB;
1520 PRegExitBB = SplitBlock(PRegExitBB, &*PRegExitBB->getFirstInsertionPt());
1521 PRegOutlinedExitBB->setName("omp.par.outlined.exit");
1522 Blocks.push_back(PRegOutlinedExitBB);
1523
1524 CodeExtractorAnalysisCache CEAC(*OuterFn);
1525 CodeExtractor Extractor(Blocks, /* DominatorTree */ nullptr,
1526 /* AggregateArgs */ false,
1527 /* BlockFrequencyInfo */ nullptr,
1528 /* BranchProbabilityInfo */ nullptr,
1529 /* AssumptionCache */ nullptr,
1530 /* AllowVarArgs */ true,
1531 /* AllowAlloca */ true,
1532 /* AllocationBlock */ OuterAllocaBlock,
1533 /* Suffix */ ".omp_par", ArgsInZeroAddressSpace);
1534
1535 // Find inputs to, outputs from the code region.
1536 BasicBlock *CommonExit = nullptr;
1537 SetVector<Value *> Inputs, Outputs, SinkingCands, HoistingCands;
1538 Extractor.findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit);
1539 Extractor.findInputsOutputs(Inputs, Outputs, SinkingCands);
1540
1541 LLVM_DEBUG(dbgs() << "Before privatization: " << *OuterFn << "\n");
1542
1543 FunctionCallee TIDRTLFn =
1544 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_global_thread_num);
1545
1546 auto PrivHelper = [&](Value &V) {
1547 if (&V == TIDAddr || &V == ZeroAddr) {
1548 OI.ExcludeArgsFromAggregate.push_back(&V);
1549 return;
1550 }
1551
1552 SetVector<Use *> Uses;
1553 for (Use &U : V.uses())
1554 if (auto *UserI = dyn_cast<Instruction>(U.getUser()))
1555 if (ParallelRegionBlockSet.count(UserI->getParent()))
1556 Uses.insert(&U);
1557
1558 // __kmpc_fork_call expects extra arguments as pointers. If the input
1559 // already has a pointer type, everything is fine. Otherwise, store the
1560 // value onto stack and load it back inside the to-be-outlined region. This
1561 // will ensure only the pointer will be passed to the function.
1562 // FIXME: if there are more than 15 trailing arguments, they must be
1563 // additionally packed in a struct.
1564 Value *Inner = &V;
1565 if (!V.getType()->isPointerTy()) {
1566 IRBuilder<>::InsertPointGuard Guard(Builder);
1567 LLVM_DEBUG(llvm::dbgs() << "Forwarding input as pointer: " << V << "\n");
1568
1569 Builder.restoreIP(OuterAllocaIP);
1570 Value *Ptr =
1571 Builder.CreateAlloca(V.getType(), nullptr, V.getName() + ".reloaded");
1572
1573 // Store to stack at end of the block that currently branches to the entry
1574 // block of the to-be-outlined region.
1575 Builder.SetInsertPoint(InsertBB,
1576 InsertBB->getTerminator()->getIterator());
1577 Builder.CreateStore(&V, Ptr);
1578
1579 // Load back next to allocations in the to-be-outlined region.
1580 Builder.restoreIP(InnerAllocaIP);
1581 Inner = Builder.CreateLoad(V.getType(), Ptr);
1582 }
1583
1584 Value *ReplacementValue = nullptr;
1585 CallInst *CI = dyn_cast<CallInst>(&V);
1586 if (CI && CI->getCalledFunction() == TIDRTLFn.getCallee()) {
1587 ReplacementValue = PrivTID;
1588 } else {
1589 Builder.restoreIP(
1590 PrivCB(InnerAllocaIP, Builder.saveIP(), V, *Inner, ReplacementValue));
1591 InnerAllocaIP = {
1592 InnerAllocaIP.getBlock(),
1593 InnerAllocaIP.getBlock()->getTerminator()->getIterator()};
1594
1595 assert(ReplacementValue &&
1596 "Expected copy/create callback to set replacement value!");
1597 if (ReplacementValue == &V)
1598 return;
1599 }
1600
1601 for (Use *UPtr : Uses)
1602 UPtr->set(ReplacementValue);
1603 };
1604
1605 // Reset the inner alloca insertion as it will be used for loading the values
1606 // wrapped into pointers before passing them into the to-be-outlined region.
1607 // Configure it to insert immediately after the fake use of zero address so
1608 // that they are available in the generated body and so that the
1609 // OpenMP-related values (thread ID and zero address pointers) remain leading
1610 // in the argument list.
1611 InnerAllocaIP = IRBuilder<>::InsertPoint(
1612 ZeroAddrUse->getParent(), ZeroAddrUse->getNextNode()->getIterator());
1613
1614 // Reset the outer alloca insertion point to the entry of the relevant block
1615 // in case it was invalidated.
1616 OuterAllocaIP = IRBuilder<>::InsertPoint(
1617 OuterAllocaBlock, OuterAllocaBlock->getFirstInsertionPt());
1618
1619 for (Value *Input : Inputs) {
1620 LLVM_DEBUG(dbgs() << "Captured input: " << *Input << "\n");
1621 PrivHelper(*Input);
1622 }
1623 LLVM_DEBUG({
1624 for (Value *Output : Outputs)
1625 LLVM_DEBUG(dbgs() << "Captured output: " << *Output << "\n");
1626 });
1627 assert(Outputs.empty() &&
1628 "OpenMP outlining should not produce live-out values!");
1629
1630 LLVM_DEBUG(dbgs() << "After privatization: " << *OuterFn << "\n");
1631 LLVM_DEBUG({
1632 for (auto *BB : Blocks)
1633 dbgs() << " PBR: " << BB->getName() << "\n";
1634 });
1635
1636 // Adjust the finalization stack, verify the adjustment, and call the
1637 // finalize function a last time to finalize values between the pre-fini
1638 // block and the exit block if we left the parallel "the normal way".
1639 auto FiniInfo = FinalizationStack.pop_back_val();
1640 (void)FiniInfo;
1641 assert(FiniInfo.DK == OMPD_parallel &&
1642 "Unexpected finalization stack state!");
1643
1644 Instruction *PRegPreFiniTI = PRegPreFiniBB->getTerminator();
1645
1646 InsertPointTy PreFiniIP(PRegPreFiniBB, PRegPreFiniTI->getIterator());
1647 FiniCB(PreFiniIP);
1648
1649 // Register the outlined info.
1650 addOutlineInfo(std::move(OI));
1651
1652 InsertPointTy AfterIP(UI->getParent(), UI->getParent()->end());
1653 UI->eraseFromParent();
1654
1655 return AfterIP;
1656 }
1657
emitFlush(const LocationDescription & Loc)1658 void OpenMPIRBuilder::emitFlush(const LocationDescription &Loc) {
1659 // Build call void __kmpc_flush(ident_t *loc)
1660 uint32_t SrcLocStrSize;
1661 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
1662 Value *Args[] = {getOrCreateIdent(SrcLocStr, SrcLocStrSize)};
1663
1664 Builder.CreateCall(getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_flush), Args);
1665 }
1666
createFlush(const LocationDescription & Loc)1667 void OpenMPIRBuilder::createFlush(const LocationDescription &Loc) {
1668 if (!updateToLocation(Loc))
1669 return;
1670 emitFlush(Loc);
1671 }
1672
emitTaskwaitImpl(const LocationDescription & Loc)1673 void OpenMPIRBuilder::emitTaskwaitImpl(const LocationDescription &Loc) {
1674 // Build call kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32
1675 // global_tid);
1676 uint32_t SrcLocStrSize;
1677 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
1678 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
1679 Value *Args[] = {Ident, getOrCreateThreadID(Ident)};
1680
1681 // Ignore return result until untied tasks are supported.
1682 Builder.CreateCall(getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_taskwait),
1683 Args);
1684 }
1685
createTaskwait(const LocationDescription & Loc)1686 void OpenMPIRBuilder::createTaskwait(const LocationDescription &Loc) {
1687 if (!updateToLocation(Loc))
1688 return;
1689 emitTaskwaitImpl(Loc);
1690 }
1691
emitTaskyieldImpl(const LocationDescription & Loc)1692 void OpenMPIRBuilder::emitTaskyieldImpl(const LocationDescription &Loc) {
1693 // Build call __kmpc_omp_taskyield(loc, thread_id, 0);
1694 uint32_t SrcLocStrSize;
1695 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
1696 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
1697 Constant *I32Null = ConstantInt::getNullValue(Int32);
1698 Value *Args[] = {Ident, getOrCreateThreadID(Ident), I32Null};
1699
1700 Builder.CreateCall(getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_taskyield),
1701 Args);
1702 }
1703
createTaskyield(const LocationDescription & Loc)1704 void OpenMPIRBuilder::createTaskyield(const LocationDescription &Loc) {
1705 if (!updateToLocation(Loc))
1706 return;
1707 emitTaskyieldImpl(Loc);
1708 }
1709
1710 // Processes the dependencies in Dependencies and does the following
1711 // - Allocates space on the stack of an array of DependInfo objects
1712 // - Populates each DependInfo object with relevant information of
1713 // the corresponding dependence.
1714 // - All code is inserted in the entry block of the current function.
emitTaskDependencies(OpenMPIRBuilder & OMPBuilder,SmallVectorImpl<OpenMPIRBuilder::DependData> & Dependencies)1715 static Value *emitTaskDependencies(
1716 OpenMPIRBuilder &OMPBuilder,
1717 SmallVectorImpl<OpenMPIRBuilder::DependData> &Dependencies) {
1718 // Early return if we have no dependencies to process
1719 if (Dependencies.empty())
1720 return nullptr;
1721
1722 // Given a vector of DependData objects, in this function we create an
1723 // array on the stack that holds kmp_dep_info objects corresponding
1724 // to each dependency. This is then passed to the OpenMP runtime.
1725 // For example, if there are 'n' dependencies then the following psedo
1726 // code is generated. Assume the first dependence is on a variable 'a'
1727 //
1728 // \code{c}
1729 // DepArray = alloc(n x sizeof(kmp_depend_info);
1730 // idx = 0;
1731 // DepArray[idx].base_addr = ptrtoint(&a);
1732 // DepArray[idx].len = 8;
1733 // DepArray[idx].flags = Dep.DepKind; /*(See OMPContants.h for DepKind)*/
1734 // ++idx;
1735 // DepArray[idx].base_addr = ...;
1736 // \endcode
1737
1738 IRBuilderBase &Builder = OMPBuilder.Builder;
1739 Type *DependInfo = OMPBuilder.DependInfo;
1740 Module &M = OMPBuilder.M;
1741
1742 Value *DepArray = nullptr;
1743 OpenMPIRBuilder::InsertPointTy OldIP = Builder.saveIP();
1744 Builder.SetInsertPoint(
1745 OldIP.getBlock()->getParent()->getEntryBlock().getTerminator());
1746
1747 Type *DepArrayTy = ArrayType::get(DependInfo, Dependencies.size());
1748 DepArray = Builder.CreateAlloca(DepArrayTy, nullptr, ".dep.arr.addr");
1749
1750 for (const auto &[DepIdx, Dep] : enumerate(Dependencies)) {
1751 Value *Base =
1752 Builder.CreateConstInBoundsGEP2_64(DepArrayTy, DepArray, 0, DepIdx);
1753 // Store the pointer to the variable
1754 Value *Addr = Builder.CreateStructGEP(
1755 DependInfo, Base,
1756 static_cast<unsigned int>(RTLDependInfoFields::BaseAddr));
1757 Value *DepValPtr = Builder.CreatePtrToInt(Dep.DepVal, Builder.getInt64Ty());
1758 Builder.CreateStore(DepValPtr, Addr);
1759 // Store the size of the variable
1760 Value *Size = Builder.CreateStructGEP(
1761 DependInfo, Base, static_cast<unsigned int>(RTLDependInfoFields::Len));
1762 Builder.CreateStore(
1763 Builder.getInt64(M.getDataLayout().getTypeStoreSize(Dep.DepValueType)),
1764 Size);
1765 // Store the dependency kind
1766 Value *Flags = Builder.CreateStructGEP(
1767 DependInfo, Base,
1768 static_cast<unsigned int>(RTLDependInfoFields::Flags));
1769 Builder.CreateStore(
1770 ConstantInt::get(Builder.getInt8Ty(),
1771 static_cast<unsigned int>(Dep.DepKind)),
1772 Flags);
1773 }
1774 Builder.restoreIP(OldIP);
1775 return DepArray;
1776 }
1777
1778 OpenMPIRBuilder::InsertPointTy
createTask(const LocationDescription & Loc,InsertPointTy AllocaIP,BodyGenCallbackTy BodyGenCB,bool Tied,Value * Final,Value * IfCondition,SmallVector<DependData> Dependencies)1779 OpenMPIRBuilder::createTask(const LocationDescription &Loc,
1780 InsertPointTy AllocaIP, BodyGenCallbackTy BodyGenCB,
1781 bool Tied, Value *Final, Value *IfCondition,
1782 SmallVector<DependData> Dependencies) {
1783
1784 if (!updateToLocation(Loc))
1785 return InsertPointTy();
1786
1787 uint32_t SrcLocStrSize;
1788 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
1789 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
1790 // The current basic block is split into four basic blocks. After outlining,
1791 // they will be mapped as follows:
1792 // ```
1793 // def current_fn() {
1794 // current_basic_block:
1795 // br label %task.exit
1796 // task.exit:
1797 // ; instructions after task
1798 // }
1799 // def outlined_fn() {
1800 // task.alloca:
1801 // br label %task.body
1802 // task.body:
1803 // ret void
1804 // }
1805 // ```
1806 BasicBlock *TaskExitBB = splitBB(Builder, /*CreateBranch=*/true, "task.exit");
1807 BasicBlock *TaskBodyBB = splitBB(Builder, /*CreateBranch=*/true, "task.body");
1808 BasicBlock *TaskAllocaBB =
1809 splitBB(Builder, /*CreateBranch=*/true, "task.alloca");
1810
1811 InsertPointTy TaskAllocaIP =
1812 InsertPointTy(TaskAllocaBB, TaskAllocaBB->begin());
1813 InsertPointTy TaskBodyIP = InsertPointTy(TaskBodyBB, TaskBodyBB->begin());
1814 BodyGenCB(TaskAllocaIP, TaskBodyIP);
1815
1816 OutlineInfo OI;
1817 OI.EntryBB = TaskAllocaBB;
1818 OI.OuterAllocaBB = AllocaIP.getBlock();
1819 OI.ExitBB = TaskExitBB;
1820
1821 // Add the thread ID argument.
1822 SmallVector<Instruction *, 4> ToBeDeleted;
1823 OI.ExcludeArgsFromAggregate.push_back(createFakeIntVal(
1824 Builder, AllocaIP, ToBeDeleted, TaskAllocaIP, "global.tid", false));
1825
1826 OI.PostOutlineCB = [this, Ident, Tied, Final, IfCondition, Dependencies,
1827 TaskAllocaBB, ToBeDeleted](Function &OutlinedFn) mutable {
1828 // Replace the Stale CI by appropriate RTL function call.
1829 assert(OutlinedFn.getNumUses() == 1 &&
1830 "there must be a single user for the outlined function");
1831 CallInst *StaleCI = cast<CallInst>(OutlinedFn.user_back());
1832
1833 // HasShareds is true if any variables are captured in the outlined region,
1834 // false otherwise.
1835 bool HasShareds = StaleCI->arg_size() > 1;
1836 Builder.SetInsertPoint(StaleCI);
1837
1838 // Gather the arguments for emitting the runtime call for
1839 // @__kmpc_omp_task_alloc
1840 Function *TaskAllocFn =
1841 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_task_alloc);
1842
1843 // Arguments - `loc_ref` (Ident) and `gtid` (ThreadID)
1844 // call.
1845 Value *ThreadID = getOrCreateThreadID(Ident);
1846
1847 // Argument - `flags`
1848 // Task is tied iff (Flags & 1) == 1.
1849 // Task is untied iff (Flags & 1) == 0.
1850 // Task is final iff (Flags & 2) == 2.
1851 // Task is not final iff (Flags & 2) == 0.
1852 // TODO: Handle the other flags.
1853 Value *Flags = Builder.getInt32(Tied);
1854 if (Final) {
1855 Value *FinalFlag =
1856 Builder.CreateSelect(Final, Builder.getInt32(2), Builder.getInt32(0));
1857 Flags = Builder.CreateOr(FinalFlag, Flags);
1858 }
1859
1860 // Argument - `sizeof_kmp_task_t` (TaskSize)
1861 // Tasksize refers to the size in bytes of kmp_task_t data structure
1862 // including private vars accessed in task.
1863 // TODO: add kmp_task_t_with_privates (privates)
1864 Value *TaskSize = Builder.getInt64(
1865 divideCeil(M.getDataLayout().getTypeSizeInBits(Task), 8));
1866
1867 // Argument - `sizeof_shareds` (SharedsSize)
1868 // SharedsSize refers to the shareds array size in the kmp_task_t data
1869 // structure.
1870 Value *SharedsSize = Builder.getInt64(0);
1871 if (HasShareds) {
1872 AllocaInst *ArgStructAlloca =
1873 dyn_cast<AllocaInst>(StaleCI->getArgOperand(1));
1874 assert(ArgStructAlloca &&
1875 "Unable to find the alloca instruction corresponding to arguments "
1876 "for extracted function");
1877 StructType *ArgStructType =
1878 dyn_cast<StructType>(ArgStructAlloca->getAllocatedType());
1879 assert(ArgStructType && "Unable to find struct type corresponding to "
1880 "arguments for extracted function");
1881 SharedsSize =
1882 Builder.getInt64(M.getDataLayout().getTypeStoreSize(ArgStructType));
1883 }
1884 // Emit the @__kmpc_omp_task_alloc runtime call
1885 // The runtime call returns a pointer to an area where the task captured
1886 // variables must be copied before the task is run (TaskData)
1887 CallInst *TaskData = Builder.CreateCall(
1888 TaskAllocFn, {/*loc_ref=*/Ident, /*gtid=*/ThreadID, /*flags=*/Flags,
1889 /*sizeof_task=*/TaskSize, /*sizeof_shared=*/SharedsSize,
1890 /*task_func=*/&OutlinedFn});
1891
1892 // Copy the arguments for outlined function
1893 if (HasShareds) {
1894 Value *Shareds = StaleCI->getArgOperand(1);
1895 Align Alignment = TaskData->getPointerAlignment(M.getDataLayout());
1896 Value *TaskShareds = Builder.CreateLoad(VoidPtr, TaskData);
1897 Builder.CreateMemCpy(TaskShareds, Alignment, Shareds, Alignment,
1898 SharedsSize);
1899 }
1900
1901 Value *DepArray = nullptr;
1902 if (Dependencies.size()) {
1903 InsertPointTy OldIP = Builder.saveIP();
1904 Builder.SetInsertPoint(
1905 &OldIP.getBlock()->getParent()->getEntryBlock().back());
1906
1907 Type *DepArrayTy = ArrayType::get(DependInfo, Dependencies.size());
1908 DepArray = Builder.CreateAlloca(DepArrayTy, nullptr, ".dep.arr.addr");
1909
1910 unsigned P = 0;
1911 for (const DependData &Dep : Dependencies) {
1912 Value *Base =
1913 Builder.CreateConstInBoundsGEP2_64(DepArrayTy, DepArray, 0, P);
1914 // Store the pointer to the variable
1915 Value *Addr = Builder.CreateStructGEP(
1916 DependInfo, Base,
1917 static_cast<unsigned int>(RTLDependInfoFields::BaseAddr));
1918 Value *DepValPtr =
1919 Builder.CreatePtrToInt(Dep.DepVal, Builder.getInt64Ty());
1920 Builder.CreateStore(DepValPtr, Addr);
1921 // Store the size of the variable
1922 Value *Size = Builder.CreateStructGEP(
1923 DependInfo, Base,
1924 static_cast<unsigned int>(RTLDependInfoFields::Len));
1925 Builder.CreateStore(Builder.getInt64(M.getDataLayout().getTypeStoreSize(
1926 Dep.DepValueType)),
1927 Size);
1928 // Store the dependency kind
1929 Value *Flags = Builder.CreateStructGEP(
1930 DependInfo, Base,
1931 static_cast<unsigned int>(RTLDependInfoFields::Flags));
1932 Builder.CreateStore(
1933 ConstantInt::get(Builder.getInt8Ty(),
1934 static_cast<unsigned int>(Dep.DepKind)),
1935 Flags);
1936 ++P;
1937 }
1938
1939 Builder.restoreIP(OldIP);
1940 }
1941
1942 // In the presence of the `if` clause, the following IR is generated:
1943 // ...
1944 // %data = call @__kmpc_omp_task_alloc(...)
1945 // br i1 %if_condition, label %then, label %else
1946 // then:
1947 // call @__kmpc_omp_task(...)
1948 // br label %exit
1949 // else:
1950 // ;; Wait for resolution of dependencies, if any, before
1951 // ;; beginning the task
1952 // call @__kmpc_omp_wait_deps(...)
1953 // call @__kmpc_omp_task_begin_if0(...)
1954 // call @outlined_fn(...)
1955 // call @__kmpc_omp_task_complete_if0(...)
1956 // br label %exit
1957 // exit:
1958 // ...
1959 if (IfCondition) {
1960 // `SplitBlockAndInsertIfThenElse` requires the block to have a
1961 // terminator.
1962 splitBB(Builder, /*CreateBranch=*/true, "if.end");
1963 Instruction *IfTerminator =
1964 Builder.GetInsertPoint()->getParent()->getTerminator();
1965 Instruction *ThenTI = IfTerminator, *ElseTI = nullptr;
1966 Builder.SetInsertPoint(IfTerminator);
1967 SplitBlockAndInsertIfThenElse(IfCondition, IfTerminator, &ThenTI,
1968 &ElseTI);
1969 Builder.SetInsertPoint(ElseTI);
1970
1971 if (Dependencies.size()) {
1972 Function *TaskWaitFn =
1973 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_wait_deps);
1974 Builder.CreateCall(
1975 TaskWaitFn,
1976 {Ident, ThreadID, Builder.getInt32(Dependencies.size()), DepArray,
1977 ConstantInt::get(Builder.getInt32Ty(), 0),
1978 ConstantPointerNull::get(PointerType::getUnqual(M.getContext()))});
1979 }
1980 Function *TaskBeginFn =
1981 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_task_begin_if0);
1982 Function *TaskCompleteFn =
1983 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_task_complete_if0);
1984 Builder.CreateCall(TaskBeginFn, {Ident, ThreadID, TaskData});
1985 CallInst *CI = nullptr;
1986 if (HasShareds)
1987 CI = Builder.CreateCall(&OutlinedFn, {ThreadID, TaskData});
1988 else
1989 CI = Builder.CreateCall(&OutlinedFn, {ThreadID});
1990 CI->setDebugLoc(StaleCI->getDebugLoc());
1991 Builder.CreateCall(TaskCompleteFn, {Ident, ThreadID, TaskData});
1992 Builder.SetInsertPoint(ThenTI);
1993 }
1994
1995 if (Dependencies.size()) {
1996 Function *TaskFn =
1997 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_task_with_deps);
1998 Builder.CreateCall(
1999 TaskFn,
2000 {Ident, ThreadID, TaskData, Builder.getInt32(Dependencies.size()),
2001 DepArray, ConstantInt::get(Builder.getInt32Ty(), 0),
2002 ConstantPointerNull::get(PointerType::getUnqual(M.getContext()))});
2003
2004 } else {
2005 // Emit the @__kmpc_omp_task runtime call to spawn the task
2006 Function *TaskFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_task);
2007 Builder.CreateCall(TaskFn, {Ident, ThreadID, TaskData});
2008 }
2009
2010 StaleCI->eraseFromParent();
2011
2012 Builder.SetInsertPoint(TaskAllocaBB, TaskAllocaBB->begin());
2013 if (HasShareds) {
2014 LoadInst *Shareds = Builder.CreateLoad(VoidPtr, OutlinedFn.getArg(1));
2015 OutlinedFn.getArg(1)->replaceUsesWithIf(
2016 Shareds, [Shareds](Use &U) { return U.getUser() != Shareds; });
2017 }
2018
2019 llvm::for_each(llvm::reverse(ToBeDeleted),
2020 [](Instruction *I) { I->eraseFromParent(); });
2021 };
2022
2023 addOutlineInfo(std::move(OI));
2024 Builder.SetInsertPoint(TaskExitBB, TaskExitBB->begin());
2025
2026 return Builder.saveIP();
2027 }
2028
2029 OpenMPIRBuilder::InsertPointTy
createTaskgroup(const LocationDescription & Loc,InsertPointTy AllocaIP,BodyGenCallbackTy BodyGenCB)2030 OpenMPIRBuilder::createTaskgroup(const LocationDescription &Loc,
2031 InsertPointTy AllocaIP,
2032 BodyGenCallbackTy BodyGenCB) {
2033 if (!updateToLocation(Loc))
2034 return InsertPointTy();
2035
2036 uint32_t SrcLocStrSize;
2037 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
2038 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
2039 Value *ThreadID = getOrCreateThreadID(Ident);
2040
2041 // Emit the @__kmpc_taskgroup runtime call to start the taskgroup
2042 Function *TaskgroupFn =
2043 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_taskgroup);
2044 Builder.CreateCall(TaskgroupFn, {Ident, ThreadID});
2045
2046 BasicBlock *TaskgroupExitBB = splitBB(Builder, true, "taskgroup.exit");
2047 BodyGenCB(AllocaIP, Builder.saveIP());
2048
2049 Builder.SetInsertPoint(TaskgroupExitBB);
2050 // Emit the @__kmpc_end_taskgroup runtime call to end the taskgroup
2051 Function *EndTaskgroupFn =
2052 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_taskgroup);
2053 Builder.CreateCall(EndTaskgroupFn, {Ident, ThreadID});
2054
2055 return Builder.saveIP();
2056 }
2057
createSections(const LocationDescription & Loc,InsertPointTy AllocaIP,ArrayRef<StorableBodyGenCallbackTy> SectionCBs,PrivatizeCallbackTy PrivCB,FinalizeCallbackTy FiniCB,bool IsCancellable,bool IsNowait)2058 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createSections(
2059 const LocationDescription &Loc, InsertPointTy AllocaIP,
2060 ArrayRef<StorableBodyGenCallbackTy> SectionCBs, PrivatizeCallbackTy PrivCB,
2061 FinalizeCallbackTy FiniCB, bool IsCancellable, bool IsNowait) {
2062 assert(!isConflictIP(AllocaIP, Loc.IP) && "Dedicated IP allocas required");
2063
2064 if (!updateToLocation(Loc))
2065 return Loc.IP;
2066
2067 auto FiniCBWrapper = [&](InsertPointTy IP) {
2068 if (IP.getBlock()->end() != IP.getPoint())
2069 return FiniCB(IP);
2070 // This must be done otherwise any nested constructs using FinalizeOMPRegion
2071 // will fail because that function requires the Finalization Basic Block to
2072 // have a terminator, which is already removed by EmitOMPRegionBody.
2073 // IP is currently at cancelation block.
2074 // We need to backtrack to the condition block to fetch
2075 // the exit block and create a branch from cancelation
2076 // to exit block.
2077 IRBuilder<>::InsertPointGuard IPG(Builder);
2078 Builder.restoreIP(IP);
2079 auto *CaseBB = IP.getBlock()->getSinglePredecessor();
2080 auto *CondBB = CaseBB->getSinglePredecessor()->getSinglePredecessor();
2081 auto *ExitBB = CondBB->getTerminator()->getSuccessor(1);
2082 Instruction *I = Builder.CreateBr(ExitBB);
2083 IP = InsertPointTy(I->getParent(), I->getIterator());
2084 return FiniCB(IP);
2085 };
2086
2087 FinalizationStack.push_back({FiniCBWrapper, OMPD_sections, IsCancellable});
2088
2089 // Each section is emitted as a switch case
2090 // Each finalization callback is handled from clang.EmitOMPSectionDirective()
2091 // -> OMP.createSection() which generates the IR for each section
2092 // Iterate through all sections and emit a switch construct:
2093 // switch (IV) {
2094 // case 0:
2095 // <SectionStmt[0]>;
2096 // break;
2097 // ...
2098 // case <NumSection> - 1:
2099 // <SectionStmt[<NumSection> - 1]>;
2100 // break;
2101 // }
2102 // ...
2103 // section_loop.after:
2104 // <FiniCB>;
2105 auto LoopBodyGenCB = [&](InsertPointTy CodeGenIP, Value *IndVar) {
2106 Builder.restoreIP(CodeGenIP);
2107 BasicBlock *Continue =
2108 splitBBWithSuffix(Builder, /*CreateBranch=*/false, ".sections.after");
2109 Function *CurFn = Continue->getParent();
2110 SwitchInst *SwitchStmt = Builder.CreateSwitch(IndVar, Continue);
2111
2112 unsigned CaseNumber = 0;
2113 for (auto SectionCB : SectionCBs) {
2114 BasicBlock *CaseBB = BasicBlock::Create(
2115 M.getContext(), "omp_section_loop.body.case", CurFn, Continue);
2116 SwitchStmt->addCase(Builder.getInt32(CaseNumber), CaseBB);
2117 Builder.SetInsertPoint(CaseBB);
2118 BranchInst *CaseEndBr = Builder.CreateBr(Continue);
2119 SectionCB(InsertPointTy(),
2120 {CaseEndBr->getParent(), CaseEndBr->getIterator()});
2121 CaseNumber++;
2122 }
2123 // remove the existing terminator from body BB since there can be no
2124 // terminators after switch/case
2125 };
2126 // Loop body ends here
2127 // LowerBound, UpperBound, and STride for createCanonicalLoop
2128 Type *I32Ty = Type::getInt32Ty(M.getContext());
2129 Value *LB = ConstantInt::get(I32Ty, 0);
2130 Value *UB = ConstantInt::get(I32Ty, SectionCBs.size());
2131 Value *ST = ConstantInt::get(I32Ty, 1);
2132 llvm::CanonicalLoopInfo *LoopInfo = createCanonicalLoop(
2133 Loc, LoopBodyGenCB, LB, UB, ST, true, false, AllocaIP, "section_loop");
2134 InsertPointTy AfterIP =
2135 applyStaticWorkshareLoop(Loc.DL, LoopInfo, AllocaIP, !IsNowait);
2136
2137 // Apply the finalization callback in LoopAfterBB
2138 auto FiniInfo = FinalizationStack.pop_back_val();
2139 assert(FiniInfo.DK == OMPD_sections &&
2140 "Unexpected finalization stack state!");
2141 if (FinalizeCallbackTy &CB = FiniInfo.FiniCB) {
2142 Builder.restoreIP(AfterIP);
2143 BasicBlock *FiniBB =
2144 splitBBWithSuffix(Builder, /*CreateBranch=*/true, "sections.fini");
2145 CB(Builder.saveIP());
2146 AfterIP = {FiniBB, FiniBB->begin()};
2147 }
2148
2149 return AfterIP;
2150 }
2151
2152 OpenMPIRBuilder::InsertPointTy
createSection(const LocationDescription & Loc,BodyGenCallbackTy BodyGenCB,FinalizeCallbackTy FiniCB)2153 OpenMPIRBuilder::createSection(const LocationDescription &Loc,
2154 BodyGenCallbackTy BodyGenCB,
2155 FinalizeCallbackTy FiniCB) {
2156 if (!updateToLocation(Loc))
2157 return Loc.IP;
2158
2159 auto FiniCBWrapper = [&](InsertPointTy IP) {
2160 if (IP.getBlock()->end() != IP.getPoint())
2161 return FiniCB(IP);
2162 // This must be done otherwise any nested constructs using FinalizeOMPRegion
2163 // will fail because that function requires the Finalization Basic Block to
2164 // have a terminator, which is already removed by EmitOMPRegionBody.
2165 // IP is currently at cancelation block.
2166 // We need to backtrack to the condition block to fetch
2167 // the exit block and create a branch from cancelation
2168 // to exit block.
2169 IRBuilder<>::InsertPointGuard IPG(Builder);
2170 Builder.restoreIP(IP);
2171 auto *CaseBB = Loc.IP.getBlock();
2172 auto *CondBB = CaseBB->getSinglePredecessor()->getSinglePredecessor();
2173 auto *ExitBB = CondBB->getTerminator()->getSuccessor(1);
2174 Instruction *I = Builder.CreateBr(ExitBB);
2175 IP = InsertPointTy(I->getParent(), I->getIterator());
2176 return FiniCB(IP);
2177 };
2178
2179 Directive OMPD = Directive::OMPD_sections;
2180 // Since we are using Finalization Callback here, HasFinalize
2181 // and IsCancellable have to be true
2182 return EmitOMPInlinedRegion(OMPD, nullptr, nullptr, BodyGenCB, FiniCBWrapper,
2183 /*Conditional*/ false, /*hasFinalize*/ true,
2184 /*IsCancellable*/ true);
2185 }
2186
getInsertPointAfterInstr(Instruction * I)2187 static OpenMPIRBuilder::InsertPointTy getInsertPointAfterInstr(Instruction *I) {
2188 BasicBlock::iterator IT(I);
2189 IT++;
2190 return OpenMPIRBuilder::InsertPointTy(I->getParent(), IT);
2191 }
2192
emitUsed(StringRef Name,std::vector<WeakTrackingVH> & List)2193 void OpenMPIRBuilder::emitUsed(StringRef Name,
2194 std::vector<WeakTrackingVH> &List) {
2195 if (List.empty())
2196 return;
2197
2198 // Convert List to what ConstantArray needs.
2199 SmallVector<Constant *, 8> UsedArray;
2200 UsedArray.resize(List.size());
2201 for (unsigned I = 0, E = List.size(); I != E; ++I)
2202 UsedArray[I] = ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2203 cast<Constant>(&*List[I]), Builder.getPtrTy());
2204
2205 if (UsedArray.empty())
2206 return;
2207 ArrayType *ATy = ArrayType::get(Builder.getPtrTy(), UsedArray.size());
2208
2209 auto *GV = new GlobalVariable(M, ATy, false, GlobalValue::AppendingLinkage,
2210 ConstantArray::get(ATy, UsedArray), Name);
2211
2212 GV->setSection("llvm.metadata");
2213 }
2214
getGPUThreadID()2215 Value *OpenMPIRBuilder::getGPUThreadID() {
2216 return Builder.CreateCall(
2217 getOrCreateRuntimeFunction(M,
2218 OMPRTL___kmpc_get_hardware_thread_id_in_block),
2219 {});
2220 }
2221
getGPUWarpSize()2222 Value *OpenMPIRBuilder::getGPUWarpSize() {
2223 return Builder.CreateCall(
2224 getOrCreateRuntimeFunction(M, OMPRTL___kmpc_get_warp_size), {});
2225 }
2226
getNVPTXWarpID()2227 Value *OpenMPIRBuilder::getNVPTXWarpID() {
2228 unsigned LaneIDBits = Log2_32(Config.getGridValue().GV_Warp_Size);
2229 return Builder.CreateAShr(getGPUThreadID(), LaneIDBits, "nvptx_warp_id");
2230 }
2231
getNVPTXLaneID()2232 Value *OpenMPIRBuilder::getNVPTXLaneID() {
2233 unsigned LaneIDBits = Log2_32(Config.getGridValue().GV_Warp_Size);
2234 assert(LaneIDBits < 32 && "Invalid LaneIDBits size in NVPTX device.");
2235 unsigned LaneIDMask = ~0u >> (32u - LaneIDBits);
2236 return Builder.CreateAnd(getGPUThreadID(), Builder.getInt32(LaneIDMask),
2237 "nvptx_lane_id");
2238 }
2239
castValueToType(InsertPointTy AllocaIP,Value * From,Type * ToType)2240 Value *OpenMPIRBuilder::castValueToType(InsertPointTy AllocaIP, Value *From,
2241 Type *ToType) {
2242 Type *FromType = From->getType();
2243 uint64_t FromSize = M.getDataLayout().getTypeStoreSize(FromType);
2244 uint64_t ToSize = M.getDataLayout().getTypeStoreSize(ToType);
2245 assert(FromSize > 0 && "From size must be greater than zero");
2246 assert(ToSize > 0 && "To size must be greater than zero");
2247 if (FromType == ToType)
2248 return From;
2249 if (FromSize == ToSize)
2250 return Builder.CreateBitCast(From, ToType);
2251 if (ToType->isIntegerTy() && FromType->isIntegerTy())
2252 return Builder.CreateIntCast(From, ToType, /*isSigned*/ true);
2253 InsertPointTy SaveIP = Builder.saveIP();
2254 Builder.restoreIP(AllocaIP);
2255 Value *CastItem = Builder.CreateAlloca(ToType);
2256 Builder.restoreIP(SaveIP);
2257
2258 Value *ValCastItem = Builder.CreatePointerBitCastOrAddrSpaceCast(
2259 CastItem, FromType->getPointerTo());
2260 Builder.CreateStore(From, ValCastItem);
2261 return Builder.CreateLoad(ToType, CastItem);
2262 }
2263
createRuntimeShuffleFunction(InsertPointTy AllocaIP,Value * Element,Type * ElementType,Value * Offset)2264 Value *OpenMPIRBuilder::createRuntimeShuffleFunction(InsertPointTy AllocaIP,
2265 Value *Element,
2266 Type *ElementType,
2267 Value *Offset) {
2268 uint64_t Size = M.getDataLayout().getTypeStoreSize(ElementType);
2269 assert(Size <= 8 && "Unsupported bitwidth in shuffle instruction");
2270
2271 // Cast all types to 32- or 64-bit values before calling shuffle routines.
2272 Type *CastTy = Builder.getIntNTy(Size <= 4 ? 32 : 64);
2273 Value *ElemCast = castValueToType(AllocaIP, Element, CastTy);
2274 Value *WarpSize =
2275 Builder.CreateIntCast(getGPUWarpSize(), Builder.getInt16Ty(), true);
2276 Function *ShuffleFunc = getOrCreateRuntimeFunctionPtr(
2277 Size <= 4 ? RuntimeFunction::OMPRTL___kmpc_shuffle_int32
2278 : RuntimeFunction::OMPRTL___kmpc_shuffle_int64);
2279 Value *WarpSizeCast =
2280 Builder.CreateIntCast(WarpSize, Builder.getInt16Ty(), /*isSigned=*/true);
2281 Value *ShuffleCall =
2282 Builder.CreateCall(ShuffleFunc, {ElemCast, Offset, WarpSizeCast});
2283 return castValueToType(AllocaIP, ShuffleCall, CastTy);
2284 }
2285
shuffleAndStore(InsertPointTy AllocaIP,Value * SrcAddr,Value * DstAddr,Type * ElemType,Value * Offset,Type * ReductionArrayTy)2286 void OpenMPIRBuilder::shuffleAndStore(InsertPointTy AllocaIP, Value *SrcAddr,
2287 Value *DstAddr, Type *ElemType,
2288 Value *Offset, Type *ReductionArrayTy) {
2289 uint64_t Size = M.getDataLayout().getTypeStoreSize(ElemType);
2290 // Create the loop over the big sized data.
2291 // ptr = (void*)Elem;
2292 // ptrEnd = (void*) Elem + 1;
2293 // Step = 8;
2294 // while (ptr + Step < ptrEnd)
2295 // shuffle((int64_t)*ptr);
2296 // Step = 4;
2297 // while (ptr + Step < ptrEnd)
2298 // shuffle((int32_t)*ptr);
2299 // ...
2300 Type *IndexTy = Builder.getIndexTy(
2301 M.getDataLayout(), M.getDataLayout().getDefaultGlobalsAddressSpace());
2302 Value *ElemPtr = DstAddr;
2303 Value *Ptr = SrcAddr;
2304 for (unsigned IntSize = 8; IntSize >= 1; IntSize /= 2) {
2305 if (Size < IntSize)
2306 continue;
2307 Type *IntType = Builder.getIntNTy(IntSize * 8);
2308 Ptr = Builder.CreatePointerBitCastOrAddrSpaceCast(
2309 Ptr, IntType->getPointerTo(), Ptr->getName() + ".ascast");
2310 Value *SrcAddrGEP =
2311 Builder.CreateGEP(ElemType, SrcAddr, {ConstantInt::get(IndexTy, 1)});
2312 ElemPtr = Builder.CreatePointerBitCastOrAddrSpaceCast(
2313 ElemPtr, IntType->getPointerTo(), ElemPtr->getName() + ".ascast");
2314
2315 Function *CurFunc = Builder.GetInsertBlock()->getParent();
2316 if ((Size / IntSize) > 1) {
2317 Value *PtrEnd = Builder.CreatePointerBitCastOrAddrSpaceCast(
2318 SrcAddrGEP, Builder.getPtrTy());
2319 BasicBlock *PreCondBB =
2320 BasicBlock::Create(M.getContext(), ".shuffle.pre_cond");
2321 BasicBlock *ThenBB = BasicBlock::Create(M.getContext(), ".shuffle.then");
2322 BasicBlock *ExitBB = BasicBlock::Create(M.getContext(), ".shuffle.exit");
2323 BasicBlock *CurrentBB = Builder.GetInsertBlock();
2324 emitBlock(PreCondBB, CurFunc);
2325 PHINode *PhiSrc =
2326 Builder.CreatePHI(Ptr->getType(), /*NumReservedValues=*/2);
2327 PhiSrc->addIncoming(Ptr, CurrentBB);
2328 PHINode *PhiDest =
2329 Builder.CreatePHI(ElemPtr->getType(), /*NumReservedValues=*/2);
2330 PhiDest->addIncoming(ElemPtr, CurrentBB);
2331 Ptr = PhiSrc;
2332 ElemPtr = PhiDest;
2333 Value *PtrDiff = Builder.CreatePtrDiff(
2334 Builder.getInt8Ty(), PtrEnd,
2335 Builder.CreatePointerBitCastOrAddrSpaceCast(Ptr, Builder.getPtrTy()));
2336 Builder.CreateCondBr(
2337 Builder.CreateICmpSGT(PtrDiff, Builder.getInt64(IntSize - 1)), ThenBB,
2338 ExitBB);
2339 emitBlock(ThenBB, CurFunc);
2340 Value *Res = createRuntimeShuffleFunction(
2341 AllocaIP,
2342 Builder.CreateAlignedLoad(
2343 IntType, Ptr, M.getDataLayout().getPrefTypeAlign(ElemType)),
2344 IntType, Offset);
2345 Builder.CreateAlignedStore(Res, ElemPtr,
2346 M.getDataLayout().getPrefTypeAlign(ElemType));
2347 Value *LocalPtr =
2348 Builder.CreateGEP(IntType, Ptr, {ConstantInt::get(IndexTy, 1)});
2349 Value *LocalElemPtr =
2350 Builder.CreateGEP(IntType, ElemPtr, {ConstantInt::get(IndexTy, 1)});
2351 PhiSrc->addIncoming(LocalPtr, ThenBB);
2352 PhiDest->addIncoming(LocalElemPtr, ThenBB);
2353 emitBranch(PreCondBB);
2354 emitBlock(ExitBB, CurFunc);
2355 } else {
2356 Value *Res = createRuntimeShuffleFunction(
2357 AllocaIP, Builder.CreateLoad(IntType, Ptr), IntType, Offset);
2358 if (ElemType->isIntegerTy() && ElemType->getScalarSizeInBits() <
2359 Res->getType()->getScalarSizeInBits())
2360 Res = Builder.CreateTrunc(Res, ElemType);
2361 Builder.CreateStore(Res, ElemPtr);
2362 Ptr = Builder.CreateGEP(IntType, Ptr, {ConstantInt::get(IndexTy, 1)});
2363 ElemPtr =
2364 Builder.CreateGEP(IntType, ElemPtr, {ConstantInt::get(IndexTy, 1)});
2365 }
2366 Size = Size % IntSize;
2367 }
2368 }
2369
emitReductionListCopy(InsertPointTy AllocaIP,CopyAction Action,Type * ReductionArrayTy,ArrayRef<ReductionInfo> ReductionInfos,Value * SrcBase,Value * DestBase,CopyOptionsTy CopyOptions)2370 void OpenMPIRBuilder::emitReductionListCopy(
2371 InsertPointTy AllocaIP, CopyAction Action, Type *ReductionArrayTy,
2372 ArrayRef<ReductionInfo> ReductionInfos, Value *SrcBase, Value *DestBase,
2373 CopyOptionsTy CopyOptions) {
2374 Type *IndexTy = Builder.getIndexTy(
2375 M.getDataLayout(), M.getDataLayout().getDefaultGlobalsAddressSpace());
2376 Value *RemoteLaneOffset = CopyOptions.RemoteLaneOffset;
2377
2378 // Iterates, element-by-element, through the source Reduce list and
2379 // make a copy.
2380 for (auto En : enumerate(ReductionInfos)) {
2381 const ReductionInfo &RI = En.value();
2382 Value *SrcElementAddr = nullptr;
2383 Value *DestElementAddr = nullptr;
2384 Value *DestElementPtrAddr = nullptr;
2385 // Should we shuffle in an element from a remote lane?
2386 bool ShuffleInElement = false;
2387 // Set to true to update the pointer in the dest Reduce list to a
2388 // newly created element.
2389 bool UpdateDestListPtr = false;
2390
2391 // Step 1.1: Get the address for the src element in the Reduce list.
2392 Value *SrcElementPtrAddr = Builder.CreateInBoundsGEP(
2393 ReductionArrayTy, SrcBase,
2394 {ConstantInt::get(IndexTy, 0), ConstantInt::get(IndexTy, En.index())});
2395 SrcElementAddr = Builder.CreateLoad(Builder.getPtrTy(), SrcElementPtrAddr);
2396
2397 // Step 1.2: Create a temporary to store the element in the destination
2398 // Reduce list.
2399 DestElementPtrAddr = Builder.CreateInBoundsGEP(
2400 ReductionArrayTy, DestBase,
2401 {ConstantInt::get(IndexTy, 0), ConstantInt::get(IndexTy, En.index())});
2402 switch (Action) {
2403 case CopyAction::RemoteLaneToThread: {
2404 InsertPointTy CurIP = Builder.saveIP();
2405 Builder.restoreIP(AllocaIP);
2406 AllocaInst *DestAlloca = Builder.CreateAlloca(RI.ElementType, nullptr,
2407 ".omp.reduction.element");
2408 DestAlloca->setAlignment(
2409 M.getDataLayout().getPrefTypeAlign(RI.ElementType));
2410 DestElementAddr = DestAlloca;
2411 DestElementAddr =
2412 Builder.CreateAddrSpaceCast(DestElementAddr, Builder.getPtrTy(),
2413 DestElementAddr->getName() + ".ascast");
2414 Builder.restoreIP(CurIP);
2415 ShuffleInElement = true;
2416 UpdateDestListPtr = true;
2417 break;
2418 }
2419 case CopyAction::ThreadCopy: {
2420 DestElementAddr =
2421 Builder.CreateLoad(Builder.getPtrTy(), DestElementPtrAddr);
2422 break;
2423 }
2424 }
2425
2426 // Now that all active lanes have read the element in the
2427 // Reduce list, shuffle over the value from the remote lane.
2428 if (ShuffleInElement) {
2429 shuffleAndStore(AllocaIP, SrcElementAddr, DestElementAddr, RI.ElementType,
2430 RemoteLaneOffset, ReductionArrayTy);
2431 } else {
2432 switch (RI.EvaluationKind) {
2433 case EvalKind::Scalar: {
2434 Value *Elem = Builder.CreateLoad(RI.ElementType, SrcElementAddr);
2435 // Store the source element value to the dest element address.
2436 Builder.CreateStore(Elem, DestElementAddr);
2437 break;
2438 }
2439 case EvalKind::Complex: {
2440 Value *SrcRealPtr = Builder.CreateConstInBoundsGEP2_32(
2441 RI.ElementType, SrcElementAddr, 0, 0, ".realp");
2442 Value *SrcReal = Builder.CreateLoad(
2443 RI.ElementType->getStructElementType(0), SrcRealPtr, ".real");
2444 Value *SrcImgPtr = Builder.CreateConstInBoundsGEP2_32(
2445 RI.ElementType, SrcElementAddr, 0, 1, ".imagp");
2446 Value *SrcImg = Builder.CreateLoad(
2447 RI.ElementType->getStructElementType(1), SrcImgPtr, ".imag");
2448
2449 Value *DestRealPtr = Builder.CreateConstInBoundsGEP2_32(
2450 RI.ElementType, DestElementAddr, 0, 0, ".realp");
2451 Value *DestImgPtr = Builder.CreateConstInBoundsGEP2_32(
2452 RI.ElementType, DestElementAddr, 0, 1, ".imagp");
2453 Builder.CreateStore(SrcReal, DestRealPtr);
2454 Builder.CreateStore(SrcImg, DestImgPtr);
2455 break;
2456 }
2457 case EvalKind::Aggregate: {
2458 Value *SizeVal = Builder.getInt64(
2459 M.getDataLayout().getTypeStoreSize(RI.ElementType));
2460 Builder.CreateMemCpy(
2461 DestElementAddr, M.getDataLayout().getPrefTypeAlign(RI.ElementType),
2462 SrcElementAddr, M.getDataLayout().getPrefTypeAlign(RI.ElementType),
2463 SizeVal, false);
2464 break;
2465 }
2466 };
2467 }
2468
2469 // Step 3.1: Modify reference in dest Reduce list as needed.
2470 // Modifying the reference in Reduce list to point to the newly
2471 // created element. The element is live in the current function
2472 // scope and that of functions it invokes (i.e., reduce_function).
2473 // RemoteReduceData[i] = (void*)&RemoteElem
2474 if (UpdateDestListPtr) {
2475 Value *CastDestAddr = Builder.CreatePointerBitCastOrAddrSpaceCast(
2476 DestElementAddr, Builder.getPtrTy(),
2477 DestElementAddr->getName() + ".ascast");
2478 Builder.CreateStore(CastDestAddr, DestElementPtrAddr);
2479 }
2480 }
2481 }
2482
emitInterWarpCopyFunction(const LocationDescription & Loc,ArrayRef<ReductionInfo> ReductionInfos,AttributeList FuncAttrs)2483 Function *OpenMPIRBuilder::emitInterWarpCopyFunction(
2484 const LocationDescription &Loc, ArrayRef<ReductionInfo> ReductionInfos,
2485 AttributeList FuncAttrs) {
2486 InsertPointTy SavedIP = Builder.saveIP();
2487 LLVMContext &Ctx = M.getContext();
2488 FunctionType *FuncTy = FunctionType::get(
2489 Builder.getVoidTy(), {Builder.getPtrTy(), Builder.getInt32Ty()},
2490 /* IsVarArg */ false);
2491 Function *WcFunc =
2492 Function::Create(FuncTy, GlobalVariable::InternalLinkage,
2493 "_omp_reduction_inter_warp_copy_func", &M);
2494 WcFunc->setAttributes(FuncAttrs);
2495 WcFunc->addParamAttr(0, Attribute::NoUndef);
2496 WcFunc->addParamAttr(1, Attribute::NoUndef);
2497 BasicBlock *EntryBB = BasicBlock::Create(M.getContext(), "entry", WcFunc);
2498 Builder.SetInsertPoint(EntryBB);
2499
2500 // ReduceList: thread local Reduce list.
2501 // At the stage of the computation when this function is called, partially
2502 // aggregated values reside in the first lane of every active warp.
2503 Argument *ReduceListArg = WcFunc->getArg(0);
2504 // NumWarps: number of warps active in the parallel region. This could
2505 // be smaller than 32 (max warps in a CTA) for partial block reduction.
2506 Argument *NumWarpsArg = WcFunc->getArg(1);
2507
2508 // This array is used as a medium to transfer, one reduce element at a time,
2509 // the data from the first lane of every warp to lanes in the first warp
2510 // in order to perform the final step of a reduction in a parallel region
2511 // (reduction across warps). The array is placed in NVPTX __shared__ memory
2512 // for reduced latency, as well as to have a distinct copy for concurrently
2513 // executing target regions. The array is declared with common linkage so
2514 // as to be shared across compilation units.
2515 StringRef TransferMediumName =
2516 "__openmp_nvptx_data_transfer_temporary_storage";
2517 GlobalVariable *TransferMedium = M.getGlobalVariable(TransferMediumName);
2518 unsigned WarpSize = Config.getGridValue().GV_Warp_Size;
2519 ArrayType *ArrayTy = ArrayType::get(Builder.getInt32Ty(), WarpSize);
2520 if (!TransferMedium) {
2521 TransferMedium = new GlobalVariable(
2522 M, ArrayTy, /*isConstant=*/false, GlobalVariable::WeakAnyLinkage,
2523 UndefValue::get(ArrayTy), TransferMediumName,
2524 /*InsertBefore=*/nullptr, GlobalVariable::NotThreadLocal,
2525 /*AddressSpace=*/3);
2526 }
2527
2528 // Get the CUDA thread id of the current OpenMP thread on the GPU.
2529 Value *GPUThreadID = getGPUThreadID();
2530 // nvptx_lane_id = nvptx_id % warpsize
2531 Value *LaneID = getNVPTXLaneID();
2532 // nvptx_warp_id = nvptx_id / warpsize
2533 Value *WarpID = getNVPTXWarpID();
2534
2535 InsertPointTy AllocaIP =
2536 InsertPointTy(Builder.GetInsertBlock(),
2537 Builder.GetInsertBlock()->getFirstInsertionPt());
2538 Type *Arg0Type = ReduceListArg->getType();
2539 Type *Arg1Type = NumWarpsArg->getType();
2540 Builder.restoreIP(AllocaIP);
2541 AllocaInst *ReduceListAlloca = Builder.CreateAlloca(
2542 Arg0Type, nullptr, ReduceListArg->getName() + ".addr");
2543 AllocaInst *NumWarpsAlloca =
2544 Builder.CreateAlloca(Arg1Type, nullptr, NumWarpsArg->getName() + ".addr");
2545 Value *ReduceListAddrCast = Builder.CreatePointerBitCastOrAddrSpaceCast(
2546 ReduceListAlloca, Arg0Type, ReduceListAlloca->getName() + ".ascast");
2547 Value *NumWarpsAddrCast = Builder.CreatePointerBitCastOrAddrSpaceCast(
2548 NumWarpsAlloca, Arg1Type->getPointerTo(),
2549 NumWarpsAlloca->getName() + ".ascast");
2550 Builder.CreateStore(ReduceListArg, ReduceListAddrCast);
2551 Builder.CreateStore(NumWarpsArg, NumWarpsAddrCast);
2552 AllocaIP = getInsertPointAfterInstr(NumWarpsAlloca);
2553 InsertPointTy CodeGenIP =
2554 getInsertPointAfterInstr(&Builder.GetInsertBlock()->back());
2555 Builder.restoreIP(CodeGenIP);
2556
2557 Value *ReduceList =
2558 Builder.CreateLoad(Builder.getPtrTy(), ReduceListAddrCast);
2559
2560 for (auto En : enumerate(ReductionInfos)) {
2561 //
2562 // Warp master copies reduce element to transfer medium in __shared__
2563 // memory.
2564 //
2565 const ReductionInfo &RI = En.value();
2566 unsigned RealTySize = M.getDataLayout().getTypeAllocSize(RI.ElementType);
2567 for (unsigned TySize = 4; TySize > 0 && RealTySize > 0; TySize /= 2) {
2568 Type *CType = Builder.getIntNTy(TySize * 8);
2569
2570 unsigned NumIters = RealTySize / TySize;
2571 if (NumIters == 0)
2572 continue;
2573 Value *Cnt = nullptr;
2574 Value *CntAddr = nullptr;
2575 BasicBlock *PrecondBB = nullptr;
2576 BasicBlock *ExitBB = nullptr;
2577 if (NumIters > 1) {
2578 CodeGenIP = Builder.saveIP();
2579 Builder.restoreIP(AllocaIP);
2580 CntAddr =
2581 Builder.CreateAlloca(Builder.getInt32Ty(), nullptr, ".cnt.addr");
2582
2583 CntAddr = Builder.CreateAddrSpaceCast(CntAddr, Builder.getPtrTy(),
2584 CntAddr->getName() + ".ascast");
2585 Builder.restoreIP(CodeGenIP);
2586 Builder.CreateStore(Constant::getNullValue(Builder.getInt32Ty()),
2587 CntAddr,
2588 /*Volatile=*/false);
2589 PrecondBB = BasicBlock::Create(Ctx, "precond");
2590 ExitBB = BasicBlock::Create(Ctx, "exit");
2591 BasicBlock *BodyBB = BasicBlock::Create(Ctx, "body");
2592 emitBlock(PrecondBB, Builder.GetInsertBlock()->getParent());
2593 Cnt = Builder.CreateLoad(Builder.getInt32Ty(), CntAddr,
2594 /*Volatile=*/false);
2595 Value *Cmp = Builder.CreateICmpULT(
2596 Cnt, ConstantInt::get(Builder.getInt32Ty(), NumIters));
2597 Builder.CreateCondBr(Cmp, BodyBB, ExitBB);
2598 emitBlock(BodyBB, Builder.GetInsertBlock()->getParent());
2599 }
2600
2601 // kmpc_barrier.
2602 createBarrier(LocationDescription(Builder.saveIP(), Loc.DL),
2603 omp::Directive::OMPD_unknown,
2604 /* ForceSimpleCall */ false,
2605 /* CheckCancelFlag */ true);
2606 BasicBlock *ThenBB = BasicBlock::Create(Ctx, "then");
2607 BasicBlock *ElseBB = BasicBlock::Create(Ctx, "else");
2608 BasicBlock *MergeBB = BasicBlock::Create(Ctx, "ifcont");
2609
2610 // if (lane_id == 0)
2611 Value *IsWarpMaster = Builder.CreateIsNull(LaneID, "warp_master");
2612 Builder.CreateCondBr(IsWarpMaster, ThenBB, ElseBB);
2613 emitBlock(ThenBB, Builder.GetInsertBlock()->getParent());
2614
2615 // Reduce element = LocalReduceList[i]
2616 auto *RedListArrayTy =
2617 ArrayType::get(Builder.getPtrTy(), ReductionInfos.size());
2618 Type *IndexTy = Builder.getIndexTy(
2619 M.getDataLayout(), M.getDataLayout().getDefaultGlobalsAddressSpace());
2620 Value *ElemPtrPtr =
2621 Builder.CreateInBoundsGEP(RedListArrayTy, ReduceList,
2622 {ConstantInt::get(IndexTy, 0),
2623 ConstantInt::get(IndexTy, En.index())});
2624 // elemptr = ((CopyType*)(elemptrptr)) + I
2625 Value *ElemPtr = Builder.CreateLoad(Builder.getPtrTy(), ElemPtrPtr);
2626 if (NumIters > 1)
2627 ElemPtr = Builder.CreateGEP(Builder.getInt32Ty(), ElemPtr, Cnt);
2628
2629 // Get pointer to location in transfer medium.
2630 // MediumPtr = &medium[warp_id]
2631 Value *MediumPtr = Builder.CreateInBoundsGEP(
2632 ArrayTy, TransferMedium, {Builder.getInt64(0), WarpID});
2633 // elem = *elemptr
2634 //*MediumPtr = elem
2635 Value *Elem = Builder.CreateLoad(CType, ElemPtr);
2636 // Store the source element value to the dest element address.
2637 Builder.CreateStore(Elem, MediumPtr,
2638 /*IsVolatile*/ true);
2639 Builder.CreateBr(MergeBB);
2640
2641 // else
2642 emitBlock(ElseBB, Builder.GetInsertBlock()->getParent());
2643 Builder.CreateBr(MergeBB);
2644
2645 // endif
2646 emitBlock(MergeBB, Builder.GetInsertBlock()->getParent());
2647 createBarrier(LocationDescription(Builder.saveIP(), Loc.DL),
2648 omp::Directive::OMPD_unknown,
2649 /* ForceSimpleCall */ false,
2650 /* CheckCancelFlag */ true);
2651
2652 // Warp 0 copies reduce element from transfer medium
2653 BasicBlock *W0ThenBB = BasicBlock::Create(Ctx, "then");
2654 BasicBlock *W0ElseBB = BasicBlock::Create(Ctx, "else");
2655 BasicBlock *W0MergeBB = BasicBlock::Create(Ctx, "ifcont");
2656
2657 Value *NumWarpsVal =
2658 Builder.CreateLoad(Builder.getInt32Ty(), NumWarpsAddrCast);
2659 // Up to 32 threads in warp 0 are active.
2660 Value *IsActiveThread =
2661 Builder.CreateICmpULT(GPUThreadID, NumWarpsVal, "is_active_thread");
2662 Builder.CreateCondBr(IsActiveThread, W0ThenBB, W0ElseBB);
2663
2664 emitBlock(W0ThenBB, Builder.GetInsertBlock()->getParent());
2665
2666 // SecMediumPtr = &medium[tid]
2667 // SrcMediumVal = *SrcMediumPtr
2668 Value *SrcMediumPtrVal = Builder.CreateInBoundsGEP(
2669 ArrayTy, TransferMedium, {Builder.getInt64(0), GPUThreadID});
2670 // TargetElemPtr = (CopyType*)(SrcDataAddr[i]) + I
2671 Value *TargetElemPtrPtr =
2672 Builder.CreateInBoundsGEP(RedListArrayTy, ReduceList,
2673 {ConstantInt::get(IndexTy, 0),
2674 ConstantInt::get(IndexTy, En.index())});
2675 Value *TargetElemPtrVal =
2676 Builder.CreateLoad(Builder.getPtrTy(), TargetElemPtrPtr);
2677 Value *TargetElemPtr = TargetElemPtrVal;
2678 if (NumIters > 1)
2679 TargetElemPtr =
2680 Builder.CreateGEP(Builder.getInt32Ty(), TargetElemPtr, Cnt);
2681
2682 // *TargetElemPtr = SrcMediumVal;
2683 Value *SrcMediumValue =
2684 Builder.CreateLoad(CType, SrcMediumPtrVal, /*IsVolatile*/ true);
2685 Builder.CreateStore(SrcMediumValue, TargetElemPtr);
2686 Builder.CreateBr(W0MergeBB);
2687
2688 emitBlock(W0ElseBB, Builder.GetInsertBlock()->getParent());
2689 Builder.CreateBr(W0MergeBB);
2690
2691 emitBlock(W0MergeBB, Builder.GetInsertBlock()->getParent());
2692
2693 if (NumIters > 1) {
2694 Cnt = Builder.CreateNSWAdd(
2695 Cnt, ConstantInt::get(Builder.getInt32Ty(), /*V=*/1));
2696 Builder.CreateStore(Cnt, CntAddr, /*Volatile=*/false);
2697
2698 auto *CurFn = Builder.GetInsertBlock()->getParent();
2699 emitBranch(PrecondBB);
2700 emitBlock(ExitBB, CurFn);
2701 }
2702 RealTySize %= TySize;
2703 }
2704 }
2705
2706 Builder.CreateRetVoid();
2707 Builder.restoreIP(SavedIP);
2708
2709 return WcFunc;
2710 }
2711
emitShuffleAndReduceFunction(ArrayRef<ReductionInfo> ReductionInfos,Function * ReduceFn,AttributeList FuncAttrs)2712 Function *OpenMPIRBuilder::emitShuffleAndReduceFunction(
2713 ArrayRef<ReductionInfo> ReductionInfos, Function *ReduceFn,
2714 AttributeList FuncAttrs) {
2715 LLVMContext &Ctx = M.getContext();
2716 FunctionType *FuncTy =
2717 FunctionType::get(Builder.getVoidTy(),
2718 {Builder.getPtrTy(), Builder.getInt16Ty(),
2719 Builder.getInt16Ty(), Builder.getInt16Ty()},
2720 /* IsVarArg */ false);
2721 Function *SarFunc =
2722 Function::Create(FuncTy, GlobalVariable::InternalLinkage,
2723 "_omp_reduction_shuffle_and_reduce_func", &M);
2724 SarFunc->setAttributes(FuncAttrs);
2725 SarFunc->addParamAttr(0, Attribute::NoUndef);
2726 SarFunc->addParamAttr(1, Attribute::NoUndef);
2727 SarFunc->addParamAttr(2, Attribute::NoUndef);
2728 SarFunc->addParamAttr(3, Attribute::NoUndef);
2729 SarFunc->addParamAttr(1, Attribute::SExt);
2730 SarFunc->addParamAttr(2, Attribute::SExt);
2731 SarFunc->addParamAttr(3, Attribute::SExt);
2732 BasicBlock *EntryBB = BasicBlock::Create(M.getContext(), "entry", SarFunc);
2733 Builder.SetInsertPoint(EntryBB);
2734
2735 // Thread local Reduce list used to host the values of data to be reduced.
2736 Argument *ReduceListArg = SarFunc->getArg(0);
2737 // Current lane id; could be logical.
2738 Argument *LaneIDArg = SarFunc->getArg(1);
2739 // Offset of the remote source lane relative to the current lane.
2740 Argument *RemoteLaneOffsetArg = SarFunc->getArg(2);
2741 // Algorithm version. This is expected to be known at compile time.
2742 Argument *AlgoVerArg = SarFunc->getArg(3);
2743
2744 Type *ReduceListArgType = ReduceListArg->getType();
2745 Type *LaneIDArgType = LaneIDArg->getType();
2746 Type *LaneIDArgPtrType = LaneIDArg->getType()->getPointerTo();
2747 Value *ReduceListAlloca = Builder.CreateAlloca(
2748 ReduceListArgType, nullptr, ReduceListArg->getName() + ".addr");
2749 Value *LaneIdAlloca = Builder.CreateAlloca(LaneIDArgType, nullptr,
2750 LaneIDArg->getName() + ".addr");
2751 Value *RemoteLaneOffsetAlloca = Builder.CreateAlloca(
2752 LaneIDArgType, nullptr, RemoteLaneOffsetArg->getName() + ".addr");
2753 Value *AlgoVerAlloca = Builder.CreateAlloca(LaneIDArgType, nullptr,
2754 AlgoVerArg->getName() + ".addr");
2755 ArrayType *RedListArrayTy =
2756 ArrayType::get(Builder.getPtrTy(), ReductionInfos.size());
2757
2758 // Create a local thread-private variable to host the Reduce list
2759 // from a remote lane.
2760 Instruction *RemoteReductionListAlloca = Builder.CreateAlloca(
2761 RedListArrayTy, nullptr, ".omp.reduction.remote_reduce_list");
2762
2763 Value *ReduceListAddrCast = Builder.CreatePointerBitCastOrAddrSpaceCast(
2764 ReduceListAlloca, ReduceListArgType,
2765 ReduceListAlloca->getName() + ".ascast");
2766 Value *LaneIdAddrCast = Builder.CreatePointerBitCastOrAddrSpaceCast(
2767 LaneIdAlloca, LaneIDArgPtrType, LaneIdAlloca->getName() + ".ascast");
2768 Value *RemoteLaneOffsetAddrCast = Builder.CreatePointerBitCastOrAddrSpaceCast(
2769 RemoteLaneOffsetAlloca, LaneIDArgPtrType,
2770 RemoteLaneOffsetAlloca->getName() + ".ascast");
2771 Value *AlgoVerAddrCast = Builder.CreatePointerBitCastOrAddrSpaceCast(
2772 AlgoVerAlloca, LaneIDArgPtrType, AlgoVerAlloca->getName() + ".ascast");
2773 Value *RemoteListAddrCast = Builder.CreatePointerBitCastOrAddrSpaceCast(
2774 RemoteReductionListAlloca, Builder.getPtrTy(),
2775 RemoteReductionListAlloca->getName() + ".ascast");
2776
2777 Builder.CreateStore(ReduceListArg, ReduceListAddrCast);
2778 Builder.CreateStore(LaneIDArg, LaneIdAddrCast);
2779 Builder.CreateStore(RemoteLaneOffsetArg, RemoteLaneOffsetAddrCast);
2780 Builder.CreateStore(AlgoVerArg, AlgoVerAddrCast);
2781
2782 Value *ReduceList = Builder.CreateLoad(ReduceListArgType, ReduceListAddrCast);
2783 Value *LaneId = Builder.CreateLoad(LaneIDArgType, LaneIdAddrCast);
2784 Value *RemoteLaneOffset =
2785 Builder.CreateLoad(LaneIDArgType, RemoteLaneOffsetAddrCast);
2786 Value *AlgoVer = Builder.CreateLoad(LaneIDArgType, AlgoVerAddrCast);
2787
2788 InsertPointTy AllocaIP = getInsertPointAfterInstr(RemoteReductionListAlloca);
2789
2790 // This loop iterates through the list of reduce elements and copies,
2791 // element by element, from a remote lane in the warp to RemoteReduceList,
2792 // hosted on the thread's stack.
2793 emitReductionListCopy(
2794 AllocaIP, CopyAction::RemoteLaneToThread, RedListArrayTy, ReductionInfos,
2795 ReduceList, RemoteListAddrCast, {RemoteLaneOffset, nullptr, nullptr});
2796
2797 // The actions to be performed on the Remote Reduce list is dependent
2798 // on the algorithm version.
2799 //
2800 // if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 &&
2801 // LaneId % 2 == 0 && Offset > 0):
2802 // do the reduction value aggregation
2803 //
2804 // The thread local variable Reduce list is mutated in place to host the
2805 // reduced data, which is the aggregated value produced from local and
2806 // remote lanes.
2807 //
2808 // Note that AlgoVer is expected to be a constant integer known at compile
2809 // time.
2810 // When AlgoVer==0, the first conjunction evaluates to true, making
2811 // the entire predicate true during compile time.
2812 // When AlgoVer==1, the second conjunction has only the second part to be
2813 // evaluated during runtime. Other conjunctions evaluates to false
2814 // during compile time.
2815 // When AlgoVer==2, the third conjunction has only the second part to be
2816 // evaluated during runtime. Other conjunctions evaluates to false
2817 // during compile time.
2818 Value *CondAlgo0 = Builder.CreateIsNull(AlgoVer);
2819 Value *Algo1 = Builder.CreateICmpEQ(AlgoVer, Builder.getInt16(1));
2820 Value *LaneComp = Builder.CreateICmpULT(LaneId, RemoteLaneOffset);
2821 Value *CondAlgo1 = Builder.CreateAnd(Algo1, LaneComp);
2822 Value *Algo2 = Builder.CreateICmpEQ(AlgoVer, Builder.getInt16(2));
2823 Value *LaneIdAnd1 = Builder.CreateAnd(LaneId, Builder.getInt16(1));
2824 Value *LaneIdComp = Builder.CreateIsNull(LaneIdAnd1);
2825 Value *Algo2AndLaneIdComp = Builder.CreateAnd(Algo2, LaneIdComp);
2826 Value *RemoteOffsetComp =
2827 Builder.CreateICmpSGT(RemoteLaneOffset, Builder.getInt16(0));
2828 Value *CondAlgo2 = Builder.CreateAnd(Algo2AndLaneIdComp, RemoteOffsetComp);
2829 Value *CA0OrCA1 = Builder.CreateOr(CondAlgo0, CondAlgo1);
2830 Value *CondReduce = Builder.CreateOr(CA0OrCA1, CondAlgo2);
2831
2832 BasicBlock *ThenBB = BasicBlock::Create(Ctx, "then");
2833 BasicBlock *ElseBB = BasicBlock::Create(Ctx, "else");
2834 BasicBlock *MergeBB = BasicBlock::Create(Ctx, "ifcont");
2835
2836 Builder.CreateCondBr(CondReduce, ThenBB, ElseBB);
2837 emitBlock(ThenBB, Builder.GetInsertBlock()->getParent());
2838 Value *LocalReduceListPtr = Builder.CreatePointerBitCastOrAddrSpaceCast(
2839 ReduceList, Builder.getPtrTy());
2840 Value *RemoteReduceListPtr = Builder.CreatePointerBitCastOrAddrSpaceCast(
2841 RemoteListAddrCast, Builder.getPtrTy());
2842 Builder.CreateCall(ReduceFn, {LocalReduceListPtr, RemoteReduceListPtr})
2843 ->addFnAttr(Attribute::NoUnwind);
2844 Builder.CreateBr(MergeBB);
2845
2846 emitBlock(ElseBB, Builder.GetInsertBlock()->getParent());
2847 Builder.CreateBr(MergeBB);
2848
2849 emitBlock(MergeBB, Builder.GetInsertBlock()->getParent());
2850
2851 // if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local
2852 // Reduce list.
2853 Algo1 = Builder.CreateICmpEQ(AlgoVer, Builder.getInt16(1));
2854 Value *LaneIdGtOffset = Builder.CreateICmpUGE(LaneId, RemoteLaneOffset);
2855 Value *CondCopy = Builder.CreateAnd(Algo1, LaneIdGtOffset);
2856
2857 BasicBlock *CpyThenBB = BasicBlock::Create(Ctx, "then");
2858 BasicBlock *CpyElseBB = BasicBlock::Create(Ctx, "else");
2859 BasicBlock *CpyMergeBB = BasicBlock::Create(Ctx, "ifcont");
2860 Builder.CreateCondBr(CondCopy, CpyThenBB, CpyElseBB);
2861
2862 emitBlock(CpyThenBB, Builder.GetInsertBlock()->getParent());
2863 emitReductionListCopy(AllocaIP, CopyAction::ThreadCopy, RedListArrayTy,
2864 ReductionInfos, RemoteListAddrCast, ReduceList);
2865 Builder.CreateBr(CpyMergeBB);
2866
2867 emitBlock(CpyElseBB, Builder.GetInsertBlock()->getParent());
2868 Builder.CreateBr(CpyMergeBB);
2869
2870 emitBlock(CpyMergeBB, Builder.GetInsertBlock()->getParent());
2871
2872 Builder.CreateRetVoid();
2873
2874 return SarFunc;
2875 }
2876
emitListToGlobalCopyFunction(ArrayRef<ReductionInfo> ReductionInfos,Type * ReductionsBufferTy,AttributeList FuncAttrs)2877 Function *OpenMPIRBuilder::emitListToGlobalCopyFunction(
2878 ArrayRef<ReductionInfo> ReductionInfos, Type *ReductionsBufferTy,
2879 AttributeList FuncAttrs) {
2880 OpenMPIRBuilder::InsertPointTy OldIP = Builder.saveIP();
2881 LLVMContext &Ctx = M.getContext();
2882 FunctionType *FuncTy = FunctionType::get(
2883 Builder.getVoidTy(),
2884 {Builder.getPtrTy(), Builder.getInt32Ty(), Builder.getPtrTy()},
2885 /* IsVarArg */ false);
2886 Function *LtGCFunc =
2887 Function::Create(FuncTy, GlobalVariable::InternalLinkage,
2888 "_omp_reduction_list_to_global_copy_func", &M);
2889 LtGCFunc->setAttributes(FuncAttrs);
2890 LtGCFunc->addParamAttr(0, Attribute::NoUndef);
2891 LtGCFunc->addParamAttr(1, Attribute::NoUndef);
2892 LtGCFunc->addParamAttr(2, Attribute::NoUndef);
2893
2894 BasicBlock *EntryBlock = BasicBlock::Create(Ctx, "entry", LtGCFunc);
2895 Builder.SetInsertPoint(EntryBlock);
2896
2897 // Buffer: global reduction buffer.
2898 Argument *BufferArg = LtGCFunc->getArg(0);
2899 // Idx: index of the buffer.
2900 Argument *IdxArg = LtGCFunc->getArg(1);
2901 // ReduceList: thread local Reduce list.
2902 Argument *ReduceListArg = LtGCFunc->getArg(2);
2903
2904 Value *BufferArgAlloca = Builder.CreateAlloca(Builder.getPtrTy(), nullptr,
2905 BufferArg->getName() + ".addr");
2906 Value *IdxArgAlloca = Builder.CreateAlloca(Builder.getInt32Ty(), nullptr,
2907 IdxArg->getName() + ".addr");
2908 Value *ReduceListArgAlloca = Builder.CreateAlloca(
2909 Builder.getPtrTy(), nullptr, ReduceListArg->getName() + ".addr");
2910 Value *BufferArgAddrCast = Builder.CreatePointerBitCastOrAddrSpaceCast(
2911 BufferArgAlloca, Builder.getPtrTy(),
2912 BufferArgAlloca->getName() + ".ascast");
2913 Value *IdxArgAddrCast = Builder.CreatePointerBitCastOrAddrSpaceCast(
2914 IdxArgAlloca, Builder.getPtrTy(), IdxArgAlloca->getName() + ".ascast");
2915 Value *ReduceListArgAddrCast = Builder.CreatePointerBitCastOrAddrSpaceCast(
2916 ReduceListArgAlloca, Builder.getPtrTy(),
2917 ReduceListArgAlloca->getName() + ".ascast");
2918
2919 Builder.CreateStore(BufferArg, BufferArgAddrCast);
2920 Builder.CreateStore(IdxArg, IdxArgAddrCast);
2921 Builder.CreateStore(ReduceListArg, ReduceListArgAddrCast);
2922
2923 Value *LocalReduceList =
2924 Builder.CreateLoad(Builder.getPtrTy(), ReduceListArgAddrCast);
2925 Value *BufferArgVal =
2926 Builder.CreateLoad(Builder.getPtrTy(), BufferArgAddrCast);
2927 Value *Idxs[] = {Builder.CreateLoad(Builder.getInt32Ty(), IdxArgAddrCast)};
2928 Type *IndexTy = Builder.getIndexTy(
2929 M.getDataLayout(), M.getDataLayout().getDefaultGlobalsAddressSpace());
2930 for (auto En : enumerate(ReductionInfos)) {
2931 const ReductionInfo &RI = En.value();
2932 auto *RedListArrayTy =
2933 ArrayType::get(Builder.getPtrTy(), ReductionInfos.size());
2934 // Reduce element = LocalReduceList[i]
2935 Value *ElemPtrPtr = Builder.CreateInBoundsGEP(
2936 RedListArrayTy, LocalReduceList,
2937 {ConstantInt::get(IndexTy, 0), ConstantInt::get(IndexTy, En.index())});
2938 // elemptr = ((CopyType*)(elemptrptr)) + I
2939 Value *ElemPtr = Builder.CreateLoad(Builder.getPtrTy(), ElemPtrPtr);
2940
2941 // Global = Buffer.VD[Idx];
2942 Value *BufferVD =
2943 Builder.CreateInBoundsGEP(ReductionsBufferTy, BufferArgVal, Idxs);
2944 Value *GlobVal = Builder.CreateConstInBoundsGEP2_32(
2945 ReductionsBufferTy, BufferVD, 0, En.index());
2946
2947 switch (RI.EvaluationKind) {
2948 case EvalKind::Scalar: {
2949 Value *TargetElement = Builder.CreateLoad(RI.ElementType, ElemPtr);
2950 Builder.CreateStore(TargetElement, GlobVal);
2951 break;
2952 }
2953 case EvalKind::Complex: {
2954 Value *SrcRealPtr = Builder.CreateConstInBoundsGEP2_32(
2955 RI.ElementType, ElemPtr, 0, 0, ".realp");
2956 Value *SrcReal = Builder.CreateLoad(
2957 RI.ElementType->getStructElementType(0), SrcRealPtr, ".real");
2958 Value *SrcImgPtr = Builder.CreateConstInBoundsGEP2_32(
2959 RI.ElementType, ElemPtr, 0, 1, ".imagp");
2960 Value *SrcImg = Builder.CreateLoad(
2961 RI.ElementType->getStructElementType(1), SrcImgPtr, ".imag");
2962
2963 Value *DestRealPtr = Builder.CreateConstInBoundsGEP2_32(
2964 RI.ElementType, GlobVal, 0, 0, ".realp");
2965 Value *DestImgPtr = Builder.CreateConstInBoundsGEP2_32(
2966 RI.ElementType, GlobVal, 0, 1, ".imagp");
2967 Builder.CreateStore(SrcReal, DestRealPtr);
2968 Builder.CreateStore(SrcImg, DestImgPtr);
2969 break;
2970 }
2971 case EvalKind::Aggregate: {
2972 Value *SizeVal =
2973 Builder.getInt64(M.getDataLayout().getTypeStoreSize(RI.ElementType));
2974 Builder.CreateMemCpy(
2975 GlobVal, M.getDataLayout().getPrefTypeAlign(RI.ElementType), ElemPtr,
2976 M.getDataLayout().getPrefTypeAlign(RI.ElementType), SizeVal, false);
2977 break;
2978 }
2979 }
2980 }
2981
2982 Builder.CreateRetVoid();
2983 Builder.restoreIP(OldIP);
2984 return LtGCFunc;
2985 }
2986
emitListToGlobalReduceFunction(ArrayRef<ReductionInfo> ReductionInfos,Function * ReduceFn,Type * ReductionsBufferTy,AttributeList FuncAttrs)2987 Function *OpenMPIRBuilder::emitListToGlobalReduceFunction(
2988 ArrayRef<ReductionInfo> ReductionInfos, Function *ReduceFn,
2989 Type *ReductionsBufferTy, AttributeList FuncAttrs) {
2990 OpenMPIRBuilder::InsertPointTy OldIP = Builder.saveIP();
2991 LLVMContext &Ctx = M.getContext();
2992 FunctionType *FuncTy = FunctionType::get(
2993 Builder.getVoidTy(),
2994 {Builder.getPtrTy(), Builder.getInt32Ty(), Builder.getPtrTy()},
2995 /* IsVarArg */ false);
2996 Function *LtGRFunc =
2997 Function::Create(FuncTy, GlobalVariable::InternalLinkage,
2998 "_omp_reduction_list_to_global_reduce_func", &M);
2999 LtGRFunc->setAttributes(FuncAttrs);
3000 LtGRFunc->addParamAttr(0, Attribute::NoUndef);
3001 LtGRFunc->addParamAttr(1, Attribute::NoUndef);
3002 LtGRFunc->addParamAttr(2, Attribute::NoUndef);
3003
3004 BasicBlock *EntryBlock = BasicBlock::Create(Ctx, "entry", LtGRFunc);
3005 Builder.SetInsertPoint(EntryBlock);
3006
3007 // Buffer: global reduction buffer.
3008 Argument *BufferArg = LtGRFunc->getArg(0);
3009 // Idx: index of the buffer.
3010 Argument *IdxArg = LtGRFunc->getArg(1);
3011 // ReduceList: thread local Reduce list.
3012 Argument *ReduceListArg = LtGRFunc->getArg(2);
3013
3014 Value *BufferArgAlloca = Builder.CreateAlloca(Builder.getPtrTy(), nullptr,
3015 BufferArg->getName() + ".addr");
3016 Value *IdxArgAlloca = Builder.CreateAlloca(Builder.getInt32Ty(), nullptr,
3017 IdxArg->getName() + ".addr");
3018 Value *ReduceListArgAlloca = Builder.CreateAlloca(
3019 Builder.getPtrTy(), nullptr, ReduceListArg->getName() + ".addr");
3020 auto *RedListArrayTy =
3021 ArrayType::get(Builder.getPtrTy(), ReductionInfos.size());
3022
3023 // 1. Build a list of reduction variables.
3024 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
3025 Value *LocalReduceList =
3026 Builder.CreateAlloca(RedListArrayTy, nullptr, ".omp.reduction.red_list");
3027
3028 Value *BufferArgAddrCast = Builder.CreatePointerBitCastOrAddrSpaceCast(
3029 BufferArgAlloca, Builder.getPtrTy(),
3030 BufferArgAlloca->getName() + ".ascast");
3031 Value *IdxArgAddrCast = Builder.CreatePointerBitCastOrAddrSpaceCast(
3032 IdxArgAlloca, Builder.getPtrTy(), IdxArgAlloca->getName() + ".ascast");
3033 Value *ReduceListArgAddrCast = Builder.CreatePointerBitCastOrAddrSpaceCast(
3034 ReduceListArgAlloca, Builder.getPtrTy(),
3035 ReduceListArgAlloca->getName() + ".ascast");
3036 Value *LocalReduceListAddrCast = Builder.CreatePointerBitCastOrAddrSpaceCast(
3037 LocalReduceList, Builder.getPtrTy(),
3038 LocalReduceList->getName() + ".ascast");
3039
3040 Builder.CreateStore(BufferArg, BufferArgAddrCast);
3041 Builder.CreateStore(IdxArg, IdxArgAddrCast);
3042 Builder.CreateStore(ReduceListArg, ReduceListArgAddrCast);
3043
3044 Value *BufferVal = Builder.CreateLoad(Builder.getPtrTy(), BufferArgAddrCast);
3045 Value *Idxs[] = {Builder.CreateLoad(Builder.getInt32Ty(), IdxArgAddrCast)};
3046 Type *IndexTy = Builder.getIndexTy(
3047 M.getDataLayout(), M.getDataLayout().getDefaultGlobalsAddressSpace());
3048 for (auto En : enumerate(ReductionInfos)) {
3049 Value *TargetElementPtrPtr = Builder.CreateInBoundsGEP(
3050 RedListArrayTy, LocalReduceListAddrCast,
3051 {ConstantInt::get(IndexTy, 0), ConstantInt::get(IndexTy, En.index())});
3052 Value *BufferVD =
3053 Builder.CreateInBoundsGEP(ReductionsBufferTy, BufferVal, Idxs);
3054 // Global = Buffer.VD[Idx];
3055 Value *GlobValPtr = Builder.CreateConstInBoundsGEP2_32(
3056 ReductionsBufferTy, BufferVD, 0, En.index());
3057 Builder.CreateStore(GlobValPtr, TargetElementPtrPtr);
3058 }
3059
3060 // Call reduce_function(GlobalReduceList, ReduceList)
3061 Value *ReduceList =
3062 Builder.CreateLoad(Builder.getPtrTy(), ReduceListArgAddrCast);
3063 Builder.CreateCall(ReduceFn, {LocalReduceListAddrCast, ReduceList})
3064 ->addFnAttr(Attribute::NoUnwind);
3065 Builder.CreateRetVoid();
3066 Builder.restoreIP(OldIP);
3067 return LtGRFunc;
3068 }
3069
emitGlobalToListCopyFunction(ArrayRef<ReductionInfo> ReductionInfos,Type * ReductionsBufferTy,AttributeList FuncAttrs)3070 Function *OpenMPIRBuilder::emitGlobalToListCopyFunction(
3071 ArrayRef<ReductionInfo> ReductionInfos, Type *ReductionsBufferTy,
3072 AttributeList FuncAttrs) {
3073 OpenMPIRBuilder::InsertPointTy OldIP = Builder.saveIP();
3074 LLVMContext &Ctx = M.getContext();
3075 FunctionType *FuncTy = FunctionType::get(
3076 Builder.getVoidTy(),
3077 {Builder.getPtrTy(), Builder.getInt32Ty(), Builder.getPtrTy()},
3078 /* IsVarArg */ false);
3079 Function *LtGCFunc =
3080 Function::Create(FuncTy, GlobalVariable::InternalLinkage,
3081 "_omp_reduction_global_to_list_copy_func", &M);
3082 LtGCFunc->setAttributes(FuncAttrs);
3083 LtGCFunc->addParamAttr(0, Attribute::NoUndef);
3084 LtGCFunc->addParamAttr(1, Attribute::NoUndef);
3085 LtGCFunc->addParamAttr(2, Attribute::NoUndef);
3086
3087 BasicBlock *EntryBlock = BasicBlock::Create(Ctx, "entry", LtGCFunc);
3088 Builder.SetInsertPoint(EntryBlock);
3089
3090 // Buffer: global reduction buffer.
3091 Argument *BufferArg = LtGCFunc->getArg(0);
3092 // Idx: index of the buffer.
3093 Argument *IdxArg = LtGCFunc->getArg(1);
3094 // ReduceList: thread local Reduce list.
3095 Argument *ReduceListArg = LtGCFunc->getArg(2);
3096
3097 Value *BufferArgAlloca = Builder.CreateAlloca(Builder.getPtrTy(), nullptr,
3098 BufferArg->getName() + ".addr");
3099 Value *IdxArgAlloca = Builder.CreateAlloca(Builder.getInt32Ty(), nullptr,
3100 IdxArg->getName() + ".addr");
3101 Value *ReduceListArgAlloca = Builder.CreateAlloca(
3102 Builder.getPtrTy(), nullptr, ReduceListArg->getName() + ".addr");
3103 Value *BufferArgAddrCast = Builder.CreatePointerBitCastOrAddrSpaceCast(
3104 BufferArgAlloca, Builder.getPtrTy(),
3105 BufferArgAlloca->getName() + ".ascast");
3106 Value *IdxArgAddrCast = Builder.CreatePointerBitCastOrAddrSpaceCast(
3107 IdxArgAlloca, Builder.getPtrTy(), IdxArgAlloca->getName() + ".ascast");
3108 Value *ReduceListArgAddrCast = Builder.CreatePointerBitCastOrAddrSpaceCast(
3109 ReduceListArgAlloca, Builder.getPtrTy(),
3110 ReduceListArgAlloca->getName() + ".ascast");
3111 Builder.CreateStore(BufferArg, BufferArgAddrCast);
3112 Builder.CreateStore(IdxArg, IdxArgAddrCast);
3113 Builder.CreateStore(ReduceListArg, ReduceListArgAddrCast);
3114
3115 Value *LocalReduceList =
3116 Builder.CreateLoad(Builder.getPtrTy(), ReduceListArgAddrCast);
3117 Value *BufferVal = Builder.CreateLoad(Builder.getPtrTy(), BufferArgAddrCast);
3118 Value *Idxs[] = {Builder.CreateLoad(Builder.getInt32Ty(), IdxArgAddrCast)};
3119 Type *IndexTy = Builder.getIndexTy(
3120 M.getDataLayout(), M.getDataLayout().getDefaultGlobalsAddressSpace());
3121 for (auto En : enumerate(ReductionInfos)) {
3122 const OpenMPIRBuilder::ReductionInfo &RI = En.value();
3123 auto *RedListArrayTy =
3124 ArrayType::get(Builder.getPtrTy(), ReductionInfos.size());
3125 // Reduce element = LocalReduceList[i]
3126 Value *ElemPtrPtr = Builder.CreateInBoundsGEP(
3127 RedListArrayTy, LocalReduceList,
3128 {ConstantInt::get(IndexTy, 0), ConstantInt::get(IndexTy, En.index())});
3129 // elemptr = ((CopyType*)(elemptrptr)) + I
3130 Value *ElemPtr = Builder.CreateLoad(Builder.getPtrTy(), ElemPtrPtr);
3131 // Global = Buffer.VD[Idx];
3132 Value *BufferVD =
3133 Builder.CreateInBoundsGEP(ReductionsBufferTy, BufferVal, Idxs);
3134 Value *GlobValPtr = Builder.CreateConstInBoundsGEP2_32(
3135 ReductionsBufferTy, BufferVD, 0, En.index());
3136
3137 switch (RI.EvaluationKind) {
3138 case EvalKind::Scalar: {
3139 Value *TargetElement = Builder.CreateLoad(RI.ElementType, GlobValPtr);
3140 Builder.CreateStore(TargetElement, ElemPtr);
3141 break;
3142 }
3143 case EvalKind::Complex: {
3144 Value *SrcRealPtr = Builder.CreateConstInBoundsGEP2_32(
3145 RI.ElementType, GlobValPtr, 0, 0, ".realp");
3146 Value *SrcReal = Builder.CreateLoad(
3147 RI.ElementType->getStructElementType(0), SrcRealPtr, ".real");
3148 Value *SrcImgPtr = Builder.CreateConstInBoundsGEP2_32(
3149 RI.ElementType, GlobValPtr, 0, 1, ".imagp");
3150 Value *SrcImg = Builder.CreateLoad(
3151 RI.ElementType->getStructElementType(1), SrcImgPtr, ".imag");
3152
3153 Value *DestRealPtr = Builder.CreateConstInBoundsGEP2_32(
3154 RI.ElementType, ElemPtr, 0, 0, ".realp");
3155 Value *DestImgPtr = Builder.CreateConstInBoundsGEP2_32(
3156 RI.ElementType, ElemPtr, 0, 1, ".imagp");
3157 Builder.CreateStore(SrcReal, DestRealPtr);
3158 Builder.CreateStore(SrcImg, DestImgPtr);
3159 break;
3160 }
3161 case EvalKind::Aggregate: {
3162 Value *SizeVal =
3163 Builder.getInt64(M.getDataLayout().getTypeStoreSize(RI.ElementType));
3164 Builder.CreateMemCpy(
3165 ElemPtr, M.getDataLayout().getPrefTypeAlign(RI.ElementType),
3166 GlobValPtr, M.getDataLayout().getPrefTypeAlign(RI.ElementType),
3167 SizeVal, false);
3168 break;
3169 }
3170 }
3171 }
3172
3173 Builder.CreateRetVoid();
3174 Builder.restoreIP(OldIP);
3175 return LtGCFunc;
3176 }
3177
emitGlobalToListReduceFunction(ArrayRef<ReductionInfo> ReductionInfos,Function * ReduceFn,Type * ReductionsBufferTy,AttributeList FuncAttrs)3178 Function *OpenMPIRBuilder::emitGlobalToListReduceFunction(
3179 ArrayRef<ReductionInfo> ReductionInfos, Function *ReduceFn,
3180 Type *ReductionsBufferTy, AttributeList FuncAttrs) {
3181 OpenMPIRBuilder::InsertPointTy OldIP = Builder.saveIP();
3182 LLVMContext &Ctx = M.getContext();
3183 auto *FuncTy = FunctionType::get(
3184 Builder.getVoidTy(),
3185 {Builder.getPtrTy(), Builder.getInt32Ty(), Builder.getPtrTy()},
3186 /* IsVarArg */ false);
3187 Function *LtGRFunc =
3188 Function::Create(FuncTy, GlobalVariable::InternalLinkage,
3189 "_omp_reduction_global_to_list_reduce_func", &M);
3190 LtGRFunc->setAttributes(FuncAttrs);
3191 LtGRFunc->addParamAttr(0, Attribute::NoUndef);
3192 LtGRFunc->addParamAttr(1, Attribute::NoUndef);
3193 LtGRFunc->addParamAttr(2, Attribute::NoUndef);
3194
3195 BasicBlock *EntryBlock = BasicBlock::Create(Ctx, "entry", LtGRFunc);
3196 Builder.SetInsertPoint(EntryBlock);
3197
3198 // Buffer: global reduction buffer.
3199 Argument *BufferArg = LtGRFunc->getArg(0);
3200 // Idx: index of the buffer.
3201 Argument *IdxArg = LtGRFunc->getArg(1);
3202 // ReduceList: thread local Reduce list.
3203 Argument *ReduceListArg = LtGRFunc->getArg(2);
3204
3205 Value *BufferArgAlloca = Builder.CreateAlloca(Builder.getPtrTy(), nullptr,
3206 BufferArg->getName() + ".addr");
3207 Value *IdxArgAlloca = Builder.CreateAlloca(Builder.getInt32Ty(), nullptr,
3208 IdxArg->getName() + ".addr");
3209 Value *ReduceListArgAlloca = Builder.CreateAlloca(
3210 Builder.getPtrTy(), nullptr, ReduceListArg->getName() + ".addr");
3211 ArrayType *RedListArrayTy =
3212 ArrayType::get(Builder.getPtrTy(), ReductionInfos.size());
3213
3214 // 1. Build a list of reduction variables.
3215 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
3216 Value *LocalReduceList =
3217 Builder.CreateAlloca(RedListArrayTy, nullptr, ".omp.reduction.red_list");
3218
3219 Value *BufferArgAddrCast = Builder.CreatePointerBitCastOrAddrSpaceCast(
3220 BufferArgAlloca, Builder.getPtrTy(),
3221 BufferArgAlloca->getName() + ".ascast");
3222 Value *IdxArgAddrCast = Builder.CreatePointerBitCastOrAddrSpaceCast(
3223 IdxArgAlloca, Builder.getPtrTy(), IdxArgAlloca->getName() + ".ascast");
3224 Value *ReduceListArgAddrCast = Builder.CreatePointerBitCastOrAddrSpaceCast(
3225 ReduceListArgAlloca, Builder.getPtrTy(),
3226 ReduceListArgAlloca->getName() + ".ascast");
3227 Value *ReductionList = Builder.CreatePointerBitCastOrAddrSpaceCast(
3228 LocalReduceList, Builder.getPtrTy(),
3229 LocalReduceList->getName() + ".ascast");
3230
3231 Builder.CreateStore(BufferArg, BufferArgAddrCast);
3232 Builder.CreateStore(IdxArg, IdxArgAddrCast);
3233 Builder.CreateStore(ReduceListArg, ReduceListArgAddrCast);
3234
3235 Value *BufferVal = Builder.CreateLoad(Builder.getPtrTy(), BufferArgAddrCast);
3236 Value *Idxs[] = {Builder.CreateLoad(Builder.getInt32Ty(), IdxArgAddrCast)};
3237 Type *IndexTy = Builder.getIndexTy(
3238 M.getDataLayout(), M.getDataLayout().getDefaultGlobalsAddressSpace());
3239 for (auto En : enumerate(ReductionInfos)) {
3240 Value *TargetElementPtrPtr = Builder.CreateInBoundsGEP(
3241 RedListArrayTy, ReductionList,
3242 {ConstantInt::get(IndexTy, 0), ConstantInt::get(IndexTy, En.index())});
3243 // Global = Buffer.VD[Idx];
3244 Value *BufferVD =
3245 Builder.CreateInBoundsGEP(ReductionsBufferTy, BufferVal, Idxs);
3246 Value *GlobValPtr = Builder.CreateConstInBoundsGEP2_32(
3247 ReductionsBufferTy, BufferVD, 0, En.index());
3248 Builder.CreateStore(GlobValPtr, TargetElementPtrPtr);
3249 }
3250
3251 // Call reduce_function(ReduceList, GlobalReduceList)
3252 Value *ReduceList =
3253 Builder.CreateLoad(Builder.getPtrTy(), ReduceListArgAddrCast);
3254 Builder.CreateCall(ReduceFn, {ReduceList, ReductionList})
3255 ->addFnAttr(Attribute::NoUnwind);
3256 Builder.CreateRetVoid();
3257 Builder.restoreIP(OldIP);
3258 return LtGRFunc;
3259 }
3260
getReductionFuncName(StringRef Name) const3261 std::string OpenMPIRBuilder::getReductionFuncName(StringRef Name) const {
3262 std::string Suffix =
3263 createPlatformSpecificName({"omp", "reduction", "reduction_func"});
3264 return (Name + Suffix).str();
3265 }
3266
createReductionFunction(StringRef ReducerName,ArrayRef<ReductionInfo> ReductionInfos,ReductionGenCBKind ReductionGenCBKind,AttributeList FuncAttrs)3267 Function *OpenMPIRBuilder::createReductionFunction(
3268 StringRef ReducerName, ArrayRef<ReductionInfo> ReductionInfos,
3269 ReductionGenCBKind ReductionGenCBKind, AttributeList FuncAttrs) {
3270 auto *FuncTy = FunctionType::get(Builder.getVoidTy(),
3271 {Builder.getPtrTy(), Builder.getPtrTy()},
3272 /* IsVarArg */ false);
3273 std::string Name = getReductionFuncName(ReducerName);
3274 Function *ReductionFunc =
3275 Function::Create(FuncTy, GlobalVariable::InternalLinkage, Name, &M);
3276 ReductionFunc->setAttributes(FuncAttrs);
3277 ReductionFunc->addParamAttr(0, Attribute::NoUndef);
3278 ReductionFunc->addParamAttr(1, Attribute::NoUndef);
3279 BasicBlock *EntryBB =
3280 BasicBlock::Create(M.getContext(), "entry", ReductionFunc);
3281 Builder.SetInsertPoint(EntryBB);
3282
3283 // Need to alloca memory here and deal with the pointers before getting
3284 // LHS/RHS pointers out
3285 Value *LHSArrayPtr = nullptr;
3286 Value *RHSArrayPtr = nullptr;
3287 Argument *Arg0 = ReductionFunc->getArg(0);
3288 Argument *Arg1 = ReductionFunc->getArg(1);
3289 Type *Arg0Type = Arg0->getType();
3290 Type *Arg1Type = Arg1->getType();
3291
3292 Value *LHSAlloca =
3293 Builder.CreateAlloca(Arg0Type, nullptr, Arg0->getName() + ".addr");
3294 Value *RHSAlloca =
3295 Builder.CreateAlloca(Arg1Type, nullptr, Arg1->getName() + ".addr");
3296 Value *LHSAddrCast = Builder.CreatePointerBitCastOrAddrSpaceCast(
3297 LHSAlloca, Arg0Type, LHSAlloca->getName() + ".ascast");
3298 Value *RHSAddrCast = Builder.CreatePointerBitCastOrAddrSpaceCast(
3299 RHSAlloca, Arg1Type, RHSAlloca->getName() + ".ascast");
3300 Builder.CreateStore(Arg0, LHSAddrCast);
3301 Builder.CreateStore(Arg1, RHSAddrCast);
3302 LHSArrayPtr = Builder.CreateLoad(Arg0Type, LHSAddrCast);
3303 RHSArrayPtr = Builder.CreateLoad(Arg1Type, RHSAddrCast);
3304
3305 Type *RedArrayTy = ArrayType::get(Builder.getPtrTy(), ReductionInfos.size());
3306 Type *IndexTy = Builder.getIndexTy(
3307 M.getDataLayout(), M.getDataLayout().getDefaultGlobalsAddressSpace());
3308 SmallVector<Value *> LHSPtrs, RHSPtrs;
3309 for (auto En : enumerate(ReductionInfos)) {
3310 const ReductionInfo &RI = En.value();
3311 Value *RHSI8PtrPtr = Builder.CreateInBoundsGEP(
3312 RedArrayTy, RHSArrayPtr,
3313 {ConstantInt::get(IndexTy, 0), ConstantInt::get(IndexTy, En.index())});
3314 Value *RHSI8Ptr = Builder.CreateLoad(Builder.getPtrTy(), RHSI8PtrPtr);
3315 Value *RHSPtr = Builder.CreatePointerBitCastOrAddrSpaceCast(
3316 RHSI8Ptr, RI.PrivateVariable->getType(),
3317 RHSI8Ptr->getName() + ".ascast");
3318
3319 Value *LHSI8PtrPtr = Builder.CreateInBoundsGEP(
3320 RedArrayTy, LHSArrayPtr,
3321 {ConstantInt::get(IndexTy, 0), ConstantInt::get(IndexTy, En.index())});
3322 Value *LHSI8Ptr = Builder.CreateLoad(Builder.getPtrTy(), LHSI8PtrPtr);
3323 Value *LHSPtr = Builder.CreatePointerBitCastOrAddrSpaceCast(
3324 LHSI8Ptr, RI.Variable->getType(), LHSI8Ptr->getName() + ".ascast");
3325
3326 if (ReductionGenCBKind == ReductionGenCBKind::Clang) {
3327 LHSPtrs.emplace_back(LHSPtr);
3328 RHSPtrs.emplace_back(RHSPtr);
3329 } else {
3330 Value *LHS = Builder.CreateLoad(RI.ElementType, LHSPtr);
3331 Value *RHS = Builder.CreateLoad(RI.ElementType, RHSPtr);
3332 Value *Reduced;
3333 RI.ReductionGen(Builder.saveIP(), LHS, RHS, Reduced);
3334 if (!Builder.GetInsertBlock())
3335 return ReductionFunc;
3336 Builder.CreateStore(Reduced, LHSPtr);
3337 }
3338 }
3339
3340 if (ReductionGenCBKind == ReductionGenCBKind::Clang)
3341 for (auto En : enumerate(ReductionInfos)) {
3342 unsigned Index = En.index();
3343 const ReductionInfo &RI = En.value();
3344 Value *LHSFixupPtr, *RHSFixupPtr;
3345 Builder.restoreIP(RI.ReductionGenClang(
3346 Builder.saveIP(), Index, &LHSFixupPtr, &RHSFixupPtr, ReductionFunc));
3347
3348 // Fix the CallBack code genereated to use the correct Values for the LHS
3349 // and RHS
3350 LHSFixupPtr->replaceUsesWithIf(
3351 LHSPtrs[Index], [ReductionFunc](const Use &U) {
3352 return cast<Instruction>(U.getUser())->getParent()->getParent() ==
3353 ReductionFunc;
3354 });
3355 RHSFixupPtr->replaceUsesWithIf(
3356 RHSPtrs[Index], [ReductionFunc](const Use &U) {
3357 return cast<Instruction>(U.getUser())->getParent()->getParent() ==
3358 ReductionFunc;
3359 });
3360 }
3361
3362 Builder.CreateRetVoid();
3363 return ReductionFunc;
3364 }
3365
3366 static void
checkReductionInfos(ArrayRef<OpenMPIRBuilder::ReductionInfo> ReductionInfos,bool IsGPU)3367 checkReductionInfos(ArrayRef<OpenMPIRBuilder::ReductionInfo> ReductionInfos,
3368 bool IsGPU) {
3369 for (const OpenMPIRBuilder::ReductionInfo &RI : ReductionInfos) {
3370 (void)RI;
3371 assert(RI.Variable && "expected non-null variable");
3372 assert(RI.PrivateVariable && "expected non-null private variable");
3373 assert((RI.ReductionGen || RI.ReductionGenClang) &&
3374 "expected non-null reduction generator callback");
3375 if (!IsGPU) {
3376 assert(
3377 RI.Variable->getType() == RI.PrivateVariable->getType() &&
3378 "expected variables and their private equivalents to have the same "
3379 "type");
3380 }
3381 assert(RI.Variable->getType()->isPointerTy() &&
3382 "expected variables to be pointers");
3383 }
3384 }
3385
createReductionsGPU(const LocationDescription & Loc,InsertPointTy AllocaIP,InsertPointTy CodeGenIP,ArrayRef<ReductionInfo> ReductionInfos,bool IsNoWait,bool IsTeamsReduction,bool HasDistribute,ReductionGenCBKind ReductionGenCBKind,std::optional<omp::GV> GridValue,unsigned ReductionBufNum,Value * SrcLocInfo)3386 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createReductionsGPU(
3387 const LocationDescription &Loc, InsertPointTy AllocaIP,
3388 InsertPointTy CodeGenIP, ArrayRef<ReductionInfo> ReductionInfos,
3389 bool IsNoWait, bool IsTeamsReduction, bool HasDistribute,
3390 ReductionGenCBKind ReductionGenCBKind, std::optional<omp::GV> GridValue,
3391 unsigned ReductionBufNum, Value *SrcLocInfo) {
3392 if (!updateToLocation(Loc))
3393 return InsertPointTy();
3394 Builder.restoreIP(CodeGenIP);
3395 checkReductionInfos(ReductionInfos, /*IsGPU*/ true);
3396 LLVMContext &Ctx = M.getContext();
3397
3398 // Source location for the ident struct
3399 if (!SrcLocInfo) {
3400 uint32_t SrcLocStrSize;
3401 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
3402 SrcLocInfo = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
3403 }
3404
3405 if (ReductionInfos.size() == 0)
3406 return Builder.saveIP();
3407
3408 Function *CurFunc = Builder.GetInsertBlock()->getParent();
3409 AttributeList FuncAttrs;
3410 AttrBuilder AttrBldr(Ctx);
3411 for (auto Attr : CurFunc->getAttributes().getFnAttrs())
3412 AttrBldr.addAttribute(Attr);
3413 AttrBldr.removeAttribute(Attribute::OptimizeNone);
3414 FuncAttrs = FuncAttrs.addFnAttributes(Ctx, AttrBldr);
3415
3416 Function *ReductionFunc = nullptr;
3417 CodeGenIP = Builder.saveIP();
3418 ReductionFunc =
3419 createReductionFunction(Builder.GetInsertBlock()->getParent()->getName(),
3420 ReductionInfos, ReductionGenCBKind, FuncAttrs);
3421 Builder.restoreIP(CodeGenIP);
3422
3423 // Set the grid value in the config needed for lowering later on
3424 if (GridValue.has_value())
3425 Config.setGridValue(GridValue.value());
3426 else
3427 Config.setGridValue(getGridValue(T, ReductionFunc));
3428
3429 uint32_t SrcLocStrSize;
3430 Constant *SrcLocStr = getOrCreateDefaultSrcLocStr(SrcLocStrSize);
3431 Value *RTLoc =
3432 getOrCreateIdent(SrcLocStr, SrcLocStrSize, omp::IdentFlag(0), 0);
3433
3434 // Build res = __kmpc_reduce{_nowait}(<gtid>, <n>, sizeof(RedList),
3435 // RedList, shuffle_reduce_func, interwarp_copy_func);
3436 // or
3437 // Build res = __kmpc_reduce_teams_nowait_simple(<loc>, <gtid>, <lck>);
3438 Value *Res;
3439
3440 // 1. Build a list of reduction variables.
3441 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
3442 auto Size = ReductionInfos.size();
3443 Type *PtrTy = PointerType::getUnqual(Ctx);
3444 Type *RedArrayTy = ArrayType::get(PtrTy, Size);
3445 CodeGenIP = Builder.saveIP();
3446 Builder.restoreIP(AllocaIP);
3447 Value *ReductionListAlloca =
3448 Builder.CreateAlloca(RedArrayTy, nullptr, ".omp.reduction.red_list");
3449 Value *ReductionList = Builder.CreatePointerBitCastOrAddrSpaceCast(
3450 ReductionListAlloca, PtrTy, ReductionListAlloca->getName() + ".ascast");
3451 Builder.restoreIP(CodeGenIP);
3452 Type *IndexTy = Builder.getIndexTy(
3453 M.getDataLayout(), M.getDataLayout().getDefaultGlobalsAddressSpace());
3454 for (auto En : enumerate(ReductionInfos)) {
3455 const ReductionInfo &RI = En.value();
3456 Value *ElemPtr = Builder.CreateInBoundsGEP(
3457 RedArrayTy, ReductionList,
3458 {ConstantInt::get(IndexTy, 0), ConstantInt::get(IndexTy, En.index())});
3459 Value *CastElem =
3460 Builder.CreatePointerBitCastOrAddrSpaceCast(RI.PrivateVariable, PtrTy);
3461 Builder.CreateStore(CastElem, ElemPtr);
3462 }
3463 CodeGenIP = Builder.saveIP();
3464 Function *SarFunc =
3465 emitShuffleAndReduceFunction(ReductionInfos, ReductionFunc, FuncAttrs);
3466 Function *WcFunc = emitInterWarpCopyFunction(Loc, ReductionInfos, FuncAttrs);
3467 Builder.restoreIP(CodeGenIP);
3468
3469 Value *RL = Builder.CreatePointerBitCastOrAddrSpaceCast(ReductionList, PtrTy);
3470
3471 unsigned MaxDataSize = 0;
3472 SmallVector<Type *> ReductionTypeArgs;
3473 for (auto En : enumerate(ReductionInfos)) {
3474 auto Size = M.getDataLayout().getTypeStoreSize(En.value().ElementType);
3475 if (Size > MaxDataSize)
3476 MaxDataSize = Size;
3477 ReductionTypeArgs.emplace_back(En.value().ElementType);
3478 }
3479 Value *ReductionDataSize =
3480 Builder.getInt64(MaxDataSize * ReductionInfos.size());
3481 if (!IsTeamsReduction) {
3482 Value *SarFuncCast =
3483 Builder.CreatePointerBitCastOrAddrSpaceCast(SarFunc, PtrTy);
3484 Value *WcFuncCast =
3485 Builder.CreatePointerBitCastOrAddrSpaceCast(WcFunc, PtrTy);
3486 Value *Args[] = {RTLoc, ReductionDataSize, RL, SarFuncCast, WcFuncCast};
3487 Function *Pv2Ptr = getOrCreateRuntimeFunctionPtr(
3488 RuntimeFunction::OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2);
3489 Res = Builder.CreateCall(Pv2Ptr, Args);
3490 } else {
3491 CodeGenIP = Builder.saveIP();
3492 StructType *ReductionsBufferTy = StructType::create(
3493 Ctx, ReductionTypeArgs, "struct._globalized_locals_ty");
3494 Function *RedFixedBuferFn = getOrCreateRuntimeFunctionPtr(
3495 RuntimeFunction::OMPRTL___kmpc_reduction_get_fixed_buffer);
3496 Function *LtGCFunc = emitListToGlobalCopyFunction(
3497 ReductionInfos, ReductionsBufferTy, FuncAttrs);
3498 Function *LtGRFunc = emitListToGlobalReduceFunction(
3499 ReductionInfos, ReductionFunc, ReductionsBufferTy, FuncAttrs);
3500 Function *GtLCFunc = emitGlobalToListCopyFunction(
3501 ReductionInfos, ReductionsBufferTy, FuncAttrs);
3502 Function *GtLRFunc = emitGlobalToListReduceFunction(
3503 ReductionInfos, ReductionFunc, ReductionsBufferTy, FuncAttrs);
3504 Builder.restoreIP(CodeGenIP);
3505
3506 Value *KernelTeamsReductionPtr = Builder.CreateCall(
3507 RedFixedBuferFn, {}, "_openmp_teams_reductions_buffer_$_$ptr");
3508
3509 Value *Args3[] = {RTLoc,
3510 KernelTeamsReductionPtr,
3511 Builder.getInt32(ReductionBufNum),
3512 ReductionDataSize,
3513 RL,
3514 SarFunc,
3515 WcFunc,
3516 LtGCFunc,
3517 LtGRFunc,
3518 GtLCFunc,
3519 GtLRFunc};
3520
3521 Function *TeamsReduceFn = getOrCreateRuntimeFunctionPtr(
3522 RuntimeFunction::OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2);
3523 Res = Builder.CreateCall(TeamsReduceFn, Args3);
3524 }
3525
3526 // 5. Build if (res == 1)
3527 BasicBlock *ExitBB = BasicBlock::Create(Ctx, ".omp.reduction.done");
3528 BasicBlock *ThenBB = BasicBlock::Create(Ctx, ".omp.reduction.then");
3529 Value *Cond = Builder.CreateICmpEQ(Res, Builder.getInt32(1));
3530 Builder.CreateCondBr(Cond, ThenBB, ExitBB);
3531
3532 // 6. Build then branch: where we have reduced values in the master
3533 // thread in each team.
3534 // __kmpc_end_reduce{_nowait}(<gtid>);
3535 // break;
3536 emitBlock(ThenBB, CurFunc);
3537
3538 // Add emission of __kmpc_end_reduce{_nowait}(<gtid>);
3539 for (auto En : enumerate(ReductionInfos)) {
3540 const ReductionInfo &RI = En.value();
3541 Value *LHS = RI.Variable;
3542 Value *RHS =
3543 Builder.CreatePointerBitCastOrAddrSpaceCast(RI.PrivateVariable, PtrTy);
3544
3545 if (ReductionGenCBKind == ReductionGenCBKind::Clang) {
3546 Value *LHSPtr, *RHSPtr;
3547 Builder.restoreIP(RI.ReductionGenClang(Builder.saveIP(), En.index(),
3548 &LHSPtr, &RHSPtr, CurFunc));
3549
3550 // Fix the CallBack code genereated to use the correct Values for the LHS
3551 // and RHS
3552 LHSPtr->replaceUsesWithIf(LHS, [ReductionFunc](const Use &U) {
3553 return cast<Instruction>(U.getUser())->getParent()->getParent() ==
3554 ReductionFunc;
3555 });
3556 RHSPtr->replaceUsesWithIf(RHS, [ReductionFunc](const Use &U) {
3557 return cast<Instruction>(U.getUser())->getParent()->getParent() ==
3558 ReductionFunc;
3559 });
3560 } else {
3561 assert(false && "Unhandled ReductionGenCBKind");
3562 }
3563 }
3564 emitBlock(ExitBB, CurFunc);
3565
3566 Config.setEmitLLVMUsed();
3567
3568 return Builder.saveIP();
3569 }
3570
getFreshReductionFunc(Module & M)3571 static Function *getFreshReductionFunc(Module &M) {
3572 Type *VoidTy = Type::getVoidTy(M.getContext());
3573 Type *Int8PtrTy = PointerType::getUnqual(M.getContext());
3574 auto *FuncTy =
3575 FunctionType::get(VoidTy, {Int8PtrTy, Int8PtrTy}, /* IsVarArg */ false);
3576 return Function::Create(FuncTy, GlobalVariable::InternalLinkage,
3577 ".omp.reduction.func", &M);
3578 }
3579
3580 OpenMPIRBuilder::InsertPointTy
createReductions(const LocationDescription & Loc,InsertPointTy AllocaIP,ArrayRef<ReductionInfo> ReductionInfos,ArrayRef<bool> IsByRef,bool IsNoWait)3581 OpenMPIRBuilder::createReductions(const LocationDescription &Loc,
3582 InsertPointTy AllocaIP,
3583 ArrayRef<ReductionInfo> ReductionInfos,
3584 ArrayRef<bool> IsByRef, bool IsNoWait) {
3585 assert(ReductionInfos.size() == IsByRef.size());
3586 for (const ReductionInfo &RI : ReductionInfos) {
3587 (void)RI;
3588 assert(RI.Variable && "expected non-null variable");
3589 assert(RI.PrivateVariable && "expected non-null private variable");
3590 assert(RI.ReductionGen && "expected non-null reduction generator callback");
3591 assert(RI.Variable->getType() == RI.PrivateVariable->getType() &&
3592 "expected variables and their private equivalents to have the same "
3593 "type");
3594 assert(RI.Variable->getType()->isPointerTy() &&
3595 "expected variables to be pointers");
3596 }
3597
3598 if (!updateToLocation(Loc))
3599 return InsertPointTy();
3600
3601 BasicBlock *InsertBlock = Loc.IP.getBlock();
3602 BasicBlock *ContinuationBlock =
3603 InsertBlock->splitBasicBlock(Loc.IP.getPoint(), "reduce.finalize");
3604 InsertBlock->getTerminator()->eraseFromParent();
3605
3606 // Create and populate array of type-erased pointers to private reduction
3607 // values.
3608 unsigned NumReductions = ReductionInfos.size();
3609 Type *RedArrayTy = ArrayType::get(Builder.getPtrTy(), NumReductions);
3610 Builder.SetInsertPoint(AllocaIP.getBlock()->getTerminator());
3611 Value *RedArray = Builder.CreateAlloca(RedArrayTy, nullptr, "red.array");
3612
3613 Builder.SetInsertPoint(InsertBlock, InsertBlock->end());
3614
3615 for (auto En : enumerate(ReductionInfos)) {
3616 unsigned Index = En.index();
3617 const ReductionInfo &RI = En.value();
3618 Value *RedArrayElemPtr = Builder.CreateConstInBoundsGEP2_64(
3619 RedArrayTy, RedArray, 0, Index, "red.array.elem." + Twine(Index));
3620 Builder.CreateStore(RI.PrivateVariable, RedArrayElemPtr);
3621 }
3622
3623 // Emit a call to the runtime function that orchestrates the reduction.
3624 // Declare the reduction function in the process.
3625 Function *Func = Builder.GetInsertBlock()->getParent();
3626 Module *Module = Func->getParent();
3627 uint32_t SrcLocStrSize;
3628 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
3629 bool CanGenerateAtomic = all_of(ReductionInfos, [](const ReductionInfo &RI) {
3630 return RI.AtomicReductionGen;
3631 });
3632 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize,
3633 CanGenerateAtomic
3634 ? IdentFlag::OMP_IDENT_FLAG_ATOMIC_REDUCE
3635 : IdentFlag(0));
3636 Value *ThreadId = getOrCreateThreadID(Ident);
3637 Constant *NumVariables = Builder.getInt32(NumReductions);
3638 const DataLayout &DL = Module->getDataLayout();
3639 unsigned RedArrayByteSize = DL.getTypeStoreSize(RedArrayTy);
3640 Constant *RedArraySize = Builder.getInt64(RedArrayByteSize);
3641 Function *ReductionFunc = getFreshReductionFunc(*Module);
3642 Value *Lock = getOMPCriticalRegionLock(".reduction");
3643 Function *ReduceFunc = getOrCreateRuntimeFunctionPtr(
3644 IsNoWait ? RuntimeFunction::OMPRTL___kmpc_reduce_nowait
3645 : RuntimeFunction::OMPRTL___kmpc_reduce);
3646 CallInst *ReduceCall =
3647 Builder.CreateCall(ReduceFunc,
3648 {Ident, ThreadId, NumVariables, RedArraySize, RedArray,
3649 ReductionFunc, Lock},
3650 "reduce");
3651
3652 // Create final reduction entry blocks for the atomic and non-atomic case.
3653 // Emit IR that dispatches control flow to one of the blocks based on the
3654 // reduction supporting the atomic mode.
3655 BasicBlock *NonAtomicRedBlock =
3656 BasicBlock::Create(Module->getContext(), "reduce.switch.nonatomic", Func);
3657 BasicBlock *AtomicRedBlock =
3658 BasicBlock::Create(Module->getContext(), "reduce.switch.atomic", Func);
3659 SwitchInst *Switch =
3660 Builder.CreateSwitch(ReduceCall, ContinuationBlock, /* NumCases */ 2);
3661 Switch->addCase(Builder.getInt32(1), NonAtomicRedBlock);
3662 Switch->addCase(Builder.getInt32(2), AtomicRedBlock);
3663
3664 // Populate the non-atomic reduction using the elementwise reduction function.
3665 // This loads the elements from the global and private variables and reduces
3666 // them before storing back the result to the global variable.
3667 Builder.SetInsertPoint(NonAtomicRedBlock);
3668 for (auto En : enumerate(ReductionInfos)) {
3669 const ReductionInfo &RI = En.value();
3670 Type *ValueType = RI.ElementType;
3671 // We have one less load for by-ref case because that load is now inside of
3672 // the reduction region
3673 Value *RedValue = nullptr;
3674 if (!IsByRef[En.index()]) {
3675 RedValue = Builder.CreateLoad(ValueType, RI.Variable,
3676 "red.value." + Twine(En.index()));
3677 }
3678 Value *PrivateRedValue =
3679 Builder.CreateLoad(ValueType, RI.PrivateVariable,
3680 "red.private.value." + Twine(En.index()));
3681 Value *Reduced;
3682 if (IsByRef[En.index()]) {
3683 Builder.restoreIP(RI.ReductionGen(Builder.saveIP(), RI.Variable,
3684 PrivateRedValue, Reduced));
3685 } else {
3686 Builder.restoreIP(RI.ReductionGen(Builder.saveIP(), RedValue,
3687 PrivateRedValue, Reduced));
3688 }
3689 if (!Builder.GetInsertBlock())
3690 return InsertPointTy();
3691 // for by-ref case, the load is inside of the reduction region
3692 if (!IsByRef[En.index()])
3693 Builder.CreateStore(Reduced, RI.Variable);
3694 }
3695 Function *EndReduceFunc = getOrCreateRuntimeFunctionPtr(
3696 IsNoWait ? RuntimeFunction::OMPRTL___kmpc_end_reduce_nowait
3697 : RuntimeFunction::OMPRTL___kmpc_end_reduce);
3698 Builder.CreateCall(EndReduceFunc, {Ident, ThreadId, Lock});
3699 Builder.CreateBr(ContinuationBlock);
3700
3701 // Populate the atomic reduction using the atomic elementwise reduction
3702 // function. There are no loads/stores here because they will be happening
3703 // inside the atomic elementwise reduction.
3704 Builder.SetInsertPoint(AtomicRedBlock);
3705 if (CanGenerateAtomic && llvm::none_of(IsByRef, [](bool P) { return P; })) {
3706 for (const ReductionInfo &RI : ReductionInfos) {
3707 Builder.restoreIP(RI.AtomicReductionGen(Builder.saveIP(), RI.ElementType,
3708 RI.Variable, RI.PrivateVariable));
3709 if (!Builder.GetInsertBlock())
3710 return InsertPointTy();
3711 }
3712 Builder.CreateBr(ContinuationBlock);
3713 } else {
3714 Builder.CreateUnreachable();
3715 }
3716
3717 // Populate the outlined reduction function using the elementwise reduction
3718 // function. Partial values are extracted from the type-erased array of
3719 // pointers to private variables.
3720 BasicBlock *ReductionFuncBlock =
3721 BasicBlock::Create(Module->getContext(), "", ReductionFunc);
3722 Builder.SetInsertPoint(ReductionFuncBlock);
3723 Value *LHSArrayPtr = ReductionFunc->getArg(0);
3724 Value *RHSArrayPtr = ReductionFunc->getArg(1);
3725
3726 for (auto En : enumerate(ReductionInfos)) {
3727 const ReductionInfo &RI = En.value();
3728 Value *LHSI8PtrPtr = Builder.CreateConstInBoundsGEP2_64(
3729 RedArrayTy, LHSArrayPtr, 0, En.index());
3730 Value *LHSI8Ptr = Builder.CreateLoad(Builder.getPtrTy(), LHSI8PtrPtr);
3731 Value *LHSPtr = Builder.CreateBitCast(LHSI8Ptr, RI.Variable->getType());
3732 Value *LHS = Builder.CreateLoad(RI.ElementType, LHSPtr);
3733 Value *RHSI8PtrPtr = Builder.CreateConstInBoundsGEP2_64(
3734 RedArrayTy, RHSArrayPtr, 0, En.index());
3735 Value *RHSI8Ptr = Builder.CreateLoad(Builder.getPtrTy(), RHSI8PtrPtr);
3736 Value *RHSPtr =
3737 Builder.CreateBitCast(RHSI8Ptr, RI.PrivateVariable->getType());
3738 Value *RHS = Builder.CreateLoad(RI.ElementType, RHSPtr);
3739 Value *Reduced;
3740 Builder.restoreIP(RI.ReductionGen(Builder.saveIP(), LHS, RHS, Reduced));
3741 if (!Builder.GetInsertBlock())
3742 return InsertPointTy();
3743 // store is inside of the reduction region when using by-ref
3744 if (!IsByRef[En.index()])
3745 Builder.CreateStore(Reduced, LHSPtr);
3746 }
3747 Builder.CreateRetVoid();
3748
3749 Builder.SetInsertPoint(ContinuationBlock);
3750 return Builder.saveIP();
3751 }
3752
3753 OpenMPIRBuilder::InsertPointTy
createMaster(const LocationDescription & Loc,BodyGenCallbackTy BodyGenCB,FinalizeCallbackTy FiniCB)3754 OpenMPIRBuilder::createMaster(const LocationDescription &Loc,
3755 BodyGenCallbackTy BodyGenCB,
3756 FinalizeCallbackTy FiniCB) {
3757
3758 if (!updateToLocation(Loc))
3759 return Loc.IP;
3760
3761 Directive OMPD = Directive::OMPD_master;
3762 uint32_t SrcLocStrSize;
3763 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
3764 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
3765 Value *ThreadId = getOrCreateThreadID(Ident);
3766 Value *Args[] = {Ident, ThreadId};
3767
3768 Function *EntryRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_master);
3769 Instruction *EntryCall = Builder.CreateCall(EntryRTLFn, Args);
3770
3771 Function *ExitRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_master);
3772 Instruction *ExitCall = Builder.CreateCall(ExitRTLFn, Args);
3773
3774 return EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCB,
3775 /*Conditional*/ true, /*hasFinalize*/ true);
3776 }
3777
3778 OpenMPIRBuilder::InsertPointTy
createMasked(const LocationDescription & Loc,BodyGenCallbackTy BodyGenCB,FinalizeCallbackTy FiniCB,Value * Filter)3779 OpenMPIRBuilder::createMasked(const LocationDescription &Loc,
3780 BodyGenCallbackTy BodyGenCB,
3781 FinalizeCallbackTy FiniCB, Value *Filter) {
3782 if (!updateToLocation(Loc))
3783 return Loc.IP;
3784
3785 Directive OMPD = Directive::OMPD_masked;
3786 uint32_t SrcLocStrSize;
3787 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
3788 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
3789 Value *ThreadId = getOrCreateThreadID(Ident);
3790 Value *Args[] = {Ident, ThreadId, Filter};
3791 Value *ArgsEnd[] = {Ident, ThreadId};
3792
3793 Function *EntryRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_masked);
3794 Instruction *EntryCall = Builder.CreateCall(EntryRTLFn, Args);
3795
3796 Function *ExitRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_masked);
3797 Instruction *ExitCall = Builder.CreateCall(ExitRTLFn, ArgsEnd);
3798
3799 return EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCB,
3800 /*Conditional*/ true, /*hasFinalize*/ true);
3801 }
3802
createLoopSkeleton(DebugLoc DL,Value * TripCount,Function * F,BasicBlock * PreInsertBefore,BasicBlock * PostInsertBefore,const Twine & Name)3803 CanonicalLoopInfo *OpenMPIRBuilder::createLoopSkeleton(
3804 DebugLoc DL, Value *TripCount, Function *F, BasicBlock *PreInsertBefore,
3805 BasicBlock *PostInsertBefore, const Twine &Name) {
3806 Module *M = F->getParent();
3807 LLVMContext &Ctx = M->getContext();
3808 Type *IndVarTy = TripCount->getType();
3809
3810 // Create the basic block structure.
3811 BasicBlock *Preheader =
3812 BasicBlock::Create(Ctx, "omp_" + Name + ".preheader", F, PreInsertBefore);
3813 BasicBlock *Header =
3814 BasicBlock::Create(Ctx, "omp_" + Name + ".header", F, PreInsertBefore);
3815 BasicBlock *Cond =
3816 BasicBlock::Create(Ctx, "omp_" + Name + ".cond", F, PreInsertBefore);
3817 BasicBlock *Body =
3818 BasicBlock::Create(Ctx, "omp_" + Name + ".body", F, PreInsertBefore);
3819 BasicBlock *Latch =
3820 BasicBlock::Create(Ctx, "omp_" + Name + ".inc", F, PostInsertBefore);
3821 BasicBlock *Exit =
3822 BasicBlock::Create(Ctx, "omp_" + Name + ".exit", F, PostInsertBefore);
3823 BasicBlock *After =
3824 BasicBlock::Create(Ctx, "omp_" + Name + ".after", F, PostInsertBefore);
3825
3826 // Use specified DebugLoc for new instructions.
3827 Builder.SetCurrentDebugLocation(DL);
3828
3829 Builder.SetInsertPoint(Preheader);
3830 Builder.CreateBr(Header);
3831
3832 Builder.SetInsertPoint(Header);
3833 PHINode *IndVarPHI = Builder.CreatePHI(IndVarTy, 2, "omp_" + Name + ".iv");
3834 IndVarPHI->addIncoming(ConstantInt::get(IndVarTy, 0), Preheader);
3835 Builder.CreateBr(Cond);
3836
3837 Builder.SetInsertPoint(Cond);
3838 Value *Cmp =
3839 Builder.CreateICmpULT(IndVarPHI, TripCount, "omp_" + Name + ".cmp");
3840 Builder.CreateCondBr(Cmp, Body, Exit);
3841
3842 Builder.SetInsertPoint(Body);
3843 Builder.CreateBr(Latch);
3844
3845 Builder.SetInsertPoint(Latch);
3846 Value *Next = Builder.CreateAdd(IndVarPHI, ConstantInt::get(IndVarTy, 1),
3847 "omp_" + Name + ".next", /*HasNUW=*/true);
3848 Builder.CreateBr(Header);
3849 IndVarPHI->addIncoming(Next, Latch);
3850
3851 Builder.SetInsertPoint(Exit);
3852 Builder.CreateBr(After);
3853
3854 // Remember and return the canonical control flow.
3855 LoopInfos.emplace_front();
3856 CanonicalLoopInfo *CL = &LoopInfos.front();
3857
3858 CL->Header = Header;
3859 CL->Cond = Cond;
3860 CL->Latch = Latch;
3861 CL->Exit = Exit;
3862
3863 #ifndef NDEBUG
3864 CL->assertOK();
3865 #endif
3866 return CL;
3867 }
3868
3869 CanonicalLoopInfo *
createCanonicalLoop(const LocationDescription & Loc,LoopBodyGenCallbackTy BodyGenCB,Value * TripCount,const Twine & Name)3870 OpenMPIRBuilder::createCanonicalLoop(const LocationDescription &Loc,
3871 LoopBodyGenCallbackTy BodyGenCB,
3872 Value *TripCount, const Twine &Name) {
3873 BasicBlock *BB = Loc.IP.getBlock();
3874 BasicBlock *NextBB = BB->getNextNode();
3875
3876 CanonicalLoopInfo *CL = createLoopSkeleton(Loc.DL, TripCount, BB->getParent(),
3877 NextBB, NextBB, Name);
3878 BasicBlock *After = CL->getAfter();
3879
3880 // If location is not set, don't connect the loop.
3881 if (updateToLocation(Loc)) {
3882 // Split the loop at the insertion point: Branch to the preheader and move
3883 // every following instruction to after the loop (the After BB). Also, the
3884 // new successor is the loop's after block.
3885 spliceBB(Builder, After, /*CreateBranch=*/false);
3886 Builder.CreateBr(CL->getPreheader());
3887 }
3888
3889 // Emit the body content. We do it after connecting the loop to the CFG to
3890 // avoid that the callback encounters degenerate BBs.
3891 BodyGenCB(CL->getBodyIP(), CL->getIndVar());
3892
3893 #ifndef NDEBUG
3894 CL->assertOK();
3895 #endif
3896 return CL;
3897 }
3898
createCanonicalLoop(const LocationDescription & Loc,LoopBodyGenCallbackTy BodyGenCB,Value * Start,Value * Stop,Value * Step,bool IsSigned,bool InclusiveStop,InsertPointTy ComputeIP,const Twine & Name)3899 CanonicalLoopInfo *OpenMPIRBuilder::createCanonicalLoop(
3900 const LocationDescription &Loc, LoopBodyGenCallbackTy BodyGenCB,
3901 Value *Start, Value *Stop, Value *Step, bool IsSigned, bool InclusiveStop,
3902 InsertPointTy ComputeIP, const Twine &Name) {
3903
3904 // Consider the following difficulties (assuming 8-bit signed integers):
3905 // * Adding \p Step to the loop counter which passes \p Stop may overflow:
3906 // DO I = 1, 100, 50
3907 /// * A \p Step of INT_MIN cannot not be normalized to a positive direction:
3908 // DO I = 100, 0, -128
3909
3910 // Start, Stop and Step must be of the same integer type.
3911 auto *IndVarTy = cast<IntegerType>(Start->getType());
3912 assert(IndVarTy == Stop->getType() && "Stop type mismatch");
3913 assert(IndVarTy == Step->getType() && "Step type mismatch");
3914
3915 LocationDescription ComputeLoc =
3916 ComputeIP.isSet() ? LocationDescription(ComputeIP, Loc.DL) : Loc;
3917 updateToLocation(ComputeLoc);
3918
3919 ConstantInt *Zero = ConstantInt::get(IndVarTy, 0);
3920 ConstantInt *One = ConstantInt::get(IndVarTy, 1);
3921
3922 // Like Step, but always positive.
3923 Value *Incr = Step;
3924
3925 // Distance between Start and Stop; always positive.
3926 Value *Span;
3927
3928 // Condition whether there are no iterations are executed at all, e.g. because
3929 // UB < LB.
3930 Value *ZeroCmp;
3931
3932 if (IsSigned) {
3933 // Ensure that increment is positive. If not, negate and invert LB and UB.
3934 Value *IsNeg = Builder.CreateICmpSLT(Step, Zero);
3935 Incr = Builder.CreateSelect(IsNeg, Builder.CreateNeg(Step), Step);
3936 Value *LB = Builder.CreateSelect(IsNeg, Stop, Start);
3937 Value *UB = Builder.CreateSelect(IsNeg, Start, Stop);
3938 Span = Builder.CreateSub(UB, LB, "", false, true);
3939 ZeroCmp = Builder.CreateICmp(
3940 InclusiveStop ? CmpInst::ICMP_SLT : CmpInst::ICMP_SLE, UB, LB);
3941 } else {
3942 Span = Builder.CreateSub(Stop, Start, "", true);
3943 ZeroCmp = Builder.CreateICmp(
3944 InclusiveStop ? CmpInst::ICMP_ULT : CmpInst::ICMP_ULE, Stop, Start);
3945 }
3946
3947 Value *CountIfLooping;
3948 if (InclusiveStop) {
3949 CountIfLooping = Builder.CreateAdd(Builder.CreateUDiv(Span, Incr), One);
3950 } else {
3951 // Avoid incrementing past stop since it could overflow.
3952 Value *CountIfTwo = Builder.CreateAdd(
3953 Builder.CreateUDiv(Builder.CreateSub(Span, One), Incr), One);
3954 Value *OneCmp = Builder.CreateICmp(CmpInst::ICMP_ULE, Span, Incr);
3955 CountIfLooping = Builder.CreateSelect(OneCmp, One, CountIfTwo);
3956 }
3957 Value *TripCount = Builder.CreateSelect(ZeroCmp, Zero, CountIfLooping,
3958 "omp_" + Name + ".tripcount");
3959
3960 auto BodyGen = [=](InsertPointTy CodeGenIP, Value *IV) {
3961 Builder.restoreIP(CodeGenIP);
3962 Value *Span = Builder.CreateMul(IV, Step);
3963 Value *IndVar = Builder.CreateAdd(Span, Start);
3964 BodyGenCB(Builder.saveIP(), IndVar);
3965 };
3966 LocationDescription LoopLoc = ComputeIP.isSet() ? Loc.IP : Builder.saveIP();
3967 return createCanonicalLoop(LoopLoc, BodyGen, TripCount, Name);
3968 }
3969
3970 // Returns an LLVM function to call for initializing loop bounds using OpenMP
3971 // static scheduling depending on `type`. Only i32 and i64 are supported by the
3972 // runtime. Always interpret integers as unsigned similarly to
3973 // CanonicalLoopInfo.
getKmpcForStaticInitForType(Type * Ty,Module & M,OpenMPIRBuilder & OMPBuilder)3974 static FunctionCallee getKmpcForStaticInitForType(Type *Ty, Module &M,
3975 OpenMPIRBuilder &OMPBuilder) {
3976 unsigned Bitwidth = Ty->getIntegerBitWidth();
3977 if (Bitwidth == 32)
3978 return OMPBuilder.getOrCreateRuntimeFunction(
3979 M, omp::RuntimeFunction::OMPRTL___kmpc_for_static_init_4u);
3980 if (Bitwidth == 64)
3981 return OMPBuilder.getOrCreateRuntimeFunction(
3982 M, omp::RuntimeFunction::OMPRTL___kmpc_for_static_init_8u);
3983 llvm_unreachable("unknown OpenMP loop iterator bitwidth");
3984 }
3985
3986 OpenMPIRBuilder::InsertPointTy
applyStaticWorkshareLoop(DebugLoc DL,CanonicalLoopInfo * CLI,InsertPointTy AllocaIP,bool NeedsBarrier)3987 OpenMPIRBuilder::applyStaticWorkshareLoop(DebugLoc DL, CanonicalLoopInfo *CLI,
3988 InsertPointTy AllocaIP,
3989 bool NeedsBarrier) {
3990 assert(CLI->isValid() && "Requires a valid canonical loop");
3991 assert(!isConflictIP(AllocaIP, CLI->getPreheaderIP()) &&
3992 "Require dedicated allocate IP");
3993
3994 // Set up the source location value for OpenMP runtime.
3995 Builder.restoreIP(CLI->getPreheaderIP());
3996 Builder.SetCurrentDebugLocation(DL);
3997
3998 uint32_t SrcLocStrSize;
3999 Constant *SrcLocStr = getOrCreateSrcLocStr(DL, SrcLocStrSize);
4000 Value *SrcLoc = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
4001
4002 // Declare useful OpenMP runtime functions.
4003 Value *IV = CLI->getIndVar();
4004 Type *IVTy = IV->getType();
4005 FunctionCallee StaticInit = getKmpcForStaticInitForType(IVTy, M, *this);
4006 FunctionCallee StaticFini =
4007 getOrCreateRuntimeFunction(M, omp::OMPRTL___kmpc_for_static_fini);
4008
4009 // Allocate space for computed loop bounds as expected by the "init" function.
4010 Builder.SetInsertPoint(AllocaIP.getBlock()->getFirstNonPHIOrDbgOrAlloca());
4011
4012 Type *I32Type = Type::getInt32Ty(M.getContext());
4013 Value *PLastIter = Builder.CreateAlloca(I32Type, nullptr, "p.lastiter");
4014 Value *PLowerBound = Builder.CreateAlloca(IVTy, nullptr, "p.lowerbound");
4015 Value *PUpperBound = Builder.CreateAlloca(IVTy, nullptr, "p.upperbound");
4016 Value *PStride = Builder.CreateAlloca(IVTy, nullptr, "p.stride");
4017
4018 // At the end of the preheader, prepare for calling the "init" function by
4019 // storing the current loop bounds into the allocated space. A canonical loop
4020 // always iterates from 0 to trip-count with step 1. Note that "init" expects
4021 // and produces an inclusive upper bound.
4022 Builder.SetInsertPoint(CLI->getPreheader()->getTerminator());
4023 Constant *Zero = ConstantInt::get(IVTy, 0);
4024 Constant *One = ConstantInt::get(IVTy, 1);
4025 Builder.CreateStore(Zero, PLowerBound);
4026 Value *UpperBound = Builder.CreateSub(CLI->getTripCount(), One);
4027 Builder.CreateStore(UpperBound, PUpperBound);
4028 Builder.CreateStore(One, PStride);
4029
4030 Value *ThreadNum = getOrCreateThreadID(SrcLoc);
4031
4032 Constant *SchedulingType = ConstantInt::get(
4033 I32Type, static_cast<int>(OMPScheduleType::UnorderedStatic));
4034
4035 // Call the "init" function and update the trip count of the loop with the
4036 // value it produced.
4037 Builder.CreateCall(StaticInit,
4038 {SrcLoc, ThreadNum, SchedulingType, PLastIter, PLowerBound,
4039 PUpperBound, PStride, One, Zero});
4040 Value *LowerBound = Builder.CreateLoad(IVTy, PLowerBound);
4041 Value *InclusiveUpperBound = Builder.CreateLoad(IVTy, PUpperBound);
4042 Value *TripCountMinusOne = Builder.CreateSub(InclusiveUpperBound, LowerBound);
4043 Value *TripCount = Builder.CreateAdd(TripCountMinusOne, One);
4044 CLI->setTripCount(TripCount);
4045
4046 // Update all uses of the induction variable except the one in the condition
4047 // block that compares it with the actual upper bound, and the increment in
4048 // the latch block.
4049
4050 CLI->mapIndVar([&](Instruction *OldIV) -> Value * {
4051 Builder.SetInsertPoint(CLI->getBody(),
4052 CLI->getBody()->getFirstInsertionPt());
4053 Builder.SetCurrentDebugLocation(DL);
4054 return Builder.CreateAdd(OldIV, LowerBound);
4055 });
4056
4057 // In the "exit" block, call the "fini" function.
4058 Builder.SetInsertPoint(CLI->getExit(),
4059 CLI->getExit()->getTerminator()->getIterator());
4060 Builder.CreateCall(StaticFini, {SrcLoc, ThreadNum});
4061
4062 // Add the barrier if requested.
4063 if (NeedsBarrier)
4064 createBarrier(LocationDescription(Builder.saveIP(), DL),
4065 omp::Directive::OMPD_for, /* ForceSimpleCall */ false,
4066 /* CheckCancelFlag */ false);
4067
4068 InsertPointTy AfterIP = CLI->getAfterIP();
4069 CLI->invalidate();
4070
4071 return AfterIP;
4072 }
4073
applyStaticChunkedWorkshareLoop(DebugLoc DL,CanonicalLoopInfo * CLI,InsertPointTy AllocaIP,bool NeedsBarrier,Value * ChunkSize)4074 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::applyStaticChunkedWorkshareLoop(
4075 DebugLoc DL, CanonicalLoopInfo *CLI, InsertPointTy AllocaIP,
4076 bool NeedsBarrier, Value *ChunkSize) {
4077 assert(CLI->isValid() && "Requires a valid canonical loop");
4078 assert(ChunkSize && "Chunk size is required");
4079
4080 LLVMContext &Ctx = CLI->getFunction()->getContext();
4081 Value *IV = CLI->getIndVar();
4082 Value *OrigTripCount = CLI->getTripCount();
4083 Type *IVTy = IV->getType();
4084 assert(IVTy->getIntegerBitWidth() <= 64 &&
4085 "Max supported tripcount bitwidth is 64 bits");
4086 Type *InternalIVTy = IVTy->getIntegerBitWidth() <= 32 ? Type::getInt32Ty(Ctx)
4087 : Type::getInt64Ty(Ctx);
4088 Type *I32Type = Type::getInt32Ty(M.getContext());
4089 Constant *Zero = ConstantInt::get(InternalIVTy, 0);
4090 Constant *One = ConstantInt::get(InternalIVTy, 1);
4091
4092 // Declare useful OpenMP runtime functions.
4093 FunctionCallee StaticInit =
4094 getKmpcForStaticInitForType(InternalIVTy, M, *this);
4095 FunctionCallee StaticFini =
4096 getOrCreateRuntimeFunction(M, omp::OMPRTL___kmpc_for_static_fini);
4097
4098 // Allocate space for computed loop bounds as expected by the "init" function.
4099 Builder.restoreIP(AllocaIP);
4100 Builder.SetCurrentDebugLocation(DL);
4101 Value *PLastIter = Builder.CreateAlloca(I32Type, nullptr, "p.lastiter");
4102 Value *PLowerBound =
4103 Builder.CreateAlloca(InternalIVTy, nullptr, "p.lowerbound");
4104 Value *PUpperBound =
4105 Builder.CreateAlloca(InternalIVTy, nullptr, "p.upperbound");
4106 Value *PStride = Builder.CreateAlloca(InternalIVTy, nullptr, "p.stride");
4107
4108 // Set up the source location value for the OpenMP runtime.
4109 Builder.restoreIP(CLI->getPreheaderIP());
4110 Builder.SetCurrentDebugLocation(DL);
4111
4112 // TODO: Detect overflow in ubsan or max-out with current tripcount.
4113 Value *CastedChunkSize =
4114 Builder.CreateZExtOrTrunc(ChunkSize, InternalIVTy, "chunksize");
4115 Value *CastedTripCount =
4116 Builder.CreateZExt(OrigTripCount, InternalIVTy, "tripcount");
4117
4118 Constant *SchedulingType = ConstantInt::get(
4119 I32Type, static_cast<int>(OMPScheduleType::UnorderedStaticChunked));
4120 Builder.CreateStore(Zero, PLowerBound);
4121 Value *OrigUpperBound = Builder.CreateSub(CastedTripCount, One);
4122 Builder.CreateStore(OrigUpperBound, PUpperBound);
4123 Builder.CreateStore(One, PStride);
4124
4125 // Call the "init" function and update the trip count of the loop with the
4126 // value it produced.
4127 uint32_t SrcLocStrSize;
4128 Constant *SrcLocStr = getOrCreateSrcLocStr(DL, SrcLocStrSize);
4129 Value *SrcLoc = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
4130 Value *ThreadNum = getOrCreateThreadID(SrcLoc);
4131 Builder.CreateCall(StaticInit,
4132 {/*loc=*/SrcLoc, /*global_tid=*/ThreadNum,
4133 /*schedtype=*/SchedulingType, /*plastiter=*/PLastIter,
4134 /*plower=*/PLowerBound, /*pupper=*/PUpperBound,
4135 /*pstride=*/PStride, /*incr=*/One,
4136 /*chunk=*/CastedChunkSize});
4137
4138 // Load values written by the "init" function.
4139 Value *FirstChunkStart =
4140 Builder.CreateLoad(InternalIVTy, PLowerBound, "omp_firstchunk.lb");
4141 Value *FirstChunkStop =
4142 Builder.CreateLoad(InternalIVTy, PUpperBound, "omp_firstchunk.ub");
4143 Value *FirstChunkEnd = Builder.CreateAdd(FirstChunkStop, One);
4144 Value *ChunkRange =
4145 Builder.CreateSub(FirstChunkEnd, FirstChunkStart, "omp_chunk.range");
4146 Value *NextChunkStride =
4147 Builder.CreateLoad(InternalIVTy, PStride, "omp_dispatch.stride");
4148
4149 // Create outer "dispatch" loop for enumerating the chunks.
4150 BasicBlock *DispatchEnter = splitBB(Builder, true);
4151 Value *DispatchCounter;
4152 CanonicalLoopInfo *DispatchCLI = createCanonicalLoop(
4153 {Builder.saveIP(), DL},
4154 [&](InsertPointTy BodyIP, Value *Counter) { DispatchCounter = Counter; },
4155 FirstChunkStart, CastedTripCount, NextChunkStride,
4156 /*IsSigned=*/false, /*InclusiveStop=*/false, /*ComputeIP=*/{},
4157 "dispatch");
4158
4159 // Remember the BasicBlocks of the dispatch loop we need, then invalidate to
4160 // not have to preserve the canonical invariant.
4161 BasicBlock *DispatchBody = DispatchCLI->getBody();
4162 BasicBlock *DispatchLatch = DispatchCLI->getLatch();
4163 BasicBlock *DispatchExit = DispatchCLI->getExit();
4164 BasicBlock *DispatchAfter = DispatchCLI->getAfter();
4165 DispatchCLI->invalidate();
4166
4167 // Rewire the original loop to become the chunk loop inside the dispatch loop.
4168 redirectTo(DispatchAfter, CLI->getAfter(), DL);
4169 redirectTo(CLI->getExit(), DispatchLatch, DL);
4170 redirectTo(DispatchBody, DispatchEnter, DL);
4171
4172 // Prepare the prolog of the chunk loop.
4173 Builder.restoreIP(CLI->getPreheaderIP());
4174 Builder.SetCurrentDebugLocation(DL);
4175
4176 // Compute the number of iterations of the chunk loop.
4177 Builder.SetInsertPoint(CLI->getPreheader()->getTerminator());
4178 Value *ChunkEnd = Builder.CreateAdd(DispatchCounter, ChunkRange);
4179 Value *IsLastChunk =
4180 Builder.CreateICmpUGE(ChunkEnd, CastedTripCount, "omp_chunk.is_last");
4181 Value *CountUntilOrigTripCount =
4182 Builder.CreateSub(CastedTripCount, DispatchCounter);
4183 Value *ChunkTripCount = Builder.CreateSelect(
4184 IsLastChunk, CountUntilOrigTripCount, ChunkRange, "omp_chunk.tripcount");
4185 Value *BackcastedChunkTC =
4186 Builder.CreateTrunc(ChunkTripCount, IVTy, "omp_chunk.tripcount.trunc");
4187 CLI->setTripCount(BackcastedChunkTC);
4188
4189 // Update all uses of the induction variable except the one in the condition
4190 // block that compares it with the actual upper bound, and the increment in
4191 // the latch block.
4192 Value *BackcastedDispatchCounter =
4193 Builder.CreateTrunc(DispatchCounter, IVTy, "omp_dispatch.iv.trunc");
4194 CLI->mapIndVar([&](Instruction *) -> Value * {
4195 Builder.restoreIP(CLI->getBodyIP());
4196 return Builder.CreateAdd(IV, BackcastedDispatchCounter);
4197 });
4198
4199 // In the "exit" block, call the "fini" function.
4200 Builder.SetInsertPoint(DispatchExit, DispatchExit->getFirstInsertionPt());
4201 Builder.CreateCall(StaticFini, {SrcLoc, ThreadNum});
4202
4203 // Add the barrier if requested.
4204 if (NeedsBarrier)
4205 createBarrier(LocationDescription(Builder.saveIP(), DL), OMPD_for,
4206 /*ForceSimpleCall=*/false, /*CheckCancelFlag=*/false);
4207
4208 #ifndef NDEBUG
4209 // Even though we currently do not support applying additional methods to it,
4210 // the chunk loop should remain a canonical loop.
4211 CLI->assertOK();
4212 #endif
4213
4214 return {DispatchAfter, DispatchAfter->getFirstInsertionPt()};
4215 }
4216
4217 // Returns an LLVM function to call for executing an OpenMP static worksharing
4218 // for loop depending on `type`. Only i32 and i64 are supported by the runtime.
4219 // Always interpret integers as unsigned similarly to CanonicalLoopInfo.
4220 static FunctionCallee
getKmpcForStaticLoopForType(Type * Ty,OpenMPIRBuilder * OMPBuilder,WorksharingLoopType LoopType)4221 getKmpcForStaticLoopForType(Type *Ty, OpenMPIRBuilder *OMPBuilder,
4222 WorksharingLoopType LoopType) {
4223 unsigned Bitwidth = Ty->getIntegerBitWidth();
4224 Module &M = OMPBuilder->M;
4225 switch (LoopType) {
4226 case WorksharingLoopType::ForStaticLoop:
4227 if (Bitwidth == 32)
4228 return OMPBuilder->getOrCreateRuntimeFunction(
4229 M, omp::RuntimeFunction::OMPRTL___kmpc_for_static_loop_4u);
4230 if (Bitwidth == 64)
4231 return OMPBuilder->getOrCreateRuntimeFunction(
4232 M, omp::RuntimeFunction::OMPRTL___kmpc_for_static_loop_8u);
4233 break;
4234 case WorksharingLoopType::DistributeStaticLoop:
4235 if (Bitwidth == 32)
4236 return OMPBuilder->getOrCreateRuntimeFunction(
4237 M, omp::RuntimeFunction::OMPRTL___kmpc_distribute_static_loop_4u);
4238 if (Bitwidth == 64)
4239 return OMPBuilder->getOrCreateRuntimeFunction(
4240 M, omp::RuntimeFunction::OMPRTL___kmpc_distribute_static_loop_8u);
4241 break;
4242 case WorksharingLoopType::DistributeForStaticLoop:
4243 if (Bitwidth == 32)
4244 return OMPBuilder->getOrCreateRuntimeFunction(
4245 M, omp::RuntimeFunction::OMPRTL___kmpc_distribute_for_static_loop_4u);
4246 if (Bitwidth == 64)
4247 return OMPBuilder->getOrCreateRuntimeFunction(
4248 M, omp::RuntimeFunction::OMPRTL___kmpc_distribute_for_static_loop_8u);
4249 break;
4250 }
4251 if (Bitwidth != 32 && Bitwidth != 64) {
4252 llvm_unreachable("Unknown OpenMP loop iterator bitwidth");
4253 }
4254 llvm_unreachable("Unknown type of OpenMP worksharing loop");
4255 }
4256
4257 // Inserts a call to proper OpenMP Device RTL function which handles
4258 // loop worksharing.
createTargetLoopWorkshareCall(OpenMPIRBuilder * OMPBuilder,WorksharingLoopType LoopType,BasicBlock * InsertBlock,Value * Ident,Value * LoopBodyArg,Type * ParallelTaskPtr,Value * TripCount,Function & LoopBodyFn)4259 static void createTargetLoopWorkshareCall(
4260 OpenMPIRBuilder *OMPBuilder, WorksharingLoopType LoopType,
4261 BasicBlock *InsertBlock, Value *Ident, Value *LoopBodyArg,
4262 Type *ParallelTaskPtr, Value *TripCount, Function &LoopBodyFn) {
4263 Type *TripCountTy = TripCount->getType();
4264 Module &M = OMPBuilder->M;
4265 IRBuilder<> &Builder = OMPBuilder->Builder;
4266 FunctionCallee RTLFn =
4267 getKmpcForStaticLoopForType(TripCountTy, OMPBuilder, LoopType);
4268 SmallVector<Value *, 8> RealArgs;
4269 RealArgs.push_back(Ident);
4270 RealArgs.push_back(Builder.CreateBitCast(&LoopBodyFn, ParallelTaskPtr));
4271 RealArgs.push_back(LoopBodyArg);
4272 RealArgs.push_back(TripCount);
4273 if (LoopType == WorksharingLoopType::DistributeStaticLoop) {
4274 RealArgs.push_back(ConstantInt::get(TripCountTy, 0));
4275 Builder.CreateCall(RTLFn, RealArgs);
4276 return;
4277 }
4278 FunctionCallee RTLNumThreads = OMPBuilder->getOrCreateRuntimeFunction(
4279 M, omp::RuntimeFunction::OMPRTL_omp_get_num_threads);
4280 Builder.restoreIP({InsertBlock, std::prev(InsertBlock->end())});
4281 Value *NumThreads = Builder.CreateCall(RTLNumThreads, {});
4282
4283 RealArgs.push_back(
4284 Builder.CreateZExtOrTrunc(NumThreads, TripCountTy, "num.threads.cast"));
4285 RealArgs.push_back(ConstantInt::get(TripCountTy, 0));
4286 if (LoopType == WorksharingLoopType::DistributeForStaticLoop) {
4287 RealArgs.push_back(ConstantInt::get(TripCountTy, 0));
4288 }
4289
4290 Builder.CreateCall(RTLFn, RealArgs);
4291 }
4292
4293 static void
workshareLoopTargetCallback(OpenMPIRBuilder * OMPIRBuilder,CanonicalLoopInfo * CLI,Value * Ident,Function & OutlinedFn,Type * ParallelTaskPtr,const SmallVector<Instruction *,4> & ToBeDeleted,WorksharingLoopType LoopType)4294 workshareLoopTargetCallback(OpenMPIRBuilder *OMPIRBuilder,
4295 CanonicalLoopInfo *CLI, Value *Ident,
4296 Function &OutlinedFn, Type *ParallelTaskPtr,
4297 const SmallVector<Instruction *, 4> &ToBeDeleted,
4298 WorksharingLoopType LoopType) {
4299 IRBuilder<> &Builder = OMPIRBuilder->Builder;
4300 BasicBlock *Preheader = CLI->getPreheader();
4301 Value *TripCount = CLI->getTripCount();
4302
4303 // After loop body outling, the loop body contains only set up
4304 // of loop body argument structure and the call to the outlined
4305 // loop body function. Firstly, we need to move setup of loop body args
4306 // into loop preheader.
4307 Preheader->splice(std::prev(Preheader->end()), CLI->getBody(),
4308 CLI->getBody()->begin(), std::prev(CLI->getBody()->end()));
4309
4310 // The next step is to remove the whole loop. We do not it need anymore.
4311 // That's why make an unconditional branch from loop preheader to loop
4312 // exit block
4313 Builder.restoreIP({Preheader, Preheader->end()});
4314 Preheader->getTerminator()->eraseFromParent();
4315 Builder.CreateBr(CLI->getExit());
4316
4317 // Delete dead loop blocks
4318 OpenMPIRBuilder::OutlineInfo CleanUpInfo;
4319 SmallPtrSet<BasicBlock *, 32> RegionBlockSet;
4320 SmallVector<BasicBlock *, 32> BlocksToBeRemoved;
4321 CleanUpInfo.EntryBB = CLI->getHeader();
4322 CleanUpInfo.ExitBB = CLI->getExit();
4323 CleanUpInfo.collectBlocks(RegionBlockSet, BlocksToBeRemoved);
4324 DeleteDeadBlocks(BlocksToBeRemoved);
4325
4326 // Find the instruction which corresponds to loop body argument structure
4327 // and remove the call to loop body function instruction.
4328 Value *LoopBodyArg;
4329 User *OutlinedFnUser = OutlinedFn.getUniqueUndroppableUser();
4330 assert(OutlinedFnUser &&
4331 "Expected unique undroppable user of outlined function");
4332 CallInst *OutlinedFnCallInstruction = dyn_cast<CallInst>(OutlinedFnUser);
4333 assert(OutlinedFnCallInstruction && "Expected outlined function call");
4334 assert((OutlinedFnCallInstruction->getParent() == Preheader) &&
4335 "Expected outlined function call to be located in loop preheader");
4336 // Check in case no argument structure has been passed.
4337 if (OutlinedFnCallInstruction->arg_size() > 1)
4338 LoopBodyArg = OutlinedFnCallInstruction->getArgOperand(1);
4339 else
4340 LoopBodyArg = Constant::getNullValue(Builder.getPtrTy());
4341 OutlinedFnCallInstruction->eraseFromParent();
4342
4343 createTargetLoopWorkshareCall(OMPIRBuilder, LoopType, Preheader, Ident,
4344 LoopBodyArg, ParallelTaskPtr, TripCount,
4345 OutlinedFn);
4346
4347 for (auto &ToBeDeletedItem : ToBeDeleted)
4348 ToBeDeletedItem->eraseFromParent();
4349 CLI->invalidate();
4350 }
4351
4352 OpenMPIRBuilder::InsertPointTy
applyWorkshareLoopTarget(DebugLoc DL,CanonicalLoopInfo * CLI,InsertPointTy AllocaIP,WorksharingLoopType LoopType)4353 OpenMPIRBuilder::applyWorkshareLoopTarget(DebugLoc DL, CanonicalLoopInfo *CLI,
4354 InsertPointTy AllocaIP,
4355 WorksharingLoopType LoopType) {
4356 uint32_t SrcLocStrSize;
4357 Constant *SrcLocStr = getOrCreateSrcLocStr(DL, SrcLocStrSize);
4358 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
4359
4360 OutlineInfo OI;
4361 OI.OuterAllocaBB = CLI->getPreheader();
4362 Function *OuterFn = CLI->getPreheader()->getParent();
4363
4364 // Instructions which need to be deleted at the end of code generation
4365 SmallVector<Instruction *, 4> ToBeDeleted;
4366
4367 OI.OuterAllocaBB = AllocaIP.getBlock();
4368
4369 // Mark the body loop as region which needs to be extracted
4370 OI.EntryBB = CLI->getBody();
4371 OI.ExitBB = CLI->getLatch()->splitBasicBlock(CLI->getLatch()->begin(),
4372 "omp.prelatch", true);
4373
4374 // Prepare loop body for extraction
4375 Builder.restoreIP({CLI->getPreheader(), CLI->getPreheader()->begin()});
4376
4377 // Insert new loop counter variable which will be used only in loop
4378 // body.
4379 AllocaInst *NewLoopCnt = Builder.CreateAlloca(CLI->getIndVarType(), 0, "");
4380 Instruction *NewLoopCntLoad =
4381 Builder.CreateLoad(CLI->getIndVarType(), NewLoopCnt);
4382 // New loop counter instructions are redundant in the loop preheader when
4383 // code generation for workshare loop is finshed. That's why mark them as
4384 // ready for deletion.
4385 ToBeDeleted.push_back(NewLoopCntLoad);
4386 ToBeDeleted.push_back(NewLoopCnt);
4387
4388 // Analyse loop body region. Find all input variables which are used inside
4389 // loop body region.
4390 SmallPtrSet<BasicBlock *, 32> ParallelRegionBlockSet;
4391 SmallVector<BasicBlock *, 32> Blocks;
4392 OI.collectBlocks(ParallelRegionBlockSet, Blocks);
4393 SmallVector<BasicBlock *, 32> BlocksT(ParallelRegionBlockSet.begin(),
4394 ParallelRegionBlockSet.end());
4395
4396 CodeExtractorAnalysisCache CEAC(*OuterFn);
4397 CodeExtractor Extractor(Blocks,
4398 /* DominatorTree */ nullptr,
4399 /* AggregateArgs */ true,
4400 /* BlockFrequencyInfo */ nullptr,
4401 /* BranchProbabilityInfo */ nullptr,
4402 /* AssumptionCache */ nullptr,
4403 /* AllowVarArgs */ true,
4404 /* AllowAlloca */ true,
4405 /* AllocationBlock */ CLI->getPreheader(),
4406 /* Suffix */ ".omp_wsloop",
4407 /* AggrArgsIn0AddrSpace */ true);
4408
4409 BasicBlock *CommonExit = nullptr;
4410 SetVector<Value *> Inputs, Outputs, SinkingCands, HoistingCands;
4411
4412 // Find allocas outside the loop body region which are used inside loop
4413 // body
4414 Extractor.findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit);
4415
4416 // We need to model loop body region as the function f(cnt, loop_arg).
4417 // That's why we replace loop induction variable by the new counter
4418 // which will be one of loop body function argument
4419 SmallVector<User *> Users(CLI->getIndVar()->user_begin(),
4420 CLI->getIndVar()->user_end());
4421 for (auto Use : Users) {
4422 if (Instruction *Inst = dyn_cast<Instruction>(Use)) {
4423 if (ParallelRegionBlockSet.count(Inst->getParent())) {
4424 Inst->replaceUsesOfWith(CLI->getIndVar(), NewLoopCntLoad);
4425 }
4426 }
4427 }
4428 // Make sure that loop counter variable is not merged into loop body
4429 // function argument structure and it is passed as separate variable
4430 OI.ExcludeArgsFromAggregate.push_back(NewLoopCntLoad);
4431
4432 // PostOutline CB is invoked when loop body function is outlined and
4433 // loop body is replaced by call to outlined function. We need to add
4434 // call to OpenMP device rtl inside loop preheader. OpenMP device rtl
4435 // function will handle loop control logic.
4436 //
4437 OI.PostOutlineCB = [=, ToBeDeletedVec =
4438 std::move(ToBeDeleted)](Function &OutlinedFn) {
4439 workshareLoopTargetCallback(this, CLI, Ident, OutlinedFn, ParallelTaskPtr,
4440 ToBeDeletedVec, LoopType);
4441 };
4442 addOutlineInfo(std::move(OI));
4443 return CLI->getAfterIP();
4444 }
4445
applyWorkshareLoop(DebugLoc DL,CanonicalLoopInfo * CLI,InsertPointTy AllocaIP,bool NeedsBarrier,omp::ScheduleKind SchedKind,Value * ChunkSize,bool HasSimdModifier,bool HasMonotonicModifier,bool HasNonmonotonicModifier,bool HasOrderedClause,WorksharingLoopType LoopType)4446 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::applyWorkshareLoop(
4447 DebugLoc DL, CanonicalLoopInfo *CLI, InsertPointTy AllocaIP,
4448 bool NeedsBarrier, omp::ScheduleKind SchedKind, Value *ChunkSize,
4449 bool HasSimdModifier, bool HasMonotonicModifier,
4450 bool HasNonmonotonicModifier, bool HasOrderedClause,
4451 WorksharingLoopType LoopType) {
4452 if (Config.isTargetDevice())
4453 return applyWorkshareLoopTarget(DL, CLI, AllocaIP, LoopType);
4454 OMPScheduleType EffectiveScheduleType = computeOpenMPScheduleType(
4455 SchedKind, ChunkSize, HasSimdModifier, HasMonotonicModifier,
4456 HasNonmonotonicModifier, HasOrderedClause);
4457
4458 bool IsOrdered = (EffectiveScheduleType & OMPScheduleType::ModifierOrdered) ==
4459 OMPScheduleType::ModifierOrdered;
4460 switch (EffectiveScheduleType & ~OMPScheduleType::ModifierMask) {
4461 case OMPScheduleType::BaseStatic:
4462 assert(!ChunkSize && "No chunk size with static-chunked schedule");
4463 if (IsOrdered)
4464 return applyDynamicWorkshareLoop(DL, CLI, AllocaIP, EffectiveScheduleType,
4465 NeedsBarrier, ChunkSize);
4466 // FIXME: Monotonicity ignored?
4467 return applyStaticWorkshareLoop(DL, CLI, AllocaIP, NeedsBarrier);
4468
4469 case OMPScheduleType::BaseStaticChunked:
4470 if (IsOrdered)
4471 return applyDynamicWorkshareLoop(DL, CLI, AllocaIP, EffectiveScheduleType,
4472 NeedsBarrier, ChunkSize);
4473 // FIXME: Monotonicity ignored?
4474 return applyStaticChunkedWorkshareLoop(DL, CLI, AllocaIP, NeedsBarrier,
4475 ChunkSize);
4476
4477 case OMPScheduleType::BaseRuntime:
4478 case OMPScheduleType::BaseAuto:
4479 case OMPScheduleType::BaseGreedy:
4480 case OMPScheduleType::BaseBalanced:
4481 case OMPScheduleType::BaseSteal:
4482 case OMPScheduleType::BaseGuidedSimd:
4483 case OMPScheduleType::BaseRuntimeSimd:
4484 assert(!ChunkSize &&
4485 "schedule type does not support user-defined chunk sizes");
4486 [[fallthrough]];
4487 case OMPScheduleType::BaseDynamicChunked:
4488 case OMPScheduleType::BaseGuidedChunked:
4489 case OMPScheduleType::BaseGuidedIterativeChunked:
4490 case OMPScheduleType::BaseGuidedAnalyticalChunked:
4491 case OMPScheduleType::BaseStaticBalancedChunked:
4492 return applyDynamicWorkshareLoop(DL, CLI, AllocaIP, EffectiveScheduleType,
4493 NeedsBarrier, ChunkSize);
4494
4495 default:
4496 llvm_unreachable("Unknown/unimplemented schedule kind");
4497 }
4498 }
4499
4500 /// Returns an LLVM function to call for initializing loop bounds using OpenMP
4501 /// dynamic scheduling depending on `type`. Only i32 and i64 are supported by
4502 /// the runtime. Always interpret integers as unsigned similarly to
4503 /// CanonicalLoopInfo.
4504 static FunctionCallee
getKmpcForDynamicInitForType(Type * Ty,Module & M,OpenMPIRBuilder & OMPBuilder)4505 getKmpcForDynamicInitForType(Type *Ty, Module &M, OpenMPIRBuilder &OMPBuilder) {
4506 unsigned Bitwidth = Ty->getIntegerBitWidth();
4507 if (Bitwidth == 32)
4508 return OMPBuilder.getOrCreateRuntimeFunction(
4509 M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_init_4u);
4510 if (Bitwidth == 64)
4511 return OMPBuilder.getOrCreateRuntimeFunction(
4512 M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_init_8u);
4513 llvm_unreachable("unknown OpenMP loop iterator bitwidth");
4514 }
4515
4516 /// Returns an LLVM function to call for updating the next loop using OpenMP
4517 /// dynamic scheduling depending on `type`. Only i32 and i64 are supported by
4518 /// the runtime. Always interpret integers as unsigned similarly to
4519 /// CanonicalLoopInfo.
4520 static FunctionCallee
getKmpcForDynamicNextForType(Type * Ty,Module & M,OpenMPIRBuilder & OMPBuilder)4521 getKmpcForDynamicNextForType(Type *Ty, Module &M, OpenMPIRBuilder &OMPBuilder) {
4522 unsigned Bitwidth = Ty->getIntegerBitWidth();
4523 if (Bitwidth == 32)
4524 return OMPBuilder.getOrCreateRuntimeFunction(
4525 M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_next_4u);
4526 if (Bitwidth == 64)
4527 return OMPBuilder.getOrCreateRuntimeFunction(
4528 M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_next_8u);
4529 llvm_unreachable("unknown OpenMP loop iterator bitwidth");
4530 }
4531
4532 /// Returns an LLVM function to call for finalizing the dynamic loop using
4533 /// depending on `type`. Only i32 and i64 are supported by the runtime. Always
4534 /// interpret integers as unsigned similarly to CanonicalLoopInfo.
4535 static FunctionCallee
getKmpcForDynamicFiniForType(Type * Ty,Module & M,OpenMPIRBuilder & OMPBuilder)4536 getKmpcForDynamicFiniForType(Type *Ty, Module &M, OpenMPIRBuilder &OMPBuilder) {
4537 unsigned Bitwidth = Ty->getIntegerBitWidth();
4538 if (Bitwidth == 32)
4539 return OMPBuilder.getOrCreateRuntimeFunction(
4540 M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_fini_4u);
4541 if (Bitwidth == 64)
4542 return OMPBuilder.getOrCreateRuntimeFunction(
4543 M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_fini_8u);
4544 llvm_unreachable("unknown OpenMP loop iterator bitwidth");
4545 }
4546
applyDynamicWorkshareLoop(DebugLoc DL,CanonicalLoopInfo * CLI,InsertPointTy AllocaIP,OMPScheduleType SchedType,bool NeedsBarrier,Value * Chunk)4547 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::applyDynamicWorkshareLoop(
4548 DebugLoc DL, CanonicalLoopInfo *CLI, InsertPointTy AllocaIP,
4549 OMPScheduleType SchedType, bool NeedsBarrier, Value *Chunk) {
4550 assert(CLI->isValid() && "Requires a valid canonical loop");
4551 assert(!isConflictIP(AllocaIP, CLI->getPreheaderIP()) &&
4552 "Require dedicated allocate IP");
4553 assert(isValidWorkshareLoopScheduleType(SchedType) &&
4554 "Require valid schedule type");
4555
4556 bool Ordered = (SchedType & OMPScheduleType::ModifierOrdered) ==
4557 OMPScheduleType::ModifierOrdered;
4558
4559 // Set up the source location value for OpenMP runtime.
4560 Builder.SetCurrentDebugLocation(DL);
4561
4562 uint32_t SrcLocStrSize;
4563 Constant *SrcLocStr = getOrCreateSrcLocStr(DL, SrcLocStrSize);
4564 Value *SrcLoc = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
4565
4566 // Declare useful OpenMP runtime functions.
4567 Value *IV = CLI->getIndVar();
4568 Type *IVTy = IV->getType();
4569 FunctionCallee DynamicInit = getKmpcForDynamicInitForType(IVTy, M, *this);
4570 FunctionCallee DynamicNext = getKmpcForDynamicNextForType(IVTy, M, *this);
4571
4572 // Allocate space for computed loop bounds as expected by the "init" function.
4573 Builder.SetInsertPoint(AllocaIP.getBlock()->getFirstNonPHIOrDbgOrAlloca());
4574 Type *I32Type = Type::getInt32Ty(M.getContext());
4575 Value *PLastIter = Builder.CreateAlloca(I32Type, nullptr, "p.lastiter");
4576 Value *PLowerBound = Builder.CreateAlloca(IVTy, nullptr, "p.lowerbound");
4577 Value *PUpperBound = Builder.CreateAlloca(IVTy, nullptr, "p.upperbound");
4578 Value *PStride = Builder.CreateAlloca(IVTy, nullptr, "p.stride");
4579
4580 // At the end of the preheader, prepare for calling the "init" function by
4581 // storing the current loop bounds into the allocated space. A canonical loop
4582 // always iterates from 0 to trip-count with step 1. Note that "init" expects
4583 // and produces an inclusive upper bound.
4584 BasicBlock *PreHeader = CLI->getPreheader();
4585 Builder.SetInsertPoint(PreHeader->getTerminator());
4586 Constant *One = ConstantInt::get(IVTy, 1);
4587 Builder.CreateStore(One, PLowerBound);
4588 Value *UpperBound = CLI->getTripCount();
4589 Builder.CreateStore(UpperBound, PUpperBound);
4590 Builder.CreateStore(One, PStride);
4591
4592 BasicBlock *Header = CLI->getHeader();
4593 BasicBlock *Exit = CLI->getExit();
4594 BasicBlock *Cond = CLI->getCond();
4595 BasicBlock *Latch = CLI->getLatch();
4596 InsertPointTy AfterIP = CLI->getAfterIP();
4597
4598 // The CLI will be "broken" in the code below, as the loop is no longer
4599 // a valid canonical loop.
4600
4601 if (!Chunk)
4602 Chunk = One;
4603
4604 Value *ThreadNum = getOrCreateThreadID(SrcLoc);
4605
4606 Constant *SchedulingType =
4607 ConstantInt::get(I32Type, static_cast<int>(SchedType));
4608
4609 // Call the "init" function.
4610 Builder.CreateCall(DynamicInit,
4611 {SrcLoc, ThreadNum, SchedulingType, /* LowerBound */ One,
4612 UpperBound, /* step */ One, Chunk});
4613
4614 // An outer loop around the existing one.
4615 BasicBlock *OuterCond = BasicBlock::Create(
4616 PreHeader->getContext(), Twine(PreHeader->getName()) + ".outer.cond",
4617 PreHeader->getParent());
4618 // This needs to be 32-bit always, so can't use the IVTy Zero above.
4619 Builder.SetInsertPoint(OuterCond, OuterCond->getFirstInsertionPt());
4620 Value *Res =
4621 Builder.CreateCall(DynamicNext, {SrcLoc, ThreadNum, PLastIter,
4622 PLowerBound, PUpperBound, PStride});
4623 Constant *Zero32 = ConstantInt::get(I32Type, 0);
4624 Value *MoreWork = Builder.CreateCmp(CmpInst::ICMP_NE, Res, Zero32);
4625 Value *LowerBound =
4626 Builder.CreateSub(Builder.CreateLoad(IVTy, PLowerBound), One, "lb");
4627 Builder.CreateCondBr(MoreWork, Header, Exit);
4628
4629 // Change PHI-node in loop header to use outer cond rather than preheader,
4630 // and set IV to the LowerBound.
4631 Instruction *Phi = &Header->front();
4632 auto *PI = cast<PHINode>(Phi);
4633 PI->setIncomingBlock(0, OuterCond);
4634 PI->setIncomingValue(0, LowerBound);
4635
4636 // Then set the pre-header to jump to the OuterCond
4637 Instruction *Term = PreHeader->getTerminator();
4638 auto *Br = cast<BranchInst>(Term);
4639 Br->setSuccessor(0, OuterCond);
4640
4641 // Modify the inner condition:
4642 // * Use the UpperBound returned from the DynamicNext call.
4643 // * jump to the loop outer loop when done with one of the inner loops.
4644 Builder.SetInsertPoint(Cond, Cond->getFirstInsertionPt());
4645 UpperBound = Builder.CreateLoad(IVTy, PUpperBound, "ub");
4646 Instruction *Comp = &*Builder.GetInsertPoint();
4647 auto *CI = cast<CmpInst>(Comp);
4648 CI->setOperand(1, UpperBound);
4649 // Redirect the inner exit to branch to outer condition.
4650 Instruction *Branch = &Cond->back();
4651 auto *BI = cast<BranchInst>(Branch);
4652 assert(BI->getSuccessor(1) == Exit);
4653 BI->setSuccessor(1, OuterCond);
4654
4655 // Call the "fini" function if "ordered" is present in wsloop directive.
4656 if (Ordered) {
4657 Builder.SetInsertPoint(&Latch->back());
4658 FunctionCallee DynamicFini = getKmpcForDynamicFiniForType(IVTy, M, *this);
4659 Builder.CreateCall(DynamicFini, {SrcLoc, ThreadNum});
4660 }
4661
4662 // Add the barrier if requested.
4663 if (NeedsBarrier) {
4664 Builder.SetInsertPoint(&Exit->back());
4665 createBarrier(LocationDescription(Builder.saveIP(), DL),
4666 omp::Directive::OMPD_for, /* ForceSimpleCall */ false,
4667 /* CheckCancelFlag */ false);
4668 }
4669
4670 CLI->invalidate();
4671 return AfterIP;
4672 }
4673
4674 /// Redirect all edges that branch to \p OldTarget to \p NewTarget. That is,
4675 /// after this \p OldTarget will be orphaned.
redirectAllPredecessorsTo(BasicBlock * OldTarget,BasicBlock * NewTarget,DebugLoc DL)4676 static void redirectAllPredecessorsTo(BasicBlock *OldTarget,
4677 BasicBlock *NewTarget, DebugLoc DL) {
4678 for (BasicBlock *Pred : make_early_inc_range(predecessors(OldTarget)))
4679 redirectTo(Pred, NewTarget, DL);
4680 }
4681
4682 /// Determine which blocks in \p BBs are reachable from outside and remove the
4683 /// ones that are not reachable from the function.
removeUnusedBlocksFromParent(ArrayRef<BasicBlock * > BBs)4684 static void removeUnusedBlocksFromParent(ArrayRef<BasicBlock *> BBs) {
4685 SmallPtrSet<BasicBlock *, 6> BBsToErase{BBs.begin(), BBs.end()};
4686 auto HasRemainingUses = [&BBsToErase](BasicBlock *BB) {
4687 for (Use &U : BB->uses()) {
4688 auto *UseInst = dyn_cast<Instruction>(U.getUser());
4689 if (!UseInst)
4690 continue;
4691 if (BBsToErase.count(UseInst->getParent()))
4692 continue;
4693 return true;
4694 }
4695 return false;
4696 };
4697
4698 while (BBsToErase.remove_if(HasRemainingUses)) {
4699 // Try again if anything was removed.
4700 }
4701
4702 SmallVector<BasicBlock *, 7> BBVec(BBsToErase.begin(), BBsToErase.end());
4703 DeleteDeadBlocks(BBVec);
4704 }
4705
4706 CanonicalLoopInfo *
collapseLoops(DebugLoc DL,ArrayRef<CanonicalLoopInfo * > Loops,InsertPointTy ComputeIP)4707 OpenMPIRBuilder::collapseLoops(DebugLoc DL, ArrayRef<CanonicalLoopInfo *> Loops,
4708 InsertPointTy ComputeIP) {
4709 assert(Loops.size() >= 1 && "At least one loop required");
4710 size_t NumLoops = Loops.size();
4711
4712 // Nothing to do if there is already just one loop.
4713 if (NumLoops == 1)
4714 return Loops.front();
4715
4716 CanonicalLoopInfo *Outermost = Loops.front();
4717 CanonicalLoopInfo *Innermost = Loops.back();
4718 BasicBlock *OrigPreheader = Outermost->getPreheader();
4719 BasicBlock *OrigAfter = Outermost->getAfter();
4720 Function *F = OrigPreheader->getParent();
4721
4722 // Loop control blocks that may become orphaned later.
4723 SmallVector<BasicBlock *, 12> OldControlBBs;
4724 OldControlBBs.reserve(6 * Loops.size());
4725 for (CanonicalLoopInfo *Loop : Loops)
4726 Loop->collectControlBlocks(OldControlBBs);
4727
4728 // Setup the IRBuilder for inserting the trip count computation.
4729 Builder.SetCurrentDebugLocation(DL);
4730 if (ComputeIP.isSet())
4731 Builder.restoreIP(ComputeIP);
4732 else
4733 Builder.restoreIP(Outermost->getPreheaderIP());
4734
4735 // Derive the collapsed' loop trip count.
4736 // TODO: Find common/largest indvar type.
4737 Value *CollapsedTripCount = nullptr;
4738 for (CanonicalLoopInfo *L : Loops) {
4739 assert(L->isValid() &&
4740 "All loops to collapse must be valid canonical loops");
4741 Value *OrigTripCount = L->getTripCount();
4742 if (!CollapsedTripCount) {
4743 CollapsedTripCount = OrigTripCount;
4744 continue;
4745 }
4746
4747 // TODO: Enable UndefinedSanitizer to diagnose an overflow here.
4748 CollapsedTripCount = Builder.CreateMul(CollapsedTripCount, OrigTripCount,
4749 {}, /*HasNUW=*/true);
4750 }
4751
4752 // Create the collapsed loop control flow.
4753 CanonicalLoopInfo *Result =
4754 createLoopSkeleton(DL, CollapsedTripCount, F,
4755 OrigPreheader->getNextNode(), OrigAfter, "collapsed");
4756
4757 // Build the collapsed loop body code.
4758 // Start with deriving the input loop induction variables from the collapsed
4759 // one, using a divmod scheme. To preserve the original loops' order, the
4760 // innermost loop use the least significant bits.
4761 Builder.restoreIP(Result->getBodyIP());
4762
4763 Value *Leftover = Result->getIndVar();
4764 SmallVector<Value *> NewIndVars;
4765 NewIndVars.resize(NumLoops);
4766 for (int i = NumLoops - 1; i >= 1; --i) {
4767 Value *OrigTripCount = Loops[i]->getTripCount();
4768
4769 Value *NewIndVar = Builder.CreateURem(Leftover, OrigTripCount);
4770 NewIndVars[i] = NewIndVar;
4771
4772 Leftover = Builder.CreateUDiv(Leftover, OrigTripCount);
4773 }
4774 // Outermost loop gets all the remaining bits.
4775 NewIndVars[0] = Leftover;
4776
4777 // Construct the loop body control flow.
4778 // We progressively construct the branch structure following in direction of
4779 // the control flow, from the leading in-between code, the loop nest body, the
4780 // trailing in-between code, and rejoining the collapsed loop's latch.
4781 // ContinueBlock and ContinuePred keep track of the source(s) of next edge. If
4782 // the ContinueBlock is set, continue with that block. If ContinuePred, use
4783 // its predecessors as sources.
4784 BasicBlock *ContinueBlock = Result->getBody();
4785 BasicBlock *ContinuePred = nullptr;
4786 auto ContinueWith = [&ContinueBlock, &ContinuePred, DL](BasicBlock *Dest,
4787 BasicBlock *NextSrc) {
4788 if (ContinueBlock)
4789 redirectTo(ContinueBlock, Dest, DL);
4790 else
4791 redirectAllPredecessorsTo(ContinuePred, Dest, DL);
4792
4793 ContinueBlock = nullptr;
4794 ContinuePred = NextSrc;
4795 };
4796
4797 // The code before the nested loop of each level.
4798 // Because we are sinking it into the nest, it will be executed more often
4799 // that the original loop. More sophisticated schemes could keep track of what
4800 // the in-between code is and instantiate it only once per thread.
4801 for (size_t i = 0; i < NumLoops - 1; ++i)
4802 ContinueWith(Loops[i]->getBody(), Loops[i + 1]->getHeader());
4803
4804 // Connect the loop nest body.
4805 ContinueWith(Innermost->getBody(), Innermost->getLatch());
4806
4807 // The code after the nested loop at each level.
4808 for (size_t i = NumLoops - 1; i > 0; --i)
4809 ContinueWith(Loops[i]->getAfter(), Loops[i - 1]->getLatch());
4810
4811 // Connect the finished loop to the collapsed loop latch.
4812 ContinueWith(Result->getLatch(), nullptr);
4813
4814 // Replace the input loops with the new collapsed loop.
4815 redirectTo(Outermost->getPreheader(), Result->getPreheader(), DL);
4816 redirectTo(Result->getAfter(), Outermost->getAfter(), DL);
4817
4818 // Replace the input loop indvars with the derived ones.
4819 for (size_t i = 0; i < NumLoops; ++i)
4820 Loops[i]->getIndVar()->replaceAllUsesWith(NewIndVars[i]);
4821
4822 // Remove unused parts of the input loops.
4823 removeUnusedBlocksFromParent(OldControlBBs);
4824
4825 for (CanonicalLoopInfo *L : Loops)
4826 L->invalidate();
4827
4828 #ifndef NDEBUG
4829 Result->assertOK();
4830 #endif
4831 return Result;
4832 }
4833
4834 std::vector<CanonicalLoopInfo *>
tileLoops(DebugLoc DL,ArrayRef<CanonicalLoopInfo * > Loops,ArrayRef<Value * > TileSizes)4835 OpenMPIRBuilder::tileLoops(DebugLoc DL, ArrayRef<CanonicalLoopInfo *> Loops,
4836 ArrayRef<Value *> TileSizes) {
4837 assert(TileSizes.size() == Loops.size() &&
4838 "Must pass as many tile sizes as there are loops");
4839 int NumLoops = Loops.size();
4840 assert(NumLoops >= 1 && "At least one loop to tile required");
4841
4842 CanonicalLoopInfo *OutermostLoop = Loops.front();
4843 CanonicalLoopInfo *InnermostLoop = Loops.back();
4844 Function *F = OutermostLoop->getBody()->getParent();
4845 BasicBlock *InnerEnter = InnermostLoop->getBody();
4846 BasicBlock *InnerLatch = InnermostLoop->getLatch();
4847
4848 // Loop control blocks that may become orphaned later.
4849 SmallVector<BasicBlock *, 12> OldControlBBs;
4850 OldControlBBs.reserve(6 * Loops.size());
4851 for (CanonicalLoopInfo *Loop : Loops)
4852 Loop->collectControlBlocks(OldControlBBs);
4853
4854 // Collect original trip counts and induction variable to be accessible by
4855 // index. Also, the structure of the original loops is not preserved during
4856 // the construction of the tiled loops, so do it before we scavenge the BBs of
4857 // any original CanonicalLoopInfo.
4858 SmallVector<Value *, 4> OrigTripCounts, OrigIndVars;
4859 for (CanonicalLoopInfo *L : Loops) {
4860 assert(L->isValid() && "All input loops must be valid canonical loops");
4861 OrigTripCounts.push_back(L->getTripCount());
4862 OrigIndVars.push_back(L->getIndVar());
4863 }
4864
4865 // Collect the code between loop headers. These may contain SSA definitions
4866 // that are used in the loop nest body. To be usable with in the innermost
4867 // body, these BasicBlocks will be sunk into the loop nest body. That is,
4868 // these instructions may be executed more often than before the tiling.
4869 // TODO: It would be sufficient to only sink them into body of the
4870 // corresponding tile loop.
4871 SmallVector<std::pair<BasicBlock *, BasicBlock *>, 4> InbetweenCode;
4872 for (int i = 0; i < NumLoops - 1; ++i) {
4873 CanonicalLoopInfo *Surrounding = Loops[i];
4874 CanonicalLoopInfo *Nested = Loops[i + 1];
4875
4876 BasicBlock *EnterBB = Surrounding->getBody();
4877 BasicBlock *ExitBB = Nested->getHeader();
4878 InbetweenCode.emplace_back(EnterBB, ExitBB);
4879 }
4880
4881 // Compute the trip counts of the floor loops.
4882 Builder.SetCurrentDebugLocation(DL);
4883 Builder.restoreIP(OutermostLoop->getPreheaderIP());
4884 SmallVector<Value *, 4> FloorCount, FloorRems;
4885 for (int i = 0; i < NumLoops; ++i) {
4886 Value *TileSize = TileSizes[i];
4887 Value *OrigTripCount = OrigTripCounts[i];
4888 Type *IVType = OrigTripCount->getType();
4889
4890 Value *FloorTripCount = Builder.CreateUDiv(OrigTripCount, TileSize);
4891 Value *FloorTripRem = Builder.CreateURem(OrigTripCount, TileSize);
4892
4893 // 0 if tripcount divides the tilesize, 1 otherwise.
4894 // 1 means we need an additional iteration for a partial tile.
4895 //
4896 // Unfortunately we cannot just use the roundup-formula
4897 // (tripcount + tilesize - 1)/tilesize
4898 // because the summation might overflow. We do not want introduce undefined
4899 // behavior when the untiled loop nest did not.
4900 Value *FloorTripOverflow =
4901 Builder.CreateICmpNE(FloorTripRem, ConstantInt::get(IVType, 0));
4902
4903 FloorTripOverflow = Builder.CreateZExt(FloorTripOverflow, IVType);
4904 FloorTripCount =
4905 Builder.CreateAdd(FloorTripCount, FloorTripOverflow,
4906 "omp_floor" + Twine(i) + ".tripcount", true);
4907
4908 // Remember some values for later use.
4909 FloorCount.push_back(FloorTripCount);
4910 FloorRems.push_back(FloorTripRem);
4911 }
4912
4913 // Generate the new loop nest, from the outermost to the innermost.
4914 std::vector<CanonicalLoopInfo *> Result;
4915 Result.reserve(NumLoops * 2);
4916
4917 // The basic block of the surrounding loop that enters the nest generated
4918 // loop.
4919 BasicBlock *Enter = OutermostLoop->getPreheader();
4920
4921 // The basic block of the surrounding loop where the inner code should
4922 // continue.
4923 BasicBlock *Continue = OutermostLoop->getAfter();
4924
4925 // Where the next loop basic block should be inserted.
4926 BasicBlock *OutroInsertBefore = InnermostLoop->getExit();
4927
4928 auto EmbeddNewLoop =
4929 [this, DL, F, InnerEnter, &Enter, &Continue, &OutroInsertBefore](
4930 Value *TripCount, const Twine &Name) -> CanonicalLoopInfo * {
4931 CanonicalLoopInfo *EmbeddedLoop = createLoopSkeleton(
4932 DL, TripCount, F, InnerEnter, OutroInsertBefore, Name);
4933 redirectTo(Enter, EmbeddedLoop->getPreheader(), DL);
4934 redirectTo(EmbeddedLoop->getAfter(), Continue, DL);
4935
4936 // Setup the position where the next embedded loop connects to this loop.
4937 Enter = EmbeddedLoop->getBody();
4938 Continue = EmbeddedLoop->getLatch();
4939 OutroInsertBefore = EmbeddedLoop->getLatch();
4940 return EmbeddedLoop;
4941 };
4942
4943 auto EmbeddNewLoops = [&Result, &EmbeddNewLoop](ArrayRef<Value *> TripCounts,
4944 const Twine &NameBase) {
4945 for (auto P : enumerate(TripCounts)) {
4946 CanonicalLoopInfo *EmbeddedLoop =
4947 EmbeddNewLoop(P.value(), NameBase + Twine(P.index()));
4948 Result.push_back(EmbeddedLoop);
4949 }
4950 };
4951
4952 EmbeddNewLoops(FloorCount, "floor");
4953
4954 // Within the innermost floor loop, emit the code that computes the tile
4955 // sizes.
4956 Builder.SetInsertPoint(Enter->getTerminator());
4957 SmallVector<Value *, 4> TileCounts;
4958 for (int i = 0; i < NumLoops; ++i) {
4959 CanonicalLoopInfo *FloorLoop = Result[i];
4960 Value *TileSize = TileSizes[i];
4961
4962 Value *FloorIsEpilogue =
4963 Builder.CreateICmpEQ(FloorLoop->getIndVar(), FloorCount[i]);
4964 Value *TileTripCount =
4965 Builder.CreateSelect(FloorIsEpilogue, FloorRems[i], TileSize);
4966
4967 TileCounts.push_back(TileTripCount);
4968 }
4969
4970 // Create the tile loops.
4971 EmbeddNewLoops(TileCounts, "tile");
4972
4973 // Insert the inbetween code into the body.
4974 BasicBlock *BodyEnter = Enter;
4975 BasicBlock *BodyEntered = nullptr;
4976 for (std::pair<BasicBlock *, BasicBlock *> P : InbetweenCode) {
4977 BasicBlock *EnterBB = P.first;
4978 BasicBlock *ExitBB = P.second;
4979
4980 if (BodyEnter)
4981 redirectTo(BodyEnter, EnterBB, DL);
4982 else
4983 redirectAllPredecessorsTo(BodyEntered, EnterBB, DL);
4984
4985 BodyEnter = nullptr;
4986 BodyEntered = ExitBB;
4987 }
4988
4989 // Append the original loop nest body into the generated loop nest body.
4990 if (BodyEnter)
4991 redirectTo(BodyEnter, InnerEnter, DL);
4992 else
4993 redirectAllPredecessorsTo(BodyEntered, InnerEnter, DL);
4994 redirectAllPredecessorsTo(InnerLatch, Continue, DL);
4995
4996 // Replace the original induction variable with an induction variable computed
4997 // from the tile and floor induction variables.
4998 Builder.restoreIP(Result.back()->getBodyIP());
4999 for (int i = 0; i < NumLoops; ++i) {
5000 CanonicalLoopInfo *FloorLoop = Result[i];
5001 CanonicalLoopInfo *TileLoop = Result[NumLoops + i];
5002 Value *OrigIndVar = OrigIndVars[i];
5003 Value *Size = TileSizes[i];
5004
5005 Value *Scale =
5006 Builder.CreateMul(Size, FloorLoop->getIndVar(), {}, /*HasNUW=*/true);
5007 Value *Shift =
5008 Builder.CreateAdd(Scale, TileLoop->getIndVar(), {}, /*HasNUW=*/true);
5009 OrigIndVar->replaceAllUsesWith(Shift);
5010 }
5011
5012 // Remove unused parts of the original loops.
5013 removeUnusedBlocksFromParent(OldControlBBs);
5014
5015 for (CanonicalLoopInfo *L : Loops)
5016 L->invalidate();
5017
5018 #ifndef NDEBUG
5019 for (CanonicalLoopInfo *GenL : Result)
5020 GenL->assertOK();
5021 #endif
5022 return Result;
5023 }
5024
5025 /// Attach metadata \p Properties to the basic block described by \p BB. If the
5026 /// basic block already has metadata, the basic block properties are appended.
addBasicBlockMetadata(BasicBlock * BB,ArrayRef<Metadata * > Properties)5027 static void addBasicBlockMetadata(BasicBlock *BB,
5028 ArrayRef<Metadata *> Properties) {
5029 // Nothing to do if no property to attach.
5030 if (Properties.empty())
5031 return;
5032
5033 LLVMContext &Ctx = BB->getContext();
5034 SmallVector<Metadata *> NewProperties;
5035 NewProperties.push_back(nullptr);
5036
5037 // If the basic block already has metadata, prepend it to the new metadata.
5038 MDNode *Existing = BB->getTerminator()->getMetadata(LLVMContext::MD_loop);
5039 if (Existing)
5040 append_range(NewProperties, drop_begin(Existing->operands(), 1));
5041
5042 append_range(NewProperties, Properties);
5043 MDNode *BasicBlockID = MDNode::getDistinct(Ctx, NewProperties);
5044 BasicBlockID->replaceOperandWith(0, BasicBlockID);
5045
5046 BB->getTerminator()->setMetadata(LLVMContext::MD_loop, BasicBlockID);
5047 }
5048
5049 /// Attach loop metadata \p Properties to the loop described by \p Loop. If the
5050 /// loop already has metadata, the loop properties are appended.
addLoopMetadata(CanonicalLoopInfo * Loop,ArrayRef<Metadata * > Properties)5051 static void addLoopMetadata(CanonicalLoopInfo *Loop,
5052 ArrayRef<Metadata *> Properties) {
5053 assert(Loop->isValid() && "Expecting a valid CanonicalLoopInfo");
5054
5055 // Attach metadata to the loop's latch
5056 BasicBlock *Latch = Loop->getLatch();
5057 assert(Latch && "A valid CanonicalLoopInfo must have a unique latch");
5058 addBasicBlockMetadata(Latch, Properties);
5059 }
5060
5061 /// Attach llvm.access.group metadata to the memref instructions of \p Block
addSimdMetadata(BasicBlock * Block,MDNode * AccessGroup,LoopInfo & LI)5062 static void addSimdMetadata(BasicBlock *Block, MDNode *AccessGroup,
5063 LoopInfo &LI) {
5064 for (Instruction &I : *Block) {
5065 if (I.mayReadOrWriteMemory()) {
5066 // TODO: This instruction may already have access group from
5067 // other pragmas e.g. #pragma clang loop vectorize. Append
5068 // so that the existing metadata is not overwritten.
5069 I.setMetadata(LLVMContext::MD_access_group, AccessGroup);
5070 }
5071 }
5072 }
5073
unrollLoopFull(DebugLoc,CanonicalLoopInfo * Loop)5074 void OpenMPIRBuilder::unrollLoopFull(DebugLoc, CanonicalLoopInfo *Loop) {
5075 LLVMContext &Ctx = Builder.getContext();
5076 addLoopMetadata(
5077 Loop, {MDNode::get(Ctx, MDString::get(Ctx, "llvm.loop.unroll.enable")),
5078 MDNode::get(Ctx, MDString::get(Ctx, "llvm.loop.unroll.full"))});
5079 }
5080
unrollLoopHeuristic(DebugLoc,CanonicalLoopInfo * Loop)5081 void OpenMPIRBuilder::unrollLoopHeuristic(DebugLoc, CanonicalLoopInfo *Loop) {
5082 LLVMContext &Ctx = Builder.getContext();
5083 addLoopMetadata(
5084 Loop, {
5085 MDNode::get(Ctx, MDString::get(Ctx, "llvm.loop.unroll.enable")),
5086 });
5087 }
5088
createIfVersion(CanonicalLoopInfo * CanonicalLoop,Value * IfCond,ValueToValueMapTy & VMap,const Twine & NamePrefix)5089 void OpenMPIRBuilder::createIfVersion(CanonicalLoopInfo *CanonicalLoop,
5090 Value *IfCond, ValueToValueMapTy &VMap,
5091 const Twine &NamePrefix) {
5092 Function *F = CanonicalLoop->getFunction();
5093
5094 // Define where if branch should be inserted
5095 Instruction *SplitBefore;
5096 if (Instruction::classof(IfCond)) {
5097 SplitBefore = dyn_cast<Instruction>(IfCond);
5098 } else {
5099 SplitBefore = CanonicalLoop->getPreheader()->getTerminator();
5100 }
5101
5102 // TODO: We should not rely on pass manager. Currently we use pass manager
5103 // only for getting llvm::Loop which corresponds to given CanonicalLoopInfo
5104 // object. We should have a method which returns all blocks between
5105 // CanonicalLoopInfo::getHeader() and CanonicalLoopInfo::getAfter()
5106 FunctionAnalysisManager FAM;
5107 FAM.registerPass([]() { return DominatorTreeAnalysis(); });
5108 FAM.registerPass([]() { return LoopAnalysis(); });
5109 FAM.registerPass([]() { return PassInstrumentationAnalysis(); });
5110
5111 // Get the loop which needs to be cloned
5112 LoopAnalysis LIA;
5113 LoopInfo &&LI = LIA.run(*F, FAM);
5114 Loop *L = LI.getLoopFor(CanonicalLoop->getHeader());
5115
5116 // Create additional blocks for the if statement
5117 BasicBlock *Head = SplitBefore->getParent();
5118 Instruction *HeadOldTerm = Head->getTerminator();
5119 llvm::LLVMContext &C = Head->getContext();
5120 llvm::BasicBlock *ThenBlock = llvm::BasicBlock::Create(
5121 C, NamePrefix + ".if.then", Head->getParent(), Head->getNextNode());
5122 llvm::BasicBlock *ElseBlock = llvm::BasicBlock::Create(
5123 C, NamePrefix + ".if.else", Head->getParent(), CanonicalLoop->getExit());
5124
5125 // Create if condition branch.
5126 Builder.SetInsertPoint(HeadOldTerm);
5127 Instruction *BrInstr =
5128 Builder.CreateCondBr(IfCond, ThenBlock, /*ifFalse*/ ElseBlock);
5129 InsertPointTy IP{BrInstr->getParent(), ++BrInstr->getIterator()};
5130 // Then block contains branch to omp loop which needs to be vectorized
5131 spliceBB(IP, ThenBlock, false);
5132 ThenBlock->replaceSuccessorsPhiUsesWith(Head, ThenBlock);
5133
5134 Builder.SetInsertPoint(ElseBlock);
5135
5136 // Clone loop for the else branch
5137 SmallVector<BasicBlock *, 8> NewBlocks;
5138
5139 VMap[CanonicalLoop->getPreheader()] = ElseBlock;
5140 for (BasicBlock *Block : L->getBlocks()) {
5141 BasicBlock *NewBB = CloneBasicBlock(Block, VMap, "", F);
5142 NewBB->moveBefore(CanonicalLoop->getExit());
5143 VMap[Block] = NewBB;
5144 NewBlocks.push_back(NewBB);
5145 }
5146 remapInstructionsInBlocks(NewBlocks, VMap);
5147 Builder.CreateBr(NewBlocks.front());
5148 }
5149
5150 unsigned
getOpenMPDefaultSimdAlign(const Triple & TargetTriple,const StringMap<bool> & Features)5151 OpenMPIRBuilder::getOpenMPDefaultSimdAlign(const Triple &TargetTriple,
5152 const StringMap<bool> &Features) {
5153 if (TargetTriple.isX86()) {
5154 if (Features.lookup("avx512f"))
5155 return 512;
5156 else if (Features.lookup("avx"))
5157 return 256;
5158 return 128;
5159 }
5160 if (TargetTriple.isPPC())
5161 return 128;
5162 if (TargetTriple.isWasm())
5163 return 128;
5164 return 0;
5165 }
5166
applySimd(CanonicalLoopInfo * CanonicalLoop,MapVector<Value *,Value * > AlignedVars,Value * IfCond,OrderKind Order,ConstantInt * Simdlen,ConstantInt * Safelen)5167 void OpenMPIRBuilder::applySimd(CanonicalLoopInfo *CanonicalLoop,
5168 MapVector<Value *, Value *> AlignedVars,
5169 Value *IfCond, OrderKind Order,
5170 ConstantInt *Simdlen, ConstantInt *Safelen) {
5171 LLVMContext &Ctx = Builder.getContext();
5172
5173 Function *F = CanonicalLoop->getFunction();
5174
5175 // TODO: We should not rely on pass manager. Currently we use pass manager
5176 // only for getting llvm::Loop which corresponds to given CanonicalLoopInfo
5177 // object. We should have a method which returns all blocks between
5178 // CanonicalLoopInfo::getHeader() and CanonicalLoopInfo::getAfter()
5179 FunctionAnalysisManager FAM;
5180 FAM.registerPass([]() { return DominatorTreeAnalysis(); });
5181 FAM.registerPass([]() { return LoopAnalysis(); });
5182 FAM.registerPass([]() { return PassInstrumentationAnalysis(); });
5183
5184 LoopAnalysis LIA;
5185 LoopInfo &&LI = LIA.run(*F, FAM);
5186
5187 Loop *L = LI.getLoopFor(CanonicalLoop->getHeader());
5188 if (AlignedVars.size()) {
5189 InsertPointTy IP = Builder.saveIP();
5190 Builder.SetInsertPoint(CanonicalLoop->getPreheader()->getTerminator());
5191 for (auto &AlignedItem : AlignedVars) {
5192 Value *AlignedPtr = AlignedItem.first;
5193 Value *Alignment = AlignedItem.second;
5194 Builder.CreateAlignmentAssumption(F->getDataLayout(),
5195 AlignedPtr, Alignment);
5196 }
5197 Builder.restoreIP(IP);
5198 }
5199
5200 if (IfCond) {
5201 ValueToValueMapTy VMap;
5202 createIfVersion(CanonicalLoop, IfCond, VMap, "simd");
5203 // Add metadata to the cloned loop which disables vectorization
5204 Value *MappedLatch = VMap.lookup(CanonicalLoop->getLatch());
5205 assert(MappedLatch &&
5206 "Cannot find value which corresponds to original loop latch");
5207 assert(isa<BasicBlock>(MappedLatch) &&
5208 "Cannot cast mapped latch block value to BasicBlock");
5209 BasicBlock *NewLatchBlock = dyn_cast<BasicBlock>(MappedLatch);
5210 ConstantAsMetadata *BoolConst =
5211 ConstantAsMetadata::get(ConstantInt::getFalse(Type::getInt1Ty(Ctx)));
5212 addBasicBlockMetadata(
5213 NewLatchBlock,
5214 {MDNode::get(Ctx, {MDString::get(Ctx, "llvm.loop.vectorize.enable"),
5215 BoolConst})});
5216 }
5217
5218 SmallSet<BasicBlock *, 8> Reachable;
5219
5220 // Get the basic blocks from the loop in which memref instructions
5221 // can be found.
5222 // TODO: Generalize getting all blocks inside a CanonicalizeLoopInfo,
5223 // preferably without running any passes.
5224 for (BasicBlock *Block : L->getBlocks()) {
5225 if (Block == CanonicalLoop->getCond() ||
5226 Block == CanonicalLoop->getHeader())
5227 continue;
5228 Reachable.insert(Block);
5229 }
5230
5231 SmallVector<Metadata *> LoopMDList;
5232
5233 // In presence of finite 'safelen', it may be unsafe to mark all
5234 // the memory instructions parallel, because loop-carried
5235 // dependences of 'safelen' iterations are possible.
5236 // If clause order(concurrent) is specified then the memory instructions
5237 // are marked parallel even if 'safelen' is finite.
5238 if ((Safelen == nullptr) || (Order == OrderKind::OMP_ORDER_concurrent)) {
5239 // Add access group metadata to memory-access instructions.
5240 MDNode *AccessGroup = MDNode::getDistinct(Ctx, {});
5241 for (BasicBlock *BB : Reachable)
5242 addSimdMetadata(BB, AccessGroup, LI);
5243 // TODO: If the loop has existing parallel access metadata, have
5244 // to combine two lists.
5245 LoopMDList.push_back(MDNode::get(
5246 Ctx, {MDString::get(Ctx, "llvm.loop.parallel_accesses"), AccessGroup}));
5247 }
5248
5249 // Use the above access group metadata to create loop level
5250 // metadata, which should be distinct for each loop.
5251 ConstantAsMetadata *BoolConst =
5252 ConstantAsMetadata::get(ConstantInt::getTrue(Type::getInt1Ty(Ctx)));
5253 LoopMDList.push_back(MDNode::get(
5254 Ctx, {MDString::get(Ctx, "llvm.loop.vectorize.enable"), BoolConst}));
5255
5256 if (Simdlen || Safelen) {
5257 // If both simdlen and safelen clauses are specified, the value of the
5258 // simdlen parameter must be less than or equal to the value of the safelen
5259 // parameter. Therefore, use safelen only in the absence of simdlen.
5260 ConstantInt *VectorizeWidth = Simdlen == nullptr ? Safelen : Simdlen;
5261 LoopMDList.push_back(
5262 MDNode::get(Ctx, {MDString::get(Ctx, "llvm.loop.vectorize.width"),
5263 ConstantAsMetadata::get(VectorizeWidth)}));
5264 }
5265
5266 addLoopMetadata(CanonicalLoop, LoopMDList);
5267 }
5268
5269 /// Create the TargetMachine object to query the backend for optimization
5270 /// preferences.
5271 ///
5272 /// Ideally, this would be passed from the front-end to the OpenMPBuilder, but
5273 /// e.g. Clang does not pass it to its CodeGen layer and creates it only when
5274 /// needed for the LLVM pass pipline. We use some default options to avoid
5275 /// having to pass too many settings from the frontend that probably do not
5276 /// matter.
5277 ///
5278 /// Currently, TargetMachine is only used sometimes by the unrollLoopPartial
5279 /// method. If we are going to use TargetMachine for more purposes, especially
5280 /// those that are sensitive to TargetOptions, RelocModel and CodeModel, it
5281 /// might become be worth requiring front-ends to pass on their TargetMachine,
5282 /// or at least cache it between methods. Note that while fontends such as Clang
5283 /// have just a single main TargetMachine per translation unit, "target-cpu" and
5284 /// "target-features" that determine the TargetMachine are per-function and can
5285 /// be overrided using __attribute__((target("OPTIONS"))).
5286 static std::unique_ptr<TargetMachine>
createTargetMachine(Function * F,CodeGenOptLevel OptLevel)5287 createTargetMachine(Function *F, CodeGenOptLevel OptLevel) {
5288 Module *M = F->getParent();
5289
5290 StringRef CPU = F->getFnAttribute("target-cpu").getValueAsString();
5291 StringRef Features = F->getFnAttribute("target-features").getValueAsString();
5292 const std::string &Triple = M->getTargetTriple();
5293
5294 std::string Error;
5295 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error);
5296 if (!TheTarget)
5297 return {};
5298
5299 llvm::TargetOptions Options;
5300 return std::unique_ptr<TargetMachine>(TheTarget->createTargetMachine(
5301 Triple, CPU, Features, Options, /*RelocModel=*/std::nullopt,
5302 /*CodeModel=*/std::nullopt, OptLevel));
5303 }
5304
5305 /// Heuristically determine the best-performant unroll factor for \p CLI. This
5306 /// depends on the target processor. We are re-using the same heuristics as the
5307 /// LoopUnrollPass.
computeHeuristicUnrollFactor(CanonicalLoopInfo * CLI)5308 static int32_t computeHeuristicUnrollFactor(CanonicalLoopInfo *CLI) {
5309 Function *F = CLI->getFunction();
5310
5311 // Assume the user requests the most aggressive unrolling, even if the rest of
5312 // the code is optimized using a lower setting.
5313 CodeGenOptLevel OptLevel = CodeGenOptLevel::Aggressive;
5314 std::unique_ptr<TargetMachine> TM = createTargetMachine(F, OptLevel);
5315
5316 FunctionAnalysisManager FAM;
5317 FAM.registerPass([]() { return TargetLibraryAnalysis(); });
5318 FAM.registerPass([]() { return AssumptionAnalysis(); });
5319 FAM.registerPass([]() { return DominatorTreeAnalysis(); });
5320 FAM.registerPass([]() { return LoopAnalysis(); });
5321 FAM.registerPass([]() { return ScalarEvolutionAnalysis(); });
5322 FAM.registerPass([]() { return PassInstrumentationAnalysis(); });
5323 TargetIRAnalysis TIRA;
5324 if (TM)
5325 TIRA = TargetIRAnalysis(
5326 [&](const Function &F) { return TM->getTargetTransformInfo(F); });
5327 FAM.registerPass([&]() { return TIRA; });
5328
5329 TargetIRAnalysis::Result &&TTI = TIRA.run(*F, FAM);
5330 ScalarEvolutionAnalysis SEA;
5331 ScalarEvolution &&SE = SEA.run(*F, FAM);
5332 DominatorTreeAnalysis DTA;
5333 DominatorTree &&DT = DTA.run(*F, FAM);
5334 LoopAnalysis LIA;
5335 LoopInfo &&LI = LIA.run(*F, FAM);
5336 AssumptionAnalysis ACT;
5337 AssumptionCache &&AC = ACT.run(*F, FAM);
5338 OptimizationRemarkEmitter ORE{F};
5339
5340 Loop *L = LI.getLoopFor(CLI->getHeader());
5341 assert(L && "Expecting CanonicalLoopInfo to be recognized as a loop");
5342
5343 TargetTransformInfo::UnrollingPreferences UP =
5344 gatherUnrollingPreferences(L, SE, TTI,
5345 /*BlockFrequencyInfo=*/nullptr,
5346 /*ProfileSummaryInfo=*/nullptr, ORE, static_cast<int>(OptLevel),
5347 /*UserThreshold=*/std::nullopt,
5348 /*UserCount=*/std::nullopt,
5349 /*UserAllowPartial=*/true,
5350 /*UserAllowRuntime=*/true,
5351 /*UserUpperBound=*/std::nullopt,
5352 /*UserFullUnrollMaxCount=*/std::nullopt);
5353
5354 UP.Force = true;
5355
5356 // Account for additional optimizations taking place before the LoopUnrollPass
5357 // would unroll the loop.
5358 UP.Threshold *= UnrollThresholdFactor;
5359 UP.PartialThreshold *= UnrollThresholdFactor;
5360
5361 // Use normal unroll factors even if the rest of the code is optimized for
5362 // size.
5363 UP.OptSizeThreshold = UP.Threshold;
5364 UP.PartialOptSizeThreshold = UP.PartialThreshold;
5365
5366 LLVM_DEBUG(dbgs() << "Unroll heuristic thresholds:\n"
5367 << " Threshold=" << UP.Threshold << "\n"
5368 << " PartialThreshold=" << UP.PartialThreshold << "\n"
5369 << " OptSizeThreshold=" << UP.OptSizeThreshold << "\n"
5370 << " PartialOptSizeThreshold="
5371 << UP.PartialOptSizeThreshold << "\n");
5372
5373 // Disable peeling.
5374 TargetTransformInfo::PeelingPreferences PP =
5375 gatherPeelingPreferences(L, SE, TTI,
5376 /*UserAllowPeeling=*/false,
5377 /*UserAllowProfileBasedPeeling=*/false,
5378 /*UnrollingSpecficValues=*/false);
5379
5380 SmallPtrSet<const Value *, 32> EphValues;
5381 CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
5382
5383 // Assume that reads and writes to stack variables can be eliminated by
5384 // Mem2Reg, SROA or LICM. That is, don't count them towards the loop body's
5385 // size.
5386 for (BasicBlock *BB : L->blocks()) {
5387 for (Instruction &I : *BB) {
5388 Value *Ptr;
5389 if (auto *Load = dyn_cast<LoadInst>(&I)) {
5390 Ptr = Load->getPointerOperand();
5391 } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
5392 Ptr = Store->getPointerOperand();
5393 } else
5394 continue;
5395
5396 Ptr = Ptr->stripPointerCasts();
5397
5398 if (auto *Alloca = dyn_cast<AllocaInst>(Ptr)) {
5399 if (Alloca->getParent() == &F->getEntryBlock())
5400 EphValues.insert(&I);
5401 }
5402 }
5403 }
5404
5405 UnrollCostEstimator UCE(L, TTI, EphValues, UP.BEInsns);
5406
5407 // Loop is not unrollable if the loop contains certain instructions.
5408 if (!UCE.canUnroll()) {
5409 LLVM_DEBUG(dbgs() << "Loop not considered unrollable\n");
5410 return 1;
5411 }
5412
5413 LLVM_DEBUG(dbgs() << "Estimated loop size is " << UCE.getRolledLoopSize()
5414 << "\n");
5415
5416 // TODO: Determine trip count of \p CLI if constant, computeUnrollCount might
5417 // be able to use it.
5418 int TripCount = 0;
5419 int MaxTripCount = 0;
5420 bool MaxOrZero = false;
5421 unsigned TripMultiple = 0;
5422
5423 bool UseUpperBound = false;
5424 computeUnrollCount(L, TTI, DT, &LI, &AC, SE, EphValues, &ORE, TripCount,
5425 MaxTripCount, MaxOrZero, TripMultiple, UCE, UP, PP,
5426 UseUpperBound);
5427 unsigned Factor = UP.Count;
5428 LLVM_DEBUG(dbgs() << "Suggesting unroll factor of " << Factor << "\n");
5429
5430 // This function returns 1 to signal to not unroll a loop.
5431 if (Factor == 0)
5432 return 1;
5433 return Factor;
5434 }
5435
unrollLoopPartial(DebugLoc DL,CanonicalLoopInfo * Loop,int32_t Factor,CanonicalLoopInfo ** UnrolledCLI)5436 void OpenMPIRBuilder::unrollLoopPartial(DebugLoc DL, CanonicalLoopInfo *Loop,
5437 int32_t Factor,
5438 CanonicalLoopInfo **UnrolledCLI) {
5439 assert(Factor >= 0 && "Unroll factor must not be negative");
5440
5441 Function *F = Loop->getFunction();
5442 LLVMContext &Ctx = F->getContext();
5443
5444 // If the unrolled loop is not used for another loop-associated directive, it
5445 // is sufficient to add metadata for the LoopUnrollPass.
5446 if (!UnrolledCLI) {
5447 SmallVector<Metadata *, 2> LoopMetadata;
5448 LoopMetadata.push_back(
5449 MDNode::get(Ctx, MDString::get(Ctx, "llvm.loop.unroll.enable")));
5450
5451 if (Factor >= 1) {
5452 ConstantAsMetadata *FactorConst = ConstantAsMetadata::get(
5453 ConstantInt::get(Type::getInt32Ty(Ctx), APInt(32, Factor)));
5454 LoopMetadata.push_back(MDNode::get(
5455 Ctx, {MDString::get(Ctx, "llvm.loop.unroll.count"), FactorConst}));
5456 }
5457
5458 addLoopMetadata(Loop, LoopMetadata);
5459 return;
5460 }
5461
5462 // Heuristically determine the unroll factor.
5463 if (Factor == 0)
5464 Factor = computeHeuristicUnrollFactor(Loop);
5465
5466 // No change required with unroll factor 1.
5467 if (Factor == 1) {
5468 *UnrolledCLI = Loop;
5469 return;
5470 }
5471
5472 assert(Factor >= 2 &&
5473 "unrolling only makes sense with a factor of 2 or larger");
5474
5475 Type *IndVarTy = Loop->getIndVarType();
5476
5477 // Apply partial unrolling by tiling the loop by the unroll-factor, then fully
5478 // unroll the inner loop.
5479 Value *FactorVal =
5480 ConstantInt::get(IndVarTy, APInt(IndVarTy->getIntegerBitWidth(), Factor,
5481 /*isSigned=*/false));
5482 std::vector<CanonicalLoopInfo *> LoopNest =
5483 tileLoops(DL, {Loop}, {FactorVal});
5484 assert(LoopNest.size() == 2 && "Expect 2 loops after tiling");
5485 *UnrolledCLI = LoopNest[0];
5486 CanonicalLoopInfo *InnerLoop = LoopNest[1];
5487
5488 // LoopUnrollPass can only fully unroll loops with constant trip count.
5489 // Unroll by the unroll factor with a fallback epilog for the remainder
5490 // iterations if necessary.
5491 ConstantAsMetadata *FactorConst = ConstantAsMetadata::get(
5492 ConstantInt::get(Type::getInt32Ty(Ctx), APInt(32, Factor)));
5493 addLoopMetadata(
5494 InnerLoop,
5495 {MDNode::get(Ctx, MDString::get(Ctx, "llvm.loop.unroll.enable")),
5496 MDNode::get(
5497 Ctx, {MDString::get(Ctx, "llvm.loop.unroll.count"), FactorConst})});
5498
5499 #ifndef NDEBUG
5500 (*UnrolledCLI)->assertOK();
5501 #endif
5502 }
5503
5504 OpenMPIRBuilder::InsertPointTy
createCopyPrivate(const LocationDescription & Loc,llvm::Value * BufSize,llvm::Value * CpyBuf,llvm::Value * CpyFn,llvm::Value * DidIt)5505 OpenMPIRBuilder::createCopyPrivate(const LocationDescription &Loc,
5506 llvm::Value *BufSize, llvm::Value *CpyBuf,
5507 llvm::Value *CpyFn, llvm::Value *DidIt) {
5508 if (!updateToLocation(Loc))
5509 return Loc.IP;
5510
5511 uint32_t SrcLocStrSize;
5512 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
5513 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
5514 Value *ThreadId = getOrCreateThreadID(Ident);
5515
5516 llvm::Value *DidItLD = Builder.CreateLoad(Builder.getInt32Ty(), DidIt);
5517
5518 Value *Args[] = {Ident, ThreadId, BufSize, CpyBuf, CpyFn, DidItLD};
5519
5520 Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_copyprivate);
5521 Builder.CreateCall(Fn, Args);
5522
5523 return Builder.saveIP();
5524 }
5525
createSingle(const LocationDescription & Loc,BodyGenCallbackTy BodyGenCB,FinalizeCallbackTy FiniCB,bool IsNowait,ArrayRef<llvm::Value * > CPVars,ArrayRef<llvm::Function * > CPFuncs)5526 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createSingle(
5527 const LocationDescription &Loc, BodyGenCallbackTy BodyGenCB,
5528 FinalizeCallbackTy FiniCB, bool IsNowait, ArrayRef<llvm::Value *> CPVars,
5529 ArrayRef<llvm::Function *> CPFuncs) {
5530
5531 if (!updateToLocation(Loc))
5532 return Loc.IP;
5533
5534 // If needed allocate and initialize `DidIt` with 0.
5535 // DidIt: flag variable: 1=single thread; 0=not single thread.
5536 llvm::Value *DidIt = nullptr;
5537 if (!CPVars.empty()) {
5538 DidIt = Builder.CreateAlloca(llvm::Type::getInt32Ty(Builder.getContext()));
5539 Builder.CreateStore(Builder.getInt32(0), DidIt);
5540 }
5541
5542 Directive OMPD = Directive::OMPD_single;
5543 uint32_t SrcLocStrSize;
5544 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
5545 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
5546 Value *ThreadId = getOrCreateThreadID(Ident);
5547 Value *Args[] = {Ident, ThreadId};
5548
5549 Function *EntryRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_single);
5550 Instruction *EntryCall = Builder.CreateCall(EntryRTLFn, Args);
5551
5552 Function *ExitRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_single);
5553 Instruction *ExitCall = Builder.CreateCall(ExitRTLFn, Args);
5554
5555 auto FiniCBWrapper = [&](InsertPointTy IP) {
5556 FiniCB(IP);
5557
5558 // The thread that executes the single region must set `DidIt` to 1.
5559 // This is used by __kmpc_copyprivate, to know if the caller is the
5560 // single thread or not.
5561 if (DidIt)
5562 Builder.CreateStore(Builder.getInt32(1), DidIt);
5563 };
5564
5565 // generates the following:
5566 // if (__kmpc_single()) {
5567 // .... single region ...
5568 // __kmpc_end_single
5569 // }
5570 // __kmpc_copyprivate
5571 // __kmpc_barrier
5572
5573 EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCBWrapper,
5574 /*Conditional*/ true,
5575 /*hasFinalize*/ true);
5576
5577 if (DidIt) {
5578 for (size_t I = 0, E = CPVars.size(); I < E; ++I)
5579 // NOTE BufSize is currently unused, so just pass 0.
5580 createCopyPrivate(LocationDescription(Builder.saveIP(), Loc.DL),
5581 /*BufSize=*/ConstantInt::get(Int64, 0), CPVars[I],
5582 CPFuncs[I], DidIt);
5583 // NOTE __kmpc_copyprivate already inserts a barrier
5584 } else if (!IsNowait)
5585 createBarrier(LocationDescription(Builder.saveIP(), Loc.DL),
5586 omp::Directive::OMPD_unknown, /* ForceSimpleCall */ false,
5587 /* CheckCancelFlag */ false);
5588 return Builder.saveIP();
5589 }
5590
createCritical(const LocationDescription & Loc,BodyGenCallbackTy BodyGenCB,FinalizeCallbackTy FiniCB,StringRef CriticalName,Value * HintInst)5591 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createCritical(
5592 const LocationDescription &Loc, BodyGenCallbackTy BodyGenCB,
5593 FinalizeCallbackTy FiniCB, StringRef CriticalName, Value *HintInst) {
5594
5595 if (!updateToLocation(Loc))
5596 return Loc.IP;
5597
5598 Directive OMPD = Directive::OMPD_critical;
5599 uint32_t SrcLocStrSize;
5600 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
5601 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
5602 Value *ThreadId = getOrCreateThreadID(Ident);
5603 Value *LockVar = getOMPCriticalRegionLock(CriticalName);
5604 Value *Args[] = {Ident, ThreadId, LockVar};
5605
5606 SmallVector<llvm::Value *, 4> EnterArgs(std::begin(Args), std::end(Args));
5607 Function *RTFn = nullptr;
5608 if (HintInst) {
5609 // Add Hint to entry Args and create call
5610 EnterArgs.push_back(HintInst);
5611 RTFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_critical_with_hint);
5612 } else {
5613 RTFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_critical);
5614 }
5615 Instruction *EntryCall = Builder.CreateCall(RTFn, EnterArgs);
5616
5617 Function *ExitRTLFn =
5618 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_critical);
5619 Instruction *ExitCall = Builder.CreateCall(ExitRTLFn, Args);
5620
5621 return EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCB,
5622 /*Conditional*/ false, /*hasFinalize*/ true);
5623 }
5624
5625 OpenMPIRBuilder::InsertPointTy
createOrderedDepend(const LocationDescription & Loc,InsertPointTy AllocaIP,unsigned NumLoops,ArrayRef<llvm::Value * > StoreValues,const Twine & Name,bool IsDependSource)5626 OpenMPIRBuilder::createOrderedDepend(const LocationDescription &Loc,
5627 InsertPointTy AllocaIP, unsigned NumLoops,
5628 ArrayRef<llvm::Value *> StoreValues,
5629 const Twine &Name, bool IsDependSource) {
5630 assert(
5631 llvm::all_of(StoreValues,
5632 [](Value *SV) { return SV->getType()->isIntegerTy(64); }) &&
5633 "OpenMP runtime requires depend vec with i64 type");
5634
5635 if (!updateToLocation(Loc))
5636 return Loc.IP;
5637
5638 // Allocate space for vector and generate alloc instruction.
5639 auto *ArrI64Ty = ArrayType::get(Int64, NumLoops);
5640 Builder.restoreIP(AllocaIP);
5641 AllocaInst *ArgsBase = Builder.CreateAlloca(ArrI64Ty, nullptr, Name);
5642 ArgsBase->setAlignment(Align(8));
5643 Builder.restoreIP(Loc.IP);
5644
5645 // Store the index value with offset in depend vector.
5646 for (unsigned I = 0; I < NumLoops; ++I) {
5647 Value *DependAddrGEPIter = Builder.CreateInBoundsGEP(
5648 ArrI64Ty, ArgsBase, {Builder.getInt64(0), Builder.getInt64(I)});
5649 StoreInst *STInst = Builder.CreateStore(StoreValues[I], DependAddrGEPIter);
5650 STInst->setAlignment(Align(8));
5651 }
5652
5653 Value *DependBaseAddrGEP = Builder.CreateInBoundsGEP(
5654 ArrI64Ty, ArgsBase, {Builder.getInt64(0), Builder.getInt64(0)});
5655
5656 uint32_t SrcLocStrSize;
5657 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
5658 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
5659 Value *ThreadId = getOrCreateThreadID(Ident);
5660 Value *Args[] = {Ident, ThreadId, DependBaseAddrGEP};
5661
5662 Function *RTLFn = nullptr;
5663 if (IsDependSource)
5664 RTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_doacross_post);
5665 else
5666 RTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_doacross_wait);
5667 Builder.CreateCall(RTLFn, Args);
5668
5669 return Builder.saveIP();
5670 }
5671
createOrderedThreadsSimd(const LocationDescription & Loc,BodyGenCallbackTy BodyGenCB,FinalizeCallbackTy FiniCB,bool IsThreads)5672 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createOrderedThreadsSimd(
5673 const LocationDescription &Loc, BodyGenCallbackTy BodyGenCB,
5674 FinalizeCallbackTy FiniCB, bool IsThreads) {
5675 if (!updateToLocation(Loc))
5676 return Loc.IP;
5677
5678 Directive OMPD = Directive::OMPD_ordered;
5679 Instruction *EntryCall = nullptr;
5680 Instruction *ExitCall = nullptr;
5681
5682 if (IsThreads) {
5683 uint32_t SrcLocStrSize;
5684 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
5685 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
5686 Value *ThreadId = getOrCreateThreadID(Ident);
5687 Value *Args[] = {Ident, ThreadId};
5688
5689 Function *EntryRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_ordered);
5690 EntryCall = Builder.CreateCall(EntryRTLFn, Args);
5691
5692 Function *ExitRTLFn =
5693 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_ordered);
5694 ExitCall = Builder.CreateCall(ExitRTLFn, Args);
5695 }
5696
5697 return EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCB,
5698 /*Conditional*/ false, /*hasFinalize*/ true);
5699 }
5700
EmitOMPInlinedRegion(Directive OMPD,Instruction * EntryCall,Instruction * ExitCall,BodyGenCallbackTy BodyGenCB,FinalizeCallbackTy FiniCB,bool Conditional,bool HasFinalize,bool IsCancellable)5701 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::EmitOMPInlinedRegion(
5702 Directive OMPD, Instruction *EntryCall, Instruction *ExitCall,
5703 BodyGenCallbackTy BodyGenCB, FinalizeCallbackTy FiniCB, bool Conditional,
5704 bool HasFinalize, bool IsCancellable) {
5705
5706 if (HasFinalize)
5707 FinalizationStack.push_back({FiniCB, OMPD, IsCancellable});
5708
5709 // Create inlined region's entry and body blocks, in preparation
5710 // for conditional creation
5711 BasicBlock *EntryBB = Builder.GetInsertBlock();
5712 Instruction *SplitPos = EntryBB->getTerminator();
5713 if (!isa_and_nonnull<BranchInst>(SplitPos))
5714 SplitPos = new UnreachableInst(Builder.getContext(), EntryBB);
5715 BasicBlock *ExitBB = EntryBB->splitBasicBlock(SplitPos, "omp_region.end");
5716 BasicBlock *FiniBB =
5717 EntryBB->splitBasicBlock(EntryBB->getTerminator(), "omp_region.finalize");
5718
5719 Builder.SetInsertPoint(EntryBB->getTerminator());
5720 emitCommonDirectiveEntry(OMPD, EntryCall, ExitBB, Conditional);
5721
5722 // generate body
5723 BodyGenCB(/* AllocaIP */ InsertPointTy(),
5724 /* CodeGenIP */ Builder.saveIP());
5725
5726 // emit exit call and do any needed finalization.
5727 auto FinIP = InsertPointTy(FiniBB, FiniBB->getFirstInsertionPt());
5728 assert(FiniBB->getTerminator()->getNumSuccessors() == 1 &&
5729 FiniBB->getTerminator()->getSuccessor(0) == ExitBB &&
5730 "Unexpected control flow graph state!!");
5731 emitCommonDirectiveExit(OMPD, FinIP, ExitCall, HasFinalize);
5732 assert(FiniBB->getUniquePredecessor()->getUniqueSuccessor() == FiniBB &&
5733 "Unexpected Control Flow State!");
5734 MergeBlockIntoPredecessor(FiniBB);
5735
5736 // If we are skipping the region of a non conditional, remove the exit
5737 // block, and clear the builder's insertion point.
5738 assert(SplitPos->getParent() == ExitBB &&
5739 "Unexpected Insertion point location!");
5740 auto merged = MergeBlockIntoPredecessor(ExitBB);
5741 BasicBlock *ExitPredBB = SplitPos->getParent();
5742 auto InsertBB = merged ? ExitPredBB : ExitBB;
5743 if (!isa_and_nonnull<BranchInst>(SplitPos))
5744 SplitPos->eraseFromParent();
5745 Builder.SetInsertPoint(InsertBB);
5746
5747 return Builder.saveIP();
5748 }
5749
emitCommonDirectiveEntry(Directive OMPD,Value * EntryCall,BasicBlock * ExitBB,bool Conditional)5750 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::emitCommonDirectiveEntry(
5751 Directive OMPD, Value *EntryCall, BasicBlock *ExitBB, bool Conditional) {
5752 // if nothing to do, Return current insertion point.
5753 if (!Conditional || !EntryCall)
5754 return Builder.saveIP();
5755
5756 BasicBlock *EntryBB = Builder.GetInsertBlock();
5757 Value *CallBool = Builder.CreateIsNotNull(EntryCall);
5758 auto *ThenBB = BasicBlock::Create(M.getContext(), "omp_region.body");
5759 auto *UI = new UnreachableInst(Builder.getContext(), ThenBB);
5760
5761 // Emit thenBB and set the Builder's insertion point there for
5762 // body generation next. Place the block after the current block.
5763 Function *CurFn = EntryBB->getParent();
5764 CurFn->insert(std::next(EntryBB->getIterator()), ThenBB);
5765
5766 // Move Entry branch to end of ThenBB, and replace with conditional
5767 // branch (If-stmt)
5768 Instruction *EntryBBTI = EntryBB->getTerminator();
5769 Builder.CreateCondBr(CallBool, ThenBB, ExitBB);
5770 EntryBBTI->removeFromParent();
5771 Builder.SetInsertPoint(UI);
5772 Builder.Insert(EntryBBTI);
5773 UI->eraseFromParent();
5774 Builder.SetInsertPoint(ThenBB->getTerminator());
5775
5776 // return an insertion point to ExitBB.
5777 return IRBuilder<>::InsertPoint(ExitBB, ExitBB->getFirstInsertionPt());
5778 }
5779
emitCommonDirectiveExit(omp::Directive OMPD,InsertPointTy FinIP,Instruction * ExitCall,bool HasFinalize)5780 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::emitCommonDirectiveExit(
5781 omp::Directive OMPD, InsertPointTy FinIP, Instruction *ExitCall,
5782 bool HasFinalize) {
5783
5784 Builder.restoreIP(FinIP);
5785
5786 // If there is finalization to do, emit it before the exit call
5787 if (HasFinalize) {
5788 assert(!FinalizationStack.empty() &&
5789 "Unexpected finalization stack state!");
5790
5791 FinalizationInfo Fi = FinalizationStack.pop_back_val();
5792 assert(Fi.DK == OMPD && "Unexpected Directive for Finalization call!");
5793
5794 Fi.FiniCB(FinIP);
5795
5796 BasicBlock *FiniBB = FinIP.getBlock();
5797 Instruction *FiniBBTI = FiniBB->getTerminator();
5798
5799 // set Builder IP for call creation
5800 Builder.SetInsertPoint(FiniBBTI);
5801 }
5802
5803 if (!ExitCall)
5804 return Builder.saveIP();
5805
5806 // place the Exitcall as last instruction before Finalization block terminator
5807 ExitCall->removeFromParent();
5808 Builder.Insert(ExitCall);
5809
5810 return IRBuilder<>::InsertPoint(ExitCall->getParent(),
5811 ExitCall->getIterator());
5812 }
5813
createCopyinClauseBlocks(InsertPointTy IP,Value * MasterAddr,Value * PrivateAddr,llvm::IntegerType * IntPtrTy,bool BranchtoEnd)5814 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createCopyinClauseBlocks(
5815 InsertPointTy IP, Value *MasterAddr, Value *PrivateAddr,
5816 llvm::IntegerType *IntPtrTy, bool BranchtoEnd) {
5817 if (!IP.isSet())
5818 return IP;
5819
5820 IRBuilder<>::InsertPointGuard IPG(Builder);
5821
5822 // creates the following CFG structure
5823 // OMP_Entry : (MasterAddr != PrivateAddr)?
5824 // F T
5825 // | \
5826 // | copin.not.master
5827 // | /
5828 // v /
5829 // copyin.not.master.end
5830 // |
5831 // v
5832 // OMP.Entry.Next
5833
5834 BasicBlock *OMP_Entry = IP.getBlock();
5835 Function *CurFn = OMP_Entry->getParent();
5836 BasicBlock *CopyBegin =
5837 BasicBlock::Create(M.getContext(), "copyin.not.master", CurFn);
5838 BasicBlock *CopyEnd = nullptr;
5839
5840 // If entry block is terminated, split to preserve the branch to following
5841 // basic block (i.e. OMP.Entry.Next), otherwise, leave everything as is.
5842 if (isa_and_nonnull<BranchInst>(OMP_Entry->getTerminator())) {
5843 CopyEnd = OMP_Entry->splitBasicBlock(OMP_Entry->getTerminator(),
5844 "copyin.not.master.end");
5845 OMP_Entry->getTerminator()->eraseFromParent();
5846 } else {
5847 CopyEnd =
5848 BasicBlock::Create(M.getContext(), "copyin.not.master.end", CurFn);
5849 }
5850
5851 Builder.SetInsertPoint(OMP_Entry);
5852 Value *MasterPtr = Builder.CreatePtrToInt(MasterAddr, IntPtrTy);
5853 Value *PrivatePtr = Builder.CreatePtrToInt(PrivateAddr, IntPtrTy);
5854 Value *cmp = Builder.CreateICmpNE(MasterPtr, PrivatePtr);
5855 Builder.CreateCondBr(cmp, CopyBegin, CopyEnd);
5856
5857 Builder.SetInsertPoint(CopyBegin);
5858 if (BranchtoEnd)
5859 Builder.SetInsertPoint(Builder.CreateBr(CopyEnd));
5860
5861 return Builder.saveIP();
5862 }
5863
createOMPAlloc(const LocationDescription & Loc,Value * Size,Value * Allocator,std::string Name)5864 CallInst *OpenMPIRBuilder::createOMPAlloc(const LocationDescription &Loc,
5865 Value *Size, Value *Allocator,
5866 std::string Name) {
5867 IRBuilder<>::InsertPointGuard IPG(Builder);
5868 updateToLocation(Loc);
5869
5870 uint32_t SrcLocStrSize;
5871 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
5872 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
5873 Value *ThreadId = getOrCreateThreadID(Ident);
5874 Value *Args[] = {ThreadId, Size, Allocator};
5875
5876 Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_alloc);
5877
5878 return Builder.CreateCall(Fn, Args, Name);
5879 }
5880
createOMPFree(const LocationDescription & Loc,Value * Addr,Value * Allocator,std::string Name)5881 CallInst *OpenMPIRBuilder::createOMPFree(const LocationDescription &Loc,
5882 Value *Addr, Value *Allocator,
5883 std::string Name) {
5884 IRBuilder<>::InsertPointGuard IPG(Builder);
5885 updateToLocation(Loc);
5886
5887 uint32_t SrcLocStrSize;
5888 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
5889 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
5890 Value *ThreadId = getOrCreateThreadID(Ident);
5891 Value *Args[] = {ThreadId, Addr, Allocator};
5892 Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_free);
5893 return Builder.CreateCall(Fn, Args, Name);
5894 }
5895
createOMPInteropInit(const LocationDescription & Loc,Value * InteropVar,omp::OMPInteropType InteropType,Value * Device,Value * NumDependences,Value * DependenceAddress,bool HaveNowaitClause)5896 CallInst *OpenMPIRBuilder::createOMPInteropInit(
5897 const LocationDescription &Loc, Value *InteropVar,
5898 omp::OMPInteropType InteropType, Value *Device, Value *NumDependences,
5899 Value *DependenceAddress, bool HaveNowaitClause) {
5900 IRBuilder<>::InsertPointGuard IPG(Builder);
5901 updateToLocation(Loc);
5902
5903 uint32_t SrcLocStrSize;
5904 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
5905 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
5906 Value *ThreadId = getOrCreateThreadID(Ident);
5907 if (Device == nullptr)
5908 Device = ConstantInt::get(Int32, -1);
5909 Constant *InteropTypeVal = ConstantInt::get(Int32, (int)InteropType);
5910 if (NumDependences == nullptr) {
5911 NumDependences = ConstantInt::get(Int32, 0);
5912 PointerType *PointerTypeVar = PointerType::getUnqual(M.getContext());
5913 DependenceAddress = ConstantPointerNull::get(PointerTypeVar);
5914 }
5915 Value *HaveNowaitClauseVal = ConstantInt::get(Int32, HaveNowaitClause);
5916 Value *Args[] = {
5917 Ident, ThreadId, InteropVar, InteropTypeVal,
5918 Device, NumDependences, DependenceAddress, HaveNowaitClauseVal};
5919
5920 Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___tgt_interop_init);
5921
5922 return Builder.CreateCall(Fn, Args);
5923 }
5924
createOMPInteropDestroy(const LocationDescription & Loc,Value * InteropVar,Value * Device,Value * NumDependences,Value * DependenceAddress,bool HaveNowaitClause)5925 CallInst *OpenMPIRBuilder::createOMPInteropDestroy(
5926 const LocationDescription &Loc, Value *InteropVar, Value *Device,
5927 Value *NumDependences, Value *DependenceAddress, bool HaveNowaitClause) {
5928 IRBuilder<>::InsertPointGuard IPG(Builder);
5929 updateToLocation(Loc);
5930
5931 uint32_t SrcLocStrSize;
5932 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
5933 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
5934 Value *ThreadId = getOrCreateThreadID(Ident);
5935 if (Device == nullptr)
5936 Device = ConstantInt::get(Int32, -1);
5937 if (NumDependences == nullptr) {
5938 NumDependences = ConstantInt::get(Int32, 0);
5939 PointerType *PointerTypeVar = PointerType::getUnqual(M.getContext());
5940 DependenceAddress = ConstantPointerNull::get(PointerTypeVar);
5941 }
5942 Value *HaveNowaitClauseVal = ConstantInt::get(Int32, HaveNowaitClause);
5943 Value *Args[] = {
5944 Ident, ThreadId, InteropVar, Device,
5945 NumDependences, DependenceAddress, HaveNowaitClauseVal};
5946
5947 Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___tgt_interop_destroy);
5948
5949 return Builder.CreateCall(Fn, Args);
5950 }
5951
createOMPInteropUse(const LocationDescription & Loc,Value * InteropVar,Value * Device,Value * NumDependences,Value * DependenceAddress,bool HaveNowaitClause)5952 CallInst *OpenMPIRBuilder::createOMPInteropUse(const LocationDescription &Loc,
5953 Value *InteropVar, Value *Device,
5954 Value *NumDependences,
5955 Value *DependenceAddress,
5956 bool HaveNowaitClause) {
5957 IRBuilder<>::InsertPointGuard IPG(Builder);
5958 updateToLocation(Loc);
5959 uint32_t SrcLocStrSize;
5960 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
5961 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
5962 Value *ThreadId = getOrCreateThreadID(Ident);
5963 if (Device == nullptr)
5964 Device = ConstantInt::get(Int32, -1);
5965 if (NumDependences == nullptr) {
5966 NumDependences = ConstantInt::get(Int32, 0);
5967 PointerType *PointerTypeVar = PointerType::getUnqual(M.getContext());
5968 DependenceAddress = ConstantPointerNull::get(PointerTypeVar);
5969 }
5970 Value *HaveNowaitClauseVal = ConstantInt::get(Int32, HaveNowaitClause);
5971 Value *Args[] = {
5972 Ident, ThreadId, InteropVar, Device,
5973 NumDependences, DependenceAddress, HaveNowaitClauseVal};
5974
5975 Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___tgt_interop_use);
5976
5977 return Builder.CreateCall(Fn, Args);
5978 }
5979
createCachedThreadPrivate(const LocationDescription & Loc,llvm::Value * Pointer,llvm::ConstantInt * Size,const llvm::Twine & Name)5980 CallInst *OpenMPIRBuilder::createCachedThreadPrivate(
5981 const LocationDescription &Loc, llvm::Value *Pointer,
5982 llvm::ConstantInt *Size, const llvm::Twine &Name) {
5983 IRBuilder<>::InsertPointGuard IPG(Builder);
5984 updateToLocation(Loc);
5985
5986 uint32_t SrcLocStrSize;
5987 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
5988 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
5989 Value *ThreadId = getOrCreateThreadID(Ident);
5990 Constant *ThreadPrivateCache =
5991 getOrCreateInternalVariable(Int8PtrPtr, Name.str());
5992 llvm::Value *Args[] = {Ident, ThreadId, Pointer, Size, ThreadPrivateCache};
5993
5994 Function *Fn =
5995 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_threadprivate_cached);
5996
5997 return Builder.CreateCall(Fn, Args);
5998 }
5999
6000 OpenMPIRBuilder::InsertPointTy
createTargetInit(const LocationDescription & Loc,bool IsSPMD,int32_t MinThreadsVal,int32_t MaxThreadsVal,int32_t MinTeamsVal,int32_t MaxTeamsVal)6001 OpenMPIRBuilder::createTargetInit(const LocationDescription &Loc, bool IsSPMD,
6002 int32_t MinThreadsVal, int32_t MaxThreadsVal,
6003 int32_t MinTeamsVal, int32_t MaxTeamsVal) {
6004 if (!updateToLocation(Loc))
6005 return Loc.IP;
6006
6007 uint32_t SrcLocStrSize;
6008 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
6009 Constant *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
6010 Constant *IsSPMDVal = ConstantInt::getSigned(
6011 Int8, IsSPMD ? OMP_TGT_EXEC_MODE_SPMD : OMP_TGT_EXEC_MODE_GENERIC);
6012 Constant *UseGenericStateMachineVal = ConstantInt::getSigned(Int8, !IsSPMD);
6013 Constant *MayUseNestedParallelismVal = ConstantInt::getSigned(Int8, true);
6014 Constant *DebugIndentionLevelVal = ConstantInt::getSigned(Int16, 0);
6015
6016 Function *Kernel = Builder.GetInsertBlock()->getParent();
6017
6018 // Manifest the launch configuration in the metadata matching the kernel
6019 // environment.
6020 if (MinTeamsVal > 1 || MaxTeamsVal > 0)
6021 writeTeamsForKernel(T, *Kernel, MinTeamsVal, MaxTeamsVal);
6022
6023 // For max values, < 0 means unset, == 0 means set but unknown.
6024 if (MaxThreadsVal < 0)
6025 MaxThreadsVal = std::max(
6026 int32_t(getGridValue(T, Kernel).GV_Default_WG_Size), MinThreadsVal);
6027
6028 if (MaxThreadsVal > 0)
6029 writeThreadBoundsForKernel(T, *Kernel, MinThreadsVal, MaxThreadsVal);
6030
6031 Constant *MinThreads = ConstantInt::getSigned(Int32, MinThreadsVal);
6032 Constant *MaxThreads = ConstantInt::getSigned(Int32, MaxThreadsVal);
6033 Constant *MinTeams = ConstantInt::getSigned(Int32, MinTeamsVal);
6034 Constant *MaxTeams = ConstantInt::getSigned(Int32, MaxTeamsVal);
6035 Constant *ReductionDataSize = ConstantInt::getSigned(Int32, 0);
6036 Constant *ReductionBufferLength = ConstantInt::getSigned(Int32, 0);
6037
6038 // We need to strip the debug prefix to get the correct kernel name.
6039 StringRef KernelName = Kernel->getName();
6040 const std::string DebugPrefix = "_debug__";
6041 if (KernelName.ends_with(DebugPrefix))
6042 KernelName = KernelName.drop_back(DebugPrefix.length());
6043
6044 Function *Fn = getOrCreateRuntimeFunctionPtr(
6045 omp::RuntimeFunction::OMPRTL___kmpc_target_init);
6046 const DataLayout &DL = Fn->getDataLayout();
6047
6048 Twine DynamicEnvironmentName = KernelName + "_dynamic_environment";
6049 Constant *DynamicEnvironmentInitializer =
6050 ConstantStruct::get(DynamicEnvironment, {DebugIndentionLevelVal});
6051 GlobalVariable *DynamicEnvironmentGV = new GlobalVariable(
6052 M, DynamicEnvironment, /*IsConstant=*/false, GlobalValue::WeakODRLinkage,
6053 DynamicEnvironmentInitializer, DynamicEnvironmentName,
6054 /*InsertBefore=*/nullptr, GlobalValue::NotThreadLocal,
6055 DL.getDefaultGlobalsAddressSpace());
6056 DynamicEnvironmentGV->setVisibility(GlobalValue::ProtectedVisibility);
6057
6058 Constant *DynamicEnvironment =
6059 DynamicEnvironmentGV->getType() == DynamicEnvironmentPtr
6060 ? DynamicEnvironmentGV
6061 : ConstantExpr::getAddrSpaceCast(DynamicEnvironmentGV,
6062 DynamicEnvironmentPtr);
6063
6064 Constant *ConfigurationEnvironmentInitializer = ConstantStruct::get(
6065 ConfigurationEnvironment, {
6066 UseGenericStateMachineVal,
6067 MayUseNestedParallelismVal,
6068 IsSPMDVal,
6069 MinThreads,
6070 MaxThreads,
6071 MinTeams,
6072 MaxTeams,
6073 ReductionDataSize,
6074 ReductionBufferLength,
6075 });
6076 Constant *KernelEnvironmentInitializer = ConstantStruct::get(
6077 KernelEnvironment, {
6078 ConfigurationEnvironmentInitializer,
6079 Ident,
6080 DynamicEnvironment,
6081 });
6082 std::string KernelEnvironmentName =
6083 (KernelName + "_kernel_environment").str();
6084 GlobalVariable *KernelEnvironmentGV = new GlobalVariable(
6085 M, KernelEnvironment, /*IsConstant=*/true, GlobalValue::WeakODRLinkage,
6086 KernelEnvironmentInitializer, KernelEnvironmentName,
6087 /*InsertBefore=*/nullptr, GlobalValue::NotThreadLocal,
6088 DL.getDefaultGlobalsAddressSpace());
6089 KernelEnvironmentGV->setVisibility(GlobalValue::ProtectedVisibility);
6090
6091 Constant *KernelEnvironment =
6092 KernelEnvironmentGV->getType() == KernelEnvironmentPtr
6093 ? KernelEnvironmentGV
6094 : ConstantExpr::getAddrSpaceCast(KernelEnvironmentGV,
6095 KernelEnvironmentPtr);
6096 Value *KernelLaunchEnvironment = Kernel->getArg(0);
6097 CallInst *ThreadKind =
6098 Builder.CreateCall(Fn, {KernelEnvironment, KernelLaunchEnvironment});
6099
6100 Value *ExecUserCode = Builder.CreateICmpEQ(
6101 ThreadKind, ConstantInt::get(ThreadKind->getType(), -1),
6102 "exec_user_code");
6103
6104 // ThreadKind = __kmpc_target_init(...)
6105 // if (ThreadKind == -1)
6106 // user_code
6107 // else
6108 // return;
6109
6110 auto *UI = Builder.CreateUnreachable();
6111 BasicBlock *CheckBB = UI->getParent();
6112 BasicBlock *UserCodeEntryBB = CheckBB->splitBasicBlock(UI, "user_code.entry");
6113
6114 BasicBlock *WorkerExitBB = BasicBlock::Create(
6115 CheckBB->getContext(), "worker.exit", CheckBB->getParent());
6116 Builder.SetInsertPoint(WorkerExitBB);
6117 Builder.CreateRetVoid();
6118
6119 auto *CheckBBTI = CheckBB->getTerminator();
6120 Builder.SetInsertPoint(CheckBBTI);
6121 Builder.CreateCondBr(ExecUserCode, UI->getParent(), WorkerExitBB);
6122
6123 CheckBBTI->eraseFromParent();
6124 UI->eraseFromParent();
6125
6126 // Continue in the "user_code" block, see diagram above and in
6127 // openmp/libomptarget/deviceRTLs/common/include/target.h .
6128 return InsertPointTy(UserCodeEntryBB, UserCodeEntryBB->getFirstInsertionPt());
6129 }
6130
createTargetDeinit(const LocationDescription & Loc,int32_t TeamsReductionDataSize,int32_t TeamsReductionBufferLength)6131 void OpenMPIRBuilder::createTargetDeinit(const LocationDescription &Loc,
6132 int32_t TeamsReductionDataSize,
6133 int32_t TeamsReductionBufferLength) {
6134 if (!updateToLocation(Loc))
6135 return;
6136
6137 Function *Fn = getOrCreateRuntimeFunctionPtr(
6138 omp::RuntimeFunction::OMPRTL___kmpc_target_deinit);
6139
6140 Builder.CreateCall(Fn, {});
6141
6142 if (!TeamsReductionBufferLength || !TeamsReductionDataSize)
6143 return;
6144
6145 Function *Kernel = Builder.GetInsertBlock()->getParent();
6146 // We need to strip the debug prefix to get the correct kernel name.
6147 StringRef KernelName = Kernel->getName();
6148 const std::string DebugPrefix = "_debug__";
6149 if (KernelName.ends_with(DebugPrefix))
6150 KernelName = KernelName.drop_back(DebugPrefix.length());
6151 auto *KernelEnvironmentGV =
6152 M.getNamedGlobal((KernelName + "_kernel_environment").str());
6153 assert(KernelEnvironmentGV && "Expected kernel environment global\n");
6154 auto *KernelEnvironmentInitializer = KernelEnvironmentGV->getInitializer();
6155 auto *NewInitializer = ConstantFoldInsertValueInstruction(
6156 KernelEnvironmentInitializer,
6157 ConstantInt::get(Int32, TeamsReductionDataSize), {0, 7});
6158 NewInitializer = ConstantFoldInsertValueInstruction(
6159 NewInitializer, ConstantInt::get(Int32, TeamsReductionBufferLength),
6160 {0, 8});
6161 KernelEnvironmentGV->setInitializer(NewInitializer);
6162 }
6163
getNVPTXMDNode(Function & Kernel,StringRef Name)6164 static MDNode *getNVPTXMDNode(Function &Kernel, StringRef Name) {
6165 Module &M = *Kernel.getParent();
6166 NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations");
6167 for (auto *Op : MD->operands()) {
6168 if (Op->getNumOperands() != 3)
6169 continue;
6170 auto *KernelOp = dyn_cast<ConstantAsMetadata>(Op->getOperand(0));
6171 if (!KernelOp || KernelOp->getValue() != &Kernel)
6172 continue;
6173 auto *Prop = dyn_cast<MDString>(Op->getOperand(1));
6174 if (!Prop || Prop->getString() != Name)
6175 continue;
6176 return Op;
6177 }
6178 return nullptr;
6179 }
6180
updateNVPTXMetadata(Function & Kernel,StringRef Name,int32_t Value,bool Min)6181 static void updateNVPTXMetadata(Function &Kernel, StringRef Name, int32_t Value,
6182 bool Min) {
6183 // Update the "maxntidx" metadata for NVIDIA, or add it.
6184 MDNode *ExistingOp = getNVPTXMDNode(Kernel, Name);
6185 if (ExistingOp) {
6186 auto *OldVal = cast<ConstantAsMetadata>(ExistingOp->getOperand(2));
6187 int32_t OldLimit = cast<ConstantInt>(OldVal->getValue())->getZExtValue();
6188 ExistingOp->replaceOperandWith(
6189 2, ConstantAsMetadata::get(ConstantInt::get(
6190 OldVal->getValue()->getType(),
6191 Min ? std::min(OldLimit, Value) : std::max(OldLimit, Value))));
6192 } else {
6193 LLVMContext &Ctx = Kernel.getContext();
6194 Metadata *MDVals[] = {ConstantAsMetadata::get(&Kernel),
6195 MDString::get(Ctx, Name),
6196 ConstantAsMetadata::get(
6197 ConstantInt::get(Type::getInt32Ty(Ctx), Value))};
6198 // Append metadata to nvvm.annotations
6199 Module &M = *Kernel.getParent();
6200 NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations");
6201 MD->addOperand(MDNode::get(Ctx, MDVals));
6202 }
6203 }
6204
6205 std::pair<int32_t, int32_t>
readThreadBoundsForKernel(const Triple & T,Function & Kernel)6206 OpenMPIRBuilder::readThreadBoundsForKernel(const Triple &T, Function &Kernel) {
6207 int32_t ThreadLimit =
6208 Kernel.getFnAttributeAsParsedInteger("omp_target_thread_limit");
6209
6210 if (T.isAMDGPU()) {
6211 const auto &Attr = Kernel.getFnAttribute("amdgpu-flat-work-group-size");
6212 if (!Attr.isValid() || !Attr.isStringAttribute())
6213 return {0, ThreadLimit};
6214 auto [LBStr, UBStr] = Attr.getValueAsString().split(',');
6215 int32_t LB, UB;
6216 if (!llvm::to_integer(UBStr, UB, 10))
6217 return {0, ThreadLimit};
6218 UB = ThreadLimit ? std::min(ThreadLimit, UB) : UB;
6219 if (!llvm::to_integer(LBStr, LB, 10))
6220 return {0, UB};
6221 return {LB, UB};
6222 }
6223
6224 if (MDNode *ExistingOp = getNVPTXMDNode(Kernel, "maxntidx")) {
6225 auto *OldVal = cast<ConstantAsMetadata>(ExistingOp->getOperand(2));
6226 int32_t UB = cast<ConstantInt>(OldVal->getValue())->getZExtValue();
6227 return {0, ThreadLimit ? std::min(ThreadLimit, UB) : UB};
6228 }
6229 return {0, ThreadLimit};
6230 }
6231
writeThreadBoundsForKernel(const Triple & T,Function & Kernel,int32_t LB,int32_t UB)6232 void OpenMPIRBuilder::writeThreadBoundsForKernel(const Triple &T,
6233 Function &Kernel, int32_t LB,
6234 int32_t UB) {
6235 Kernel.addFnAttr("omp_target_thread_limit", std::to_string(UB));
6236
6237 if (T.isAMDGPU()) {
6238 Kernel.addFnAttr("amdgpu-flat-work-group-size",
6239 llvm::utostr(LB) + "," + llvm::utostr(UB));
6240 return;
6241 }
6242
6243 updateNVPTXMetadata(Kernel, "maxntidx", UB, true);
6244 }
6245
6246 std::pair<int32_t, int32_t>
readTeamBoundsForKernel(const Triple &,Function & Kernel)6247 OpenMPIRBuilder::readTeamBoundsForKernel(const Triple &, Function &Kernel) {
6248 // TODO: Read from backend annotations if available.
6249 return {0, Kernel.getFnAttributeAsParsedInteger("omp_target_num_teams")};
6250 }
6251
writeTeamsForKernel(const Triple & T,Function & Kernel,int32_t LB,int32_t UB)6252 void OpenMPIRBuilder::writeTeamsForKernel(const Triple &T, Function &Kernel,
6253 int32_t LB, int32_t UB) {
6254 if (T.isNVPTX())
6255 if (UB > 0)
6256 updateNVPTXMetadata(Kernel, "maxclusterrank", UB, true);
6257 if (T.isAMDGPU())
6258 Kernel.addFnAttr("amdgpu-max-num-workgroups", llvm::utostr(LB) + ",1,1");
6259
6260 Kernel.addFnAttr("omp_target_num_teams", std::to_string(LB));
6261 }
6262
setOutlinedTargetRegionFunctionAttributes(Function * OutlinedFn)6263 void OpenMPIRBuilder::setOutlinedTargetRegionFunctionAttributes(
6264 Function *OutlinedFn) {
6265 if (Config.isTargetDevice()) {
6266 OutlinedFn->setLinkage(GlobalValue::WeakODRLinkage);
6267 // TODO: Determine if DSO local can be set to true.
6268 OutlinedFn->setDSOLocal(false);
6269 OutlinedFn->setVisibility(GlobalValue::ProtectedVisibility);
6270 if (T.isAMDGCN())
6271 OutlinedFn->setCallingConv(CallingConv::AMDGPU_KERNEL);
6272 }
6273 }
6274
createOutlinedFunctionID(Function * OutlinedFn,StringRef EntryFnIDName)6275 Constant *OpenMPIRBuilder::createOutlinedFunctionID(Function *OutlinedFn,
6276 StringRef EntryFnIDName) {
6277 if (Config.isTargetDevice()) {
6278 assert(OutlinedFn && "The outlined function must exist if embedded");
6279 return OutlinedFn;
6280 }
6281
6282 return new GlobalVariable(
6283 M, Builder.getInt8Ty(), /*isConstant=*/true, GlobalValue::WeakAnyLinkage,
6284 Constant::getNullValue(Builder.getInt8Ty()), EntryFnIDName);
6285 }
6286
createTargetRegionEntryAddr(Function * OutlinedFn,StringRef EntryFnName)6287 Constant *OpenMPIRBuilder::createTargetRegionEntryAddr(Function *OutlinedFn,
6288 StringRef EntryFnName) {
6289 if (OutlinedFn)
6290 return OutlinedFn;
6291
6292 assert(!M.getGlobalVariable(EntryFnName, true) &&
6293 "Named kernel already exists?");
6294 return new GlobalVariable(
6295 M, Builder.getInt8Ty(), /*isConstant=*/true, GlobalValue::InternalLinkage,
6296 Constant::getNullValue(Builder.getInt8Ty()), EntryFnName);
6297 }
6298
emitTargetRegionFunction(TargetRegionEntryInfo & EntryInfo,FunctionGenCallback & GenerateFunctionCallback,bool IsOffloadEntry,Function * & OutlinedFn,Constant * & OutlinedFnID)6299 void OpenMPIRBuilder::emitTargetRegionFunction(
6300 TargetRegionEntryInfo &EntryInfo,
6301 FunctionGenCallback &GenerateFunctionCallback, bool IsOffloadEntry,
6302 Function *&OutlinedFn, Constant *&OutlinedFnID) {
6303
6304 SmallString<64> EntryFnName;
6305 OffloadInfoManager.getTargetRegionEntryFnName(EntryFnName, EntryInfo);
6306
6307 OutlinedFn = Config.isTargetDevice() || !Config.openMPOffloadMandatory()
6308 ? GenerateFunctionCallback(EntryFnName)
6309 : nullptr;
6310
6311 // If this target outline function is not an offload entry, we don't need to
6312 // register it. This may be in the case of a false if clause, or if there are
6313 // no OpenMP targets.
6314 if (!IsOffloadEntry)
6315 return;
6316
6317 std::string EntryFnIDName =
6318 Config.isTargetDevice()
6319 ? std::string(EntryFnName)
6320 : createPlatformSpecificName({EntryFnName, "region_id"});
6321
6322 OutlinedFnID = registerTargetRegionFunction(EntryInfo, OutlinedFn,
6323 EntryFnName, EntryFnIDName);
6324 }
6325
registerTargetRegionFunction(TargetRegionEntryInfo & EntryInfo,Function * OutlinedFn,StringRef EntryFnName,StringRef EntryFnIDName)6326 Constant *OpenMPIRBuilder::registerTargetRegionFunction(
6327 TargetRegionEntryInfo &EntryInfo, Function *OutlinedFn,
6328 StringRef EntryFnName, StringRef EntryFnIDName) {
6329 if (OutlinedFn)
6330 setOutlinedTargetRegionFunctionAttributes(OutlinedFn);
6331 auto OutlinedFnID = createOutlinedFunctionID(OutlinedFn, EntryFnIDName);
6332 auto EntryAddr = createTargetRegionEntryAddr(OutlinedFn, EntryFnName);
6333 OffloadInfoManager.registerTargetRegionEntryInfo(
6334 EntryInfo, EntryAddr, OutlinedFnID,
6335 OffloadEntriesInfoManager::OMPTargetRegionEntryTargetRegion);
6336 return OutlinedFnID;
6337 }
6338
createTargetData(const LocationDescription & Loc,InsertPointTy AllocaIP,InsertPointTy CodeGenIP,Value * DeviceID,Value * IfCond,TargetDataInfo & Info,GenMapInfoCallbackTy GenMapInfoCB,omp::RuntimeFunction * MapperFunc,function_ref<InsertPointTy (InsertPointTy CodeGenIP,BodyGenTy BodyGenType)> BodyGenCB,function_ref<void (unsigned int,Value *)> DeviceAddrCB,function_ref<Value * (unsigned int)> CustomMapperCB,Value * SrcLocInfo)6339 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createTargetData(
6340 const LocationDescription &Loc, InsertPointTy AllocaIP,
6341 InsertPointTy CodeGenIP, Value *DeviceID, Value *IfCond,
6342 TargetDataInfo &Info, GenMapInfoCallbackTy GenMapInfoCB,
6343 omp::RuntimeFunction *MapperFunc,
6344 function_ref<InsertPointTy(InsertPointTy CodeGenIP, BodyGenTy BodyGenType)>
6345 BodyGenCB,
6346 function_ref<void(unsigned int, Value *)> DeviceAddrCB,
6347 function_ref<Value *(unsigned int)> CustomMapperCB, Value *SrcLocInfo) {
6348 if (!updateToLocation(Loc))
6349 return InsertPointTy();
6350
6351 // Disable TargetData CodeGen on Device pass.
6352 if (Config.IsTargetDevice.value_or(false)) {
6353 if (BodyGenCB)
6354 Builder.restoreIP(BodyGenCB(Builder.saveIP(), BodyGenTy::NoPriv));
6355 return Builder.saveIP();
6356 }
6357
6358 Builder.restoreIP(CodeGenIP);
6359 bool IsStandAlone = !BodyGenCB;
6360 MapInfosTy *MapInfo;
6361 // Generate the code for the opening of the data environment. Capture all the
6362 // arguments of the runtime call by reference because they are used in the
6363 // closing of the region.
6364 auto BeginThenGen = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) {
6365 MapInfo = &GenMapInfoCB(Builder.saveIP());
6366 emitOffloadingArrays(AllocaIP, Builder.saveIP(), *MapInfo, Info,
6367 /*IsNonContiguous=*/true, DeviceAddrCB,
6368 CustomMapperCB);
6369
6370 TargetDataRTArgs RTArgs;
6371 emitOffloadingArraysArgument(Builder, RTArgs, Info,
6372 !MapInfo->Names.empty());
6373
6374 // Emit the number of elements in the offloading arrays.
6375 Value *PointerNum = Builder.getInt32(Info.NumberOfPtrs);
6376
6377 // Source location for the ident struct
6378 if (!SrcLocInfo) {
6379 uint32_t SrcLocStrSize;
6380 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
6381 SrcLocInfo = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
6382 }
6383
6384 Value *OffloadingArgs[] = {SrcLocInfo, DeviceID,
6385 PointerNum, RTArgs.BasePointersArray,
6386 RTArgs.PointersArray, RTArgs.SizesArray,
6387 RTArgs.MapTypesArray, RTArgs.MapNamesArray,
6388 RTArgs.MappersArray};
6389
6390 if (IsStandAlone) {
6391 assert(MapperFunc && "MapperFunc missing for standalone target data");
6392 Builder.CreateCall(getOrCreateRuntimeFunctionPtr(*MapperFunc),
6393 OffloadingArgs);
6394 } else {
6395 Function *BeginMapperFunc = getOrCreateRuntimeFunctionPtr(
6396 omp::OMPRTL___tgt_target_data_begin_mapper);
6397
6398 Builder.CreateCall(BeginMapperFunc, OffloadingArgs);
6399
6400 for (auto DeviceMap : Info.DevicePtrInfoMap) {
6401 if (isa<AllocaInst>(DeviceMap.second.second)) {
6402 auto *LI =
6403 Builder.CreateLoad(Builder.getPtrTy(), DeviceMap.second.first);
6404 Builder.CreateStore(LI, DeviceMap.second.second);
6405 }
6406 }
6407
6408 // If device pointer privatization is required, emit the body of the
6409 // region here. It will have to be duplicated: with and without
6410 // privatization.
6411 Builder.restoreIP(BodyGenCB(Builder.saveIP(), BodyGenTy::Priv));
6412 }
6413 };
6414
6415 // If we need device pointer privatization, we need to emit the body of the
6416 // region with no privatization in the 'else' branch of the conditional.
6417 // Otherwise, we don't have to do anything.
6418 auto BeginElseGen = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) {
6419 Builder.restoreIP(BodyGenCB(Builder.saveIP(), BodyGenTy::DupNoPriv));
6420 };
6421
6422 // Generate code for the closing of the data region.
6423 auto EndThenGen = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) {
6424 TargetDataRTArgs RTArgs;
6425 emitOffloadingArraysArgument(Builder, RTArgs, Info, !MapInfo->Names.empty(),
6426 /*ForEndCall=*/true);
6427
6428 // Emit the number of elements in the offloading arrays.
6429 Value *PointerNum = Builder.getInt32(Info.NumberOfPtrs);
6430
6431 // Source location for the ident struct
6432 if (!SrcLocInfo) {
6433 uint32_t SrcLocStrSize;
6434 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
6435 SrcLocInfo = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
6436 }
6437
6438 Value *OffloadingArgs[] = {SrcLocInfo, DeviceID,
6439 PointerNum, RTArgs.BasePointersArray,
6440 RTArgs.PointersArray, RTArgs.SizesArray,
6441 RTArgs.MapTypesArray, RTArgs.MapNamesArray,
6442 RTArgs.MappersArray};
6443 Function *EndMapperFunc =
6444 getOrCreateRuntimeFunctionPtr(omp::OMPRTL___tgt_target_data_end_mapper);
6445
6446 Builder.CreateCall(EndMapperFunc, OffloadingArgs);
6447 };
6448
6449 // We don't have to do anything to close the region if the if clause evaluates
6450 // to false.
6451 auto EndElseGen = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) {};
6452
6453 if (BodyGenCB) {
6454 if (IfCond) {
6455 emitIfClause(IfCond, BeginThenGen, BeginElseGen, AllocaIP);
6456 } else {
6457 BeginThenGen(AllocaIP, Builder.saveIP());
6458 }
6459
6460 // If we don't require privatization of device pointers, we emit the body in
6461 // between the runtime calls. This avoids duplicating the body code.
6462 Builder.restoreIP(BodyGenCB(Builder.saveIP(), BodyGenTy::NoPriv));
6463
6464 if (IfCond) {
6465 emitIfClause(IfCond, EndThenGen, EndElseGen, AllocaIP);
6466 } else {
6467 EndThenGen(AllocaIP, Builder.saveIP());
6468 }
6469 } else {
6470 if (IfCond) {
6471 emitIfClause(IfCond, BeginThenGen, EndElseGen, AllocaIP);
6472 } else {
6473 BeginThenGen(AllocaIP, Builder.saveIP());
6474 }
6475 }
6476
6477 return Builder.saveIP();
6478 }
6479
6480 FunctionCallee
createForStaticInitFunction(unsigned IVSize,bool IVSigned,bool IsGPUDistribute)6481 OpenMPIRBuilder::createForStaticInitFunction(unsigned IVSize, bool IVSigned,
6482 bool IsGPUDistribute) {
6483 assert((IVSize == 32 || IVSize == 64) &&
6484 "IV size is not compatible with the omp runtime");
6485 RuntimeFunction Name;
6486 if (IsGPUDistribute)
6487 Name = IVSize == 32
6488 ? (IVSigned ? omp::OMPRTL___kmpc_distribute_static_init_4
6489 : omp::OMPRTL___kmpc_distribute_static_init_4u)
6490 : (IVSigned ? omp::OMPRTL___kmpc_distribute_static_init_8
6491 : omp::OMPRTL___kmpc_distribute_static_init_8u);
6492 else
6493 Name = IVSize == 32 ? (IVSigned ? omp::OMPRTL___kmpc_for_static_init_4
6494 : omp::OMPRTL___kmpc_for_static_init_4u)
6495 : (IVSigned ? omp::OMPRTL___kmpc_for_static_init_8
6496 : omp::OMPRTL___kmpc_for_static_init_8u);
6497
6498 return getOrCreateRuntimeFunction(M, Name);
6499 }
6500
createDispatchInitFunction(unsigned IVSize,bool IVSigned)6501 FunctionCallee OpenMPIRBuilder::createDispatchInitFunction(unsigned IVSize,
6502 bool IVSigned) {
6503 assert((IVSize == 32 || IVSize == 64) &&
6504 "IV size is not compatible with the omp runtime");
6505 RuntimeFunction Name = IVSize == 32
6506 ? (IVSigned ? omp::OMPRTL___kmpc_dispatch_init_4
6507 : omp::OMPRTL___kmpc_dispatch_init_4u)
6508 : (IVSigned ? omp::OMPRTL___kmpc_dispatch_init_8
6509 : omp::OMPRTL___kmpc_dispatch_init_8u);
6510
6511 return getOrCreateRuntimeFunction(M, Name);
6512 }
6513
createDispatchNextFunction(unsigned IVSize,bool IVSigned)6514 FunctionCallee OpenMPIRBuilder::createDispatchNextFunction(unsigned IVSize,
6515 bool IVSigned) {
6516 assert((IVSize == 32 || IVSize == 64) &&
6517 "IV size is not compatible with the omp runtime");
6518 RuntimeFunction Name = IVSize == 32
6519 ? (IVSigned ? omp::OMPRTL___kmpc_dispatch_next_4
6520 : omp::OMPRTL___kmpc_dispatch_next_4u)
6521 : (IVSigned ? omp::OMPRTL___kmpc_dispatch_next_8
6522 : omp::OMPRTL___kmpc_dispatch_next_8u);
6523
6524 return getOrCreateRuntimeFunction(M, Name);
6525 }
6526
createDispatchFiniFunction(unsigned IVSize,bool IVSigned)6527 FunctionCallee OpenMPIRBuilder::createDispatchFiniFunction(unsigned IVSize,
6528 bool IVSigned) {
6529 assert((IVSize == 32 || IVSize == 64) &&
6530 "IV size is not compatible with the omp runtime");
6531 RuntimeFunction Name = IVSize == 32
6532 ? (IVSigned ? omp::OMPRTL___kmpc_dispatch_fini_4
6533 : omp::OMPRTL___kmpc_dispatch_fini_4u)
6534 : (IVSigned ? omp::OMPRTL___kmpc_dispatch_fini_8
6535 : omp::OMPRTL___kmpc_dispatch_fini_8u);
6536
6537 return getOrCreateRuntimeFunction(M, Name);
6538 }
6539
createDispatchDeinitFunction()6540 FunctionCallee OpenMPIRBuilder::createDispatchDeinitFunction() {
6541 return getOrCreateRuntimeFunction(M, omp::OMPRTL___kmpc_dispatch_deinit);
6542 }
6543
createOutlinedFunction(OpenMPIRBuilder & OMPBuilder,IRBuilderBase & Builder,StringRef FuncName,SmallVectorImpl<Value * > & Inputs,OpenMPIRBuilder::TargetBodyGenCallbackTy & CBFunc,OpenMPIRBuilder::TargetGenArgAccessorsCallbackTy & ArgAccessorFuncCB)6544 static Function *createOutlinedFunction(
6545 OpenMPIRBuilder &OMPBuilder, IRBuilderBase &Builder, StringRef FuncName,
6546 SmallVectorImpl<Value *> &Inputs,
6547 OpenMPIRBuilder::TargetBodyGenCallbackTy &CBFunc,
6548 OpenMPIRBuilder::TargetGenArgAccessorsCallbackTy &ArgAccessorFuncCB) {
6549 SmallVector<Type *> ParameterTypes;
6550 if (OMPBuilder.Config.isTargetDevice()) {
6551 // Add the "implicit" runtime argument we use to provide launch specific
6552 // information for target devices.
6553 auto *Int8PtrTy = PointerType::getUnqual(Builder.getContext());
6554 ParameterTypes.push_back(Int8PtrTy);
6555
6556 // All parameters to target devices are passed as pointers
6557 // or i64. This assumes 64-bit address spaces/pointers.
6558 for (auto &Arg : Inputs)
6559 ParameterTypes.push_back(Arg->getType()->isPointerTy()
6560 ? Arg->getType()
6561 : Type::getInt64Ty(Builder.getContext()));
6562 } else {
6563 for (auto &Arg : Inputs)
6564 ParameterTypes.push_back(Arg->getType());
6565 }
6566
6567 auto FuncType = FunctionType::get(Builder.getVoidTy(), ParameterTypes,
6568 /*isVarArg*/ false);
6569 auto Func = Function::Create(FuncType, GlobalValue::InternalLinkage, FuncName,
6570 Builder.GetInsertBlock()->getModule());
6571
6572 // Save insert point.
6573 auto OldInsertPoint = Builder.saveIP();
6574
6575 // Generate the region into the function.
6576 BasicBlock *EntryBB = BasicBlock::Create(Builder.getContext(), "entry", Func);
6577 Builder.SetInsertPoint(EntryBB);
6578
6579 // Insert target init call in the device compilation pass.
6580 if (OMPBuilder.Config.isTargetDevice())
6581 Builder.restoreIP(OMPBuilder.createTargetInit(Builder, /*IsSPMD*/ false));
6582
6583 BasicBlock *UserCodeEntryBB = Builder.GetInsertBlock();
6584
6585 // As we embed the user code in the middle of our target region after we
6586 // generate entry code, we must move what allocas we can into the entry
6587 // block to avoid possible breaking optimisations for device
6588 if (OMPBuilder.Config.isTargetDevice())
6589 OMPBuilder.ConstantAllocaRaiseCandidates.emplace_back(Func);
6590
6591 // Insert target deinit call in the device compilation pass.
6592 Builder.restoreIP(CBFunc(Builder.saveIP(), Builder.saveIP()));
6593 if (OMPBuilder.Config.isTargetDevice())
6594 OMPBuilder.createTargetDeinit(Builder);
6595
6596 // Insert return instruction.
6597 Builder.CreateRetVoid();
6598
6599 // New Alloca IP at entry point of created device function.
6600 Builder.SetInsertPoint(EntryBB->getFirstNonPHI());
6601 auto AllocaIP = Builder.saveIP();
6602
6603 Builder.SetInsertPoint(UserCodeEntryBB->getFirstNonPHIOrDbg());
6604
6605 // Skip the artificial dyn_ptr on the device.
6606 const auto &ArgRange =
6607 OMPBuilder.Config.isTargetDevice()
6608 ? make_range(Func->arg_begin() + 1, Func->arg_end())
6609 : Func->args();
6610
6611 auto ReplaceValue = [](Value *Input, Value *InputCopy, Function *Func) {
6612 // Things like GEP's can come in the form of Constants. Constants and
6613 // ConstantExpr's do not have access to the knowledge of what they're
6614 // contained in, so we must dig a little to find an instruction so we
6615 // can tell if they're used inside of the function we're outlining. We
6616 // also replace the original constant expression with a new instruction
6617 // equivalent; an instruction as it allows easy modification in the
6618 // following loop, as we can now know the constant (instruction) is
6619 // owned by our target function and replaceUsesOfWith can now be invoked
6620 // on it (cannot do this with constants it seems). A brand new one also
6621 // allows us to be cautious as it is perhaps possible the old expression
6622 // was used inside of the function but exists and is used externally
6623 // (unlikely by the nature of a Constant, but still).
6624 // NOTE: We cannot remove dead constants that have been rewritten to
6625 // instructions at this stage, we run the risk of breaking later lowering
6626 // by doing so as we could still be in the process of lowering the module
6627 // from MLIR to LLVM-IR and the MLIR lowering may still require the original
6628 // constants we have created rewritten versions of.
6629 if (auto *Const = dyn_cast<Constant>(Input))
6630 convertUsersOfConstantsToInstructions(Const, Func, false);
6631
6632 // Collect all the instructions
6633 for (User *User : make_early_inc_range(Input->users()))
6634 if (auto *Instr = dyn_cast<Instruction>(User))
6635 if (Instr->getFunction() == Func)
6636 Instr->replaceUsesOfWith(Input, InputCopy);
6637 };
6638
6639 SmallVector<std::pair<Value *, Value *>> DeferredReplacement;
6640
6641 // Rewrite uses of input valus to parameters.
6642 for (auto InArg : zip(Inputs, ArgRange)) {
6643 Value *Input = std::get<0>(InArg);
6644 Argument &Arg = std::get<1>(InArg);
6645 Value *InputCopy = nullptr;
6646
6647 Builder.restoreIP(
6648 ArgAccessorFuncCB(Arg, Input, InputCopy, AllocaIP, Builder.saveIP()));
6649
6650 // In certain cases a Global may be set up for replacement, however, this
6651 // Global may be used in multiple arguments to the kernel, just segmented
6652 // apart, for example, if we have a global array, that is sectioned into
6653 // multiple mappings (technically not legal in OpenMP, but there is a case
6654 // in Fortran for Common Blocks where this is neccesary), we will end up
6655 // with GEP's into this array inside the kernel, that refer to the Global
6656 // but are technically seperate arguments to the kernel for all intents and
6657 // purposes. If we have mapped a segment that requires a GEP into the 0-th
6658 // index, it will fold into an referal to the Global, if we then encounter
6659 // this folded GEP during replacement all of the references to the
6660 // Global in the kernel will be replaced with the argument we have generated
6661 // that corresponds to it, including any other GEP's that refer to the
6662 // Global that may be other arguments. This will invalidate all of the other
6663 // preceding mapped arguments that refer to the same global that may be
6664 // seperate segments. To prevent this, we defer global processing until all
6665 // other processing has been performed.
6666 if (llvm::isa<llvm::GlobalValue>(std::get<0>(InArg)) ||
6667 llvm::isa<llvm::GlobalObject>(std::get<0>(InArg)) ||
6668 llvm::isa<llvm::GlobalVariable>(std::get<0>(InArg))) {
6669 DeferredReplacement.push_back(std::make_pair(Input, InputCopy));
6670 continue;
6671 }
6672
6673 ReplaceValue(Input, InputCopy, Func);
6674 }
6675
6676 // Replace all of our deferred Input values, currently just Globals.
6677 for (auto Deferred : DeferredReplacement)
6678 ReplaceValue(std::get<0>(Deferred), std::get<1>(Deferred), Func);
6679
6680 // Restore insert point.
6681 Builder.restoreIP(OldInsertPoint);
6682
6683 return Func;
6684 }
6685
6686 /// Create an entry point for a target task with the following.
6687 /// It'll have the following signature
6688 /// void @.omp_target_task_proxy_func(i32 %thread.id, ptr %task)
6689 /// This function is called from emitTargetTask once the
6690 /// code to launch the target kernel has been outlined already.
emitTargetTaskProxyFunction(OpenMPIRBuilder & OMPBuilder,IRBuilderBase & Builder,CallInst * StaleCI)6691 static Function *emitTargetTaskProxyFunction(OpenMPIRBuilder &OMPBuilder,
6692 IRBuilderBase &Builder,
6693 CallInst *StaleCI) {
6694 Module &M = OMPBuilder.M;
6695 // KernelLaunchFunction is the target launch function, i.e.
6696 // the function that sets up kernel arguments and calls
6697 // __tgt_target_kernel to launch the kernel on the device.
6698 //
6699 Function *KernelLaunchFunction = StaleCI->getCalledFunction();
6700
6701 // StaleCI is the CallInst which is the call to the outlined
6702 // target kernel launch function. If there are values that the
6703 // outlined function uses then these are aggregated into a structure
6704 // which is passed as the second argument. If not, then there's
6705 // only one argument, the threadID. So, StaleCI can be
6706 //
6707 // %structArg = alloca { ptr, ptr }, align 8
6708 // %gep_ = getelementptr { ptr, ptr }, ptr %structArg, i32 0, i32 0
6709 // store ptr %20, ptr %gep_, align 8
6710 // %gep_8 = getelementptr { ptr, ptr }, ptr %structArg, i32 0, i32 1
6711 // store ptr %21, ptr %gep_8, align 8
6712 // call void @_QQmain..omp_par.1(i32 %global.tid.val6, ptr %structArg)
6713 //
6714 // OR
6715 //
6716 // call void @_QQmain..omp_par.1(i32 %global.tid.val6)
6717 OpenMPIRBuilder::InsertPointTy IP(StaleCI->getParent(),
6718 StaleCI->getIterator());
6719 LLVMContext &Ctx = StaleCI->getParent()->getContext();
6720 Type *ThreadIDTy = Type::getInt32Ty(Ctx);
6721 Type *TaskPtrTy = OMPBuilder.TaskPtr;
6722 Type *TaskTy = OMPBuilder.Task;
6723 auto ProxyFnTy =
6724 FunctionType::get(Builder.getVoidTy(), {ThreadIDTy, TaskPtrTy},
6725 /* isVarArg */ false);
6726 auto ProxyFn = Function::Create(ProxyFnTy, GlobalValue::InternalLinkage,
6727 ".omp_target_task_proxy_func",
6728 Builder.GetInsertBlock()->getModule());
6729 ProxyFn->getArg(0)->setName("thread.id");
6730 ProxyFn->getArg(1)->setName("task");
6731
6732 BasicBlock *EntryBB =
6733 BasicBlock::Create(Builder.getContext(), "entry", ProxyFn);
6734 Builder.SetInsertPoint(EntryBB);
6735
6736 bool HasShareds = StaleCI->arg_size() > 1;
6737 // TODO: This is a temporary assert to prove to ourselves that
6738 // the outlined target launch function is always going to have
6739 // atmost two arguments if there is any data shared between
6740 // host and device.
6741 assert((!HasShareds || (StaleCI->arg_size() == 2)) &&
6742 "StaleCI with shareds should have exactly two arguments.");
6743 if (HasShareds) {
6744 auto *ArgStructAlloca = dyn_cast<AllocaInst>(StaleCI->getArgOperand(1));
6745 assert(ArgStructAlloca &&
6746 "Unable to find the alloca instruction corresponding to arguments "
6747 "for extracted function");
6748 auto *ArgStructType =
6749 dyn_cast<StructType>(ArgStructAlloca->getAllocatedType());
6750
6751 AllocaInst *NewArgStructAlloca =
6752 Builder.CreateAlloca(ArgStructType, nullptr, "structArg");
6753 Value *TaskT = ProxyFn->getArg(1);
6754 Value *ThreadId = ProxyFn->getArg(0);
6755 Value *SharedsSize =
6756 Builder.getInt64(M.getDataLayout().getTypeStoreSize(ArgStructType));
6757
6758 Value *Shareds = Builder.CreateStructGEP(TaskTy, TaskT, 0);
6759 LoadInst *LoadShared =
6760 Builder.CreateLoad(PointerType::getUnqual(Ctx), Shareds);
6761
6762 Builder.CreateMemCpy(
6763 NewArgStructAlloca, NewArgStructAlloca->getAlign(), LoadShared,
6764 LoadShared->getPointerAlignment(M.getDataLayout()), SharedsSize);
6765
6766 Builder.CreateCall(KernelLaunchFunction, {ThreadId, NewArgStructAlloca});
6767 }
6768 Builder.CreateRetVoid();
6769 return ProxyFn;
6770 }
emitTargetOutlinedFunction(OpenMPIRBuilder & OMPBuilder,IRBuilderBase & Builder,TargetRegionEntryInfo & EntryInfo,Function * & OutlinedFn,Constant * & OutlinedFnID,SmallVectorImpl<Value * > & Inputs,OpenMPIRBuilder::TargetBodyGenCallbackTy & CBFunc,OpenMPIRBuilder::TargetGenArgAccessorsCallbackTy & ArgAccessorFuncCB)6771 static void emitTargetOutlinedFunction(
6772 OpenMPIRBuilder &OMPBuilder, IRBuilderBase &Builder,
6773 TargetRegionEntryInfo &EntryInfo, Function *&OutlinedFn,
6774 Constant *&OutlinedFnID, SmallVectorImpl<Value *> &Inputs,
6775 OpenMPIRBuilder::TargetBodyGenCallbackTy &CBFunc,
6776 OpenMPIRBuilder::TargetGenArgAccessorsCallbackTy &ArgAccessorFuncCB) {
6777
6778 OpenMPIRBuilder::FunctionGenCallback &&GenerateOutlinedFunction =
6779 [&OMPBuilder, &Builder, &Inputs, &CBFunc,
6780 &ArgAccessorFuncCB](StringRef EntryFnName) {
6781 return createOutlinedFunction(OMPBuilder, Builder, EntryFnName, Inputs,
6782 CBFunc, ArgAccessorFuncCB);
6783 };
6784
6785 OMPBuilder.emitTargetRegionFunction(EntryInfo, GenerateOutlinedFunction, true,
6786 OutlinedFn, OutlinedFnID);
6787 }
emitTargetTask(Function * OutlinedFn,Value * OutlinedFnID,EmitFallbackCallbackTy EmitTargetCallFallbackCB,TargetKernelArgs & Args,Value * DeviceID,Value * RTLoc,OpenMPIRBuilder::InsertPointTy AllocaIP,SmallVector<llvm::OpenMPIRBuilder::DependData> & Dependencies,bool HasNoWait)6788 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::emitTargetTask(
6789 Function *OutlinedFn, Value *OutlinedFnID,
6790 EmitFallbackCallbackTy EmitTargetCallFallbackCB, TargetKernelArgs &Args,
6791 Value *DeviceID, Value *RTLoc, OpenMPIRBuilder::InsertPointTy AllocaIP,
6792 SmallVector<llvm::OpenMPIRBuilder::DependData> &Dependencies,
6793 bool HasNoWait) {
6794
6795 // When we arrive at this function, the target region itself has been
6796 // outlined into the function OutlinedFn.
6797 // So at ths point, for
6798 // --------------------------------------------------
6799 // void user_code_that_offloads(...) {
6800 // omp target depend(..) map(from:a) map(to:b, c)
6801 // a = b + c
6802 // }
6803 //
6804 // --------------------------------------------------
6805 //
6806 // we have
6807 //
6808 // --------------------------------------------------
6809 //
6810 // void user_code_that_offloads(...) {
6811 // %.offload_baseptrs = alloca [3 x ptr], align 8
6812 // %.offload_ptrs = alloca [3 x ptr], align 8
6813 // %.offload_mappers = alloca [3 x ptr], align 8
6814 // ;; target region has been outlined and now we need to
6815 // ;; offload to it via a target task.
6816 // }
6817 // void outlined_device_function(ptr a, ptr b, ptr c) {
6818 // *a = *b + *c
6819 // }
6820 //
6821 // We have to now do the following
6822 // (i) Make an offloading call to outlined_device_function using the OpenMP
6823 // RTL. See 'kernel_launch_function' in the pseudo code below. This is
6824 // emitted by emitKernelLaunch
6825 // (ii) Create a task entry point function that calls kernel_launch_function
6826 // and is the entry point for the target task. See
6827 // '@.omp_target_task_proxy_func in the pseudocode below.
6828 // (iii) Create a task with the task entry point created in (ii)
6829 //
6830 // That is we create the following
6831 //
6832 // void user_code_that_offloads(...) {
6833 // %.offload_baseptrs = alloca [3 x ptr], align 8
6834 // %.offload_ptrs = alloca [3 x ptr], align 8
6835 // %.offload_mappers = alloca [3 x ptr], align 8
6836 //
6837 // %structArg = alloca { ptr, ptr, ptr }, align 8
6838 // %strucArg[0] = %.offload_baseptrs
6839 // %strucArg[1] = %.offload_ptrs
6840 // %strucArg[2] = %.offload_mappers
6841 // proxy_target_task = @__kmpc_omp_task_alloc(...,
6842 // @.omp_target_task_proxy_func)
6843 // memcpy(proxy_target_task->shareds, %structArg, sizeof(structArg))
6844 // dependencies_array = ...
6845 // ;; if nowait not present
6846 // call @__kmpc_omp_wait_deps(..., dependencies_array)
6847 // call @__kmpc_omp_task_begin_if0(...)
6848 // call @ @.omp_target_task_proxy_func(i32 thread_id, ptr
6849 // %proxy_target_task) call @__kmpc_omp_task_complete_if0(...)
6850 // }
6851 //
6852 // define internal void @.omp_target_task_proxy_func(i32 %thread.id,
6853 // ptr %task) {
6854 // %structArg = alloca {ptr, ptr, ptr}
6855 // %shared_data = load (getelementptr %task, 0, 0)
6856 // mempcy(%structArg, %shared_data, sizeof(structArg))
6857 // kernel_launch_function(%thread.id, %structArg)
6858 // }
6859 //
6860 // We need the proxy function because the signature of the task entry point
6861 // expected by kmpc_omp_task is always the same and will be different from
6862 // that of the kernel_launch function.
6863 //
6864 // kernel_launch_function is generated by emitKernelLaunch and has the
6865 // always_inline attribute.
6866 // void kernel_launch_function(thread_id,
6867 // structArg) alwaysinline {
6868 // %kernel_args = alloca %struct.__tgt_kernel_arguments, align 8
6869 // offload_baseptrs = load(getelementptr structArg, 0, 0)
6870 // offload_ptrs = load(getelementptr structArg, 0, 1)
6871 // offload_mappers = load(getelementptr structArg, 0, 2)
6872 // ; setup kernel_args using offload_baseptrs, offload_ptrs and
6873 // ; offload_mappers
6874 // call i32 @__tgt_target_kernel(...,
6875 // outlined_device_function,
6876 // ptr %kernel_args)
6877 // }
6878 // void outlined_device_function(ptr a, ptr b, ptr c) {
6879 // *a = *b + *c
6880 // }
6881 //
6882 BasicBlock *TargetTaskBodyBB =
6883 splitBB(Builder, /*CreateBranch=*/true, "target.task.body");
6884 BasicBlock *TargetTaskAllocaBB =
6885 splitBB(Builder, /*CreateBranch=*/true, "target.task.alloca");
6886
6887 InsertPointTy TargetTaskAllocaIP(TargetTaskAllocaBB,
6888 TargetTaskAllocaBB->begin());
6889 InsertPointTy TargetTaskBodyIP(TargetTaskBodyBB, TargetTaskBodyBB->begin());
6890
6891 OutlineInfo OI;
6892 OI.EntryBB = TargetTaskAllocaBB;
6893 OI.OuterAllocaBB = AllocaIP.getBlock();
6894
6895 // Add the thread ID argument.
6896 SmallVector<Instruction *, 4> ToBeDeleted;
6897 OI.ExcludeArgsFromAggregate.push_back(createFakeIntVal(
6898 Builder, AllocaIP, ToBeDeleted, TargetTaskAllocaIP, "global.tid", false));
6899
6900 Builder.restoreIP(TargetTaskBodyIP);
6901
6902 // emitKernelLaunch makes the necessary runtime call to offload the kernel.
6903 // We then outline all that code into a separate function
6904 // ('kernel_launch_function' in the pseudo code above). This function is then
6905 // called by the target task proxy function (see
6906 // '@.omp_target_task_proxy_func' in the pseudo code above)
6907 // "@.omp_target_task_proxy_func' is generated by emitTargetTaskProxyFunction
6908 Builder.restoreIP(emitKernelLaunch(Builder, OutlinedFn, OutlinedFnID,
6909 EmitTargetCallFallbackCB, Args, DeviceID,
6910 RTLoc, TargetTaskAllocaIP));
6911
6912 OI.ExitBB = Builder.saveIP().getBlock();
6913 OI.PostOutlineCB = [this, ToBeDeleted, Dependencies,
6914 HasNoWait](Function &OutlinedFn) mutable {
6915 assert(OutlinedFn.getNumUses() == 1 &&
6916 "there must be a single user for the outlined function");
6917
6918 CallInst *StaleCI = cast<CallInst>(OutlinedFn.user_back());
6919 bool HasShareds = StaleCI->arg_size() > 1;
6920
6921 Function *ProxyFn = emitTargetTaskProxyFunction(*this, Builder, StaleCI);
6922
6923 LLVM_DEBUG(dbgs() << "Proxy task entry function created: " << *ProxyFn
6924 << "\n");
6925
6926 Builder.SetInsertPoint(StaleCI);
6927
6928 // Gather the arguments for emitting the runtime call.
6929 uint32_t SrcLocStrSize;
6930 Constant *SrcLocStr =
6931 getOrCreateSrcLocStr(LocationDescription(Builder), SrcLocStrSize);
6932 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
6933
6934 // @__kmpc_omp_task_alloc
6935 Function *TaskAllocFn =
6936 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_task_alloc);
6937
6938 // Arguments - `loc_ref` (Ident) and `gtid` (ThreadID)
6939 // call.
6940 Value *ThreadID = getOrCreateThreadID(Ident);
6941
6942 // Argument - `sizeof_kmp_task_t` (TaskSize)
6943 // Tasksize refers to the size in bytes of kmp_task_t data structure
6944 // including private vars accessed in task.
6945 // TODO: add kmp_task_t_with_privates (privates)
6946 Value *TaskSize =
6947 Builder.getInt64(M.getDataLayout().getTypeStoreSize(Task));
6948
6949 // Argument - `sizeof_shareds` (SharedsSize)
6950 // SharedsSize refers to the shareds array size in the kmp_task_t data
6951 // structure.
6952 Value *SharedsSize = Builder.getInt64(0);
6953 if (HasShareds) {
6954 auto *ArgStructAlloca = dyn_cast<AllocaInst>(StaleCI->getArgOperand(1));
6955 assert(ArgStructAlloca &&
6956 "Unable to find the alloca instruction corresponding to arguments "
6957 "for extracted function");
6958 auto *ArgStructType =
6959 dyn_cast<StructType>(ArgStructAlloca->getAllocatedType());
6960 assert(ArgStructType && "Unable to find struct type corresponding to "
6961 "arguments for extracted function");
6962 SharedsSize =
6963 Builder.getInt64(M.getDataLayout().getTypeStoreSize(ArgStructType));
6964 }
6965
6966 // Argument - `flags`
6967 // Task is tied iff (Flags & 1) == 1.
6968 // Task is untied iff (Flags & 1) == 0.
6969 // Task is final iff (Flags & 2) == 2.
6970 // Task is not final iff (Flags & 2) == 0.
6971 // A target task is not final and is untied.
6972 Value *Flags = Builder.getInt32(0);
6973
6974 // Emit the @__kmpc_omp_task_alloc runtime call
6975 // The runtime call returns a pointer to an area where the task captured
6976 // variables must be copied before the task is run (TaskData)
6977 CallInst *TaskData = Builder.CreateCall(
6978 TaskAllocFn, {/*loc_ref=*/Ident, /*gtid=*/ThreadID, /*flags=*/Flags,
6979 /*sizeof_task=*/TaskSize, /*sizeof_shared=*/SharedsSize,
6980 /*task_func=*/ProxyFn});
6981
6982 if (HasShareds) {
6983 Value *Shareds = StaleCI->getArgOperand(1);
6984 Align Alignment = TaskData->getPointerAlignment(M.getDataLayout());
6985 Value *TaskShareds = Builder.CreateLoad(VoidPtr, TaskData);
6986 Builder.CreateMemCpy(TaskShareds, Alignment, Shareds, Alignment,
6987 SharedsSize);
6988 }
6989
6990 Value *DepArray = emitTaskDependencies(*this, Dependencies);
6991
6992 // ---------------------------------------------------------------
6993 // V5.2 13.8 target construct
6994 // If the nowait clause is present, execution of the target task
6995 // may be deferred. If the nowait clause is not present, the target task is
6996 // an included task.
6997 // ---------------------------------------------------------------
6998 // The above means that the lack of a nowait on the target construct
6999 // translates to '#pragma omp task if(0)'
7000 if (!HasNoWait) {
7001 if (DepArray) {
7002 Function *TaskWaitFn =
7003 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_wait_deps);
7004 Builder.CreateCall(
7005 TaskWaitFn,
7006 {/*loc_ref=*/Ident, /*gtid=*/ThreadID,
7007 /*ndeps=*/Builder.getInt32(Dependencies.size()),
7008 /*dep_list=*/DepArray,
7009 /*ndeps_noalias=*/ConstantInt::get(Builder.getInt32Ty(), 0),
7010 /*noalias_dep_list=*/
7011 ConstantPointerNull::get(PointerType::getUnqual(M.getContext()))});
7012 }
7013 // Included task.
7014 Function *TaskBeginFn =
7015 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_task_begin_if0);
7016 Function *TaskCompleteFn =
7017 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_task_complete_if0);
7018 Builder.CreateCall(TaskBeginFn, {Ident, ThreadID, TaskData});
7019 CallInst *CI = nullptr;
7020 if (HasShareds)
7021 CI = Builder.CreateCall(ProxyFn, {ThreadID, TaskData});
7022 else
7023 CI = Builder.CreateCall(ProxyFn, {ThreadID});
7024 CI->setDebugLoc(StaleCI->getDebugLoc());
7025 Builder.CreateCall(TaskCompleteFn, {Ident, ThreadID, TaskData});
7026 } else if (DepArray) {
7027 // HasNoWait - meaning the task may be deferred. Call
7028 // __kmpc_omp_task_with_deps if there are dependencies,
7029 // else call __kmpc_omp_task
7030 Function *TaskFn =
7031 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_task_with_deps);
7032 Builder.CreateCall(
7033 TaskFn,
7034 {Ident, ThreadID, TaskData, Builder.getInt32(Dependencies.size()),
7035 DepArray, ConstantInt::get(Builder.getInt32Ty(), 0),
7036 ConstantPointerNull::get(PointerType::getUnqual(M.getContext()))});
7037 } else {
7038 // Emit the @__kmpc_omp_task runtime call to spawn the task
7039 Function *TaskFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_task);
7040 Builder.CreateCall(TaskFn, {Ident, ThreadID, TaskData});
7041 }
7042
7043 StaleCI->eraseFromParent();
7044 llvm::for_each(llvm::reverse(ToBeDeleted),
7045 [](Instruction *I) { I->eraseFromParent(); });
7046 };
7047 addOutlineInfo(std::move(OI));
7048
7049 LLVM_DEBUG(dbgs() << "Insert block after emitKernelLaunch = \n"
7050 << *(Builder.GetInsertBlock()) << "\n");
7051 LLVM_DEBUG(dbgs() << "Module after emitKernelLaunch = \n"
7052 << *(Builder.GetInsertBlock()->getParent()->getParent())
7053 << "\n");
7054 return Builder.saveIP();
7055 }
emitTargetCall(OpenMPIRBuilder & OMPBuilder,IRBuilderBase & Builder,OpenMPIRBuilder::InsertPointTy AllocaIP,Function * OutlinedFn,Constant * OutlinedFnID,int32_t NumTeams,int32_t NumThreads,SmallVectorImpl<Value * > & Args,OpenMPIRBuilder::GenMapInfoCallbackTy GenMapInfoCB,SmallVector<llvm::OpenMPIRBuilder::DependData> Dependencies={})7056 static void emitTargetCall(
7057 OpenMPIRBuilder &OMPBuilder, IRBuilderBase &Builder,
7058 OpenMPIRBuilder::InsertPointTy AllocaIP, Function *OutlinedFn,
7059 Constant *OutlinedFnID, int32_t NumTeams, int32_t NumThreads,
7060 SmallVectorImpl<Value *> &Args,
7061 OpenMPIRBuilder::GenMapInfoCallbackTy GenMapInfoCB,
7062 SmallVector<llvm::OpenMPIRBuilder::DependData> Dependencies = {}) {
7063
7064 OpenMPIRBuilder::TargetDataInfo Info(
7065 /*RequiresDevicePointerInfo=*/false,
7066 /*SeparateBeginEndCalls=*/true);
7067
7068 OpenMPIRBuilder::MapInfosTy &MapInfo = GenMapInfoCB(Builder.saveIP());
7069 OMPBuilder.emitOffloadingArrays(AllocaIP, Builder.saveIP(), MapInfo, Info,
7070 /*IsNonContiguous=*/true);
7071
7072 OpenMPIRBuilder::TargetDataRTArgs RTArgs;
7073 OMPBuilder.emitOffloadingArraysArgument(Builder, RTArgs, Info,
7074 !MapInfo.Names.empty());
7075
7076 // emitKernelLaunch
7077 auto &&EmitTargetCallFallbackCB =
__anon46338d6b3702(OpenMPIRBuilder::InsertPointTy IP) 7078 [&](OpenMPIRBuilder::InsertPointTy IP) -> OpenMPIRBuilder::InsertPointTy {
7079 Builder.restoreIP(IP);
7080 Builder.CreateCall(OutlinedFn, Args);
7081 return Builder.saveIP();
7082 };
7083
7084 unsigned NumTargetItems = MapInfo.BasePointers.size();
7085 // TODO: Use correct device ID
7086 Value *DeviceID = Builder.getInt64(OMP_DEVICEID_UNDEF);
7087 Value *NumTeamsVal = Builder.getInt32(NumTeams);
7088 Value *NumThreadsVal = Builder.getInt32(NumThreads);
7089 uint32_t SrcLocStrSize;
7090 Constant *SrcLocStr = OMPBuilder.getOrCreateDefaultSrcLocStr(SrcLocStrSize);
7091 Value *RTLoc = OMPBuilder.getOrCreateIdent(SrcLocStr, SrcLocStrSize,
7092 llvm::omp::IdentFlag(0), 0);
7093 // TODO: Use correct NumIterations
7094 Value *NumIterations = Builder.getInt64(0);
7095 // TODO: Use correct DynCGGroupMem
7096 Value *DynCGGroupMem = Builder.getInt32(0);
7097
7098 bool HasNoWait = false;
7099 bool HasDependencies = Dependencies.size() > 0;
7100 bool RequiresOuterTargetTask = HasNoWait || HasDependencies;
7101
7102 OpenMPIRBuilder::TargetKernelArgs KArgs(NumTargetItems, RTArgs, NumIterations,
7103 NumTeamsVal, NumThreadsVal,
7104 DynCGGroupMem, HasNoWait);
7105
7106 // The presence of certain clauses on the target directive require the
7107 // explicit generation of the target task.
7108 if (RequiresOuterTargetTask) {
7109 Builder.restoreIP(OMPBuilder.emitTargetTask(
7110 OutlinedFn, OutlinedFnID, EmitTargetCallFallbackCB, KArgs, DeviceID,
7111 RTLoc, AllocaIP, Dependencies, HasNoWait));
7112 } else {
7113 Builder.restoreIP(OMPBuilder.emitKernelLaunch(
7114 Builder, OutlinedFn, OutlinedFnID, EmitTargetCallFallbackCB, KArgs,
7115 DeviceID, RTLoc, AllocaIP));
7116 }
7117 }
createTarget(const LocationDescription & Loc,InsertPointTy AllocaIP,InsertPointTy CodeGenIP,TargetRegionEntryInfo & EntryInfo,int32_t NumTeams,int32_t NumThreads,SmallVectorImpl<Value * > & Args,GenMapInfoCallbackTy GenMapInfoCB,OpenMPIRBuilder::TargetBodyGenCallbackTy CBFunc,OpenMPIRBuilder::TargetGenArgAccessorsCallbackTy ArgAccessorFuncCB,SmallVector<DependData> Dependencies)7118 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createTarget(
7119 const LocationDescription &Loc, InsertPointTy AllocaIP,
7120 InsertPointTy CodeGenIP, TargetRegionEntryInfo &EntryInfo, int32_t NumTeams,
7121 int32_t NumThreads, SmallVectorImpl<Value *> &Args,
7122 GenMapInfoCallbackTy GenMapInfoCB,
7123 OpenMPIRBuilder::TargetBodyGenCallbackTy CBFunc,
7124 OpenMPIRBuilder::TargetGenArgAccessorsCallbackTy ArgAccessorFuncCB,
7125 SmallVector<DependData> Dependencies) {
7126
7127 if (!updateToLocation(Loc))
7128 return InsertPointTy();
7129
7130 Builder.restoreIP(CodeGenIP);
7131
7132 Function *OutlinedFn;
7133 Constant *OutlinedFnID;
7134 // The target region is outlined into its own function. The LLVM IR for
7135 // the target region itself is generated using the callbacks CBFunc
7136 // and ArgAccessorFuncCB
7137 emitTargetOutlinedFunction(*this, Builder, EntryInfo, OutlinedFn,
7138 OutlinedFnID, Args, CBFunc, ArgAccessorFuncCB);
7139
7140 // If we are not on the target device, then we need to generate code
7141 // to make a remote call (offload) to the previously outlined function
7142 // that represents the target region. Do that now.
7143 if (!Config.isTargetDevice())
7144 emitTargetCall(*this, Builder, AllocaIP, OutlinedFn, OutlinedFnID, NumTeams,
7145 NumThreads, Args, GenMapInfoCB, Dependencies);
7146 return Builder.saveIP();
7147 }
7148
getNameWithSeparators(ArrayRef<StringRef> Parts,StringRef FirstSeparator,StringRef Separator)7149 std::string OpenMPIRBuilder::getNameWithSeparators(ArrayRef<StringRef> Parts,
7150 StringRef FirstSeparator,
7151 StringRef Separator) {
7152 SmallString<128> Buffer;
7153 llvm::raw_svector_ostream OS(Buffer);
7154 StringRef Sep = FirstSeparator;
7155 for (StringRef Part : Parts) {
7156 OS << Sep << Part;
7157 Sep = Separator;
7158 }
7159 return OS.str().str();
7160 }
7161
7162 std::string
createPlatformSpecificName(ArrayRef<StringRef> Parts) const7163 OpenMPIRBuilder::createPlatformSpecificName(ArrayRef<StringRef> Parts) const {
7164 return OpenMPIRBuilder::getNameWithSeparators(Parts, Config.firstSeparator(),
7165 Config.separator());
7166 }
7167
7168 GlobalVariable *
getOrCreateInternalVariable(Type * Ty,const StringRef & Name,unsigned AddressSpace)7169 OpenMPIRBuilder::getOrCreateInternalVariable(Type *Ty, const StringRef &Name,
7170 unsigned AddressSpace) {
7171 auto &Elem = *InternalVars.try_emplace(Name, nullptr).first;
7172 if (Elem.second) {
7173 assert(Elem.second->getValueType() == Ty &&
7174 "OMP internal variable has different type than requested");
7175 } else {
7176 // TODO: investigate the appropriate linkage type used for the global
7177 // variable for possibly changing that to internal or private, or maybe
7178 // create different versions of the function for different OMP internal
7179 // variables.
7180 auto Linkage = this->M.getTargetTriple().rfind("wasm32") == 0
7181 ? GlobalValue::ExternalLinkage
7182 : GlobalValue::CommonLinkage;
7183 auto *GV = new GlobalVariable(M, Ty, /*IsConstant=*/false, Linkage,
7184 Constant::getNullValue(Ty), Elem.first(),
7185 /*InsertBefore=*/nullptr,
7186 GlobalValue::NotThreadLocal, AddressSpace);
7187 const DataLayout &DL = M.getDataLayout();
7188 const llvm::Align TypeAlign = DL.getABITypeAlign(Ty);
7189 const llvm::Align PtrAlign = DL.getPointerABIAlignment(AddressSpace);
7190 GV->setAlignment(std::max(TypeAlign, PtrAlign));
7191 Elem.second = GV;
7192 }
7193
7194 return Elem.second;
7195 }
7196
getOMPCriticalRegionLock(StringRef CriticalName)7197 Value *OpenMPIRBuilder::getOMPCriticalRegionLock(StringRef CriticalName) {
7198 std::string Prefix = Twine("gomp_critical_user_", CriticalName).str();
7199 std::string Name = getNameWithSeparators({Prefix, "var"}, ".", ".");
7200 return getOrCreateInternalVariable(KmpCriticalNameTy, Name);
7201 }
7202
getSizeInBytes(Value * BasePtr)7203 Value *OpenMPIRBuilder::getSizeInBytes(Value *BasePtr) {
7204 LLVMContext &Ctx = Builder.getContext();
7205 Value *Null =
7206 Constant::getNullValue(PointerType::getUnqual(BasePtr->getContext()));
7207 Value *SizeGep =
7208 Builder.CreateGEP(BasePtr->getType(), Null, Builder.getInt32(1));
7209 Value *SizePtrToInt = Builder.CreatePtrToInt(SizeGep, Type::getInt64Ty(Ctx));
7210 return SizePtrToInt;
7211 }
7212
7213 GlobalVariable *
createOffloadMaptypes(SmallVectorImpl<uint64_t> & Mappings,std::string VarName)7214 OpenMPIRBuilder::createOffloadMaptypes(SmallVectorImpl<uint64_t> &Mappings,
7215 std::string VarName) {
7216 llvm::Constant *MaptypesArrayInit =
7217 llvm::ConstantDataArray::get(M.getContext(), Mappings);
7218 auto *MaptypesArrayGlobal = new llvm::GlobalVariable(
7219 M, MaptypesArrayInit->getType(),
7220 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, MaptypesArrayInit,
7221 VarName);
7222 MaptypesArrayGlobal->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
7223 return MaptypesArrayGlobal;
7224 }
7225
createMapperAllocas(const LocationDescription & Loc,InsertPointTy AllocaIP,unsigned NumOperands,struct MapperAllocas & MapperAllocas)7226 void OpenMPIRBuilder::createMapperAllocas(const LocationDescription &Loc,
7227 InsertPointTy AllocaIP,
7228 unsigned NumOperands,
7229 struct MapperAllocas &MapperAllocas) {
7230 if (!updateToLocation(Loc))
7231 return;
7232
7233 auto *ArrI8PtrTy = ArrayType::get(Int8Ptr, NumOperands);
7234 auto *ArrI64Ty = ArrayType::get(Int64, NumOperands);
7235 Builder.restoreIP(AllocaIP);
7236 AllocaInst *ArgsBase = Builder.CreateAlloca(
7237 ArrI8PtrTy, /* ArraySize = */ nullptr, ".offload_baseptrs");
7238 AllocaInst *Args = Builder.CreateAlloca(ArrI8PtrTy, /* ArraySize = */ nullptr,
7239 ".offload_ptrs");
7240 AllocaInst *ArgSizes = Builder.CreateAlloca(
7241 ArrI64Ty, /* ArraySize = */ nullptr, ".offload_sizes");
7242 Builder.restoreIP(Loc.IP);
7243 MapperAllocas.ArgsBase = ArgsBase;
7244 MapperAllocas.Args = Args;
7245 MapperAllocas.ArgSizes = ArgSizes;
7246 }
7247
emitMapperCall(const LocationDescription & Loc,Function * MapperFunc,Value * SrcLocInfo,Value * MaptypesArg,Value * MapnamesArg,struct MapperAllocas & MapperAllocas,int64_t DeviceID,unsigned NumOperands)7248 void OpenMPIRBuilder::emitMapperCall(const LocationDescription &Loc,
7249 Function *MapperFunc, Value *SrcLocInfo,
7250 Value *MaptypesArg, Value *MapnamesArg,
7251 struct MapperAllocas &MapperAllocas,
7252 int64_t DeviceID, unsigned NumOperands) {
7253 if (!updateToLocation(Loc))
7254 return;
7255
7256 auto *ArrI8PtrTy = ArrayType::get(Int8Ptr, NumOperands);
7257 auto *ArrI64Ty = ArrayType::get(Int64, NumOperands);
7258 Value *ArgsBaseGEP =
7259 Builder.CreateInBoundsGEP(ArrI8PtrTy, MapperAllocas.ArgsBase,
7260 {Builder.getInt32(0), Builder.getInt32(0)});
7261 Value *ArgsGEP =
7262 Builder.CreateInBoundsGEP(ArrI8PtrTy, MapperAllocas.Args,
7263 {Builder.getInt32(0), Builder.getInt32(0)});
7264 Value *ArgSizesGEP =
7265 Builder.CreateInBoundsGEP(ArrI64Ty, MapperAllocas.ArgSizes,
7266 {Builder.getInt32(0), Builder.getInt32(0)});
7267 Value *NullPtr =
7268 Constant::getNullValue(PointerType::getUnqual(Int8Ptr->getContext()));
7269 Builder.CreateCall(MapperFunc,
7270 {SrcLocInfo, Builder.getInt64(DeviceID),
7271 Builder.getInt32(NumOperands), ArgsBaseGEP, ArgsGEP,
7272 ArgSizesGEP, MaptypesArg, MapnamesArg, NullPtr});
7273 }
7274
emitOffloadingArraysArgument(IRBuilderBase & Builder,TargetDataRTArgs & RTArgs,TargetDataInfo & Info,bool EmitDebug,bool ForEndCall)7275 void OpenMPIRBuilder::emitOffloadingArraysArgument(IRBuilderBase &Builder,
7276 TargetDataRTArgs &RTArgs,
7277 TargetDataInfo &Info,
7278 bool EmitDebug,
7279 bool ForEndCall) {
7280 assert((!ForEndCall || Info.separateBeginEndCalls()) &&
7281 "expected region end call to runtime only when end call is separate");
7282 auto UnqualPtrTy = PointerType::getUnqual(M.getContext());
7283 auto VoidPtrTy = UnqualPtrTy;
7284 auto VoidPtrPtrTy = UnqualPtrTy;
7285 auto Int64Ty = Type::getInt64Ty(M.getContext());
7286 auto Int64PtrTy = UnqualPtrTy;
7287
7288 if (!Info.NumberOfPtrs) {
7289 RTArgs.BasePointersArray = ConstantPointerNull::get(VoidPtrPtrTy);
7290 RTArgs.PointersArray = ConstantPointerNull::get(VoidPtrPtrTy);
7291 RTArgs.SizesArray = ConstantPointerNull::get(Int64PtrTy);
7292 RTArgs.MapTypesArray = ConstantPointerNull::get(Int64PtrTy);
7293 RTArgs.MapNamesArray = ConstantPointerNull::get(VoidPtrPtrTy);
7294 RTArgs.MappersArray = ConstantPointerNull::get(VoidPtrPtrTy);
7295 return;
7296 }
7297
7298 RTArgs.BasePointersArray = Builder.CreateConstInBoundsGEP2_32(
7299 ArrayType::get(VoidPtrTy, Info.NumberOfPtrs),
7300 Info.RTArgs.BasePointersArray,
7301 /*Idx0=*/0, /*Idx1=*/0);
7302 RTArgs.PointersArray = Builder.CreateConstInBoundsGEP2_32(
7303 ArrayType::get(VoidPtrTy, Info.NumberOfPtrs), Info.RTArgs.PointersArray,
7304 /*Idx0=*/0,
7305 /*Idx1=*/0);
7306 RTArgs.SizesArray = Builder.CreateConstInBoundsGEP2_32(
7307 ArrayType::get(Int64Ty, Info.NumberOfPtrs), Info.RTArgs.SizesArray,
7308 /*Idx0=*/0, /*Idx1=*/0);
7309 RTArgs.MapTypesArray = Builder.CreateConstInBoundsGEP2_32(
7310 ArrayType::get(Int64Ty, Info.NumberOfPtrs),
7311 ForEndCall && Info.RTArgs.MapTypesArrayEnd ? Info.RTArgs.MapTypesArrayEnd
7312 : Info.RTArgs.MapTypesArray,
7313 /*Idx0=*/0,
7314 /*Idx1=*/0);
7315
7316 // Only emit the mapper information arrays if debug information is
7317 // requested.
7318 if (!EmitDebug)
7319 RTArgs.MapNamesArray = ConstantPointerNull::get(VoidPtrPtrTy);
7320 else
7321 RTArgs.MapNamesArray = Builder.CreateConstInBoundsGEP2_32(
7322 ArrayType::get(VoidPtrTy, Info.NumberOfPtrs), Info.RTArgs.MapNamesArray,
7323 /*Idx0=*/0,
7324 /*Idx1=*/0);
7325 // If there is no user-defined mapper, set the mapper array to nullptr to
7326 // avoid an unnecessary data privatization
7327 if (!Info.HasMapper)
7328 RTArgs.MappersArray = ConstantPointerNull::get(VoidPtrPtrTy);
7329 else
7330 RTArgs.MappersArray =
7331 Builder.CreatePointerCast(Info.RTArgs.MappersArray, VoidPtrPtrTy);
7332 }
7333
emitNonContiguousDescriptor(InsertPointTy AllocaIP,InsertPointTy CodeGenIP,MapInfosTy & CombinedInfo,TargetDataInfo & Info)7334 void OpenMPIRBuilder::emitNonContiguousDescriptor(InsertPointTy AllocaIP,
7335 InsertPointTy CodeGenIP,
7336 MapInfosTy &CombinedInfo,
7337 TargetDataInfo &Info) {
7338 MapInfosTy::StructNonContiguousInfo &NonContigInfo =
7339 CombinedInfo.NonContigInfo;
7340
7341 // Build an array of struct descriptor_dim and then assign it to
7342 // offload_args.
7343 //
7344 // struct descriptor_dim {
7345 // uint64_t offset;
7346 // uint64_t count;
7347 // uint64_t stride
7348 // };
7349 Type *Int64Ty = Builder.getInt64Ty();
7350 StructType *DimTy = StructType::create(
7351 M.getContext(), ArrayRef<Type *>({Int64Ty, Int64Ty, Int64Ty}),
7352 "struct.descriptor_dim");
7353
7354 enum { OffsetFD = 0, CountFD, StrideFD };
7355 // We need two index variable here since the size of "Dims" is the same as
7356 // the size of Components, however, the size of offset, count, and stride is
7357 // equal to the size of base declaration that is non-contiguous.
7358 for (unsigned I = 0, L = 0, E = NonContigInfo.Dims.size(); I < E; ++I) {
7359 // Skip emitting ir if dimension size is 1 since it cannot be
7360 // non-contiguous.
7361 if (NonContigInfo.Dims[I] == 1)
7362 continue;
7363 Builder.restoreIP(AllocaIP);
7364 ArrayType *ArrayTy = ArrayType::get(DimTy, NonContigInfo.Dims[I]);
7365 AllocaInst *DimsAddr =
7366 Builder.CreateAlloca(ArrayTy, /* ArraySize = */ nullptr, "dims");
7367 Builder.restoreIP(CodeGenIP);
7368 for (unsigned II = 0, EE = NonContigInfo.Dims[I]; II < EE; ++II) {
7369 unsigned RevIdx = EE - II - 1;
7370 Value *DimsLVal = Builder.CreateInBoundsGEP(
7371 DimsAddr->getAllocatedType(), DimsAddr,
7372 {Builder.getInt64(0), Builder.getInt64(II)});
7373 // Offset
7374 Value *OffsetLVal = Builder.CreateStructGEP(DimTy, DimsLVal, OffsetFD);
7375 Builder.CreateAlignedStore(
7376 NonContigInfo.Offsets[L][RevIdx], OffsetLVal,
7377 M.getDataLayout().getPrefTypeAlign(OffsetLVal->getType()));
7378 // Count
7379 Value *CountLVal = Builder.CreateStructGEP(DimTy, DimsLVal, CountFD);
7380 Builder.CreateAlignedStore(
7381 NonContigInfo.Counts[L][RevIdx], CountLVal,
7382 M.getDataLayout().getPrefTypeAlign(CountLVal->getType()));
7383 // Stride
7384 Value *StrideLVal = Builder.CreateStructGEP(DimTy, DimsLVal, StrideFD);
7385 Builder.CreateAlignedStore(
7386 NonContigInfo.Strides[L][RevIdx], StrideLVal,
7387 M.getDataLayout().getPrefTypeAlign(CountLVal->getType()));
7388 }
7389 // args[I] = &dims
7390 Builder.restoreIP(CodeGenIP);
7391 Value *DAddr = Builder.CreatePointerBitCastOrAddrSpaceCast(
7392 DimsAddr, Builder.getPtrTy());
7393 Value *P = Builder.CreateConstInBoundsGEP2_32(
7394 ArrayType::get(Builder.getPtrTy(), Info.NumberOfPtrs),
7395 Info.RTArgs.PointersArray, 0, I);
7396 Builder.CreateAlignedStore(
7397 DAddr, P, M.getDataLayout().getPrefTypeAlign(Builder.getPtrTy()));
7398 ++L;
7399 }
7400 }
7401
emitOffloadingArrays(InsertPointTy AllocaIP,InsertPointTy CodeGenIP,MapInfosTy & CombinedInfo,TargetDataInfo & Info,bool IsNonContiguous,function_ref<void (unsigned int,Value *)> DeviceAddrCB,function_ref<Value * (unsigned int)> CustomMapperCB)7402 void OpenMPIRBuilder::emitOffloadingArrays(
7403 InsertPointTy AllocaIP, InsertPointTy CodeGenIP, MapInfosTy &CombinedInfo,
7404 TargetDataInfo &Info, bool IsNonContiguous,
7405 function_ref<void(unsigned int, Value *)> DeviceAddrCB,
7406 function_ref<Value *(unsigned int)> CustomMapperCB) {
7407
7408 // Reset the array information.
7409 Info.clearArrayInfo();
7410 Info.NumberOfPtrs = CombinedInfo.BasePointers.size();
7411
7412 if (Info.NumberOfPtrs == 0)
7413 return;
7414
7415 Builder.restoreIP(AllocaIP);
7416 // Detect if we have any capture size requiring runtime evaluation of the
7417 // size so that a constant array could be eventually used.
7418 ArrayType *PointerArrayType =
7419 ArrayType::get(Builder.getPtrTy(), Info.NumberOfPtrs);
7420
7421 Info.RTArgs.BasePointersArray = Builder.CreateAlloca(
7422 PointerArrayType, /* ArraySize = */ nullptr, ".offload_baseptrs");
7423
7424 Info.RTArgs.PointersArray = Builder.CreateAlloca(
7425 PointerArrayType, /* ArraySize = */ nullptr, ".offload_ptrs");
7426 AllocaInst *MappersArray = Builder.CreateAlloca(
7427 PointerArrayType, /* ArraySize = */ nullptr, ".offload_mappers");
7428 Info.RTArgs.MappersArray = MappersArray;
7429
7430 // If we don't have any VLA types or other types that require runtime
7431 // evaluation, we can use a constant array for the map sizes, otherwise we
7432 // need to fill up the arrays as we do for the pointers.
7433 Type *Int64Ty = Builder.getInt64Ty();
7434 SmallVector<Constant *> ConstSizes(CombinedInfo.Sizes.size(),
7435 ConstantInt::get(Int64Ty, 0));
7436 SmallBitVector RuntimeSizes(CombinedInfo.Sizes.size());
7437 for (unsigned I = 0, E = CombinedInfo.Sizes.size(); I < E; ++I) {
7438 if (auto *CI = dyn_cast<Constant>(CombinedInfo.Sizes[I])) {
7439 if (!isa<ConstantExpr>(CI) && !isa<GlobalValue>(CI)) {
7440 if (IsNonContiguous &&
7441 static_cast<std::underlying_type_t<OpenMPOffloadMappingFlags>>(
7442 CombinedInfo.Types[I] &
7443 OpenMPOffloadMappingFlags::OMP_MAP_NON_CONTIG))
7444 ConstSizes[I] =
7445 ConstantInt::get(Int64Ty, CombinedInfo.NonContigInfo.Dims[I]);
7446 else
7447 ConstSizes[I] = CI;
7448 continue;
7449 }
7450 }
7451 RuntimeSizes.set(I);
7452 }
7453
7454 if (RuntimeSizes.all()) {
7455 ArrayType *SizeArrayType = ArrayType::get(Int64Ty, Info.NumberOfPtrs);
7456 Info.RTArgs.SizesArray = Builder.CreateAlloca(
7457 SizeArrayType, /* ArraySize = */ nullptr, ".offload_sizes");
7458 Builder.restoreIP(CodeGenIP);
7459 } else {
7460 auto *SizesArrayInit = ConstantArray::get(
7461 ArrayType::get(Int64Ty, ConstSizes.size()), ConstSizes);
7462 std::string Name = createPlatformSpecificName({"offload_sizes"});
7463 auto *SizesArrayGbl =
7464 new GlobalVariable(M, SizesArrayInit->getType(), /*isConstant=*/true,
7465 GlobalValue::PrivateLinkage, SizesArrayInit, Name);
7466 SizesArrayGbl->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
7467
7468 if (!RuntimeSizes.any()) {
7469 Info.RTArgs.SizesArray = SizesArrayGbl;
7470 } else {
7471 unsigned IndexSize = M.getDataLayout().getIndexSizeInBits(0);
7472 Align OffloadSizeAlign = M.getDataLayout().getABIIntegerTypeAlignment(64);
7473 ArrayType *SizeArrayType = ArrayType::get(Int64Ty, Info.NumberOfPtrs);
7474 AllocaInst *Buffer = Builder.CreateAlloca(
7475 SizeArrayType, /* ArraySize = */ nullptr, ".offload_sizes");
7476 Buffer->setAlignment(OffloadSizeAlign);
7477 Builder.restoreIP(CodeGenIP);
7478 Builder.CreateMemCpy(
7479 Buffer, M.getDataLayout().getPrefTypeAlign(Buffer->getType()),
7480 SizesArrayGbl, OffloadSizeAlign,
7481 Builder.getIntN(
7482 IndexSize,
7483 Buffer->getAllocationSize(M.getDataLayout())->getFixedValue()));
7484
7485 Info.RTArgs.SizesArray = Buffer;
7486 }
7487 Builder.restoreIP(CodeGenIP);
7488 }
7489
7490 // The map types are always constant so we don't need to generate code to
7491 // fill arrays. Instead, we create an array constant.
7492 SmallVector<uint64_t, 4> Mapping;
7493 for (auto mapFlag : CombinedInfo.Types)
7494 Mapping.push_back(
7495 static_cast<std::underlying_type_t<OpenMPOffloadMappingFlags>>(
7496 mapFlag));
7497 std::string MaptypesName = createPlatformSpecificName({"offload_maptypes"});
7498 auto *MapTypesArrayGbl = createOffloadMaptypes(Mapping, MaptypesName);
7499 Info.RTArgs.MapTypesArray = MapTypesArrayGbl;
7500
7501 // The information types are only built if provided.
7502 if (!CombinedInfo.Names.empty()) {
7503 std::string MapnamesName = createPlatformSpecificName({"offload_mapnames"});
7504 auto *MapNamesArrayGbl =
7505 createOffloadMapnames(CombinedInfo.Names, MapnamesName);
7506 Info.RTArgs.MapNamesArray = MapNamesArrayGbl;
7507 } else {
7508 Info.RTArgs.MapNamesArray =
7509 Constant::getNullValue(PointerType::getUnqual(Builder.getContext()));
7510 }
7511
7512 // If there's a present map type modifier, it must not be applied to the end
7513 // of a region, so generate a separate map type array in that case.
7514 if (Info.separateBeginEndCalls()) {
7515 bool EndMapTypesDiffer = false;
7516 for (uint64_t &Type : Mapping) {
7517 if (Type & static_cast<std::underlying_type_t<OpenMPOffloadMappingFlags>>(
7518 OpenMPOffloadMappingFlags::OMP_MAP_PRESENT)) {
7519 Type &= ~static_cast<std::underlying_type_t<OpenMPOffloadMappingFlags>>(
7520 OpenMPOffloadMappingFlags::OMP_MAP_PRESENT);
7521 EndMapTypesDiffer = true;
7522 }
7523 }
7524 if (EndMapTypesDiffer) {
7525 MapTypesArrayGbl = createOffloadMaptypes(Mapping, MaptypesName);
7526 Info.RTArgs.MapTypesArrayEnd = MapTypesArrayGbl;
7527 }
7528 }
7529
7530 PointerType *PtrTy = Builder.getPtrTy();
7531 for (unsigned I = 0; I < Info.NumberOfPtrs; ++I) {
7532 Value *BPVal = CombinedInfo.BasePointers[I];
7533 Value *BP = Builder.CreateConstInBoundsGEP2_32(
7534 ArrayType::get(PtrTy, Info.NumberOfPtrs), Info.RTArgs.BasePointersArray,
7535 0, I);
7536 Builder.CreateAlignedStore(BPVal, BP,
7537 M.getDataLayout().getPrefTypeAlign(PtrTy));
7538
7539 if (Info.requiresDevicePointerInfo()) {
7540 if (CombinedInfo.DevicePointers[I] == DeviceInfoTy::Pointer) {
7541 CodeGenIP = Builder.saveIP();
7542 Builder.restoreIP(AllocaIP);
7543 Info.DevicePtrInfoMap[BPVal] = {BP, Builder.CreateAlloca(PtrTy)};
7544 Builder.restoreIP(CodeGenIP);
7545 if (DeviceAddrCB)
7546 DeviceAddrCB(I, Info.DevicePtrInfoMap[BPVal].second);
7547 } else if (CombinedInfo.DevicePointers[I] == DeviceInfoTy::Address) {
7548 Info.DevicePtrInfoMap[BPVal] = {BP, BP};
7549 if (DeviceAddrCB)
7550 DeviceAddrCB(I, BP);
7551 }
7552 }
7553
7554 Value *PVal = CombinedInfo.Pointers[I];
7555 Value *P = Builder.CreateConstInBoundsGEP2_32(
7556 ArrayType::get(PtrTy, Info.NumberOfPtrs), Info.RTArgs.PointersArray, 0,
7557 I);
7558 // TODO: Check alignment correct.
7559 Builder.CreateAlignedStore(PVal, P,
7560 M.getDataLayout().getPrefTypeAlign(PtrTy));
7561
7562 if (RuntimeSizes.test(I)) {
7563 Value *S = Builder.CreateConstInBoundsGEP2_32(
7564 ArrayType::get(Int64Ty, Info.NumberOfPtrs), Info.RTArgs.SizesArray,
7565 /*Idx0=*/0,
7566 /*Idx1=*/I);
7567 Builder.CreateAlignedStore(Builder.CreateIntCast(CombinedInfo.Sizes[I],
7568 Int64Ty,
7569 /*isSigned=*/true),
7570 S, M.getDataLayout().getPrefTypeAlign(PtrTy));
7571 }
7572 // Fill up the mapper array.
7573 unsigned IndexSize = M.getDataLayout().getIndexSizeInBits(0);
7574 Value *MFunc = ConstantPointerNull::get(PtrTy);
7575 if (CustomMapperCB)
7576 if (Value *CustomMFunc = CustomMapperCB(I))
7577 MFunc = Builder.CreatePointerCast(CustomMFunc, PtrTy);
7578 Value *MAddr = Builder.CreateInBoundsGEP(
7579 MappersArray->getAllocatedType(), MappersArray,
7580 {Builder.getIntN(IndexSize, 0), Builder.getIntN(IndexSize, I)});
7581 Builder.CreateAlignedStore(
7582 MFunc, MAddr, M.getDataLayout().getPrefTypeAlign(MAddr->getType()));
7583 }
7584
7585 if (!IsNonContiguous || CombinedInfo.NonContigInfo.Offsets.empty() ||
7586 Info.NumberOfPtrs == 0)
7587 return;
7588 emitNonContiguousDescriptor(AllocaIP, CodeGenIP, CombinedInfo, Info);
7589 }
7590
emitBranch(BasicBlock * Target)7591 void OpenMPIRBuilder::emitBranch(BasicBlock *Target) {
7592 BasicBlock *CurBB = Builder.GetInsertBlock();
7593
7594 if (!CurBB || CurBB->getTerminator()) {
7595 // If there is no insert point or the previous block is already
7596 // terminated, don't touch it.
7597 } else {
7598 // Otherwise, create a fall-through branch.
7599 Builder.CreateBr(Target);
7600 }
7601
7602 Builder.ClearInsertionPoint();
7603 }
7604
emitBlock(BasicBlock * BB,Function * CurFn,bool IsFinished)7605 void OpenMPIRBuilder::emitBlock(BasicBlock *BB, Function *CurFn,
7606 bool IsFinished) {
7607 BasicBlock *CurBB = Builder.GetInsertBlock();
7608
7609 // Fall out of the current block (if necessary).
7610 emitBranch(BB);
7611
7612 if (IsFinished && BB->use_empty()) {
7613 BB->eraseFromParent();
7614 return;
7615 }
7616
7617 // Place the block after the current block, if possible, or else at
7618 // the end of the function.
7619 if (CurBB && CurBB->getParent())
7620 CurFn->insert(std::next(CurBB->getIterator()), BB);
7621 else
7622 CurFn->insert(CurFn->end(), BB);
7623 Builder.SetInsertPoint(BB);
7624 }
7625
emitIfClause(Value * Cond,BodyGenCallbackTy ThenGen,BodyGenCallbackTy ElseGen,InsertPointTy AllocaIP)7626 void OpenMPIRBuilder::emitIfClause(Value *Cond, BodyGenCallbackTy ThenGen,
7627 BodyGenCallbackTy ElseGen,
7628 InsertPointTy AllocaIP) {
7629 // If the condition constant folds and can be elided, try to avoid emitting
7630 // the condition and the dead arm of the if/else.
7631 if (auto *CI = dyn_cast<ConstantInt>(Cond)) {
7632 auto CondConstant = CI->getSExtValue();
7633 if (CondConstant)
7634 ThenGen(AllocaIP, Builder.saveIP());
7635 else
7636 ElseGen(AllocaIP, Builder.saveIP());
7637 return;
7638 }
7639
7640 Function *CurFn = Builder.GetInsertBlock()->getParent();
7641
7642 // Otherwise, the condition did not fold, or we couldn't elide it. Just
7643 // emit the conditional branch.
7644 BasicBlock *ThenBlock = BasicBlock::Create(M.getContext(), "omp_if.then");
7645 BasicBlock *ElseBlock = BasicBlock::Create(M.getContext(), "omp_if.else");
7646 BasicBlock *ContBlock = BasicBlock::Create(M.getContext(), "omp_if.end");
7647 Builder.CreateCondBr(Cond, ThenBlock, ElseBlock);
7648 // Emit the 'then' code.
7649 emitBlock(ThenBlock, CurFn);
7650 ThenGen(AllocaIP, Builder.saveIP());
7651 emitBranch(ContBlock);
7652 // Emit the 'else' code if present.
7653 // There is no need to emit line number for unconditional branch.
7654 emitBlock(ElseBlock, CurFn);
7655 ElseGen(AllocaIP, Builder.saveIP());
7656 // There is no need to emit line number for unconditional branch.
7657 emitBranch(ContBlock);
7658 // Emit the continuation block for code after the if.
7659 emitBlock(ContBlock, CurFn, /*IsFinished=*/true);
7660 }
7661
checkAndEmitFlushAfterAtomic(const LocationDescription & Loc,llvm::AtomicOrdering AO,AtomicKind AK)7662 bool OpenMPIRBuilder::checkAndEmitFlushAfterAtomic(
7663 const LocationDescription &Loc, llvm::AtomicOrdering AO, AtomicKind AK) {
7664 assert(!(AO == AtomicOrdering::NotAtomic ||
7665 AO == llvm::AtomicOrdering::Unordered) &&
7666 "Unexpected Atomic Ordering.");
7667
7668 bool Flush = false;
7669 llvm::AtomicOrdering FlushAO = AtomicOrdering::Monotonic;
7670
7671 switch (AK) {
7672 case Read:
7673 if (AO == AtomicOrdering::Acquire || AO == AtomicOrdering::AcquireRelease ||
7674 AO == AtomicOrdering::SequentiallyConsistent) {
7675 FlushAO = AtomicOrdering::Acquire;
7676 Flush = true;
7677 }
7678 break;
7679 case Write:
7680 case Compare:
7681 case Update:
7682 if (AO == AtomicOrdering::Release || AO == AtomicOrdering::AcquireRelease ||
7683 AO == AtomicOrdering::SequentiallyConsistent) {
7684 FlushAO = AtomicOrdering::Release;
7685 Flush = true;
7686 }
7687 break;
7688 case Capture:
7689 switch (AO) {
7690 case AtomicOrdering::Acquire:
7691 FlushAO = AtomicOrdering::Acquire;
7692 Flush = true;
7693 break;
7694 case AtomicOrdering::Release:
7695 FlushAO = AtomicOrdering::Release;
7696 Flush = true;
7697 break;
7698 case AtomicOrdering::AcquireRelease:
7699 case AtomicOrdering::SequentiallyConsistent:
7700 FlushAO = AtomicOrdering::AcquireRelease;
7701 Flush = true;
7702 break;
7703 default:
7704 // do nothing - leave silently.
7705 break;
7706 }
7707 }
7708
7709 if (Flush) {
7710 // Currently Flush RT call still doesn't take memory_ordering, so for when
7711 // that happens, this tries to do the resolution of which atomic ordering
7712 // to use with but issue the flush call
7713 // TODO: pass `FlushAO` after memory ordering support is added
7714 (void)FlushAO;
7715 emitFlush(Loc);
7716 }
7717
7718 // for AO == AtomicOrdering::Monotonic and all other case combinations
7719 // do nothing
7720 return Flush;
7721 }
7722
7723 OpenMPIRBuilder::InsertPointTy
createAtomicRead(const LocationDescription & Loc,AtomicOpValue & X,AtomicOpValue & V,AtomicOrdering AO)7724 OpenMPIRBuilder::createAtomicRead(const LocationDescription &Loc,
7725 AtomicOpValue &X, AtomicOpValue &V,
7726 AtomicOrdering AO) {
7727 if (!updateToLocation(Loc))
7728 return Loc.IP;
7729
7730 assert(X.Var->getType()->isPointerTy() &&
7731 "OMP Atomic expects a pointer to target memory");
7732 Type *XElemTy = X.ElemTy;
7733 assert((XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() ||
7734 XElemTy->isPointerTy()) &&
7735 "OMP atomic read expected a scalar type");
7736
7737 Value *XRead = nullptr;
7738
7739 if (XElemTy->isIntegerTy()) {
7740 LoadInst *XLD =
7741 Builder.CreateLoad(XElemTy, X.Var, X.IsVolatile, "omp.atomic.read");
7742 XLD->setAtomic(AO);
7743 XRead = cast<Value>(XLD);
7744 } else {
7745 // We need to perform atomic op as integer
7746 IntegerType *IntCastTy =
7747 IntegerType::get(M.getContext(), XElemTy->getScalarSizeInBits());
7748 LoadInst *XLoad =
7749 Builder.CreateLoad(IntCastTy, X.Var, X.IsVolatile, "omp.atomic.load");
7750 XLoad->setAtomic(AO);
7751 if (XElemTy->isFloatingPointTy()) {
7752 XRead = Builder.CreateBitCast(XLoad, XElemTy, "atomic.flt.cast");
7753 } else {
7754 XRead = Builder.CreateIntToPtr(XLoad, XElemTy, "atomic.ptr.cast");
7755 }
7756 }
7757 checkAndEmitFlushAfterAtomic(Loc, AO, AtomicKind::Read);
7758 Builder.CreateStore(XRead, V.Var, V.IsVolatile);
7759 return Builder.saveIP();
7760 }
7761
7762 OpenMPIRBuilder::InsertPointTy
createAtomicWrite(const LocationDescription & Loc,AtomicOpValue & X,Value * Expr,AtomicOrdering AO)7763 OpenMPIRBuilder::createAtomicWrite(const LocationDescription &Loc,
7764 AtomicOpValue &X, Value *Expr,
7765 AtomicOrdering AO) {
7766 if (!updateToLocation(Loc))
7767 return Loc.IP;
7768
7769 assert(X.Var->getType()->isPointerTy() &&
7770 "OMP Atomic expects a pointer to target memory");
7771 Type *XElemTy = X.ElemTy;
7772 assert((XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() ||
7773 XElemTy->isPointerTy()) &&
7774 "OMP atomic write expected a scalar type");
7775
7776 if (XElemTy->isIntegerTy()) {
7777 StoreInst *XSt = Builder.CreateStore(Expr, X.Var, X.IsVolatile);
7778 XSt->setAtomic(AO);
7779 } else {
7780 // We need to bitcast and perform atomic op as integers
7781 IntegerType *IntCastTy =
7782 IntegerType::get(M.getContext(), XElemTy->getScalarSizeInBits());
7783 Value *ExprCast =
7784 Builder.CreateBitCast(Expr, IntCastTy, "atomic.src.int.cast");
7785 StoreInst *XSt = Builder.CreateStore(ExprCast, X.Var, X.IsVolatile);
7786 XSt->setAtomic(AO);
7787 }
7788
7789 checkAndEmitFlushAfterAtomic(Loc, AO, AtomicKind::Write);
7790 return Builder.saveIP();
7791 }
7792
createAtomicUpdate(const LocationDescription & Loc,InsertPointTy AllocaIP,AtomicOpValue & X,Value * Expr,AtomicOrdering AO,AtomicRMWInst::BinOp RMWOp,AtomicUpdateCallbackTy & UpdateOp,bool IsXBinopExpr)7793 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createAtomicUpdate(
7794 const LocationDescription &Loc, InsertPointTy AllocaIP, AtomicOpValue &X,
7795 Value *Expr, AtomicOrdering AO, AtomicRMWInst::BinOp RMWOp,
7796 AtomicUpdateCallbackTy &UpdateOp, bool IsXBinopExpr) {
7797 assert(!isConflictIP(Loc.IP, AllocaIP) && "IPs must not be ambiguous");
7798 if (!updateToLocation(Loc))
7799 return Loc.IP;
7800
7801 LLVM_DEBUG({
7802 Type *XTy = X.Var->getType();
7803 assert(XTy->isPointerTy() &&
7804 "OMP Atomic expects a pointer to target memory");
7805 Type *XElemTy = X.ElemTy;
7806 assert((XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() ||
7807 XElemTy->isPointerTy()) &&
7808 "OMP atomic update expected a scalar type");
7809 assert((RMWOp != AtomicRMWInst::Max) && (RMWOp != AtomicRMWInst::Min) &&
7810 (RMWOp != AtomicRMWInst::UMax) && (RMWOp != AtomicRMWInst::UMin) &&
7811 "OpenMP atomic does not support LT or GT operations");
7812 });
7813
7814 emitAtomicUpdate(AllocaIP, X.Var, X.ElemTy, Expr, AO, RMWOp, UpdateOp,
7815 X.IsVolatile, IsXBinopExpr);
7816 checkAndEmitFlushAfterAtomic(Loc, AO, AtomicKind::Update);
7817 return Builder.saveIP();
7818 }
7819
7820 // FIXME: Duplicating AtomicExpand
emitRMWOpAsInstruction(Value * Src1,Value * Src2,AtomicRMWInst::BinOp RMWOp)7821 Value *OpenMPIRBuilder::emitRMWOpAsInstruction(Value *Src1, Value *Src2,
7822 AtomicRMWInst::BinOp RMWOp) {
7823 switch (RMWOp) {
7824 case AtomicRMWInst::Add:
7825 return Builder.CreateAdd(Src1, Src2);
7826 case AtomicRMWInst::Sub:
7827 return Builder.CreateSub(Src1, Src2);
7828 case AtomicRMWInst::And:
7829 return Builder.CreateAnd(Src1, Src2);
7830 case AtomicRMWInst::Nand:
7831 return Builder.CreateNeg(Builder.CreateAnd(Src1, Src2));
7832 case AtomicRMWInst::Or:
7833 return Builder.CreateOr(Src1, Src2);
7834 case AtomicRMWInst::Xor:
7835 return Builder.CreateXor(Src1, Src2);
7836 case AtomicRMWInst::Xchg:
7837 case AtomicRMWInst::FAdd:
7838 case AtomicRMWInst::FSub:
7839 case AtomicRMWInst::BAD_BINOP:
7840 case AtomicRMWInst::Max:
7841 case AtomicRMWInst::Min:
7842 case AtomicRMWInst::UMax:
7843 case AtomicRMWInst::UMin:
7844 case AtomicRMWInst::FMax:
7845 case AtomicRMWInst::FMin:
7846 case AtomicRMWInst::UIncWrap:
7847 case AtomicRMWInst::UDecWrap:
7848 llvm_unreachable("Unsupported atomic update operation");
7849 }
7850 llvm_unreachable("Unsupported atomic update operation");
7851 }
7852
emitAtomicUpdate(InsertPointTy AllocaIP,Value * X,Type * XElemTy,Value * Expr,AtomicOrdering AO,AtomicRMWInst::BinOp RMWOp,AtomicUpdateCallbackTy & UpdateOp,bool VolatileX,bool IsXBinopExpr)7853 std::pair<Value *, Value *> OpenMPIRBuilder::emitAtomicUpdate(
7854 InsertPointTy AllocaIP, Value *X, Type *XElemTy, Value *Expr,
7855 AtomicOrdering AO, AtomicRMWInst::BinOp RMWOp,
7856 AtomicUpdateCallbackTy &UpdateOp, bool VolatileX, bool IsXBinopExpr) {
7857 // TODO: handle the case where XElemTy is not byte-sized or not a power of 2
7858 // or a complex datatype.
7859 bool emitRMWOp = false;
7860 switch (RMWOp) {
7861 case AtomicRMWInst::Add:
7862 case AtomicRMWInst::And:
7863 case AtomicRMWInst::Nand:
7864 case AtomicRMWInst::Or:
7865 case AtomicRMWInst::Xor:
7866 case AtomicRMWInst::Xchg:
7867 emitRMWOp = XElemTy;
7868 break;
7869 case AtomicRMWInst::Sub:
7870 emitRMWOp = (IsXBinopExpr && XElemTy);
7871 break;
7872 default:
7873 emitRMWOp = false;
7874 }
7875 emitRMWOp &= XElemTy->isIntegerTy();
7876
7877 std::pair<Value *, Value *> Res;
7878 if (emitRMWOp) {
7879 Res.first = Builder.CreateAtomicRMW(RMWOp, X, Expr, llvm::MaybeAlign(), AO);
7880 // not needed except in case of postfix captures. Generate anyway for
7881 // consistency with the else part. Will be removed with any DCE pass.
7882 // AtomicRMWInst::Xchg does not have a coressponding instruction.
7883 if (RMWOp == AtomicRMWInst::Xchg)
7884 Res.second = Res.first;
7885 else
7886 Res.second = emitRMWOpAsInstruction(Res.first, Expr, RMWOp);
7887 } else {
7888 IntegerType *IntCastTy =
7889 IntegerType::get(M.getContext(), XElemTy->getScalarSizeInBits());
7890 LoadInst *OldVal =
7891 Builder.CreateLoad(IntCastTy, X, X->getName() + ".atomic.load");
7892 OldVal->setAtomic(AO);
7893 // CurBB
7894 // | /---\
7895 // ContBB |
7896 // | \---/
7897 // ExitBB
7898 BasicBlock *CurBB = Builder.GetInsertBlock();
7899 Instruction *CurBBTI = CurBB->getTerminator();
7900 CurBBTI = CurBBTI ? CurBBTI : Builder.CreateUnreachable();
7901 BasicBlock *ExitBB =
7902 CurBB->splitBasicBlock(CurBBTI, X->getName() + ".atomic.exit");
7903 BasicBlock *ContBB = CurBB->splitBasicBlock(CurBB->getTerminator(),
7904 X->getName() + ".atomic.cont");
7905 ContBB->getTerminator()->eraseFromParent();
7906 Builder.restoreIP(AllocaIP);
7907 AllocaInst *NewAtomicAddr = Builder.CreateAlloca(XElemTy);
7908 NewAtomicAddr->setName(X->getName() + "x.new.val");
7909 Builder.SetInsertPoint(ContBB);
7910 llvm::PHINode *PHI = Builder.CreatePHI(OldVal->getType(), 2);
7911 PHI->addIncoming(OldVal, CurBB);
7912 bool IsIntTy = XElemTy->isIntegerTy();
7913 Value *OldExprVal = PHI;
7914 if (!IsIntTy) {
7915 if (XElemTy->isFloatingPointTy()) {
7916 OldExprVal = Builder.CreateBitCast(PHI, XElemTy,
7917 X->getName() + ".atomic.fltCast");
7918 } else {
7919 OldExprVal = Builder.CreateIntToPtr(PHI, XElemTy,
7920 X->getName() + ".atomic.ptrCast");
7921 }
7922 }
7923
7924 Value *Upd = UpdateOp(OldExprVal, Builder);
7925 Builder.CreateStore(Upd, NewAtomicAddr);
7926 LoadInst *DesiredVal = Builder.CreateLoad(IntCastTy, NewAtomicAddr);
7927 AtomicOrdering Failure =
7928 llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO);
7929 AtomicCmpXchgInst *Result = Builder.CreateAtomicCmpXchg(
7930 X, PHI, DesiredVal, llvm::MaybeAlign(), AO, Failure);
7931 Result->setVolatile(VolatileX);
7932 Value *PreviousVal = Builder.CreateExtractValue(Result, /*Idxs=*/0);
7933 Value *SuccessFailureVal = Builder.CreateExtractValue(Result, /*Idxs=*/1);
7934 PHI->addIncoming(PreviousVal, Builder.GetInsertBlock());
7935 Builder.CreateCondBr(SuccessFailureVal, ExitBB, ContBB);
7936
7937 Res.first = OldExprVal;
7938 Res.second = Upd;
7939
7940 // set Insertion point in exit block
7941 if (UnreachableInst *ExitTI =
7942 dyn_cast<UnreachableInst>(ExitBB->getTerminator())) {
7943 CurBBTI->eraseFromParent();
7944 Builder.SetInsertPoint(ExitBB);
7945 } else {
7946 Builder.SetInsertPoint(ExitTI);
7947 }
7948 }
7949
7950 return Res;
7951 }
7952
createAtomicCapture(const LocationDescription & Loc,InsertPointTy AllocaIP,AtomicOpValue & X,AtomicOpValue & V,Value * Expr,AtomicOrdering AO,AtomicRMWInst::BinOp RMWOp,AtomicUpdateCallbackTy & UpdateOp,bool UpdateExpr,bool IsPostfixUpdate,bool IsXBinopExpr)7953 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createAtomicCapture(
7954 const LocationDescription &Loc, InsertPointTy AllocaIP, AtomicOpValue &X,
7955 AtomicOpValue &V, Value *Expr, AtomicOrdering AO,
7956 AtomicRMWInst::BinOp RMWOp, AtomicUpdateCallbackTy &UpdateOp,
7957 bool UpdateExpr, bool IsPostfixUpdate, bool IsXBinopExpr) {
7958 if (!updateToLocation(Loc))
7959 return Loc.IP;
7960
7961 LLVM_DEBUG({
7962 Type *XTy = X.Var->getType();
7963 assert(XTy->isPointerTy() &&
7964 "OMP Atomic expects a pointer to target memory");
7965 Type *XElemTy = X.ElemTy;
7966 assert((XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() ||
7967 XElemTy->isPointerTy()) &&
7968 "OMP atomic capture expected a scalar type");
7969 assert((RMWOp != AtomicRMWInst::Max) && (RMWOp != AtomicRMWInst::Min) &&
7970 "OpenMP atomic does not support LT or GT operations");
7971 });
7972
7973 // If UpdateExpr is 'x' updated with some `expr` not based on 'x',
7974 // 'x' is simply atomically rewritten with 'expr'.
7975 AtomicRMWInst::BinOp AtomicOp = (UpdateExpr ? RMWOp : AtomicRMWInst::Xchg);
7976 std::pair<Value *, Value *> Result =
7977 emitAtomicUpdate(AllocaIP, X.Var, X.ElemTy, Expr, AO, AtomicOp, UpdateOp,
7978 X.IsVolatile, IsXBinopExpr);
7979
7980 Value *CapturedVal = (IsPostfixUpdate ? Result.first : Result.second);
7981 Builder.CreateStore(CapturedVal, V.Var, V.IsVolatile);
7982
7983 checkAndEmitFlushAfterAtomic(Loc, AO, AtomicKind::Capture);
7984 return Builder.saveIP();
7985 }
7986
createAtomicCompare(const LocationDescription & Loc,AtomicOpValue & X,AtomicOpValue & V,AtomicOpValue & R,Value * E,Value * D,AtomicOrdering AO,omp::OMPAtomicCompareOp Op,bool IsXBinopExpr,bool IsPostfixUpdate,bool IsFailOnly)7987 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createAtomicCompare(
7988 const LocationDescription &Loc, AtomicOpValue &X, AtomicOpValue &V,
7989 AtomicOpValue &R, Value *E, Value *D, AtomicOrdering AO,
7990 omp::OMPAtomicCompareOp Op, bool IsXBinopExpr, bool IsPostfixUpdate,
7991 bool IsFailOnly) {
7992
7993 AtomicOrdering Failure = AtomicCmpXchgInst::getStrongestFailureOrdering(AO);
7994 return createAtomicCompare(Loc, X, V, R, E, D, AO, Op, IsXBinopExpr,
7995 IsPostfixUpdate, IsFailOnly, Failure);
7996 }
7997
createAtomicCompare(const LocationDescription & Loc,AtomicOpValue & X,AtomicOpValue & V,AtomicOpValue & R,Value * E,Value * D,AtomicOrdering AO,omp::OMPAtomicCompareOp Op,bool IsXBinopExpr,bool IsPostfixUpdate,bool IsFailOnly,AtomicOrdering Failure)7998 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createAtomicCompare(
7999 const LocationDescription &Loc, AtomicOpValue &X, AtomicOpValue &V,
8000 AtomicOpValue &R, Value *E, Value *D, AtomicOrdering AO,
8001 omp::OMPAtomicCompareOp Op, bool IsXBinopExpr, bool IsPostfixUpdate,
8002 bool IsFailOnly, AtomicOrdering Failure) {
8003
8004 if (!updateToLocation(Loc))
8005 return Loc.IP;
8006
8007 assert(X.Var->getType()->isPointerTy() &&
8008 "OMP atomic expects a pointer to target memory");
8009 // compare capture
8010 if (V.Var) {
8011 assert(V.Var->getType()->isPointerTy() && "v.var must be of pointer type");
8012 assert(V.ElemTy == X.ElemTy && "x and v must be of same type");
8013 }
8014
8015 bool IsInteger = E->getType()->isIntegerTy();
8016
8017 if (Op == OMPAtomicCompareOp::EQ) {
8018 AtomicCmpXchgInst *Result = nullptr;
8019 if (!IsInteger) {
8020 IntegerType *IntCastTy =
8021 IntegerType::get(M.getContext(), X.ElemTy->getScalarSizeInBits());
8022 Value *EBCast = Builder.CreateBitCast(E, IntCastTy);
8023 Value *DBCast = Builder.CreateBitCast(D, IntCastTy);
8024 Result = Builder.CreateAtomicCmpXchg(X.Var, EBCast, DBCast, MaybeAlign(),
8025 AO, Failure);
8026 } else {
8027 Result =
8028 Builder.CreateAtomicCmpXchg(X.Var, E, D, MaybeAlign(), AO, Failure);
8029 }
8030
8031 if (V.Var) {
8032 Value *OldValue = Builder.CreateExtractValue(Result, /*Idxs=*/0);
8033 if (!IsInteger)
8034 OldValue = Builder.CreateBitCast(OldValue, X.ElemTy);
8035 assert(OldValue->getType() == V.ElemTy &&
8036 "OldValue and V must be of same type");
8037 if (IsPostfixUpdate) {
8038 Builder.CreateStore(OldValue, V.Var, V.IsVolatile);
8039 } else {
8040 Value *SuccessOrFail = Builder.CreateExtractValue(Result, /*Idxs=*/1);
8041 if (IsFailOnly) {
8042 // CurBB----
8043 // | |
8044 // v |
8045 // ContBB |
8046 // | |
8047 // v |
8048 // ExitBB <-
8049 //
8050 // where ContBB only contains the store of old value to 'v'.
8051 BasicBlock *CurBB = Builder.GetInsertBlock();
8052 Instruction *CurBBTI = CurBB->getTerminator();
8053 CurBBTI = CurBBTI ? CurBBTI : Builder.CreateUnreachable();
8054 BasicBlock *ExitBB = CurBB->splitBasicBlock(
8055 CurBBTI, X.Var->getName() + ".atomic.exit");
8056 BasicBlock *ContBB = CurBB->splitBasicBlock(
8057 CurBB->getTerminator(), X.Var->getName() + ".atomic.cont");
8058 ContBB->getTerminator()->eraseFromParent();
8059 CurBB->getTerminator()->eraseFromParent();
8060
8061 Builder.CreateCondBr(SuccessOrFail, ExitBB, ContBB);
8062
8063 Builder.SetInsertPoint(ContBB);
8064 Builder.CreateStore(OldValue, V.Var);
8065 Builder.CreateBr(ExitBB);
8066
8067 if (UnreachableInst *ExitTI =
8068 dyn_cast<UnreachableInst>(ExitBB->getTerminator())) {
8069 CurBBTI->eraseFromParent();
8070 Builder.SetInsertPoint(ExitBB);
8071 } else {
8072 Builder.SetInsertPoint(ExitTI);
8073 }
8074 } else {
8075 Value *CapturedValue =
8076 Builder.CreateSelect(SuccessOrFail, E, OldValue);
8077 Builder.CreateStore(CapturedValue, V.Var, V.IsVolatile);
8078 }
8079 }
8080 }
8081 // The comparison result has to be stored.
8082 if (R.Var) {
8083 assert(R.Var->getType()->isPointerTy() &&
8084 "r.var must be of pointer type");
8085 assert(R.ElemTy->isIntegerTy() && "r must be of integral type");
8086
8087 Value *SuccessFailureVal = Builder.CreateExtractValue(Result, /*Idxs=*/1);
8088 Value *ResultCast = R.IsSigned
8089 ? Builder.CreateSExt(SuccessFailureVal, R.ElemTy)
8090 : Builder.CreateZExt(SuccessFailureVal, R.ElemTy);
8091 Builder.CreateStore(ResultCast, R.Var, R.IsVolatile);
8092 }
8093 } else {
8094 assert((Op == OMPAtomicCompareOp::MAX || Op == OMPAtomicCompareOp::MIN) &&
8095 "Op should be either max or min at this point");
8096 assert(!IsFailOnly && "IsFailOnly is only valid when the comparison is ==");
8097
8098 // Reverse the ordop as the OpenMP forms are different from LLVM forms.
8099 // Let's take max as example.
8100 // OpenMP form:
8101 // x = x > expr ? expr : x;
8102 // LLVM form:
8103 // *ptr = *ptr > val ? *ptr : val;
8104 // We need to transform to LLVM form.
8105 // x = x <= expr ? x : expr;
8106 AtomicRMWInst::BinOp NewOp;
8107 if (IsXBinopExpr) {
8108 if (IsInteger) {
8109 if (X.IsSigned)
8110 NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::Min
8111 : AtomicRMWInst::Max;
8112 else
8113 NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::UMin
8114 : AtomicRMWInst::UMax;
8115 } else {
8116 NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::FMin
8117 : AtomicRMWInst::FMax;
8118 }
8119 } else {
8120 if (IsInteger) {
8121 if (X.IsSigned)
8122 NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::Max
8123 : AtomicRMWInst::Min;
8124 else
8125 NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::UMax
8126 : AtomicRMWInst::UMin;
8127 } else {
8128 NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::FMax
8129 : AtomicRMWInst::FMin;
8130 }
8131 }
8132
8133 AtomicRMWInst *OldValue =
8134 Builder.CreateAtomicRMW(NewOp, X.Var, E, MaybeAlign(), AO);
8135 if (V.Var) {
8136 Value *CapturedValue = nullptr;
8137 if (IsPostfixUpdate) {
8138 CapturedValue = OldValue;
8139 } else {
8140 CmpInst::Predicate Pred;
8141 switch (NewOp) {
8142 case AtomicRMWInst::Max:
8143 Pred = CmpInst::ICMP_SGT;
8144 break;
8145 case AtomicRMWInst::UMax:
8146 Pred = CmpInst::ICMP_UGT;
8147 break;
8148 case AtomicRMWInst::FMax:
8149 Pred = CmpInst::FCMP_OGT;
8150 break;
8151 case AtomicRMWInst::Min:
8152 Pred = CmpInst::ICMP_SLT;
8153 break;
8154 case AtomicRMWInst::UMin:
8155 Pred = CmpInst::ICMP_ULT;
8156 break;
8157 case AtomicRMWInst::FMin:
8158 Pred = CmpInst::FCMP_OLT;
8159 break;
8160 default:
8161 llvm_unreachable("unexpected comparison op");
8162 }
8163 Value *NonAtomicCmp = Builder.CreateCmp(Pred, OldValue, E);
8164 CapturedValue = Builder.CreateSelect(NonAtomicCmp, E, OldValue);
8165 }
8166 Builder.CreateStore(CapturedValue, V.Var, V.IsVolatile);
8167 }
8168 }
8169
8170 checkAndEmitFlushAfterAtomic(Loc, AO, AtomicKind::Compare);
8171
8172 return Builder.saveIP();
8173 }
8174
8175 OpenMPIRBuilder::InsertPointTy
createTeams(const LocationDescription & Loc,BodyGenCallbackTy BodyGenCB,Value * NumTeamsLower,Value * NumTeamsUpper,Value * ThreadLimit,Value * IfExpr)8176 OpenMPIRBuilder::createTeams(const LocationDescription &Loc,
8177 BodyGenCallbackTy BodyGenCB, Value *NumTeamsLower,
8178 Value *NumTeamsUpper, Value *ThreadLimit,
8179 Value *IfExpr) {
8180 if (!updateToLocation(Loc))
8181 return InsertPointTy();
8182
8183 uint32_t SrcLocStrSize;
8184 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
8185 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
8186 Function *CurrentFunction = Builder.GetInsertBlock()->getParent();
8187
8188 // Outer allocation basicblock is the entry block of the current function.
8189 BasicBlock &OuterAllocaBB = CurrentFunction->getEntryBlock();
8190 if (&OuterAllocaBB == Builder.GetInsertBlock()) {
8191 BasicBlock *BodyBB = splitBB(Builder, /*CreateBranch=*/true, "teams.entry");
8192 Builder.SetInsertPoint(BodyBB, BodyBB->begin());
8193 }
8194
8195 // The current basic block is split into four basic blocks. After outlining,
8196 // they will be mapped as follows:
8197 // ```
8198 // def current_fn() {
8199 // current_basic_block:
8200 // br label %teams.exit
8201 // teams.exit:
8202 // ; instructions after teams
8203 // }
8204 //
8205 // def outlined_fn() {
8206 // teams.alloca:
8207 // br label %teams.body
8208 // teams.body:
8209 // ; instructions within teams body
8210 // }
8211 // ```
8212 BasicBlock *ExitBB = splitBB(Builder, /*CreateBranch=*/true, "teams.exit");
8213 BasicBlock *BodyBB = splitBB(Builder, /*CreateBranch=*/true, "teams.body");
8214 BasicBlock *AllocaBB =
8215 splitBB(Builder, /*CreateBranch=*/true, "teams.alloca");
8216
8217 bool SubClausesPresent =
8218 (NumTeamsLower || NumTeamsUpper || ThreadLimit || IfExpr);
8219 // Push num_teams
8220 if (!Config.isTargetDevice() && SubClausesPresent) {
8221 assert((NumTeamsLower == nullptr || NumTeamsUpper != nullptr) &&
8222 "if lowerbound is non-null, then upperbound must also be non-null "
8223 "for bounds on num_teams");
8224
8225 if (NumTeamsUpper == nullptr)
8226 NumTeamsUpper = Builder.getInt32(0);
8227
8228 if (NumTeamsLower == nullptr)
8229 NumTeamsLower = NumTeamsUpper;
8230
8231 if (IfExpr) {
8232 assert(IfExpr->getType()->isIntegerTy() &&
8233 "argument to if clause must be an integer value");
8234
8235 // upper = ifexpr ? upper : 1
8236 if (IfExpr->getType() != Int1)
8237 IfExpr = Builder.CreateICmpNE(IfExpr,
8238 ConstantInt::get(IfExpr->getType(), 0));
8239 NumTeamsUpper = Builder.CreateSelect(
8240 IfExpr, NumTeamsUpper, Builder.getInt32(1), "numTeamsUpper");
8241
8242 // lower = ifexpr ? lower : 1
8243 NumTeamsLower = Builder.CreateSelect(
8244 IfExpr, NumTeamsLower, Builder.getInt32(1), "numTeamsLower");
8245 }
8246
8247 if (ThreadLimit == nullptr)
8248 ThreadLimit = Builder.getInt32(0);
8249
8250 Value *ThreadNum = getOrCreateThreadID(Ident);
8251 Builder.CreateCall(
8252 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_push_num_teams_51),
8253 {Ident, ThreadNum, NumTeamsLower, NumTeamsUpper, ThreadLimit});
8254 }
8255 // Generate the body of teams.
8256 InsertPointTy AllocaIP(AllocaBB, AllocaBB->begin());
8257 InsertPointTy CodeGenIP(BodyBB, BodyBB->begin());
8258 BodyGenCB(AllocaIP, CodeGenIP);
8259
8260 OutlineInfo OI;
8261 OI.EntryBB = AllocaBB;
8262 OI.ExitBB = ExitBB;
8263 OI.OuterAllocaBB = &OuterAllocaBB;
8264
8265 // Insert fake values for global tid and bound tid.
8266 SmallVector<Instruction *, 8> ToBeDeleted;
8267 InsertPointTy OuterAllocaIP(&OuterAllocaBB, OuterAllocaBB.begin());
8268 OI.ExcludeArgsFromAggregate.push_back(createFakeIntVal(
8269 Builder, OuterAllocaIP, ToBeDeleted, AllocaIP, "gid", true));
8270 OI.ExcludeArgsFromAggregate.push_back(createFakeIntVal(
8271 Builder, OuterAllocaIP, ToBeDeleted, AllocaIP, "tid", true));
8272
8273 auto HostPostOutlineCB = [this, Ident,
8274 ToBeDeleted](Function &OutlinedFn) mutable {
8275 // The stale call instruction will be replaced with a new call instruction
8276 // for runtime call with the outlined function.
8277
8278 assert(OutlinedFn.getNumUses() == 1 &&
8279 "there must be a single user for the outlined function");
8280 CallInst *StaleCI = cast<CallInst>(OutlinedFn.user_back());
8281 ToBeDeleted.push_back(StaleCI);
8282
8283 assert((OutlinedFn.arg_size() == 2 || OutlinedFn.arg_size() == 3) &&
8284 "Outlined function must have two or three arguments only");
8285
8286 bool HasShared = OutlinedFn.arg_size() == 3;
8287
8288 OutlinedFn.getArg(0)->setName("global.tid.ptr");
8289 OutlinedFn.getArg(1)->setName("bound.tid.ptr");
8290 if (HasShared)
8291 OutlinedFn.getArg(2)->setName("data");
8292
8293 // Call to the runtime function for teams in the current function.
8294 assert(StaleCI && "Error while outlining - no CallInst user found for the "
8295 "outlined function.");
8296 Builder.SetInsertPoint(StaleCI);
8297 SmallVector<Value *> Args = {
8298 Ident, Builder.getInt32(StaleCI->arg_size() - 2), &OutlinedFn};
8299 if (HasShared)
8300 Args.push_back(StaleCI->getArgOperand(2));
8301 Builder.CreateCall(getOrCreateRuntimeFunctionPtr(
8302 omp::RuntimeFunction::OMPRTL___kmpc_fork_teams),
8303 Args);
8304
8305 llvm::for_each(llvm::reverse(ToBeDeleted),
8306 [](Instruction *I) { I->eraseFromParent(); });
8307
8308 };
8309
8310 if (!Config.isTargetDevice())
8311 OI.PostOutlineCB = HostPostOutlineCB;
8312
8313 addOutlineInfo(std::move(OI));
8314
8315 Builder.SetInsertPoint(ExitBB, ExitBB->begin());
8316
8317 return Builder.saveIP();
8318 }
8319
8320 GlobalVariable *
createOffloadMapnames(SmallVectorImpl<llvm::Constant * > & Names,std::string VarName)8321 OpenMPIRBuilder::createOffloadMapnames(SmallVectorImpl<llvm::Constant *> &Names,
8322 std::string VarName) {
8323 llvm::Constant *MapNamesArrayInit = llvm::ConstantArray::get(
8324 llvm::ArrayType::get(llvm::PointerType::getUnqual(M.getContext()),
8325 Names.size()),
8326 Names);
8327 auto *MapNamesArrayGlobal = new llvm::GlobalVariable(
8328 M, MapNamesArrayInit->getType(),
8329 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, MapNamesArrayInit,
8330 VarName);
8331 return MapNamesArrayGlobal;
8332 }
8333
8334 // Create all simple and struct types exposed by the runtime and remember
8335 // the llvm::PointerTypes of them for easy access later.
initializeTypes(Module & M)8336 void OpenMPIRBuilder::initializeTypes(Module &M) {
8337 LLVMContext &Ctx = M.getContext();
8338 StructType *T;
8339 #define OMP_TYPE(VarName, InitValue) VarName = InitValue;
8340 #define OMP_ARRAY_TYPE(VarName, ElemTy, ArraySize) \
8341 VarName##Ty = ArrayType::get(ElemTy, ArraySize); \
8342 VarName##PtrTy = PointerType::getUnqual(VarName##Ty);
8343 #define OMP_FUNCTION_TYPE(VarName, IsVarArg, ReturnType, ...) \
8344 VarName = FunctionType::get(ReturnType, {__VA_ARGS__}, IsVarArg); \
8345 VarName##Ptr = PointerType::getUnqual(VarName);
8346 #define OMP_STRUCT_TYPE(VarName, StructName, Packed, ...) \
8347 T = StructType::getTypeByName(Ctx, StructName); \
8348 if (!T) \
8349 T = StructType::create(Ctx, {__VA_ARGS__}, StructName, Packed); \
8350 VarName = T; \
8351 VarName##Ptr = PointerType::getUnqual(T);
8352 #include "llvm/Frontend/OpenMP/OMPKinds.def"
8353 }
8354
collectBlocks(SmallPtrSetImpl<BasicBlock * > & BlockSet,SmallVectorImpl<BasicBlock * > & BlockVector)8355 void OpenMPIRBuilder::OutlineInfo::collectBlocks(
8356 SmallPtrSetImpl<BasicBlock *> &BlockSet,
8357 SmallVectorImpl<BasicBlock *> &BlockVector) {
8358 SmallVector<BasicBlock *, 32> Worklist;
8359 BlockSet.insert(EntryBB);
8360 BlockSet.insert(ExitBB);
8361
8362 Worklist.push_back(EntryBB);
8363 while (!Worklist.empty()) {
8364 BasicBlock *BB = Worklist.pop_back_val();
8365 BlockVector.push_back(BB);
8366 for (BasicBlock *SuccBB : successors(BB))
8367 if (BlockSet.insert(SuccBB).second)
8368 Worklist.push_back(SuccBB);
8369 }
8370 }
8371
createOffloadEntry(Constant * ID,Constant * Addr,uint64_t Size,int32_t Flags,GlobalValue::LinkageTypes,StringRef Name)8372 void OpenMPIRBuilder::createOffloadEntry(Constant *ID, Constant *Addr,
8373 uint64_t Size, int32_t Flags,
8374 GlobalValue::LinkageTypes,
8375 StringRef Name) {
8376 if (!Config.isGPU()) {
8377 llvm::offloading::emitOffloadingEntry(
8378 M, ID, Name.empty() ? Addr->getName() : Name, Size, Flags, /*Data=*/0,
8379 "omp_offloading_entries");
8380 return;
8381 }
8382 // TODO: Add support for global variables on the device after declare target
8383 // support.
8384 Function *Fn = dyn_cast<Function>(Addr);
8385 if (!Fn)
8386 return;
8387
8388 Module &M = *(Fn->getParent());
8389 LLVMContext &Ctx = M.getContext();
8390
8391 // Get "nvvm.annotations" metadata node.
8392 NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations");
8393
8394 Metadata *MDVals[] = {
8395 ConstantAsMetadata::get(Fn), MDString::get(Ctx, "kernel"),
8396 ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Ctx), 1))};
8397 // Append metadata to nvvm.annotations.
8398 MD->addOperand(MDNode::get(Ctx, MDVals));
8399
8400 // Add a function attribute for the kernel.
8401 Fn->addFnAttr(Attribute::get(Ctx, "kernel"));
8402 if (T.isAMDGCN())
8403 Fn->addFnAttr("uniform-work-group-size", "true");
8404 Fn->addFnAttr(Attribute::MustProgress);
8405 }
8406
8407 // We only generate metadata for function that contain target regions.
createOffloadEntriesAndInfoMetadata(EmitMetadataErrorReportFunctionTy & ErrorFn)8408 void OpenMPIRBuilder::createOffloadEntriesAndInfoMetadata(
8409 EmitMetadataErrorReportFunctionTy &ErrorFn) {
8410
8411 // If there are no entries, we don't need to do anything.
8412 if (OffloadInfoManager.empty())
8413 return;
8414
8415 LLVMContext &C = M.getContext();
8416 SmallVector<std::pair<const OffloadEntriesInfoManager::OffloadEntryInfo *,
8417 TargetRegionEntryInfo>,
8418 16>
8419 OrderedEntries(OffloadInfoManager.size());
8420
8421 // Auxiliary methods to create metadata values and strings.
8422 auto &&GetMDInt = [this](unsigned V) {
8423 return ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), V));
8424 };
8425
8426 auto &&GetMDString = [&C](StringRef V) { return MDString::get(C, V); };
8427
8428 // Create the offloading info metadata node.
8429 NamedMDNode *MD = M.getOrInsertNamedMetadata("omp_offload.info");
8430 auto &&TargetRegionMetadataEmitter =
8431 [&C, MD, &OrderedEntries, &GetMDInt, &GetMDString](
8432 const TargetRegionEntryInfo &EntryInfo,
8433 const OffloadEntriesInfoManager::OffloadEntryInfoTargetRegion &E) {
8434 // Generate metadata for target regions. Each entry of this metadata
8435 // contains:
8436 // - Entry 0 -> Kind of this type of metadata (0).
8437 // - Entry 1 -> Device ID of the file where the entry was identified.
8438 // - Entry 2 -> File ID of the file where the entry was identified.
8439 // - Entry 3 -> Mangled name of the function where the entry was
8440 // identified.
8441 // - Entry 4 -> Line in the file where the entry was identified.
8442 // - Entry 5 -> Count of regions at this DeviceID/FilesID/Line.
8443 // - Entry 6 -> Order the entry was created.
8444 // The first element of the metadata node is the kind.
8445 Metadata *Ops[] = {
8446 GetMDInt(E.getKind()), GetMDInt(EntryInfo.DeviceID),
8447 GetMDInt(EntryInfo.FileID), GetMDString(EntryInfo.ParentName),
8448 GetMDInt(EntryInfo.Line), GetMDInt(EntryInfo.Count),
8449 GetMDInt(E.getOrder())};
8450
8451 // Save this entry in the right position of the ordered entries array.
8452 OrderedEntries[E.getOrder()] = std::make_pair(&E, EntryInfo);
8453
8454 // Add metadata to the named metadata node.
8455 MD->addOperand(MDNode::get(C, Ops));
8456 };
8457
8458 OffloadInfoManager.actOnTargetRegionEntriesInfo(TargetRegionMetadataEmitter);
8459
8460 // Create function that emits metadata for each device global variable entry;
8461 auto &&DeviceGlobalVarMetadataEmitter =
8462 [&C, &OrderedEntries, &GetMDInt, &GetMDString, MD](
8463 StringRef MangledName,
8464 const OffloadEntriesInfoManager::OffloadEntryInfoDeviceGlobalVar &E) {
8465 // Generate metadata for global variables. Each entry of this metadata
8466 // contains:
8467 // - Entry 0 -> Kind of this type of metadata (1).
8468 // - Entry 1 -> Mangled name of the variable.
8469 // - Entry 2 -> Declare target kind.
8470 // - Entry 3 -> Order the entry was created.
8471 // The first element of the metadata node is the kind.
8472 Metadata *Ops[] = {GetMDInt(E.getKind()), GetMDString(MangledName),
8473 GetMDInt(E.getFlags()), GetMDInt(E.getOrder())};
8474
8475 // Save this entry in the right position of the ordered entries array.
8476 TargetRegionEntryInfo varInfo(MangledName, 0, 0, 0);
8477 OrderedEntries[E.getOrder()] = std::make_pair(&E, varInfo);
8478
8479 // Add metadata to the named metadata node.
8480 MD->addOperand(MDNode::get(C, Ops));
8481 };
8482
8483 OffloadInfoManager.actOnDeviceGlobalVarEntriesInfo(
8484 DeviceGlobalVarMetadataEmitter);
8485
8486 for (const auto &E : OrderedEntries) {
8487 assert(E.first && "All ordered entries must exist!");
8488 if (const auto *CE =
8489 dyn_cast<OffloadEntriesInfoManager::OffloadEntryInfoTargetRegion>(
8490 E.first)) {
8491 if (!CE->getID() || !CE->getAddress()) {
8492 // Do not blame the entry if the parent funtion is not emitted.
8493 TargetRegionEntryInfo EntryInfo = E.second;
8494 StringRef FnName = EntryInfo.ParentName;
8495 if (!M.getNamedValue(FnName))
8496 continue;
8497 ErrorFn(EMIT_MD_TARGET_REGION_ERROR, EntryInfo);
8498 continue;
8499 }
8500 createOffloadEntry(CE->getID(), CE->getAddress(),
8501 /*Size=*/0, CE->getFlags(),
8502 GlobalValue::WeakAnyLinkage);
8503 } else if (const auto *CE = dyn_cast<
8504 OffloadEntriesInfoManager::OffloadEntryInfoDeviceGlobalVar>(
8505 E.first)) {
8506 OffloadEntriesInfoManager::OMPTargetGlobalVarEntryKind Flags =
8507 static_cast<OffloadEntriesInfoManager::OMPTargetGlobalVarEntryKind>(
8508 CE->getFlags());
8509 switch (Flags) {
8510 case OffloadEntriesInfoManager::OMPTargetGlobalVarEntryEnter:
8511 case OffloadEntriesInfoManager::OMPTargetGlobalVarEntryTo:
8512 if (Config.isTargetDevice() && Config.hasRequiresUnifiedSharedMemory())
8513 continue;
8514 if (!CE->getAddress()) {
8515 ErrorFn(EMIT_MD_DECLARE_TARGET_ERROR, E.second);
8516 continue;
8517 }
8518 // The vaiable has no definition - no need to add the entry.
8519 if (CE->getVarSize() == 0)
8520 continue;
8521 break;
8522 case OffloadEntriesInfoManager::OMPTargetGlobalVarEntryLink:
8523 assert(((Config.isTargetDevice() && !CE->getAddress()) ||
8524 (!Config.isTargetDevice() && CE->getAddress())) &&
8525 "Declaret target link address is set.");
8526 if (Config.isTargetDevice())
8527 continue;
8528 if (!CE->getAddress()) {
8529 ErrorFn(EMIT_MD_GLOBAL_VAR_LINK_ERROR, TargetRegionEntryInfo());
8530 continue;
8531 }
8532 break;
8533 default:
8534 break;
8535 }
8536
8537 // Hidden or internal symbols on the device are not externally visible.
8538 // We should not attempt to register them by creating an offloading
8539 // entry. Indirect variables are handled separately on the device.
8540 if (auto *GV = dyn_cast<GlobalValue>(CE->getAddress()))
8541 if ((GV->hasLocalLinkage() || GV->hasHiddenVisibility()) &&
8542 Flags != OffloadEntriesInfoManager::OMPTargetGlobalVarEntryIndirect)
8543 continue;
8544
8545 // Indirect globals need to use a special name that doesn't match the name
8546 // of the associated host global.
8547 if (Flags == OffloadEntriesInfoManager::OMPTargetGlobalVarEntryIndirect)
8548 createOffloadEntry(CE->getAddress(), CE->getAddress(), CE->getVarSize(),
8549 Flags, CE->getLinkage(), CE->getVarName());
8550 else
8551 createOffloadEntry(CE->getAddress(), CE->getAddress(), CE->getVarSize(),
8552 Flags, CE->getLinkage());
8553
8554 } else {
8555 llvm_unreachable("Unsupported entry kind.");
8556 }
8557 }
8558
8559 // Emit requires directive globals to a special entry so the runtime can
8560 // register them when the device image is loaded.
8561 // TODO: This reduces the offloading entries to a 32-bit integer. Offloading
8562 // entries should be redesigned to better suit this use-case.
8563 if (Config.hasRequiresFlags() && !Config.isTargetDevice())
8564 offloading::emitOffloadingEntry(
8565 M, Constant::getNullValue(PointerType::getUnqual(M.getContext())),
8566 /*Name=*/"",
8567 /*Size=*/0, OffloadEntriesInfoManager::OMPTargetGlobalRegisterRequires,
8568 Config.getRequiresFlags(), "omp_offloading_entries");
8569 }
8570
getTargetRegionEntryFnName(SmallVectorImpl<char> & Name,StringRef ParentName,unsigned DeviceID,unsigned FileID,unsigned Line,unsigned Count)8571 void TargetRegionEntryInfo::getTargetRegionEntryFnName(
8572 SmallVectorImpl<char> &Name, StringRef ParentName, unsigned DeviceID,
8573 unsigned FileID, unsigned Line, unsigned Count) {
8574 raw_svector_ostream OS(Name);
8575 OS << "__omp_offloading" << llvm::format("_%x", DeviceID)
8576 << llvm::format("_%x_", FileID) << ParentName << "_l" << Line;
8577 if (Count)
8578 OS << "_" << Count;
8579 }
8580
getTargetRegionEntryFnName(SmallVectorImpl<char> & Name,const TargetRegionEntryInfo & EntryInfo)8581 void OffloadEntriesInfoManager::getTargetRegionEntryFnName(
8582 SmallVectorImpl<char> &Name, const TargetRegionEntryInfo &EntryInfo) {
8583 unsigned NewCount = getTargetRegionEntryInfoCount(EntryInfo);
8584 TargetRegionEntryInfo::getTargetRegionEntryFnName(
8585 Name, EntryInfo.ParentName, EntryInfo.DeviceID, EntryInfo.FileID,
8586 EntryInfo.Line, NewCount);
8587 }
8588
8589 TargetRegionEntryInfo
getTargetEntryUniqueInfo(FileIdentifierInfoCallbackTy CallBack,StringRef ParentName)8590 OpenMPIRBuilder::getTargetEntryUniqueInfo(FileIdentifierInfoCallbackTy CallBack,
8591 StringRef ParentName) {
8592 sys::fs::UniqueID ID;
8593 auto FileIDInfo = CallBack();
8594 if (auto EC = sys::fs::getUniqueID(std::get<0>(FileIDInfo), ID)) {
8595 report_fatal_error(("Unable to get unique ID for file, during "
8596 "getTargetEntryUniqueInfo, error message: " +
8597 EC.message())
8598 .c_str());
8599 }
8600
8601 return TargetRegionEntryInfo(ParentName, ID.getDevice(), ID.getFile(),
8602 std::get<1>(FileIDInfo));
8603 }
8604
getFlagMemberOffset()8605 unsigned OpenMPIRBuilder::getFlagMemberOffset() {
8606 unsigned Offset = 0;
8607 for (uint64_t Remain =
8608 static_cast<std::underlying_type_t<omp::OpenMPOffloadMappingFlags>>(
8609 omp::OpenMPOffloadMappingFlags::OMP_MAP_MEMBER_OF);
8610 !(Remain & 1); Remain = Remain >> 1)
8611 Offset++;
8612 return Offset;
8613 }
8614
8615 omp::OpenMPOffloadMappingFlags
getMemberOfFlag(unsigned Position)8616 OpenMPIRBuilder::getMemberOfFlag(unsigned Position) {
8617 // Rotate by getFlagMemberOffset() bits.
8618 return static_cast<omp::OpenMPOffloadMappingFlags>(((uint64_t)Position + 1)
8619 << getFlagMemberOffset());
8620 }
8621
setCorrectMemberOfFlag(omp::OpenMPOffloadMappingFlags & Flags,omp::OpenMPOffloadMappingFlags MemberOfFlag)8622 void OpenMPIRBuilder::setCorrectMemberOfFlag(
8623 omp::OpenMPOffloadMappingFlags &Flags,
8624 omp::OpenMPOffloadMappingFlags MemberOfFlag) {
8625 // If the entry is PTR_AND_OBJ but has not been marked with the special
8626 // placeholder value 0xFFFF in the MEMBER_OF field, then it should not be
8627 // marked as MEMBER_OF.
8628 if (static_cast<std::underlying_type_t<omp::OpenMPOffloadMappingFlags>>(
8629 Flags & omp::OpenMPOffloadMappingFlags::OMP_MAP_PTR_AND_OBJ) &&
8630 static_cast<std::underlying_type_t<omp::OpenMPOffloadMappingFlags>>(
8631 (Flags & omp::OpenMPOffloadMappingFlags::OMP_MAP_MEMBER_OF) !=
8632 omp::OpenMPOffloadMappingFlags::OMP_MAP_MEMBER_OF))
8633 return;
8634
8635 // Reset the placeholder value to prepare the flag for the assignment of the
8636 // proper MEMBER_OF value.
8637 Flags &= ~omp::OpenMPOffloadMappingFlags::OMP_MAP_MEMBER_OF;
8638 Flags |= MemberOfFlag;
8639 }
8640
getAddrOfDeclareTargetVar(OffloadEntriesInfoManager::OMPTargetGlobalVarEntryKind CaptureClause,OffloadEntriesInfoManager::OMPTargetDeviceClauseKind DeviceClause,bool IsDeclaration,bool IsExternallyVisible,TargetRegionEntryInfo EntryInfo,StringRef MangledName,std::vector<GlobalVariable * > & GeneratedRefs,bool OpenMPSIMD,std::vector<Triple> TargetTriple,Type * LlvmPtrTy,std::function<Constant * ()> GlobalInitializer,std::function<GlobalValue::LinkageTypes ()> VariableLinkage)8641 Constant *OpenMPIRBuilder::getAddrOfDeclareTargetVar(
8642 OffloadEntriesInfoManager::OMPTargetGlobalVarEntryKind CaptureClause,
8643 OffloadEntriesInfoManager::OMPTargetDeviceClauseKind DeviceClause,
8644 bool IsDeclaration, bool IsExternallyVisible,
8645 TargetRegionEntryInfo EntryInfo, StringRef MangledName,
8646 std::vector<GlobalVariable *> &GeneratedRefs, bool OpenMPSIMD,
8647 std::vector<Triple> TargetTriple, Type *LlvmPtrTy,
8648 std::function<Constant *()> GlobalInitializer,
8649 std::function<GlobalValue::LinkageTypes()> VariableLinkage) {
8650 // TODO: convert this to utilise the IRBuilder Config rather than
8651 // a passed down argument.
8652 if (OpenMPSIMD)
8653 return nullptr;
8654
8655 if (CaptureClause == OffloadEntriesInfoManager::OMPTargetGlobalVarEntryLink ||
8656 ((CaptureClause == OffloadEntriesInfoManager::OMPTargetGlobalVarEntryTo ||
8657 CaptureClause ==
8658 OffloadEntriesInfoManager::OMPTargetGlobalVarEntryEnter) &&
8659 Config.hasRequiresUnifiedSharedMemory())) {
8660 SmallString<64> PtrName;
8661 {
8662 raw_svector_ostream OS(PtrName);
8663 OS << MangledName;
8664 if (!IsExternallyVisible)
8665 OS << format("_%x", EntryInfo.FileID);
8666 OS << "_decl_tgt_ref_ptr";
8667 }
8668
8669 Value *Ptr = M.getNamedValue(PtrName);
8670
8671 if (!Ptr) {
8672 GlobalValue *GlobalValue = M.getNamedValue(MangledName);
8673 Ptr = getOrCreateInternalVariable(LlvmPtrTy, PtrName);
8674
8675 auto *GV = cast<GlobalVariable>(Ptr);
8676 GV->setLinkage(GlobalValue::WeakAnyLinkage);
8677
8678 if (!Config.isTargetDevice()) {
8679 if (GlobalInitializer)
8680 GV->setInitializer(GlobalInitializer());
8681 else
8682 GV->setInitializer(GlobalValue);
8683 }
8684
8685 registerTargetGlobalVariable(
8686 CaptureClause, DeviceClause, IsDeclaration, IsExternallyVisible,
8687 EntryInfo, MangledName, GeneratedRefs, OpenMPSIMD, TargetTriple,
8688 GlobalInitializer, VariableLinkage, LlvmPtrTy, cast<Constant>(Ptr));
8689 }
8690
8691 return cast<Constant>(Ptr);
8692 }
8693
8694 return nullptr;
8695 }
8696
registerTargetGlobalVariable(OffloadEntriesInfoManager::OMPTargetGlobalVarEntryKind CaptureClause,OffloadEntriesInfoManager::OMPTargetDeviceClauseKind DeviceClause,bool IsDeclaration,bool IsExternallyVisible,TargetRegionEntryInfo EntryInfo,StringRef MangledName,std::vector<GlobalVariable * > & GeneratedRefs,bool OpenMPSIMD,std::vector<Triple> TargetTriple,std::function<Constant * ()> GlobalInitializer,std::function<GlobalValue::LinkageTypes ()> VariableLinkage,Type * LlvmPtrTy,Constant * Addr)8697 void OpenMPIRBuilder::registerTargetGlobalVariable(
8698 OffloadEntriesInfoManager::OMPTargetGlobalVarEntryKind CaptureClause,
8699 OffloadEntriesInfoManager::OMPTargetDeviceClauseKind DeviceClause,
8700 bool IsDeclaration, bool IsExternallyVisible,
8701 TargetRegionEntryInfo EntryInfo, StringRef MangledName,
8702 std::vector<GlobalVariable *> &GeneratedRefs, bool OpenMPSIMD,
8703 std::vector<Triple> TargetTriple,
8704 std::function<Constant *()> GlobalInitializer,
8705 std::function<GlobalValue::LinkageTypes()> VariableLinkage, Type *LlvmPtrTy,
8706 Constant *Addr) {
8707 if (DeviceClause != OffloadEntriesInfoManager::OMPTargetDeviceClauseAny ||
8708 (TargetTriple.empty() && !Config.isTargetDevice()))
8709 return;
8710
8711 OffloadEntriesInfoManager::OMPTargetGlobalVarEntryKind Flags;
8712 StringRef VarName;
8713 int64_t VarSize;
8714 GlobalValue::LinkageTypes Linkage;
8715
8716 if ((CaptureClause == OffloadEntriesInfoManager::OMPTargetGlobalVarEntryTo ||
8717 CaptureClause ==
8718 OffloadEntriesInfoManager::OMPTargetGlobalVarEntryEnter) &&
8719 !Config.hasRequiresUnifiedSharedMemory()) {
8720 Flags = OffloadEntriesInfoManager::OMPTargetGlobalVarEntryTo;
8721 VarName = MangledName;
8722 GlobalValue *LlvmVal = M.getNamedValue(VarName);
8723
8724 if (!IsDeclaration)
8725 VarSize = divideCeil(
8726 M.getDataLayout().getTypeSizeInBits(LlvmVal->getValueType()), 8);
8727 else
8728 VarSize = 0;
8729 Linkage = (VariableLinkage) ? VariableLinkage() : LlvmVal->getLinkage();
8730
8731 // This is a workaround carried over from Clang which prevents undesired
8732 // optimisation of internal variables.
8733 if (Config.isTargetDevice() &&
8734 (!IsExternallyVisible || Linkage == GlobalValue::LinkOnceODRLinkage)) {
8735 // Do not create a "ref-variable" if the original is not also available
8736 // on the host.
8737 if (!OffloadInfoManager.hasDeviceGlobalVarEntryInfo(VarName))
8738 return;
8739
8740 std::string RefName = createPlatformSpecificName({VarName, "ref"});
8741
8742 if (!M.getNamedValue(RefName)) {
8743 Constant *AddrRef =
8744 getOrCreateInternalVariable(Addr->getType(), RefName);
8745 auto *GvAddrRef = cast<GlobalVariable>(AddrRef);
8746 GvAddrRef->setConstant(true);
8747 GvAddrRef->setLinkage(GlobalValue::InternalLinkage);
8748 GvAddrRef->setInitializer(Addr);
8749 GeneratedRefs.push_back(GvAddrRef);
8750 }
8751 }
8752 } else {
8753 if (CaptureClause == OffloadEntriesInfoManager::OMPTargetGlobalVarEntryLink)
8754 Flags = OffloadEntriesInfoManager::OMPTargetGlobalVarEntryLink;
8755 else
8756 Flags = OffloadEntriesInfoManager::OMPTargetGlobalVarEntryTo;
8757
8758 if (Config.isTargetDevice()) {
8759 VarName = (Addr) ? Addr->getName() : "";
8760 Addr = nullptr;
8761 } else {
8762 Addr = getAddrOfDeclareTargetVar(
8763 CaptureClause, DeviceClause, IsDeclaration, IsExternallyVisible,
8764 EntryInfo, MangledName, GeneratedRefs, OpenMPSIMD, TargetTriple,
8765 LlvmPtrTy, GlobalInitializer, VariableLinkage);
8766 VarName = (Addr) ? Addr->getName() : "";
8767 }
8768 VarSize = M.getDataLayout().getPointerSize();
8769 Linkage = GlobalValue::WeakAnyLinkage;
8770 }
8771
8772 OffloadInfoManager.registerDeviceGlobalVarEntryInfo(VarName, Addr, VarSize,
8773 Flags, Linkage);
8774 }
8775
8776 /// Loads all the offload entries information from the host IR
8777 /// metadata.
loadOffloadInfoMetadata(Module & M)8778 void OpenMPIRBuilder::loadOffloadInfoMetadata(Module &M) {
8779 // If we are in target mode, load the metadata from the host IR. This code has
8780 // to match the metadata creation in createOffloadEntriesAndInfoMetadata().
8781
8782 NamedMDNode *MD = M.getNamedMetadata(ompOffloadInfoName);
8783 if (!MD)
8784 return;
8785
8786 for (MDNode *MN : MD->operands()) {
8787 auto &&GetMDInt = [MN](unsigned Idx) {
8788 auto *V = cast<ConstantAsMetadata>(MN->getOperand(Idx));
8789 return cast<ConstantInt>(V->getValue())->getZExtValue();
8790 };
8791
8792 auto &&GetMDString = [MN](unsigned Idx) {
8793 auto *V = cast<MDString>(MN->getOperand(Idx));
8794 return V->getString();
8795 };
8796
8797 switch (GetMDInt(0)) {
8798 default:
8799 llvm_unreachable("Unexpected metadata!");
8800 break;
8801 case OffloadEntriesInfoManager::OffloadEntryInfo::
8802 OffloadingEntryInfoTargetRegion: {
8803 TargetRegionEntryInfo EntryInfo(/*ParentName=*/GetMDString(3),
8804 /*DeviceID=*/GetMDInt(1),
8805 /*FileID=*/GetMDInt(2),
8806 /*Line=*/GetMDInt(4),
8807 /*Count=*/GetMDInt(5));
8808 OffloadInfoManager.initializeTargetRegionEntryInfo(EntryInfo,
8809 /*Order=*/GetMDInt(6));
8810 break;
8811 }
8812 case OffloadEntriesInfoManager::OffloadEntryInfo::
8813 OffloadingEntryInfoDeviceGlobalVar:
8814 OffloadInfoManager.initializeDeviceGlobalVarEntryInfo(
8815 /*MangledName=*/GetMDString(1),
8816 static_cast<OffloadEntriesInfoManager::OMPTargetGlobalVarEntryKind>(
8817 /*Flags=*/GetMDInt(2)),
8818 /*Order=*/GetMDInt(3));
8819 break;
8820 }
8821 }
8822 }
8823
loadOffloadInfoMetadata(StringRef HostFilePath)8824 void OpenMPIRBuilder::loadOffloadInfoMetadata(StringRef HostFilePath) {
8825 if (HostFilePath.empty())
8826 return;
8827
8828 auto Buf = MemoryBuffer::getFile(HostFilePath);
8829 if (std::error_code Err = Buf.getError()) {
8830 report_fatal_error(("error opening host file from host file path inside of "
8831 "OpenMPIRBuilder: " +
8832 Err.message())
8833 .c_str());
8834 }
8835
8836 LLVMContext Ctx;
8837 auto M = expectedToErrorOrAndEmitErrors(
8838 Ctx, parseBitcodeFile(Buf.get()->getMemBufferRef(), Ctx));
8839 if (std::error_code Err = M.getError()) {
8840 report_fatal_error(
8841 ("error parsing host file inside of OpenMPIRBuilder: " + Err.message())
8842 .c_str());
8843 }
8844
8845 loadOffloadInfoMetadata(*M.get());
8846 }
8847
8848 //===----------------------------------------------------------------------===//
8849 // OffloadEntriesInfoManager
8850 //===----------------------------------------------------------------------===//
8851
empty() const8852 bool OffloadEntriesInfoManager::empty() const {
8853 return OffloadEntriesTargetRegion.empty() &&
8854 OffloadEntriesDeviceGlobalVar.empty();
8855 }
8856
getTargetRegionEntryInfoCount(const TargetRegionEntryInfo & EntryInfo) const8857 unsigned OffloadEntriesInfoManager::getTargetRegionEntryInfoCount(
8858 const TargetRegionEntryInfo &EntryInfo) const {
8859 auto It = OffloadEntriesTargetRegionCount.find(
8860 getTargetRegionEntryCountKey(EntryInfo));
8861 if (It == OffloadEntriesTargetRegionCount.end())
8862 return 0;
8863 return It->second;
8864 }
8865
incrementTargetRegionEntryInfoCount(const TargetRegionEntryInfo & EntryInfo)8866 void OffloadEntriesInfoManager::incrementTargetRegionEntryInfoCount(
8867 const TargetRegionEntryInfo &EntryInfo) {
8868 OffloadEntriesTargetRegionCount[getTargetRegionEntryCountKey(EntryInfo)] =
8869 EntryInfo.Count + 1;
8870 }
8871
8872 /// Initialize target region entry.
initializeTargetRegionEntryInfo(const TargetRegionEntryInfo & EntryInfo,unsigned Order)8873 void OffloadEntriesInfoManager::initializeTargetRegionEntryInfo(
8874 const TargetRegionEntryInfo &EntryInfo, unsigned Order) {
8875 OffloadEntriesTargetRegion[EntryInfo] =
8876 OffloadEntryInfoTargetRegion(Order, /*Addr=*/nullptr, /*ID=*/nullptr,
8877 OMPTargetRegionEntryTargetRegion);
8878 ++OffloadingEntriesNum;
8879 }
8880
registerTargetRegionEntryInfo(TargetRegionEntryInfo EntryInfo,Constant * Addr,Constant * ID,OMPTargetRegionEntryKind Flags)8881 void OffloadEntriesInfoManager::registerTargetRegionEntryInfo(
8882 TargetRegionEntryInfo EntryInfo, Constant *Addr, Constant *ID,
8883 OMPTargetRegionEntryKind Flags) {
8884 assert(EntryInfo.Count == 0 && "expected default EntryInfo");
8885
8886 // Update the EntryInfo with the next available count for this location.
8887 EntryInfo.Count = getTargetRegionEntryInfoCount(EntryInfo);
8888
8889 // If we are emitting code for a target, the entry is already initialized,
8890 // only has to be registered.
8891 if (OMPBuilder->Config.isTargetDevice()) {
8892 // This could happen if the device compilation is invoked standalone.
8893 if (!hasTargetRegionEntryInfo(EntryInfo)) {
8894 return;
8895 }
8896 auto &Entry = OffloadEntriesTargetRegion[EntryInfo];
8897 Entry.setAddress(Addr);
8898 Entry.setID(ID);
8899 Entry.setFlags(Flags);
8900 } else {
8901 if (Flags == OffloadEntriesInfoManager::OMPTargetRegionEntryTargetRegion &&
8902 hasTargetRegionEntryInfo(EntryInfo, /*IgnoreAddressId*/ true))
8903 return;
8904 assert(!hasTargetRegionEntryInfo(EntryInfo) &&
8905 "Target region entry already registered!");
8906 OffloadEntryInfoTargetRegion Entry(OffloadingEntriesNum, Addr, ID, Flags);
8907 OffloadEntriesTargetRegion[EntryInfo] = Entry;
8908 ++OffloadingEntriesNum;
8909 }
8910 incrementTargetRegionEntryInfoCount(EntryInfo);
8911 }
8912
hasTargetRegionEntryInfo(TargetRegionEntryInfo EntryInfo,bool IgnoreAddressId) const8913 bool OffloadEntriesInfoManager::hasTargetRegionEntryInfo(
8914 TargetRegionEntryInfo EntryInfo, bool IgnoreAddressId) const {
8915
8916 // Update the EntryInfo with the next available count for this location.
8917 EntryInfo.Count = getTargetRegionEntryInfoCount(EntryInfo);
8918
8919 auto It = OffloadEntriesTargetRegion.find(EntryInfo);
8920 if (It == OffloadEntriesTargetRegion.end()) {
8921 return false;
8922 }
8923 // Fail if this entry is already registered.
8924 if (!IgnoreAddressId && (It->second.getAddress() || It->second.getID()))
8925 return false;
8926 return true;
8927 }
8928
actOnTargetRegionEntriesInfo(const OffloadTargetRegionEntryInfoActTy & Action)8929 void OffloadEntriesInfoManager::actOnTargetRegionEntriesInfo(
8930 const OffloadTargetRegionEntryInfoActTy &Action) {
8931 // Scan all target region entries and perform the provided action.
8932 for (const auto &It : OffloadEntriesTargetRegion) {
8933 Action(It.first, It.second);
8934 }
8935 }
8936
initializeDeviceGlobalVarEntryInfo(StringRef Name,OMPTargetGlobalVarEntryKind Flags,unsigned Order)8937 void OffloadEntriesInfoManager::initializeDeviceGlobalVarEntryInfo(
8938 StringRef Name, OMPTargetGlobalVarEntryKind Flags, unsigned Order) {
8939 OffloadEntriesDeviceGlobalVar.try_emplace(Name, Order, Flags);
8940 ++OffloadingEntriesNum;
8941 }
8942
registerDeviceGlobalVarEntryInfo(StringRef VarName,Constant * Addr,int64_t VarSize,OMPTargetGlobalVarEntryKind Flags,GlobalValue::LinkageTypes Linkage)8943 void OffloadEntriesInfoManager::registerDeviceGlobalVarEntryInfo(
8944 StringRef VarName, Constant *Addr, int64_t VarSize,
8945 OMPTargetGlobalVarEntryKind Flags, GlobalValue::LinkageTypes Linkage) {
8946 if (OMPBuilder->Config.isTargetDevice()) {
8947 // This could happen if the device compilation is invoked standalone.
8948 if (!hasDeviceGlobalVarEntryInfo(VarName))
8949 return;
8950 auto &Entry = OffloadEntriesDeviceGlobalVar[VarName];
8951 if (Entry.getAddress() && hasDeviceGlobalVarEntryInfo(VarName)) {
8952 if (Entry.getVarSize() == 0) {
8953 Entry.setVarSize(VarSize);
8954 Entry.setLinkage(Linkage);
8955 }
8956 return;
8957 }
8958 Entry.setVarSize(VarSize);
8959 Entry.setLinkage(Linkage);
8960 Entry.setAddress(Addr);
8961 } else {
8962 if (hasDeviceGlobalVarEntryInfo(VarName)) {
8963 auto &Entry = OffloadEntriesDeviceGlobalVar[VarName];
8964 assert(Entry.isValid() && Entry.getFlags() == Flags &&
8965 "Entry not initialized!");
8966 if (Entry.getVarSize() == 0) {
8967 Entry.setVarSize(VarSize);
8968 Entry.setLinkage(Linkage);
8969 }
8970 return;
8971 }
8972 if (Flags == OffloadEntriesInfoManager::OMPTargetGlobalVarEntryIndirect)
8973 OffloadEntriesDeviceGlobalVar.try_emplace(VarName, OffloadingEntriesNum,
8974 Addr, VarSize, Flags, Linkage,
8975 VarName.str());
8976 else
8977 OffloadEntriesDeviceGlobalVar.try_emplace(
8978 VarName, OffloadingEntriesNum, Addr, VarSize, Flags, Linkage, "");
8979 ++OffloadingEntriesNum;
8980 }
8981 }
8982
actOnDeviceGlobalVarEntriesInfo(const OffloadDeviceGlobalVarEntryInfoActTy & Action)8983 void OffloadEntriesInfoManager::actOnDeviceGlobalVarEntriesInfo(
8984 const OffloadDeviceGlobalVarEntryInfoActTy &Action) {
8985 // Scan all target region entries and perform the provided action.
8986 for (const auto &E : OffloadEntriesDeviceGlobalVar)
8987 Action(E.getKey(), E.getValue());
8988 }
8989
8990 //===----------------------------------------------------------------------===//
8991 // CanonicalLoopInfo
8992 //===----------------------------------------------------------------------===//
8993
collectControlBlocks(SmallVectorImpl<BasicBlock * > & BBs)8994 void CanonicalLoopInfo::collectControlBlocks(
8995 SmallVectorImpl<BasicBlock *> &BBs) {
8996 // We only count those BBs as control block for which we do not need to
8997 // reverse the CFG, i.e. not the loop body which can contain arbitrary control
8998 // flow. For consistency, this also means we do not add the Body block, which
8999 // is just the entry to the body code.
9000 BBs.reserve(BBs.size() + 6);
9001 BBs.append({getPreheader(), Header, Cond, Latch, Exit, getAfter()});
9002 }
9003
getPreheader() const9004 BasicBlock *CanonicalLoopInfo::getPreheader() const {
9005 assert(isValid() && "Requires a valid canonical loop");
9006 for (BasicBlock *Pred : predecessors(Header)) {
9007 if (Pred != Latch)
9008 return Pred;
9009 }
9010 llvm_unreachable("Missing preheader");
9011 }
9012
setTripCount(Value * TripCount)9013 void CanonicalLoopInfo::setTripCount(Value *TripCount) {
9014 assert(isValid() && "Requires a valid canonical loop");
9015
9016 Instruction *CmpI = &getCond()->front();
9017 assert(isa<CmpInst>(CmpI) && "First inst must compare IV with TripCount");
9018 CmpI->setOperand(1, TripCount);
9019
9020 #ifndef NDEBUG
9021 assertOK();
9022 #endif
9023 }
9024
mapIndVar(llvm::function_ref<Value * (Instruction *)> Updater)9025 void CanonicalLoopInfo::mapIndVar(
9026 llvm::function_ref<Value *(Instruction *)> Updater) {
9027 assert(isValid() && "Requires a valid canonical loop");
9028
9029 Instruction *OldIV = getIndVar();
9030
9031 // Record all uses excluding those introduced by the updater. Uses by the
9032 // CanonicalLoopInfo itself to keep track of the number of iterations are
9033 // excluded.
9034 SmallVector<Use *> ReplacableUses;
9035 for (Use &U : OldIV->uses()) {
9036 auto *User = dyn_cast<Instruction>(U.getUser());
9037 if (!User)
9038 continue;
9039 if (User->getParent() == getCond())
9040 continue;
9041 if (User->getParent() == getLatch())
9042 continue;
9043 ReplacableUses.push_back(&U);
9044 }
9045
9046 // Run the updater that may introduce new uses
9047 Value *NewIV = Updater(OldIV);
9048
9049 // Replace the old uses with the value returned by the updater.
9050 for (Use *U : ReplacableUses)
9051 U->set(NewIV);
9052
9053 #ifndef NDEBUG
9054 assertOK();
9055 #endif
9056 }
9057
assertOK() const9058 void CanonicalLoopInfo::assertOK() const {
9059 #ifndef NDEBUG
9060 // No constraints if this object currently does not describe a loop.
9061 if (!isValid())
9062 return;
9063
9064 BasicBlock *Preheader = getPreheader();
9065 BasicBlock *Body = getBody();
9066 BasicBlock *After = getAfter();
9067
9068 // Verify standard control-flow we use for OpenMP loops.
9069 assert(Preheader);
9070 assert(isa<BranchInst>(Preheader->getTerminator()) &&
9071 "Preheader must terminate with unconditional branch");
9072 assert(Preheader->getSingleSuccessor() == Header &&
9073 "Preheader must jump to header");
9074
9075 assert(Header);
9076 assert(isa<BranchInst>(Header->getTerminator()) &&
9077 "Header must terminate with unconditional branch");
9078 assert(Header->getSingleSuccessor() == Cond &&
9079 "Header must jump to exiting block");
9080
9081 assert(Cond);
9082 assert(Cond->getSinglePredecessor() == Header &&
9083 "Exiting block only reachable from header");
9084
9085 assert(isa<BranchInst>(Cond->getTerminator()) &&
9086 "Exiting block must terminate with conditional branch");
9087 assert(size(successors(Cond)) == 2 &&
9088 "Exiting block must have two successors");
9089 assert(cast<BranchInst>(Cond->getTerminator())->getSuccessor(0) == Body &&
9090 "Exiting block's first successor jump to the body");
9091 assert(cast<BranchInst>(Cond->getTerminator())->getSuccessor(1) == Exit &&
9092 "Exiting block's second successor must exit the loop");
9093
9094 assert(Body);
9095 assert(Body->getSinglePredecessor() == Cond &&
9096 "Body only reachable from exiting block");
9097 assert(!isa<PHINode>(Body->front()));
9098
9099 assert(Latch);
9100 assert(isa<BranchInst>(Latch->getTerminator()) &&
9101 "Latch must terminate with unconditional branch");
9102 assert(Latch->getSingleSuccessor() == Header && "Latch must jump to header");
9103 // TODO: To support simple redirecting of the end of the body code that has
9104 // multiple; introduce another auxiliary basic block like preheader and after.
9105 assert(Latch->getSinglePredecessor() != nullptr);
9106 assert(!isa<PHINode>(Latch->front()));
9107
9108 assert(Exit);
9109 assert(isa<BranchInst>(Exit->getTerminator()) &&
9110 "Exit block must terminate with unconditional branch");
9111 assert(Exit->getSingleSuccessor() == After &&
9112 "Exit block must jump to after block");
9113
9114 assert(After);
9115 assert(After->getSinglePredecessor() == Exit &&
9116 "After block only reachable from exit block");
9117 assert(After->empty() || !isa<PHINode>(After->front()));
9118
9119 Instruction *IndVar = getIndVar();
9120 assert(IndVar && "Canonical induction variable not found?");
9121 assert(isa<IntegerType>(IndVar->getType()) &&
9122 "Induction variable must be an integer");
9123 assert(cast<PHINode>(IndVar)->getParent() == Header &&
9124 "Induction variable must be a PHI in the loop header");
9125 assert(cast<PHINode>(IndVar)->getIncomingBlock(0) == Preheader);
9126 assert(
9127 cast<ConstantInt>(cast<PHINode>(IndVar)->getIncomingValue(0))->isZero());
9128 assert(cast<PHINode>(IndVar)->getIncomingBlock(1) == Latch);
9129
9130 auto *NextIndVar = cast<PHINode>(IndVar)->getIncomingValue(1);
9131 assert(cast<Instruction>(NextIndVar)->getParent() == Latch);
9132 assert(cast<BinaryOperator>(NextIndVar)->getOpcode() == BinaryOperator::Add);
9133 assert(cast<BinaryOperator>(NextIndVar)->getOperand(0) == IndVar);
9134 assert(cast<ConstantInt>(cast<BinaryOperator>(NextIndVar)->getOperand(1))
9135 ->isOne());
9136
9137 Value *TripCount = getTripCount();
9138 assert(TripCount && "Loop trip count not found?");
9139 assert(IndVar->getType() == TripCount->getType() &&
9140 "Trip count and induction variable must have the same type");
9141
9142 auto *CmpI = cast<CmpInst>(&Cond->front());
9143 assert(CmpI->getPredicate() == CmpInst::ICMP_ULT &&
9144 "Exit condition must be a signed less-than comparison");
9145 assert(CmpI->getOperand(0) == IndVar &&
9146 "Exit condition must compare the induction variable");
9147 assert(CmpI->getOperand(1) == TripCount &&
9148 "Exit condition must compare with the trip count");
9149 #endif
9150 }
9151
invalidate()9152 void CanonicalLoopInfo::invalidate() {
9153 Header = nullptr;
9154 Cond = nullptr;
9155 Latch = nullptr;
9156 Exit = nullptr;
9157 }
9158