xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/RegisterBankInfo.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===- llvm/CodeGen/GlobalISel/RegisterBankInfo.cpp --------------*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the RegisterBankInfo class.
10 //===----------------------------------------------------------------------===//
11 
12 #include "llvm/CodeGen/RegisterBankInfo.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineRegisterInfo.h"
19 #include "llvm/CodeGen/RegisterBank.h"
20 #include "llvm/CodeGen/TargetOpcodes.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/Config/llvm-config.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/raw_ostream.h"
26 
27 #include <algorithm> // For std::max.
28 
29 #define DEBUG_TYPE "registerbankinfo"
30 
31 using namespace llvm;
32 
33 STATISTIC(NumPartialMappingsCreated,
34           "Number of partial mappings dynamically created");
35 STATISTIC(NumPartialMappingsAccessed,
36           "Number of partial mappings dynamically accessed");
37 STATISTIC(NumValueMappingsCreated,
38           "Number of value mappings dynamically created");
39 STATISTIC(NumValueMappingsAccessed,
40           "Number of value mappings dynamically accessed");
41 STATISTIC(NumOperandsMappingsCreated,
42           "Number of operands mappings dynamically created");
43 STATISTIC(NumOperandsMappingsAccessed,
44           "Number of operands mappings dynamically accessed");
45 STATISTIC(NumInstructionMappingsCreated,
46           "Number of instruction mappings dynamically created");
47 STATISTIC(NumInstructionMappingsAccessed,
48           "Number of instruction mappings dynamically accessed");
49 
50 const unsigned RegisterBankInfo::DefaultMappingID = UINT_MAX;
51 const unsigned RegisterBankInfo::InvalidMappingID = UINT_MAX - 1;
52 
53 //------------------------------------------------------------------------------
54 // RegisterBankInfo implementation.
55 //------------------------------------------------------------------------------
RegisterBankInfo(const RegisterBank ** RegBanks,unsigned NumRegBanks,const unsigned * Sizes,unsigned HwMode)56 RegisterBankInfo::RegisterBankInfo(const RegisterBank **RegBanks,
57                                    unsigned NumRegBanks, const unsigned *Sizes,
58                                    unsigned HwMode)
59     : RegBanks(RegBanks), NumRegBanks(NumRegBanks), Sizes(Sizes),
60       HwMode(HwMode) {
61 #ifndef NDEBUG
62   for (unsigned Idx = 0, End = getNumRegBanks(); Idx != End; ++Idx) {
63     assert(RegBanks[Idx] != nullptr && "Invalid RegisterBank");
64     assert(RegBanks[Idx]->getID() == Idx &&
65            "RegisterBank ID should match index");
66   }
67 #endif // NDEBUG
68 }
69 
verify(const TargetRegisterInfo & TRI) const70 bool RegisterBankInfo::verify(const TargetRegisterInfo &TRI) const {
71 #ifndef NDEBUG
72   for (unsigned Idx = 0, End = getNumRegBanks(); Idx != End; ++Idx) {
73     const RegisterBank &RegBank = getRegBank(Idx);
74     assert(Idx == RegBank.getID() &&
75            "ID does not match the index in the array");
76     LLVM_DEBUG(dbgs() << "Verify " << RegBank << '\n');
77     assert(RegBank.verify(*this, TRI) && "RegBank is invalid");
78   }
79 #endif // NDEBUG
80   return true;
81 }
82 
83 const RegisterBank *
getRegBank(Register Reg,const MachineRegisterInfo & MRI,const TargetRegisterInfo & TRI) const84 RegisterBankInfo::getRegBank(Register Reg, const MachineRegisterInfo &MRI,
85                              const TargetRegisterInfo &TRI) const {
86   if (!Reg.isVirtual()) {
87     // FIXME: This was probably a copy to a virtual register that does have a
88     // type we could use.
89     const TargetRegisterClass *RC = getMinimalPhysRegClass(Reg, TRI);
90     return RC ? &getRegBankFromRegClass(*RC, LLT()) : nullptr;
91   }
92 
93   const RegClassOrRegBank &RegClassOrBank = MRI.getRegClassOrRegBank(Reg);
94   if (auto *RB = dyn_cast_if_present<const RegisterBank *>(RegClassOrBank))
95     return RB;
96   if (auto *RC =
97           dyn_cast_if_present<const TargetRegisterClass *>(RegClassOrBank))
98     return &getRegBankFromRegClass(*RC, MRI.getType(Reg));
99   return nullptr;
100 }
101 
102 const TargetRegisterClass *
getMinimalPhysRegClass(Register Reg,const TargetRegisterInfo & TRI) const103 RegisterBankInfo::getMinimalPhysRegClass(Register Reg,
104                                          const TargetRegisterInfo &TRI) const {
105   assert(Reg.isPhysical() && "Reg must be a physreg");
106   const auto &RegRCIt = PhysRegMinimalRCs.find(Reg);
107   if (RegRCIt != PhysRegMinimalRCs.end())
108     return RegRCIt->second;
109   const TargetRegisterClass *PhysRC = TRI.getMinimalPhysRegClassLLT(Reg, LLT());
110   PhysRegMinimalRCs[Reg] = PhysRC;
111   return PhysRC;
112 }
113 
getRegBankFromConstraints(const MachineInstr & MI,unsigned OpIdx,const TargetInstrInfo & TII,const MachineRegisterInfo & MRI) const114 const RegisterBank *RegisterBankInfo::getRegBankFromConstraints(
115     const MachineInstr &MI, unsigned OpIdx, const TargetInstrInfo &TII,
116     const MachineRegisterInfo &MRI) const {
117   const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
118 
119   // The mapping of the registers may be available via the
120   // register class constraints.
121   const TargetRegisterClass *RC = MI.getRegClassConstraint(OpIdx, &TII, TRI);
122 
123   if (!RC)
124     return nullptr;
125 
126   Register Reg = MI.getOperand(OpIdx).getReg();
127   const RegisterBank &RegBank = getRegBankFromRegClass(*RC, MRI.getType(Reg));
128   // Check that the target properly implemented getRegBankFromRegClass.
129   assert(RegBank.covers(*RC) &&
130          "The mapping of the register bank does not make sense");
131   return &RegBank;
132 }
133 
constrainGenericRegister(Register Reg,const TargetRegisterClass & RC,MachineRegisterInfo & MRI)134 const TargetRegisterClass *RegisterBankInfo::constrainGenericRegister(
135     Register Reg, const TargetRegisterClass &RC, MachineRegisterInfo &MRI) {
136 
137   // If the register already has a class, fallback to MRI::constrainRegClass.
138   auto &RegClassOrBank = MRI.getRegClassOrRegBank(Reg);
139   if (isa<const TargetRegisterClass *>(RegClassOrBank))
140     return MRI.constrainRegClass(Reg, &RC);
141 
142   const RegisterBank *RB = cast<const RegisterBank *>(RegClassOrBank);
143   // Otherwise, all we can do is ensure the bank covers the class, and set it.
144   if (RB && !RB->covers(RC))
145     return nullptr;
146 
147   // If nothing was set or the class is simply compatible, set it.
148   MRI.setRegClass(Reg, &RC);
149   return &RC;
150 }
151 
152 /// Check whether or not \p MI should be treated like a copy
153 /// for the mappings.
154 /// Copy like instruction are special for mapping because
155 /// they don't have actual register constraints. Moreover,
156 /// they sometimes have register classes assigned and we can
157 /// just use that instead of failing to provide a generic mapping.
isCopyLike(const MachineInstr & MI)158 static bool isCopyLike(const MachineInstr &MI) {
159   return MI.isCopy() || MI.isPHI() ||
160          MI.getOpcode() == TargetOpcode::REG_SEQUENCE;
161 }
162 
163 const RegisterBankInfo::InstructionMapping &
getInstrMappingImpl(const MachineInstr & MI) const164 RegisterBankInfo::getInstrMappingImpl(const MachineInstr &MI) const {
165   // For copies we want to walk over the operands and try to find one
166   // that has a register bank since the instruction itself will not get
167   // us any constraint.
168   bool IsCopyLike = isCopyLike(MI);
169   // For copy like instruction, only the mapping of the definition
170   // is important. The rest is not constrained.
171   unsigned NumOperandsForMapping = IsCopyLike ? 1 : MI.getNumOperands();
172 
173   const MachineFunction &MF = *MI.getMF();
174   const TargetSubtargetInfo &STI = MF.getSubtarget();
175   const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
176   const MachineRegisterInfo &MRI = MF.getRegInfo();
177   // We may need to query the instruction encoding to guess the mapping.
178   const TargetInstrInfo &TII = *STI.getInstrInfo();
179 
180   // Before doing anything complicated check if the mapping is not
181   // directly available.
182   bool CompleteMapping = true;
183 
184   SmallVector<const ValueMapping *, 8> OperandsMapping(NumOperandsForMapping);
185   for (unsigned OpIdx = 0, EndIdx = MI.getNumOperands(); OpIdx != EndIdx;
186        ++OpIdx) {
187     const MachineOperand &MO = MI.getOperand(OpIdx);
188     if (!MO.isReg())
189       continue;
190     Register Reg = MO.getReg();
191     if (!Reg)
192       continue;
193     // The register bank of Reg is just a side effect of the current
194     // excution and in particular, there is no reason to believe this
195     // is the best default mapping for the current instruction.  Keep
196     // it as an alternative register bank if we cannot figure out
197     // something.
198     const RegisterBank *AltRegBank = getRegBank(Reg, MRI, TRI);
199     // For copy-like instruction, we want to reuse the register bank
200     // that is already set on Reg, if any, since those instructions do
201     // not have any constraints.
202     const RegisterBank *CurRegBank = IsCopyLike ? AltRegBank : nullptr;
203     if (!CurRegBank) {
204       // If this is a target specific instruction, we can deduce
205       // the register bank from the encoding constraints.
206       CurRegBank = getRegBankFromConstraints(MI, OpIdx, TII, MRI);
207       if (!CurRegBank) {
208         // All our attempts failed, give up.
209         CompleteMapping = false;
210 
211         if (!IsCopyLike)
212           // MI does not carry enough information to guess the mapping.
213           return getInvalidInstructionMapping();
214         continue;
215       }
216     }
217 
218     unsigned Size = getSizeInBits(Reg, MRI, TRI);
219     const ValueMapping *ValMapping = &getValueMapping(0, Size, *CurRegBank);
220     if (IsCopyLike) {
221       if (!OperandsMapping[0]) {
222         if (MI.isRegSequence()) {
223           // For reg_sequence, the result size does not match the input.
224           unsigned ResultSize = getSizeInBits(MI.getOperand(0).getReg(),
225                                               MRI, TRI);
226           OperandsMapping[0] = &getValueMapping(0, ResultSize, *CurRegBank);
227         } else {
228           OperandsMapping[0] = ValMapping;
229         }
230       }
231 
232       // The default handling assumes any register bank can be copied to any
233       // other. If this isn't the case, the target should specially deal with
234       // reg_sequence/phi. There may also be unsatisfiable copies.
235       for (; OpIdx != EndIdx; ++OpIdx) {
236         const MachineOperand &MO = MI.getOperand(OpIdx);
237         if (!MO.isReg())
238           continue;
239         Register Reg = MO.getReg();
240         if (!Reg)
241           continue;
242 
243         const RegisterBank *AltRegBank = getRegBank(Reg, MRI, TRI);
244         if (AltRegBank &&
245             cannotCopy(*CurRegBank, *AltRegBank, getSizeInBits(Reg, MRI, TRI)))
246           return getInvalidInstructionMapping();
247       }
248 
249       CompleteMapping = true;
250       break;
251     }
252 
253     OperandsMapping[OpIdx] = ValMapping;
254   }
255 
256   if (IsCopyLike && !CompleteMapping) {
257     // No way to deduce the type from what we have.
258     return getInvalidInstructionMapping();
259   }
260 
261   assert(CompleteMapping && "Setting an uncomplete mapping");
262   return getInstructionMapping(
263       DefaultMappingID, /*Cost*/ 1,
264       /*OperandsMapping*/ getOperandsMapping(OperandsMapping),
265       NumOperandsForMapping);
266 }
267 
268 /// Hashing function for PartialMapping.
hashPartialMapping(unsigned StartIdx,unsigned Length,const RegisterBank * RegBank)269 static hash_code hashPartialMapping(unsigned StartIdx, unsigned Length,
270                                     const RegisterBank *RegBank) {
271   return hash_combine(StartIdx, Length, RegBank ? RegBank->getID() : 0);
272 }
273 
274 /// Overloaded version of hash_value for a PartialMapping.
275 hash_code
hash_value(const RegisterBankInfo::PartialMapping & PartMapping)276 llvm::hash_value(const RegisterBankInfo::PartialMapping &PartMapping) {
277   return hashPartialMapping(PartMapping.StartIdx, PartMapping.Length,
278                             PartMapping.RegBank);
279 }
280 
281 const RegisterBankInfo::PartialMapping &
getPartialMapping(unsigned StartIdx,unsigned Length,const RegisterBank & RegBank) const282 RegisterBankInfo::getPartialMapping(unsigned StartIdx, unsigned Length,
283                                     const RegisterBank &RegBank) const {
284   ++NumPartialMappingsAccessed;
285 
286   hash_code Hash = hashPartialMapping(StartIdx, Length, &RegBank);
287   const auto &It = MapOfPartialMappings.find(Hash);
288   if (It != MapOfPartialMappings.end())
289     return *It->second;
290 
291   ++NumPartialMappingsCreated;
292 
293   auto &PartMapping = MapOfPartialMappings[Hash];
294   PartMapping = std::make_unique<PartialMapping>(StartIdx, Length, RegBank);
295   return *PartMapping;
296 }
297 
298 const RegisterBankInfo::ValueMapping &
getValueMapping(unsigned StartIdx,unsigned Length,const RegisterBank & RegBank) const299 RegisterBankInfo::getValueMapping(unsigned StartIdx, unsigned Length,
300                                   const RegisterBank &RegBank) const {
301   return getValueMapping(&getPartialMapping(StartIdx, Length, RegBank), 1);
302 }
303 
304 static hash_code
hashValueMapping(const RegisterBankInfo::PartialMapping * BreakDown,unsigned NumBreakDowns)305 hashValueMapping(const RegisterBankInfo::PartialMapping *BreakDown,
306                  unsigned NumBreakDowns) {
307   if (LLVM_LIKELY(NumBreakDowns == 1))
308     return hash_value(*BreakDown);
309   SmallVector<size_t, 8> Hashes(NumBreakDowns);
310   for (unsigned Idx = 0; Idx != NumBreakDowns; ++Idx)
311     Hashes.push_back(hash_value(BreakDown[Idx]));
312   return hash_combine_range(Hashes.begin(), Hashes.end());
313 }
314 
315 const RegisterBankInfo::ValueMapping &
getValueMapping(const PartialMapping * BreakDown,unsigned NumBreakDowns) const316 RegisterBankInfo::getValueMapping(const PartialMapping *BreakDown,
317                                   unsigned NumBreakDowns) const {
318   ++NumValueMappingsAccessed;
319 
320   hash_code Hash = hashValueMapping(BreakDown, NumBreakDowns);
321   const auto &It = MapOfValueMappings.find(Hash);
322   if (It != MapOfValueMappings.end())
323     return *It->second;
324 
325   ++NumValueMappingsCreated;
326 
327   auto &ValMapping = MapOfValueMappings[Hash];
328   ValMapping = std::make_unique<ValueMapping>(BreakDown, NumBreakDowns);
329   return *ValMapping;
330 }
331 
332 template <typename Iterator>
333 const RegisterBankInfo::ValueMapping *
getOperandsMapping(Iterator Begin,Iterator End) const334 RegisterBankInfo::getOperandsMapping(Iterator Begin, Iterator End) const {
335 
336   ++NumOperandsMappingsAccessed;
337 
338   // The addresses of the value mapping are unique.
339   // Therefore, we can use them directly to hash the operand mapping.
340   hash_code Hash = hash_combine_range(Begin, End);
341   auto &Res = MapOfOperandsMappings[Hash];
342   if (Res)
343     return Res.get();
344 
345   ++NumOperandsMappingsCreated;
346 
347   // Create the array of ValueMapping.
348   // Note: this array will not hash to this instance of operands
349   // mapping, because we use the pointer of the ValueMapping
350   // to hash and we expect them to uniquely identify an instance
351   // of value mapping.
352   Res = std::make_unique<ValueMapping[]>(std::distance(Begin, End));
353   unsigned Idx = 0;
354   for (Iterator It = Begin; It != End; ++It, ++Idx) {
355     const ValueMapping *ValMap = *It;
356     if (!ValMap)
357       continue;
358     Res[Idx] = *ValMap;
359   }
360   return Res.get();
361 }
362 
getOperandsMapping(const SmallVectorImpl<const RegisterBankInfo::ValueMapping * > & OpdsMapping) const363 const RegisterBankInfo::ValueMapping *RegisterBankInfo::getOperandsMapping(
364     const SmallVectorImpl<const RegisterBankInfo::ValueMapping *> &OpdsMapping)
365     const {
366   return getOperandsMapping(OpdsMapping.begin(), OpdsMapping.end());
367 }
368 
getOperandsMapping(std::initializer_list<const RegisterBankInfo::ValueMapping * > OpdsMapping) const369 const RegisterBankInfo::ValueMapping *RegisterBankInfo::getOperandsMapping(
370     std::initializer_list<const RegisterBankInfo::ValueMapping *> OpdsMapping)
371     const {
372   return getOperandsMapping(OpdsMapping.begin(), OpdsMapping.end());
373 }
374 
375 static hash_code
hashInstructionMapping(unsigned ID,unsigned Cost,const RegisterBankInfo::ValueMapping * OperandsMapping,unsigned NumOperands)376 hashInstructionMapping(unsigned ID, unsigned Cost,
377                        const RegisterBankInfo::ValueMapping *OperandsMapping,
378                        unsigned NumOperands) {
379   return hash_combine(ID, Cost, OperandsMapping, NumOperands);
380 }
381 
382 const RegisterBankInfo::InstructionMapping &
getInstructionMappingImpl(bool IsInvalid,unsigned ID,unsigned Cost,const RegisterBankInfo::ValueMapping * OperandsMapping,unsigned NumOperands) const383 RegisterBankInfo::getInstructionMappingImpl(
384     bool IsInvalid, unsigned ID, unsigned Cost,
385     const RegisterBankInfo::ValueMapping *OperandsMapping,
386     unsigned NumOperands) const {
387   assert(((IsInvalid && ID == InvalidMappingID && Cost == 0 &&
388            OperandsMapping == nullptr && NumOperands == 0) ||
389           !IsInvalid) &&
390          "Mismatch argument for invalid input");
391   ++NumInstructionMappingsAccessed;
392 
393   hash_code Hash =
394       hashInstructionMapping(ID, Cost, OperandsMapping, NumOperands);
395   const auto &It = MapOfInstructionMappings.find(Hash);
396   if (It != MapOfInstructionMappings.end())
397     return *It->second;
398 
399   ++NumInstructionMappingsCreated;
400 
401   auto &InstrMapping = MapOfInstructionMappings[Hash];
402   InstrMapping = std::make_unique<InstructionMapping>(
403       ID, Cost, OperandsMapping, NumOperands);
404   return *InstrMapping;
405 }
406 
407 const RegisterBankInfo::InstructionMapping &
getInstrMapping(const MachineInstr & MI) const408 RegisterBankInfo::getInstrMapping(const MachineInstr &MI) const {
409   const RegisterBankInfo::InstructionMapping &Mapping = getInstrMappingImpl(MI);
410   if (Mapping.isValid())
411     return Mapping;
412   llvm_unreachable("The target must implement this");
413 }
414 
415 RegisterBankInfo::InstructionMappings
getInstrPossibleMappings(const MachineInstr & MI) const416 RegisterBankInfo::getInstrPossibleMappings(const MachineInstr &MI) const {
417   InstructionMappings PossibleMappings;
418   const auto &Mapping = getInstrMapping(MI);
419   if (Mapping.isValid()) {
420     // Put the default mapping first.
421     PossibleMappings.push_back(&Mapping);
422   }
423 
424   // Then the alternative mapping, if any.
425   InstructionMappings AltMappings = getInstrAlternativeMappings(MI);
426   append_range(PossibleMappings, AltMappings);
427 #ifndef NDEBUG
428   for (const InstructionMapping *Mapping : PossibleMappings)
429     assert(Mapping->verify(MI) && "Mapping is invalid");
430 #endif
431   return PossibleMappings;
432 }
433 
434 RegisterBankInfo::InstructionMappings
getInstrAlternativeMappings(const MachineInstr & MI) const435 RegisterBankInfo::getInstrAlternativeMappings(const MachineInstr &MI) const {
436   // No alternative for MI.
437   return InstructionMappings();
438 }
439 
applyDefaultMapping(const OperandsMapper & OpdMapper)440 void RegisterBankInfo::applyDefaultMapping(const OperandsMapper &OpdMapper) {
441   MachineInstr &MI = OpdMapper.getMI();
442   MachineRegisterInfo &MRI = OpdMapper.getMRI();
443   LLVM_DEBUG(dbgs() << "Applying default-like mapping\n");
444   for (unsigned OpIdx = 0,
445                 EndIdx = OpdMapper.getInstrMapping().getNumOperands();
446        OpIdx != EndIdx; ++OpIdx) {
447     LLVM_DEBUG(dbgs() << "OpIdx " << OpIdx);
448     MachineOperand &MO = MI.getOperand(OpIdx);
449     if (!MO.isReg()) {
450       LLVM_DEBUG(dbgs() << " is not a register, nothing to be done\n");
451       continue;
452     }
453     if (!MO.getReg()) {
454       LLVM_DEBUG(dbgs() << " is $noreg, nothing to be done\n");
455       continue;
456     }
457     LLT Ty = MRI.getType(MO.getReg());
458     if (!Ty.isValid())
459       continue;
460     assert(OpdMapper.getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns !=
461                0 &&
462            "Invalid mapping");
463     assert(OpdMapper.getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns ==
464                1 &&
465            "This mapping is too complex for this function");
466     iterator_range<SmallVectorImpl<Register>::const_iterator> NewRegs =
467         OpdMapper.getVRegs(OpIdx);
468     if (NewRegs.empty()) {
469       LLVM_DEBUG(dbgs() << " has not been repaired, nothing to be done\n");
470       continue;
471     }
472     Register OrigReg = MO.getReg();
473     Register NewReg = *NewRegs.begin();
474     LLVM_DEBUG(dbgs() << " changed, replace " << printReg(OrigReg, nullptr));
475     MO.setReg(NewReg);
476     LLVM_DEBUG(dbgs() << " with " << printReg(NewReg, nullptr));
477 
478     // The OperandsMapper creates plain scalar, we may have to fix that.
479     // Check if the types match and if not, fix that.
480     LLT OrigTy = MRI.getType(OrigReg);
481     LLT NewTy = MRI.getType(NewReg);
482     if (OrigTy != NewTy) {
483       // The default mapping is not supposed to change the size of
484       // the storage. However, right now we don't necessarily bump all
485       // the types to storage size. For instance, we can consider
486       // s16 G_AND legal whereas the storage size is going to be 32.
487       assert(
488           TypeSize::isKnownLE(OrigTy.getSizeInBits(), NewTy.getSizeInBits()) &&
489           "Types with difference size cannot be handled by the default "
490           "mapping");
491       LLVM_DEBUG(dbgs() << "\nChange type of new opd from " << NewTy << " to "
492                         << OrigTy);
493       MRI.setType(NewReg, OrigTy);
494     }
495     LLVM_DEBUG(dbgs() << '\n');
496   }
497 }
498 
getSizeInBits(Register Reg,const MachineRegisterInfo & MRI,const TargetRegisterInfo & TRI) const499 TypeSize RegisterBankInfo::getSizeInBits(Register Reg,
500                                          const MachineRegisterInfo &MRI,
501                                          const TargetRegisterInfo &TRI) const {
502   if (Reg.isPhysical()) {
503     // The size is not directly available for physical registers.
504     // Instead, we need to access a register class that contains Reg and
505     // get the size of that register class.
506     // Because this is expensive, we'll cache the register class by calling
507     auto *RC = getMinimalPhysRegClass(Reg, TRI);
508     assert(RC && "Expecting Register class");
509     return TRI.getRegSizeInBits(*RC);
510   }
511   return TRI.getRegSizeInBits(Reg, MRI);
512 }
513 
514 //------------------------------------------------------------------------------
515 // Helper classes implementation.
516 //------------------------------------------------------------------------------
517 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const518 LLVM_DUMP_METHOD void RegisterBankInfo::PartialMapping::dump() const {
519   print(dbgs());
520   dbgs() << '\n';
521 }
522 #endif
523 
verify(const RegisterBankInfo & RBI) const524 bool RegisterBankInfo::PartialMapping::verify(
525     const RegisterBankInfo &RBI) const {
526   assert(RegBank && "Register bank not set");
527   assert(Length && "Empty mapping");
528   assert((StartIdx <= getHighBitIdx()) && "Overflow, switch to APInt?");
529   // Check if the minimum width fits into RegBank.
530   assert(RBI.getMaximumSize(RegBank->getID()) >= Length &&
531          "Register bank too small for Mask");
532   return true;
533 }
534 
print(raw_ostream & OS) const535 void RegisterBankInfo::PartialMapping::print(raw_ostream &OS) const {
536   OS << "[" << StartIdx << ", " << getHighBitIdx() << "], RegBank = ";
537   if (RegBank)
538     OS << *RegBank;
539   else
540     OS << "nullptr";
541 }
542 
partsAllUniform() const543 bool RegisterBankInfo::ValueMapping::partsAllUniform() const {
544   if (NumBreakDowns < 2)
545     return true;
546 
547   const PartialMapping *First = begin();
548   for (const PartialMapping *Part = First + 1; Part != end(); ++Part) {
549     if (Part->Length != First->Length || Part->RegBank != First->RegBank)
550       return false;
551   }
552 
553   return true;
554 }
555 
verify(const RegisterBankInfo & RBI,TypeSize MeaningfulBitWidth) const556 bool RegisterBankInfo::ValueMapping::verify(const RegisterBankInfo &RBI,
557                                             TypeSize MeaningfulBitWidth) const {
558   assert(NumBreakDowns && "Value mapped nowhere?!");
559   unsigned OrigValueBitWidth = 0;
560   for (const RegisterBankInfo::PartialMapping &PartMap : *this) {
561     // Check that each register bank is big enough to hold the partial value:
562     // this check is done by PartialMapping::verify
563     assert(PartMap.verify(RBI) && "Partial mapping is invalid");
564     // The original value should completely be mapped.
565     // Thus the maximum accessed index + 1 is the size of the original value.
566     OrigValueBitWidth =
567         std::max(OrigValueBitWidth, PartMap.getHighBitIdx() + 1);
568   }
569   assert((MeaningfulBitWidth.isScalable() ||
570           OrigValueBitWidth >= MeaningfulBitWidth) &&
571          "Meaningful bits not covered by the mapping");
572   APInt ValueMask(OrigValueBitWidth, 0);
573   for (const RegisterBankInfo::PartialMapping &PartMap : *this) {
574     // Check that the union of the partial mappings covers the whole value,
575     // without overlaps.
576     // The high bit is exclusive in the APInt API, thus getHighBitIdx + 1.
577     APInt PartMapMask = APInt::getBitsSet(OrigValueBitWidth, PartMap.StartIdx,
578                                           PartMap.getHighBitIdx() + 1);
579     ValueMask ^= PartMapMask;
580     assert((ValueMask & PartMapMask) == PartMapMask &&
581            "Some partial mappings overlap");
582   }
583   assert(ValueMask.isAllOnes() && "Value is not fully mapped");
584   return true;
585 }
586 
587 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const588 LLVM_DUMP_METHOD void RegisterBankInfo::ValueMapping::dump() const {
589   print(dbgs());
590   dbgs() << '\n';
591 }
592 #endif
593 
print(raw_ostream & OS) const594 void RegisterBankInfo::ValueMapping::print(raw_ostream &OS) const {
595   OS << "#BreakDown: " << NumBreakDowns << " ";
596   bool IsFirst = true;
597   for (const PartialMapping &PartMap : *this) {
598     if (!IsFirst)
599       OS << ", ";
600     OS << '[' << PartMap << ']';
601     IsFirst = false;
602   }
603 }
604 
verify(const MachineInstr & MI) const605 bool RegisterBankInfo::InstructionMapping::verify(
606     const MachineInstr &MI) const {
607   // Check that all the register operands are properly mapped.
608   // Check the constructor invariant.
609   // For PHI, we only care about mapping the definition.
610   assert(NumOperands == (isCopyLike(MI) ? 1 : MI.getNumOperands()) &&
611          "NumOperands must match, see constructor");
612   assert(MI.getParent() && MI.getMF() &&
613          "MI must be connected to a MachineFunction");
614   const MachineFunction &MF = *MI.getMF();
615   const RegisterBankInfo *RBI = MF.getSubtarget().getRegBankInfo();
616   (void)RBI;
617   const MachineRegisterInfo &MRI = MF.getRegInfo();
618 
619   for (unsigned Idx = 0; Idx < NumOperands; ++Idx) {
620     const MachineOperand &MO = MI.getOperand(Idx);
621     if (!MO.isReg()) {
622       assert(!getOperandMapping(Idx).isValid() &&
623              "We should not care about non-reg mapping");
624       continue;
625     }
626     Register Reg = MO.getReg();
627     if (!Reg)
628       continue;
629     LLT Ty = MRI.getType(Reg);
630     if (!Ty.isValid())
631       continue;
632     assert(getOperandMapping(Idx).isValid() &&
633            "We must have a mapping for reg operands");
634     const RegisterBankInfo::ValueMapping &MOMapping = getOperandMapping(Idx);
635     (void)MOMapping;
636     // Register size in bits.
637     // This size must match what the mapping expects.
638     assert(MOMapping.verify(*RBI, RBI->getSizeInBits(
639                                       Reg, MF.getRegInfo(),
640                                       *MF.getSubtarget().getRegisterInfo())) &&
641            "Value mapping is invalid");
642   }
643   return true;
644 }
645 
646 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const647 LLVM_DUMP_METHOD void RegisterBankInfo::InstructionMapping::dump() const {
648   print(dbgs());
649   dbgs() << '\n';
650 }
651 #endif
652 
print(raw_ostream & OS) const653 void RegisterBankInfo::InstructionMapping::print(raw_ostream &OS) const {
654   OS << "ID: " << getID() << " Cost: " << getCost() << " Mapping: ";
655 
656   for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
657     const ValueMapping &ValMapping = getOperandMapping(OpIdx);
658     if (OpIdx)
659       OS << ", ";
660     OS << "{ Idx: " << OpIdx << " Map: " << ValMapping << '}';
661   }
662 }
663 
664 const int RegisterBankInfo::OperandsMapper::DontKnowIdx = -1;
665 
OperandsMapper(MachineInstr & MI,const InstructionMapping & InstrMapping,MachineRegisterInfo & MRI)666 RegisterBankInfo::OperandsMapper::OperandsMapper(
667     MachineInstr &MI, const InstructionMapping &InstrMapping,
668     MachineRegisterInfo &MRI)
669     : MRI(MRI), MI(MI), InstrMapping(InstrMapping) {
670   unsigned NumOpds = InstrMapping.getNumOperands();
671   OpToNewVRegIdx.resize(NumOpds, OperandsMapper::DontKnowIdx);
672   assert(InstrMapping.verify(MI) && "Invalid mapping for MI");
673 }
674 
675 iterator_range<SmallVectorImpl<Register>::iterator>
getVRegsMem(unsigned OpIdx)676 RegisterBankInfo::OperandsMapper::getVRegsMem(unsigned OpIdx) {
677   assert(OpIdx < getInstrMapping().getNumOperands() && "Out-of-bound access");
678   unsigned NumPartialVal =
679       getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns;
680   int StartIdx = OpToNewVRegIdx[OpIdx];
681 
682   if (StartIdx == OperandsMapper::DontKnowIdx) {
683     // This is the first time we try to access OpIdx.
684     // Create the cells that will hold all the partial values at the
685     // end of the list of NewVReg.
686     StartIdx = NewVRegs.size();
687     OpToNewVRegIdx[OpIdx] = StartIdx;
688     for (unsigned i = 0; i < NumPartialVal; ++i)
689       NewVRegs.push_back(0);
690   }
691   SmallVectorImpl<Register>::iterator End =
692       getNewVRegsEnd(StartIdx, NumPartialVal);
693 
694   return make_range(&NewVRegs[StartIdx], End);
695 }
696 
697 SmallVectorImpl<Register>::const_iterator
getNewVRegsEnd(unsigned StartIdx,unsigned NumVal) const698 RegisterBankInfo::OperandsMapper::getNewVRegsEnd(unsigned StartIdx,
699                                                  unsigned NumVal) const {
700   return const_cast<OperandsMapper *>(this)->getNewVRegsEnd(StartIdx, NumVal);
701 }
702 SmallVectorImpl<Register>::iterator
getNewVRegsEnd(unsigned StartIdx,unsigned NumVal)703 RegisterBankInfo::OperandsMapper::getNewVRegsEnd(unsigned StartIdx,
704                                                  unsigned NumVal) {
705   assert((NewVRegs.size() == StartIdx + NumVal ||
706           NewVRegs.size() > StartIdx + NumVal) &&
707          "NewVRegs too small to contain all the partial mapping");
708   return NewVRegs.size() <= StartIdx + NumVal ? NewVRegs.end()
709                                               : &NewVRegs[StartIdx + NumVal];
710 }
711 
createVRegs(unsigned OpIdx)712 void RegisterBankInfo::OperandsMapper::createVRegs(unsigned OpIdx) {
713   assert(OpIdx < getInstrMapping().getNumOperands() && "Out-of-bound access");
714   iterator_range<SmallVectorImpl<Register>::iterator> NewVRegsForOpIdx =
715       getVRegsMem(OpIdx);
716   const ValueMapping &ValMapping = getInstrMapping().getOperandMapping(OpIdx);
717   const PartialMapping *PartMap = ValMapping.begin();
718   for (Register &NewVReg : NewVRegsForOpIdx) {
719     assert(PartMap != ValMapping.end() && "Out-of-bound access");
720     assert(NewVReg == 0 && "Register has already been created");
721     // The new registers are always bound to scalar with the right size.
722     // The actual type has to be set when the target does the mapping
723     // of the instruction.
724     // The rationale is that this generic code cannot guess how the
725     // target plans to split the input type.
726     NewVReg = MRI.createGenericVirtualRegister(LLT::scalar(PartMap->Length));
727     MRI.setRegBank(NewVReg, *PartMap->RegBank);
728     ++PartMap;
729   }
730 }
731 
setVRegs(unsigned OpIdx,unsigned PartialMapIdx,Register NewVReg)732 void RegisterBankInfo::OperandsMapper::setVRegs(unsigned OpIdx,
733                                                 unsigned PartialMapIdx,
734                                                 Register NewVReg) {
735   assert(OpIdx < getInstrMapping().getNumOperands() && "Out-of-bound access");
736   assert(getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns >
737              PartialMapIdx &&
738          "Out-of-bound access for partial mapping");
739   // Make sure the memory is initialized for that operand.
740   (void)getVRegsMem(OpIdx);
741   assert(NewVRegs[OpToNewVRegIdx[OpIdx] + PartialMapIdx] == 0 &&
742          "This value is already set");
743   NewVRegs[OpToNewVRegIdx[OpIdx] + PartialMapIdx] = NewVReg;
744 }
745 
746 iterator_range<SmallVectorImpl<Register>::const_iterator>
getVRegs(unsigned OpIdx,bool ForDebug) const747 RegisterBankInfo::OperandsMapper::getVRegs(unsigned OpIdx,
748                                            bool ForDebug) const {
749   (void)ForDebug;
750   assert(OpIdx < getInstrMapping().getNumOperands() && "Out-of-bound access");
751   int StartIdx = OpToNewVRegIdx[OpIdx];
752 
753   if (StartIdx == OperandsMapper::DontKnowIdx)
754     return make_range(NewVRegs.end(), NewVRegs.end());
755 
756   unsigned PartMapSize =
757       getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns;
758   SmallVectorImpl<Register>::const_iterator End =
759       getNewVRegsEnd(StartIdx, PartMapSize);
760   iterator_range<SmallVectorImpl<Register>::const_iterator> Res =
761       make_range(&NewVRegs[StartIdx], End);
762 #ifndef NDEBUG
763   for (Register VReg : Res)
764     assert((VReg || ForDebug) && "Some registers are uninitialized");
765 #endif
766   return Res;
767 }
768 
769 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const770 LLVM_DUMP_METHOD void RegisterBankInfo::OperandsMapper::dump() const {
771   print(dbgs(), true);
772   dbgs() << '\n';
773 }
774 #endif
775 
print(raw_ostream & OS,bool ForDebug) const776 void RegisterBankInfo::OperandsMapper::print(raw_ostream &OS,
777                                              bool ForDebug) const {
778   unsigned NumOpds = getInstrMapping().getNumOperands();
779   if (ForDebug) {
780     OS << "Mapping for " << getMI() << "\nwith " << getInstrMapping() << '\n';
781     // Print out the internal state of the index table.
782     OS << "Populated indices (CellNumber, IndexInNewVRegs): ";
783     bool IsFirst = true;
784     for (unsigned Idx = 0; Idx != NumOpds; ++Idx) {
785       if (OpToNewVRegIdx[Idx] != DontKnowIdx) {
786         if (!IsFirst)
787           OS << ", ";
788         OS << '(' << Idx << ", " << OpToNewVRegIdx[Idx] << ')';
789         IsFirst = false;
790       }
791     }
792     OS << '\n';
793   } else
794     OS << "Mapping ID: " << getInstrMapping().getID() << ' ';
795 
796   OS << "Operand Mapping: ";
797   // If we have a function, we can pretty print the name of the registers.
798   // Otherwise we will print the raw numbers.
799   const TargetRegisterInfo *TRI =
800       getMI().getParent() && getMI().getMF()
801           ? getMI().getMF()->getSubtarget().getRegisterInfo()
802           : nullptr;
803   bool IsFirst = true;
804   for (unsigned Idx = 0; Idx != NumOpds; ++Idx) {
805     if (OpToNewVRegIdx[Idx] == DontKnowIdx)
806       continue;
807     if (!IsFirst)
808       OS << ", ";
809     IsFirst = false;
810     OS << '(' << printReg(getMI().getOperand(Idx).getReg(), TRI) << ", [";
811     bool IsFirstNewVReg = true;
812     for (Register VReg : getVRegs(Idx)) {
813       if (!IsFirstNewVReg)
814         OS << ", ";
815       IsFirstNewVReg = false;
816       OS << printReg(VReg, TRI);
817     }
818     OS << "])";
819   }
820 }
821