1 //===- ValueMap.h - Safe map from Values to data ----------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the ValueMap class. ValueMap maps Value* or any subclass 10 // to an arbitrary other type. It provides the DenseMap interface but updates 11 // itself to remain safe when keys are RAUWed or deleted. By default, when a 12 // key is RAUWed from V1 to V2, the old mapping V1->target is removed, and a new 13 // mapping V2->target is added. If V2 already existed, its old target is 14 // overwritten. When a key is deleted, its mapping is removed. 15 // 16 // You can override a ValueMap's Config parameter to control exactly what 17 // happens on RAUW and destruction and to get called back on each event. It's 18 // legal to call back into the ValueMap from a Config's callbacks. Config 19 // parameters should inherit from ValueMapConfig<KeyT> to get default 20 // implementations of all the methods ValueMap uses. See ValueMapConfig for 21 // documentation of the functions you can override. 22 // 23 //===----------------------------------------------------------------------===// 24 25 #ifndef LLVM_IR_VALUEMAP_H 26 #define LLVM_IR_VALUEMAP_H 27 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/DenseMapInfo.h" 30 #include "llvm/IR/TrackingMDRef.h" 31 #include "llvm/IR/ValueHandle.h" 32 #include "llvm/Support/Casting.h" 33 #include "llvm/Support/Mutex.h" 34 #include <algorithm> 35 #include <cassert> 36 #include <cstddef> 37 #include <iterator> 38 #include <mutex> 39 #include <optional> 40 #include <type_traits> 41 #include <utility> 42 43 namespace llvm { 44 45 template<typename KeyT, typename ValueT, typename Config> 46 class ValueMapCallbackVH; 47 template<typename DenseMapT, typename KeyT> 48 class ValueMapIterator; 49 template<typename DenseMapT, typename KeyT> 50 class ValueMapConstIterator; 51 52 /// This class defines the default behavior for configurable aspects of 53 /// ValueMap<>. User Configs should inherit from this class to be as compatible 54 /// as possible with future versions of ValueMap. 55 template<typename KeyT, typename MutexT = sys::Mutex> 56 struct ValueMapConfig { 57 using mutex_type = MutexT; 58 59 /// If FollowRAUW is true, the ValueMap will update mappings on RAUW. If it's 60 /// false, the ValueMap will leave the original mapping in place. 61 enum { FollowRAUW = true }; 62 63 // All methods will be called with a first argument of type ExtraData. The 64 // default implementations in this class take a templated first argument so 65 // that users' subclasses can use any type they want without having to 66 // override all the defaults. 67 struct ExtraData {}; 68 69 template<typename ExtraDataT> onRAUWValueMapConfig70 static void onRAUW(const ExtraDataT & /*Data*/, KeyT /*Old*/, KeyT /*New*/) {} 71 template<typename ExtraDataT> onDeleteValueMapConfig72 static void onDelete(const ExtraDataT &/*Data*/, KeyT /*Old*/) {} 73 74 /// Returns a mutex that should be acquired around any changes to the map. 75 /// This is only acquired from the CallbackVH (and held around calls to onRAUW 76 /// and onDelete) and not inside other ValueMap methods. NULL means that no 77 /// mutex is necessary. 78 template<typename ExtraDataT> getMutexValueMapConfig79 static mutex_type *getMutex(const ExtraDataT &/*Data*/) { return nullptr; } 80 }; 81 82 /// See the file comment. 83 template<typename KeyT, typename ValueT, typename Config =ValueMapConfig<KeyT>> 84 class ValueMap { 85 friend class ValueMapCallbackVH<KeyT, ValueT, Config>; 86 87 using ValueMapCVH = ValueMapCallbackVH<KeyT, ValueT, Config>; 88 using MapT = DenseMap<ValueMapCVH, ValueT, DenseMapInfo<ValueMapCVH>>; 89 using MDMapT = DenseMap<const Metadata *, TrackingMDRef>; 90 using ExtraData = typename Config::ExtraData; 91 92 MapT Map; 93 std::optional<MDMapT> MDMap; 94 ExtraData Data; 95 96 public: 97 using key_type = KeyT; 98 using mapped_type = ValueT; 99 using value_type = std::pair<KeyT, ValueT>; 100 using size_type = unsigned; 101 102 explicit ValueMap(unsigned NumInitBuckets = 64) Map(NumInitBuckets)103 : Map(NumInitBuckets), Data() {} 104 explicit ValueMap(const ExtraData &Data, unsigned NumInitBuckets = 64) Map(NumInitBuckets)105 : Map(NumInitBuckets), Data(Data) {} 106 // ValueMap can't be copied nor moved, because the callbacks store pointer to 107 // it. 108 ValueMap(const ValueMap &) = delete; 109 ValueMap(ValueMap &&) = delete; 110 ValueMap &operator=(const ValueMap &) = delete; 111 ValueMap &operator=(ValueMap &&) = delete; 112 hasMD()113 bool hasMD() const { return bool(MDMap); } MD()114 MDMapT &MD() { 115 if (!MDMap) 116 MDMap.emplace(); 117 return *MDMap; 118 } getMDMap()119 std::optional<MDMapT> &getMDMap() { return MDMap; } 120 121 /// Get the mapped metadata, if it's in the map. getMappedMD(const Metadata * MD)122 std::optional<Metadata *> getMappedMD(const Metadata *MD) const { 123 if (!MDMap) 124 return std::nullopt; 125 auto Where = MDMap->find(MD); 126 if (Where == MDMap->end()) 127 return std::nullopt; 128 return Where->second.get(); 129 } 130 131 using iterator = ValueMapIterator<MapT, KeyT>; 132 using const_iterator = ValueMapConstIterator<MapT, KeyT>; 133 begin()134 inline iterator begin() { return iterator(Map.begin()); } end()135 inline iterator end() { return iterator(Map.end()); } begin()136 inline const_iterator begin() const { return const_iterator(Map.begin()); } end()137 inline const_iterator end() const { return const_iterator(Map.end()); } 138 empty()139 bool empty() const { return Map.empty(); } size()140 size_type size() const { return Map.size(); } 141 142 /// Grow the map so that it has at least Size buckets. Does not shrink reserve(size_t Size)143 void reserve(size_t Size) { Map.reserve(Size); } 144 clear()145 void clear() { 146 Map.clear(); 147 MDMap.reset(); 148 } 149 150 /// Return 1 if the specified key is in the map, 0 otherwise. count(const KeyT & Val)151 size_type count(const KeyT &Val) const { 152 return Map.find_as(Val) == Map.end() ? 0 : 1; 153 } 154 find(const KeyT & Val)155 iterator find(const KeyT &Val) { 156 return iterator(Map.find_as(Val)); 157 } find(const KeyT & Val)158 const_iterator find(const KeyT &Val) const { 159 return const_iterator(Map.find_as(Val)); 160 } 161 162 /// lookup - Return the entry for the specified key, or a default 163 /// constructed value if no such entry exists. lookup(const KeyT & Val)164 ValueT lookup(const KeyT &Val) const { 165 typename MapT::const_iterator I = Map.find_as(Val); 166 return I != Map.end() ? I->second : ValueT(); 167 } 168 169 // Inserts key,value pair into the map if the key isn't already in the map. 170 // If the key is already in the map, it returns false and doesn't update the 171 // value. insert(const std::pair<KeyT,ValueT> & KV)172 std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) { 173 auto MapResult = Map.insert(std::make_pair(Wrap(KV.first), KV.second)); 174 return std::make_pair(iterator(MapResult.first), MapResult.second); 175 } 176 insert(std::pair<KeyT,ValueT> && KV)177 std::pair<iterator, bool> insert(std::pair<KeyT, ValueT> &&KV) { 178 auto MapResult = 179 Map.insert(std::make_pair(Wrap(KV.first), std::move(KV.second))); 180 return std::make_pair(iterator(MapResult.first), MapResult.second); 181 } 182 183 /// insert - Range insertion of pairs. 184 template<typename InputIt> insert(InputIt I,InputIt E)185 void insert(InputIt I, InputIt E) { 186 for (; I != E; ++I) 187 insert(*I); 188 } 189 erase(const KeyT & Val)190 bool erase(const KeyT &Val) { 191 typename MapT::iterator I = Map.find_as(Val); 192 if (I == Map.end()) 193 return false; 194 195 Map.erase(I); 196 return true; 197 } erase(iterator I)198 void erase(iterator I) { 199 return Map.erase(I.base()); 200 } 201 FindAndConstruct(const KeyT & Key)202 value_type& FindAndConstruct(const KeyT &Key) { 203 return Map.FindAndConstruct(Wrap(Key)); 204 } 205 206 ValueT &operator[](const KeyT &Key) { 207 return Map[Wrap(Key)]; 208 } 209 210 /// isPointerIntoBucketsArray - Return true if the specified pointer points 211 /// somewhere into the ValueMap's array of buckets (i.e. either to a key or 212 /// value in the ValueMap). isPointerIntoBucketsArray(const void * Ptr)213 bool isPointerIntoBucketsArray(const void *Ptr) const { 214 return Map.isPointerIntoBucketsArray(Ptr); 215 } 216 217 /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets 218 /// array. In conjunction with the previous method, this can be used to 219 /// determine whether an insertion caused the ValueMap to reallocate. getPointerIntoBucketsArray()220 const void *getPointerIntoBucketsArray() const { 221 return Map.getPointerIntoBucketsArray(); 222 } 223 224 private: 225 // Takes a key being looked up in the map and wraps it into a 226 // ValueMapCallbackVH, the actual key type of the map. We use a helper 227 // function because ValueMapCVH is constructed with a second parameter. Wrap(KeyT key)228 ValueMapCVH Wrap(KeyT key) const { 229 // The only way the resulting CallbackVH could try to modify *this (making 230 // the const_cast incorrect) is if it gets inserted into the map. But then 231 // this function must have been called from a non-const method, making the 232 // const_cast ok. 233 return ValueMapCVH(key, const_cast<ValueMap*>(this)); 234 } 235 }; 236 237 // This CallbackVH updates its ValueMap when the contained Value changes, 238 // according to the user's preferences expressed through the Config object. 239 template <typename KeyT, typename ValueT, typename Config> 240 class ValueMapCallbackVH final : public CallbackVH { 241 friend class ValueMap<KeyT, ValueT, Config>; 242 friend struct DenseMapInfo<ValueMapCallbackVH>; 243 244 using ValueMapT = ValueMap<KeyT, ValueT, Config>; 245 using KeySansPointerT = std::remove_pointer_t<KeyT>; 246 247 ValueMapT *Map; 248 249 ValueMapCallbackVH(KeyT Key, ValueMapT *Map) 250 : CallbackVH(const_cast<Value*>(static_cast<const Value*>(Key))), 251 Map(Map) {} 252 253 // Private constructor used to create empty/tombstone DenseMap keys. 254 ValueMapCallbackVH(Value *V) : CallbackVH(V), Map(nullptr) {} 255 256 public: 257 KeyT Unwrap() const { return cast_or_null<KeySansPointerT>(getValPtr()); } 258 259 void deleted() override { 260 // Make a copy that won't get changed even when *this is destroyed. 261 ValueMapCallbackVH Copy(*this); 262 typename Config::mutex_type *M = Config::getMutex(Copy.Map->Data); 263 std::unique_lock<typename Config::mutex_type> Guard; 264 if (M) 265 Guard = std::unique_lock<typename Config::mutex_type>(*M); 266 Config::onDelete(Copy.Map->Data, Copy.Unwrap()); // May destroy *this. 267 Copy.Map->Map.erase(Copy); // Definitely destroys *this. 268 } 269 270 void allUsesReplacedWith(Value *new_key) override { 271 assert(isa<KeySansPointerT>(new_key) && 272 "Invalid RAUW on key of ValueMap<>"); 273 // Make a copy that won't get changed even when *this is destroyed. 274 ValueMapCallbackVH Copy(*this); 275 typename Config::mutex_type *M = Config::getMutex(Copy.Map->Data); 276 std::unique_lock<typename Config::mutex_type> Guard; 277 if (M) 278 Guard = std::unique_lock<typename Config::mutex_type>(*M); 279 280 KeyT typed_new_key = cast<KeySansPointerT>(new_key); 281 // Can destroy *this: 282 Config::onRAUW(Copy.Map->Data, Copy.Unwrap(), typed_new_key); 283 if (Config::FollowRAUW) { 284 typename ValueMapT::MapT::iterator I = Copy.Map->Map.find(Copy); 285 // I could == Copy.Map->Map.end() if the onRAUW callback already 286 // removed the old mapping. 287 if (I != Copy.Map->Map.end()) { 288 ValueT Target(std::move(I->second)); 289 Copy.Map->Map.erase(I); // Definitely destroys *this. 290 Copy.Map->insert(std::make_pair(typed_new_key, std::move(Target))); 291 } 292 } 293 } 294 }; 295 296 template<typename KeyT, typename ValueT, typename Config> 297 struct DenseMapInfo<ValueMapCallbackVH<KeyT, ValueT, Config>> { 298 using VH = ValueMapCallbackVH<KeyT, ValueT, Config>; 299 300 static inline VH getEmptyKey() { 301 return VH(DenseMapInfo<Value *>::getEmptyKey()); 302 } 303 304 static inline VH getTombstoneKey() { 305 return VH(DenseMapInfo<Value *>::getTombstoneKey()); 306 } 307 308 static unsigned getHashValue(const VH &Val) { 309 return DenseMapInfo<KeyT>::getHashValue(Val.Unwrap()); 310 } 311 312 static unsigned getHashValue(const KeyT &Val) { 313 return DenseMapInfo<KeyT>::getHashValue(Val); 314 } 315 316 static bool isEqual(const VH &LHS, const VH &RHS) { 317 return LHS == RHS; 318 } 319 320 static bool isEqual(const KeyT &LHS, const VH &RHS) { 321 return LHS == RHS.getValPtr(); 322 } 323 }; 324 325 template <typename DenseMapT, typename KeyT> class ValueMapIterator { 326 using BaseT = typename DenseMapT::iterator; 327 using ValueT = typename DenseMapT::mapped_type; 328 329 BaseT I; 330 331 public: 332 using iterator_category = std::forward_iterator_tag; 333 using value_type = std::pair<KeyT, typename DenseMapT::mapped_type>; 334 using difference_type = std::ptrdiff_t; 335 using pointer = value_type *; 336 using reference = value_type &; 337 338 ValueMapIterator() : I() {} 339 ValueMapIterator(BaseT I) : I(I) {} 340 341 BaseT base() const { return I; } 342 343 struct ValueTypeProxy { 344 const KeyT first; 345 ValueT& second; 346 347 ValueTypeProxy *operator->() { return this; } 348 349 operator std::pair<KeyT, ValueT>() const { 350 return std::make_pair(first, second); 351 } 352 }; 353 354 ValueTypeProxy operator*() const { 355 ValueTypeProxy Result = {I->first.Unwrap(), I->second}; 356 return Result; 357 } 358 359 ValueTypeProxy operator->() const { 360 return operator*(); 361 } 362 363 bool operator==(const ValueMapIterator &RHS) const { 364 return I == RHS.I; 365 } 366 bool operator!=(const ValueMapIterator &RHS) const { 367 return I != RHS.I; 368 } 369 370 inline ValueMapIterator& operator++() { // Preincrement 371 ++I; 372 return *this; 373 } 374 ValueMapIterator operator++(int) { // Postincrement 375 ValueMapIterator tmp = *this; ++*this; return tmp; 376 } 377 }; 378 379 template <typename DenseMapT, typename KeyT> class ValueMapConstIterator { 380 using BaseT = typename DenseMapT::const_iterator; 381 using ValueT = typename DenseMapT::mapped_type; 382 383 BaseT I; 384 385 public: 386 using iterator_category = std::forward_iterator_tag; 387 using value_type = std::pair<KeyT, typename DenseMapT::mapped_type>; 388 using difference_type = std::ptrdiff_t; 389 using pointer = value_type *; 390 using reference = value_type &; 391 392 ValueMapConstIterator() : I() {} 393 ValueMapConstIterator(BaseT I) : I(I) {} 394 ValueMapConstIterator(ValueMapIterator<DenseMapT, KeyT> Other) 395 : I(Other.base()) {} 396 397 BaseT base() const { return I; } 398 399 struct ValueTypeProxy { 400 const KeyT first; 401 const ValueT& second; 402 ValueTypeProxy *operator->() { return this; } 403 operator std::pair<KeyT, ValueT>() const { 404 return std::make_pair(first, second); 405 } 406 }; 407 408 ValueTypeProxy operator*() const { 409 ValueTypeProxy Result = {I->first.Unwrap(), I->second}; 410 return Result; 411 } 412 413 ValueTypeProxy operator->() const { 414 return operator*(); 415 } 416 417 bool operator==(const ValueMapConstIterator &RHS) const { 418 return I == RHS.I; 419 } 420 bool operator!=(const ValueMapConstIterator &RHS) const { 421 return I != RHS.I; 422 } 423 424 inline ValueMapConstIterator& operator++() { // Preincrement 425 ++I; 426 return *this; 427 } 428 ValueMapConstIterator operator++(int) { // Postincrement 429 ValueMapConstIterator tmp = *this; ++*this; return tmp; 430 } 431 }; 432 433 } // end namespace llvm 434 435 #endif // LLVM_IR_VALUEMAP_H 436