1 //===- LoopInterchange.cpp - Loop interchange pass-------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This Pass handles loop interchange transform.
10 // This pass interchanges loops to provide a more cache-friendly memory access
11 // patterns.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Transforms/Scalar/LoopInterchange.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/Analysis/DependenceAnalysis.h"
21 #include "llvm/Analysis/LoopCacheAnalysis.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/Analysis/LoopNestAnalysis.h"
24 #include "llvm/Analysis/LoopPass.h"
25 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
26 #include "llvm/Analysis/ScalarEvolution.h"
27 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DiagnosticInfo.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/InstrTypes.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/User.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/Scalar/LoopPassManager.h"
44 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
45 #include "llvm/Transforms/Utils/LoopUtils.h"
46 #include <cassert>
47 #include <utility>
48 #include <vector>
49
50 using namespace llvm;
51
52 #define DEBUG_TYPE "loop-interchange"
53
54 STATISTIC(LoopsInterchanged, "Number of loops interchanged");
55
56 static cl::opt<int> LoopInterchangeCostThreshold(
57 "loop-interchange-threshold", cl::init(0), cl::Hidden,
58 cl::desc("Interchange if you gain more than this number"));
59
60 namespace {
61
62 using LoopVector = SmallVector<Loop *, 8>;
63
64 // TODO: Check if we can use a sparse matrix here.
65 using CharMatrix = std::vector<std::vector<char>>;
66
67 } // end anonymous namespace
68
69 // Maximum number of dependencies that can be handled in the dependency matrix.
70 static const unsigned MaxMemInstrCount = 100;
71
72 // Maximum loop depth supported.
73 static const unsigned MaxLoopNestDepth = 10;
74
75 #ifdef DUMP_DEP_MATRICIES
printDepMatrix(CharMatrix & DepMatrix)76 static void printDepMatrix(CharMatrix &DepMatrix) {
77 for (auto &Row : DepMatrix) {
78 for (auto D : Row)
79 LLVM_DEBUG(dbgs() << D << " ");
80 LLVM_DEBUG(dbgs() << "\n");
81 }
82 }
83 #endif
84
populateDependencyMatrix(CharMatrix & DepMatrix,unsigned Level,Loop * L,DependenceInfo * DI,ScalarEvolution * SE)85 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level,
86 Loop *L, DependenceInfo *DI,
87 ScalarEvolution *SE) {
88 using ValueVector = SmallVector<Value *, 16>;
89
90 ValueVector MemInstr;
91
92 // For each block.
93 for (BasicBlock *BB : L->blocks()) {
94 // Scan the BB and collect legal loads and stores.
95 for (Instruction &I : *BB) {
96 if (!isa<Instruction>(I))
97 return false;
98 if (auto *Ld = dyn_cast<LoadInst>(&I)) {
99 if (!Ld->isSimple())
100 return false;
101 MemInstr.push_back(&I);
102 } else if (auto *St = dyn_cast<StoreInst>(&I)) {
103 if (!St->isSimple())
104 return false;
105 MemInstr.push_back(&I);
106 }
107 }
108 }
109
110 LLVM_DEBUG(dbgs() << "Found " << MemInstr.size()
111 << " Loads and Stores to analyze\n");
112
113 ValueVector::iterator I, IE, J, JE;
114
115 for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) {
116 for (J = I, JE = MemInstr.end(); J != JE; ++J) {
117 std::vector<char> Dep;
118 Instruction *Src = cast<Instruction>(*I);
119 Instruction *Dst = cast<Instruction>(*J);
120 // Ignore Input dependencies.
121 if (isa<LoadInst>(Src) && isa<LoadInst>(Dst))
122 continue;
123 // Track Output, Flow, and Anti dependencies.
124 if (auto D = DI->depends(Src, Dst, true)) {
125 assert(D->isOrdered() && "Expected an output, flow or anti dep.");
126 // If the direction vector is negative, normalize it to
127 // make it non-negative.
128 if (D->normalize(SE))
129 LLVM_DEBUG(dbgs() << "Negative dependence vector normalized.\n");
130 LLVM_DEBUG(StringRef DepType =
131 D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output";
132 dbgs() << "Found " << DepType
133 << " dependency between Src and Dst\n"
134 << " Src:" << *Src << "\n Dst:" << *Dst << '\n');
135 unsigned Levels = D->getLevels();
136 char Direction;
137 for (unsigned II = 1; II <= Levels; ++II) {
138 if (D->isScalar(II)) {
139 Direction = 'S';
140 Dep.push_back(Direction);
141 } else {
142 unsigned Dir = D->getDirection(II);
143 if (Dir == Dependence::DVEntry::LT ||
144 Dir == Dependence::DVEntry::LE)
145 Direction = '<';
146 else if (Dir == Dependence::DVEntry::GT ||
147 Dir == Dependence::DVEntry::GE)
148 Direction = '>';
149 else if (Dir == Dependence::DVEntry::EQ)
150 Direction = '=';
151 else
152 Direction = '*';
153 Dep.push_back(Direction);
154 }
155 }
156 while (Dep.size() != Level) {
157 Dep.push_back('I');
158 }
159
160 DepMatrix.push_back(Dep);
161 if (DepMatrix.size() > MaxMemInstrCount) {
162 LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount
163 << " dependencies inside loop\n");
164 return false;
165 }
166 }
167 }
168 }
169
170 return true;
171 }
172
173 // A loop is moved from index 'from' to an index 'to'. Update the Dependence
174 // matrix by exchanging the two columns.
interChangeDependencies(CharMatrix & DepMatrix,unsigned FromIndx,unsigned ToIndx)175 static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx,
176 unsigned ToIndx) {
177 for (unsigned I = 0, E = DepMatrix.size(); I < E; ++I)
178 std::swap(DepMatrix[I][ToIndx], DepMatrix[I][FromIndx]);
179 }
180
181 // After interchanging, check if the direction vector is valid.
182 // [Theorem] A permutation of the loops in a perfect nest is legal if and only
183 // if the direction matrix, after the same permutation is applied to its
184 // columns, has no ">" direction as the leftmost non-"=" direction in any row.
isLexicographicallyPositive(std::vector<char> & DV)185 static bool isLexicographicallyPositive(std::vector<char> &DV) {
186 for (unsigned char Direction : DV) {
187 if (Direction == '<')
188 return true;
189 if (Direction == '>' || Direction == '*')
190 return false;
191 }
192 return true;
193 }
194
195 // Checks if it is legal to interchange 2 loops.
isLegalToInterChangeLoops(CharMatrix & DepMatrix,unsigned InnerLoopId,unsigned OuterLoopId)196 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix,
197 unsigned InnerLoopId,
198 unsigned OuterLoopId) {
199 unsigned NumRows = DepMatrix.size();
200 std::vector<char> Cur;
201 // For each row check if it is valid to interchange.
202 for (unsigned Row = 0; Row < NumRows; ++Row) {
203 // Create temporary DepVector check its lexicographical order
204 // before and after swapping OuterLoop vs InnerLoop
205 Cur = DepMatrix[Row];
206 if (!isLexicographicallyPositive(Cur))
207 return false;
208 std::swap(Cur[InnerLoopId], Cur[OuterLoopId]);
209 if (!isLexicographicallyPositive(Cur))
210 return false;
211 }
212 return true;
213 }
214
populateWorklist(Loop & L,LoopVector & LoopList)215 static void populateWorklist(Loop &L, LoopVector &LoopList) {
216 LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: "
217 << L.getHeader()->getParent()->getName() << " Loop: %"
218 << L.getHeader()->getName() << '\n');
219 assert(LoopList.empty() && "LoopList should initially be empty!");
220 Loop *CurrentLoop = &L;
221 const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops();
222 while (!Vec->empty()) {
223 // The current loop has multiple subloops in it hence it is not tightly
224 // nested.
225 // Discard all loops above it added into Worklist.
226 if (Vec->size() != 1) {
227 LoopList = {};
228 return;
229 }
230
231 LoopList.push_back(CurrentLoop);
232 CurrentLoop = Vec->front();
233 Vec = &CurrentLoop->getSubLoops();
234 }
235 LoopList.push_back(CurrentLoop);
236 }
237
238 namespace {
239
240 /// LoopInterchangeLegality checks if it is legal to interchange the loop.
241 class LoopInterchangeLegality {
242 public:
LoopInterchangeLegality(Loop * Outer,Loop * Inner,ScalarEvolution * SE,OptimizationRemarkEmitter * ORE)243 LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
244 OptimizationRemarkEmitter *ORE)
245 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
246
247 /// Check if the loops can be interchanged.
248 bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId,
249 CharMatrix &DepMatrix);
250
251 /// Discover induction PHIs in the header of \p L. Induction
252 /// PHIs are added to \p Inductions.
253 bool findInductions(Loop *L, SmallVectorImpl<PHINode *> &Inductions);
254
255 /// Check if the loop structure is understood. We do not handle triangular
256 /// loops for now.
257 bool isLoopStructureUnderstood();
258
259 bool currentLimitations();
260
getOuterInnerReductions() const261 const SmallPtrSetImpl<PHINode *> &getOuterInnerReductions() const {
262 return OuterInnerReductions;
263 }
264
getInnerLoopInductions() const265 const SmallVectorImpl<PHINode *> &getInnerLoopInductions() const {
266 return InnerLoopInductions;
267 }
268
269 private:
270 bool tightlyNested(Loop *Outer, Loop *Inner);
271 bool containsUnsafeInstructions(BasicBlock *BB);
272
273 /// Discover induction and reduction PHIs in the header of \p L. Induction
274 /// PHIs are added to \p Inductions, reductions are added to
275 /// OuterInnerReductions. When the outer loop is passed, the inner loop needs
276 /// to be passed as \p InnerLoop.
277 bool findInductionAndReductions(Loop *L,
278 SmallVector<PHINode *, 8> &Inductions,
279 Loop *InnerLoop);
280
281 Loop *OuterLoop;
282 Loop *InnerLoop;
283
284 ScalarEvolution *SE;
285
286 /// Interface to emit optimization remarks.
287 OptimizationRemarkEmitter *ORE;
288
289 /// Set of reduction PHIs taking part of a reduction across the inner and
290 /// outer loop.
291 SmallPtrSet<PHINode *, 4> OuterInnerReductions;
292
293 /// Set of inner loop induction PHIs
294 SmallVector<PHINode *, 8> InnerLoopInductions;
295 };
296
297 /// LoopInterchangeProfitability checks if it is profitable to interchange the
298 /// loop.
299 class LoopInterchangeProfitability {
300 public:
LoopInterchangeProfitability(Loop * Outer,Loop * Inner,ScalarEvolution * SE,OptimizationRemarkEmitter * ORE)301 LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
302 OptimizationRemarkEmitter *ORE)
303 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
304
305 /// Check if the loop interchange is profitable.
306 bool isProfitable(const Loop *InnerLoop, const Loop *OuterLoop,
307 unsigned InnerLoopId, unsigned OuterLoopId,
308 CharMatrix &DepMatrix,
309 const DenseMap<const Loop *, unsigned> &CostMap,
310 std::unique_ptr<CacheCost> &CC);
311
312 private:
313 int getInstrOrderCost();
314 std::optional<bool> isProfitablePerLoopCacheAnalysis(
315 const DenseMap<const Loop *, unsigned> &CostMap,
316 std::unique_ptr<CacheCost> &CC);
317 std::optional<bool> isProfitablePerInstrOrderCost();
318 std::optional<bool> isProfitableForVectorization(unsigned InnerLoopId,
319 unsigned OuterLoopId,
320 CharMatrix &DepMatrix);
321 Loop *OuterLoop;
322 Loop *InnerLoop;
323
324 /// Scev analysis.
325 ScalarEvolution *SE;
326
327 /// Interface to emit optimization remarks.
328 OptimizationRemarkEmitter *ORE;
329 };
330
331 /// LoopInterchangeTransform interchanges the loop.
332 class LoopInterchangeTransform {
333 public:
LoopInterchangeTransform(Loop * Outer,Loop * Inner,ScalarEvolution * SE,LoopInfo * LI,DominatorTree * DT,const LoopInterchangeLegality & LIL)334 LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
335 LoopInfo *LI, DominatorTree *DT,
336 const LoopInterchangeLegality &LIL)
337 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT), LIL(LIL) {}
338
339 /// Interchange OuterLoop and InnerLoop.
340 bool transform();
341 void restructureLoops(Loop *NewInner, Loop *NewOuter,
342 BasicBlock *OrigInnerPreHeader,
343 BasicBlock *OrigOuterPreHeader);
344 void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop);
345
346 private:
347 bool adjustLoopLinks();
348 bool adjustLoopBranches();
349
350 Loop *OuterLoop;
351 Loop *InnerLoop;
352
353 /// Scev analysis.
354 ScalarEvolution *SE;
355
356 LoopInfo *LI;
357 DominatorTree *DT;
358
359 const LoopInterchangeLegality &LIL;
360 };
361
362 struct LoopInterchange {
363 ScalarEvolution *SE = nullptr;
364 LoopInfo *LI = nullptr;
365 DependenceInfo *DI = nullptr;
366 DominatorTree *DT = nullptr;
367 std::unique_ptr<CacheCost> CC = nullptr;
368
369 /// Interface to emit optimization remarks.
370 OptimizationRemarkEmitter *ORE;
371
LoopInterchange__anon815ea8750211::LoopInterchange372 LoopInterchange(ScalarEvolution *SE, LoopInfo *LI, DependenceInfo *DI,
373 DominatorTree *DT, std::unique_ptr<CacheCost> &CC,
374 OptimizationRemarkEmitter *ORE)
375 : SE(SE), LI(LI), DI(DI), DT(DT), CC(std::move(CC)), ORE(ORE) {}
376
run__anon815ea8750211::LoopInterchange377 bool run(Loop *L) {
378 if (L->getParentLoop())
379 return false;
380 SmallVector<Loop *, 8> LoopList;
381 populateWorklist(*L, LoopList);
382 return processLoopList(LoopList);
383 }
384
run__anon815ea8750211::LoopInterchange385 bool run(LoopNest &LN) {
386 SmallVector<Loop *, 8> LoopList(LN.getLoops().begin(), LN.getLoops().end());
387 for (unsigned I = 1; I < LoopList.size(); ++I)
388 if (LoopList[I]->getParentLoop() != LoopList[I - 1])
389 return false;
390 return processLoopList(LoopList);
391 }
392
isComputableLoopNest__anon815ea8750211::LoopInterchange393 bool isComputableLoopNest(ArrayRef<Loop *> LoopList) {
394 for (Loop *L : LoopList) {
395 const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L);
396 if (isa<SCEVCouldNotCompute>(ExitCountOuter)) {
397 LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n");
398 return false;
399 }
400 if (L->getNumBackEdges() != 1) {
401 LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n");
402 return false;
403 }
404 if (!L->getExitingBlock()) {
405 LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n");
406 return false;
407 }
408 }
409 return true;
410 }
411
selectLoopForInterchange__anon815ea8750211::LoopInterchange412 unsigned selectLoopForInterchange(ArrayRef<Loop *> LoopList) {
413 // TODO: Add a better heuristic to select the loop to be interchanged based
414 // on the dependence matrix. Currently we select the innermost loop.
415 return LoopList.size() - 1;
416 }
417
processLoopList__anon815ea8750211::LoopInterchange418 bool processLoopList(SmallVectorImpl<Loop *> &LoopList) {
419 bool Changed = false;
420 unsigned LoopNestDepth = LoopList.size();
421 if (LoopNestDepth < 2) {
422 LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n");
423 return false;
424 }
425 if (LoopNestDepth > MaxLoopNestDepth) {
426 LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than "
427 << MaxLoopNestDepth << "\n");
428 return false;
429 }
430 if (!isComputableLoopNest(LoopList)) {
431 LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n");
432 return false;
433 }
434
435 LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth
436 << "\n");
437
438 CharMatrix DependencyMatrix;
439 Loop *OuterMostLoop = *(LoopList.begin());
440 if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth,
441 OuterMostLoop, DI, SE)) {
442 LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n");
443 return false;
444 }
445 #ifdef DUMP_DEP_MATRICIES
446 LLVM_DEBUG(dbgs() << "Dependence before interchange\n");
447 printDepMatrix(DependencyMatrix);
448 #endif
449
450 // Get the Outermost loop exit.
451 BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock();
452 if (!LoopNestExit) {
453 LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block");
454 return false;
455 }
456
457 unsigned SelecLoopId = selectLoopForInterchange(LoopList);
458 // Obtain the loop vector returned from loop cache analysis beforehand,
459 // and put each <Loop, index> pair into a map for constant time query
460 // later. Indices in loop vector reprsent the optimal order of the
461 // corresponding loop, e.g., given a loopnest with depth N, index 0
462 // indicates the loop should be placed as the outermost loop and index N
463 // indicates the loop should be placed as the innermost loop.
464 //
465 // For the old pass manager CacheCost would be null.
466 DenseMap<const Loop *, unsigned> CostMap;
467 if (CC != nullptr) {
468 const auto &LoopCosts = CC->getLoopCosts();
469 for (unsigned i = 0; i < LoopCosts.size(); i++) {
470 CostMap[LoopCosts[i].first] = i;
471 }
472 }
473 // We try to achieve the globally optimal memory access for the loopnest,
474 // and do interchange based on a bubble-sort fasion. We start from
475 // the innermost loop, move it outwards to the best possible position
476 // and repeat this process.
477 for (unsigned j = SelecLoopId; j > 0; j--) {
478 bool ChangedPerIter = false;
479 for (unsigned i = SelecLoopId; i > SelecLoopId - j; i--) {
480 bool Interchanged = processLoop(LoopList[i], LoopList[i - 1], i, i - 1,
481 DependencyMatrix, CostMap);
482 if (!Interchanged)
483 continue;
484 // Loops interchanged, update LoopList accordingly.
485 std::swap(LoopList[i - 1], LoopList[i]);
486 // Update the DependencyMatrix
487 interChangeDependencies(DependencyMatrix, i, i - 1);
488 #ifdef DUMP_DEP_MATRICIES
489 LLVM_DEBUG(dbgs() << "Dependence after interchange\n");
490 printDepMatrix(DependencyMatrix);
491 #endif
492 ChangedPerIter |= Interchanged;
493 Changed |= Interchanged;
494 }
495 // Early abort if there was no interchange during an entire round of
496 // moving loops outwards.
497 if (!ChangedPerIter)
498 break;
499 }
500 return Changed;
501 }
502
processLoop__anon815ea8750211::LoopInterchange503 bool processLoop(Loop *InnerLoop, Loop *OuterLoop, unsigned InnerLoopId,
504 unsigned OuterLoopId,
505 std::vector<std::vector<char>> &DependencyMatrix,
506 const DenseMap<const Loop *, unsigned> &CostMap) {
507 LLVM_DEBUG(dbgs() << "Processing InnerLoopId = " << InnerLoopId
508 << " and OuterLoopId = " << OuterLoopId << "\n");
509 LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE);
510 if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) {
511 LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n");
512 return false;
513 }
514 LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n");
515 LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE);
516 if (!LIP.isProfitable(InnerLoop, OuterLoop, InnerLoopId, OuterLoopId,
517 DependencyMatrix, CostMap, CC)) {
518 LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n");
519 return false;
520 }
521
522 ORE->emit([&]() {
523 return OptimizationRemark(DEBUG_TYPE, "Interchanged",
524 InnerLoop->getStartLoc(),
525 InnerLoop->getHeader())
526 << "Loop interchanged with enclosing loop.";
527 });
528
529 LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LIL);
530 LIT.transform();
531 LLVM_DEBUG(dbgs() << "Loops interchanged.\n");
532 LoopsInterchanged++;
533
534 llvm::formLCSSARecursively(*OuterLoop, *DT, LI, SE);
535 return true;
536 }
537 };
538
539 } // end anonymous namespace
540
containsUnsafeInstructions(BasicBlock * BB)541 bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) {
542 return any_of(*BB, [](const Instruction &I) {
543 return I.mayHaveSideEffects() || I.mayReadFromMemory();
544 });
545 }
546
tightlyNested(Loop * OuterLoop,Loop * InnerLoop)547 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) {
548 BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
549 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
550 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
551
552 LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n");
553
554 // A perfectly nested loop will not have any branch in between the outer and
555 // inner block i.e. outer header will branch to either inner preheader and
556 // outerloop latch.
557 BranchInst *OuterLoopHeaderBI =
558 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
559 if (!OuterLoopHeaderBI)
560 return false;
561
562 for (BasicBlock *Succ : successors(OuterLoopHeaderBI))
563 if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() &&
564 Succ != OuterLoopLatch)
565 return false;
566
567 LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n");
568 // We do not have any basic block in between now make sure the outer header
569 // and outer loop latch doesn't contain any unsafe instructions.
570 if (containsUnsafeInstructions(OuterLoopHeader) ||
571 containsUnsafeInstructions(OuterLoopLatch))
572 return false;
573
574 // Also make sure the inner loop preheader does not contain any unsafe
575 // instructions. Note that all instructions in the preheader will be moved to
576 // the outer loop header when interchanging.
577 if (InnerLoopPreHeader != OuterLoopHeader &&
578 containsUnsafeInstructions(InnerLoopPreHeader))
579 return false;
580
581 BasicBlock *InnerLoopExit = InnerLoop->getExitBlock();
582 // Ensure the inner loop exit block flows to the outer loop latch possibly
583 // through empty blocks.
584 const BasicBlock &SuccInner =
585 LoopNest::skipEmptyBlockUntil(InnerLoopExit, OuterLoopLatch);
586 if (&SuccInner != OuterLoopLatch) {
587 LLVM_DEBUG(dbgs() << "Inner loop exit block " << *InnerLoopExit
588 << " does not lead to the outer loop latch.\n";);
589 return false;
590 }
591 // The inner loop exit block does flow to the outer loop latch and not some
592 // other BBs, now make sure it contains safe instructions, since it will be
593 // moved into the (new) inner loop after interchange.
594 if (containsUnsafeInstructions(InnerLoopExit))
595 return false;
596
597 LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n");
598 // We have a perfect loop nest.
599 return true;
600 }
601
isLoopStructureUnderstood()602 bool LoopInterchangeLegality::isLoopStructureUnderstood() {
603 BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader();
604 for (PHINode *InnerInduction : InnerLoopInductions) {
605 unsigned Num = InnerInduction->getNumOperands();
606 for (unsigned i = 0; i < Num; ++i) {
607 Value *Val = InnerInduction->getOperand(i);
608 if (isa<Constant>(Val))
609 continue;
610 Instruction *I = dyn_cast<Instruction>(Val);
611 if (!I)
612 return false;
613 // TODO: Handle triangular loops.
614 // e.g. for(int i=0;i<N;i++)
615 // for(int j=i;j<N;j++)
616 unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i);
617 if (InnerInduction->getIncomingBlock(IncomBlockIndx) ==
618 InnerLoopPreheader &&
619 !OuterLoop->isLoopInvariant(I)) {
620 return false;
621 }
622 }
623 }
624
625 // TODO: Handle triangular loops of another form.
626 // e.g. for(int i=0;i<N;i++)
627 // for(int j=0;j<i;j++)
628 // or,
629 // for(int i=0;i<N;i++)
630 // for(int j=0;j*i<N;j++)
631 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
632 BranchInst *InnerLoopLatchBI =
633 dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
634 if (!InnerLoopLatchBI->isConditional())
635 return false;
636 if (CmpInst *InnerLoopCmp =
637 dyn_cast<CmpInst>(InnerLoopLatchBI->getCondition())) {
638 Value *Op0 = InnerLoopCmp->getOperand(0);
639 Value *Op1 = InnerLoopCmp->getOperand(1);
640
641 // LHS and RHS of the inner loop exit condition, e.g.,
642 // in "for(int j=0;j<i;j++)", LHS is j and RHS is i.
643 Value *Left = nullptr;
644 Value *Right = nullptr;
645
646 // Check if V only involves inner loop induction variable.
647 // Return true if V is InnerInduction, or a cast from
648 // InnerInduction, or a binary operator that involves
649 // InnerInduction and a constant.
650 std::function<bool(Value *)> IsPathToInnerIndVar;
651 IsPathToInnerIndVar = [this, &IsPathToInnerIndVar](const Value *V) -> bool {
652 if (llvm::is_contained(InnerLoopInductions, V))
653 return true;
654 if (isa<Constant>(V))
655 return true;
656 const Instruction *I = dyn_cast<Instruction>(V);
657 if (!I)
658 return false;
659 if (isa<CastInst>(I))
660 return IsPathToInnerIndVar(I->getOperand(0));
661 if (isa<BinaryOperator>(I))
662 return IsPathToInnerIndVar(I->getOperand(0)) &&
663 IsPathToInnerIndVar(I->getOperand(1));
664 return false;
665 };
666
667 // In case of multiple inner loop indvars, it is okay if LHS and RHS
668 // are both inner indvar related variables.
669 if (IsPathToInnerIndVar(Op0) && IsPathToInnerIndVar(Op1))
670 return true;
671
672 // Otherwise we check if the cmp instruction compares an inner indvar
673 // related variable (Left) with a outer loop invariant (Right).
674 if (IsPathToInnerIndVar(Op0) && !isa<Constant>(Op0)) {
675 Left = Op0;
676 Right = Op1;
677 } else if (IsPathToInnerIndVar(Op1) && !isa<Constant>(Op1)) {
678 Left = Op1;
679 Right = Op0;
680 }
681
682 if (Left == nullptr)
683 return false;
684
685 const SCEV *S = SE->getSCEV(Right);
686 if (!SE->isLoopInvariant(S, OuterLoop))
687 return false;
688 }
689
690 return true;
691 }
692
693 // If SV is a LCSSA PHI node with a single incoming value, return the incoming
694 // value.
followLCSSA(Value * SV)695 static Value *followLCSSA(Value *SV) {
696 PHINode *PHI = dyn_cast<PHINode>(SV);
697 if (!PHI)
698 return SV;
699
700 if (PHI->getNumIncomingValues() != 1)
701 return SV;
702 return followLCSSA(PHI->getIncomingValue(0));
703 }
704
705 // Check V's users to see if it is involved in a reduction in L.
findInnerReductionPhi(Loop * L,Value * V)706 static PHINode *findInnerReductionPhi(Loop *L, Value *V) {
707 // Reduction variables cannot be constants.
708 if (isa<Constant>(V))
709 return nullptr;
710
711 for (Value *User : V->users()) {
712 if (PHINode *PHI = dyn_cast<PHINode>(User)) {
713 if (PHI->getNumIncomingValues() == 1)
714 continue;
715 RecurrenceDescriptor RD;
716 if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD)) {
717 // Detect floating point reduction only when it can be reordered.
718 if (RD.getExactFPMathInst() != nullptr)
719 return nullptr;
720 return PHI;
721 }
722 return nullptr;
723 }
724 }
725
726 return nullptr;
727 }
728
findInductionAndReductions(Loop * L,SmallVector<PHINode *,8> & Inductions,Loop * InnerLoop)729 bool LoopInterchangeLegality::findInductionAndReductions(
730 Loop *L, SmallVector<PHINode *, 8> &Inductions, Loop *InnerLoop) {
731 if (!L->getLoopLatch() || !L->getLoopPredecessor())
732 return false;
733 for (PHINode &PHI : L->getHeader()->phis()) {
734 InductionDescriptor ID;
735 if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID))
736 Inductions.push_back(&PHI);
737 else {
738 // PHIs in inner loops need to be part of a reduction in the outer loop,
739 // discovered when checking the PHIs of the outer loop earlier.
740 if (!InnerLoop) {
741 if (!OuterInnerReductions.count(&PHI)) {
742 LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions "
743 "across the outer loop.\n");
744 return false;
745 }
746 } else {
747 assert(PHI.getNumIncomingValues() == 2 &&
748 "Phis in loop header should have exactly 2 incoming values");
749 // Check if we have a PHI node in the outer loop that has a reduction
750 // result from the inner loop as an incoming value.
751 Value *V = followLCSSA(PHI.getIncomingValueForBlock(L->getLoopLatch()));
752 PHINode *InnerRedPhi = findInnerReductionPhi(InnerLoop, V);
753 if (!InnerRedPhi ||
754 !llvm::is_contained(InnerRedPhi->incoming_values(), &PHI)) {
755 LLVM_DEBUG(
756 dbgs()
757 << "Failed to recognize PHI as an induction or reduction.\n");
758 return false;
759 }
760 OuterInnerReductions.insert(&PHI);
761 OuterInnerReductions.insert(InnerRedPhi);
762 }
763 }
764 }
765 return true;
766 }
767
768 // This function indicates the current limitations in the transform as a result
769 // of which we do not proceed.
currentLimitations()770 bool LoopInterchangeLegality::currentLimitations() {
771 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
772
773 // transform currently expects the loop latches to also be the exiting
774 // blocks.
775 if (InnerLoop->getExitingBlock() != InnerLoopLatch ||
776 OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() ||
777 !isa<BranchInst>(InnerLoopLatch->getTerminator()) ||
778 !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) {
779 LLVM_DEBUG(
780 dbgs() << "Loops where the latch is not the exiting block are not"
781 << " supported currently.\n");
782 ORE->emit([&]() {
783 return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch",
784 OuterLoop->getStartLoc(),
785 OuterLoop->getHeader())
786 << "Loops where the latch is not the exiting block cannot be"
787 " interchange currently.";
788 });
789 return true;
790 }
791
792 SmallVector<PHINode *, 8> Inductions;
793 if (!findInductionAndReductions(OuterLoop, Inductions, InnerLoop)) {
794 LLVM_DEBUG(
795 dbgs() << "Only outer loops with induction or reduction PHI nodes "
796 << "are supported currently.\n");
797 ORE->emit([&]() {
798 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter",
799 OuterLoop->getStartLoc(),
800 OuterLoop->getHeader())
801 << "Only outer loops with induction or reduction PHI nodes can be"
802 " interchanged currently.";
803 });
804 return true;
805 }
806
807 Inductions.clear();
808 // For multi-level loop nests, make sure that all phi nodes for inner loops
809 // at all levels can be recognized as a induction or reduction phi. Bail out
810 // if a phi node at a certain nesting level cannot be properly recognized.
811 Loop *CurLevelLoop = OuterLoop;
812 while (!CurLevelLoop->getSubLoops().empty()) {
813 // We already made sure that the loop nest is tightly nested.
814 CurLevelLoop = CurLevelLoop->getSubLoops().front();
815 if (!findInductionAndReductions(CurLevelLoop, Inductions, nullptr)) {
816 LLVM_DEBUG(
817 dbgs() << "Only inner loops with induction or reduction PHI nodes "
818 << "are supported currently.\n");
819 ORE->emit([&]() {
820 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner",
821 CurLevelLoop->getStartLoc(),
822 CurLevelLoop->getHeader())
823 << "Only inner loops with induction or reduction PHI nodes can be"
824 " interchange currently.";
825 });
826 return true;
827 }
828 }
829
830 // TODO: Triangular loops are not handled for now.
831 if (!isLoopStructureUnderstood()) {
832 LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n");
833 ORE->emit([&]() {
834 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner",
835 InnerLoop->getStartLoc(),
836 InnerLoop->getHeader())
837 << "Inner loop structure not understood currently.";
838 });
839 return true;
840 }
841
842 return false;
843 }
844
findInductions(Loop * L,SmallVectorImpl<PHINode * > & Inductions)845 bool LoopInterchangeLegality::findInductions(
846 Loop *L, SmallVectorImpl<PHINode *> &Inductions) {
847 for (PHINode &PHI : L->getHeader()->phis()) {
848 InductionDescriptor ID;
849 if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID))
850 Inductions.push_back(&PHI);
851 }
852 return !Inductions.empty();
853 }
854
855 // We currently only support LCSSA PHI nodes in the inner loop exit, if their
856 // users are either reduction PHIs or PHIs outside the outer loop (which means
857 // the we are only interested in the final value after the loop).
858 static bool
areInnerLoopExitPHIsSupported(Loop * InnerL,Loop * OuterL,SmallPtrSetImpl<PHINode * > & Reductions)859 areInnerLoopExitPHIsSupported(Loop *InnerL, Loop *OuterL,
860 SmallPtrSetImpl<PHINode *> &Reductions) {
861 BasicBlock *InnerExit = OuterL->getUniqueExitBlock();
862 for (PHINode &PHI : InnerExit->phis()) {
863 // Reduction lcssa phi will have only 1 incoming block that from loop latch.
864 if (PHI.getNumIncomingValues() > 1)
865 return false;
866 if (any_of(PHI.users(), [&Reductions, OuterL](User *U) {
867 PHINode *PN = dyn_cast<PHINode>(U);
868 return !PN ||
869 (!Reductions.count(PN) && OuterL->contains(PN->getParent()));
870 })) {
871 return false;
872 }
873 }
874 return true;
875 }
876
877 // We currently support LCSSA PHI nodes in the outer loop exit, if their
878 // incoming values do not come from the outer loop latch or if the
879 // outer loop latch has a single predecessor. In that case, the value will
880 // be available if both the inner and outer loop conditions are true, which
881 // will still be true after interchanging. If we have multiple predecessor,
882 // that may not be the case, e.g. because the outer loop latch may be executed
883 // if the inner loop is not executed.
areOuterLoopExitPHIsSupported(Loop * OuterLoop,Loop * InnerLoop)884 static bool areOuterLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) {
885 BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock();
886 for (PHINode &PHI : LoopNestExit->phis()) {
887 for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) {
888 Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i));
889 if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch())
890 continue;
891
892 // The incoming value is defined in the outer loop latch. Currently we
893 // only support that in case the outer loop latch has a single predecessor.
894 // This guarantees that the outer loop latch is executed if and only if
895 // the inner loop is executed (because tightlyNested() guarantees that the
896 // outer loop header only branches to the inner loop or the outer loop
897 // latch).
898 // FIXME: We could weaken this logic and allow multiple predecessors,
899 // if the values are produced outside the loop latch. We would need
900 // additional logic to update the PHI nodes in the exit block as
901 // well.
902 if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr)
903 return false;
904 }
905 }
906 return true;
907 }
908
909 // In case of multi-level nested loops, it may occur that lcssa phis exist in
910 // the latch of InnerLoop, i.e., when defs of the incoming values are further
911 // inside the loopnest. Sometimes those incoming values are not available
912 // after interchange, since the original inner latch will become the new outer
913 // latch which may have predecessor paths that do not include those incoming
914 // values.
915 // TODO: Handle transformation of lcssa phis in the InnerLoop latch in case of
916 // multi-level loop nests.
areInnerLoopLatchPHIsSupported(Loop * OuterLoop,Loop * InnerLoop)917 static bool areInnerLoopLatchPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) {
918 if (InnerLoop->getSubLoops().empty())
919 return true;
920 // If the original outer latch has only one predecessor, then values defined
921 // further inside the looploop, e.g., in the innermost loop, will be available
922 // at the new outer latch after interchange.
923 if (OuterLoop->getLoopLatch()->getUniquePredecessor() != nullptr)
924 return true;
925
926 // The outer latch has more than one predecessors, i.e., the inner
927 // exit and the inner header.
928 // PHI nodes in the inner latch are lcssa phis where the incoming values
929 // are defined further inside the loopnest. Check if those phis are used
930 // in the original inner latch. If that is the case then bail out since
931 // those incoming values may not be available at the new outer latch.
932 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
933 for (PHINode &PHI : InnerLoopLatch->phis()) {
934 for (auto *U : PHI.users()) {
935 Instruction *UI = cast<Instruction>(U);
936 if (InnerLoopLatch == UI->getParent())
937 return false;
938 }
939 }
940 return true;
941 }
942
canInterchangeLoops(unsigned InnerLoopId,unsigned OuterLoopId,CharMatrix & DepMatrix)943 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId,
944 unsigned OuterLoopId,
945 CharMatrix &DepMatrix) {
946 if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) {
947 LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId
948 << " and OuterLoopId = " << OuterLoopId
949 << " due to dependence\n");
950 ORE->emit([&]() {
951 return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence",
952 InnerLoop->getStartLoc(),
953 InnerLoop->getHeader())
954 << "Cannot interchange loops due to dependences.";
955 });
956 return false;
957 }
958 // Check if outer and inner loop contain legal instructions only.
959 for (auto *BB : OuterLoop->blocks())
960 for (Instruction &I : BB->instructionsWithoutDebug())
961 if (CallInst *CI = dyn_cast<CallInst>(&I)) {
962 // readnone functions do not prevent interchanging.
963 if (CI->onlyWritesMemory())
964 continue;
965 LLVM_DEBUG(
966 dbgs() << "Loops with call instructions cannot be interchanged "
967 << "safely.");
968 ORE->emit([&]() {
969 return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst",
970 CI->getDebugLoc(),
971 CI->getParent())
972 << "Cannot interchange loops due to call instruction.";
973 });
974
975 return false;
976 }
977
978 if (!findInductions(InnerLoop, InnerLoopInductions)) {
979 LLVM_DEBUG(dbgs() << "Could not find inner loop induction variables.\n");
980 return false;
981 }
982
983 if (!areInnerLoopLatchPHIsSupported(OuterLoop, InnerLoop)) {
984 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop latch.\n");
985 ORE->emit([&]() {
986 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedInnerLatchPHI",
987 InnerLoop->getStartLoc(),
988 InnerLoop->getHeader())
989 << "Cannot interchange loops because unsupported PHI nodes found "
990 "in inner loop latch.";
991 });
992 return false;
993 }
994
995 // TODO: The loops could not be interchanged due to current limitations in the
996 // transform module.
997 if (currentLimitations()) {
998 LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n");
999 return false;
1000 }
1001
1002 // Check if the loops are tightly nested.
1003 if (!tightlyNested(OuterLoop, InnerLoop)) {
1004 LLVM_DEBUG(dbgs() << "Loops not tightly nested\n");
1005 ORE->emit([&]() {
1006 return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested",
1007 InnerLoop->getStartLoc(),
1008 InnerLoop->getHeader())
1009 << "Cannot interchange loops because they are not tightly "
1010 "nested.";
1011 });
1012 return false;
1013 }
1014
1015 if (!areInnerLoopExitPHIsSupported(OuterLoop, InnerLoop,
1016 OuterInnerReductions)) {
1017 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop exit.\n");
1018 ORE->emit([&]() {
1019 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
1020 InnerLoop->getStartLoc(),
1021 InnerLoop->getHeader())
1022 << "Found unsupported PHI node in loop exit.";
1023 });
1024 return false;
1025 }
1026
1027 if (!areOuterLoopExitPHIsSupported(OuterLoop, InnerLoop)) {
1028 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n");
1029 ORE->emit([&]() {
1030 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
1031 OuterLoop->getStartLoc(),
1032 OuterLoop->getHeader())
1033 << "Found unsupported PHI node in loop exit.";
1034 });
1035 return false;
1036 }
1037
1038 return true;
1039 }
1040
getInstrOrderCost()1041 int LoopInterchangeProfitability::getInstrOrderCost() {
1042 unsigned GoodOrder, BadOrder;
1043 BadOrder = GoodOrder = 0;
1044 for (BasicBlock *BB : InnerLoop->blocks()) {
1045 for (Instruction &Ins : *BB) {
1046 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) {
1047 unsigned NumOp = GEP->getNumOperands();
1048 bool FoundInnerInduction = false;
1049 bool FoundOuterInduction = false;
1050 for (unsigned i = 0; i < NumOp; ++i) {
1051 // Skip operands that are not SCEV-able.
1052 if (!SE->isSCEVable(GEP->getOperand(i)->getType()))
1053 continue;
1054
1055 const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i));
1056 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal);
1057 if (!AR)
1058 continue;
1059
1060 // If we find the inner induction after an outer induction e.g.
1061 // for(int i=0;i<N;i++)
1062 // for(int j=0;j<N;j++)
1063 // A[i][j] = A[i-1][j-1]+k;
1064 // then it is a good order.
1065 if (AR->getLoop() == InnerLoop) {
1066 // We found an InnerLoop induction after OuterLoop induction. It is
1067 // a good order.
1068 FoundInnerInduction = true;
1069 if (FoundOuterInduction) {
1070 GoodOrder++;
1071 break;
1072 }
1073 }
1074 // If we find the outer induction after an inner induction e.g.
1075 // for(int i=0;i<N;i++)
1076 // for(int j=0;j<N;j++)
1077 // A[j][i] = A[j-1][i-1]+k;
1078 // then it is a bad order.
1079 if (AR->getLoop() == OuterLoop) {
1080 // We found an OuterLoop induction after InnerLoop induction. It is
1081 // a bad order.
1082 FoundOuterInduction = true;
1083 if (FoundInnerInduction) {
1084 BadOrder++;
1085 break;
1086 }
1087 }
1088 }
1089 }
1090 }
1091 }
1092 return GoodOrder - BadOrder;
1093 }
1094
1095 std::optional<bool>
isProfitablePerLoopCacheAnalysis(const DenseMap<const Loop *,unsigned> & CostMap,std::unique_ptr<CacheCost> & CC)1096 LoopInterchangeProfitability::isProfitablePerLoopCacheAnalysis(
1097 const DenseMap<const Loop *, unsigned> &CostMap,
1098 std::unique_ptr<CacheCost> &CC) {
1099 // This is the new cost model returned from loop cache analysis.
1100 // A smaller index means the loop should be placed an outer loop, and vice
1101 // versa.
1102 if (CostMap.contains(InnerLoop) && CostMap.contains(OuterLoop)) {
1103 unsigned InnerIndex = 0, OuterIndex = 0;
1104 InnerIndex = CostMap.find(InnerLoop)->second;
1105 OuterIndex = CostMap.find(OuterLoop)->second;
1106 LLVM_DEBUG(dbgs() << "InnerIndex = " << InnerIndex
1107 << ", OuterIndex = " << OuterIndex << "\n");
1108 if (InnerIndex < OuterIndex)
1109 return std::optional<bool>(true);
1110 assert(InnerIndex != OuterIndex && "CostMap should assign unique "
1111 "numbers to each loop");
1112 if (CC->getLoopCost(*OuterLoop) == CC->getLoopCost(*InnerLoop))
1113 return std::nullopt;
1114 return std::optional<bool>(false);
1115 }
1116 return std::nullopt;
1117 }
1118
1119 std::optional<bool>
isProfitablePerInstrOrderCost()1120 LoopInterchangeProfitability::isProfitablePerInstrOrderCost() {
1121 // Legacy cost model: this is rough cost estimation algorithm. It counts the
1122 // good and bad order of induction variables in the instruction and allows
1123 // reordering if number of bad orders is more than good.
1124 int Cost = getInstrOrderCost();
1125 LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n");
1126 if (Cost < 0 && Cost < LoopInterchangeCostThreshold)
1127 return std::optional<bool>(true);
1128
1129 return std::nullopt;
1130 }
1131
isProfitableForVectorization(unsigned InnerLoopId,unsigned OuterLoopId,CharMatrix & DepMatrix)1132 std::optional<bool> LoopInterchangeProfitability::isProfitableForVectorization(
1133 unsigned InnerLoopId, unsigned OuterLoopId, CharMatrix &DepMatrix) {
1134 for (auto &Row : DepMatrix) {
1135 // If the inner loop is loop independent or doesn't carry any dependency
1136 // it is not profitable to move this to outer position, since we are
1137 // likely able to do inner loop vectorization already.
1138 if (Row[InnerLoopId] == 'I' || Row[InnerLoopId] == '=')
1139 return std::optional<bool>(false);
1140
1141 // If the outer loop is not loop independent it is not profitable to move
1142 // this to inner position, since doing so would not enable inner loop
1143 // parallelism.
1144 if (Row[OuterLoopId] != 'I' && Row[OuterLoopId] != '=')
1145 return std::optional<bool>(false);
1146 }
1147 // If inner loop has dependence and outer loop is loop independent then it
1148 // is/ profitable to interchange to enable inner loop parallelism.
1149 // If there are no dependences, interchanging will not improve anything.
1150 return std::optional<bool>(!DepMatrix.empty());
1151 }
1152
isProfitable(const Loop * InnerLoop,const Loop * OuterLoop,unsigned InnerLoopId,unsigned OuterLoopId,CharMatrix & DepMatrix,const DenseMap<const Loop *,unsigned> & CostMap,std::unique_ptr<CacheCost> & CC)1153 bool LoopInterchangeProfitability::isProfitable(
1154 const Loop *InnerLoop, const Loop *OuterLoop, unsigned InnerLoopId,
1155 unsigned OuterLoopId, CharMatrix &DepMatrix,
1156 const DenseMap<const Loop *, unsigned> &CostMap,
1157 std::unique_ptr<CacheCost> &CC) {
1158 // isProfitable() is structured to avoid endless loop interchange.
1159 // If loop cache analysis could decide the profitability then,
1160 // profitability check will stop and return the analysis result.
1161 // If cache analysis failed to analyze the loopnest (e.g.,
1162 // due to delinearization issues) then only check whether it is
1163 // profitable for InstrOrderCost. Likewise, if InstrOrderCost failed to
1164 // analysis the profitability then only, isProfitableForVectorization
1165 // will decide.
1166 std::optional<bool> shouldInterchange =
1167 isProfitablePerLoopCacheAnalysis(CostMap, CC);
1168 if (!shouldInterchange.has_value()) {
1169 shouldInterchange = isProfitablePerInstrOrderCost();
1170 if (!shouldInterchange.has_value())
1171 shouldInterchange =
1172 isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix);
1173 }
1174 if (!shouldInterchange.has_value()) {
1175 ORE->emit([&]() {
1176 return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable",
1177 InnerLoop->getStartLoc(),
1178 InnerLoop->getHeader())
1179 << "Insufficient information to calculate the cost of loop for "
1180 "interchange.";
1181 });
1182 return false;
1183 } else if (!shouldInterchange.value()) {
1184 ORE->emit([&]() {
1185 return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable",
1186 InnerLoop->getStartLoc(),
1187 InnerLoop->getHeader())
1188 << "Interchanging loops is not considered to improve cache "
1189 "locality nor vectorization.";
1190 });
1191 return false;
1192 }
1193 return true;
1194 }
1195
removeChildLoop(Loop * OuterLoop,Loop * InnerLoop)1196 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop,
1197 Loop *InnerLoop) {
1198 for (Loop *L : *OuterLoop)
1199 if (L == InnerLoop) {
1200 OuterLoop->removeChildLoop(L);
1201 return;
1202 }
1203 llvm_unreachable("Couldn't find loop");
1204 }
1205
1206 /// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the
1207 /// new inner and outer loop after interchanging: NewInner is the original
1208 /// outer loop and NewOuter is the original inner loop.
1209 ///
1210 /// Before interchanging, we have the following structure
1211 /// Outer preheader
1212 // Outer header
1213 // Inner preheader
1214 // Inner header
1215 // Inner body
1216 // Inner latch
1217 // outer bbs
1218 // Outer latch
1219 //
1220 // After interchanging:
1221 // Inner preheader
1222 // Inner header
1223 // Outer preheader
1224 // Outer header
1225 // Inner body
1226 // outer bbs
1227 // Outer latch
1228 // Inner latch
restructureLoops(Loop * NewInner,Loop * NewOuter,BasicBlock * OrigInnerPreHeader,BasicBlock * OrigOuterPreHeader)1229 void LoopInterchangeTransform::restructureLoops(
1230 Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader,
1231 BasicBlock *OrigOuterPreHeader) {
1232 Loop *OuterLoopParent = OuterLoop->getParentLoop();
1233 // The original inner loop preheader moves from the new inner loop to
1234 // the parent loop, if there is one.
1235 NewInner->removeBlockFromLoop(OrigInnerPreHeader);
1236 LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent);
1237
1238 // Switch the loop levels.
1239 if (OuterLoopParent) {
1240 // Remove the loop from its parent loop.
1241 removeChildLoop(OuterLoopParent, NewInner);
1242 removeChildLoop(NewInner, NewOuter);
1243 OuterLoopParent->addChildLoop(NewOuter);
1244 } else {
1245 removeChildLoop(NewInner, NewOuter);
1246 LI->changeTopLevelLoop(NewInner, NewOuter);
1247 }
1248 while (!NewOuter->isInnermost())
1249 NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin()));
1250 NewOuter->addChildLoop(NewInner);
1251
1252 // BBs from the original inner loop.
1253 SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks());
1254
1255 // Add BBs from the original outer loop to the original inner loop (excluding
1256 // BBs already in inner loop)
1257 for (BasicBlock *BB : NewInner->blocks())
1258 if (LI->getLoopFor(BB) == NewInner)
1259 NewOuter->addBlockEntry(BB);
1260
1261 // Now remove inner loop header and latch from the new inner loop and move
1262 // other BBs (the loop body) to the new inner loop.
1263 BasicBlock *OuterHeader = NewOuter->getHeader();
1264 BasicBlock *OuterLatch = NewOuter->getLoopLatch();
1265 for (BasicBlock *BB : OrigInnerBBs) {
1266 // Nothing will change for BBs in child loops.
1267 if (LI->getLoopFor(BB) != NewOuter)
1268 continue;
1269 // Remove the new outer loop header and latch from the new inner loop.
1270 if (BB == OuterHeader || BB == OuterLatch)
1271 NewInner->removeBlockFromLoop(BB);
1272 else
1273 LI->changeLoopFor(BB, NewInner);
1274 }
1275
1276 // The preheader of the original outer loop becomes part of the new
1277 // outer loop.
1278 NewOuter->addBlockEntry(OrigOuterPreHeader);
1279 LI->changeLoopFor(OrigOuterPreHeader, NewOuter);
1280
1281 // Tell SE that we move the loops around.
1282 SE->forgetLoop(NewOuter);
1283 }
1284
transform()1285 bool LoopInterchangeTransform::transform() {
1286 bool Transformed = false;
1287
1288 if (InnerLoop->getSubLoops().empty()) {
1289 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1290 LLVM_DEBUG(dbgs() << "Splitting the inner loop latch\n");
1291 auto &InductionPHIs = LIL.getInnerLoopInductions();
1292 if (InductionPHIs.empty()) {
1293 LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n");
1294 return false;
1295 }
1296
1297 SmallVector<Instruction *, 8> InnerIndexVarList;
1298 for (PHINode *CurInductionPHI : InductionPHIs) {
1299 if (CurInductionPHI->getIncomingBlock(0) == InnerLoopPreHeader)
1300 InnerIndexVarList.push_back(
1301 dyn_cast<Instruction>(CurInductionPHI->getIncomingValue(1)));
1302 else
1303 InnerIndexVarList.push_back(
1304 dyn_cast<Instruction>(CurInductionPHI->getIncomingValue(0)));
1305 }
1306
1307 // Create a new latch block for the inner loop. We split at the
1308 // current latch's terminator and then move the condition and all
1309 // operands that are not either loop-invariant or the induction PHI into the
1310 // new latch block.
1311 BasicBlock *NewLatch =
1312 SplitBlock(InnerLoop->getLoopLatch(),
1313 InnerLoop->getLoopLatch()->getTerminator(), DT, LI);
1314
1315 SmallSetVector<Instruction *, 4> WorkList;
1316 unsigned i = 0;
1317 auto MoveInstructions = [&i, &WorkList, this, &InductionPHIs, NewLatch]() {
1318 for (; i < WorkList.size(); i++) {
1319 // Duplicate instruction and move it the new latch. Update uses that
1320 // have been moved.
1321 Instruction *NewI = WorkList[i]->clone();
1322 NewI->insertBefore(NewLatch->getFirstNonPHI());
1323 assert(!NewI->mayHaveSideEffects() &&
1324 "Moving instructions with side-effects may change behavior of "
1325 "the loop nest!");
1326 for (Use &U : llvm::make_early_inc_range(WorkList[i]->uses())) {
1327 Instruction *UserI = cast<Instruction>(U.getUser());
1328 if (!InnerLoop->contains(UserI->getParent()) ||
1329 UserI->getParent() == NewLatch ||
1330 llvm::is_contained(InductionPHIs, UserI))
1331 U.set(NewI);
1332 }
1333 // Add operands of moved instruction to the worklist, except if they are
1334 // outside the inner loop or are the induction PHI.
1335 for (Value *Op : WorkList[i]->operands()) {
1336 Instruction *OpI = dyn_cast<Instruction>(Op);
1337 if (!OpI ||
1338 this->LI->getLoopFor(OpI->getParent()) != this->InnerLoop ||
1339 llvm::is_contained(InductionPHIs, OpI))
1340 continue;
1341 WorkList.insert(OpI);
1342 }
1343 }
1344 };
1345
1346 // FIXME: Should we interchange when we have a constant condition?
1347 Instruction *CondI = dyn_cast<Instruction>(
1348 cast<BranchInst>(InnerLoop->getLoopLatch()->getTerminator())
1349 ->getCondition());
1350 if (CondI)
1351 WorkList.insert(CondI);
1352 MoveInstructions();
1353 for (Instruction *InnerIndexVar : InnerIndexVarList)
1354 WorkList.insert(cast<Instruction>(InnerIndexVar));
1355 MoveInstructions();
1356 }
1357
1358 // Ensure the inner loop phi nodes have a separate basic block.
1359 BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1360 if (InnerLoopHeader->getFirstNonPHI() != InnerLoopHeader->getTerminator()) {
1361 SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI);
1362 LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n");
1363 }
1364
1365 // Instructions in the original inner loop preheader may depend on values
1366 // defined in the outer loop header. Move them there, because the original
1367 // inner loop preheader will become the entry into the interchanged loop nest.
1368 // Currently we move all instructions and rely on LICM to move invariant
1369 // instructions outside the loop nest.
1370 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1371 BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1372 if (InnerLoopPreHeader != OuterLoopHeader) {
1373 SmallPtrSet<Instruction *, 4> NeedsMoving;
1374 for (Instruction &I :
1375 make_early_inc_range(make_range(InnerLoopPreHeader->begin(),
1376 std::prev(InnerLoopPreHeader->end()))))
1377 I.moveBeforePreserving(OuterLoopHeader->getTerminator());
1378 }
1379
1380 Transformed |= adjustLoopLinks();
1381 if (!Transformed) {
1382 LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n");
1383 return false;
1384 }
1385
1386 return true;
1387 }
1388
1389 /// \brief Move all instructions except the terminator from FromBB right before
1390 /// InsertBefore
moveBBContents(BasicBlock * FromBB,Instruction * InsertBefore)1391 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) {
1392 BasicBlock *ToBB = InsertBefore->getParent();
1393
1394 ToBB->splice(InsertBefore->getIterator(), FromBB, FromBB->begin(),
1395 FromBB->getTerminator()->getIterator());
1396 }
1397
1398 /// Swap instructions between \p BB1 and \p BB2 but keep terminators intact.
swapBBContents(BasicBlock * BB1,BasicBlock * BB2)1399 static void swapBBContents(BasicBlock *BB1, BasicBlock *BB2) {
1400 // Save all non-terminator instructions of BB1 into TempInstrs and unlink them
1401 // from BB1 afterwards.
1402 auto Iter = map_range(*BB1, [](Instruction &I) { return &I; });
1403 SmallVector<Instruction *, 4> TempInstrs(Iter.begin(), std::prev(Iter.end()));
1404 for (Instruction *I : TempInstrs)
1405 I->removeFromParent();
1406
1407 // Move instructions from BB2 to BB1.
1408 moveBBContents(BB2, BB1->getTerminator());
1409
1410 // Move instructions from TempInstrs to BB2.
1411 for (Instruction *I : TempInstrs)
1412 I->insertBefore(BB2->getTerminator());
1413 }
1414
1415 // Update BI to jump to NewBB instead of OldBB. Records updates to the
1416 // dominator tree in DTUpdates. If \p MustUpdateOnce is true, assert that
1417 // \p OldBB is exactly once in BI's successor list.
updateSuccessor(BranchInst * BI,BasicBlock * OldBB,BasicBlock * NewBB,std::vector<DominatorTree::UpdateType> & DTUpdates,bool MustUpdateOnce=true)1418 static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB,
1419 BasicBlock *NewBB,
1420 std::vector<DominatorTree::UpdateType> &DTUpdates,
1421 bool MustUpdateOnce = true) {
1422 assert((!MustUpdateOnce ||
1423 llvm::count_if(successors(BI),
1424 [OldBB](BasicBlock *BB) {
1425 return BB == OldBB;
1426 }) == 1) && "BI must jump to OldBB exactly once.");
1427 bool Changed = false;
1428 for (Use &Op : BI->operands())
1429 if (Op == OldBB) {
1430 Op.set(NewBB);
1431 Changed = true;
1432 }
1433
1434 if (Changed) {
1435 DTUpdates.push_back(
1436 {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB});
1437 DTUpdates.push_back(
1438 {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB});
1439 }
1440 assert(Changed && "Expected a successor to be updated");
1441 }
1442
1443 // Move Lcssa PHIs to the right place.
moveLCSSAPhis(BasicBlock * InnerExit,BasicBlock * InnerHeader,BasicBlock * InnerLatch,BasicBlock * OuterHeader,BasicBlock * OuterLatch,BasicBlock * OuterExit,Loop * InnerLoop,LoopInfo * LI)1444 static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerHeader,
1445 BasicBlock *InnerLatch, BasicBlock *OuterHeader,
1446 BasicBlock *OuterLatch, BasicBlock *OuterExit,
1447 Loop *InnerLoop, LoopInfo *LI) {
1448
1449 // Deal with LCSSA PHI nodes in the exit block of the inner loop, that are
1450 // defined either in the header or latch. Those blocks will become header and
1451 // latch of the new outer loop, and the only possible users can PHI nodes
1452 // in the exit block of the loop nest or the outer loop header (reduction
1453 // PHIs, in that case, the incoming value must be defined in the inner loop
1454 // header). We can just substitute the user with the incoming value and remove
1455 // the PHI.
1456 for (PHINode &P : make_early_inc_range(InnerExit->phis())) {
1457 assert(P.getNumIncomingValues() == 1 &&
1458 "Only loops with a single exit are supported!");
1459
1460 // Incoming values are guaranteed be instructions currently.
1461 auto IncI = cast<Instruction>(P.getIncomingValueForBlock(InnerLatch));
1462 // In case of multi-level nested loops, follow LCSSA to find the incoming
1463 // value defined from the innermost loop.
1464 auto IncIInnerMost = cast<Instruction>(followLCSSA(IncI));
1465 // Skip phis with incoming values from the inner loop body, excluding the
1466 // header and latch.
1467 if (IncIInnerMost->getParent() != InnerLatch &&
1468 IncIInnerMost->getParent() != InnerHeader)
1469 continue;
1470
1471 assert(all_of(P.users(),
1472 [OuterHeader, OuterExit, IncI, InnerHeader](User *U) {
1473 return (cast<PHINode>(U)->getParent() == OuterHeader &&
1474 IncI->getParent() == InnerHeader) ||
1475 cast<PHINode>(U)->getParent() == OuterExit;
1476 }) &&
1477 "Can only replace phis iff the uses are in the loop nest exit or "
1478 "the incoming value is defined in the inner header (it will "
1479 "dominate all loop blocks after interchanging)");
1480 P.replaceAllUsesWith(IncI);
1481 P.eraseFromParent();
1482 }
1483
1484 SmallVector<PHINode *, 8> LcssaInnerExit;
1485 for (PHINode &P : InnerExit->phis())
1486 LcssaInnerExit.push_back(&P);
1487
1488 SmallVector<PHINode *, 8> LcssaInnerLatch;
1489 for (PHINode &P : InnerLatch->phis())
1490 LcssaInnerLatch.push_back(&P);
1491
1492 // Lcssa PHIs for values used outside the inner loop are in InnerExit.
1493 // If a PHI node has users outside of InnerExit, it has a use outside the
1494 // interchanged loop and we have to preserve it. We move these to
1495 // InnerLatch, which will become the new exit block for the innermost
1496 // loop after interchanging.
1497 for (PHINode *P : LcssaInnerExit)
1498 P->moveBefore(InnerLatch->getFirstNonPHI());
1499
1500 // If the inner loop latch contains LCSSA PHIs, those come from a child loop
1501 // and we have to move them to the new inner latch.
1502 for (PHINode *P : LcssaInnerLatch)
1503 P->moveBefore(InnerExit->getFirstNonPHI());
1504
1505 // Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have
1506 // incoming values defined in the outer loop, we have to add a new PHI
1507 // in the inner loop latch, which became the exit block of the outer loop,
1508 // after interchanging.
1509 if (OuterExit) {
1510 for (PHINode &P : OuterExit->phis()) {
1511 if (P.getNumIncomingValues() != 1)
1512 continue;
1513 // Skip Phis with incoming values defined in the inner loop. Those should
1514 // already have been updated.
1515 auto I = dyn_cast<Instruction>(P.getIncomingValue(0));
1516 if (!I || LI->getLoopFor(I->getParent()) == InnerLoop)
1517 continue;
1518
1519 PHINode *NewPhi = dyn_cast<PHINode>(P.clone());
1520 NewPhi->setIncomingValue(0, P.getIncomingValue(0));
1521 NewPhi->setIncomingBlock(0, OuterLatch);
1522 // We might have incoming edges from other BBs, i.e., the original outer
1523 // header.
1524 for (auto *Pred : predecessors(InnerLatch)) {
1525 if (Pred == OuterLatch)
1526 continue;
1527 NewPhi->addIncoming(P.getIncomingValue(0), Pred);
1528 }
1529 NewPhi->insertBefore(InnerLatch->getFirstNonPHI());
1530 P.setIncomingValue(0, NewPhi);
1531 }
1532 }
1533
1534 // Now adjust the incoming blocks for the LCSSA PHIs.
1535 // For PHIs moved from Inner's exit block, we need to replace Inner's latch
1536 // with the new latch.
1537 InnerLatch->replacePhiUsesWith(InnerLatch, OuterLatch);
1538 }
1539
adjustLoopBranches()1540 bool LoopInterchangeTransform::adjustLoopBranches() {
1541 LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n");
1542 std::vector<DominatorTree::UpdateType> DTUpdates;
1543
1544 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1545 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1546
1547 assert(OuterLoopPreHeader != OuterLoop->getHeader() &&
1548 InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader &&
1549 InnerLoopPreHeader && "Guaranteed by loop-simplify form");
1550 // Ensure that both preheaders do not contain PHI nodes and have single
1551 // predecessors. This allows us to move them easily. We use
1552 // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing
1553 // preheaders do not satisfy those conditions.
1554 if (isa<PHINode>(OuterLoopPreHeader->begin()) ||
1555 !OuterLoopPreHeader->getUniquePredecessor())
1556 OuterLoopPreHeader =
1557 InsertPreheaderForLoop(OuterLoop, DT, LI, nullptr, true);
1558 if (InnerLoopPreHeader == OuterLoop->getHeader())
1559 InnerLoopPreHeader =
1560 InsertPreheaderForLoop(InnerLoop, DT, LI, nullptr, true);
1561
1562 // Adjust the loop preheader
1563 BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1564 BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1565 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
1566 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
1567 BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor();
1568 BasicBlock *InnerLoopLatchPredecessor =
1569 InnerLoopLatch->getUniquePredecessor();
1570 BasicBlock *InnerLoopLatchSuccessor;
1571 BasicBlock *OuterLoopLatchSuccessor;
1572
1573 BranchInst *OuterLoopLatchBI =
1574 dyn_cast<BranchInst>(OuterLoopLatch->getTerminator());
1575 BranchInst *InnerLoopLatchBI =
1576 dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
1577 BranchInst *OuterLoopHeaderBI =
1578 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
1579 BranchInst *InnerLoopHeaderBI =
1580 dyn_cast<BranchInst>(InnerLoopHeader->getTerminator());
1581
1582 if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor ||
1583 !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI ||
1584 !InnerLoopHeaderBI)
1585 return false;
1586
1587 BranchInst *InnerLoopLatchPredecessorBI =
1588 dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator());
1589 BranchInst *OuterLoopPredecessorBI =
1590 dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator());
1591
1592 if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI)
1593 return false;
1594 BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor();
1595 if (!InnerLoopHeaderSuccessor)
1596 return false;
1597
1598 // Adjust Loop Preheader and headers.
1599 // The branches in the outer loop predecessor and the outer loop header can
1600 // be unconditional branches or conditional branches with duplicates. Consider
1601 // this when updating the successors.
1602 updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader,
1603 InnerLoopPreHeader, DTUpdates, /*MustUpdateOnce=*/false);
1604 // The outer loop header might or might not branch to the outer latch.
1605 // We are guaranteed to branch to the inner loop preheader.
1606 if (llvm::is_contained(OuterLoopHeaderBI->successors(), OuterLoopLatch)) {
1607 // In this case the outerLoopHeader should branch to the InnerLoopLatch.
1608 updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, InnerLoopLatch,
1609 DTUpdates,
1610 /*MustUpdateOnce=*/false);
1611 }
1612 updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader,
1613 InnerLoopHeaderSuccessor, DTUpdates,
1614 /*MustUpdateOnce=*/false);
1615
1616 // Adjust reduction PHI's now that the incoming block has changed.
1617 InnerLoopHeaderSuccessor->replacePhiUsesWith(InnerLoopHeader,
1618 OuterLoopHeader);
1619
1620 updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor,
1621 OuterLoopPreHeader, DTUpdates);
1622
1623 // -------------Adjust loop latches-----------
1624 if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader)
1625 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1);
1626 else
1627 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0);
1628
1629 updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch,
1630 InnerLoopLatchSuccessor, DTUpdates);
1631
1632 if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader)
1633 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1);
1634 else
1635 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0);
1636
1637 updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor,
1638 OuterLoopLatchSuccessor, DTUpdates);
1639 updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch,
1640 DTUpdates);
1641
1642 DT->applyUpdates(DTUpdates);
1643 restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader,
1644 OuterLoopPreHeader);
1645
1646 moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopHeader, InnerLoopLatch,
1647 OuterLoopHeader, OuterLoopLatch, InnerLoop->getExitBlock(),
1648 InnerLoop, LI);
1649 // For PHIs in the exit block of the outer loop, outer's latch has been
1650 // replaced by Inners'.
1651 OuterLoopLatchSuccessor->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);
1652
1653 auto &OuterInnerReductions = LIL.getOuterInnerReductions();
1654 // Now update the reduction PHIs in the inner and outer loop headers.
1655 SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs;
1656 for (PHINode &PHI : InnerLoopHeader->phis())
1657 if (OuterInnerReductions.contains(&PHI))
1658 InnerLoopPHIs.push_back(&PHI);
1659
1660 for (PHINode &PHI : OuterLoopHeader->phis())
1661 if (OuterInnerReductions.contains(&PHI))
1662 OuterLoopPHIs.push_back(&PHI);
1663
1664 // Now move the remaining reduction PHIs from outer to inner loop header and
1665 // vice versa. The PHI nodes must be part of a reduction across the inner and
1666 // outer loop and all the remains to do is and updating the incoming blocks.
1667 for (PHINode *PHI : OuterLoopPHIs) {
1668 LLVM_DEBUG(dbgs() << "Outer loop reduction PHIs:\n"; PHI->dump(););
1669 PHI->moveBefore(InnerLoopHeader->getFirstNonPHI());
1670 assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node");
1671 }
1672 for (PHINode *PHI : InnerLoopPHIs) {
1673 LLVM_DEBUG(dbgs() << "Inner loop reduction PHIs:\n"; PHI->dump(););
1674 PHI->moveBefore(OuterLoopHeader->getFirstNonPHI());
1675 assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node");
1676 }
1677
1678 // Update the incoming blocks for moved PHI nodes.
1679 OuterLoopHeader->replacePhiUsesWith(InnerLoopPreHeader, OuterLoopPreHeader);
1680 OuterLoopHeader->replacePhiUsesWith(InnerLoopLatch, OuterLoopLatch);
1681 InnerLoopHeader->replacePhiUsesWith(OuterLoopPreHeader, InnerLoopPreHeader);
1682 InnerLoopHeader->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);
1683
1684 // Values defined in the outer loop header could be used in the inner loop
1685 // latch. In that case, we need to create LCSSA phis for them, because after
1686 // interchanging they will be defined in the new inner loop and used in the
1687 // new outer loop.
1688 SmallVector<Instruction *, 4> MayNeedLCSSAPhis;
1689 for (Instruction &I :
1690 make_range(OuterLoopHeader->begin(), std::prev(OuterLoopHeader->end())))
1691 MayNeedLCSSAPhis.push_back(&I);
1692 formLCSSAForInstructions(MayNeedLCSSAPhis, *DT, *LI, SE);
1693
1694 return true;
1695 }
1696
adjustLoopLinks()1697 bool LoopInterchangeTransform::adjustLoopLinks() {
1698 // Adjust all branches in the inner and outer loop.
1699 bool Changed = adjustLoopBranches();
1700 if (Changed) {
1701 // We have interchanged the preheaders so we need to interchange the data in
1702 // the preheaders as well. This is because the content of the inner
1703 // preheader was previously executed inside the outer loop.
1704 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1705 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1706 swapBBContents(OuterLoopPreHeader, InnerLoopPreHeader);
1707 }
1708 return Changed;
1709 }
1710
run(LoopNest & LN,LoopAnalysisManager & AM,LoopStandardAnalysisResults & AR,LPMUpdater & U)1711 PreservedAnalyses LoopInterchangePass::run(LoopNest &LN,
1712 LoopAnalysisManager &AM,
1713 LoopStandardAnalysisResults &AR,
1714 LPMUpdater &U) {
1715 Function &F = *LN.getParent();
1716
1717 DependenceInfo DI(&F, &AR.AA, &AR.SE, &AR.LI);
1718 std::unique_ptr<CacheCost> CC =
1719 CacheCost::getCacheCost(LN.getOutermostLoop(), AR, DI);
1720 OptimizationRemarkEmitter ORE(&F);
1721 if (!LoopInterchange(&AR.SE, &AR.LI, &DI, &AR.DT, CC, &ORE).run(LN))
1722 return PreservedAnalyses::all();
1723 U.markLoopNestChanged(true);
1724 return getLoopPassPreservedAnalyses();
1725 }
1726