1 //===------------ JITLink.h - JIT linker functionality ----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Contains generic JIT-linker types.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #ifndef LLVM_EXECUTIONENGINE_JITLINK_JITLINK_H
14 #define LLVM_EXECUTIONENGINE_JITLINK_JITLINK_H
15
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/MapVector.h"
19 #include "llvm/ADT/FunctionExtras.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ExecutionEngine/JITLink/JITLinkMemoryManager.h"
22 #include "llvm/ExecutionEngine/JITSymbol.h"
23 #include "llvm/ExecutionEngine/Orc/Core.h"
24 #include "llvm/ExecutionEngine/Orc/Shared/ExecutorAddress.h"
25 #include "llvm/ExecutionEngine/Orc/Shared/ExecutorSymbolDef.h"
26 #include "llvm/ExecutionEngine/Orc/Shared/MemoryFlags.h"
27 #include "llvm/Support/Allocator.h"
28 #include "llvm/Support/BinaryStreamReader.h"
29 #include "llvm/Support/BinaryStreamWriter.h"
30 #include "llvm/Support/Endian.h"
31 #include "llvm/Support/Error.h"
32 #include "llvm/Support/FormatVariadic.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Support/MemoryBuffer.h"
35 #include "llvm/TargetParser/SubtargetFeature.h"
36 #include "llvm/TargetParser/Triple.h"
37 #include <optional>
38
39 #include <map>
40 #include <string>
41 #include <system_error>
42
43 namespace llvm {
44 namespace jitlink {
45
46 class LinkGraph;
47 class Symbol;
48 class Section;
49
50 /// Base class for errors originating in JIT linker, e.g. missing relocation
51 /// support.
52 class JITLinkError : public ErrorInfo<JITLinkError> {
53 public:
54 static char ID;
55
JITLinkError(Twine ErrMsg)56 JITLinkError(Twine ErrMsg) : ErrMsg(ErrMsg.str()) {}
57
58 void log(raw_ostream &OS) const override;
getErrorMessage()59 const std::string &getErrorMessage() const { return ErrMsg; }
60 std::error_code convertToErrorCode() const override;
61
62 private:
63 std::string ErrMsg;
64 };
65
66 /// Represents fixups and constraints in the LinkGraph.
67 class Edge {
68 public:
69 using Kind = uint8_t;
70
71 enum GenericEdgeKind : Kind {
72 Invalid, // Invalid edge value.
73 FirstKeepAlive, // Keeps target alive. Offset/addend zero.
74 KeepAlive = FirstKeepAlive, // Tag first edge kind that preserves liveness.
75 FirstRelocation // First architecture specific relocation.
76 };
77
78 using OffsetT = uint32_t;
79 using AddendT = int64_t;
80
Edge(Kind K,OffsetT Offset,Symbol & Target,AddendT Addend)81 Edge(Kind K, OffsetT Offset, Symbol &Target, AddendT Addend)
82 : Target(&Target), Offset(Offset), Addend(Addend), K(K) {}
83
getOffset()84 OffsetT getOffset() const { return Offset; }
setOffset(OffsetT Offset)85 void setOffset(OffsetT Offset) { this->Offset = Offset; }
getKind()86 Kind getKind() const { return K; }
setKind(Kind K)87 void setKind(Kind K) { this->K = K; }
isRelocation()88 bool isRelocation() const { return K >= FirstRelocation; }
getRelocation()89 Kind getRelocation() const {
90 assert(isRelocation() && "Not a relocation edge");
91 return K - FirstRelocation;
92 }
isKeepAlive()93 bool isKeepAlive() const { return K >= FirstKeepAlive; }
getTarget()94 Symbol &getTarget() const { return *Target; }
setTarget(Symbol & Target)95 void setTarget(Symbol &Target) { this->Target = &Target; }
getAddend()96 AddendT getAddend() const { return Addend; }
setAddend(AddendT Addend)97 void setAddend(AddendT Addend) { this->Addend = Addend; }
98
99 private:
100 Symbol *Target = nullptr;
101 OffsetT Offset = 0;
102 AddendT Addend = 0;
103 Kind K = 0;
104 };
105
106 /// Returns the string name of the given generic edge kind, or "unknown"
107 /// otherwise. Useful for debugging.
108 const char *getGenericEdgeKindName(Edge::Kind K);
109
110 /// Base class for Addressable entities (externals, absolutes, blocks).
111 class Addressable {
112 friend class LinkGraph;
113
114 protected:
Addressable(orc::ExecutorAddr Address,bool IsDefined)115 Addressable(orc::ExecutorAddr Address, bool IsDefined)
116 : Address(Address), IsDefined(IsDefined), IsAbsolute(false) {}
117
Addressable(orc::ExecutorAddr Address)118 Addressable(orc::ExecutorAddr Address)
119 : Address(Address), IsDefined(false), IsAbsolute(true) {
120 assert(!(IsDefined && IsAbsolute) &&
121 "Block cannot be both defined and absolute");
122 }
123
124 public:
125 Addressable(const Addressable &) = delete;
126 Addressable &operator=(const Addressable &) = default;
127 Addressable(Addressable &&) = delete;
128 Addressable &operator=(Addressable &&) = default;
129
getAddress()130 orc::ExecutorAddr getAddress() const { return Address; }
setAddress(orc::ExecutorAddr Address)131 void setAddress(orc::ExecutorAddr Address) { this->Address = Address; }
132
133 /// Returns true if this is a defined addressable, in which case you
134 /// can downcast this to a Block.
isDefined()135 bool isDefined() const { return static_cast<bool>(IsDefined); }
isAbsolute()136 bool isAbsolute() const { return static_cast<bool>(IsAbsolute); }
137
138 private:
setAbsolute(bool IsAbsolute)139 void setAbsolute(bool IsAbsolute) {
140 assert(!IsDefined && "Cannot change the Absolute flag on a defined block");
141 this->IsAbsolute = IsAbsolute;
142 }
143
144 orc::ExecutorAddr Address;
145 uint64_t IsDefined : 1;
146 uint64_t IsAbsolute : 1;
147
148 protected:
149 // bitfields for Block, allocated here to improve packing.
150 uint64_t ContentMutable : 1;
151 uint64_t P2Align : 5;
152 uint64_t AlignmentOffset : 56;
153 };
154
155 using SectionOrdinal = unsigned;
156
157 /// An Addressable with content and edges.
158 class Block : public Addressable {
159 friend class LinkGraph;
160
161 private:
162 /// Create a zero-fill defined addressable.
Block(Section & Parent,orc::ExecutorAddrDiff Size,orc::ExecutorAddr Address,uint64_t Alignment,uint64_t AlignmentOffset)163 Block(Section &Parent, orc::ExecutorAddrDiff Size, orc::ExecutorAddr Address,
164 uint64_t Alignment, uint64_t AlignmentOffset)
165 : Addressable(Address, true), Parent(&Parent), Size(Size) {
166 assert(isPowerOf2_64(Alignment) && "Alignment must be power of 2");
167 assert(AlignmentOffset < Alignment &&
168 "Alignment offset cannot exceed alignment");
169 assert(AlignmentOffset <= MaxAlignmentOffset &&
170 "Alignment offset exceeds maximum");
171 ContentMutable = false;
172 P2Align = Alignment ? llvm::countr_zero(Alignment) : 0;
173 this->AlignmentOffset = AlignmentOffset;
174 }
175
176 /// Create a defined addressable for the given content.
177 /// The Content is assumed to be non-writable, and will be copied when
178 /// mutations are required.
Block(Section & Parent,ArrayRef<char> Content,orc::ExecutorAddr Address,uint64_t Alignment,uint64_t AlignmentOffset)179 Block(Section &Parent, ArrayRef<char> Content, orc::ExecutorAddr Address,
180 uint64_t Alignment, uint64_t AlignmentOffset)
181 : Addressable(Address, true), Parent(&Parent), Data(Content.data()),
182 Size(Content.size()) {
183 assert(isPowerOf2_64(Alignment) && "Alignment must be power of 2");
184 assert(AlignmentOffset < Alignment &&
185 "Alignment offset cannot exceed alignment");
186 assert(AlignmentOffset <= MaxAlignmentOffset &&
187 "Alignment offset exceeds maximum");
188 ContentMutable = false;
189 P2Align = Alignment ? llvm::countr_zero(Alignment) : 0;
190 this->AlignmentOffset = AlignmentOffset;
191 }
192
193 /// Create a defined addressable for the given content.
194 /// The content is assumed to be writable, and the caller is responsible
195 /// for ensuring that it lives for the duration of the Block's lifetime.
196 /// The standard way to achieve this is to allocate it on the Graph's
197 /// allocator.
Block(Section & Parent,MutableArrayRef<char> Content,orc::ExecutorAddr Address,uint64_t Alignment,uint64_t AlignmentOffset)198 Block(Section &Parent, MutableArrayRef<char> Content,
199 orc::ExecutorAddr Address, uint64_t Alignment, uint64_t AlignmentOffset)
200 : Addressable(Address, true), Parent(&Parent), Data(Content.data()),
201 Size(Content.size()) {
202 assert(isPowerOf2_64(Alignment) && "Alignment must be power of 2");
203 assert(AlignmentOffset < Alignment &&
204 "Alignment offset cannot exceed alignment");
205 assert(AlignmentOffset <= MaxAlignmentOffset &&
206 "Alignment offset exceeds maximum");
207 ContentMutable = true;
208 P2Align = Alignment ? llvm::countr_zero(Alignment) : 0;
209 this->AlignmentOffset = AlignmentOffset;
210 }
211
212 public:
213 using EdgeVector = std::vector<Edge>;
214 using edge_iterator = EdgeVector::iterator;
215 using const_edge_iterator = EdgeVector::const_iterator;
216
217 Block(const Block &) = delete;
218 Block &operator=(const Block &) = delete;
219 Block(Block &&) = delete;
220 Block &operator=(Block &&) = delete;
221
222 /// Return the parent section for this block.
getSection()223 Section &getSection() const { return *Parent; }
224
225 /// Returns true if this is a zero-fill block.
226 ///
227 /// If true, getSize is callable but getContent is not (the content is
228 /// defined to be a sequence of zero bytes of length Size).
isZeroFill()229 bool isZeroFill() const { return !Data; }
230
231 /// Returns the size of this defined addressable.
getSize()232 size_t getSize() const { return Size; }
233
234 /// Returns the address range of this defined addressable.
getRange()235 orc::ExecutorAddrRange getRange() const {
236 return orc::ExecutorAddrRange(getAddress(), getSize());
237 }
238
239 /// Get the content for this block. Block must not be a zero-fill block.
getContent()240 ArrayRef<char> getContent() const {
241 assert(Data && "Block does not contain content");
242 return ArrayRef<char>(Data, Size);
243 }
244
245 /// Set the content for this block.
246 /// Caller is responsible for ensuring the underlying bytes are not
247 /// deallocated while pointed to by this block.
setContent(ArrayRef<char> Content)248 void setContent(ArrayRef<char> Content) {
249 assert(Content.data() && "Setting null content");
250 Data = Content.data();
251 Size = Content.size();
252 ContentMutable = false;
253 }
254
255 /// Get mutable content for this block.
256 ///
257 /// If this Block's content is not already mutable this will trigger a copy
258 /// of the existing immutable content to a new, mutable buffer allocated using
259 /// LinkGraph::allocateContent.
260 MutableArrayRef<char> getMutableContent(LinkGraph &G);
261
262 /// Get mutable content for this block.
263 ///
264 /// This block's content must already be mutable. It is a programmatic error
265 /// to call this on a block with immutable content -- consider using
266 /// getMutableContent instead.
getAlreadyMutableContent()267 MutableArrayRef<char> getAlreadyMutableContent() {
268 assert(Data && "Block does not contain content");
269 assert(ContentMutable && "Content is not mutable");
270 return MutableArrayRef<char>(const_cast<char *>(Data), Size);
271 }
272
273 /// Set mutable content for this block.
274 ///
275 /// The caller is responsible for ensuring that the memory pointed to by
276 /// MutableContent is not deallocated while pointed to by this block.
setMutableContent(MutableArrayRef<char> MutableContent)277 void setMutableContent(MutableArrayRef<char> MutableContent) {
278 assert(MutableContent.data() && "Setting null content");
279 Data = MutableContent.data();
280 Size = MutableContent.size();
281 ContentMutable = true;
282 }
283
284 /// Returns true if this block's content is mutable.
285 ///
286 /// This is primarily useful for asserting that a block is already in a
287 /// mutable state prior to modifying the content. E.g. when applying
288 /// fixups we expect the block to already be mutable as it should have been
289 /// copied to working memory.
isContentMutable()290 bool isContentMutable() const { return ContentMutable; }
291
292 /// Get the alignment for this content.
getAlignment()293 uint64_t getAlignment() const { return 1ull << P2Align; }
294
295 /// Set the alignment for this content.
setAlignment(uint64_t Alignment)296 void setAlignment(uint64_t Alignment) {
297 assert(isPowerOf2_64(Alignment) && "Alignment must be a power of two");
298 P2Align = Alignment ? llvm::countr_zero(Alignment) : 0;
299 }
300
301 /// Get the alignment offset for this content.
getAlignmentOffset()302 uint64_t getAlignmentOffset() const { return AlignmentOffset; }
303
304 /// Set the alignment offset for this content.
setAlignmentOffset(uint64_t AlignmentOffset)305 void setAlignmentOffset(uint64_t AlignmentOffset) {
306 assert(AlignmentOffset < (1ull << P2Align) &&
307 "Alignment offset can't exceed alignment");
308 this->AlignmentOffset = AlignmentOffset;
309 }
310
311 /// Add an edge to this block.
addEdge(Edge::Kind K,Edge::OffsetT Offset,Symbol & Target,Edge::AddendT Addend)312 void addEdge(Edge::Kind K, Edge::OffsetT Offset, Symbol &Target,
313 Edge::AddendT Addend) {
314 assert((K == Edge::KeepAlive || !isZeroFill()) &&
315 "Adding edge to zero-fill block?");
316 Edges.push_back(Edge(K, Offset, Target, Addend));
317 }
318
319 /// Add an edge by copying an existing one. This is typically used when
320 /// moving edges between blocks.
addEdge(const Edge & E)321 void addEdge(const Edge &E) { Edges.push_back(E); }
322
323 /// Return the list of edges attached to this content.
edges()324 iterator_range<edge_iterator> edges() {
325 return make_range(Edges.begin(), Edges.end());
326 }
327
328 /// Returns the list of edges attached to this content.
edges()329 iterator_range<const_edge_iterator> edges() const {
330 return make_range(Edges.begin(), Edges.end());
331 }
332
333 /// Return the size of the edges list.
edges_size()334 size_t edges_size() const { return Edges.size(); }
335
336 /// Returns true if the list of edges is empty.
edges_empty()337 bool edges_empty() const { return Edges.empty(); }
338
339 /// Remove the edge pointed to by the given iterator.
340 /// Returns an iterator to the new next element.
removeEdge(edge_iterator I)341 edge_iterator removeEdge(edge_iterator I) { return Edges.erase(I); }
342
343 /// Returns the address of the fixup for the given edge, which is equal to
344 /// this block's address plus the edge's offset.
getFixupAddress(const Edge & E)345 orc::ExecutorAddr getFixupAddress(const Edge &E) const {
346 return getAddress() + E.getOffset();
347 }
348
349 private:
350 static constexpr uint64_t MaxAlignmentOffset = (1ULL << 56) - 1;
351
setSection(Section & Parent)352 void setSection(Section &Parent) { this->Parent = &Parent; }
353
354 Section *Parent;
355 const char *Data = nullptr;
356 size_t Size = 0;
357 std::vector<Edge> Edges;
358 };
359
360 // Align an address to conform with block alignment requirements.
alignToBlock(uint64_t Addr,const Block & B)361 inline uint64_t alignToBlock(uint64_t Addr, const Block &B) {
362 uint64_t Delta = (B.getAlignmentOffset() - Addr) % B.getAlignment();
363 return Addr + Delta;
364 }
365
366 // Align a orc::ExecutorAddr to conform with block alignment requirements.
alignToBlock(orc::ExecutorAddr Addr,const Block & B)367 inline orc::ExecutorAddr alignToBlock(orc::ExecutorAddr Addr, const Block &B) {
368 return orc::ExecutorAddr(alignToBlock(Addr.getValue(), B));
369 }
370
371 // Returns true if the given blocks contains exactly one valid c-string.
372 // Zero-fill blocks of size 1 count as valid empty strings. Content blocks
373 // must end with a zero, and contain no zeros before the end.
374 bool isCStringBlock(Block &B);
375
376 /// Describes symbol linkage. This can be used to resolve definition clashes.
377 enum class Linkage : uint8_t {
378 Strong,
379 Weak,
380 };
381
382 /// Holds target-specific properties for a symbol.
383 using TargetFlagsType = uint8_t;
384
385 /// For errors and debugging output.
386 const char *getLinkageName(Linkage L);
387
388 /// Defines the scope in which this symbol should be visible:
389 /// Default -- Visible in the public interface of the linkage unit.
390 /// Hidden -- Visible within the linkage unit, but not exported from it.
391 /// Local -- Visible only within the LinkGraph.
392 enum class Scope : uint8_t {
393 Default,
394 Hidden,
395 Local
396 };
397
398 /// For debugging output.
399 const char *getScopeName(Scope S);
400
401 raw_ostream &operator<<(raw_ostream &OS, const Block &B);
402
403 /// Symbol representation.
404 ///
405 /// Symbols represent locations within Addressable objects.
406 /// They can be either Named or Anonymous.
407 /// Anonymous symbols have neither linkage nor visibility, and must point at
408 /// ContentBlocks.
409 /// Named symbols may be in one of four states:
410 /// - Null: Default initialized. Assignable, but otherwise unusable.
411 /// - Defined: Has both linkage and visibility and points to a ContentBlock
412 /// - Common: Has both linkage and visibility, points to a null Addressable.
413 /// - External: Has neither linkage nor visibility, points to an external
414 /// Addressable.
415 ///
416 class Symbol {
417 friend class LinkGraph;
418
419 private:
Symbol(Addressable & Base,orc::ExecutorAddrDiff Offset,StringRef Name,orc::ExecutorAddrDiff Size,Linkage L,Scope S,bool IsLive,bool IsCallable)420 Symbol(Addressable &Base, orc::ExecutorAddrDiff Offset, StringRef Name,
421 orc::ExecutorAddrDiff Size, Linkage L, Scope S, bool IsLive,
422 bool IsCallable)
423 : Name(Name), Base(&Base), Offset(Offset), WeakRef(0), Size(Size) {
424 assert(Offset <= MaxOffset && "Offset out of range");
425 setLinkage(L);
426 setScope(S);
427 setLive(IsLive);
428 setCallable(IsCallable);
429 setTargetFlags(TargetFlagsType{});
430 }
431
constructExternal(BumpPtrAllocator & Allocator,Addressable & Base,StringRef Name,orc::ExecutorAddrDiff Size,Linkage L,bool WeaklyReferenced)432 static Symbol &constructExternal(BumpPtrAllocator &Allocator,
433 Addressable &Base, StringRef Name,
434 orc::ExecutorAddrDiff Size, Linkage L,
435 bool WeaklyReferenced) {
436 assert(!Base.isDefined() &&
437 "Cannot create external symbol from defined block");
438 assert(!Name.empty() && "External symbol name cannot be empty");
439 auto *Sym = Allocator.Allocate<Symbol>();
440 new (Sym) Symbol(Base, 0, Name, Size, L, Scope::Default, false, false);
441 Sym->setWeaklyReferenced(WeaklyReferenced);
442 return *Sym;
443 }
444
constructAbsolute(BumpPtrAllocator & Allocator,Addressable & Base,StringRef Name,orc::ExecutorAddrDiff Size,Linkage L,Scope S,bool IsLive)445 static Symbol &constructAbsolute(BumpPtrAllocator &Allocator,
446 Addressable &Base, StringRef Name,
447 orc::ExecutorAddrDiff Size, Linkage L,
448 Scope S, bool IsLive) {
449 assert(!Base.isDefined() &&
450 "Cannot create absolute symbol from a defined block");
451 auto *Sym = Allocator.Allocate<Symbol>();
452 new (Sym) Symbol(Base, 0, Name, Size, L, S, IsLive, false);
453 return *Sym;
454 }
455
constructAnonDef(BumpPtrAllocator & Allocator,Block & Base,orc::ExecutorAddrDiff Offset,orc::ExecutorAddrDiff Size,bool IsCallable,bool IsLive)456 static Symbol &constructAnonDef(BumpPtrAllocator &Allocator, Block &Base,
457 orc::ExecutorAddrDiff Offset,
458 orc::ExecutorAddrDiff Size, bool IsCallable,
459 bool IsLive) {
460 assert((Offset + Size) <= Base.getSize() &&
461 "Symbol extends past end of block");
462 auto *Sym = Allocator.Allocate<Symbol>();
463 new (Sym) Symbol(Base, Offset, StringRef(), Size, Linkage::Strong,
464 Scope::Local, IsLive, IsCallable);
465 return *Sym;
466 }
467
constructNamedDef(BumpPtrAllocator & Allocator,Block & Base,orc::ExecutorAddrDiff Offset,StringRef Name,orc::ExecutorAddrDiff Size,Linkage L,Scope S,bool IsLive,bool IsCallable)468 static Symbol &constructNamedDef(BumpPtrAllocator &Allocator, Block &Base,
469 orc::ExecutorAddrDiff Offset, StringRef Name,
470 orc::ExecutorAddrDiff Size, Linkage L,
471 Scope S, bool IsLive, bool IsCallable) {
472 assert((Offset + Size) <= Base.getSize() &&
473 "Symbol extends past end of block");
474 assert(!Name.empty() && "Name cannot be empty");
475 auto *Sym = Allocator.Allocate<Symbol>();
476 new (Sym) Symbol(Base, Offset, Name, Size, L, S, IsLive, IsCallable);
477 return *Sym;
478 }
479
480 public:
481 /// Create a null Symbol. This allows Symbols to be default initialized for
482 /// use in containers (e.g. as map values). Null symbols are only useful for
483 /// assigning to.
484 Symbol() = default;
485
486 // Symbols are not movable or copyable.
487 Symbol(const Symbol &) = delete;
488 Symbol &operator=(const Symbol &) = delete;
489 Symbol(Symbol &&) = delete;
490 Symbol &operator=(Symbol &&) = delete;
491
492 /// Returns true if this symbol has a name.
hasName()493 bool hasName() const { return !Name.empty(); }
494
495 /// Returns the name of this symbol (empty if the symbol is anonymous).
getName()496 StringRef getName() const {
497 assert((!Name.empty() || getScope() == Scope::Local) &&
498 "Anonymous symbol has non-local scope");
499 return Name;
500 }
501
502 /// Rename this symbol. The client is responsible for updating scope and
503 /// linkage if this name-change requires it.
setName(StringRef Name)504 void setName(StringRef Name) { this->Name = Name; }
505
506 /// Returns true if this Symbol has content (potentially) defined within this
507 /// object file (i.e. is anything but an external or absolute symbol).
isDefined()508 bool isDefined() const {
509 assert(Base && "Attempt to access null symbol");
510 return Base->isDefined();
511 }
512
513 /// Returns true if this symbol is live (i.e. should be treated as a root for
514 /// dead stripping).
isLive()515 bool isLive() const {
516 assert(Base && "Attempting to access null symbol");
517 return IsLive;
518 }
519
520 /// Set this symbol's live bit.
setLive(bool IsLive)521 void setLive(bool IsLive) { this->IsLive = IsLive; }
522
523 /// Returns true is this symbol is callable.
isCallable()524 bool isCallable() const { return IsCallable; }
525
526 /// Set this symbol's callable bit.
setCallable(bool IsCallable)527 void setCallable(bool IsCallable) { this->IsCallable = IsCallable; }
528
529 /// Returns true if the underlying addressable is an unresolved external.
isExternal()530 bool isExternal() const {
531 assert(Base && "Attempt to access null symbol");
532 return !Base->isDefined() && !Base->isAbsolute();
533 }
534
535 /// Returns true if the underlying addressable is an absolute symbol.
isAbsolute()536 bool isAbsolute() const {
537 assert(Base && "Attempt to access null symbol");
538 return Base->isAbsolute();
539 }
540
541 /// Return the addressable that this symbol points to.
getAddressable()542 Addressable &getAddressable() {
543 assert(Base && "Cannot get underlying addressable for null symbol");
544 return *Base;
545 }
546
547 /// Return the addressable that this symbol points to.
getAddressable()548 const Addressable &getAddressable() const {
549 assert(Base && "Cannot get underlying addressable for null symbol");
550 return *Base;
551 }
552
553 /// Return the Block for this Symbol (Symbol must be defined).
getBlock()554 Block &getBlock() {
555 assert(Base && "Cannot get block for null symbol");
556 assert(Base->isDefined() && "Not a defined symbol");
557 return static_cast<Block &>(*Base);
558 }
559
560 /// Return the Block for this Symbol (Symbol must be defined).
getBlock()561 const Block &getBlock() const {
562 assert(Base && "Cannot get block for null symbol");
563 assert(Base->isDefined() && "Not a defined symbol");
564 return static_cast<const Block &>(*Base);
565 }
566
567 /// Returns the offset for this symbol within the underlying addressable.
getOffset()568 orc::ExecutorAddrDiff getOffset() const { return Offset; }
569
setOffset(orc::ExecutorAddrDiff NewOffset)570 void setOffset(orc::ExecutorAddrDiff NewOffset) {
571 assert(NewOffset <= getBlock().getSize() && "Offset out of range");
572 Offset = NewOffset;
573 }
574
575 /// Returns the address of this symbol.
getAddress()576 orc::ExecutorAddr getAddress() const { return Base->getAddress() + Offset; }
577
578 /// Returns the size of this symbol.
getSize()579 orc::ExecutorAddrDiff getSize() const { return Size; }
580
581 /// Set the size of this symbol.
setSize(orc::ExecutorAddrDiff Size)582 void setSize(orc::ExecutorAddrDiff Size) {
583 assert(Base && "Cannot set size for null Symbol");
584 assert((Size == 0 || Base->isDefined()) &&
585 "Non-zero size can only be set for defined symbols");
586 assert((Offset + Size <= static_cast<const Block &>(*Base).getSize()) &&
587 "Symbol size cannot extend past the end of its containing block");
588 this->Size = Size;
589 }
590
591 /// Returns the address range of this symbol.
getRange()592 orc::ExecutorAddrRange getRange() const {
593 return orc::ExecutorAddrRange(getAddress(), getSize());
594 }
595
596 /// Returns true if this symbol is backed by a zero-fill block.
597 /// This method may only be called on defined symbols.
isSymbolZeroFill()598 bool isSymbolZeroFill() const { return getBlock().isZeroFill(); }
599
600 /// Returns the content in the underlying block covered by this symbol.
601 /// This method may only be called on defined non-zero-fill symbols.
getSymbolContent()602 ArrayRef<char> getSymbolContent() const {
603 return getBlock().getContent().slice(Offset, Size);
604 }
605
606 /// Get the linkage for this Symbol.
getLinkage()607 Linkage getLinkage() const { return static_cast<Linkage>(L); }
608
609 /// Set the linkage for this Symbol.
setLinkage(Linkage L)610 void setLinkage(Linkage L) {
611 assert((L == Linkage::Strong || (!Base->isAbsolute() && !Name.empty())) &&
612 "Linkage can only be applied to defined named symbols");
613 this->L = static_cast<uint8_t>(L);
614 }
615
616 /// Get the visibility for this Symbol.
getScope()617 Scope getScope() const { return static_cast<Scope>(S); }
618
619 /// Set the visibility for this Symbol.
setScope(Scope S)620 void setScope(Scope S) {
621 assert((!Name.empty() || S == Scope::Local) &&
622 "Can not set anonymous symbol to non-local scope");
623 assert((S != Scope::Local || Base->isDefined() || Base->isAbsolute()) &&
624 "Invalid visibility for symbol type");
625 this->S = static_cast<uint8_t>(S);
626 }
627
628 /// Get the target flags of this Symbol.
getTargetFlags()629 TargetFlagsType getTargetFlags() const { return TargetFlags; }
630
631 /// Set the target flags for this Symbol.
setTargetFlags(TargetFlagsType Flags)632 void setTargetFlags(TargetFlagsType Flags) {
633 assert(Flags <= 1 && "Add more bits to store more than single flag");
634 TargetFlags = Flags;
635 }
636
637 /// Returns true if this is a weakly referenced external symbol.
638 /// This method may only be called on external symbols.
isWeaklyReferenced()639 bool isWeaklyReferenced() const {
640 assert(isExternal() && "isWeaklyReferenced called on non-external");
641 return WeakRef;
642 }
643
644 /// Set the WeaklyReferenced value for this symbol.
645 /// This method may only be called on external symbols.
setWeaklyReferenced(bool WeakRef)646 void setWeaklyReferenced(bool WeakRef) {
647 assert(isExternal() && "setWeaklyReferenced called on non-external");
648 this->WeakRef = WeakRef;
649 }
650
651 private:
makeExternal(Addressable & A)652 void makeExternal(Addressable &A) {
653 assert(!A.isDefined() && !A.isAbsolute() &&
654 "Attempting to make external with defined or absolute block");
655 Base = &A;
656 Offset = 0;
657 setScope(Scope::Default);
658 IsLive = 0;
659 // note: Size, Linkage and IsCallable fields left unchanged.
660 }
661
makeAbsolute(Addressable & A)662 void makeAbsolute(Addressable &A) {
663 assert(!A.isDefined() && A.isAbsolute() &&
664 "Attempting to make absolute with defined or external block");
665 Base = &A;
666 Offset = 0;
667 }
668
setBlock(Block & B)669 void setBlock(Block &B) { Base = &B; }
670
671 static constexpr uint64_t MaxOffset = (1ULL << 59) - 1;
672
673 // FIXME: A char* or SymbolStringPtr may pack better.
674 StringRef Name;
675 Addressable *Base = nullptr;
676 uint64_t Offset : 57;
677 uint64_t L : 1;
678 uint64_t S : 2;
679 uint64_t IsLive : 1;
680 uint64_t IsCallable : 1;
681 uint64_t WeakRef : 1;
682 uint64_t TargetFlags : 1;
683 size_t Size = 0;
684 };
685
686 raw_ostream &operator<<(raw_ostream &OS, const Symbol &A);
687
688 void printEdge(raw_ostream &OS, const Block &B, const Edge &E,
689 StringRef EdgeKindName);
690
691 /// Represents an object file section.
692 class Section {
693 friend class LinkGraph;
694
695 private:
Section(StringRef Name,orc::MemProt Prot,SectionOrdinal SecOrdinal)696 Section(StringRef Name, orc::MemProt Prot, SectionOrdinal SecOrdinal)
697 : Name(Name), Prot(Prot), SecOrdinal(SecOrdinal) {}
698
699 using SymbolSet = DenseSet<Symbol *>;
700 using BlockSet = DenseSet<Block *>;
701
702 public:
703 using symbol_iterator = SymbolSet::iterator;
704 using const_symbol_iterator = SymbolSet::const_iterator;
705
706 using block_iterator = BlockSet::iterator;
707 using const_block_iterator = BlockSet::const_iterator;
708
709 ~Section();
710
711 // Sections are not movable or copyable.
712 Section(const Section &) = delete;
713 Section &operator=(const Section &) = delete;
714 Section(Section &&) = delete;
715 Section &operator=(Section &&) = delete;
716
717 /// Returns the name of this section.
getName()718 StringRef getName() const { return Name; }
719
720 /// Returns the protection flags for this section.
getMemProt()721 orc::MemProt getMemProt() const { return Prot; }
722
723 /// Set the protection flags for this section.
setMemProt(orc::MemProt Prot)724 void setMemProt(orc::MemProt Prot) { this->Prot = Prot; }
725
726 /// Get the memory lifetime policy for this section.
getMemLifetime()727 orc::MemLifetime getMemLifetime() const { return ML; }
728
729 /// Set the memory lifetime policy for this section.
setMemLifetime(orc::MemLifetime ML)730 void setMemLifetime(orc::MemLifetime ML) { this->ML = ML; }
731
732 /// Returns the ordinal for this section.
getOrdinal()733 SectionOrdinal getOrdinal() const { return SecOrdinal; }
734
735 /// Returns true if this section is empty (contains no blocks or symbols).
empty()736 bool empty() const { return Blocks.empty(); }
737
738 /// Returns an iterator over the blocks defined in this section.
blocks()739 iterator_range<block_iterator> blocks() {
740 return make_range(Blocks.begin(), Blocks.end());
741 }
742
743 /// Returns an iterator over the blocks defined in this section.
blocks()744 iterator_range<const_block_iterator> blocks() const {
745 return make_range(Blocks.begin(), Blocks.end());
746 }
747
748 /// Returns the number of blocks in this section.
blocks_size()749 BlockSet::size_type blocks_size() const { return Blocks.size(); }
750
751 /// Returns an iterator over the symbols defined in this section.
symbols()752 iterator_range<symbol_iterator> symbols() {
753 return make_range(Symbols.begin(), Symbols.end());
754 }
755
756 /// Returns an iterator over the symbols defined in this section.
symbols()757 iterator_range<const_symbol_iterator> symbols() const {
758 return make_range(Symbols.begin(), Symbols.end());
759 }
760
761 /// Return the number of symbols in this section.
symbols_size()762 SymbolSet::size_type symbols_size() const { return Symbols.size(); }
763
764 private:
addSymbol(Symbol & Sym)765 void addSymbol(Symbol &Sym) {
766 assert(!Symbols.count(&Sym) && "Symbol is already in this section");
767 Symbols.insert(&Sym);
768 }
769
removeSymbol(Symbol & Sym)770 void removeSymbol(Symbol &Sym) {
771 assert(Symbols.count(&Sym) && "symbol is not in this section");
772 Symbols.erase(&Sym);
773 }
774
addBlock(Block & B)775 void addBlock(Block &B) {
776 assert(!Blocks.count(&B) && "Block is already in this section");
777 Blocks.insert(&B);
778 }
779
removeBlock(Block & B)780 void removeBlock(Block &B) {
781 assert(Blocks.count(&B) && "Block is not in this section");
782 Blocks.erase(&B);
783 }
784
transferContentTo(Section & DstSection)785 void transferContentTo(Section &DstSection) {
786 if (&DstSection == this)
787 return;
788 for (auto *S : Symbols)
789 DstSection.addSymbol(*S);
790 for (auto *B : Blocks)
791 DstSection.addBlock(*B);
792 Symbols.clear();
793 Blocks.clear();
794 }
795
796 StringRef Name;
797 orc::MemProt Prot;
798 orc::MemLifetime ML = orc::MemLifetime::Standard;
799 SectionOrdinal SecOrdinal = 0;
800 BlockSet Blocks;
801 SymbolSet Symbols;
802 };
803
804 /// Represents a section address range via a pair of Block pointers
805 /// to the first and last Blocks in the section.
806 class SectionRange {
807 public:
808 SectionRange() = default;
SectionRange(const Section & Sec)809 SectionRange(const Section &Sec) {
810 if (Sec.blocks().empty())
811 return;
812 First = Last = *Sec.blocks().begin();
813 for (auto *B : Sec.blocks()) {
814 if (B->getAddress() < First->getAddress())
815 First = B;
816 if (B->getAddress() > Last->getAddress())
817 Last = B;
818 }
819 }
getFirstBlock()820 Block *getFirstBlock() const {
821 assert((!Last || First) && "First can not be null if end is non-null");
822 return First;
823 }
getLastBlock()824 Block *getLastBlock() const {
825 assert((First || !Last) && "Last can not be null if start is non-null");
826 return Last;
827 }
empty()828 bool empty() const {
829 assert((First || !Last) && "Last can not be null if start is non-null");
830 return !First;
831 }
getStart()832 orc::ExecutorAddr getStart() const {
833 return First ? First->getAddress() : orc::ExecutorAddr();
834 }
getEnd()835 orc::ExecutorAddr getEnd() const {
836 return Last ? Last->getAddress() + Last->getSize() : orc::ExecutorAddr();
837 }
getSize()838 orc::ExecutorAddrDiff getSize() const { return getEnd() - getStart(); }
839
getRange()840 orc::ExecutorAddrRange getRange() const {
841 return orc::ExecutorAddrRange(getStart(), getEnd());
842 }
843
844 private:
845 Block *First = nullptr;
846 Block *Last = nullptr;
847 };
848
849 class LinkGraph {
850 private:
851 using SectionMap = MapVector<StringRef, std::unique_ptr<Section>>;
852 using ExternalSymbolMap = StringMap<Symbol *>;
853 using AbsoluteSymbolSet = DenseSet<Symbol *>;
854 using BlockSet = DenseSet<Block *>;
855
856 template <typename... ArgTs>
createAddressable(ArgTs &&...Args)857 Addressable &createAddressable(ArgTs &&... Args) {
858 Addressable *A =
859 reinterpret_cast<Addressable *>(Allocator.Allocate<Addressable>());
860 new (A) Addressable(std::forward<ArgTs>(Args)...);
861 return *A;
862 }
863
destroyAddressable(Addressable & A)864 void destroyAddressable(Addressable &A) {
865 A.~Addressable();
866 Allocator.Deallocate(&A);
867 }
868
createBlock(ArgTs &&...Args)869 template <typename... ArgTs> Block &createBlock(ArgTs &&... Args) {
870 Block *B = reinterpret_cast<Block *>(Allocator.Allocate<Block>());
871 new (B) Block(std::forward<ArgTs>(Args)...);
872 B->getSection().addBlock(*B);
873 return *B;
874 }
875
destroyBlock(Block & B)876 void destroyBlock(Block &B) {
877 B.~Block();
878 Allocator.Deallocate(&B);
879 }
880
destroySymbol(Symbol & S)881 void destroySymbol(Symbol &S) {
882 S.~Symbol();
883 Allocator.Deallocate(&S);
884 }
885
getSectionBlocks(Section & S)886 static iterator_range<Section::block_iterator> getSectionBlocks(Section &S) {
887 return S.blocks();
888 }
889
890 static iterator_range<Section::const_block_iterator>
getSectionConstBlocks(const Section & S)891 getSectionConstBlocks(const Section &S) {
892 return S.blocks();
893 }
894
895 static iterator_range<Section::symbol_iterator>
getSectionSymbols(Section & S)896 getSectionSymbols(Section &S) {
897 return S.symbols();
898 }
899
900 static iterator_range<Section::const_symbol_iterator>
getSectionConstSymbols(const Section & S)901 getSectionConstSymbols(const Section &S) {
902 return S.symbols();
903 }
904
905 struct GetExternalSymbolMapEntryValue {
operatorGetExternalSymbolMapEntryValue906 Symbol *operator()(ExternalSymbolMap::value_type &KV) const {
907 return KV.second;
908 }
909 };
910
911 struct GetSectionMapEntryValue {
operatorGetSectionMapEntryValue912 Section &operator()(SectionMap::value_type &KV) const { return *KV.second; }
913 };
914
915 struct GetSectionMapEntryConstValue {
operatorGetSectionMapEntryConstValue916 const Section &operator()(const SectionMap::value_type &KV) const {
917 return *KV.second;
918 }
919 };
920
921 public:
922 using external_symbol_iterator =
923 mapped_iterator<ExternalSymbolMap::iterator,
924 GetExternalSymbolMapEntryValue>;
925 using absolute_symbol_iterator = AbsoluteSymbolSet::iterator;
926
927 using section_iterator =
928 mapped_iterator<SectionMap::iterator, GetSectionMapEntryValue>;
929 using const_section_iterator =
930 mapped_iterator<SectionMap::const_iterator, GetSectionMapEntryConstValue>;
931
932 template <typename OuterItrT, typename InnerItrT, typename T,
933 iterator_range<InnerItrT> getInnerRange(
934 typename OuterItrT::reference)>
935 class nested_collection_iterator
936 : public iterator_facade_base<
937 nested_collection_iterator<OuterItrT, InnerItrT, T, getInnerRange>,
938 std::forward_iterator_tag, T> {
939 public:
940 nested_collection_iterator() = default;
941
nested_collection_iterator(OuterItrT OuterI,OuterItrT OuterE)942 nested_collection_iterator(OuterItrT OuterI, OuterItrT OuterE)
943 : OuterI(OuterI), OuterE(OuterE),
944 InnerI(getInnerBegin(OuterI, OuterE)) {
945 moveToNonEmptyInnerOrEnd();
946 }
947
948 bool operator==(const nested_collection_iterator &RHS) const {
949 return (OuterI == RHS.OuterI) && (InnerI == RHS.InnerI);
950 }
951
952 T operator*() const {
953 assert(InnerI != getInnerRange(*OuterI).end() && "Dereferencing end?");
954 return *InnerI;
955 }
956
957 nested_collection_iterator operator++() {
958 ++InnerI;
959 moveToNonEmptyInnerOrEnd();
960 return *this;
961 }
962
963 private:
getInnerBegin(OuterItrT OuterI,OuterItrT OuterE)964 static InnerItrT getInnerBegin(OuterItrT OuterI, OuterItrT OuterE) {
965 return OuterI != OuterE ? getInnerRange(*OuterI).begin() : InnerItrT();
966 }
967
moveToNonEmptyInnerOrEnd()968 void moveToNonEmptyInnerOrEnd() {
969 while (OuterI != OuterE && InnerI == getInnerRange(*OuterI).end()) {
970 ++OuterI;
971 InnerI = getInnerBegin(OuterI, OuterE);
972 }
973 }
974
975 OuterItrT OuterI, OuterE;
976 InnerItrT InnerI;
977 };
978
979 using defined_symbol_iterator =
980 nested_collection_iterator<section_iterator, Section::symbol_iterator,
981 Symbol *, getSectionSymbols>;
982
983 using const_defined_symbol_iterator =
984 nested_collection_iterator<const_section_iterator,
985 Section::const_symbol_iterator, const Symbol *,
986 getSectionConstSymbols>;
987
988 using block_iterator =
989 nested_collection_iterator<section_iterator, Section::block_iterator,
990 Block *, getSectionBlocks>;
991
992 using const_block_iterator =
993 nested_collection_iterator<const_section_iterator,
994 Section::const_block_iterator, const Block *,
995 getSectionConstBlocks>;
996
997 using GetEdgeKindNameFunction = const char *(*)(Edge::Kind);
998
LinkGraph(std::string Name,const Triple & TT,SubtargetFeatures Features,unsigned PointerSize,llvm::endianness Endianness,GetEdgeKindNameFunction GetEdgeKindName)999 LinkGraph(std::string Name, const Triple &TT, SubtargetFeatures Features,
1000 unsigned PointerSize, llvm::endianness Endianness,
1001 GetEdgeKindNameFunction GetEdgeKindName)
1002 : Name(std::move(Name)), TT(TT), Features(std::move(Features)),
1003 PointerSize(PointerSize), Endianness(Endianness),
1004 GetEdgeKindName(std::move(GetEdgeKindName)) {}
1005
LinkGraph(std::string Name,const Triple & TT,unsigned PointerSize,llvm::endianness Endianness,GetEdgeKindNameFunction GetEdgeKindName)1006 LinkGraph(std::string Name, const Triple &TT, unsigned PointerSize,
1007 llvm::endianness Endianness,
1008 GetEdgeKindNameFunction GetEdgeKindName)
1009 : LinkGraph(std::move(Name), TT, SubtargetFeatures(), PointerSize,
1010 Endianness, GetEdgeKindName) {}
1011
LinkGraph(std::string Name,const Triple & TT,GetEdgeKindNameFunction GetEdgeKindName)1012 LinkGraph(std::string Name, const Triple &TT,
1013 GetEdgeKindNameFunction GetEdgeKindName)
1014 : LinkGraph(std::move(Name), TT, SubtargetFeatures(),
1015 Triple::getArchPointerBitWidth(TT.getArch()) / 8,
1016 TT.isLittleEndian() ? endianness::little : endianness::big,
1017 GetEdgeKindName) {
1018 assert(!(Triple::getArchPointerBitWidth(TT.getArch()) % 8) &&
1019 "Arch bitwidth is not a multiple of 8");
1020 }
1021
1022 LinkGraph(const LinkGraph &) = delete;
1023 LinkGraph &operator=(const LinkGraph &) = delete;
1024 LinkGraph(LinkGraph &&) = delete;
1025 LinkGraph &operator=(LinkGraph &&) = delete;
1026
1027 /// Returns the name of this graph (usually the name of the original
1028 /// underlying MemoryBuffer).
getName()1029 const std::string &getName() const { return Name; }
1030
1031 /// Returns the target triple for this Graph.
getTargetTriple()1032 const Triple &getTargetTriple() const { return TT; }
1033
1034 /// Return the subtarget features for this Graph.
getFeatures()1035 const SubtargetFeatures &getFeatures() const { return Features; }
1036
1037 /// Returns the pointer size for use in this graph.
getPointerSize()1038 unsigned getPointerSize() const { return PointerSize; }
1039
1040 /// Returns the endianness of content in this graph.
getEndianness()1041 llvm::endianness getEndianness() const { return Endianness; }
1042
getEdgeKindName(Edge::Kind K)1043 const char *getEdgeKindName(Edge::Kind K) const { return GetEdgeKindName(K); }
1044
1045 /// Allocate a mutable buffer of the given size using the LinkGraph's
1046 /// allocator.
allocateBuffer(size_t Size)1047 MutableArrayRef<char> allocateBuffer(size_t Size) {
1048 return {Allocator.Allocate<char>(Size), Size};
1049 }
1050
1051 /// Allocate a copy of the given string using the LinkGraph's allocator.
1052 /// This can be useful when renaming symbols or adding new content to the
1053 /// graph.
allocateContent(ArrayRef<char> Source)1054 MutableArrayRef<char> allocateContent(ArrayRef<char> Source) {
1055 auto *AllocatedBuffer = Allocator.Allocate<char>(Source.size());
1056 llvm::copy(Source, AllocatedBuffer);
1057 return MutableArrayRef<char>(AllocatedBuffer, Source.size());
1058 }
1059
1060 /// Allocate a copy of the given string using the LinkGraph's allocator.
1061 /// This can be useful when renaming symbols or adding new content to the
1062 /// graph.
1063 ///
1064 /// Note: This Twine-based overload requires an extra string copy and an
1065 /// extra heap allocation for large strings. The ArrayRef<char> overload
1066 /// should be preferred where possible.
allocateContent(Twine Source)1067 MutableArrayRef<char> allocateContent(Twine Source) {
1068 SmallString<256> TmpBuffer;
1069 auto SourceStr = Source.toStringRef(TmpBuffer);
1070 auto *AllocatedBuffer = Allocator.Allocate<char>(SourceStr.size());
1071 llvm::copy(SourceStr, AllocatedBuffer);
1072 return MutableArrayRef<char>(AllocatedBuffer, SourceStr.size());
1073 }
1074
1075 /// Allocate a copy of the given string using the LinkGraph's allocator.
1076 ///
1077 /// The allocated string will be terminated with a null character, and the
1078 /// returned MutableArrayRef will include this null character in the last
1079 /// position.
allocateCString(StringRef Source)1080 MutableArrayRef<char> allocateCString(StringRef Source) {
1081 char *AllocatedBuffer = Allocator.Allocate<char>(Source.size() + 1);
1082 llvm::copy(Source, AllocatedBuffer);
1083 AllocatedBuffer[Source.size()] = '\0';
1084 return MutableArrayRef<char>(AllocatedBuffer, Source.size() + 1);
1085 }
1086
1087 /// Allocate a copy of the given string using the LinkGraph's allocator.
1088 ///
1089 /// The allocated string will be terminated with a null character, and the
1090 /// returned MutableArrayRef will include this null character in the last
1091 /// position.
1092 ///
1093 /// Note: This Twine-based overload requires an extra string copy and an
1094 /// extra heap allocation for large strings. The ArrayRef<char> overload
1095 /// should be preferred where possible.
allocateCString(Twine Source)1096 MutableArrayRef<char> allocateCString(Twine Source) {
1097 SmallString<256> TmpBuffer;
1098 auto SourceStr = Source.toStringRef(TmpBuffer);
1099 auto *AllocatedBuffer = Allocator.Allocate<char>(SourceStr.size() + 1);
1100 llvm::copy(SourceStr, AllocatedBuffer);
1101 AllocatedBuffer[SourceStr.size()] = '\0';
1102 return MutableArrayRef<char>(AllocatedBuffer, SourceStr.size() + 1);
1103 }
1104
1105 /// Create a section with the given name, protection flags, and alignment.
createSection(StringRef Name,orc::MemProt Prot)1106 Section &createSection(StringRef Name, orc::MemProt Prot) {
1107 assert(!Sections.count(Name) && "Duplicate section name");
1108 std::unique_ptr<Section> Sec(new Section(Name, Prot, Sections.size()));
1109 return *Sections.insert(std::make_pair(Name, std::move(Sec))).first->second;
1110 }
1111
1112 /// Create a content block.
createContentBlock(Section & Parent,ArrayRef<char> Content,orc::ExecutorAddr Address,uint64_t Alignment,uint64_t AlignmentOffset)1113 Block &createContentBlock(Section &Parent, ArrayRef<char> Content,
1114 orc::ExecutorAddr Address, uint64_t Alignment,
1115 uint64_t AlignmentOffset) {
1116 return createBlock(Parent, Content, Address, Alignment, AlignmentOffset);
1117 }
1118
1119 /// Create a content block with initially mutable data.
createMutableContentBlock(Section & Parent,MutableArrayRef<char> MutableContent,orc::ExecutorAddr Address,uint64_t Alignment,uint64_t AlignmentOffset)1120 Block &createMutableContentBlock(Section &Parent,
1121 MutableArrayRef<char> MutableContent,
1122 orc::ExecutorAddr Address,
1123 uint64_t Alignment,
1124 uint64_t AlignmentOffset) {
1125 return createBlock(Parent, MutableContent, Address, Alignment,
1126 AlignmentOffset);
1127 }
1128
1129 /// Create a content block with initially mutable data of the given size.
1130 /// Content will be allocated via the LinkGraph's allocateBuffer method.
1131 /// By default the memory will be zero-initialized. Passing false for
1132 /// ZeroInitialize will prevent this.
1133 Block &createMutableContentBlock(Section &Parent, size_t ContentSize,
1134 orc::ExecutorAddr Address,
1135 uint64_t Alignment, uint64_t AlignmentOffset,
1136 bool ZeroInitialize = true) {
1137 auto Content = allocateBuffer(ContentSize);
1138 if (ZeroInitialize)
1139 memset(Content.data(), 0, Content.size());
1140 return createBlock(Parent, Content, Address, Alignment, AlignmentOffset);
1141 }
1142
1143 /// Create a zero-fill block.
createZeroFillBlock(Section & Parent,orc::ExecutorAddrDiff Size,orc::ExecutorAddr Address,uint64_t Alignment,uint64_t AlignmentOffset)1144 Block &createZeroFillBlock(Section &Parent, orc::ExecutorAddrDiff Size,
1145 orc::ExecutorAddr Address, uint64_t Alignment,
1146 uint64_t AlignmentOffset) {
1147 return createBlock(Parent, Size, Address, Alignment, AlignmentOffset);
1148 }
1149
1150 /// Returns a BinaryStreamReader for the given block.
getBlockContentReader(Block & B)1151 BinaryStreamReader getBlockContentReader(Block &B) {
1152 ArrayRef<uint8_t> C(
1153 reinterpret_cast<const uint8_t *>(B.getContent().data()), B.getSize());
1154 return BinaryStreamReader(C, getEndianness());
1155 }
1156
1157 /// Returns a BinaryStreamWriter for the given block.
1158 /// This will call getMutableContent to obtain mutable content for the block.
getBlockContentWriter(Block & B)1159 BinaryStreamWriter getBlockContentWriter(Block &B) {
1160 MutableArrayRef<uint8_t> C(
1161 reinterpret_cast<uint8_t *>(B.getMutableContent(*this).data()),
1162 B.getSize());
1163 return BinaryStreamWriter(C, getEndianness());
1164 }
1165
1166 /// Cache type for the splitBlock function.
1167 using SplitBlockCache = std::optional<SmallVector<Symbol *, 8>>;
1168
1169 /// Splits block B at the given index which must be greater than zero.
1170 /// If SplitIndex == B.getSize() then this function is a no-op and returns B.
1171 /// If SplitIndex < B.getSize() then this function returns a new block
1172 /// covering the range [ 0, SplitIndex ), and B is modified to cover the range
1173 /// [ SplitIndex, B.size() ).
1174 ///
1175 /// The optional Cache parameter can be used to speed up repeated calls to
1176 /// splitBlock for a single block. If the value is None the cache will be
1177 /// treated as uninitialized and splitBlock will populate it. Otherwise it
1178 /// is assumed to contain the list of Symbols pointing at B, sorted in
1179 /// descending order of offset.
1180 ///
1181 /// Notes:
1182 ///
1183 /// 1. splitBlock must be used with care. Splitting a block may cause
1184 /// incoming edges to become invalid if the edge target subexpression
1185 /// points outside the bounds of the newly split target block (E.g. an
1186 /// edge 'S + 10 : Pointer64' where S points to a newly split block
1187 /// whose size is less than 10). No attempt is made to detect invalidation
1188 /// of incoming edges, as in general this requires context that the
1189 /// LinkGraph does not have. Clients are responsible for ensuring that
1190 /// splitBlock is not used in a way that invalidates edges.
1191 ///
1192 /// 2. The newly introduced block will have a new ordinal which will be
1193 /// higher than any other ordinals in the section. Clients are responsible
1194 /// for re-assigning block ordinals to restore a compatible order if
1195 /// needed.
1196 ///
1197 /// 3. The cache is not automatically updated if new symbols are introduced
1198 /// between calls to splitBlock. Any newly introduced symbols may be
1199 /// added to the cache manually (descending offset order must be
1200 /// preserved), or the cache can be set to None and rebuilt by
1201 /// splitBlock on the next call.
1202 Block &splitBlock(Block &B, size_t SplitIndex,
1203 SplitBlockCache *Cache = nullptr);
1204
1205 /// Add an external symbol.
1206 /// Some formats (e.g. ELF) allow Symbols to have sizes. For Symbols whose
1207 /// size is not known, you should substitute '0'.
1208 /// The IsWeaklyReferenced argument determines whether the symbol must be
1209 /// present during lookup: Externals that are strongly referenced must be
1210 /// found or an error will be emitted. Externals that are weakly referenced
1211 /// are permitted to be undefined, in which case they are assigned an address
1212 /// of 0.
addExternalSymbol(StringRef Name,orc::ExecutorAddrDiff Size,bool IsWeaklyReferenced)1213 Symbol &addExternalSymbol(StringRef Name, orc::ExecutorAddrDiff Size,
1214 bool IsWeaklyReferenced) {
1215 assert(!ExternalSymbols.contains(Name) && "Duplicate external symbol");
1216 auto &Sym = Symbol::constructExternal(
1217 Allocator, createAddressable(orc::ExecutorAddr(), false), Name, Size,
1218 Linkage::Strong, IsWeaklyReferenced);
1219 ExternalSymbols.insert({Sym.getName(), &Sym});
1220 return Sym;
1221 }
1222
1223 /// Add an absolute symbol.
addAbsoluteSymbol(StringRef Name,orc::ExecutorAddr Address,orc::ExecutorAddrDiff Size,Linkage L,Scope S,bool IsLive)1224 Symbol &addAbsoluteSymbol(StringRef Name, orc::ExecutorAddr Address,
1225 orc::ExecutorAddrDiff Size, Linkage L, Scope S,
1226 bool IsLive) {
1227 assert((S == Scope::Local || llvm::count_if(AbsoluteSymbols,
1228 [&](const Symbol *Sym) {
1229 return Sym->getName() == Name;
1230 }) == 0) &&
1231 "Duplicate absolute symbol");
1232 auto &Sym = Symbol::constructAbsolute(Allocator, createAddressable(Address),
1233 Name, Size, L, S, IsLive);
1234 AbsoluteSymbols.insert(&Sym);
1235 return Sym;
1236 }
1237
1238 /// Add an anonymous symbol.
addAnonymousSymbol(Block & Content,orc::ExecutorAddrDiff Offset,orc::ExecutorAddrDiff Size,bool IsCallable,bool IsLive)1239 Symbol &addAnonymousSymbol(Block &Content, orc::ExecutorAddrDiff Offset,
1240 orc::ExecutorAddrDiff Size, bool IsCallable,
1241 bool IsLive) {
1242 auto &Sym = Symbol::constructAnonDef(Allocator, Content, Offset, Size,
1243 IsCallable, IsLive);
1244 Content.getSection().addSymbol(Sym);
1245 return Sym;
1246 }
1247
1248 /// Add a named symbol.
addDefinedSymbol(Block & Content,orc::ExecutorAddrDiff Offset,StringRef Name,orc::ExecutorAddrDiff Size,Linkage L,Scope S,bool IsCallable,bool IsLive)1249 Symbol &addDefinedSymbol(Block &Content, orc::ExecutorAddrDiff Offset,
1250 StringRef Name, orc::ExecutorAddrDiff Size,
1251 Linkage L, Scope S, bool IsCallable, bool IsLive) {
1252 assert((S == Scope::Local || llvm::count_if(defined_symbols(),
1253 [&](const Symbol *Sym) {
1254 return Sym->getName() == Name;
1255 }) == 0) &&
1256 "Duplicate defined symbol");
1257 auto &Sym = Symbol::constructNamedDef(Allocator, Content, Offset, Name,
1258 Size, L, S, IsLive, IsCallable);
1259 Content.getSection().addSymbol(Sym);
1260 return Sym;
1261 }
1262
sections()1263 iterator_range<section_iterator> sections() {
1264 return make_range(
1265 section_iterator(Sections.begin(), GetSectionMapEntryValue()),
1266 section_iterator(Sections.end(), GetSectionMapEntryValue()));
1267 }
1268
sections()1269 iterator_range<const_section_iterator> sections() const {
1270 return make_range(
1271 const_section_iterator(Sections.begin(),
1272 GetSectionMapEntryConstValue()),
1273 const_section_iterator(Sections.end(), GetSectionMapEntryConstValue()));
1274 }
1275
sections_size()1276 size_t sections_size() const { return Sections.size(); }
1277
1278 /// Returns the section with the given name if it exists, otherwise returns
1279 /// null.
findSectionByName(StringRef Name)1280 Section *findSectionByName(StringRef Name) {
1281 auto I = Sections.find(Name);
1282 if (I == Sections.end())
1283 return nullptr;
1284 return I->second.get();
1285 }
1286
blocks()1287 iterator_range<block_iterator> blocks() {
1288 auto Secs = sections();
1289 return make_range(block_iterator(Secs.begin(), Secs.end()),
1290 block_iterator(Secs.end(), Secs.end()));
1291 }
1292
blocks()1293 iterator_range<const_block_iterator> blocks() const {
1294 auto Secs = sections();
1295 return make_range(const_block_iterator(Secs.begin(), Secs.end()),
1296 const_block_iterator(Secs.end(), Secs.end()));
1297 }
1298
external_symbols()1299 iterator_range<external_symbol_iterator> external_symbols() {
1300 return make_range(
1301 external_symbol_iterator(ExternalSymbols.begin(),
1302 GetExternalSymbolMapEntryValue()),
1303 external_symbol_iterator(ExternalSymbols.end(),
1304 GetExternalSymbolMapEntryValue()));
1305 }
1306
absolute_symbols()1307 iterator_range<absolute_symbol_iterator> absolute_symbols() {
1308 return make_range(AbsoluteSymbols.begin(), AbsoluteSymbols.end());
1309 }
1310
defined_symbols()1311 iterator_range<defined_symbol_iterator> defined_symbols() {
1312 auto Secs = sections();
1313 return make_range(defined_symbol_iterator(Secs.begin(), Secs.end()),
1314 defined_symbol_iterator(Secs.end(), Secs.end()));
1315 }
1316
defined_symbols()1317 iterator_range<const_defined_symbol_iterator> defined_symbols() const {
1318 auto Secs = sections();
1319 return make_range(const_defined_symbol_iterator(Secs.begin(), Secs.end()),
1320 const_defined_symbol_iterator(Secs.end(), Secs.end()));
1321 }
1322
1323 /// Make the given symbol external (must not already be external).
1324 ///
1325 /// Symbol size, linkage and callability will be left unchanged. Symbol scope
1326 /// will be set to Default, and offset will be reset to 0.
makeExternal(Symbol & Sym)1327 void makeExternal(Symbol &Sym) {
1328 assert(!Sym.isExternal() && "Symbol is already external");
1329 if (Sym.isAbsolute()) {
1330 assert(AbsoluteSymbols.count(&Sym) &&
1331 "Sym is not in the absolute symbols set");
1332 assert(Sym.getOffset() == 0 && "Absolute not at offset 0");
1333 AbsoluteSymbols.erase(&Sym);
1334 auto &A = Sym.getAddressable();
1335 A.setAbsolute(false);
1336 A.setAddress(orc::ExecutorAddr());
1337 } else {
1338 assert(Sym.isDefined() && "Sym is not a defined symbol");
1339 Section &Sec = Sym.getBlock().getSection();
1340 Sec.removeSymbol(Sym);
1341 Sym.makeExternal(createAddressable(orc::ExecutorAddr(), false));
1342 }
1343 ExternalSymbols.insert({Sym.getName(), &Sym});
1344 }
1345
1346 /// Make the given symbol an absolute with the given address (must not already
1347 /// be absolute).
1348 ///
1349 /// The symbol's size, linkage, and callability, and liveness will be left
1350 /// unchanged, and its offset will be reset to 0.
1351 ///
1352 /// If the symbol was external then its scope will be set to local, otherwise
1353 /// it will be left unchanged.
makeAbsolute(Symbol & Sym,orc::ExecutorAddr Address)1354 void makeAbsolute(Symbol &Sym, orc::ExecutorAddr Address) {
1355 assert(!Sym.isAbsolute() && "Symbol is already absolute");
1356 if (Sym.isExternal()) {
1357 assert(ExternalSymbols.contains(Sym.getName()) &&
1358 "Sym is not in the absolute symbols set");
1359 assert(Sym.getOffset() == 0 && "External is not at offset 0");
1360 ExternalSymbols.erase(Sym.getName());
1361 auto &A = Sym.getAddressable();
1362 A.setAbsolute(true);
1363 A.setAddress(Address);
1364 Sym.setScope(Scope::Local);
1365 } else {
1366 assert(Sym.isDefined() && "Sym is not a defined symbol");
1367 Section &Sec = Sym.getBlock().getSection();
1368 Sec.removeSymbol(Sym);
1369 Sym.makeAbsolute(createAddressable(Address));
1370 }
1371 AbsoluteSymbols.insert(&Sym);
1372 }
1373
1374 /// Turn an absolute or external symbol into a defined one by attaching it to
1375 /// a block. Symbol must not already be defined.
makeDefined(Symbol & Sym,Block & Content,orc::ExecutorAddrDiff Offset,orc::ExecutorAddrDiff Size,Linkage L,Scope S,bool IsLive)1376 void makeDefined(Symbol &Sym, Block &Content, orc::ExecutorAddrDiff Offset,
1377 orc::ExecutorAddrDiff Size, Linkage L, Scope S,
1378 bool IsLive) {
1379 assert(!Sym.isDefined() && "Sym is already a defined symbol");
1380 if (Sym.isAbsolute()) {
1381 assert(AbsoluteSymbols.count(&Sym) &&
1382 "Symbol is not in the absolutes set");
1383 AbsoluteSymbols.erase(&Sym);
1384 } else {
1385 assert(ExternalSymbols.contains(Sym.getName()) &&
1386 "Symbol is not in the externals set");
1387 ExternalSymbols.erase(Sym.getName());
1388 }
1389 Addressable &OldBase = *Sym.Base;
1390 Sym.setBlock(Content);
1391 Sym.setOffset(Offset);
1392 Sym.setSize(Size);
1393 Sym.setLinkage(L);
1394 Sym.setScope(S);
1395 Sym.setLive(IsLive);
1396 Content.getSection().addSymbol(Sym);
1397 destroyAddressable(OldBase);
1398 }
1399
1400 /// Transfer a defined symbol from one block to another.
1401 ///
1402 /// The symbol's offset within DestBlock is set to NewOffset.
1403 ///
1404 /// If ExplicitNewSize is given as None then the size of the symbol will be
1405 /// checked and auto-truncated to at most the size of the remainder (from the
1406 /// given offset) of the size of the new block.
1407 ///
1408 /// All other symbol attributes are unchanged.
1409 void
transferDefinedSymbol(Symbol & Sym,Block & DestBlock,orc::ExecutorAddrDiff NewOffset,std::optional<orc::ExecutorAddrDiff> ExplicitNewSize)1410 transferDefinedSymbol(Symbol &Sym, Block &DestBlock,
1411 orc::ExecutorAddrDiff NewOffset,
1412 std::optional<orc::ExecutorAddrDiff> ExplicitNewSize) {
1413 auto &OldSection = Sym.getBlock().getSection();
1414 Sym.setBlock(DestBlock);
1415 Sym.setOffset(NewOffset);
1416 if (ExplicitNewSize)
1417 Sym.setSize(*ExplicitNewSize);
1418 else {
1419 auto RemainingBlockSize = DestBlock.getSize() - NewOffset;
1420 if (Sym.getSize() > RemainingBlockSize)
1421 Sym.setSize(RemainingBlockSize);
1422 }
1423 if (&DestBlock.getSection() != &OldSection) {
1424 OldSection.removeSymbol(Sym);
1425 DestBlock.getSection().addSymbol(Sym);
1426 }
1427 }
1428
1429 /// Transfers the given Block and all Symbols pointing to it to the given
1430 /// Section.
1431 ///
1432 /// No attempt is made to check compatibility of the source and destination
1433 /// sections. Blocks may be moved between sections with incompatible
1434 /// permissions (e.g. from data to text). The client is responsible for
1435 /// ensuring that this is safe.
transferBlock(Block & B,Section & NewSection)1436 void transferBlock(Block &B, Section &NewSection) {
1437 auto &OldSection = B.getSection();
1438 if (&OldSection == &NewSection)
1439 return;
1440 SmallVector<Symbol *> AttachedSymbols;
1441 for (auto *S : OldSection.symbols())
1442 if (&S->getBlock() == &B)
1443 AttachedSymbols.push_back(S);
1444 for (auto *S : AttachedSymbols) {
1445 OldSection.removeSymbol(*S);
1446 NewSection.addSymbol(*S);
1447 }
1448 OldSection.removeBlock(B);
1449 NewSection.addBlock(B);
1450 }
1451
1452 /// Move all blocks and symbols from the source section to the destination
1453 /// section.
1454 ///
1455 /// If PreserveSrcSection is true (or SrcSection and DstSection are the same)
1456 /// then SrcSection is preserved, otherwise it is removed (the default).
1457 void mergeSections(Section &DstSection, Section &SrcSection,
1458 bool PreserveSrcSection = false) {
1459 if (&DstSection == &SrcSection)
1460 return;
1461 for (auto *B : SrcSection.blocks())
1462 B->setSection(DstSection);
1463 SrcSection.transferContentTo(DstSection);
1464 if (!PreserveSrcSection)
1465 removeSection(SrcSection);
1466 }
1467
1468 /// Removes an external symbol. Also removes the underlying Addressable.
removeExternalSymbol(Symbol & Sym)1469 void removeExternalSymbol(Symbol &Sym) {
1470 assert(!Sym.isDefined() && !Sym.isAbsolute() &&
1471 "Sym is not an external symbol");
1472 assert(ExternalSymbols.contains(Sym.getName()) &&
1473 "Symbol is not in the externals set");
1474 ExternalSymbols.erase(Sym.getName());
1475 Addressable &Base = *Sym.Base;
1476 assert(llvm::none_of(external_symbols(),
1477 [&](Symbol *AS) { return AS->Base == &Base; }) &&
1478 "Base addressable still in use");
1479 destroySymbol(Sym);
1480 destroyAddressable(Base);
1481 }
1482
1483 /// Remove an absolute symbol. Also removes the underlying Addressable.
removeAbsoluteSymbol(Symbol & Sym)1484 void removeAbsoluteSymbol(Symbol &Sym) {
1485 assert(!Sym.isDefined() && Sym.isAbsolute() &&
1486 "Sym is not an absolute symbol");
1487 assert(AbsoluteSymbols.count(&Sym) &&
1488 "Symbol is not in the absolute symbols set");
1489 AbsoluteSymbols.erase(&Sym);
1490 Addressable &Base = *Sym.Base;
1491 assert(llvm::none_of(external_symbols(),
1492 [&](Symbol *AS) { return AS->Base == &Base; }) &&
1493 "Base addressable still in use");
1494 destroySymbol(Sym);
1495 destroyAddressable(Base);
1496 }
1497
1498 /// Removes defined symbols. Does not remove the underlying block.
removeDefinedSymbol(Symbol & Sym)1499 void removeDefinedSymbol(Symbol &Sym) {
1500 assert(Sym.isDefined() && "Sym is not a defined symbol");
1501 Sym.getBlock().getSection().removeSymbol(Sym);
1502 destroySymbol(Sym);
1503 }
1504
1505 /// Remove a block. The block reference is defunct after calling this
1506 /// function and should no longer be used.
removeBlock(Block & B)1507 void removeBlock(Block &B) {
1508 assert(llvm::none_of(B.getSection().symbols(),
1509 [&](const Symbol *Sym) {
1510 return &Sym->getBlock() == &B;
1511 }) &&
1512 "Block still has symbols attached");
1513 B.getSection().removeBlock(B);
1514 destroyBlock(B);
1515 }
1516
1517 /// Remove a section. The section reference is defunct after calling this
1518 /// function and should no longer be used.
removeSection(Section & Sec)1519 void removeSection(Section &Sec) {
1520 assert(Sections.count(Sec.getName()) && "Section not found");
1521 assert(Sections.find(Sec.getName())->second.get() == &Sec &&
1522 "Section map entry invalid");
1523 Sections.erase(Sec.getName());
1524 }
1525
1526 /// Accessor for the AllocActions object for this graph. This can be used to
1527 /// register allocation action calls prior to finalization.
1528 ///
1529 /// Accessing this object after finalization will result in undefined
1530 /// behavior.
allocActions()1531 orc::shared::AllocActions &allocActions() { return AAs; }
1532
1533 /// Dump the graph.
1534 void dump(raw_ostream &OS);
1535
1536 private:
1537 // Put the BumpPtrAllocator first so that we don't free any of the underlying
1538 // memory until the Symbol/Addressable destructors have been run.
1539 BumpPtrAllocator Allocator;
1540
1541 std::string Name;
1542 Triple TT;
1543 SubtargetFeatures Features;
1544 unsigned PointerSize;
1545 llvm::endianness Endianness;
1546 GetEdgeKindNameFunction GetEdgeKindName = nullptr;
1547 MapVector<StringRef, std::unique_ptr<Section>> Sections;
1548 ExternalSymbolMap ExternalSymbols;
1549 AbsoluteSymbolSet AbsoluteSymbols;
1550 orc::shared::AllocActions AAs;
1551 };
1552
getMutableContent(LinkGraph & G)1553 inline MutableArrayRef<char> Block::getMutableContent(LinkGraph &G) {
1554 if (!ContentMutable)
1555 setMutableContent(G.allocateContent({Data, Size}));
1556 return MutableArrayRef<char>(const_cast<char *>(Data), Size);
1557 }
1558
1559 /// Enables easy lookup of blocks by addresses.
1560 class BlockAddressMap {
1561 public:
1562 using AddrToBlockMap = std::map<orc::ExecutorAddr, Block *>;
1563 using const_iterator = AddrToBlockMap::const_iterator;
1564
1565 /// A block predicate that always adds all blocks.
includeAllBlocks(const Block & B)1566 static bool includeAllBlocks(const Block &B) { return true; }
1567
1568 /// A block predicate that always includes blocks with non-null addresses.
includeNonNull(const Block & B)1569 static bool includeNonNull(const Block &B) { return !!B.getAddress(); }
1570
1571 BlockAddressMap() = default;
1572
1573 /// Add a block to the map. Returns an error if the block overlaps with any
1574 /// existing block.
1575 template <typename PredFn = decltype(includeAllBlocks)>
1576 Error addBlock(Block &B, PredFn Pred = includeAllBlocks) {
1577 if (!Pred(B))
1578 return Error::success();
1579
1580 auto I = AddrToBlock.upper_bound(B.getAddress());
1581
1582 // If we're not at the end of the map, check for overlap with the next
1583 // element.
1584 if (I != AddrToBlock.end()) {
1585 if (B.getAddress() + B.getSize() > I->second->getAddress())
1586 return overlapError(B, *I->second);
1587 }
1588
1589 // If we're not at the start of the map, check for overlap with the previous
1590 // element.
1591 if (I != AddrToBlock.begin()) {
1592 auto &PrevBlock = *std::prev(I)->second;
1593 if (PrevBlock.getAddress() + PrevBlock.getSize() > B.getAddress())
1594 return overlapError(B, PrevBlock);
1595 }
1596
1597 AddrToBlock.insert(I, std::make_pair(B.getAddress(), &B));
1598 return Error::success();
1599 }
1600
1601 /// Add a block to the map without checking for overlap with existing blocks.
1602 /// The client is responsible for ensuring that the block added does not
1603 /// overlap with any existing block.
addBlockWithoutChecking(Block & B)1604 void addBlockWithoutChecking(Block &B) { AddrToBlock[B.getAddress()] = &B; }
1605
1606 /// Add a range of blocks to the map. Returns an error if any block in the
1607 /// range overlaps with any other block in the range, or with any existing
1608 /// block in the map.
1609 template <typename BlockPtrRange,
1610 typename PredFn = decltype(includeAllBlocks)>
1611 Error addBlocks(BlockPtrRange &&Blocks, PredFn Pred = includeAllBlocks) {
1612 for (auto *B : Blocks)
1613 if (auto Err = addBlock(*B, Pred))
1614 return Err;
1615 return Error::success();
1616 }
1617
1618 /// Add a range of blocks to the map without checking for overlap with
1619 /// existing blocks. The client is responsible for ensuring that the block
1620 /// added does not overlap with any existing block.
1621 template <typename BlockPtrRange>
addBlocksWithoutChecking(BlockPtrRange && Blocks)1622 void addBlocksWithoutChecking(BlockPtrRange &&Blocks) {
1623 for (auto *B : Blocks)
1624 addBlockWithoutChecking(*B);
1625 }
1626
1627 /// Iterates over (Address, Block*) pairs in ascending order of address.
begin()1628 const_iterator begin() const { return AddrToBlock.begin(); }
end()1629 const_iterator end() const { return AddrToBlock.end(); }
1630
1631 /// Returns the block starting at the given address, or nullptr if no such
1632 /// block exists.
getBlockAt(orc::ExecutorAddr Addr)1633 Block *getBlockAt(orc::ExecutorAddr Addr) const {
1634 auto I = AddrToBlock.find(Addr);
1635 if (I == AddrToBlock.end())
1636 return nullptr;
1637 return I->second;
1638 }
1639
1640 /// Returns the block covering the given address, or nullptr if no such block
1641 /// exists.
getBlockCovering(orc::ExecutorAddr Addr)1642 Block *getBlockCovering(orc::ExecutorAddr Addr) const {
1643 auto I = AddrToBlock.upper_bound(Addr);
1644 if (I == AddrToBlock.begin())
1645 return nullptr;
1646 auto *B = std::prev(I)->second;
1647 if (Addr < B->getAddress() + B->getSize())
1648 return B;
1649 return nullptr;
1650 }
1651
1652 private:
overlapError(Block & NewBlock,Block & ExistingBlock)1653 Error overlapError(Block &NewBlock, Block &ExistingBlock) {
1654 auto NewBlockEnd = NewBlock.getAddress() + NewBlock.getSize();
1655 auto ExistingBlockEnd =
1656 ExistingBlock.getAddress() + ExistingBlock.getSize();
1657 return make_error<JITLinkError>(
1658 "Block at " +
1659 formatv("{0:x16} -- {1:x16}", NewBlock.getAddress().getValue(),
1660 NewBlockEnd.getValue()) +
1661 " overlaps " +
1662 formatv("{0:x16} -- {1:x16}", ExistingBlock.getAddress().getValue(),
1663 ExistingBlockEnd.getValue()));
1664 }
1665
1666 AddrToBlockMap AddrToBlock;
1667 };
1668
1669 /// A map of addresses to Symbols.
1670 class SymbolAddressMap {
1671 public:
1672 using SymbolVector = SmallVector<Symbol *, 1>;
1673
1674 /// Add a symbol to the SymbolAddressMap.
addSymbol(Symbol & Sym)1675 void addSymbol(Symbol &Sym) {
1676 AddrToSymbols[Sym.getAddress()].push_back(&Sym);
1677 }
1678
1679 /// Add all symbols in a given range to the SymbolAddressMap.
1680 template <typename SymbolPtrCollection>
addSymbols(SymbolPtrCollection && Symbols)1681 void addSymbols(SymbolPtrCollection &&Symbols) {
1682 for (auto *Sym : Symbols)
1683 addSymbol(*Sym);
1684 }
1685
1686 /// Returns the list of symbols that start at the given address, or nullptr if
1687 /// no such symbols exist.
getSymbolsAt(orc::ExecutorAddr Addr)1688 const SymbolVector *getSymbolsAt(orc::ExecutorAddr Addr) const {
1689 auto I = AddrToSymbols.find(Addr);
1690 if (I == AddrToSymbols.end())
1691 return nullptr;
1692 return &I->second;
1693 }
1694
1695 private:
1696 std::map<orc::ExecutorAddr, SymbolVector> AddrToSymbols;
1697 };
1698
1699 /// A function for mutating LinkGraphs.
1700 using LinkGraphPassFunction = unique_function<Error(LinkGraph &)>;
1701
1702 /// A list of LinkGraph passes.
1703 using LinkGraphPassList = std::vector<LinkGraphPassFunction>;
1704
1705 /// An LinkGraph pass configuration, consisting of a list of pre-prune,
1706 /// post-prune, and post-fixup passes.
1707 struct PassConfiguration {
1708
1709 /// Pre-prune passes.
1710 ///
1711 /// These passes are called on the graph after it is built, and before any
1712 /// symbols have been pruned. Graph nodes still have their original vmaddrs.
1713 ///
1714 /// Notable use cases: Marking symbols live or should-discard.
1715 LinkGraphPassList PrePrunePasses;
1716
1717 /// Post-prune passes.
1718 ///
1719 /// These passes are called on the graph after dead stripping, but before
1720 /// memory is allocated or nodes assigned their final addresses.
1721 ///
1722 /// Notable use cases: Building GOT, stub, and TLV symbols.
1723 LinkGraphPassList PostPrunePasses;
1724
1725 /// Post-allocation passes.
1726 ///
1727 /// These passes are called on the graph after memory has been allocated and
1728 /// defined nodes have been assigned their final addresses, but before the
1729 /// context has been notified of these addresses. At this point externals
1730 /// have not been resolved, and symbol content has not yet been copied into
1731 /// working memory.
1732 ///
1733 /// Notable use cases: Setting up data structures associated with addresses
1734 /// of defined symbols (e.g. a mapping of __dso_handle to JITDylib* for the
1735 /// JIT runtime) -- using a PostAllocationPass for this ensures that the
1736 /// data structures are in-place before any query for resolved symbols
1737 /// can complete.
1738 LinkGraphPassList PostAllocationPasses;
1739
1740 /// Pre-fixup passes.
1741 ///
1742 /// These passes are called on the graph after memory has been allocated,
1743 /// content copied into working memory, and all nodes (including externals)
1744 /// have been assigned their final addresses, but before any fixups have been
1745 /// applied.
1746 ///
1747 /// Notable use cases: Late link-time optimizations like GOT and stub
1748 /// elimination.
1749 LinkGraphPassList PreFixupPasses;
1750
1751 /// Post-fixup passes.
1752 ///
1753 /// These passes are called on the graph after block contents has been copied
1754 /// to working memory, and fixups applied. Blocks have been updated to point
1755 /// to their fixed up content.
1756 ///
1757 /// Notable use cases: Testing and validation.
1758 LinkGraphPassList PostFixupPasses;
1759 };
1760
1761 /// Flags for symbol lookup.
1762 ///
1763 /// FIXME: These basically duplicate orc::SymbolLookupFlags -- We should merge
1764 /// the two types once we have an OrcSupport library.
1765 enum class SymbolLookupFlags { RequiredSymbol, WeaklyReferencedSymbol };
1766
1767 raw_ostream &operator<<(raw_ostream &OS, const SymbolLookupFlags &LF);
1768
1769 /// A map of symbol names to resolved addresses.
1770 using AsyncLookupResult = DenseMap<StringRef, orc::ExecutorSymbolDef>;
1771
1772 /// A function object to call with a resolved symbol map (See AsyncLookupResult)
1773 /// or an error if resolution failed.
1774 class JITLinkAsyncLookupContinuation {
1775 public:
1776 virtual ~JITLinkAsyncLookupContinuation() = default;
1777 virtual void run(Expected<AsyncLookupResult> LR) = 0;
1778
1779 private:
1780 virtual void anchor();
1781 };
1782
1783 /// Create a lookup continuation from a function object.
1784 template <typename Continuation>
1785 std::unique_ptr<JITLinkAsyncLookupContinuation>
createLookupContinuation(Continuation Cont)1786 createLookupContinuation(Continuation Cont) {
1787
1788 class Impl final : public JITLinkAsyncLookupContinuation {
1789 public:
1790 Impl(Continuation C) : C(std::move(C)) {}
1791 void run(Expected<AsyncLookupResult> LR) override { C(std::move(LR)); }
1792
1793 private:
1794 Continuation C;
1795 };
1796
1797 return std::make_unique<Impl>(std::move(Cont));
1798 }
1799
1800 /// Holds context for a single jitLink invocation.
1801 class JITLinkContext {
1802 public:
1803 using LookupMap = DenseMap<StringRef, SymbolLookupFlags>;
1804
1805 /// Create a JITLinkContext.
JITLinkContext(const JITLinkDylib * JD)1806 JITLinkContext(const JITLinkDylib *JD) : JD(JD) {}
1807
1808 /// Destroy a JITLinkContext.
1809 virtual ~JITLinkContext();
1810
1811 /// Return the JITLinkDylib that this link is targeting, if any.
getJITLinkDylib()1812 const JITLinkDylib *getJITLinkDylib() const { return JD; }
1813
1814 /// Return the MemoryManager to be used for this link.
1815 virtual JITLinkMemoryManager &getMemoryManager() = 0;
1816
1817 /// Notify this context that linking failed.
1818 /// Called by JITLink if linking cannot be completed.
1819 virtual void notifyFailed(Error Err) = 0;
1820
1821 /// Called by JITLink to resolve external symbols. This method is passed a
1822 /// lookup continutation which it must call with a result to continue the
1823 /// linking process.
1824 virtual void lookup(const LookupMap &Symbols,
1825 std::unique_ptr<JITLinkAsyncLookupContinuation> LC) = 0;
1826
1827 /// Called by JITLink once all defined symbols in the graph have been assigned
1828 /// their final memory locations in the target process. At this point the
1829 /// LinkGraph can be inspected to build a symbol table, however the block
1830 /// content will not generally have been copied to the target location yet.
1831 ///
1832 /// If the client detects an error in the LinkGraph state (e.g. unexpected or
1833 /// missing symbols) they may return an error here. The error will be
1834 /// propagated to notifyFailed and the linker will bail out.
1835 virtual Error notifyResolved(LinkGraph &G) = 0;
1836
1837 /// Called by JITLink to notify the context that the object has been
1838 /// finalized (i.e. emitted to memory and memory permissions set). If all of
1839 /// this objects dependencies have also been finalized then the code is ready
1840 /// to run.
1841 virtual void notifyFinalized(JITLinkMemoryManager::FinalizedAlloc Alloc) = 0;
1842
1843 /// Called by JITLink prior to linking to determine whether default passes for
1844 /// the target should be added. The default implementation returns true.
1845 /// If subclasses override this method to return false for any target then
1846 /// they are required to fully configure the pass pipeline for that target.
1847 virtual bool shouldAddDefaultTargetPasses(const Triple &TT) const;
1848
1849 /// Returns the mark-live pass to be used for this link. If no pass is
1850 /// returned (the default) then the target-specific linker implementation will
1851 /// choose a conservative default (usually marking all symbols live).
1852 /// This function is only called if shouldAddDefaultTargetPasses returns true,
1853 /// otherwise the JITContext is responsible for adding a mark-live pass in
1854 /// modifyPassConfig.
1855 virtual LinkGraphPassFunction getMarkLivePass(const Triple &TT) const;
1856
1857 /// Called by JITLink to modify the pass pipeline prior to linking.
1858 /// The default version performs no modification.
1859 virtual Error modifyPassConfig(LinkGraph &G, PassConfiguration &Config);
1860
1861 private:
1862 const JITLinkDylib *JD = nullptr;
1863 };
1864
1865 /// Marks all symbols in a graph live. This can be used as a default,
1866 /// conservative mark-live implementation.
1867 Error markAllSymbolsLive(LinkGraph &G);
1868
1869 /// Create an out of range error for the given edge in the given block.
1870 Error makeTargetOutOfRangeError(const LinkGraph &G, const Block &B,
1871 const Edge &E);
1872
1873 Error makeAlignmentError(llvm::orc::ExecutorAddr Loc, uint64_t Value, int N,
1874 const Edge &E);
1875
1876 /// Creates a new pointer block in the given section and returns an
1877 /// Anonymous symbol pointing to it.
1878 ///
1879 /// The pointer block will have the following default values:
1880 /// alignment: PointerSize
1881 /// alignment-offset: 0
1882 /// address: highest allowable
1883 using AnonymousPointerCreator = unique_function<Expected<Symbol &>(
1884 LinkGraph &G, Section &PointerSection, Symbol *InitialTarget,
1885 uint64_t InitialAddend)>;
1886
1887 /// Get target-specific AnonymousPointerCreator
1888 AnonymousPointerCreator getAnonymousPointerCreator(const Triple &TT);
1889
1890 /// Create a jump stub that jumps via the pointer at the given symbol and
1891 /// an anonymous symbol pointing to it. Return the anonymous symbol.
1892 ///
1893 /// The stub block will be created by createPointerJumpStubBlock.
1894 using PointerJumpStubCreator = unique_function<Expected<Symbol &>(
1895 LinkGraph &G, Section &StubSection, Symbol &PointerSymbol)>;
1896
1897 /// Get target-specific PointerJumpStubCreator
1898 PointerJumpStubCreator getPointerJumpStubCreator(const Triple &TT);
1899
1900 /// Base case for edge-visitors where the visitor-list is empty.
visitEdge(LinkGraph & G,Block * B,Edge & E)1901 inline void visitEdge(LinkGraph &G, Block *B, Edge &E) {}
1902
1903 /// Applies the first visitor in the list to the given edge. If the visitor's
1904 /// visitEdge method returns true then we return immediately, otherwise we
1905 /// apply the next visitor.
1906 template <typename VisitorT, typename... VisitorTs>
visitEdge(LinkGraph & G,Block * B,Edge & E,VisitorT && V,VisitorTs &&...Vs)1907 void visitEdge(LinkGraph &G, Block *B, Edge &E, VisitorT &&V,
1908 VisitorTs &&...Vs) {
1909 if (!V.visitEdge(G, B, E))
1910 visitEdge(G, B, E, std::forward<VisitorTs>(Vs)...);
1911 }
1912
1913 /// For each edge in the given graph, apply a list of visitors to the edge,
1914 /// stopping when the first visitor's visitEdge method returns true.
1915 ///
1916 /// Only visits edges that were in the graph at call time: if any visitor
1917 /// adds new edges those will not be visited. Visitors are not allowed to
1918 /// remove edges (though they can change their kind, target, and addend).
1919 template <typename... VisitorTs>
visitExistingEdges(LinkGraph & G,VisitorTs &&...Vs)1920 void visitExistingEdges(LinkGraph &G, VisitorTs &&...Vs) {
1921 // We may add new blocks during this process, but we don't want to iterate
1922 // over them, so build a worklist.
1923 std::vector<Block *> Worklist(G.blocks().begin(), G.blocks().end());
1924
1925 for (auto *B : Worklist)
1926 for (auto &E : B->edges())
1927 visitEdge(G, B, E, std::forward<VisitorTs>(Vs)...);
1928 }
1929
1930 /// Create a LinkGraph from the given object buffer.
1931 ///
1932 /// Note: The graph does not take ownership of the underlying buffer, nor copy
1933 /// its contents. The caller is responsible for ensuring that the object buffer
1934 /// outlives the graph.
1935 Expected<std::unique_ptr<LinkGraph>>
1936 createLinkGraphFromObject(MemoryBufferRef ObjectBuffer);
1937
1938 /// Create a \c LinkGraph defining the given absolute symbols.
1939 std::unique_ptr<LinkGraph> absoluteSymbolsLinkGraph(const Triple &TT,
1940 orc::SymbolMap Symbols);
1941
1942 /// Link the given graph.
1943 void link(std::unique_ptr<LinkGraph> G, std::unique_ptr<JITLinkContext> Ctx);
1944
1945 } // end namespace jitlink
1946 } // end namespace llvm
1947
1948 #endif // LLVM_EXECUTIONENGINE_JITLINK_JITLINK_H
1949