xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/ScalarEvolution.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution analysis
10 // engine, which is used primarily to analyze expressions involving induction
11 // variables in loops.
12 //
13 // There are several aspects to this library.  First is the representation of
14 // scalar expressions, which are represented as subclasses of the SCEV class.
15 // These classes are used to represent certain types of subexpressions that we
16 // can handle. We only create one SCEV of a particular shape, so
17 // pointer-comparisons for equality are legal.
18 //
19 // One important aspect of the SCEV objects is that they are never cyclic, even
20 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
22 // recurrence) then we represent it directly as a recurrence node, otherwise we
23 // represent it as a SCEVUnknown node.
24 //
25 // In addition to being able to represent expressions of various types, we also
26 // have folders that are used to build the *canonical* representation for a
27 // particular expression.  These folders are capable of using a variety of
28 // rewrite rules to simplify the expressions.
29 //
30 // Once the folders are defined, we can implement the more interesting
31 // higher-level code, such as the code that recognizes PHI nodes of various
32 // types, computes the execution count of a loop, etc.
33 //
34 // TODO: We should use these routines and value representations to implement
35 // dependence analysis!
36 //
37 //===----------------------------------------------------------------------===//
38 //
39 // There are several good references for the techniques used in this analysis.
40 //
41 //  Chains of recurrences -- a method to expedite the evaluation
42 //  of closed-form functions
43 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
44 //
45 //  On computational properties of chains of recurrences
46 //  Eugene V. Zima
47 //
48 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49 //  Robert A. van Engelen
50 //
51 //  Efficient Symbolic Analysis for Optimizing Compilers
52 //  Robert A. van Engelen
53 //
54 //  Using the chains of recurrences algebra for data dependence testing and
55 //  induction variable substitution
56 //  MS Thesis, Johnie Birch
57 //
58 //===----------------------------------------------------------------------===//
59 
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DepthFirstIterator.h"
65 #include "llvm/ADT/EquivalenceClasses.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/STLExtras.h"
68 #include "llvm/ADT/ScopeExit.h"
69 #include "llvm/ADT/Sequence.h"
70 #include "llvm/ADT/SmallPtrSet.h"
71 #include "llvm/ADT/SmallSet.h"
72 #include "llvm/ADT/SmallVector.h"
73 #include "llvm/ADT/Statistic.h"
74 #include "llvm/ADT/StringExtras.h"
75 #include "llvm/ADT/StringRef.h"
76 #include "llvm/Analysis/AssumptionCache.h"
77 #include "llvm/Analysis/ConstantFolding.h"
78 #include "llvm/Analysis/InstructionSimplify.h"
79 #include "llvm/Analysis/LoopInfo.h"
80 #include "llvm/Analysis/MemoryBuiltins.h"
81 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
82 #include "llvm/Analysis/TargetLibraryInfo.h"
83 #include "llvm/Analysis/ValueTracking.h"
84 #include "llvm/Config/llvm-config.h"
85 #include "llvm/IR/Argument.h"
86 #include "llvm/IR/BasicBlock.h"
87 #include "llvm/IR/CFG.h"
88 #include "llvm/IR/Constant.h"
89 #include "llvm/IR/ConstantRange.h"
90 #include "llvm/IR/Constants.h"
91 #include "llvm/IR/DataLayout.h"
92 #include "llvm/IR/DerivedTypes.h"
93 #include "llvm/IR/Dominators.h"
94 #include "llvm/IR/Function.h"
95 #include "llvm/IR/GlobalAlias.h"
96 #include "llvm/IR/GlobalValue.h"
97 #include "llvm/IR/InstIterator.h"
98 #include "llvm/IR/InstrTypes.h"
99 #include "llvm/IR/Instruction.h"
100 #include "llvm/IR/Instructions.h"
101 #include "llvm/IR/IntrinsicInst.h"
102 #include "llvm/IR/Intrinsics.h"
103 #include "llvm/IR/LLVMContext.h"
104 #include "llvm/IR/Operator.h"
105 #include "llvm/IR/PatternMatch.h"
106 #include "llvm/IR/Type.h"
107 #include "llvm/IR/Use.h"
108 #include "llvm/IR/User.h"
109 #include "llvm/IR/Value.h"
110 #include "llvm/IR/Verifier.h"
111 #include "llvm/InitializePasses.h"
112 #include "llvm/Pass.h"
113 #include "llvm/Support/Casting.h"
114 #include "llvm/Support/CommandLine.h"
115 #include "llvm/Support/Compiler.h"
116 #include "llvm/Support/Debug.h"
117 #include "llvm/Support/ErrorHandling.h"
118 #include "llvm/Support/KnownBits.h"
119 #include "llvm/Support/SaveAndRestore.h"
120 #include "llvm/Support/raw_ostream.h"
121 #include <algorithm>
122 #include <cassert>
123 #include <climits>
124 #include <cstdint>
125 #include <cstdlib>
126 #include <map>
127 #include <memory>
128 #include <numeric>
129 #include <optional>
130 #include <tuple>
131 #include <utility>
132 #include <vector>
133 
134 using namespace llvm;
135 using namespace PatternMatch;
136 
137 #define DEBUG_TYPE "scalar-evolution"
138 
139 STATISTIC(NumExitCountsComputed,
140           "Number of loop exits with predictable exit counts");
141 STATISTIC(NumExitCountsNotComputed,
142           "Number of loop exits without predictable exit counts");
143 STATISTIC(NumBruteForceTripCountsComputed,
144           "Number of loops with trip counts computed by force");
145 
146 #ifdef EXPENSIVE_CHECKS
147 bool llvm::VerifySCEV = true;
148 #else
149 bool llvm::VerifySCEV = false;
150 #endif
151 
152 static cl::opt<unsigned>
153     MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
154                             cl::desc("Maximum number of iterations SCEV will "
155                                      "symbolically execute a constant "
156                                      "derived loop"),
157                             cl::init(100));
158 
159 static cl::opt<bool, true> VerifySCEVOpt(
160     "verify-scev", cl::Hidden, cl::location(VerifySCEV),
161     cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
162 static cl::opt<bool> VerifySCEVStrict(
163     "verify-scev-strict", cl::Hidden,
164     cl::desc("Enable stricter verification with -verify-scev is passed"));
165 
166 static cl::opt<bool> VerifyIR(
167     "scev-verify-ir", cl::Hidden,
168     cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
169     cl::init(false));
170 
171 static cl::opt<unsigned> MulOpsInlineThreshold(
172     "scev-mulops-inline-threshold", cl::Hidden,
173     cl::desc("Threshold for inlining multiplication operands into a SCEV"),
174     cl::init(32));
175 
176 static cl::opt<unsigned> AddOpsInlineThreshold(
177     "scev-addops-inline-threshold", cl::Hidden,
178     cl::desc("Threshold for inlining addition operands into a SCEV"),
179     cl::init(500));
180 
181 static cl::opt<unsigned> MaxSCEVCompareDepth(
182     "scalar-evolution-max-scev-compare-depth", cl::Hidden,
183     cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
184     cl::init(32));
185 
186 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
187     "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
188     cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
189     cl::init(2));
190 
191 static cl::opt<unsigned> MaxValueCompareDepth(
192     "scalar-evolution-max-value-compare-depth", cl::Hidden,
193     cl::desc("Maximum depth of recursive value complexity comparisons"),
194     cl::init(2));
195 
196 static cl::opt<unsigned>
197     MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
198                   cl::desc("Maximum depth of recursive arithmetics"),
199                   cl::init(32));
200 
201 static cl::opt<unsigned> MaxConstantEvolvingDepth(
202     "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
203     cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
204 
205 static cl::opt<unsigned>
206     MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
207                  cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
208                  cl::init(8));
209 
210 static cl::opt<unsigned>
211     MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
212                   cl::desc("Max coefficients in AddRec during evolving"),
213                   cl::init(8));
214 
215 static cl::opt<unsigned>
216     HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
217                   cl::desc("Size of the expression which is considered huge"),
218                   cl::init(4096));
219 
220 static cl::opt<unsigned> RangeIterThreshold(
221     "scev-range-iter-threshold", cl::Hidden,
222     cl::desc("Threshold for switching to iteratively computing SCEV ranges"),
223     cl::init(32));
224 
225 static cl::opt<bool>
226 ClassifyExpressions("scalar-evolution-classify-expressions",
227     cl::Hidden, cl::init(true),
228     cl::desc("When printing analysis, include information on every instruction"));
229 
230 static cl::opt<bool> UseExpensiveRangeSharpening(
231     "scalar-evolution-use-expensive-range-sharpening", cl::Hidden,
232     cl::init(false),
233     cl::desc("Use more powerful methods of sharpening expression ranges. May "
234              "be costly in terms of compile time"));
235 
236 static cl::opt<unsigned> MaxPhiSCCAnalysisSize(
237     "scalar-evolution-max-scc-analysis-depth", cl::Hidden,
238     cl::desc("Maximum amount of nodes to process while searching SCEVUnknown "
239              "Phi strongly connected components"),
240     cl::init(8));
241 
242 static cl::opt<bool>
243     EnableFiniteLoopControl("scalar-evolution-finite-loop", cl::Hidden,
244                             cl::desc("Handle <= and >= in finite loops"),
245                             cl::init(true));
246 
247 static cl::opt<bool> UseContextForNoWrapFlagInference(
248     "scalar-evolution-use-context-for-no-wrap-flag-strenghening", cl::Hidden,
249     cl::desc("Infer nuw/nsw flags using context where suitable"),
250     cl::init(true));
251 
252 //===----------------------------------------------------------------------===//
253 //                           SCEV class definitions
254 //===----------------------------------------------------------------------===//
255 
256 //===----------------------------------------------------------------------===//
257 // Implementation of the SCEV class.
258 //
259 
260 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const261 LLVM_DUMP_METHOD void SCEV::dump() const {
262   print(dbgs());
263   dbgs() << '\n';
264 }
265 #endif
266 
print(raw_ostream & OS) const267 void SCEV::print(raw_ostream &OS) const {
268   switch (getSCEVType()) {
269   case scConstant:
270     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
271     return;
272   case scVScale:
273     OS << "vscale";
274     return;
275   case scPtrToInt: {
276     const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this);
277     const SCEV *Op = PtrToInt->getOperand();
278     OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to "
279        << *PtrToInt->getType() << ")";
280     return;
281   }
282   case scTruncate: {
283     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
284     const SCEV *Op = Trunc->getOperand();
285     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
286        << *Trunc->getType() << ")";
287     return;
288   }
289   case scZeroExtend: {
290     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
291     const SCEV *Op = ZExt->getOperand();
292     OS << "(zext " << *Op->getType() << " " << *Op << " to "
293        << *ZExt->getType() << ")";
294     return;
295   }
296   case scSignExtend: {
297     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
298     const SCEV *Op = SExt->getOperand();
299     OS << "(sext " << *Op->getType() << " " << *Op << " to "
300        << *SExt->getType() << ")";
301     return;
302   }
303   case scAddRecExpr: {
304     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
305     OS << "{" << *AR->getOperand(0);
306     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
307       OS << ",+," << *AR->getOperand(i);
308     OS << "}<";
309     if (AR->hasNoUnsignedWrap())
310       OS << "nuw><";
311     if (AR->hasNoSignedWrap())
312       OS << "nsw><";
313     if (AR->hasNoSelfWrap() &&
314         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
315       OS << "nw><";
316     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
317     OS << ">";
318     return;
319   }
320   case scAddExpr:
321   case scMulExpr:
322   case scUMaxExpr:
323   case scSMaxExpr:
324   case scUMinExpr:
325   case scSMinExpr:
326   case scSequentialUMinExpr: {
327     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
328     const char *OpStr = nullptr;
329     switch (NAry->getSCEVType()) {
330     case scAddExpr: OpStr = " + "; break;
331     case scMulExpr: OpStr = " * "; break;
332     case scUMaxExpr: OpStr = " umax "; break;
333     case scSMaxExpr: OpStr = " smax "; break;
334     case scUMinExpr:
335       OpStr = " umin ";
336       break;
337     case scSMinExpr:
338       OpStr = " smin ";
339       break;
340     case scSequentialUMinExpr:
341       OpStr = " umin_seq ";
342       break;
343     default:
344       llvm_unreachable("There are no other nary expression types.");
345     }
346     OS << "(";
347     ListSeparator LS(OpStr);
348     for (const SCEV *Op : NAry->operands())
349       OS << LS << *Op;
350     OS << ")";
351     switch (NAry->getSCEVType()) {
352     case scAddExpr:
353     case scMulExpr:
354       if (NAry->hasNoUnsignedWrap())
355         OS << "<nuw>";
356       if (NAry->hasNoSignedWrap())
357         OS << "<nsw>";
358       break;
359     default:
360       // Nothing to print for other nary expressions.
361       break;
362     }
363     return;
364   }
365   case scUDivExpr: {
366     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
367     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
368     return;
369   }
370   case scUnknown:
371     cast<SCEVUnknown>(this)->getValue()->printAsOperand(OS, false);
372     return;
373   case scCouldNotCompute:
374     OS << "***COULDNOTCOMPUTE***";
375     return;
376   }
377   llvm_unreachable("Unknown SCEV kind!");
378 }
379 
getType() const380 Type *SCEV::getType() const {
381   switch (getSCEVType()) {
382   case scConstant:
383     return cast<SCEVConstant>(this)->getType();
384   case scVScale:
385     return cast<SCEVVScale>(this)->getType();
386   case scPtrToInt:
387   case scTruncate:
388   case scZeroExtend:
389   case scSignExtend:
390     return cast<SCEVCastExpr>(this)->getType();
391   case scAddRecExpr:
392     return cast<SCEVAddRecExpr>(this)->getType();
393   case scMulExpr:
394     return cast<SCEVMulExpr>(this)->getType();
395   case scUMaxExpr:
396   case scSMaxExpr:
397   case scUMinExpr:
398   case scSMinExpr:
399     return cast<SCEVMinMaxExpr>(this)->getType();
400   case scSequentialUMinExpr:
401     return cast<SCEVSequentialMinMaxExpr>(this)->getType();
402   case scAddExpr:
403     return cast<SCEVAddExpr>(this)->getType();
404   case scUDivExpr:
405     return cast<SCEVUDivExpr>(this)->getType();
406   case scUnknown:
407     return cast<SCEVUnknown>(this)->getType();
408   case scCouldNotCompute:
409     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
410   }
411   llvm_unreachable("Unknown SCEV kind!");
412 }
413 
operands() const414 ArrayRef<const SCEV *> SCEV::operands() const {
415   switch (getSCEVType()) {
416   case scConstant:
417   case scVScale:
418   case scUnknown:
419     return {};
420   case scPtrToInt:
421   case scTruncate:
422   case scZeroExtend:
423   case scSignExtend:
424     return cast<SCEVCastExpr>(this)->operands();
425   case scAddRecExpr:
426   case scAddExpr:
427   case scMulExpr:
428   case scUMaxExpr:
429   case scSMaxExpr:
430   case scUMinExpr:
431   case scSMinExpr:
432   case scSequentialUMinExpr:
433     return cast<SCEVNAryExpr>(this)->operands();
434   case scUDivExpr:
435     return cast<SCEVUDivExpr>(this)->operands();
436   case scCouldNotCompute:
437     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
438   }
439   llvm_unreachable("Unknown SCEV kind!");
440 }
441 
isZero() const442 bool SCEV::isZero() const {
443   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
444     return SC->getValue()->isZero();
445   return false;
446 }
447 
isOne() const448 bool SCEV::isOne() const {
449   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
450     return SC->getValue()->isOne();
451   return false;
452 }
453 
isAllOnesValue() const454 bool SCEV::isAllOnesValue() const {
455   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
456     return SC->getValue()->isMinusOne();
457   return false;
458 }
459 
isNonConstantNegative() const460 bool SCEV::isNonConstantNegative() const {
461   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
462   if (!Mul) return false;
463 
464   // If there is a constant factor, it will be first.
465   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
466   if (!SC) return false;
467 
468   // Return true if the value is negative, this matches things like (-42 * V).
469   return SC->getAPInt().isNegative();
470 }
471 
SCEVCouldNotCompute()472 SCEVCouldNotCompute::SCEVCouldNotCompute() :
473   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
474 
classof(const SCEV * S)475 bool SCEVCouldNotCompute::classof(const SCEV *S) {
476   return S->getSCEVType() == scCouldNotCompute;
477 }
478 
getConstant(ConstantInt * V)479 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
480   FoldingSetNodeID ID;
481   ID.AddInteger(scConstant);
482   ID.AddPointer(V);
483   void *IP = nullptr;
484   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
485   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
486   UniqueSCEVs.InsertNode(S, IP);
487   return S;
488 }
489 
getConstant(const APInt & Val)490 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
491   return getConstant(ConstantInt::get(getContext(), Val));
492 }
493 
494 const SCEV *
getConstant(Type * Ty,uint64_t V,bool isSigned)495 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
496   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
497   return getConstant(ConstantInt::get(ITy, V, isSigned));
498 }
499 
getVScale(Type * Ty)500 const SCEV *ScalarEvolution::getVScale(Type *Ty) {
501   FoldingSetNodeID ID;
502   ID.AddInteger(scVScale);
503   ID.AddPointer(Ty);
504   void *IP = nullptr;
505   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
506     return S;
507   SCEV *S = new (SCEVAllocator) SCEVVScale(ID.Intern(SCEVAllocator), Ty);
508   UniqueSCEVs.InsertNode(S, IP);
509   return S;
510 }
511 
getElementCount(Type * Ty,ElementCount EC)512 const SCEV *ScalarEvolution::getElementCount(Type *Ty, ElementCount EC) {
513   const SCEV *Res = getConstant(Ty, EC.getKnownMinValue());
514   if (EC.isScalable())
515     Res = getMulExpr(Res, getVScale(Ty));
516   return Res;
517 }
518 
SCEVCastExpr(const FoldingSetNodeIDRef ID,SCEVTypes SCEVTy,const SCEV * op,Type * ty)519 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy,
520                            const SCEV *op, Type *ty)
521     : SCEV(ID, SCEVTy, computeExpressionSize(op)), Op(op), Ty(ty) {}
522 
SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID,const SCEV * Op,Type * ITy)523 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op,
524                                    Type *ITy)
525     : SCEVCastExpr(ID, scPtrToInt, Op, ITy) {
526   assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() &&
527          "Must be a non-bit-width-changing pointer-to-integer cast!");
528 }
529 
SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID,SCEVTypes SCEVTy,const SCEV * op,Type * ty)530 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID,
531                                            SCEVTypes SCEVTy, const SCEV *op,
532                                            Type *ty)
533     : SCEVCastExpr(ID, SCEVTy, op, ty) {}
534 
SCEVTruncateExpr(const FoldingSetNodeIDRef ID,const SCEV * op,Type * ty)535 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op,
536                                    Type *ty)
537     : SCEVIntegralCastExpr(ID, scTruncate, op, ty) {
538   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
539          "Cannot truncate non-integer value!");
540 }
541 
SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,const SCEV * op,Type * ty)542 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
543                                        const SCEV *op, Type *ty)
544     : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) {
545   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
546          "Cannot zero extend non-integer value!");
547 }
548 
SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,const SCEV * op,Type * ty)549 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
550                                        const SCEV *op, Type *ty)
551     : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) {
552   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
553          "Cannot sign extend non-integer value!");
554 }
555 
deleted()556 void SCEVUnknown::deleted() {
557   // Clear this SCEVUnknown from various maps.
558   SE->forgetMemoizedResults(this);
559 
560   // Remove this SCEVUnknown from the uniquing map.
561   SE->UniqueSCEVs.RemoveNode(this);
562 
563   // Release the value.
564   setValPtr(nullptr);
565 }
566 
allUsesReplacedWith(Value * New)567 void SCEVUnknown::allUsesReplacedWith(Value *New) {
568   // Clear this SCEVUnknown from various maps.
569   SE->forgetMemoizedResults(this);
570 
571   // Remove this SCEVUnknown from the uniquing map.
572   SE->UniqueSCEVs.RemoveNode(this);
573 
574   // Replace the value pointer in case someone is still using this SCEVUnknown.
575   setValPtr(New);
576 }
577 
578 //===----------------------------------------------------------------------===//
579 //                               SCEV Utilities
580 //===----------------------------------------------------------------------===//
581 
582 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
583 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
584 /// operands in SCEV expressions.  \p EqCache is a set of pairs of values that
585 /// have been previously deemed to be "equally complex" by this routine.  It is
586 /// intended to avoid exponential time complexity in cases like:
587 ///
588 ///   %a = f(%x, %y)
589 ///   %b = f(%a, %a)
590 ///   %c = f(%b, %b)
591 ///
592 ///   %d = f(%x, %y)
593 ///   %e = f(%d, %d)
594 ///   %f = f(%e, %e)
595 ///
596 ///   CompareValueComplexity(%f, %c)
597 ///
598 /// Since we do not continue running this routine on expression trees once we
599 /// have seen unequal values, there is no need to track them in the cache.
600 static int
CompareValueComplexity(EquivalenceClasses<const Value * > & EqCacheValue,const LoopInfo * const LI,Value * LV,Value * RV,unsigned Depth)601 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
602                        const LoopInfo *const LI, Value *LV, Value *RV,
603                        unsigned Depth) {
604   if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
605     return 0;
606 
607   // Order pointer values after integer values. This helps SCEVExpander form
608   // GEPs.
609   bool LIsPointer = LV->getType()->isPointerTy(),
610        RIsPointer = RV->getType()->isPointerTy();
611   if (LIsPointer != RIsPointer)
612     return (int)LIsPointer - (int)RIsPointer;
613 
614   // Compare getValueID values.
615   unsigned LID = LV->getValueID(), RID = RV->getValueID();
616   if (LID != RID)
617     return (int)LID - (int)RID;
618 
619   // Sort arguments by their position.
620   if (const auto *LA = dyn_cast<Argument>(LV)) {
621     const auto *RA = cast<Argument>(RV);
622     unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
623     return (int)LArgNo - (int)RArgNo;
624   }
625 
626   if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
627     const auto *RGV = cast<GlobalValue>(RV);
628 
629     const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
630       auto LT = GV->getLinkage();
631       return !(GlobalValue::isPrivateLinkage(LT) ||
632                GlobalValue::isInternalLinkage(LT));
633     };
634 
635     // Use the names to distinguish the two values, but only if the
636     // names are semantically important.
637     if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
638       return LGV->getName().compare(RGV->getName());
639   }
640 
641   // For instructions, compare their loop depth, and their operand count.  This
642   // is pretty loose.
643   if (const auto *LInst = dyn_cast<Instruction>(LV)) {
644     const auto *RInst = cast<Instruction>(RV);
645 
646     // Compare loop depths.
647     const BasicBlock *LParent = LInst->getParent(),
648                      *RParent = RInst->getParent();
649     if (LParent != RParent) {
650       unsigned LDepth = LI->getLoopDepth(LParent),
651                RDepth = LI->getLoopDepth(RParent);
652       if (LDepth != RDepth)
653         return (int)LDepth - (int)RDepth;
654     }
655 
656     // Compare the number of operands.
657     unsigned LNumOps = LInst->getNumOperands(),
658              RNumOps = RInst->getNumOperands();
659     if (LNumOps != RNumOps)
660       return (int)LNumOps - (int)RNumOps;
661 
662     for (unsigned Idx : seq(LNumOps)) {
663       int Result =
664           CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
665                                  RInst->getOperand(Idx), Depth + 1);
666       if (Result != 0)
667         return Result;
668     }
669   }
670 
671   EqCacheValue.unionSets(LV, RV);
672   return 0;
673 }
674 
675 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
676 // than RHS, respectively. A three-way result allows recursive comparisons to be
677 // more efficient.
678 // If the max analysis depth was reached, return std::nullopt, assuming we do
679 // not know if they are equivalent for sure.
680 static std::optional<int>
CompareSCEVComplexity(EquivalenceClasses<const SCEV * > & EqCacheSCEV,EquivalenceClasses<const Value * > & EqCacheValue,const LoopInfo * const LI,const SCEV * LHS,const SCEV * RHS,DominatorTree & DT,unsigned Depth=0)681 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV,
682                       EquivalenceClasses<const Value *> &EqCacheValue,
683                       const LoopInfo *const LI, const SCEV *LHS,
684                       const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) {
685   // Fast-path: SCEVs are uniqued so we can do a quick equality check.
686   if (LHS == RHS)
687     return 0;
688 
689   // Primarily, sort the SCEVs by their getSCEVType().
690   SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
691   if (LType != RType)
692     return (int)LType - (int)RType;
693 
694   if (EqCacheSCEV.isEquivalent(LHS, RHS))
695     return 0;
696 
697   if (Depth > MaxSCEVCompareDepth)
698     return std::nullopt;
699 
700   // Aside from the getSCEVType() ordering, the particular ordering
701   // isn't very important except that it's beneficial to be consistent,
702   // so that (a + b) and (b + a) don't end up as different expressions.
703   switch (LType) {
704   case scUnknown: {
705     const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
706     const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
707 
708     int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
709                                    RU->getValue(), Depth + 1);
710     if (X == 0)
711       EqCacheSCEV.unionSets(LHS, RHS);
712     return X;
713   }
714 
715   case scConstant: {
716     const SCEVConstant *LC = cast<SCEVConstant>(LHS);
717     const SCEVConstant *RC = cast<SCEVConstant>(RHS);
718 
719     // Compare constant values.
720     const APInt &LA = LC->getAPInt();
721     const APInt &RA = RC->getAPInt();
722     unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
723     if (LBitWidth != RBitWidth)
724       return (int)LBitWidth - (int)RBitWidth;
725     return LA.ult(RA) ? -1 : 1;
726   }
727 
728   case scVScale: {
729     const auto *LTy = cast<IntegerType>(cast<SCEVVScale>(LHS)->getType());
730     const auto *RTy = cast<IntegerType>(cast<SCEVVScale>(RHS)->getType());
731     return LTy->getBitWidth() - RTy->getBitWidth();
732   }
733 
734   case scAddRecExpr: {
735     const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
736     const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
737 
738     // There is always a dominance between two recs that are used by one SCEV,
739     // so we can safely sort recs by loop header dominance. We require such
740     // order in getAddExpr.
741     const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
742     if (LLoop != RLoop) {
743       const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
744       assert(LHead != RHead && "Two loops share the same header?");
745       if (DT.dominates(LHead, RHead))
746         return 1;
747       assert(DT.dominates(RHead, LHead) &&
748              "No dominance between recurrences used by one SCEV?");
749       return -1;
750     }
751 
752     [[fallthrough]];
753   }
754 
755   case scTruncate:
756   case scZeroExtend:
757   case scSignExtend:
758   case scPtrToInt:
759   case scAddExpr:
760   case scMulExpr:
761   case scUDivExpr:
762   case scSMaxExpr:
763   case scUMaxExpr:
764   case scSMinExpr:
765   case scUMinExpr:
766   case scSequentialUMinExpr: {
767     ArrayRef<const SCEV *> LOps = LHS->operands();
768     ArrayRef<const SCEV *> ROps = RHS->operands();
769 
770     // Lexicographically compare n-ary-like expressions.
771     unsigned LNumOps = LOps.size(), RNumOps = ROps.size();
772     if (LNumOps != RNumOps)
773       return (int)LNumOps - (int)RNumOps;
774 
775     for (unsigned i = 0; i != LNumOps; ++i) {
776       auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LOps[i],
777                                      ROps[i], DT, Depth + 1);
778       if (X != 0)
779         return X;
780     }
781     EqCacheSCEV.unionSets(LHS, RHS);
782     return 0;
783   }
784 
785   case scCouldNotCompute:
786     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
787   }
788   llvm_unreachable("Unknown SCEV kind!");
789 }
790 
791 /// Given a list of SCEV objects, order them by their complexity, and group
792 /// objects of the same complexity together by value.  When this routine is
793 /// finished, we know that any duplicates in the vector are consecutive and that
794 /// complexity is monotonically increasing.
795 ///
796 /// Note that we go take special precautions to ensure that we get deterministic
797 /// results from this routine.  In other words, we don't want the results of
798 /// this to depend on where the addresses of various SCEV objects happened to
799 /// land in memory.
GroupByComplexity(SmallVectorImpl<const SCEV * > & Ops,LoopInfo * LI,DominatorTree & DT)800 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
801                               LoopInfo *LI, DominatorTree &DT) {
802   if (Ops.size() < 2) return;  // Noop
803 
804   EquivalenceClasses<const SCEV *> EqCacheSCEV;
805   EquivalenceClasses<const Value *> EqCacheValue;
806 
807   // Whether LHS has provably less complexity than RHS.
808   auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) {
809     auto Complexity =
810         CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT);
811     return Complexity && *Complexity < 0;
812   };
813   if (Ops.size() == 2) {
814     // This is the common case, which also happens to be trivially simple.
815     // Special case it.
816     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
817     if (IsLessComplex(RHS, LHS))
818       std::swap(LHS, RHS);
819     return;
820   }
821 
822   // Do the rough sort by complexity.
823   llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) {
824     return IsLessComplex(LHS, RHS);
825   });
826 
827   // Now that we are sorted by complexity, group elements of the same
828   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
829   // be extremely short in practice.  Note that we take this approach because we
830   // do not want to depend on the addresses of the objects we are grouping.
831   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
832     const SCEV *S = Ops[i];
833     unsigned Complexity = S->getSCEVType();
834 
835     // If there are any objects of the same complexity and same value as this
836     // one, group them.
837     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
838       if (Ops[j] == S) { // Found a duplicate.
839         // Move it to immediately after i'th element.
840         std::swap(Ops[i+1], Ops[j]);
841         ++i;   // no need to rescan it.
842         if (i == e-2) return;  // Done!
843       }
844     }
845   }
846 }
847 
848 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at
849 /// least HugeExprThreshold nodes).
hasHugeExpression(ArrayRef<const SCEV * > Ops)850 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {
851   return any_of(Ops, [](const SCEV *S) {
852     return S->getExpressionSize() >= HugeExprThreshold;
853   });
854 }
855 
856 //===----------------------------------------------------------------------===//
857 //                      Simple SCEV method implementations
858 //===----------------------------------------------------------------------===//
859 
860 /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
BinomialCoefficient(const SCEV * It,unsigned K,ScalarEvolution & SE,Type * ResultTy)861 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
862                                        ScalarEvolution &SE,
863                                        Type *ResultTy) {
864   // Handle the simplest case efficiently.
865   if (K == 1)
866     return SE.getTruncateOrZeroExtend(It, ResultTy);
867 
868   // We are using the following formula for BC(It, K):
869   //
870   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
871   //
872   // Suppose, W is the bitwidth of the return value.  We must be prepared for
873   // overflow.  Hence, we must assure that the result of our computation is
874   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
875   // safe in modular arithmetic.
876   //
877   // However, this code doesn't use exactly that formula; the formula it uses
878   // is something like the following, where T is the number of factors of 2 in
879   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
880   // exponentiation:
881   //
882   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
883   //
884   // This formula is trivially equivalent to the previous formula.  However,
885   // this formula can be implemented much more efficiently.  The trick is that
886   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
887   // arithmetic.  To do exact division in modular arithmetic, all we have
888   // to do is multiply by the inverse.  Therefore, this step can be done at
889   // width W.
890   //
891   // The next issue is how to safely do the division by 2^T.  The way this
892   // is done is by doing the multiplication step at a width of at least W + T
893   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
894   // when we perform the division by 2^T (which is equivalent to a right shift
895   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
896   // truncated out after the division by 2^T.
897   //
898   // In comparison to just directly using the first formula, this technique
899   // is much more efficient; using the first formula requires W * K bits,
900   // but this formula less than W + K bits. Also, the first formula requires
901   // a division step, whereas this formula only requires multiplies and shifts.
902   //
903   // It doesn't matter whether the subtraction step is done in the calculation
904   // width or the input iteration count's width; if the subtraction overflows,
905   // the result must be zero anyway.  We prefer here to do it in the width of
906   // the induction variable because it helps a lot for certain cases; CodeGen
907   // isn't smart enough to ignore the overflow, which leads to much less
908   // efficient code if the width of the subtraction is wider than the native
909   // register width.
910   //
911   // (It's possible to not widen at all by pulling out factors of 2 before
912   // the multiplication; for example, K=2 can be calculated as
913   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
914   // extra arithmetic, so it's not an obvious win, and it gets
915   // much more complicated for K > 3.)
916 
917   // Protection from insane SCEVs; this bound is conservative,
918   // but it probably doesn't matter.
919   if (K > 1000)
920     return SE.getCouldNotCompute();
921 
922   unsigned W = SE.getTypeSizeInBits(ResultTy);
923 
924   // Calculate K! / 2^T and T; we divide out the factors of two before
925   // multiplying for calculating K! / 2^T to avoid overflow.
926   // Other overflow doesn't matter because we only care about the bottom
927   // W bits of the result.
928   APInt OddFactorial(W, 1);
929   unsigned T = 1;
930   for (unsigned i = 3; i <= K; ++i) {
931     unsigned TwoFactors = countr_zero(i);
932     T += TwoFactors;
933     OddFactorial *= (i >> TwoFactors);
934   }
935 
936   // We need at least W + T bits for the multiplication step
937   unsigned CalculationBits = W + T;
938 
939   // Calculate 2^T, at width T+W.
940   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
941 
942   // Calculate the multiplicative inverse of K! / 2^T;
943   // this multiplication factor will perform the exact division by
944   // K! / 2^T.
945   APInt MultiplyFactor = OddFactorial.multiplicativeInverse();
946 
947   // Calculate the product, at width T+W
948   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
949                                                       CalculationBits);
950   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
951   for (unsigned i = 1; i != K; ++i) {
952     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
953     Dividend = SE.getMulExpr(Dividend,
954                              SE.getTruncateOrZeroExtend(S, CalculationTy));
955   }
956 
957   // Divide by 2^T
958   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
959 
960   // Truncate the result, and divide by K! / 2^T.
961 
962   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
963                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
964 }
965 
966 /// Return the value of this chain of recurrences at the specified iteration
967 /// number.  We can evaluate this recurrence by multiplying each element in the
968 /// chain by the binomial coefficient corresponding to it.  In other words, we
969 /// can evaluate {A,+,B,+,C,+,D} as:
970 ///
971 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
972 ///
973 /// where BC(It, k) stands for binomial coefficient.
evaluateAtIteration(const SCEV * It,ScalarEvolution & SE) const974 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
975                                                 ScalarEvolution &SE) const {
976   return evaluateAtIteration(operands(), It, SE);
977 }
978 
979 const SCEV *
evaluateAtIteration(ArrayRef<const SCEV * > Operands,const SCEV * It,ScalarEvolution & SE)980 SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands,
981                                     const SCEV *It, ScalarEvolution &SE) {
982   assert(Operands.size() > 0);
983   const SCEV *Result = Operands[0];
984   for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
985     // The computation is correct in the face of overflow provided that the
986     // multiplication is performed _after_ the evaluation of the binomial
987     // coefficient.
988     const SCEV *Coeff = BinomialCoefficient(It, i, SE, Result->getType());
989     if (isa<SCEVCouldNotCompute>(Coeff))
990       return Coeff;
991 
992     Result = SE.getAddExpr(Result, SE.getMulExpr(Operands[i], Coeff));
993   }
994   return Result;
995 }
996 
997 //===----------------------------------------------------------------------===//
998 //                    SCEV Expression folder implementations
999 //===----------------------------------------------------------------------===//
1000 
getLosslessPtrToIntExpr(const SCEV * Op,unsigned Depth)1001 const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op,
1002                                                      unsigned Depth) {
1003   assert(Depth <= 1 &&
1004          "getLosslessPtrToIntExpr() should self-recurse at most once.");
1005 
1006   // We could be called with an integer-typed operands during SCEV rewrites.
1007   // Since the operand is an integer already, just perform zext/trunc/self cast.
1008   if (!Op->getType()->isPointerTy())
1009     return Op;
1010 
1011   // What would be an ID for such a SCEV cast expression?
1012   FoldingSetNodeID ID;
1013   ID.AddInteger(scPtrToInt);
1014   ID.AddPointer(Op);
1015 
1016   void *IP = nullptr;
1017 
1018   // Is there already an expression for such a cast?
1019   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1020     return S;
1021 
1022   // It isn't legal for optimizations to construct new ptrtoint expressions
1023   // for non-integral pointers.
1024   if (getDataLayout().isNonIntegralPointerType(Op->getType()))
1025     return getCouldNotCompute();
1026 
1027   Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType());
1028 
1029   // We can only trivially model ptrtoint if SCEV's effective (integer) type
1030   // is sufficiently wide to represent all possible pointer values.
1031   // We could theoretically teach SCEV to truncate wider pointers, but
1032   // that isn't implemented for now.
1033   if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) !=
1034       getDataLayout().getTypeSizeInBits(IntPtrTy))
1035     return getCouldNotCompute();
1036 
1037   // If not, is this expression something we can't reduce any further?
1038   if (auto *U = dyn_cast<SCEVUnknown>(Op)) {
1039     // Perform some basic constant folding. If the operand of the ptr2int cast
1040     // is a null pointer, don't create a ptr2int SCEV expression (that will be
1041     // left as-is), but produce a zero constant.
1042     // NOTE: We could handle a more general case, but lack motivational cases.
1043     if (isa<ConstantPointerNull>(U->getValue()))
1044       return getZero(IntPtrTy);
1045 
1046     // Create an explicit cast node.
1047     // We can reuse the existing insert position since if we get here,
1048     // we won't have made any changes which would invalidate it.
1049     SCEV *S = new (SCEVAllocator)
1050         SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy);
1051     UniqueSCEVs.InsertNode(S, IP);
1052     registerUser(S, Op);
1053     return S;
1054   }
1055 
1056   assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for "
1057                        "non-SCEVUnknown's.");
1058 
1059   // Otherwise, we've got some expression that is more complex than just a
1060   // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an
1061   // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown
1062   // only, and the expressions must otherwise be integer-typed.
1063   // So sink the cast down to the SCEVUnknown's.
1064 
1065   /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression,
1066   /// which computes a pointer-typed value, and rewrites the whole expression
1067   /// tree so that *all* the computations are done on integers, and the only
1068   /// pointer-typed operands in the expression are SCEVUnknown.
1069   class SCEVPtrToIntSinkingRewriter
1070       : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> {
1071     using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>;
1072 
1073   public:
1074     SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {}
1075 
1076     static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) {
1077       SCEVPtrToIntSinkingRewriter Rewriter(SE);
1078       return Rewriter.visit(Scev);
1079     }
1080 
1081     const SCEV *visit(const SCEV *S) {
1082       Type *STy = S->getType();
1083       // If the expression is not pointer-typed, just keep it as-is.
1084       if (!STy->isPointerTy())
1085         return S;
1086       // Else, recursively sink the cast down into it.
1087       return Base::visit(S);
1088     }
1089 
1090     const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
1091       SmallVector<const SCEV *, 2> Operands;
1092       bool Changed = false;
1093       for (const auto *Op : Expr->operands()) {
1094         Operands.push_back(visit(Op));
1095         Changed |= Op != Operands.back();
1096       }
1097       return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags());
1098     }
1099 
1100     const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
1101       SmallVector<const SCEV *, 2> Operands;
1102       bool Changed = false;
1103       for (const auto *Op : Expr->operands()) {
1104         Operands.push_back(visit(Op));
1105         Changed |= Op != Operands.back();
1106       }
1107       return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags());
1108     }
1109 
1110     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
1111       assert(Expr->getType()->isPointerTy() &&
1112              "Should only reach pointer-typed SCEVUnknown's.");
1113       return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1);
1114     }
1115   };
1116 
1117   // And actually perform the cast sinking.
1118   const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this);
1119   assert(IntOp->getType()->isIntegerTy() &&
1120          "We must have succeeded in sinking the cast, "
1121          "and ending up with an integer-typed expression!");
1122   return IntOp;
1123 }
1124 
getPtrToIntExpr(const SCEV * Op,Type * Ty)1125 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) {
1126   assert(Ty->isIntegerTy() && "Target type must be an integer type!");
1127 
1128   const SCEV *IntOp = getLosslessPtrToIntExpr(Op);
1129   if (isa<SCEVCouldNotCompute>(IntOp))
1130     return IntOp;
1131 
1132   return getTruncateOrZeroExtend(IntOp, Ty);
1133 }
1134 
getTruncateExpr(const SCEV * Op,Type * Ty,unsigned Depth)1135 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,
1136                                              unsigned Depth) {
1137   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1138          "This is not a truncating conversion!");
1139   assert(isSCEVable(Ty) &&
1140          "This is not a conversion to a SCEVable type!");
1141   assert(!Op->getType()->isPointerTy() && "Can't truncate pointer!");
1142   Ty = getEffectiveSCEVType(Ty);
1143 
1144   FoldingSetNodeID ID;
1145   ID.AddInteger(scTruncate);
1146   ID.AddPointer(Op);
1147   ID.AddPointer(Ty);
1148   void *IP = nullptr;
1149   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1150 
1151   // Fold if the operand is constant.
1152   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1153     return getConstant(
1154       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1155 
1156   // trunc(trunc(x)) --> trunc(x)
1157   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1158     return getTruncateExpr(ST->getOperand(), Ty, Depth + 1);
1159 
1160   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1161   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1162     return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1);
1163 
1164   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1165   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1166     return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1);
1167 
1168   if (Depth > MaxCastDepth) {
1169     SCEV *S =
1170         new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty);
1171     UniqueSCEVs.InsertNode(S, IP);
1172     registerUser(S, Op);
1173     return S;
1174   }
1175 
1176   // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1177   // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1178   // if after transforming we have at most one truncate, not counting truncates
1179   // that replace other casts.
1180   if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
1181     auto *CommOp = cast<SCEVCommutativeExpr>(Op);
1182     SmallVector<const SCEV *, 4> Operands;
1183     unsigned numTruncs = 0;
1184     for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1185          ++i) {
1186       const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1);
1187       if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) &&
1188           isa<SCEVTruncateExpr>(S))
1189         numTruncs++;
1190       Operands.push_back(S);
1191     }
1192     if (numTruncs < 2) {
1193       if (isa<SCEVAddExpr>(Op))
1194         return getAddExpr(Operands);
1195       if (isa<SCEVMulExpr>(Op))
1196         return getMulExpr(Operands);
1197       llvm_unreachable("Unexpected SCEV type for Op.");
1198     }
1199     // Although we checked in the beginning that ID is not in the cache, it is
1200     // possible that during recursion and different modification ID was inserted
1201     // into the cache. So if we find it, just return it.
1202     if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1203       return S;
1204   }
1205 
1206   // If the input value is a chrec scev, truncate the chrec's operands.
1207   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1208     SmallVector<const SCEV *, 4> Operands;
1209     for (const SCEV *Op : AddRec->operands())
1210       Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1));
1211     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1212   }
1213 
1214   // Return zero if truncating to known zeros.
1215   uint32_t MinTrailingZeros = getMinTrailingZeros(Op);
1216   if (MinTrailingZeros >= getTypeSizeInBits(Ty))
1217     return getZero(Ty);
1218 
1219   // The cast wasn't folded; create an explicit cast node. We can reuse
1220   // the existing insert position since if we get here, we won't have
1221   // made any changes which would invalidate it.
1222   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1223                                                  Op, Ty);
1224   UniqueSCEVs.InsertNode(S, IP);
1225   registerUser(S, Op);
1226   return S;
1227 }
1228 
1229 // Get the limit of a recurrence such that incrementing by Step cannot cause
1230 // signed overflow as long as the value of the recurrence within the
1231 // loop does not exceed this limit before incrementing.
getSignedOverflowLimitForStep(const SCEV * Step,ICmpInst::Predicate * Pred,ScalarEvolution * SE)1232 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1233                                                  ICmpInst::Predicate *Pred,
1234                                                  ScalarEvolution *SE) {
1235   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1236   if (SE->isKnownPositive(Step)) {
1237     *Pred = ICmpInst::ICMP_SLT;
1238     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1239                            SE->getSignedRangeMax(Step));
1240   }
1241   if (SE->isKnownNegative(Step)) {
1242     *Pred = ICmpInst::ICMP_SGT;
1243     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1244                            SE->getSignedRangeMin(Step));
1245   }
1246   return nullptr;
1247 }
1248 
1249 // Get the limit of a recurrence such that incrementing by Step cannot cause
1250 // unsigned overflow as long as the value of the recurrence within the loop does
1251 // not exceed this limit before incrementing.
getUnsignedOverflowLimitForStep(const SCEV * Step,ICmpInst::Predicate * Pred,ScalarEvolution * SE)1252 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1253                                                    ICmpInst::Predicate *Pred,
1254                                                    ScalarEvolution *SE) {
1255   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1256   *Pred = ICmpInst::ICMP_ULT;
1257 
1258   return SE->getConstant(APInt::getMinValue(BitWidth) -
1259                          SE->getUnsignedRangeMax(Step));
1260 }
1261 
1262 namespace {
1263 
1264 struct ExtendOpTraitsBase {
1265   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1266                                                           unsigned);
1267 };
1268 
1269 // Used to make code generic over signed and unsigned overflow.
1270 template <typename ExtendOp> struct ExtendOpTraits {
1271   // Members present:
1272   //
1273   // static const SCEV::NoWrapFlags WrapType;
1274   //
1275   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1276   //
1277   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1278   //                                           ICmpInst::Predicate *Pred,
1279   //                                           ScalarEvolution *SE);
1280 };
1281 
1282 template <>
1283 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1284   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1285 
1286   static const GetExtendExprTy GetExtendExpr;
1287 
getOverflowLimitForStep__anon8884d99e0511::ExtendOpTraits1288   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1289                                              ICmpInst::Predicate *Pred,
1290                                              ScalarEvolution *SE) {
1291     return getSignedOverflowLimitForStep(Step, Pred, SE);
1292   }
1293 };
1294 
1295 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1296     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1297 
1298 template <>
1299 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1300   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1301 
1302   static const GetExtendExprTy GetExtendExpr;
1303 
getOverflowLimitForStep__anon8884d99e0511::ExtendOpTraits1304   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1305                                              ICmpInst::Predicate *Pred,
1306                                              ScalarEvolution *SE) {
1307     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1308   }
1309 };
1310 
1311 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1312     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1313 
1314 } // end anonymous namespace
1315 
1316 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1317 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1318 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1319 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1320 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1321 // expression "Step + sext/zext(PreIncAR)" is congruent with
1322 // "sext/zext(PostIncAR)"
1323 template <typename ExtendOpTy>
getPreStartForExtend(const SCEVAddRecExpr * AR,Type * Ty,ScalarEvolution * SE,unsigned Depth)1324 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1325                                         ScalarEvolution *SE, unsigned Depth) {
1326   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1327   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1328 
1329   const Loop *L = AR->getLoop();
1330   const SCEV *Start = AR->getStart();
1331   const SCEV *Step = AR->getStepRecurrence(*SE);
1332 
1333   // Check for a simple looking step prior to loop entry.
1334   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1335   if (!SA)
1336     return nullptr;
1337 
1338   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1339   // subtraction is expensive. For this purpose, perform a quick and dirty
1340   // difference, by checking for Step in the operand list. Note, that
1341   // SA might have repeated ops, like %a + %a + ..., so only remove one.
1342   SmallVector<const SCEV *, 4> DiffOps(SA->operands());
1343   for (auto It = DiffOps.begin(); It != DiffOps.end(); ++It)
1344     if (*It == Step) {
1345       DiffOps.erase(It);
1346       break;
1347     }
1348 
1349   if (DiffOps.size() == SA->getNumOperands())
1350     return nullptr;
1351 
1352   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1353   // `Step`:
1354 
1355   // 1. NSW/NUW flags on the step increment.
1356   auto PreStartFlags =
1357     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1358   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1359   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1360       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1361 
1362   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1363   // "S+X does not sign/unsign-overflow".
1364   //
1365 
1366   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1367   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1368       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1369     return PreStart;
1370 
1371   // 2. Direct overflow check on the step operation's expression.
1372   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1373   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1374   const SCEV *OperandExtendedStart =
1375       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1376                      (SE->*GetExtendExpr)(Step, WideTy, Depth));
1377   if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1378     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1379       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1380       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1381       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1382       SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType);
1383     }
1384     return PreStart;
1385   }
1386 
1387   // 3. Loop precondition.
1388   ICmpInst::Predicate Pred;
1389   const SCEV *OverflowLimit =
1390       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1391 
1392   if (OverflowLimit &&
1393       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1394     return PreStart;
1395 
1396   return nullptr;
1397 }
1398 
1399 // Get the normalized zero or sign extended expression for this AddRec's Start.
1400 template <typename ExtendOpTy>
getExtendAddRecStart(const SCEVAddRecExpr * AR,Type * Ty,ScalarEvolution * SE,unsigned Depth)1401 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1402                                         ScalarEvolution *SE,
1403                                         unsigned Depth) {
1404   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1405 
1406   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1407   if (!PreStart)
1408     return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1409 
1410   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1411                                              Depth),
1412                         (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1413 }
1414 
1415 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1416 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1417 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1418 //
1419 // Formally:
1420 //
1421 //     {S,+,X} == {S-T,+,X} + T
1422 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1423 //
1424 // If ({S-T,+,X} + T) does not overflow  ... (1)
1425 //
1426 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1427 //
1428 // If {S-T,+,X} does not overflow  ... (2)
1429 //
1430 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1431 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1432 //
1433 // If (S-T)+T does not overflow  ... (3)
1434 //
1435 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1436 //      == {Ext(S),+,Ext(X)} == LHS
1437 //
1438 // Thus, if (1), (2) and (3) are true for some T, then
1439 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1440 //
1441 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1442 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1443 // to check for (1) and (2).
1444 //
1445 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1446 // is `Delta` (defined below).
1447 template <typename ExtendOpTy>
proveNoWrapByVaryingStart(const SCEV * Start,const SCEV * Step,const Loop * L)1448 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1449                                                 const SCEV *Step,
1450                                                 const Loop *L) {
1451   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1452 
1453   // We restrict `Start` to a constant to prevent SCEV from spending too much
1454   // time here.  It is correct (but more expensive) to continue with a
1455   // non-constant `Start` and do a general SCEV subtraction to compute
1456   // `PreStart` below.
1457   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1458   if (!StartC)
1459     return false;
1460 
1461   APInt StartAI = StartC->getAPInt();
1462 
1463   for (unsigned Delta : {-2, -1, 1, 2}) {
1464     const SCEV *PreStart = getConstant(StartAI - Delta);
1465 
1466     FoldingSetNodeID ID;
1467     ID.AddInteger(scAddRecExpr);
1468     ID.AddPointer(PreStart);
1469     ID.AddPointer(Step);
1470     ID.AddPointer(L);
1471     void *IP = nullptr;
1472     const auto *PreAR =
1473       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1474 
1475     // Give up if we don't already have the add recurrence we need because
1476     // actually constructing an add recurrence is relatively expensive.
1477     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1478       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1479       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1480       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1481           DeltaS, &Pred, this);
1482       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1483         return true;
1484     }
1485   }
1486 
1487   return false;
1488 }
1489 
1490 // Finds an integer D for an expression (C + x + y + ...) such that the top
1491 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1492 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1493 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1494 // the (C + x + y + ...) expression is \p WholeAddExpr.
extractConstantWithoutWrapping(ScalarEvolution & SE,const SCEVConstant * ConstantTerm,const SCEVAddExpr * WholeAddExpr)1495 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1496                                             const SCEVConstant *ConstantTerm,
1497                                             const SCEVAddExpr *WholeAddExpr) {
1498   const APInt &C = ConstantTerm->getAPInt();
1499   const unsigned BitWidth = C.getBitWidth();
1500   // Find number of trailing zeros of (x + y + ...) w/o the C first:
1501   uint32_t TZ = BitWidth;
1502   for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
1503     TZ = std::min(TZ, SE.getMinTrailingZeros(WholeAddExpr->getOperand(I)));
1504   if (TZ) {
1505     // Set D to be as many least significant bits of C as possible while still
1506     // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1507     return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
1508   }
1509   return APInt(BitWidth, 0);
1510 }
1511 
1512 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1513 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1514 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1515 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
extractConstantWithoutWrapping(ScalarEvolution & SE,const APInt & ConstantStart,const SCEV * Step)1516 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1517                                             const APInt &ConstantStart,
1518                                             const SCEV *Step) {
1519   const unsigned BitWidth = ConstantStart.getBitWidth();
1520   const uint32_t TZ = SE.getMinTrailingZeros(Step);
1521   if (TZ)
1522     return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
1523                          : ConstantStart;
1524   return APInt(BitWidth, 0);
1525 }
1526 
insertFoldCacheEntry(const ScalarEvolution::FoldID & ID,const SCEV * S,DenseMap<ScalarEvolution::FoldID,const SCEV * > & FoldCache,DenseMap<const SCEV *,SmallVector<ScalarEvolution::FoldID,2>> & FoldCacheUser)1527 static void insertFoldCacheEntry(
1528     const ScalarEvolution::FoldID &ID, const SCEV *S,
1529     DenseMap<ScalarEvolution::FoldID, const SCEV *> &FoldCache,
1530     DenseMap<const SCEV *, SmallVector<ScalarEvolution::FoldID, 2>>
1531         &FoldCacheUser) {
1532   auto I = FoldCache.insert({ID, S});
1533   if (!I.second) {
1534     // Remove FoldCacheUser entry for ID when replacing an existing FoldCache
1535     // entry.
1536     auto &UserIDs = FoldCacheUser[I.first->second];
1537     assert(count(UserIDs, ID) == 1 && "unexpected duplicates in UserIDs");
1538     for (unsigned I = 0; I != UserIDs.size(); ++I)
1539       if (UserIDs[I] == ID) {
1540         std::swap(UserIDs[I], UserIDs.back());
1541         break;
1542       }
1543     UserIDs.pop_back();
1544     I.first->second = S;
1545   }
1546   auto R = FoldCacheUser.insert({S, {}});
1547   R.first->second.push_back(ID);
1548 }
1549 
1550 const SCEV *
getZeroExtendExpr(const SCEV * Op,Type * Ty,unsigned Depth)1551 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1552   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1553          "This is not an extending conversion!");
1554   assert(isSCEVable(Ty) &&
1555          "This is not a conversion to a SCEVable type!");
1556   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1557   Ty = getEffectiveSCEVType(Ty);
1558 
1559   FoldID ID(scZeroExtend, Op, Ty);
1560   auto Iter = FoldCache.find(ID);
1561   if (Iter != FoldCache.end())
1562     return Iter->second;
1563 
1564   const SCEV *S = getZeroExtendExprImpl(Op, Ty, Depth);
1565   if (!isa<SCEVZeroExtendExpr>(S))
1566     insertFoldCacheEntry(ID, S, FoldCache, FoldCacheUser);
1567   return S;
1568 }
1569 
getZeroExtendExprImpl(const SCEV * Op,Type * Ty,unsigned Depth)1570 const SCEV *ScalarEvolution::getZeroExtendExprImpl(const SCEV *Op, Type *Ty,
1571                                                    unsigned Depth) {
1572   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1573          "This is not an extending conversion!");
1574   assert(isSCEVable(Ty) && "This is not a conversion to a SCEVable type!");
1575   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1576 
1577   // Fold if the operand is constant.
1578   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1579     return getConstant(SC->getAPInt().zext(getTypeSizeInBits(Ty)));
1580 
1581   // zext(zext(x)) --> zext(x)
1582   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1583     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1584 
1585   // Before doing any expensive analysis, check to see if we've already
1586   // computed a SCEV for this Op and Ty.
1587   FoldingSetNodeID ID;
1588   ID.AddInteger(scZeroExtend);
1589   ID.AddPointer(Op);
1590   ID.AddPointer(Ty);
1591   void *IP = nullptr;
1592   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1593   if (Depth > MaxCastDepth) {
1594     SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1595                                                      Op, Ty);
1596     UniqueSCEVs.InsertNode(S, IP);
1597     registerUser(S, Op);
1598     return S;
1599   }
1600 
1601   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1602   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1603     // It's possible the bits taken off by the truncate were all zero bits. If
1604     // so, we should be able to simplify this further.
1605     const SCEV *X = ST->getOperand();
1606     ConstantRange CR = getUnsignedRange(X);
1607     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1608     unsigned NewBits = getTypeSizeInBits(Ty);
1609     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1610             CR.zextOrTrunc(NewBits)))
1611       return getTruncateOrZeroExtend(X, Ty, Depth);
1612   }
1613 
1614   // If the input value is a chrec scev, and we can prove that the value
1615   // did not overflow the old, smaller, value, we can zero extend all of the
1616   // operands (often constants).  This allows analysis of something like
1617   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1618   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1619     if (AR->isAffine()) {
1620       const SCEV *Start = AR->getStart();
1621       const SCEV *Step = AR->getStepRecurrence(*this);
1622       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1623       const Loop *L = AR->getLoop();
1624 
1625       // If we have special knowledge that this addrec won't overflow,
1626       // we don't need to do any further analysis.
1627       if (AR->hasNoUnsignedWrap()) {
1628         Start =
1629             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1);
1630         Step = getZeroExtendExpr(Step, Ty, Depth + 1);
1631         return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
1632       }
1633 
1634       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1635       // Note that this serves two purposes: It filters out loops that are
1636       // simply not analyzable, and it covers the case where this code is
1637       // being called from within backedge-taken count analysis, such that
1638       // attempting to ask for the backedge-taken count would likely result
1639       // in infinite recursion. In the later case, the analysis code will
1640       // cope with a conservative value, and it will take care to purge
1641       // that value once it has finished.
1642       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1643       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1644         // Manually compute the final value for AR, checking for overflow.
1645 
1646         // Check whether the backedge-taken count can be losslessly casted to
1647         // the addrec's type. The count is always unsigned.
1648         const SCEV *CastedMaxBECount =
1649             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1650         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1651             CastedMaxBECount, MaxBECount->getType(), Depth);
1652         if (MaxBECount == RecastedMaxBECount) {
1653           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1654           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1655           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1656                                         SCEV::FlagAnyWrap, Depth + 1);
1657           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1658                                                           SCEV::FlagAnyWrap,
1659                                                           Depth + 1),
1660                                                WideTy, Depth + 1);
1661           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1662           const SCEV *WideMaxBECount =
1663             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1664           const SCEV *OperandExtendedAdd =
1665             getAddExpr(WideStart,
1666                        getMulExpr(WideMaxBECount,
1667                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1668                                   SCEV::FlagAnyWrap, Depth + 1),
1669                        SCEV::FlagAnyWrap, Depth + 1);
1670           if (ZAdd == OperandExtendedAdd) {
1671             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1672             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1673             // Return the expression with the addrec on the outside.
1674             Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1675                                                              Depth + 1);
1676             Step = getZeroExtendExpr(Step, Ty, Depth + 1);
1677             return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
1678           }
1679           // Similar to above, only this time treat the step value as signed.
1680           // This covers loops that count down.
1681           OperandExtendedAdd =
1682             getAddExpr(WideStart,
1683                        getMulExpr(WideMaxBECount,
1684                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1685                                   SCEV::FlagAnyWrap, Depth + 1),
1686                        SCEV::FlagAnyWrap, Depth + 1);
1687           if (ZAdd == OperandExtendedAdd) {
1688             // Cache knowledge of AR NW, which is propagated to this AddRec.
1689             // Negative step causes unsigned wrap, but it still can't self-wrap.
1690             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1691             // Return the expression with the addrec on the outside.
1692             Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1693                                                              Depth + 1);
1694             Step = getSignExtendExpr(Step, Ty, Depth + 1);
1695             return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
1696           }
1697         }
1698       }
1699 
1700       // Normally, in the cases we can prove no-overflow via a
1701       // backedge guarding condition, we can also compute a backedge
1702       // taken count for the loop.  The exceptions are assumptions and
1703       // guards present in the loop -- SCEV is not great at exploiting
1704       // these to compute max backedge taken counts, but can still use
1705       // these to prove lack of overflow.  Use this fact to avoid
1706       // doing extra work that may not pay off.
1707       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1708           !AC.assumptions().empty()) {
1709 
1710         auto NewFlags = proveNoUnsignedWrapViaInduction(AR);
1711         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1712         if (AR->hasNoUnsignedWrap()) {
1713           // Same as nuw case above - duplicated here to avoid a compile time
1714           // issue.  It's not clear that the order of checks does matter, but
1715           // it's one of two issue possible causes for a change which was
1716           // reverted.  Be conservative for the moment.
1717           Start =
1718               getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1);
1719           Step = getZeroExtendExpr(Step, Ty, Depth + 1);
1720           return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
1721         }
1722 
1723         // For a negative step, we can extend the operands iff doing so only
1724         // traverses values in the range zext([0,UINT_MAX]).
1725         if (isKnownNegative(Step)) {
1726           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1727                                       getSignedRangeMin(Step));
1728           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1729               isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
1730             // Cache knowledge of AR NW, which is propagated to this
1731             // AddRec.  Negative step causes unsigned wrap, but it
1732             // still can't self-wrap.
1733             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1734             // Return the expression with the addrec on the outside.
1735             Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1736                                                              Depth + 1);
1737             Step = getSignExtendExpr(Step, Ty, Depth + 1);
1738             return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
1739           }
1740         }
1741       }
1742 
1743       // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1744       // if D + (C - D + Step * n) could be proven to not unsigned wrap
1745       // where D maximizes the number of trailing zeros of (C - D + Step * n)
1746       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1747         const APInt &C = SC->getAPInt();
1748         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1749         if (D != 0) {
1750           const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1751           const SCEV *SResidual =
1752               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1753           const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1754           return getAddExpr(SZExtD, SZExtR,
1755                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1756                             Depth + 1);
1757         }
1758       }
1759 
1760       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1761         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1762         Start =
1763             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1);
1764         Step = getZeroExtendExpr(Step, Ty, Depth + 1);
1765         return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
1766       }
1767     }
1768 
1769   // zext(A % B) --> zext(A) % zext(B)
1770   {
1771     const SCEV *LHS;
1772     const SCEV *RHS;
1773     if (matchURem(Op, LHS, RHS))
1774       return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
1775                          getZeroExtendExpr(RHS, Ty, Depth + 1));
1776   }
1777 
1778   // zext(A / B) --> zext(A) / zext(B).
1779   if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
1780     return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
1781                        getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
1782 
1783   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1784     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1785     if (SA->hasNoUnsignedWrap()) {
1786       // If the addition does not unsign overflow then we can, by definition,
1787       // commute the zero extension with the addition operation.
1788       SmallVector<const SCEV *, 4> Ops;
1789       for (const auto *Op : SA->operands())
1790         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1791       return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1792     }
1793 
1794     // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1795     // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1796     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1797     //
1798     // Often address arithmetics contain expressions like
1799     // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1800     // This transformation is useful while proving that such expressions are
1801     // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1802     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1803       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1804       if (D != 0) {
1805         const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1806         const SCEV *SResidual =
1807             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1808         const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1809         return getAddExpr(SZExtD, SZExtR,
1810                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1811                           Depth + 1);
1812       }
1813     }
1814   }
1815 
1816   if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
1817     // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1818     if (SM->hasNoUnsignedWrap()) {
1819       // If the multiply does not unsign overflow then we can, by definition,
1820       // commute the zero extension with the multiply operation.
1821       SmallVector<const SCEV *, 4> Ops;
1822       for (const auto *Op : SM->operands())
1823         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1824       return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
1825     }
1826 
1827     // zext(2^K * (trunc X to iN)) to iM ->
1828     // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1829     //
1830     // Proof:
1831     //
1832     //     zext(2^K * (trunc X to iN)) to iM
1833     //   = zext((trunc X to iN) << K) to iM
1834     //   = zext((trunc X to i{N-K}) << K)<nuw> to iM
1835     //     (because shl removes the top K bits)
1836     //   = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1837     //   = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1838     //
1839     if (SM->getNumOperands() == 2)
1840       if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
1841         if (MulLHS->getAPInt().isPowerOf2())
1842           if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
1843             int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
1844                                MulLHS->getAPInt().logBase2();
1845             Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
1846             return getMulExpr(
1847                 getZeroExtendExpr(MulLHS, Ty),
1848                 getZeroExtendExpr(
1849                     getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
1850                 SCEV::FlagNUW, Depth + 1);
1851           }
1852   }
1853 
1854   // zext(umin(x, y)) -> umin(zext(x), zext(y))
1855   // zext(umax(x, y)) -> umax(zext(x), zext(y))
1856   if (isa<SCEVUMinExpr>(Op) || isa<SCEVUMaxExpr>(Op)) {
1857     auto *MinMax = cast<SCEVMinMaxExpr>(Op);
1858     SmallVector<const SCEV *, 4> Operands;
1859     for (auto *Operand : MinMax->operands())
1860       Operands.push_back(getZeroExtendExpr(Operand, Ty));
1861     if (isa<SCEVUMinExpr>(MinMax))
1862       return getUMinExpr(Operands);
1863     return getUMaxExpr(Operands);
1864   }
1865 
1866   // zext(umin_seq(x, y)) -> umin_seq(zext(x), zext(y))
1867   if (auto *MinMax = dyn_cast<SCEVSequentialMinMaxExpr>(Op)) {
1868     assert(isa<SCEVSequentialUMinExpr>(MinMax) && "Not supported!");
1869     SmallVector<const SCEV *, 4> Operands;
1870     for (auto *Operand : MinMax->operands())
1871       Operands.push_back(getZeroExtendExpr(Operand, Ty));
1872     return getUMinExpr(Operands, /*Sequential*/ true);
1873   }
1874 
1875   // The cast wasn't folded; create an explicit cast node.
1876   // Recompute the insert position, as it may have been invalidated.
1877   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1878   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1879                                                    Op, Ty);
1880   UniqueSCEVs.InsertNode(S, IP);
1881   registerUser(S, Op);
1882   return S;
1883 }
1884 
1885 const SCEV *
getSignExtendExpr(const SCEV * Op,Type * Ty,unsigned Depth)1886 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1887   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1888          "This is not an extending conversion!");
1889   assert(isSCEVable(Ty) &&
1890          "This is not a conversion to a SCEVable type!");
1891   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1892   Ty = getEffectiveSCEVType(Ty);
1893 
1894   FoldID ID(scSignExtend, Op, Ty);
1895   auto Iter = FoldCache.find(ID);
1896   if (Iter != FoldCache.end())
1897     return Iter->second;
1898 
1899   const SCEV *S = getSignExtendExprImpl(Op, Ty, Depth);
1900   if (!isa<SCEVSignExtendExpr>(S))
1901     insertFoldCacheEntry(ID, S, FoldCache, FoldCacheUser);
1902   return S;
1903 }
1904 
getSignExtendExprImpl(const SCEV * Op,Type * Ty,unsigned Depth)1905 const SCEV *ScalarEvolution::getSignExtendExprImpl(const SCEV *Op, Type *Ty,
1906                                                    unsigned Depth) {
1907   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1908          "This is not an extending conversion!");
1909   assert(isSCEVable(Ty) && "This is not a conversion to a SCEVable type!");
1910   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1911   Ty = getEffectiveSCEVType(Ty);
1912 
1913   // Fold if the operand is constant.
1914   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1915     return getConstant(SC->getAPInt().sext(getTypeSizeInBits(Ty)));
1916 
1917   // sext(sext(x)) --> sext(x)
1918   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1919     return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1920 
1921   // sext(zext(x)) --> zext(x)
1922   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1923     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1924 
1925   // Before doing any expensive analysis, check to see if we've already
1926   // computed a SCEV for this Op and Ty.
1927   FoldingSetNodeID ID;
1928   ID.AddInteger(scSignExtend);
1929   ID.AddPointer(Op);
1930   ID.AddPointer(Ty);
1931   void *IP = nullptr;
1932   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1933   // Limit recursion depth.
1934   if (Depth > MaxCastDepth) {
1935     SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1936                                                      Op, Ty);
1937     UniqueSCEVs.InsertNode(S, IP);
1938     registerUser(S, Op);
1939     return S;
1940   }
1941 
1942   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1943   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1944     // It's possible the bits taken off by the truncate were all sign bits. If
1945     // so, we should be able to simplify this further.
1946     const SCEV *X = ST->getOperand();
1947     ConstantRange CR = getSignedRange(X);
1948     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1949     unsigned NewBits = getTypeSizeInBits(Ty);
1950     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1951             CR.sextOrTrunc(NewBits)))
1952       return getTruncateOrSignExtend(X, Ty, Depth);
1953   }
1954 
1955   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1956     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1957     if (SA->hasNoSignedWrap()) {
1958       // If the addition does not sign overflow then we can, by definition,
1959       // commute the sign extension with the addition operation.
1960       SmallVector<const SCEV *, 4> Ops;
1961       for (const auto *Op : SA->operands())
1962         Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
1963       return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
1964     }
1965 
1966     // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
1967     // if D + (C - D + x + y + ...) could be proven to not signed wrap
1968     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1969     //
1970     // For instance, this will bring two seemingly different expressions:
1971     //     1 + sext(5 + 20 * %x + 24 * %y)  and
1972     //         sext(6 + 20 * %x + 24 * %y)
1973     // to the same form:
1974     //     2 + sext(4 + 20 * %x + 24 * %y)
1975     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1976       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1977       if (D != 0) {
1978         const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
1979         const SCEV *SResidual =
1980             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1981         const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
1982         return getAddExpr(SSExtD, SSExtR,
1983                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1984                           Depth + 1);
1985       }
1986     }
1987   }
1988   // If the input value is a chrec scev, and we can prove that the value
1989   // did not overflow the old, smaller, value, we can sign extend all of the
1990   // operands (often constants).  This allows analysis of something like
1991   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1992   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1993     if (AR->isAffine()) {
1994       const SCEV *Start = AR->getStart();
1995       const SCEV *Step = AR->getStepRecurrence(*this);
1996       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1997       const Loop *L = AR->getLoop();
1998 
1999       // If we have special knowledge that this addrec won't overflow,
2000       // we don't need to do any further analysis.
2001       if (AR->hasNoSignedWrap()) {
2002         Start =
2003             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1);
2004         Step = getSignExtendExpr(Step, Ty, Depth + 1);
2005         return getAddRecExpr(Start, Step, L, SCEV::FlagNSW);
2006       }
2007 
2008       // Check whether the backedge-taken count is SCEVCouldNotCompute.
2009       // Note that this serves two purposes: It filters out loops that are
2010       // simply not analyzable, and it covers the case where this code is
2011       // being called from within backedge-taken count analysis, such that
2012       // attempting to ask for the backedge-taken count would likely result
2013       // in infinite recursion. In the later case, the analysis code will
2014       // cope with a conservative value, and it will take care to purge
2015       // that value once it has finished.
2016       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
2017       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
2018         // Manually compute the final value for AR, checking for
2019         // overflow.
2020 
2021         // Check whether the backedge-taken count can be losslessly casted to
2022         // the addrec's type. The count is always unsigned.
2023         const SCEV *CastedMaxBECount =
2024             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
2025         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
2026             CastedMaxBECount, MaxBECount->getType(), Depth);
2027         if (MaxBECount == RecastedMaxBECount) {
2028           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
2029           // Check whether Start+Step*MaxBECount has no signed overflow.
2030           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
2031                                         SCEV::FlagAnyWrap, Depth + 1);
2032           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
2033                                                           SCEV::FlagAnyWrap,
2034                                                           Depth + 1),
2035                                                WideTy, Depth + 1);
2036           const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
2037           const SCEV *WideMaxBECount =
2038             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
2039           const SCEV *OperandExtendedAdd =
2040             getAddExpr(WideStart,
2041                        getMulExpr(WideMaxBECount,
2042                                   getSignExtendExpr(Step, WideTy, Depth + 1),
2043                                   SCEV::FlagAnyWrap, Depth + 1),
2044                        SCEV::FlagAnyWrap, Depth + 1);
2045           if (SAdd == OperandExtendedAdd) {
2046             // Cache knowledge of AR NSW, which is propagated to this AddRec.
2047             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2048             // Return the expression with the addrec on the outside.
2049             Start = getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2050                                                              Depth + 1);
2051             Step = getSignExtendExpr(Step, Ty, Depth + 1);
2052             return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
2053           }
2054           // Similar to above, only this time treat the step value as unsigned.
2055           // This covers loops that count up with an unsigned step.
2056           OperandExtendedAdd =
2057             getAddExpr(WideStart,
2058                        getMulExpr(WideMaxBECount,
2059                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
2060                                   SCEV::FlagAnyWrap, Depth + 1),
2061                        SCEV::FlagAnyWrap, Depth + 1);
2062           if (SAdd == OperandExtendedAdd) {
2063             // If AR wraps around then
2064             //
2065             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
2066             // => SAdd != OperandExtendedAdd
2067             //
2068             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
2069             // (SAdd == OperandExtendedAdd => AR is NW)
2070 
2071             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
2072 
2073             // Return the expression with the addrec on the outside.
2074             Start = getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2075                                                              Depth + 1);
2076             Step = getZeroExtendExpr(Step, Ty, Depth + 1);
2077             return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
2078           }
2079         }
2080       }
2081 
2082       auto NewFlags = proveNoSignedWrapViaInduction(AR);
2083       setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
2084       if (AR->hasNoSignedWrap()) {
2085         // Same as nsw case above - duplicated here to avoid a compile time
2086         // issue.  It's not clear that the order of checks does matter, but
2087         // it's one of two issue possible causes for a change which was
2088         // reverted.  Be conservative for the moment.
2089         Start =
2090             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1);
2091         Step = getSignExtendExpr(Step, Ty, Depth + 1);
2092         return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
2093       }
2094 
2095       // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
2096       // if D + (C - D + Step * n) could be proven to not signed wrap
2097       // where D maximizes the number of trailing zeros of (C - D + Step * n)
2098       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
2099         const APInt &C = SC->getAPInt();
2100         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
2101         if (D != 0) {
2102           const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2103           const SCEV *SResidual =
2104               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
2105           const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2106           return getAddExpr(SSExtD, SSExtR,
2107                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2108                             Depth + 1);
2109         }
2110       }
2111 
2112       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
2113         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2114         Start =
2115             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1);
2116         Step = getSignExtendExpr(Step, Ty, Depth + 1);
2117         return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
2118       }
2119     }
2120 
2121   // If the input value is provably positive and we could not simplify
2122   // away the sext build a zext instead.
2123   if (isKnownNonNegative(Op))
2124     return getZeroExtendExpr(Op, Ty, Depth + 1);
2125 
2126   // sext(smin(x, y)) -> smin(sext(x), sext(y))
2127   // sext(smax(x, y)) -> smax(sext(x), sext(y))
2128   if (isa<SCEVSMinExpr>(Op) || isa<SCEVSMaxExpr>(Op)) {
2129     auto *MinMax = cast<SCEVMinMaxExpr>(Op);
2130     SmallVector<const SCEV *, 4> Operands;
2131     for (auto *Operand : MinMax->operands())
2132       Operands.push_back(getSignExtendExpr(Operand, Ty));
2133     if (isa<SCEVSMinExpr>(MinMax))
2134       return getSMinExpr(Operands);
2135     return getSMaxExpr(Operands);
2136   }
2137 
2138   // The cast wasn't folded; create an explicit cast node.
2139   // Recompute the insert position, as it may have been invalidated.
2140   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2141   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
2142                                                    Op, Ty);
2143   UniqueSCEVs.InsertNode(S, IP);
2144   registerUser(S, { Op });
2145   return S;
2146 }
2147 
getCastExpr(SCEVTypes Kind,const SCEV * Op,Type * Ty)2148 const SCEV *ScalarEvolution::getCastExpr(SCEVTypes Kind, const SCEV *Op,
2149                                          Type *Ty) {
2150   switch (Kind) {
2151   case scTruncate:
2152     return getTruncateExpr(Op, Ty);
2153   case scZeroExtend:
2154     return getZeroExtendExpr(Op, Ty);
2155   case scSignExtend:
2156     return getSignExtendExpr(Op, Ty);
2157   case scPtrToInt:
2158     return getPtrToIntExpr(Op, Ty);
2159   default:
2160     llvm_unreachable("Not a SCEV cast expression!");
2161   }
2162 }
2163 
2164 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
2165 /// unspecified bits out to the given type.
getAnyExtendExpr(const SCEV * Op,Type * Ty)2166 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
2167                                               Type *Ty) {
2168   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
2169          "This is not an extending conversion!");
2170   assert(isSCEVable(Ty) &&
2171          "This is not a conversion to a SCEVable type!");
2172   Ty = getEffectiveSCEVType(Ty);
2173 
2174   // Sign-extend negative constants.
2175   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
2176     if (SC->getAPInt().isNegative())
2177       return getSignExtendExpr(Op, Ty);
2178 
2179   // Peel off a truncate cast.
2180   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
2181     const SCEV *NewOp = T->getOperand();
2182     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
2183       return getAnyExtendExpr(NewOp, Ty);
2184     return getTruncateOrNoop(NewOp, Ty);
2185   }
2186 
2187   // Next try a zext cast. If the cast is folded, use it.
2188   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
2189   if (!isa<SCEVZeroExtendExpr>(ZExt))
2190     return ZExt;
2191 
2192   // Next try a sext cast. If the cast is folded, use it.
2193   const SCEV *SExt = getSignExtendExpr(Op, Ty);
2194   if (!isa<SCEVSignExtendExpr>(SExt))
2195     return SExt;
2196 
2197   // Force the cast to be folded into the operands of an addrec.
2198   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
2199     SmallVector<const SCEV *, 4> Ops;
2200     for (const SCEV *Op : AR->operands())
2201       Ops.push_back(getAnyExtendExpr(Op, Ty));
2202     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
2203   }
2204 
2205   // If the expression is obviously signed, use the sext cast value.
2206   if (isa<SCEVSMaxExpr>(Op))
2207     return SExt;
2208 
2209   // Absent any other information, use the zext cast value.
2210   return ZExt;
2211 }
2212 
2213 /// Process the given Ops list, which is a list of operands to be added under
2214 /// the given scale, update the given map. This is a helper function for
2215 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2216 /// that would form an add expression like this:
2217 ///
2218 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2219 ///
2220 /// where A and B are constants, update the map with these values:
2221 ///
2222 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2223 ///
2224 /// and add 13 + A*B*29 to AccumulatedConstant.
2225 /// This will allow getAddRecExpr to produce this:
2226 ///
2227 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2228 ///
2229 /// This form often exposes folding opportunities that are hidden in
2230 /// the original operand list.
2231 ///
2232 /// Return true iff it appears that any interesting folding opportunities
2233 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2234 /// the common case where no interesting opportunities are present, and
2235 /// is also used as a check to avoid infinite recursion.
2236 static bool
CollectAddOperandsWithScales(DenseMap<const SCEV *,APInt> & M,SmallVectorImpl<const SCEV * > & NewOps,APInt & AccumulatedConstant,ArrayRef<const SCEV * > Ops,const APInt & Scale,ScalarEvolution & SE)2237 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2238                              SmallVectorImpl<const SCEV *> &NewOps,
2239                              APInt &AccumulatedConstant,
2240                              ArrayRef<const SCEV *> Ops, const APInt &Scale,
2241                              ScalarEvolution &SE) {
2242   bool Interesting = false;
2243 
2244   // Iterate over the add operands. They are sorted, with constants first.
2245   unsigned i = 0;
2246   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2247     ++i;
2248     // Pull a buried constant out to the outside.
2249     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2250       Interesting = true;
2251     AccumulatedConstant += Scale * C->getAPInt();
2252   }
2253 
2254   // Next comes everything else. We're especially interested in multiplies
2255   // here, but they're in the middle, so just visit the rest with one loop.
2256   for (; i != Ops.size(); ++i) {
2257     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2258     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2259       APInt NewScale =
2260           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2261       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2262         // A multiplication of a constant with another add; recurse.
2263         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2264         Interesting |=
2265           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2266                                        Add->operands(), NewScale, SE);
2267       } else {
2268         // A multiplication of a constant with some other value. Update
2269         // the map.
2270         SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands()));
2271         const SCEV *Key = SE.getMulExpr(MulOps);
2272         auto Pair = M.insert({Key, NewScale});
2273         if (Pair.second) {
2274           NewOps.push_back(Pair.first->first);
2275         } else {
2276           Pair.first->second += NewScale;
2277           // The map already had an entry for this value, which may indicate
2278           // a folding opportunity.
2279           Interesting = true;
2280         }
2281       }
2282     } else {
2283       // An ordinary operand. Update the map.
2284       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2285           M.insert({Ops[i], Scale});
2286       if (Pair.second) {
2287         NewOps.push_back(Pair.first->first);
2288       } else {
2289         Pair.first->second += Scale;
2290         // The map already had an entry for this value, which may indicate
2291         // a folding opportunity.
2292         Interesting = true;
2293       }
2294     }
2295   }
2296 
2297   return Interesting;
2298 }
2299 
willNotOverflow(Instruction::BinaryOps BinOp,bool Signed,const SCEV * LHS,const SCEV * RHS,const Instruction * CtxI)2300 bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed,
2301                                       const SCEV *LHS, const SCEV *RHS,
2302                                       const Instruction *CtxI) {
2303   const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *,
2304                                             SCEV::NoWrapFlags, unsigned);
2305   switch (BinOp) {
2306   default:
2307     llvm_unreachable("Unsupported binary op");
2308   case Instruction::Add:
2309     Operation = &ScalarEvolution::getAddExpr;
2310     break;
2311   case Instruction::Sub:
2312     Operation = &ScalarEvolution::getMinusSCEV;
2313     break;
2314   case Instruction::Mul:
2315     Operation = &ScalarEvolution::getMulExpr;
2316     break;
2317   }
2318 
2319   const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) =
2320       Signed ? &ScalarEvolution::getSignExtendExpr
2321              : &ScalarEvolution::getZeroExtendExpr;
2322 
2323   // Check ext(LHS op RHS) == ext(LHS) op ext(RHS)
2324   auto *NarrowTy = cast<IntegerType>(LHS->getType());
2325   auto *WideTy =
2326       IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2);
2327 
2328   const SCEV *A = (this->*Extension)(
2329       (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0);
2330   const SCEV *LHSB = (this->*Extension)(LHS, WideTy, 0);
2331   const SCEV *RHSB = (this->*Extension)(RHS, WideTy, 0);
2332   const SCEV *B = (this->*Operation)(LHSB, RHSB, SCEV::FlagAnyWrap, 0);
2333   if (A == B)
2334     return true;
2335   // Can we use context to prove the fact we need?
2336   if (!CtxI)
2337     return false;
2338   // TODO: Support mul.
2339   if (BinOp == Instruction::Mul)
2340     return false;
2341   auto *RHSC = dyn_cast<SCEVConstant>(RHS);
2342   // TODO: Lift this limitation.
2343   if (!RHSC)
2344     return false;
2345   APInt C = RHSC->getAPInt();
2346   unsigned NumBits = C.getBitWidth();
2347   bool IsSub = (BinOp == Instruction::Sub);
2348   bool IsNegativeConst = (Signed && C.isNegative());
2349   // Compute the direction and magnitude by which we need to check overflow.
2350   bool OverflowDown = IsSub ^ IsNegativeConst;
2351   APInt Magnitude = C;
2352   if (IsNegativeConst) {
2353     if (C == APInt::getSignedMinValue(NumBits))
2354       // TODO: SINT_MIN on inversion gives the same negative value, we don't
2355       // want to deal with that.
2356       return false;
2357     Magnitude = -C;
2358   }
2359 
2360   ICmpInst::Predicate Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
2361   if (OverflowDown) {
2362     // To avoid overflow down, we need to make sure that MIN + Magnitude <= LHS.
2363     APInt Min = Signed ? APInt::getSignedMinValue(NumBits)
2364                        : APInt::getMinValue(NumBits);
2365     APInt Limit = Min + Magnitude;
2366     return isKnownPredicateAt(Pred, getConstant(Limit), LHS, CtxI);
2367   } else {
2368     // To avoid overflow up, we need to make sure that LHS <= MAX - Magnitude.
2369     APInt Max = Signed ? APInt::getSignedMaxValue(NumBits)
2370                        : APInt::getMaxValue(NumBits);
2371     APInt Limit = Max - Magnitude;
2372     return isKnownPredicateAt(Pred, LHS, getConstant(Limit), CtxI);
2373   }
2374 }
2375 
2376 std::optional<SCEV::NoWrapFlags>
getStrengthenedNoWrapFlagsFromBinOp(const OverflowingBinaryOperator * OBO)2377 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp(
2378     const OverflowingBinaryOperator *OBO) {
2379   // It cannot be done any better.
2380   if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap())
2381     return std::nullopt;
2382 
2383   SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap;
2384 
2385   if (OBO->hasNoUnsignedWrap())
2386     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2387   if (OBO->hasNoSignedWrap())
2388     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2389 
2390   bool Deduced = false;
2391 
2392   if (OBO->getOpcode() != Instruction::Add &&
2393       OBO->getOpcode() != Instruction::Sub &&
2394       OBO->getOpcode() != Instruction::Mul)
2395     return std::nullopt;
2396 
2397   const SCEV *LHS = getSCEV(OBO->getOperand(0));
2398   const SCEV *RHS = getSCEV(OBO->getOperand(1));
2399 
2400   const Instruction *CtxI =
2401       UseContextForNoWrapFlagInference ? dyn_cast<Instruction>(OBO) : nullptr;
2402   if (!OBO->hasNoUnsignedWrap() &&
2403       willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(),
2404                       /* Signed */ false, LHS, RHS, CtxI)) {
2405     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2406     Deduced = true;
2407   }
2408 
2409   if (!OBO->hasNoSignedWrap() &&
2410       willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(),
2411                       /* Signed */ true, LHS, RHS, CtxI)) {
2412     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2413     Deduced = true;
2414   }
2415 
2416   if (Deduced)
2417     return Flags;
2418   return std::nullopt;
2419 }
2420 
2421 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2422 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
2423 // can't-overflow flags for the operation if possible.
2424 static SCEV::NoWrapFlags
StrengthenNoWrapFlags(ScalarEvolution * SE,SCEVTypes Type,const ArrayRef<const SCEV * > Ops,SCEV::NoWrapFlags Flags)2425 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2426                       const ArrayRef<const SCEV *> Ops,
2427                       SCEV::NoWrapFlags Flags) {
2428   using namespace std::placeholders;
2429 
2430   using OBO = OverflowingBinaryOperator;
2431 
2432   bool CanAnalyze =
2433       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2434   (void)CanAnalyze;
2435   assert(CanAnalyze && "don't call from other places!");
2436 
2437   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2438   SCEV::NoWrapFlags SignOrUnsignWrap =
2439       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2440 
2441   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2442   auto IsKnownNonNegative = [&](const SCEV *S) {
2443     return SE->isKnownNonNegative(S);
2444   };
2445 
2446   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2447     Flags =
2448         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2449 
2450   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2451 
2452   if (SignOrUnsignWrap != SignOrUnsignMask &&
2453       (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
2454       isa<SCEVConstant>(Ops[0])) {
2455 
2456     auto Opcode = [&] {
2457       switch (Type) {
2458       case scAddExpr:
2459         return Instruction::Add;
2460       case scMulExpr:
2461         return Instruction::Mul;
2462       default:
2463         llvm_unreachable("Unexpected SCEV op.");
2464       }
2465     }();
2466 
2467     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2468 
2469     // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2470     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2471       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2472           Opcode, C, OBO::NoSignedWrap);
2473       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2474         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2475     }
2476 
2477     // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2478     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2479       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2480           Opcode, C, OBO::NoUnsignedWrap);
2481       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2482         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2483     }
2484   }
2485 
2486   // <0,+,nonnegative><nw> is also nuw
2487   // TODO: Add corresponding nsw case
2488   if (Type == scAddRecExpr && ScalarEvolution::hasFlags(Flags, SCEV::FlagNW) &&
2489       !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && Ops.size() == 2 &&
2490       Ops[0]->isZero() && IsKnownNonNegative(Ops[1]))
2491     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2492 
2493   // both (udiv X, Y) * Y and Y * (udiv X, Y) are always NUW
2494   if (Type == scMulExpr && !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) &&
2495       Ops.size() == 2) {
2496     if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[0]))
2497       if (UDiv->getOperand(1) == Ops[1])
2498         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2499     if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[1]))
2500       if (UDiv->getOperand(1) == Ops[0])
2501         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2502   }
2503 
2504   return Flags;
2505 }
2506 
isAvailableAtLoopEntry(const SCEV * S,const Loop * L)2507 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2508   return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
2509 }
2510 
2511 /// Get a canonical add expression, or something simpler if possible.
getAddExpr(SmallVectorImpl<const SCEV * > & Ops,SCEV::NoWrapFlags OrigFlags,unsigned Depth)2512 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2513                                         SCEV::NoWrapFlags OrigFlags,
2514                                         unsigned Depth) {
2515   assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2516          "only nuw or nsw allowed");
2517   assert(!Ops.empty() && "Cannot get empty add!");
2518   if (Ops.size() == 1) return Ops[0];
2519 #ifndef NDEBUG
2520   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2521   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2522     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2523            "SCEVAddExpr operand types don't match!");
2524   unsigned NumPtrs = count_if(
2525       Ops, [](const SCEV *Op) { return Op->getType()->isPointerTy(); });
2526   assert(NumPtrs <= 1 && "add has at most one pointer operand");
2527 #endif
2528 
2529   // Sort by complexity, this groups all similar expression types together.
2530   GroupByComplexity(Ops, &LI, DT);
2531 
2532   // If there are any constants, fold them together.
2533   unsigned Idx = 0;
2534   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2535     ++Idx;
2536     assert(Idx < Ops.size());
2537     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2538       // We found two constants, fold them together!
2539       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2540       if (Ops.size() == 2) return Ops[0];
2541       Ops.erase(Ops.begin()+1);  // Erase the folded element
2542       LHSC = cast<SCEVConstant>(Ops[0]);
2543     }
2544 
2545     // If we are left with a constant zero being added, strip it off.
2546     if (LHSC->getValue()->isZero()) {
2547       Ops.erase(Ops.begin());
2548       --Idx;
2549     }
2550 
2551     if (Ops.size() == 1) return Ops[0];
2552   }
2553 
2554   // Delay expensive flag strengthening until necessary.
2555   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
2556     return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags);
2557   };
2558 
2559   // Limit recursion calls depth.
2560   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2561     return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2562 
2563   if (SCEV *S = findExistingSCEVInCache(scAddExpr, Ops)) {
2564     // Don't strengthen flags if we have no new information.
2565     SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S);
2566     if (Add->getNoWrapFlags(OrigFlags) != OrigFlags)
2567       Add->setNoWrapFlags(ComputeFlags(Ops));
2568     return S;
2569   }
2570 
2571   // Okay, check to see if the same value occurs in the operand list more than
2572   // once.  If so, merge them together into an multiply expression.  Since we
2573   // sorted the list, these values are required to be adjacent.
2574   Type *Ty = Ops[0]->getType();
2575   bool FoundMatch = false;
2576   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2577     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2578       // Scan ahead to count how many equal operands there are.
2579       unsigned Count = 2;
2580       while (i+Count != e && Ops[i+Count] == Ops[i])
2581         ++Count;
2582       // Merge the values into a multiply.
2583       const SCEV *Scale = getConstant(Ty, Count);
2584       const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2585       if (Ops.size() == Count)
2586         return Mul;
2587       Ops[i] = Mul;
2588       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2589       --i; e -= Count - 1;
2590       FoundMatch = true;
2591     }
2592   if (FoundMatch)
2593     return getAddExpr(Ops, OrigFlags, Depth + 1);
2594 
2595   // Check for truncates. If all the operands are truncated from the same
2596   // type, see if factoring out the truncate would permit the result to be
2597   // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2598   // if the contents of the resulting outer trunc fold to something simple.
2599   auto FindTruncSrcType = [&]() -> Type * {
2600     // We're ultimately looking to fold an addrec of truncs and muls of only
2601     // constants and truncs, so if we find any other types of SCEV
2602     // as operands of the addrec then we bail and return nullptr here.
2603     // Otherwise, we return the type of the operand of a trunc that we find.
2604     if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2605       return T->getOperand()->getType();
2606     if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2607       const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2608       if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2609         return T->getOperand()->getType();
2610     }
2611     return nullptr;
2612   };
2613   if (auto *SrcType = FindTruncSrcType()) {
2614     SmallVector<const SCEV *, 8> LargeOps;
2615     bool Ok = true;
2616     // Check all the operands to see if they can be represented in the
2617     // source type of the truncate.
2618     for (const SCEV *Op : Ops) {
2619       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
2620         if (T->getOperand()->getType() != SrcType) {
2621           Ok = false;
2622           break;
2623         }
2624         LargeOps.push_back(T->getOperand());
2625       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Op)) {
2626         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2627       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Op)) {
2628         SmallVector<const SCEV *, 8> LargeMulOps;
2629         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2630           if (const SCEVTruncateExpr *T =
2631                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2632             if (T->getOperand()->getType() != SrcType) {
2633               Ok = false;
2634               break;
2635             }
2636             LargeMulOps.push_back(T->getOperand());
2637           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2638             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2639           } else {
2640             Ok = false;
2641             break;
2642           }
2643         }
2644         if (Ok)
2645           LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2646       } else {
2647         Ok = false;
2648         break;
2649       }
2650     }
2651     if (Ok) {
2652       // Evaluate the expression in the larger type.
2653       const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
2654       // If it folds to something simple, use it. Otherwise, don't.
2655       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2656         return getTruncateExpr(Fold, Ty);
2657     }
2658   }
2659 
2660   if (Ops.size() == 2) {
2661     // Check if we have an expression of the form ((X + C1) - C2), where C1 and
2662     // C2 can be folded in a way that allows retaining wrapping flags of (X +
2663     // C1).
2664     const SCEV *A = Ops[0];
2665     const SCEV *B = Ops[1];
2666     auto *AddExpr = dyn_cast<SCEVAddExpr>(B);
2667     auto *C = dyn_cast<SCEVConstant>(A);
2668     if (AddExpr && C && isa<SCEVConstant>(AddExpr->getOperand(0))) {
2669       auto C1 = cast<SCEVConstant>(AddExpr->getOperand(0))->getAPInt();
2670       auto C2 = C->getAPInt();
2671       SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap;
2672 
2673       APInt ConstAdd = C1 + C2;
2674       auto AddFlags = AddExpr->getNoWrapFlags();
2675       // Adding a smaller constant is NUW if the original AddExpr was NUW.
2676       if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNUW) &&
2677           ConstAdd.ule(C1)) {
2678         PreservedFlags =
2679             ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNUW);
2680       }
2681 
2682       // Adding a constant with the same sign and small magnitude is NSW, if the
2683       // original AddExpr was NSW.
2684       if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNSW) &&
2685           C1.isSignBitSet() == ConstAdd.isSignBitSet() &&
2686           ConstAdd.abs().ule(C1.abs())) {
2687         PreservedFlags =
2688             ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNSW);
2689       }
2690 
2691       if (PreservedFlags != SCEV::FlagAnyWrap) {
2692         SmallVector<const SCEV *, 4> NewOps(AddExpr->operands());
2693         NewOps[0] = getConstant(ConstAdd);
2694         return getAddExpr(NewOps, PreservedFlags);
2695       }
2696     }
2697   }
2698 
2699   // Canonicalize (-1 * urem X, Y) + X --> (Y * X/Y)
2700   if (Ops.size() == 2) {
2701     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[0]);
2702     if (Mul && Mul->getNumOperands() == 2 &&
2703         Mul->getOperand(0)->isAllOnesValue()) {
2704       const SCEV *X;
2705       const SCEV *Y;
2706       if (matchURem(Mul->getOperand(1), X, Y) && X == Ops[1]) {
2707         return getMulExpr(Y, getUDivExpr(X, Y));
2708       }
2709     }
2710   }
2711 
2712   // Skip past any other cast SCEVs.
2713   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2714     ++Idx;
2715 
2716   // If there are add operands they would be next.
2717   if (Idx < Ops.size()) {
2718     bool DeletedAdd = false;
2719     // If the original flags and all inlined SCEVAddExprs are NUW, use the
2720     // common NUW flag for expression after inlining. Other flags cannot be
2721     // preserved, because they may depend on the original order of operations.
2722     SCEV::NoWrapFlags CommonFlags = maskFlags(OrigFlags, SCEV::FlagNUW);
2723     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2724       if (Ops.size() > AddOpsInlineThreshold ||
2725           Add->getNumOperands() > AddOpsInlineThreshold)
2726         break;
2727       // If we have an add, expand the add operands onto the end of the operands
2728       // list.
2729       Ops.erase(Ops.begin()+Idx);
2730       append_range(Ops, Add->operands());
2731       DeletedAdd = true;
2732       CommonFlags = maskFlags(CommonFlags, Add->getNoWrapFlags());
2733     }
2734 
2735     // If we deleted at least one add, we added operands to the end of the list,
2736     // and they are not necessarily sorted.  Recurse to resort and resimplify
2737     // any operands we just acquired.
2738     if (DeletedAdd)
2739       return getAddExpr(Ops, CommonFlags, Depth + 1);
2740   }
2741 
2742   // Skip over the add expression until we get to a multiply.
2743   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2744     ++Idx;
2745 
2746   // Check to see if there are any folding opportunities present with
2747   // operands multiplied by constant values.
2748   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2749     uint64_t BitWidth = getTypeSizeInBits(Ty);
2750     DenseMap<const SCEV *, APInt> M;
2751     SmallVector<const SCEV *, 8> NewOps;
2752     APInt AccumulatedConstant(BitWidth, 0);
2753     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2754                                      Ops, APInt(BitWidth, 1), *this)) {
2755       struct APIntCompare {
2756         bool operator()(const APInt &LHS, const APInt &RHS) const {
2757           return LHS.ult(RHS);
2758         }
2759       };
2760 
2761       // Some interesting folding opportunity is present, so its worthwhile to
2762       // re-generate the operands list. Group the operands by constant scale,
2763       // to avoid multiplying by the same constant scale multiple times.
2764       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2765       for (const SCEV *NewOp : NewOps)
2766         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2767       // Re-generate the operands list.
2768       Ops.clear();
2769       if (AccumulatedConstant != 0)
2770         Ops.push_back(getConstant(AccumulatedConstant));
2771       for (auto &MulOp : MulOpLists) {
2772         if (MulOp.first == 1) {
2773           Ops.push_back(getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1));
2774         } else if (MulOp.first != 0) {
2775           Ops.push_back(getMulExpr(
2776               getConstant(MulOp.first),
2777               getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2778               SCEV::FlagAnyWrap, Depth + 1));
2779         }
2780       }
2781       if (Ops.empty())
2782         return getZero(Ty);
2783       if (Ops.size() == 1)
2784         return Ops[0];
2785       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2786     }
2787   }
2788 
2789   // If we are adding something to a multiply expression, make sure the
2790   // something is not already an operand of the multiply.  If so, merge it into
2791   // the multiply.
2792   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2793     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2794     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2795       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2796       if (isa<SCEVConstant>(MulOpSCEV))
2797         continue;
2798       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2799         if (MulOpSCEV == Ops[AddOp]) {
2800           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2801           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2802           if (Mul->getNumOperands() != 2) {
2803             // If the multiply has more than two operands, we must get the
2804             // Y*Z term.
2805             SmallVector<const SCEV *, 4> MulOps(
2806                 Mul->operands().take_front(MulOp));
2807             append_range(MulOps, Mul->operands().drop_front(MulOp + 1));
2808             InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2809           }
2810           SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2811           const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2812           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2813                                             SCEV::FlagAnyWrap, Depth + 1);
2814           if (Ops.size() == 2) return OuterMul;
2815           if (AddOp < Idx) {
2816             Ops.erase(Ops.begin()+AddOp);
2817             Ops.erase(Ops.begin()+Idx-1);
2818           } else {
2819             Ops.erase(Ops.begin()+Idx);
2820             Ops.erase(Ops.begin()+AddOp-1);
2821           }
2822           Ops.push_back(OuterMul);
2823           return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2824         }
2825 
2826       // Check this multiply against other multiplies being added together.
2827       for (unsigned OtherMulIdx = Idx+1;
2828            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2829            ++OtherMulIdx) {
2830         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2831         // If MulOp occurs in OtherMul, we can fold the two multiplies
2832         // together.
2833         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2834              OMulOp != e; ++OMulOp)
2835           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2836             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2837             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2838             if (Mul->getNumOperands() != 2) {
2839               SmallVector<const SCEV *, 4> MulOps(
2840                   Mul->operands().take_front(MulOp));
2841               append_range(MulOps, Mul->operands().drop_front(MulOp+1));
2842               InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2843             }
2844             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2845             if (OtherMul->getNumOperands() != 2) {
2846               SmallVector<const SCEV *, 4> MulOps(
2847                   OtherMul->operands().take_front(OMulOp));
2848               append_range(MulOps, OtherMul->operands().drop_front(OMulOp+1));
2849               InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2850             }
2851             SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2852             const SCEV *InnerMulSum =
2853                 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2854             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2855                                               SCEV::FlagAnyWrap, Depth + 1);
2856             if (Ops.size() == 2) return OuterMul;
2857             Ops.erase(Ops.begin()+Idx);
2858             Ops.erase(Ops.begin()+OtherMulIdx-1);
2859             Ops.push_back(OuterMul);
2860             return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2861           }
2862       }
2863     }
2864   }
2865 
2866   // If there are any add recurrences in the operands list, see if any other
2867   // added values are loop invariant.  If so, we can fold them into the
2868   // recurrence.
2869   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2870     ++Idx;
2871 
2872   // Scan over all recurrences, trying to fold loop invariants into them.
2873   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2874     // Scan all of the other operands to this add and add them to the vector if
2875     // they are loop invariant w.r.t. the recurrence.
2876     SmallVector<const SCEV *, 8> LIOps;
2877     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2878     const Loop *AddRecLoop = AddRec->getLoop();
2879     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2880       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2881         LIOps.push_back(Ops[i]);
2882         Ops.erase(Ops.begin()+i);
2883         --i; --e;
2884       }
2885 
2886     // If we found some loop invariants, fold them into the recurrence.
2887     if (!LIOps.empty()) {
2888       // Compute nowrap flags for the addition of the loop-invariant ops and
2889       // the addrec. Temporarily push it as an operand for that purpose. These
2890       // flags are valid in the scope of the addrec only.
2891       LIOps.push_back(AddRec);
2892       SCEV::NoWrapFlags Flags = ComputeFlags(LIOps);
2893       LIOps.pop_back();
2894 
2895       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2896       LIOps.push_back(AddRec->getStart());
2897 
2898       SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2899 
2900       // It is not in general safe to propagate flags valid on an add within
2901       // the addrec scope to one outside it.  We must prove that the inner
2902       // scope is guaranteed to execute if the outer one does to be able to
2903       // safely propagate.  We know the program is undefined if poison is
2904       // produced on the inner scoped addrec.  We also know that *for this use*
2905       // the outer scoped add can't overflow (because of the flags we just
2906       // computed for the inner scoped add) without the program being undefined.
2907       // Proving that entry to the outer scope neccesitates entry to the inner
2908       // scope, thus proves the program undefined if the flags would be violated
2909       // in the outer scope.
2910       SCEV::NoWrapFlags AddFlags = Flags;
2911       if (AddFlags != SCEV::FlagAnyWrap) {
2912         auto *DefI = getDefiningScopeBound(LIOps);
2913         auto *ReachI = &*AddRecLoop->getHeader()->begin();
2914         if (!isGuaranteedToTransferExecutionTo(DefI, ReachI))
2915           AddFlags = SCEV::FlagAnyWrap;
2916       }
2917       AddRecOps[0] = getAddExpr(LIOps, AddFlags, Depth + 1);
2918 
2919       // Build the new addrec. Propagate the NUW and NSW flags if both the
2920       // outer add and the inner addrec are guaranteed to have no overflow.
2921       // Always propagate NW.
2922       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2923       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2924 
2925       // If all of the other operands were loop invariant, we are done.
2926       if (Ops.size() == 1) return NewRec;
2927 
2928       // Otherwise, add the folded AddRec by the non-invariant parts.
2929       for (unsigned i = 0;; ++i)
2930         if (Ops[i] == AddRec) {
2931           Ops[i] = NewRec;
2932           break;
2933         }
2934       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2935     }
2936 
2937     // Okay, if there weren't any loop invariants to be folded, check to see if
2938     // there are multiple AddRec's with the same loop induction variable being
2939     // added together.  If so, we can fold them.
2940     for (unsigned OtherIdx = Idx+1;
2941          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2942          ++OtherIdx) {
2943       // We expect the AddRecExpr's to be sorted in reverse dominance order,
2944       // so that the 1st found AddRecExpr is dominated by all others.
2945       assert(DT.dominates(
2946            cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2947            AddRec->getLoop()->getHeader()) &&
2948         "AddRecExprs are not sorted in reverse dominance order?");
2949       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2950         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2951         SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2952         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2953              ++OtherIdx) {
2954           const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2955           if (OtherAddRec->getLoop() == AddRecLoop) {
2956             for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2957                  i != e; ++i) {
2958               if (i >= AddRecOps.size()) {
2959                 append_range(AddRecOps, OtherAddRec->operands().drop_front(i));
2960                 break;
2961               }
2962               SmallVector<const SCEV *, 2> TwoOps = {
2963                   AddRecOps[i], OtherAddRec->getOperand(i)};
2964               AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2965             }
2966             Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2967           }
2968         }
2969         // Step size has changed, so we cannot guarantee no self-wraparound.
2970         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2971         return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2972       }
2973     }
2974 
2975     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2976     // next one.
2977   }
2978 
2979   // Okay, it looks like we really DO need an add expr.  Check to see if we
2980   // already have one, otherwise create a new one.
2981   return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2982 }
2983 
2984 const SCEV *
getOrCreateAddExpr(ArrayRef<const SCEV * > Ops,SCEV::NoWrapFlags Flags)2985 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2986                                     SCEV::NoWrapFlags Flags) {
2987   FoldingSetNodeID ID;
2988   ID.AddInteger(scAddExpr);
2989   for (const SCEV *Op : Ops)
2990     ID.AddPointer(Op);
2991   void *IP = nullptr;
2992   SCEVAddExpr *S =
2993       static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2994   if (!S) {
2995     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2996     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2997     S = new (SCEVAllocator)
2998         SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2999     UniqueSCEVs.InsertNode(S, IP);
3000     registerUser(S, Ops);
3001   }
3002   S->setNoWrapFlags(Flags);
3003   return S;
3004 }
3005 
3006 const SCEV *
getOrCreateAddRecExpr(ArrayRef<const SCEV * > Ops,const Loop * L,SCEV::NoWrapFlags Flags)3007 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
3008                                        const Loop *L, SCEV::NoWrapFlags Flags) {
3009   FoldingSetNodeID ID;
3010   ID.AddInteger(scAddRecExpr);
3011   for (const SCEV *Op : Ops)
3012     ID.AddPointer(Op);
3013   ID.AddPointer(L);
3014   void *IP = nullptr;
3015   SCEVAddRecExpr *S =
3016       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
3017   if (!S) {
3018     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3019     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3020     S = new (SCEVAllocator)
3021         SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
3022     UniqueSCEVs.InsertNode(S, IP);
3023     LoopUsers[L].push_back(S);
3024     registerUser(S, Ops);
3025   }
3026   setNoWrapFlags(S, Flags);
3027   return S;
3028 }
3029 
3030 const SCEV *
getOrCreateMulExpr(ArrayRef<const SCEV * > Ops,SCEV::NoWrapFlags Flags)3031 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
3032                                     SCEV::NoWrapFlags Flags) {
3033   FoldingSetNodeID ID;
3034   ID.AddInteger(scMulExpr);
3035   for (const SCEV *Op : Ops)
3036     ID.AddPointer(Op);
3037   void *IP = nullptr;
3038   SCEVMulExpr *S =
3039     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
3040   if (!S) {
3041     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3042     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3043     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
3044                                         O, Ops.size());
3045     UniqueSCEVs.InsertNode(S, IP);
3046     registerUser(S, Ops);
3047   }
3048   S->setNoWrapFlags(Flags);
3049   return S;
3050 }
3051 
umul_ov(uint64_t i,uint64_t j,bool & Overflow)3052 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
3053   uint64_t k = i*j;
3054   if (j > 1 && k / j != i) Overflow = true;
3055   return k;
3056 }
3057 
3058 /// Compute the result of "n choose k", the binomial coefficient.  If an
3059 /// intermediate computation overflows, Overflow will be set and the return will
3060 /// be garbage. Overflow is not cleared on absence of overflow.
Choose(uint64_t n,uint64_t k,bool & Overflow)3061 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
3062   // We use the multiplicative formula:
3063   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
3064   // At each iteration, we take the n-th term of the numeral and divide by the
3065   // (k-n)th term of the denominator.  This division will always produce an
3066   // integral result, and helps reduce the chance of overflow in the
3067   // intermediate computations. However, we can still overflow even when the
3068   // final result would fit.
3069 
3070   if (n == 0 || n == k) return 1;
3071   if (k > n) return 0;
3072 
3073   if (k > n/2)
3074     k = n-k;
3075 
3076   uint64_t r = 1;
3077   for (uint64_t i = 1; i <= k; ++i) {
3078     r = umul_ov(r, n-(i-1), Overflow);
3079     r /= i;
3080   }
3081   return r;
3082 }
3083 
3084 /// Determine if any of the operands in this SCEV are a constant or if
3085 /// any of the add or multiply expressions in this SCEV contain a constant.
containsConstantInAddMulChain(const SCEV * StartExpr)3086 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
3087   struct FindConstantInAddMulChain {
3088     bool FoundConstant = false;
3089 
3090     bool follow(const SCEV *S) {
3091       FoundConstant |= isa<SCEVConstant>(S);
3092       return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
3093     }
3094 
3095     bool isDone() const {
3096       return FoundConstant;
3097     }
3098   };
3099 
3100   FindConstantInAddMulChain F;
3101   SCEVTraversal<FindConstantInAddMulChain> ST(F);
3102   ST.visitAll(StartExpr);
3103   return F.FoundConstant;
3104 }
3105 
3106 /// Get a canonical multiply expression, or something simpler if possible.
getMulExpr(SmallVectorImpl<const SCEV * > & Ops,SCEV::NoWrapFlags OrigFlags,unsigned Depth)3107 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
3108                                         SCEV::NoWrapFlags OrigFlags,
3109                                         unsigned Depth) {
3110   assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) &&
3111          "only nuw or nsw allowed");
3112   assert(!Ops.empty() && "Cannot get empty mul!");
3113   if (Ops.size() == 1) return Ops[0];
3114 #ifndef NDEBUG
3115   Type *ETy = Ops[0]->getType();
3116   assert(!ETy->isPointerTy());
3117   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3118     assert(Ops[i]->getType() == ETy &&
3119            "SCEVMulExpr operand types don't match!");
3120 #endif
3121 
3122   // Sort by complexity, this groups all similar expression types together.
3123   GroupByComplexity(Ops, &LI, DT);
3124 
3125   // If there are any constants, fold them together.
3126   unsigned Idx = 0;
3127   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3128     ++Idx;
3129     assert(Idx < Ops.size());
3130     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3131       // We found two constants, fold them together!
3132       Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt());
3133       if (Ops.size() == 2) return Ops[0];
3134       Ops.erase(Ops.begin()+1);  // Erase the folded element
3135       LHSC = cast<SCEVConstant>(Ops[0]);
3136     }
3137 
3138     // If we have a multiply of zero, it will always be zero.
3139     if (LHSC->getValue()->isZero())
3140       return LHSC;
3141 
3142     // If we are left with a constant one being multiplied, strip it off.
3143     if (LHSC->getValue()->isOne()) {
3144       Ops.erase(Ops.begin());
3145       --Idx;
3146     }
3147 
3148     if (Ops.size() == 1)
3149       return Ops[0];
3150   }
3151 
3152   // Delay expensive flag strengthening until necessary.
3153   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
3154     return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags);
3155   };
3156 
3157   // Limit recursion calls depth.
3158   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
3159     return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3160 
3161   if (SCEV *S = findExistingSCEVInCache(scMulExpr, Ops)) {
3162     // Don't strengthen flags if we have no new information.
3163     SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S);
3164     if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags)
3165       Mul->setNoWrapFlags(ComputeFlags(Ops));
3166     return S;
3167   }
3168 
3169   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3170     if (Ops.size() == 2) {
3171       // C1*(C2+V) -> C1*C2 + C1*V
3172       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
3173         // If any of Add's ops are Adds or Muls with a constant, apply this
3174         // transformation as well.
3175         //
3176         // TODO: There are some cases where this transformation is not
3177         // profitable; for example, Add = (C0 + X) * Y + Z.  Maybe the scope of
3178         // this transformation should be narrowed down.
3179         if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) {
3180           const SCEV *LHS = getMulExpr(LHSC, Add->getOperand(0),
3181                                        SCEV::FlagAnyWrap, Depth + 1);
3182           const SCEV *RHS = getMulExpr(LHSC, Add->getOperand(1),
3183                                        SCEV::FlagAnyWrap, Depth + 1);
3184           return getAddExpr(LHS, RHS, SCEV::FlagAnyWrap, Depth + 1);
3185         }
3186 
3187       if (Ops[0]->isAllOnesValue()) {
3188         // If we have a mul by -1 of an add, try distributing the -1 among the
3189         // add operands.
3190         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
3191           SmallVector<const SCEV *, 4> NewOps;
3192           bool AnyFolded = false;
3193           for (const SCEV *AddOp : Add->operands()) {
3194             const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
3195                                          Depth + 1);
3196             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
3197             NewOps.push_back(Mul);
3198           }
3199           if (AnyFolded)
3200             return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
3201         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
3202           // Negation preserves a recurrence's no self-wrap property.
3203           SmallVector<const SCEV *, 4> Operands;
3204           for (const SCEV *AddRecOp : AddRec->operands())
3205             Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
3206                                           Depth + 1));
3207           // Let M be the minimum representable signed value. AddRec with nsw
3208           // multiplied by -1 can have signed overflow if and only if it takes a
3209           // value of M: M * (-1) would stay M and (M + 1) * (-1) would be the
3210           // maximum signed value. In all other cases signed overflow is
3211           // impossible.
3212           auto FlagsMask = SCEV::FlagNW;
3213           if (hasFlags(AddRec->getNoWrapFlags(), SCEV::FlagNSW)) {
3214             auto MinInt =
3215                 APInt::getSignedMinValue(getTypeSizeInBits(AddRec->getType()));
3216             if (getSignedRangeMin(AddRec) != MinInt)
3217               FlagsMask = setFlags(FlagsMask, SCEV::FlagNSW);
3218           }
3219           return getAddRecExpr(Operands, AddRec->getLoop(),
3220                                AddRec->getNoWrapFlags(FlagsMask));
3221         }
3222       }
3223     }
3224   }
3225 
3226   // Skip over the add expression until we get to a multiply.
3227   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
3228     ++Idx;
3229 
3230   // If there are mul operands inline them all into this expression.
3231   if (Idx < Ops.size()) {
3232     bool DeletedMul = false;
3233     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
3234       if (Ops.size() > MulOpsInlineThreshold)
3235         break;
3236       // If we have an mul, expand the mul operands onto the end of the
3237       // operands list.
3238       Ops.erase(Ops.begin()+Idx);
3239       append_range(Ops, Mul->operands());
3240       DeletedMul = true;
3241     }
3242 
3243     // If we deleted at least one mul, we added operands to the end of the
3244     // list, and they are not necessarily sorted.  Recurse to resort and
3245     // resimplify any operands we just acquired.
3246     if (DeletedMul)
3247       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3248   }
3249 
3250   // If there are any add recurrences in the operands list, see if any other
3251   // added values are loop invariant.  If so, we can fold them into the
3252   // recurrence.
3253   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
3254     ++Idx;
3255 
3256   // Scan over all recurrences, trying to fold loop invariants into them.
3257   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
3258     // Scan all of the other operands to this mul and add them to the vector
3259     // if they are loop invariant w.r.t. the recurrence.
3260     SmallVector<const SCEV *, 8> LIOps;
3261     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
3262     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3263       if (isAvailableAtLoopEntry(Ops[i], AddRec->getLoop())) {
3264         LIOps.push_back(Ops[i]);
3265         Ops.erase(Ops.begin()+i);
3266         --i; --e;
3267       }
3268 
3269     // If we found some loop invariants, fold them into the recurrence.
3270     if (!LIOps.empty()) {
3271       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
3272       SmallVector<const SCEV *, 4> NewOps;
3273       NewOps.reserve(AddRec->getNumOperands());
3274       const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
3275 
3276       // If both the mul and addrec are nuw, we can preserve nuw.
3277       // If both the mul and addrec are nsw, we can only preserve nsw if either
3278       // a) they are also nuw, or
3279       // b) all multiplications of addrec operands with scale are nsw.
3280       SCEV::NoWrapFlags Flags =
3281           AddRec->getNoWrapFlags(ComputeFlags({Scale, AddRec}));
3282 
3283       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3284         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
3285                                     SCEV::FlagAnyWrap, Depth + 1));
3286 
3287         if (hasFlags(Flags, SCEV::FlagNSW) && !hasFlags(Flags, SCEV::FlagNUW)) {
3288           ConstantRange NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
3289               Instruction::Mul, getSignedRange(Scale),
3290               OverflowingBinaryOperator::NoSignedWrap);
3291           if (!NSWRegion.contains(getSignedRange(AddRec->getOperand(i))))
3292             Flags = clearFlags(Flags, SCEV::FlagNSW);
3293         }
3294       }
3295 
3296       const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop(), Flags);
3297 
3298       // If all of the other operands were loop invariant, we are done.
3299       if (Ops.size() == 1) return NewRec;
3300 
3301       // Otherwise, multiply the folded AddRec by the non-invariant parts.
3302       for (unsigned i = 0;; ++i)
3303         if (Ops[i] == AddRec) {
3304           Ops[i] = NewRec;
3305           break;
3306         }
3307       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3308     }
3309 
3310     // Okay, if there weren't any loop invariants to be folded, check to see
3311     // if there are multiple AddRec's with the same loop induction variable
3312     // being multiplied together.  If so, we can fold them.
3313 
3314     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
3315     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
3316     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
3317     //   ]]],+,...up to x=2n}.
3318     // Note that the arguments to choose() are always integers with values
3319     // known at compile time, never SCEV objects.
3320     //
3321     // The implementation avoids pointless extra computations when the two
3322     // addrec's are of different length (mathematically, it's equivalent to
3323     // an infinite stream of zeros on the right).
3324     bool OpsModified = false;
3325     for (unsigned OtherIdx = Idx+1;
3326          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
3327          ++OtherIdx) {
3328       const SCEVAddRecExpr *OtherAddRec =
3329         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
3330       if (!OtherAddRec || OtherAddRec->getLoop() != AddRec->getLoop())
3331         continue;
3332 
3333       // Limit max number of arguments to avoid creation of unreasonably big
3334       // SCEVAddRecs with very complex operands.
3335       if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
3336           MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec}))
3337         continue;
3338 
3339       bool Overflow = false;
3340       Type *Ty = AddRec->getType();
3341       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
3342       SmallVector<const SCEV*, 7> AddRecOps;
3343       for (int x = 0, xe = AddRec->getNumOperands() +
3344              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
3345         SmallVector <const SCEV *, 7> SumOps;
3346         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
3347           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
3348           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
3349                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
3350                z < ze && !Overflow; ++z) {
3351             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
3352             uint64_t Coeff;
3353             if (LargerThan64Bits)
3354               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
3355             else
3356               Coeff = Coeff1*Coeff2;
3357             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
3358             const SCEV *Term1 = AddRec->getOperand(y-z);
3359             const SCEV *Term2 = OtherAddRec->getOperand(z);
3360             SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
3361                                         SCEV::FlagAnyWrap, Depth + 1));
3362           }
3363         }
3364         if (SumOps.empty())
3365           SumOps.push_back(getZero(Ty));
3366         AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
3367       }
3368       if (!Overflow) {
3369         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
3370                                               SCEV::FlagAnyWrap);
3371         if (Ops.size() == 2) return NewAddRec;
3372         Ops[Idx] = NewAddRec;
3373         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
3374         OpsModified = true;
3375         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
3376         if (!AddRec)
3377           break;
3378       }
3379     }
3380     if (OpsModified)
3381       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3382 
3383     // Otherwise couldn't fold anything into this recurrence.  Move onto the
3384     // next one.
3385   }
3386 
3387   // Okay, it looks like we really DO need an mul expr.  Check to see if we
3388   // already have one, otherwise create a new one.
3389   return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3390 }
3391 
3392 /// Represents an unsigned remainder expression based on unsigned division.
getURemExpr(const SCEV * LHS,const SCEV * RHS)3393 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
3394                                          const SCEV *RHS) {
3395   assert(getEffectiveSCEVType(LHS->getType()) ==
3396          getEffectiveSCEVType(RHS->getType()) &&
3397          "SCEVURemExpr operand types don't match!");
3398 
3399   // Short-circuit easy cases
3400   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3401     // If constant is one, the result is trivial
3402     if (RHSC->getValue()->isOne())
3403       return getZero(LHS->getType()); // X urem 1 --> 0
3404 
3405     // If constant is a power of two, fold into a zext(trunc(LHS)).
3406     if (RHSC->getAPInt().isPowerOf2()) {
3407       Type *FullTy = LHS->getType();
3408       Type *TruncTy =
3409           IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
3410       return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
3411     }
3412   }
3413 
3414   // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
3415   const SCEV *UDiv = getUDivExpr(LHS, RHS);
3416   const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
3417   return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
3418 }
3419 
3420 /// Get a canonical unsigned division expression, or something simpler if
3421 /// possible.
getUDivExpr(const SCEV * LHS,const SCEV * RHS)3422 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
3423                                          const SCEV *RHS) {
3424   assert(!LHS->getType()->isPointerTy() &&
3425          "SCEVUDivExpr operand can't be pointer!");
3426   assert(LHS->getType() == RHS->getType() &&
3427          "SCEVUDivExpr operand types don't match!");
3428 
3429   FoldingSetNodeID ID;
3430   ID.AddInteger(scUDivExpr);
3431   ID.AddPointer(LHS);
3432   ID.AddPointer(RHS);
3433   void *IP = nullptr;
3434   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3435     return S;
3436 
3437   // 0 udiv Y == 0
3438   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS))
3439     if (LHSC->getValue()->isZero())
3440       return LHS;
3441 
3442   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3443     if (RHSC->getValue()->isOne())
3444       return LHS;                               // X udiv 1 --> x
3445     // If the denominator is zero, the result of the udiv is undefined. Don't
3446     // try to analyze it, because the resolution chosen here may differ from
3447     // the resolution chosen in other parts of the compiler.
3448     if (!RHSC->getValue()->isZero()) {
3449       // Determine if the division can be folded into the operands of
3450       // its operands.
3451       // TODO: Generalize this to non-constants by using known-bits information.
3452       Type *Ty = LHS->getType();
3453       unsigned LZ = RHSC->getAPInt().countl_zero();
3454       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
3455       // For non-power-of-two values, effectively round the value up to the
3456       // nearest power of two.
3457       if (!RHSC->getAPInt().isPowerOf2())
3458         ++MaxShiftAmt;
3459       IntegerType *ExtTy =
3460         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
3461       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
3462         if (const SCEVConstant *Step =
3463             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
3464           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3465           const APInt &StepInt = Step->getAPInt();
3466           const APInt &DivInt = RHSC->getAPInt();
3467           if (!StepInt.urem(DivInt) &&
3468               getZeroExtendExpr(AR, ExtTy) ==
3469               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3470                             getZeroExtendExpr(Step, ExtTy),
3471                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3472             SmallVector<const SCEV *, 4> Operands;
3473             for (const SCEV *Op : AR->operands())
3474               Operands.push_back(getUDivExpr(Op, RHS));
3475             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
3476           }
3477           /// Get a canonical UDivExpr for a recurrence.
3478           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3479           // We can currently only fold X%N if X is constant.
3480           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
3481           if (StartC && !DivInt.urem(StepInt) &&
3482               getZeroExtendExpr(AR, ExtTy) ==
3483               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3484                             getZeroExtendExpr(Step, ExtTy),
3485                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3486             const APInt &StartInt = StartC->getAPInt();
3487             const APInt &StartRem = StartInt.urem(StepInt);
3488             if (StartRem != 0) {
3489               const SCEV *NewLHS =
3490                   getAddRecExpr(getConstant(StartInt - StartRem), Step,
3491                                 AR->getLoop(), SCEV::FlagNW);
3492               if (LHS != NewLHS) {
3493                 LHS = NewLHS;
3494 
3495                 // Reset the ID to include the new LHS, and check if it is
3496                 // already cached.
3497                 ID.clear();
3498                 ID.AddInteger(scUDivExpr);
3499                 ID.AddPointer(LHS);
3500                 ID.AddPointer(RHS);
3501                 IP = nullptr;
3502                 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3503                   return S;
3504               }
3505             }
3506           }
3507         }
3508       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3509       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3510         SmallVector<const SCEV *, 4> Operands;
3511         for (const SCEV *Op : M->operands())
3512           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3513         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3514           // Find an operand that's safely divisible.
3515           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3516             const SCEV *Op = M->getOperand(i);
3517             const SCEV *Div = getUDivExpr(Op, RHSC);
3518             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3519               Operands = SmallVector<const SCEV *, 4>(M->operands());
3520               Operands[i] = Div;
3521               return getMulExpr(Operands);
3522             }
3523           }
3524       }
3525 
3526       // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3527       if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
3528         if (auto *DivisorConstant =
3529                 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
3530           bool Overflow = false;
3531           APInt NewRHS =
3532               DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
3533           if (Overflow) {
3534             return getConstant(RHSC->getType(), 0, false);
3535           }
3536           return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
3537         }
3538       }
3539 
3540       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3541       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3542         SmallVector<const SCEV *, 4> Operands;
3543         for (const SCEV *Op : A->operands())
3544           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3545         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3546           Operands.clear();
3547           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3548             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3549             if (isa<SCEVUDivExpr>(Op) ||
3550                 getMulExpr(Op, RHS) != A->getOperand(i))
3551               break;
3552             Operands.push_back(Op);
3553           }
3554           if (Operands.size() == A->getNumOperands())
3555             return getAddExpr(Operands);
3556         }
3557       }
3558 
3559       // Fold if both operands are constant.
3560       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS))
3561         return getConstant(LHSC->getAPInt().udiv(RHSC->getAPInt()));
3562     }
3563   }
3564 
3565   // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs
3566   // changes). Make sure we get a new one.
3567   IP = nullptr;
3568   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3569   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3570                                              LHS, RHS);
3571   UniqueSCEVs.InsertNode(S, IP);
3572   registerUser(S, {LHS, RHS});
3573   return S;
3574 }
3575 
gcd(const SCEVConstant * C1,const SCEVConstant * C2)3576 APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3577   APInt A = C1->getAPInt().abs();
3578   APInt B = C2->getAPInt().abs();
3579   uint32_t ABW = A.getBitWidth();
3580   uint32_t BBW = B.getBitWidth();
3581 
3582   if (ABW > BBW)
3583     B = B.zext(ABW);
3584   else if (ABW < BBW)
3585     A = A.zext(BBW);
3586 
3587   return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3588 }
3589 
3590 /// Get a canonical unsigned division expression, or something simpler if
3591 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3592 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
3593 /// it's not exact because the udiv may be clearing bits.
getUDivExactExpr(const SCEV * LHS,const SCEV * RHS)3594 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3595                                               const SCEV *RHS) {
3596   // TODO: we could try to find factors in all sorts of things, but for now we
3597   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3598   // end of this file for inspiration.
3599 
3600   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3601   if (!Mul || !Mul->hasNoUnsignedWrap())
3602     return getUDivExpr(LHS, RHS);
3603 
3604   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3605     // If the mulexpr multiplies by a constant, then that constant must be the
3606     // first element of the mulexpr.
3607     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3608       if (LHSCst == RHSCst) {
3609         SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands()));
3610         return getMulExpr(Operands);
3611       }
3612 
3613       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3614       // that there's a factor provided by one of the other terms. We need to
3615       // check.
3616       APInt Factor = gcd(LHSCst, RHSCst);
3617       if (!Factor.isIntN(1)) {
3618         LHSCst =
3619             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3620         RHSCst =
3621             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3622         SmallVector<const SCEV *, 2> Operands;
3623         Operands.push_back(LHSCst);
3624         append_range(Operands, Mul->operands().drop_front());
3625         LHS = getMulExpr(Operands);
3626         RHS = RHSCst;
3627         Mul = dyn_cast<SCEVMulExpr>(LHS);
3628         if (!Mul)
3629           return getUDivExactExpr(LHS, RHS);
3630       }
3631     }
3632   }
3633 
3634   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3635     if (Mul->getOperand(i) == RHS) {
3636       SmallVector<const SCEV *, 2> Operands;
3637       append_range(Operands, Mul->operands().take_front(i));
3638       append_range(Operands, Mul->operands().drop_front(i + 1));
3639       return getMulExpr(Operands);
3640     }
3641   }
3642 
3643   return getUDivExpr(LHS, RHS);
3644 }
3645 
3646 /// Get an add recurrence expression for the specified loop.  Simplify the
3647 /// expression as much as possible.
getAddRecExpr(const SCEV * Start,const SCEV * Step,const Loop * L,SCEV::NoWrapFlags Flags)3648 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3649                                            const Loop *L,
3650                                            SCEV::NoWrapFlags Flags) {
3651   SmallVector<const SCEV *, 4> Operands;
3652   Operands.push_back(Start);
3653   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3654     if (StepChrec->getLoop() == L) {
3655       append_range(Operands, StepChrec->operands());
3656       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3657     }
3658 
3659   Operands.push_back(Step);
3660   return getAddRecExpr(Operands, L, Flags);
3661 }
3662 
3663 /// Get an add recurrence expression for the specified loop.  Simplify the
3664 /// expression as much as possible.
3665 const SCEV *
getAddRecExpr(SmallVectorImpl<const SCEV * > & Operands,const Loop * L,SCEV::NoWrapFlags Flags)3666 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3667                                const Loop *L, SCEV::NoWrapFlags Flags) {
3668   if (Operands.size() == 1) return Operands[0];
3669 #ifndef NDEBUG
3670   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3671   for (const SCEV *Op : llvm::drop_begin(Operands)) {
3672     assert(getEffectiveSCEVType(Op->getType()) == ETy &&
3673            "SCEVAddRecExpr operand types don't match!");
3674     assert(!Op->getType()->isPointerTy() && "Step must be integer");
3675   }
3676   for (const SCEV *Op : Operands)
3677     assert(isAvailableAtLoopEntry(Op, L) &&
3678            "SCEVAddRecExpr operand is not available at loop entry!");
3679 #endif
3680 
3681   if (Operands.back()->isZero()) {
3682     Operands.pop_back();
3683     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
3684   }
3685 
3686   // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and
3687   // use that information to infer NUW and NSW flags. However, computing a
3688   // BE count requires calling getAddRecExpr, so we may not yet have a
3689   // meaningful BE count at this point (and if we don't, we'd be stuck
3690   // with a SCEVCouldNotCompute as the cached BE count).
3691 
3692   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3693 
3694   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3695   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3696     const Loop *NestedLoop = NestedAR->getLoop();
3697     if (L->contains(NestedLoop)
3698             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3699             : (!NestedLoop->contains(L) &&
3700                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3701       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands());
3702       Operands[0] = NestedAR->getStart();
3703       // AddRecs require their operands be loop-invariant with respect to their
3704       // loops. Don't perform this transformation if it would break this
3705       // requirement.
3706       bool AllInvariant = all_of(
3707           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3708 
3709       if (AllInvariant) {
3710         // Create a recurrence for the outer loop with the same step size.
3711         //
3712         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3713         // inner recurrence has the same property.
3714         SCEV::NoWrapFlags OuterFlags =
3715           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3716 
3717         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3718         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3719           return isLoopInvariant(Op, NestedLoop);
3720         });
3721 
3722         if (AllInvariant) {
3723           // Ok, both add recurrences are valid after the transformation.
3724           //
3725           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3726           // the outer recurrence has the same property.
3727           SCEV::NoWrapFlags InnerFlags =
3728             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3729           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3730         }
3731       }
3732       // Reset Operands to its original state.
3733       Operands[0] = NestedAR;
3734     }
3735   }
3736 
3737   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
3738   // already have one, otherwise create a new one.
3739   return getOrCreateAddRecExpr(Operands, L, Flags);
3740 }
3741 
3742 const SCEV *
getGEPExpr(GEPOperator * GEP,const SmallVectorImpl<const SCEV * > & IndexExprs)3743 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3744                             const SmallVectorImpl<const SCEV *> &IndexExprs) {
3745   const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3746   // getSCEV(Base)->getType() has the same address space as Base->getType()
3747   // because SCEV::getType() preserves the address space.
3748   Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType());
3749   GEPNoWrapFlags NW = GEP->getNoWrapFlags();
3750   if (NW != GEPNoWrapFlags::none()) {
3751     // We'd like to propagate flags from the IR to the corresponding SCEV nodes,
3752     // but to do that, we have to ensure that said flag is valid in the entire
3753     // defined scope of the SCEV.
3754     // TODO: non-instructions have global scope.  We might be able to prove
3755     // some global scope cases
3756     auto *GEPI = dyn_cast<Instruction>(GEP);
3757     if (!GEPI || !isSCEVExprNeverPoison(GEPI))
3758       NW = GEPNoWrapFlags::none();
3759   }
3760 
3761   SCEV::NoWrapFlags OffsetWrap = SCEV::FlagAnyWrap;
3762   if (NW.hasNoUnsignedSignedWrap())
3763     OffsetWrap = setFlags(OffsetWrap, SCEV::FlagNSW);
3764   if (NW.hasNoUnsignedWrap())
3765     OffsetWrap = setFlags(OffsetWrap, SCEV::FlagNUW);
3766 
3767   Type *CurTy = GEP->getType();
3768   bool FirstIter = true;
3769   SmallVector<const SCEV *, 4> Offsets;
3770   for (const SCEV *IndexExpr : IndexExprs) {
3771     // Compute the (potentially symbolic) offset in bytes for this index.
3772     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3773       // For a struct, add the member offset.
3774       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3775       unsigned FieldNo = Index->getZExtValue();
3776       const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo);
3777       Offsets.push_back(FieldOffset);
3778 
3779       // Update CurTy to the type of the field at Index.
3780       CurTy = STy->getTypeAtIndex(Index);
3781     } else {
3782       // Update CurTy to its element type.
3783       if (FirstIter) {
3784         assert(isa<PointerType>(CurTy) &&
3785                "The first index of a GEP indexes a pointer");
3786         CurTy = GEP->getSourceElementType();
3787         FirstIter = false;
3788       } else {
3789         CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0);
3790       }
3791       // For an array, add the element offset, explicitly scaled.
3792       const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy);
3793       // Getelementptr indices are signed.
3794       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy);
3795 
3796       // Multiply the index by the element size to compute the element offset.
3797       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap);
3798       Offsets.push_back(LocalOffset);
3799     }
3800   }
3801 
3802   // Handle degenerate case of GEP without offsets.
3803   if (Offsets.empty())
3804     return BaseExpr;
3805 
3806   // Add the offsets together, assuming nsw if inbounds.
3807   const SCEV *Offset = getAddExpr(Offsets, OffsetWrap);
3808   // Add the base address and the offset. We cannot use the nsw flag, as the
3809   // base address is unsigned. However, if we know that the offset is
3810   // non-negative, we can use nuw.
3811   bool NUW = NW.hasNoUnsignedWrap() ||
3812              (NW.hasNoUnsignedSignedWrap() && isKnownNonNegative(Offset));
3813   SCEV::NoWrapFlags BaseWrap = NUW ? SCEV::FlagNUW : SCEV::FlagAnyWrap;
3814   auto *GEPExpr = getAddExpr(BaseExpr, Offset, BaseWrap);
3815   assert(BaseExpr->getType() == GEPExpr->getType() &&
3816          "GEP should not change type mid-flight.");
3817   return GEPExpr;
3818 }
3819 
findExistingSCEVInCache(SCEVTypes SCEVType,ArrayRef<const SCEV * > Ops)3820 SCEV *ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType,
3821                                                ArrayRef<const SCEV *> Ops) {
3822   FoldingSetNodeID ID;
3823   ID.AddInteger(SCEVType);
3824   for (const SCEV *Op : Ops)
3825     ID.AddPointer(Op);
3826   void *IP = nullptr;
3827   return UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
3828 }
3829 
getAbsExpr(const SCEV * Op,bool IsNSW)3830 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) {
3831   SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3832   return getSMaxExpr(Op, getNegativeSCEV(Op, Flags));
3833 }
3834 
getMinMaxExpr(SCEVTypes Kind,SmallVectorImpl<const SCEV * > & Ops)3835 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind,
3836                                            SmallVectorImpl<const SCEV *> &Ops) {
3837   assert(SCEVMinMaxExpr::isMinMaxType(Kind) && "Not a SCEVMinMaxExpr!");
3838   assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
3839   if (Ops.size() == 1) return Ops[0];
3840 #ifndef NDEBUG
3841   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3842   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
3843     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3844            "Operand types don't match!");
3845     assert(Ops[0]->getType()->isPointerTy() ==
3846                Ops[i]->getType()->isPointerTy() &&
3847            "min/max should be consistently pointerish");
3848   }
3849 #endif
3850 
3851   bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr;
3852   bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr;
3853 
3854   // Sort by complexity, this groups all similar expression types together.
3855   GroupByComplexity(Ops, &LI, DT);
3856 
3857   // Check if we have created the same expression before.
3858   if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) {
3859     return S;
3860   }
3861 
3862   // If there are any constants, fold them together.
3863   unsigned Idx = 0;
3864   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3865     ++Idx;
3866     assert(Idx < Ops.size());
3867     auto FoldOp = [&](const APInt &LHS, const APInt &RHS) {
3868       switch (Kind) {
3869       case scSMaxExpr:
3870         return APIntOps::smax(LHS, RHS);
3871       case scSMinExpr:
3872         return APIntOps::smin(LHS, RHS);
3873       case scUMaxExpr:
3874         return APIntOps::umax(LHS, RHS);
3875       case scUMinExpr:
3876         return APIntOps::umin(LHS, RHS);
3877       default:
3878         llvm_unreachable("Unknown SCEV min/max opcode");
3879       }
3880     };
3881 
3882     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3883       // We found two constants, fold them together!
3884       ConstantInt *Fold = ConstantInt::get(
3885           getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt()));
3886       Ops[0] = getConstant(Fold);
3887       Ops.erase(Ops.begin()+1);  // Erase the folded element
3888       if (Ops.size() == 1) return Ops[0];
3889       LHSC = cast<SCEVConstant>(Ops[0]);
3890     }
3891 
3892     bool IsMinV = LHSC->getValue()->isMinValue(IsSigned);
3893     bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned);
3894 
3895     if (IsMax ? IsMinV : IsMaxV) {
3896       // If we are left with a constant minimum(/maximum)-int, strip it off.
3897       Ops.erase(Ops.begin());
3898       --Idx;
3899     } else if (IsMax ? IsMaxV : IsMinV) {
3900       // If we have a max(/min) with a constant maximum(/minimum)-int,
3901       // it will always be the extremum.
3902       return LHSC;
3903     }
3904 
3905     if (Ops.size() == 1) return Ops[0];
3906   }
3907 
3908   // Find the first operation of the same kind
3909   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind)
3910     ++Idx;
3911 
3912   // Check to see if one of the operands is of the same kind. If so, expand its
3913   // operands onto our operand list, and recurse to simplify.
3914   if (Idx < Ops.size()) {
3915     bool DeletedAny = false;
3916     while (Ops[Idx]->getSCEVType() == Kind) {
3917       const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]);
3918       Ops.erase(Ops.begin()+Idx);
3919       append_range(Ops, SMME->operands());
3920       DeletedAny = true;
3921     }
3922 
3923     if (DeletedAny)
3924       return getMinMaxExpr(Kind, Ops);
3925   }
3926 
3927   // Okay, check to see if the same value occurs in the operand list twice.  If
3928   // so, delete one.  Since we sorted the list, these values are required to
3929   // be adjacent.
3930   llvm::CmpInst::Predicate GEPred =
3931       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
3932   llvm::CmpInst::Predicate LEPred =
3933       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
3934   llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred;
3935   llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred;
3936   for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) {
3937     if (Ops[i] == Ops[i + 1] ||
3938         isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) {
3939       //  X op Y op Y  -->  X op Y
3940       //  X op Y       -->  X, if we know X, Y are ordered appropriately
3941       Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
3942       --i;
3943       --e;
3944     } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i],
3945                                                Ops[i + 1])) {
3946       //  X op Y       -->  Y, if we know X, Y are ordered appropriately
3947       Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
3948       --i;
3949       --e;
3950     }
3951   }
3952 
3953   if (Ops.size() == 1) return Ops[0];
3954 
3955   assert(!Ops.empty() && "Reduced smax down to nothing!");
3956 
3957   // Okay, it looks like we really DO need an expr.  Check to see if we
3958   // already have one, otherwise create a new one.
3959   FoldingSetNodeID ID;
3960   ID.AddInteger(Kind);
3961   for (const SCEV *Op : Ops)
3962     ID.AddPointer(Op);
3963   void *IP = nullptr;
3964   const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
3965   if (ExistingSCEV)
3966     return ExistingSCEV;
3967   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3968   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3969   SCEV *S = new (SCEVAllocator)
3970       SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size());
3971 
3972   UniqueSCEVs.InsertNode(S, IP);
3973   registerUser(S, Ops);
3974   return S;
3975 }
3976 
3977 namespace {
3978 
3979 class SCEVSequentialMinMaxDeduplicatingVisitor final
3980     : public SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor,
3981                          std::optional<const SCEV *>> {
3982   using RetVal = std::optional<const SCEV *>;
3983   using Base = SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor, RetVal>;
3984 
3985   ScalarEvolution &SE;
3986   const SCEVTypes RootKind; // Must be a sequential min/max expression.
3987   const SCEVTypes NonSequentialRootKind; // Non-sequential variant of RootKind.
3988   SmallPtrSet<const SCEV *, 16> SeenOps;
3989 
canRecurseInto(SCEVTypes Kind) const3990   bool canRecurseInto(SCEVTypes Kind) const {
3991     // We can only recurse into the SCEV expression of the same effective type
3992     // as the type of our root SCEV expression.
3993     return RootKind == Kind || NonSequentialRootKind == Kind;
3994   };
3995 
visitAnyMinMaxExpr(const SCEV * S)3996   RetVal visitAnyMinMaxExpr(const SCEV *S) {
3997     assert((isa<SCEVMinMaxExpr>(S) || isa<SCEVSequentialMinMaxExpr>(S)) &&
3998            "Only for min/max expressions.");
3999     SCEVTypes Kind = S->getSCEVType();
4000 
4001     if (!canRecurseInto(Kind))
4002       return S;
4003 
4004     auto *NAry = cast<SCEVNAryExpr>(S);
4005     SmallVector<const SCEV *> NewOps;
4006     bool Changed = visit(Kind, NAry->operands(), NewOps);
4007 
4008     if (!Changed)
4009       return S;
4010     if (NewOps.empty())
4011       return std::nullopt;
4012 
4013     return isa<SCEVSequentialMinMaxExpr>(S)
4014                ? SE.getSequentialMinMaxExpr(Kind, NewOps)
4015                : SE.getMinMaxExpr(Kind, NewOps);
4016   }
4017 
visit(const SCEV * S)4018   RetVal visit(const SCEV *S) {
4019     // Has the whole operand been seen already?
4020     if (!SeenOps.insert(S).second)
4021       return std::nullopt;
4022     return Base::visit(S);
4023   }
4024 
4025 public:
SCEVSequentialMinMaxDeduplicatingVisitor(ScalarEvolution & SE,SCEVTypes RootKind)4026   SCEVSequentialMinMaxDeduplicatingVisitor(ScalarEvolution &SE,
4027                                            SCEVTypes RootKind)
4028       : SE(SE), RootKind(RootKind),
4029         NonSequentialRootKind(
4030             SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(
4031                 RootKind)) {}
4032 
visit(SCEVTypes Kind,ArrayRef<const SCEV * > OrigOps,SmallVectorImpl<const SCEV * > & NewOps)4033   bool /*Changed*/ visit(SCEVTypes Kind, ArrayRef<const SCEV *> OrigOps,
4034                          SmallVectorImpl<const SCEV *> &NewOps) {
4035     bool Changed = false;
4036     SmallVector<const SCEV *> Ops;
4037     Ops.reserve(OrigOps.size());
4038 
4039     for (const SCEV *Op : OrigOps) {
4040       RetVal NewOp = visit(Op);
4041       if (NewOp != Op)
4042         Changed = true;
4043       if (NewOp)
4044         Ops.emplace_back(*NewOp);
4045     }
4046 
4047     if (Changed)
4048       NewOps = std::move(Ops);
4049     return Changed;
4050   }
4051 
visitConstant(const SCEVConstant * Constant)4052   RetVal visitConstant(const SCEVConstant *Constant) { return Constant; }
4053 
visitVScale(const SCEVVScale * VScale)4054   RetVal visitVScale(const SCEVVScale *VScale) { return VScale; }
4055 
visitPtrToIntExpr(const SCEVPtrToIntExpr * Expr)4056   RetVal visitPtrToIntExpr(const SCEVPtrToIntExpr *Expr) { return Expr; }
4057 
visitTruncateExpr(const SCEVTruncateExpr * Expr)4058   RetVal visitTruncateExpr(const SCEVTruncateExpr *Expr) { return Expr; }
4059 
visitZeroExtendExpr(const SCEVZeroExtendExpr * Expr)4060   RetVal visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { return Expr; }
4061 
visitSignExtendExpr(const SCEVSignExtendExpr * Expr)4062   RetVal visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { return Expr; }
4063 
visitAddExpr(const SCEVAddExpr * Expr)4064   RetVal visitAddExpr(const SCEVAddExpr *Expr) { return Expr; }
4065 
visitMulExpr(const SCEVMulExpr * Expr)4066   RetVal visitMulExpr(const SCEVMulExpr *Expr) { return Expr; }
4067 
visitUDivExpr(const SCEVUDivExpr * Expr)4068   RetVal visitUDivExpr(const SCEVUDivExpr *Expr) { return Expr; }
4069 
visitAddRecExpr(const SCEVAddRecExpr * Expr)4070   RetVal visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; }
4071 
visitSMaxExpr(const SCEVSMaxExpr * Expr)4072   RetVal visitSMaxExpr(const SCEVSMaxExpr *Expr) {
4073     return visitAnyMinMaxExpr(Expr);
4074   }
4075 
visitUMaxExpr(const SCEVUMaxExpr * Expr)4076   RetVal visitUMaxExpr(const SCEVUMaxExpr *Expr) {
4077     return visitAnyMinMaxExpr(Expr);
4078   }
4079 
visitSMinExpr(const SCEVSMinExpr * Expr)4080   RetVal visitSMinExpr(const SCEVSMinExpr *Expr) {
4081     return visitAnyMinMaxExpr(Expr);
4082   }
4083 
visitUMinExpr(const SCEVUMinExpr * Expr)4084   RetVal visitUMinExpr(const SCEVUMinExpr *Expr) {
4085     return visitAnyMinMaxExpr(Expr);
4086   }
4087 
visitSequentialUMinExpr(const SCEVSequentialUMinExpr * Expr)4088   RetVal visitSequentialUMinExpr(const SCEVSequentialUMinExpr *Expr) {
4089     return visitAnyMinMaxExpr(Expr);
4090   }
4091 
visitUnknown(const SCEVUnknown * Expr)4092   RetVal visitUnknown(const SCEVUnknown *Expr) { return Expr; }
4093 
visitCouldNotCompute(const SCEVCouldNotCompute * Expr)4094   RetVal visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { return Expr; }
4095 };
4096 
4097 } // namespace
4098 
scevUnconditionallyPropagatesPoisonFromOperands(SCEVTypes Kind)4099 static bool scevUnconditionallyPropagatesPoisonFromOperands(SCEVTypes Kind) {
4100   switch (Kind) {
4101   case scConstant:
4102   case scVScale:
4103   case scTruncate:
4104   case scZeroExtend:
4105   case scSignExtend:
4106   case scPtrToInt:
4107   case scAddExpr:
4108   case scMulExpr:
4109   case scUDivExpr:
4110   case scAddRecExpr:
4111   case scUMaxExpr:
4112   case scSMaxExpr:
4113   case scUMinExpr:
4114   case scSMinExpr:
4115   case scUnknown:
4116     // If any operand is poison, the whole expression is poison.
4117     return true;
4118   case scSequentialUMinExpr:
4119     // FIXME: if the *first* operand is poison, the whole expression is poison.
4120     return false; // Pessimistically, say that it does not propagate poison.
4121   case scCouldNotCompute:
4122     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
4123   }
4124   llvm_unreachable("Unknown SCEV kind!");
4125 }
4126 
4127 namespace {
4128 // The only way poison may be introduced in a SCEV expression is from a
4129 // poison SCEVUnknown (ConstantExprs are also represented as SCEVUnknown,
4130 // not SCEVConstant). Notably, nowrap flags in SCEV nodes can *not*
4131 // introduce poison -- they encode guaranteed, non-speculated knowledge.
4132 //
4133 // Additionally, all SCEV nodes propagate poison from inputs to outputs,
4134 // with the notable exception of umin_seq, where only poison from the first
4135 // operand is (unconditionally) propagated.
4136 struct SCEVPoisonCollector {
4137   bool LookThroughMaybePoisonBlocking;
4138   SmallPtrSet<const SCEVUnknown *, 4> MaybePoison;
SCEVPoisonCollector__anon8884d99e1011::SCEVPoisonCollector4139   SCEVPoisonCollector(bool LookThroughMaybePoisonBlocking)
4140       : LookThroughMaybePoisonBlocking(LookThroughMaybePoisonBlocking) {}
4141 
follow__anon8884d99e1011::SCEVPoisonCollector4142   bool follow(const SCEV *S) {
4143     if (!LookThroughMaybePoisonBlocking &&
4144         !scevUnconditionallyPropagatesPoisonFromOperands(S->getSCEVType()))
4145       return false;
4146 
4147     if (auto *SU = dyn_cast<SCEVUnknown>(S)) {
4148       if (!isGuaranteedNotToBePoison(SU->getValue()))
4149         MaybePoison.insert(SU);
4150     }
4151     return true;
4152   }
isDone__anon8884d99e1011::SCEVPoisonCollector4153   bool isDone() const { return false; }
4154 };
4155 } // namespace
4156 
4157 /// Return true if V is poison given that AssumedPoison is already poison.
impliesPoison(const SCEV * AssumedPoison,const SCEV * S)4158 static bool impliesPoison(const SCEV *AssumedPoison, const SCEV *S) {
4159   // First collect all SCEVs that might result in AssumedPoison to be poison.
4160   // We need to look through potentially poison-blocking operations here,
4161   // because we want to find all SCEVs that *might* result in poison, not only
4162   // those that are *required* to.
4163   SCEVPoisonCollector PC1(/* LookThroughMaybePoisonBlocking */ true);
4164   visitAll(AssumedPoison, PC1);
4165 
4166   // AssumedPoison is never poison. As the assumption is false, the implication
4167   // is true. Don't bother walking the other SCEV in this case.
4168   if (PC1.MaybePoison.empty())
4169     return true;
4170 
4171   // Collect all SCEVs in S that, if poison, *will* result in S being poison
4172   // as well. We cannot look through potentially poison-blocking operations
4173   // here, as their arguments only *may* make the result poison.
4174   SCEVPoisonCollector PC2(/* LookThroughMaybePoisonBlocking */ false);
4175   visitAll(S, PC2);
4176 
4177   // Make sure that no matter which SCEV in PC1.MaybePoison is actually poison,
4178   // it will also make S poison by being part of PC2.MaybePoison.
4179   return all_of(PC1.MaybePoison, [&](const SCEVUnknown *S) {
4180     return PC2.MaybePoison.contains(S);
4181   });
4182 }
4183 
getPoisonGeneratingValues(SmallPtrSetImpl<const Value * > & Result,const SCEV * S)4184 void ScalarEvolution::getPoisonGeneratingValues(
4185     SmallPtrSetImpl<const Value *> &Result, const SCEV *S) {
4186   SCEVPoisonCollector PC(/* LookThroughMaybePoisonBlocking */ false);
4187   visitAll(S, PC);
4188   for (const SCEVUnknown *SU : PC.MaybePoison)
4189     Result.insert(SU->getValue());
4190 }
4191 
canReuseInstruction(const SCEV * S,Instruction * I,SmallVectorImpl<Instruction * > & DropPoisonGeneratingInsts)4192 bool ScalarEvolution::canReuseInstruction(
4193     const SCEV *S, Instruction *I,
4194     SmallVectorImpl<Instruction *> &DropPoisonGeneratingInsts) {
4195   // If the instruction cannot be poison, it's always safe to reuse.
4196   if (programUndefinedIfPoison(I))
4197     return true;
4198 
4199   // Otherwise, it is possible that I is more poisonous that S. Collect the
4200   // poison-contributors of S, and then check whether I has any additional
4201   // poison-contributors. Poison that is contributed through poison-generating
4202   // flags is handled by dropping those flags instead.
4203   SmallPtrSet<const Value *, 8> PoisonVals;
4204   getPoisonGeneratingValues(PoisonVals, S);
4205 
4206   SmallVector<Value *> Worklist;
4207   SmallPtrSet<Value *, 8> Visited;
4208   Worklist.push_back(I);
4209   while (!Worklist.empty()) {
4210     Value *V = Worklist.pop_back_val();
4211     if (!Visited.insert(V).second)
4212       continue;
4213 
4214     // Avoid walking large instruction graphs.
4215     if (Visited.size() > 16)
4216       return false;
4217 
4218     // Either the value can't be poison, or the S would also be poison if it
4219     // is.
4220     if (PoisonVals.contains(V) || isGuaranteedNotToBePoison(V))
4221       continue;
4222 
4223     auto *I = dyn_cast<Instruction>(V);
4224     if (!I)
4225       return false;
4226 
4227     // Disjoint or instructions are interpreted as adds by SCEV. However, we
4228     // can't replace an arbitrary add with disjoint or, even if we drop the
4229     // flag. We would need to convert the or into an add.
4230     if (auto *PDI = dyn_cast<PossiblyDisjointInst>(I))
4231       if (PDI->isDisjoint())
4232         return false;
4233 
4234     // FIXME: Ignore vscale, even though it technically could be poison. Do this
4235     // because SCEV currently assumes it can't be poison. Remove this special
4236     // case once we proper model when vscale can be poison.
4237     if (auto *II = dyn_cast<IntrinsicInst>(I);
4238         II && II->getIntrinsicID() == Intrinsic::vscale)
4239       continue;
4240 
4241     if (canCreatePoison(cast<Operator>(I), /*ConsiderFlagsAndMetadata*/ false))
4242       return false;
4243 
4244     // If the instruction can't create poison, we can recurse to its operands.
4245     if (I->hasPoisonGeneratingAnnotations())
4246       DropPoisonGeneratingInsts.push_back(I);
4247 
4248     for (Value *Op : I->operands())
4249       Worklist.push_back(Op);
4250   }
4251   return true;
4252 }
4253 
4254 const SCEV *
getSequentialMinMaxExpr(SCEVTypes Kind,SmallVectorImpl<const SCEV * > & Ops)4255 ScalarEvolution::getSequentialMinMaxExpr(SCEVTypes Kind,
4256                                          SmallVectorImpl<const SCEV *> &Ops) {
4257   assert(SCEVSequentialMinMaxExpr::isSequentialMinMaxType(Kind) &&
4258          "Not a SCEVSequentialMinMaxExpr!");
4259   assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
4260   if (Ops.size() == 1)
4261     return Ops[0];
4262 #ifndef NDEBUG
4263   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
4264   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
4265     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
4266            "Operand types don't match!");
4267     assert(Ops[0]->getType()->isPointerTy() ==
4268                Ops[i]->getType()->isPointerTy() &&
4269            "min/max should be consistently pointerish");
4270   }
4271 #endif
4272 
4273   // Note that SCEVSequentialMinMaxExpr is *NOT* commutative,
4274   // so we can *NOT* do any kind of sorting of the expressions!
4275 
4276   // Check if we have created the same expression before.
4277   if (const SCEV *S = findExistingSCEVInCache(Kind, Ops))
4278     return S;
4279 
4280   // FIXME: there are *some* simplifications that we can do here.
4281 
4282   // Keep only the first instance of an operand.
4283   {
4284     SCEVSequentialMinMaxDeduplicatingVisitor Deduplicator(*this, Kind);
4285     bool Changed = Deduplicator.visit(Kind, Ops, Ops);
4286     if (Changed)
4287       return getSequentialMinMaxExpr(Kind, Ops);
4288   }
4289 
4290   // Check to see if one of the operands is of the same kind. If so, expand its
4291   // operands onto our operand list, and recurse to simplify.
4292   {
4293     unsigned Idx = 0;
4294     bool DeletedAny = false;
4295     while (Idx < Ops.size()) {
4296       if (Ops[Idx]->getSCEVType() != Kind) {
4297         ++Idx;
4298         continue;
4299       }
4300       const auto *SMME = cast<SCEVSequentialMinMaxExpr>(Ops[Idx]);
4301       Ops.erase(Ops.begin() + Idx);
4302       Ops.insert(Ops.begin() + Idx, SMME->operands().begin(),
4303                  SMME->operands().end());
4304       DeletedAny = true;
4305     }
4306 
4307     if (DeletedAny)
4308       return getSequentialMinMaxExpr(Kind, Ops);
4309   }
4310 
4311   const SCEV *SaturationPoint;
4312   ICmpInst::Predicate Pred;
4313   switch (Kind) {
4314   case scSequentialUMinExpr:
4315     SaturationPoint = getZero(Ops[0]->getType());
4316     Pred = ICmpInst::ICMP_ULE;
4317     break;
4318   default:
4319     llvm_unreachable("Not a sequential min/max type.");
4320   }
4321 
4322   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
4323     // We can replace %x umin_seq %y with %x umin %y if either:
4324     //  * %y being poison implies %x is also poison.
4325     //  * %x cannot be the saturating value (e.g. zero for umin).
4326     if (::impliesPoison(Ops[i], Ops[i - 1]) ||
4327         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, Ops[i - 1],
4328                                         SaturationPoint)) {
4329       SmallVector<const SCEV *> SeqOps = {Ops[i - 1], Ops[i]};
4330       Ops[i - 1] = getMinMaxExpr(
4331           SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(Kind),
4332           SeqOps);
4333       Ops.erase(Ops.begin() + i);
4334       return getSequentialMinMaxExpr(Kind, Ops);
4335     }
4336     // Fold %x umin_seq %y to %x if %x ule %y.
4337     // TODO: We might be able to prove the predicate for a later operand.
4338     if (isKnownViaNonRecursiveReasoning(Pred, Ops[i - 1], Ops[i])) {
4339       Ops.erase(Ops.begin() + i);
4340       return getSequentialMinMaxExpr(Kind, Ops);
4341     }
4342   }
4343 
4344   // Okay, it looks like we really DO need an expr.  Check to see if we
4345   // already have one, otherwise create a new one.
4346   FoldingSetNodeID ID;
4347   ID.AddInteger(Kind);
4348   for (const SCEV *Op : Ops)
4349     ID.AddPointer(Op);
4350   void *IP = nullptr;
4351   const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
4352   if (ExistingSCEV)
4353     return ExistingSCEV;
4354 
4355   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
4356   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
4357   SCEV *S = new (SCEVAllocator)
4358       SCEVSequentialMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size());
4359 
4360   UniqueSCEVs.InsertNode(S, IP);
4361   registerUser(S, Ops);
4362   return S;
4363 }
4364 
getSMaxExpr(const SCEV * LHS,const SCEV * RHS)4365 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) {
4366   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
4367   return getSMaxExpr(Ops);
4368 }
4369 
getSMaxExpr(SmallVectorImpl<const SCEV * > & Ops)4370 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
4371   return getMinMaxExpr(scSMaxExpr, Ops);
4372 }
4373 
getUMaxExpr(const SCEV * LHS,const SCEV * RHS)4374 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) {
4375   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
4376   return getUMaxExpr(Ops);
4377 }
4378 
getUMaxExpr(SmallVectorImpl<const SCEV * > & Ops)4379 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
4380   return getMinMaxExpr(scUMaxExpr, Ops);
4381 }
4382 
getSMinExpr(const SCEV * LHS,const SCEV * RHS)4383 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
4384                                          const SCEV *RHS) {
4385   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4386   return getSMinExpr(Ops);
4387 }
4388 
getSMinExpr(SmallVectorImpl<const SCEV * > & Ops)4389 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
4390   return getMinMaxExpr(scSMinExpr, Ops);
4391 }
4392 
getUMinExpr(const SCEV * LHS,const SCEV * RHS,bool Sequential)4393 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, const SCEV *RHS,
4394                                          bool Sequential) {
4395   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4396   return getUMinExpr(Ops, Sequential);
4397 }
4398 
getUMinExpr(SmallVectorImpl<const SCEV * > & Ops,bool Sequential)4399 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops,
4400                                          bool Sequential) {
4401   return Sequential ? getSequentialMinMaxExpr(scSequentialUMinExpr, Ops)
4402                     : getMinMaxExpr(scUMinExpr, Ops);
4403 }
4404 
4405 const SCEV *
getSizeOfExpr(Type * IntTy,TypeSize Size)4406 ScalarEvolution::getSizeOfExpr(Type *IntTy, TypeSize Size) {
4407   const SCEV *Res = getConstant(IntTy, Size.getKnownMinValue());
4408   if (Size.isScalable())
4409     Res = getMulExpr(Res, getVScale(IntTy));
4410   return Res;
4411 }
4412 
getSizeOfExpr(Type * IntTy,Type * AllocTy)4413 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
4414   return getSizeOfExpr(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
4415 }
4416 
getStoreSizeOfExpr(Type * IntTy,Type * StoreTy)4417 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) {
4418   return getSizeOfExpr(IntTy, getDataLayout().getTypeStoreSize(StoreTy));
4419 }
4420 
getOffsetOfExpr(Type * IntTy,StructType * STy,unsigned FieldNo)4421 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
4422                                              StructType *STy,
4423                                              unsigned FieldNo) {
4424   // We can bypass creating a target-independent constant expression and then
4425   // folding it back into a ConstantInt. This is just a compile-time
4426   // optimization.
4427   const StructLayout *SL = getDataLayout().getStructLayout(STy);
4428   assert(!SL->getSizeInBits().isScalable() &&
4429          "Cannot get offset for structure containing scalable vector types");
4430   return getConstant(IntTy, SL->getElementOffset(FieldNo));
4431 }
4432 
getUnknown(Value * V)4433 const SCEV *ScalarEvolution::getUnknown(Value *V) {
4434   // Don't attempt to do anything other than create a SCEVUnknown object
4435   // here.  createSCEV only calls getUnknown after checking for all other
4436   // interesting possibilities, and any other code that calls getUnknown
4437   // is doing so in order to hide a value from SCEV canonicalization.
4438 
4439   FoldingSetNodeID ID;
4440   ID.AddInteger(scUnknown);
4441   ID.AddPointer(V);
4442   void *IP = nullptr;
4443   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
4444     assert(cast<SCEVUnknown>(S)->getValue() == V &&
4445            "Stale SCEVUnknown in uniquing map!");
4446     return S;
4447   }
4448   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
4449                                             FirstUnknown);
4450   FirstUnknown = cast<SCEVUnknown>(S);
4451   UniqueSCEVs.InsertNode(S, IP);
4452   return S;
4453 }
4454 
4455 //===----------------------------------------------------------------------===//
4456 //            Basic SCEV Analysis and PHI Idiom Recognition Code
4457 //
4458 
4459 /// Test if values of the given type are analyzable within the SCEV
4460 /// framework. This primarily includes integer types, and it can optionally
4461 /// include pointer types if the ScalarEvolution class has access to
4462 /// target-specific information.
isSCEVable(Type * Ty) const4463 bool ScalarEvolution::isSCEVable(Type *Ty) const {
4464   // Integers and pointers are always SCEVable.
4465   return Ty->isIntOrPtrTy();
4466 }
4467 
4468 /// Return the size in bits of the specified type, for which isSCEVable must
4469 /// return true.
getTypeSizeInBits(Type * Ty) const4470 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
4471   assert(isSCEVable(Ty) && "Type is not SCEVable!");
4472   if (Ty->isPointerTy())
4473     return getDataLayout().getIndexTypeSizeInBits(Ty);
4474   return getDataLayout().getTypeSizeInBits(Ty);
4475 }
4476 
4477 /// Return a type with the same bitwidth as the given type and which represents
4478 /// how SCEV will treat the given type, for which isSCEVable must return
4479 /// true. For pointer types, this is the pointer index sized integer type.
getEffectiveSCEVType(Type * Ty) const4480 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
4481   assert(isSCEVable(Ty) && "Type is not SCEVable!");
4482 
4483   if (Ty->isIntegerTy())
4484     return Ty;
4485 
4486   // The only other support type is pointer.
4487   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
4488   return getDataLayout().getIndexType(Ty);
4489 }
4490 
getWiderType(Type * T1,Type * T2) const4491 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
4492   return  getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
4493 }
4494 
instructionCouldExistWithOperands(const SCEV * A,const SCEV * B)4495 bool ScalarEvolution::instructionCouldExistWithOperands(const SCEV *A,
4496                                                         const SCEV *B) {
4497   /// For a valid use point to exist, the defining scope of one operand
4498   /// must dominate the other.
4499   bool PreciseA, PreciseB;
4500   auto *ScopeA = getDefiningScopeBound({A}, PreciseA);
4501   auto *ScopeB = getDefiningScopeBound({B}, PreciseB);
4502   if (!PreciseA || !PreciseB)
4503     // Can't tell.
4504     return false;
4505   return (ScopeA == ScopeB) || DT.dominates(ScopeA, ScopeB) ||
4506     DT.dominates(ScopeB, ScopeA);
4507 }
4508 
getCouldNotCompute()4509 const SCEV *ScalarEvolution::getCouldNotCompute() {
4510   return CouldNotCompute.get();
4511 }
4512 
checkValidity(const SCEV * S) const4513 bool ScalarEvolution::checkValidity(const SCEV *S) const {
4514   bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
4515     auto *SU = dyn_cast<SCEVUnknown>(S);
4516     return SU && SU->getValue() == nullptr;
4517   });
4518 
4519   return !ContainsNulls;
4520 }
4521 
containsAddRecurrence(const SCEV * S)4522 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
4523   HasRecMapType::iterator I = HasRecMap.find(S);
4524   if (I != HasRecMap.end())
4525     return I->second;
4526 
4527   bool FoundAddRec =
4528       SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); });
4529   HasRecMap.insert({S, FoundAddRec});
4530   return FoundAddRec;
4531 }
4532 
4533 /// Return the ValueOffsetPair set for \p S. \p S can be represented
4534 /// by the value and offset from any ValueOffsetPair in the set.
getSCEVValues(const SCEV * S)4535 ArrayRef<Value *> ScalarEvolution::getSCEVValues(const SCEV *S) {
4536   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
4537   if (SI == ExprValueMap.end())
4538     return std::nullopt;
4539   return SI->second.getArrayRef();
4540 }
4541 
4542 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
4543 /// cannot be used separately. eraseValueFromMap should be used to remove
4544 /// V from ValueExprMap and ExprValueMap at the same time.
eraseValueFromMap(Value * V)4545 void ScalarEvolution::eraseValueFromMap(Value *V) {
4546   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
4547   if (I != ValueExprMap.end()) {
4548     auto EVIt = ExprValueMap.find(I->second);
4549     bool Removed = EVIt->second.remove(V);
4550     (void) Removed;
4551     assert(Removed && "Value not in ExprValueMap?");
4552     ValueExprMap.erase(I);
4553   }
4554 }
4555 
insertValueToMap(Value * V,const SCEV * S)4556 void ScalarEvolution::insertValueToMap(Value *V, const SCEV *S) {
4557   // A recursive query may have already computed the SCEV. It should be
4558   // equivalent, but may not necessarily be exactly the same, e.g. due to lazily
4559   // inferred nowrap flags.
4560   auto It = ValueExprMap.find_as(V);
4561   if (It == ValueExprMap.end()) {
4562     ValueExprMap.insert({SCEVCallbackVH(V, this), S});
4563     ExprValueMap[S].insert(V);
4564   }
4565 }
4566 
4567 /// Return an existing SCEV if it exists, otherwise analyze the expression and
4568 /// create a new one.
getSCEV(Value * V)4569 const SCEV *ScalarEvolution::getSCEV(Value *V) {
4570   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
4571 
4572   if (const SCEV *S = getExistingSCEV(V))
4573     return S;
4574   return createSCEVIter(V);
4575 }
4576 
getExistingSCEV(Value * V)4577 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
4578   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
4579 
4580   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
4581   if (I != ValueExprMap.end()) {
4582     const SCEV *S = I->second;
4583     assert(checkValidity(S) &&
4584            "existing SCEV has not been properly invalidated");
4585     return S;
4586   }
4587   return nullptr;
4588 }
4589 
4590 /// Return a SCEV corresponding to -V = -1*V
getNegativeSCEV(const SCEV * V,SCEV::NoWrapFlags Flags)4591 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
4592                                              SCEV::NoWrapFlags Flags) {
4593   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4594     return getConstant(
4595                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
4596 
4597   Type *Ty = V->getType();
4598   Ty = getEffectiveSCEVType(Ty);
4599   return getMulExpr(V, getMinusOne(Ty), Flags);
4600 }
4601 
4602 /// If Expr computes ~A, return A else return nullptr
MatchNotExpr(const SCEV * Expr)4603 static const SCEV *MatchNotExpr(const SCEV *Expr) {
4604   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
4605   if (!Add || Add->getNumOperands() != 2 ||
4606       !Add->getOperand(0)->isAllOnesValue())
4607     return nullptr;
4608 
4609   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
4610   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
4611       !AddRHS->getOperand(0)->isAllOnesValue())
4612     return nullptr;
4613 
4614   return AddRHS->getOperand(1);
4615 }
4616 
4617 /// Return a SCEV corresponding to ~V = -1-V
getNotSCEV(const SCEV * V)4618 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
4619   assert(!V->getType()->isPointerTy() && "Can't negate pointer");
4620 
4621   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4622     return getConstant(
4623                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
4624 
4625   // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
4626   if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) {
4627     auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) {
4628       SmallVector<const SCEV *, 2> MatchedOperands;
4629       for (const SCEV *Operand : MME->operands()) {
4630         const SCEV *Matched = MatchNotExpr(Operand);
4631         if (!Matched)
4632           return (const SCEV *)nullptr;
4633         MatchedOperands.push_back(Matched);
4634       }
4635       return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()),
4636                            MatchedOperands);
4637     };
4638     if (const SCEV *Replaced = MatchMinMaxNegation(MME))
4639       return Replaced;
4640   }
4641 
4642   Type *Ty = V->getType();
4643   Ty = getEffectiveSCEVType(Ty);
4644   return getMinusSCEV(getMinusOne(Ty), V);
4645 }
4646 
removePointerBase(const SCEV * P)4647 const SCEV *ScalarEvolution::removePointerBase(const SCEV *P) {
4648   assert(P->getType()->isPointerTy());
4649 
4650   if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(P)) {
4651     // The base of an AddRec is the first operand.
4652     SmallVector<const SCEV *> Ops{AddRec->operands()};
4653     Ops[0] = removePointerBase(Ops[0]);
4654     // Don't try to transfer nowrap flags for now. We could in some cases
4655     // (for example, if pointer operand of the AddRec is a SCEVUnknown).
4656     return getAddRecExpr(Ops, AddRec->getLoop(), SCEV::FlagAnyWrap);
4657   }
4658   if (auto *Add = dyn_cast<SCEVAddExpr>(P)) {
4659     // The base of an Add is the pointer operand.
4660     SmallVector<const SCEV *> Ops{Add->operands()};
4661     const SCEV **PtrOp = nullptr;
4662     for (const SCEV *&AddOp : Ops) {
4663       if (AddOp->getType()->isPointerTy()) {
4664         assert(!PtrOp && "Cannot have multiple pointer ops");
4665         PtrOp = &AddOp;
4666       }
4667     }
4668     *PtrOp = removePointerBase(*PtrOp);
4669     // Don't try to transfer nowrap flags for now. We could in some cases
4670     // (for example, if the pointer operand of the Add is a SCEVUnknown).
4671     return getAddExpr(Ops);
4672   }
4673   // Any other expression must be a pointer base.
4674   return getZero(P->getType());
4675 }
4676 
getMinusSCEV(const SCEV * LHS,const SCEV * RHS,SCEV::NoWrapFlags Flags,unsigned Depth)4677 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
4678                                           SCEV::NoWrapFlags Flags,
4679                                           unsigned Depth) {
4680   // Fast path: X - X --> 0.
4681   if (LHS == RHS)
4682     return getZero(LHS->getType());
4683 
4684   // If we subtract two pointers with different pointer bases, bail.
4685   // Eventually, we're going to add an assertion to getMulExpr that we
4686   // can't multiply by a pointer.
4687   if (RHS->getType()->isPointerTy()) {
4688     if (!LHS->getType()->isPointerTy() ||
4689         getPointerBase(LHS) != getPointerBase(RHS))
4690       return getCouldNotCompute();
4691     LHS = removePointerBase(LHS);
4692     RHS = removePointerBase(RHS);
4693   }
4694 
4695   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
4696   // makes it so that we cannot make much use of NUW.
4697   auto AddFlags = SCEV::FlagAnyWrap;
4698   const bool RHSIsNotMinSigned =
4699       !getSignedRangeMin(RHS).isMinSignedValue();
4700   if (hasFlags(Flags, SCEV::FlagNSW)) {
4701     // Let M be the minimum representable signed value. Then (-1)*RHS
4702     // signed-wraps if and only if RHS is M. That can happen even for
4703     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
4704     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
4705     // (-1)*RHS, we need to prove that RHS != M.
4706     //
4707     // If LHS is non-negative and we know that LHS - RHS does not
4708     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
4709     // either by proving that RHS > M or that LHS >= 0.
4710     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
4711       AddFlags = SCEV::FlagNSW;
4712     }
4713   }
4714 
4715   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
4716   // RHS is NSW and LHS >= 0.
4717   //
4718   // The difficulty here is that the NSW flag may have been proven
4719   // relative to a loop that is to be found in a recurrence in LHS and
4720   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
4721   // larger scope than intended.
4722   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
4723 
4724   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
4725 }
4726 
getTruncateOrZeroExtend(const SCEV * V,Type * Ty,unsigned Depth)4727 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
4728                                                      unsigned Depth) {
4729   Type *SrcTy = V->getType();
4730   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4731          "Cannot truncate or zero extend with non-integer arguments!");
4732   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4733     return V;  // No conversion
4734   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4735     return getTruncateExpr(V, Ty, Depth);
4736   return getZeroExtendExpr(V, Ty, Depth);
4737 }
4738 
getTruncateOrSignExtend(const SCEV * V,Type * Ty,unsigned Depth)4739 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,
4740                                                      unsigned Depth) {
4741   Type *SrcTy = V->getType();
4742   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4743          "Cannot truncate or zero extend with non-integer arguments!");
4744   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4745     return V;  // No conversion
4746   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4747     return getTruncateExpr(V, Ty, Depth);
4748   return getSignExtendExpr(V, Ty, Depth);
4749 }
4750 
4751 const SCEV *
getNoopOrZeroExtend(const SCEV * V,Type * Ty)4752 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
4753   Type *SrcTy = V->getType();
4754   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4755          "Cannot noop or zero extend with non-integer arguments!");
4756   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4757          "getNoopOrZeroExtend cannot truncate!");
4758   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4759     return V;  // No conversion
4760   return getZeroExtendExpr(V, Ty);
4761 }
4762 
4763 const SCEV *
getNoopOrSignExtend(const SCEV * V,Type * Ty)4764 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
4765   Type *SrcTy = V->getType();
4766   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4767          "Cannot noop or sign extend with non-integer arguments!");
4768   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4769          "getNoopOrSignExtend cannot truncate!");
4770   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4771     return V;  // No conversion
4772   return getSignExtendExpr(V, Ty);
4773 }
4774 
4775 const SCEV *
getNoopOrAnyExtend(const SCEV * V,Type * Ty)4776 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
4777   Type *SrcTy = V->getType();
4778   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4779          "Cannot noop or any extend with non-integer arguments!");
4780   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4781          "getNoopOrAnyExtend cannot truncate!");
4782   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4783     return V;  // No conversion
4784   return getAnyExtendExpr(V, Ty);
4785 }
4786 
4787 const SCEV *
getTruncateOrNoop(const SCEV * V,Type * Ty)4788 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
4789   Type *SrcTy = V->getType();
4790   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4791          "Cannot truncate or noop with non-integer arguments!");
4792   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
4793          "getTruncateOrNoop cannot extend!");
4794   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4795     return V;  // No conversion
4796   return getTruncateExpr(V, Ty);
4797 }
4798 
getUMaxFromMismatchedTypes(const SCEV * LHS,const SCEV * RHS)4799 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
4800                                                         const SCEV *RHS) {
4801   const SCEV *PromotedLHS = LHS;
4802   const SCEV *PromotedRHS = RHS;
4803 
4804   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
4805     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
4806   else
4807     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
4808 
4809   return getUMaxExpr(PromotedLHS, PromotedRHS);
4810 }
4811 
getUMinFromMismatchedTypes(const SCEV * LHS,const SCEV * RHS,bool Sequential)4812 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
4813                                                         const SCEV *RHS,
4814                                                         bool Sequential) {
4815   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4816   return getUMinFromMismatchedTypes(Ops, Sequential);
4817 }
4818 
4819 const SCEV *
getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV * > & Ops,bool Sequential)4820 ScalarEvolution::getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV *> &Ops,
4821                                             bool Sequential) {
4822   assert(!Ops.empty() && "At least one operand must be!");
4823   // Trivial case.
4824   if (Ops.size() == 1)
4825     return Ops[0];
4826 
4827   // Find the max type first.
4828   Type *MaxType = nullptr;
4829   for (const auto *S : Ops)
4830     if (MaxType)
4831       MaxType = getWiderType(MaxType, S->getType());
4832     else
4833       MaxType = S->getType();
4834   assert(MaxType && "Failed to find maximum type!");
4835 
4836   // Extend all ops to max type.
4837   SmallVector<const SCEV *, 2> PromotedOps;
4838   for (const auto *S : Ops)
4839     PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
4840 
4841   // Generate umin.
4842   return getUMinExpr(PromotedOps, Sequential);
4843 }
4844 
getPointerBase(const SCEV * V)4845 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
4846   // A pointer operand may evaluate to a nonpointer expression, such as null.
4847   if (!V->getType()->isPointerTy())
4848     return V;
4849 
4850   while (true) {
4851     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
4852       V = AddRec->getStart();
4853     } else if (auto *Add = dyn_cast<SCEVAddExpr>(V)) {
4854       const SCEV *PtrOp = nullptr;
4855       for (const SCEV *AddOp : Add->operands()) {
4856         if (AddOp->getType()->isPointerTy()) {
4857           assert(!PtrOp && "Cannot have multiple pointer ops");
4858           PtrOp = AddOp;
4859         }
4860       }
4861       assert(PtrOp && "Must have pointer op");
4862       V = PtrOp;
4863     } else // Not something we can look further into.
4864       return V;
4865   }
4866 }
4867 
4868 /// Push users of the given Instruction onto the given Worklist.
PushDefUseChildren(Instruction * I,SmallVectorImpl<Instruction * > & Worklist,SmallPtrSetImpl<Instruction * > & Visited)4869 static void PushDefUseChildren(Instruction *I,
4870                                SmallVectorImpl<Instruction *> &Worklist,
4871                                SmallPtrSetImpl<Instruction *> &Visited) {
4872   // Push the def-use children onto the Worklist stack.
4873   for (User *U : I->users()) {
4874     auto *UserInsn = cast<Instruction>(U);
4875     if (Visited.insert(UserInsn).second)
4876       Worklist.push_back(UserInsn);
4877   }
4878 }
4879 
4880 namespace {
4881 
4882 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4883 /// expression in case its Loop is L. If it is not L then
4884 /// if IgnoreOtherLoops is true then use AddRec itself
4885 /// otherwise rewrite cannot be done.
4886 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4887 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4888 public:
rewrite(const SCEV * S,const Loop * L,ScalarEvolution & SE,bool IgnoreOtherLoops=true)4889   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
4890                              bool IgnoreOtherLoops = true) {
4891     SCEVInitRewriter Rewriter(L, SE);
4892     const SCEV *Result = Rewriter.visit(S);
4893     if (Rewriter.hasSeenLoopVariantSCEVUnknown())
4894       return SE.getCouldNotCompute();
4895     return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4896                ? SE.getCouldNotCompute()
4897                : Result;
4898   }
4899 
visitUnknown(const SCEVUnknown * Expr)4900   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4901     if (!SE.isLoopInvariant(Expr, L))
4902       SeenLoopVariantSCEVUnknown = true;
4903     return Expr;
4904   }
4905 
visitAddRecExpr(const SCEVAddRecExpr * Expr)4906   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4907     // Only re-write AddRecExprs for this loop.
4908     if (Expr->getLoop() == L)
4909       return Expr->getStart();
4910     SeenOtherLoops = true;
4911     return Expr;
4912   }
4913 
hasSeenLoopVariantSCEVUnknown()4914   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4915 
hasSeenOtherLoops()4916   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4917 
4918 private:
SCEVInitRewriter(const Loop * L,ScalarEvolution & SE)4919   explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4920       : SCEVRewriteVisitor(SE), L(L) {}
4921 
4922   const Loop *L;
4923   bool SeenLoopVariantSCEVUnknown = false;
4924   bool SeenOtherLoops = false;
4925 };
4926 
4927 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4928 /// increment expression in case its Loop is L. If it is not L then
4929 /// use AddRec itself.
4930 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4931 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
4932 public:
rewrite(const SCEV * S,const Loop * L,ScalarEvolution & SE)4933   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
4934     SCEVPostIncRewriter Rewriter(L, SE);
4935     const SCEV *Result = Rewriter.visit(S);
4936     return Rewriter.hasSeenLoopVariantSCEVUnknown()
4937         ? SE.getCouldNotCompute()
4938         : Result;
4939   }
4940 
visitUnknown(const SCEVUnknown * Expr)4941   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4942     if (!SE.isLoopInvariant(Expr, L))
4943       SeenLoopVariantSCEVUnknown = true;
4944     return Expr;
4945   }
4946 
visitAddRecExpr(const SCEVAddRecExpr * Expr)4947   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4948     // Only re-write AddRecExprs for this loop.
4949     if (Expr->getLoop() == L)
4950       return Expr->getPostIncExpr(SE);
4951     SeenOtherLoops = true;
4952     return Expr;
4953   }
4954 
hasSeenLoopVariantSCEVUnknown()4955   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4956 
hasSeenOtherLoops()4957   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4958 
4959 private:
SCEVPostIncRewriter(const Loop * L,ScalarEvolution & SE)4960   explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
4961       : SCEVRewriteVisitor(SE), L(L) {}
4962 
4963   const Loop *L;
4964   bool SeenLoopVariantSCEVUnknown = false;
4965   bool SeenOtherLoops = false;
4966 };
4967 
4968 /// This class evaluates the compare condition by matching it against the
4969 /// condition of loop latch. If there is a match we assume a true value
4970 /// for the condition while building SCEV nodes.
4971 class SCEVBackedgeConditionFolder
4972     : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4973 public:
rewrite(const SCEV * S,const Loop * L,ScalarEvolution & SE)4974   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4975                              ScalarEvolution &SE) {
4976     bool IsPosBECond = false;
4977     Value *BECond = nullptr;
4978     if (BasicBlock *Latch = L->getLoopLatch()) {
4979       BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
4980       if (BI && BI->isConditional()) {
4981         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4982                "Both outgoing branches should not target same header!");
4983         BECond = BI->getCondition();
4984         IsPosBECond = BI->getSuccessor(0) == L->getHeader();
4985       } else {
4986         return S;
4987       }
4988     }
4989     SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4990     return Rewriter.visit(S);
4991   }
4992 
visitUnknown(const SCEVUnknown * Expr)4993   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4994     const SCEV *Result = Expr;
4995     bool InvariantF = SE.isLoopInvariant(Expr, L);
4996 
4997     if (!InvariantF) {
4998       Instruction *I = cast<Instruction>(Expr->getValue());
4999       switch (I->getOpcode()) {
5000       case Instruction::Select: {
5001         SelectInst *SI = cast<SelectInst>(I);
5002         std::optional<const SCEV *> Res =
5003             compareWithBackedgeCondition(SI->getCondition());
5004         if (Res) {
5005           bool IsOne = cast<SCEVConstant>(*Res)->getValue()->isOne();
5006           Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
5007         }
5008         break;
5009       }
5010       default: {
5011         std::optional<const SCEV *> Res = compareWithBackedgeCondition(I);
5012         if (Res)
5013           Result = *Res;
5014         break;
5015       }
5016       }
5017     }
5018     return Result;
5019   }
5020 
5021 private:
SCEVBackedgeConditionFolder(const Loop * L,Value * BECond,bool IsPosBECond,ScalarEvolution & SE)5022   explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
5023                                        bool IsPosBECond, ScalarEvolution &SE)
5024       : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
5025         IsPositiveBECond(IsPosBECond) {}
5026 
5027   std::optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
5028 
5029   const Loop *L;
5030   /// Loop back condition.
5031   Value *BackedgeCond = nullptr;
5032   /// Set to true if loop back is on positive branch condition.
5033   bool IsPositiveBECond;
5034 };
5035 
5036 std::optional<const SCEV *>
compareWithBackedgeCondition(Value * IC)5037 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
5038 
5039   // If value matches the backedge condition for loop latch,
5040   // then return a constant evolution node based on loopback
5041   // branch taken.
5042   if (BackedgeCond == IC)
5043     return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
5044                             : SE.getZero(Type::getInt1Ty(SE.getContext()));
5045   return std::nullopt;
5046 }
5047 
5048 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
5049 public:
rewrite(const SCEV * S,const Loop * L,ScalarEvolution & SE)5050   static const SCEV *rewrite(const SCEV *S, const Loop *L,
5051                              ScalarEvolution &SE) {
5052     SCEVShiftRewriter Rewriter(L, SE);
5053     const SCEV *Result = Rewriter.visit(S);
5054     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
5055   }
5056 
visitUnknown(const SCEVUnknown * Expr)5057   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
5058     // Only allow AddRecExprs for this loop.
5059     if (!SE.isLoopInvariant(Expr, L))
5060       Valid = false;
5061     return Expr;
5062   }
5063 
visitAddRecExpr(const SCEVAddRecExpr * Expr)5064   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
5065     if (Expr->getLoop() == L && Expr->isAffine())
5066       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
5067     Valid = false;
5068     return Expr;
5069   }
5070 
isValid()5071   bool isValid() { return Valid; }
5072 
5073 private:
SCEVShiftRewriter(const Loop * L,ScalarEvolution & SE)5074   explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
5075       : SCEVRewriteVisitor(SE), L(L) {}
5076 
5077   const Loop *L;
5078   bool Valid = true;
5079 };
5080 
5081 } // end anonymous namespace
5082 
5083 SCEV::NoWrapFlags
proveNoWrapViaConstantRanges(const SCEVAddRecExpr * AR)5084 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
5085   if (!AR->isAffine())
5086     return SCEV::FlagAnyWrap;
5087 
5088   using OBO = OverflowingBinaryOperator;
5089 
5090   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
5091 
5092   if (!AR->hasNoSelfWrap()) {
5093     const SCEV *BECount = getConstantMaxBackedgeTakenCount(AR->getLoop());
5094     if (const SCEVConstant *BECountMax = dyn_cast<SCEVConstant>(BECount)) {
5095       ConstantRange StepCR = getSignedRange(AR->getStepRecurrence(*this));
5096       const APInt &BECountAP = BECountMax->getAPInt();
5097       unsigned NoOverflowBitWidth =
5098         BECountAP.getActiveBits() + StepCR.getMinSignedBits();
5099       if (NoOverflowBitWidth <= getTypeSizeInBits(AR->getType()))
5100         Result = ScalarEvolution::setFlags(Result, SCEV::FlagNW);
5101     }
5102   }
5103 
5104   if (!AR->hasNoSignedWrap()) {
5105     ConstantRange AddRecRange = getSignedRange(AR);
5106     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
5107 
5108     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
5109         Instruction::Add, IncRange, OBO::NoSignedWrap);
5110     if (NSWRegion.contains(AddRecRange))
5111       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
5112   }
5113 
5114   if (!AR->hasNoUnsignedWrap()) {
5115     ConstantRange AddRecRange = getUnsignedRange(AR);
5116     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
5117 
5118     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
5119         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
5120     if (NUWRegion.contains(AddRecRange))
5121       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
5122   }
5123 
5124   return Result;
5125 }
5126 
5127 SCEV::NoWrapFlags
proveNoSignedWrapViaInduction(const SCEVAddRecExpr * AR)5128 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) {
5129   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
5130 
5131   if (AR->hasNoSignedWrap())
5132     return Result;
5133 
5134   if (!AR->isAffine())
5135     return Result;
5136 
5137   // This function can be expensive, only try to prove NSW once per AddRec.
5138   if (!SignedWrapViaInductionTried.insert(AR).second)
5139     return Result;
5140 
5141   const SCEV *Step = AR->getStepRecurrence(*this);
5142   const Loop *L = AR->getLoop();
5143 
5144   // Check whether the backedge-taken count is SCEVCouldNotCompute.
5145   // Note that this serves two purposes: It filters out loops that are
5146   // simply not analyzable, and it covers the case where this code is
5147   // being called from within backedge-taken count analysis, such that
5148   // attempting to ask for the backedge-taken count would likely result
5149   // in infinite recursion. In the later case, the analysis code will
5150   // cope with a conservative value, and it will take care to purge
5151   // that value once it has finished.
5152   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
5153 
5154   // Normally, in the cases we can prove no-overflow via a
5155   // backedge guarding condition, we can also compute a backedge
5156   // taken count for the loop.  The exceptions are assumptions and
5157   // guards present in the loop -- SCEV is not great at exploiting
5158   // these to compute max backedge taken counts, but can still use
5159   // these to prove lack of overflow.  Use this fact to avoid
5160   // doing extra work that may not pay off.
5161 
5162   if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
5163       AC.assumptions().empty())
5164     return Result;
5165 
5166   // If the backedge is guarded by a comparison with the pre-inc  value the
5167   // addrec is safe. Also, if the entry is guarded by a comparison with the
5168   // start value and the backedge is guarded by a comparison with the post-inc
5169   // value, the addrec is safe.
5170   ICmpInst::Predicate Pred;
5171   const SCEV *OverflowLimit =
5172     getSignedOverflowLimitForStep(Step, &Pred, this);
5173   if (OverflowLimit &&
5174       (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
5175        isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
5176     Result = setFlags(Result, SCEV::FlagNSW);
5177   }
5178   return Result;
5179 }
5180 SCEV::NoWrapFlags
proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr * AR)5181 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) {
5182   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
5183 
5184   if (AR->hasNoUnsignedWrap())
5185     return Result;
5186 
5187   if (!AR->isAffine())
5188     return Result;
5189 
5190   // This function can be expensive, only try to prove NUW once per AddRec.
5191   if (!UnsignedWrapViaInductionTried.insert(AR).second)
5192     return Result;
5193 
5194   const SCEV *Step = AR->getStepRecurrence(*this);
5195   unsigned BitWidth = getTypeSizeInBits(AR->getType());
5196   const Loop *L = AR->getLoop();
5197 
5198   // Check whether the backedge-taken count is SCEVCouldNotCompute.
5199   // Note that this serves two purposes: It filters out loops that are
5200   // simply not analyzable, and it covers the case where this code is
5201   // being called from within backedge-taken count analysis, such that
5202   // attempting to ask for the backedge-taken count would likely result
5203   // in infinite recursion. In the later case, the analysis code will
5204   // cope with a conservative value, and it will take care to purge
5205   // that value once it has finished.
5206   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
5207 
5208   // Normally, in the cases we can prove no-overflow via a
5209   // backedge guarding condition, we can also compute a backedge
5210   // taken count for the loop.  The exceptions are assumptions and
5211   // guards present in the loop -- SCEV is not great at exploiting
5212   // these to compute max backedge taken counts, but can still use
5213   // these to prove lack of overflow.  Use this fact to avoid
5214   // doing extra work that may not pay off.
5215 
5216   if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
5217       AC.assumptions().empty())
5218     return Result;
5219 
5220   // If the backedge is guarded by a comparison with the pre-inc  value the
5221   // addrec is safe. Also, if the entry is guarded by a comparison with the
5222   // start value and the backedge is guarded by a comparison with the post-inc
5223   // value, the addrec is safe.
5224   if (isKnownPositive(Step)) {
5225     const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
5226                                 getUnsignedRangeMax(Step));
5227     if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
5228         isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
5229       Result = setFlags(Result, SCEV::FlagNUW);
5230     }
5231   }
5232 
5233   return Result;
5234 }
5235 
5236 namespace {
5237 
5238 /// Represents an abstract binary operation.  This may exist as a
5239 /// normal instruction or constant expression, or may have been
5240 /// derived from an expression tree.
5241 struct BinaryOp {
5242   unsigned Opcode;
5243   Value *LHS;
5244   Value *RHS;
5245   bool IsNSW = false;
5246   bool IsNUW = false;
5247 
5248   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
5249   /// constant expression.
5250   Operator *Op = nullptr;
5251 
BinaryOp__anon8884d99e1611::BinaryOp5252   explicit BinaryOp(Operator *Op)
5253       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
5254         Op(Op) {
5255     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
5256       IsNSW = OBO->hasNoSignedWrap();
5257       IsNUW = OBO->hasNoUnsignedWrap();
5258     }
5259   }
5260 
BinaryOp__anon8884d99e1611::BinaryOp5261   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
5262                     bool IsNUW = false)
5263       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {}
5264 };
5265 
5266 } // end anonymous namespace
5267 
5268 /// Try to map \p V into a BinaryOp, and return \c std::nullopt on failure.
MatchBinaryOp(Value * V,const DataLayout & DL,AssumptionCache & AC,const DominatorTree & DT,const Instruction * CxtI)5269 static std::optional<BinaryOp> MatchBinaryOp(Value *V, const DataLayout &DL,
5270                                              AssumptionCache &AC,
5271                                              const DominatorTree &DT,
5272                                              const Instruction *CxtI) {
5273   auto *Op = dyn_cast<Operator>(V);
5274   if (!Op)
5275     return std::nullopt;
5276 
5277   // Implementation detail: all the cleverness here should happen without
5278   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
5279   // SCEV expressions when possible, and we should not break that.
5280 
5281   switch (Op->getOpcode()) {
5282   case Instruction::Add:
5283   case Instruction::Sub:
5284   case Instruction::Mul:
5285   case Instruction::UDiv:
5286   case Instruction::URem:
5287   case Instruction::And:
5288   case Instruction::AShr:
5289   case Instruction::Shl:
5290     return BinaryOp(Op);
5291 
5292   case Instruction::Or: {
5293     // Convert or disjoint into add nuw nsw.
5294     if (cast<PossiblyDisjointInst>(Op)->isDisjoint())
5295       return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1),
5296                       /*IsNSW=*/true, /*IsNUW=*/true);
5297     return BinaryOp(Op);
5298   }
5299 
5300   case Instruction::Xor:
5301     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
5302       // If the RHS of the xor is a signmask, then this is just an add.
5303       // Instcombine turns add of signmask into xor as a strength reduction step.
5304       if (RHSC->getValue().isSignMask())
5305         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
5306     // Binary `xor` is a bit-wise `add`.
5307     if (V->getType()->isIntegerTy(1))
5308       return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
5309     return BinaryOp(Op);
5310 
5311   case Instruction::LShr:
5312     // Turn logical shift right of a constant into a unsigned divide.
5313     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
5314       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
5315 
5316       // If the shift count is not less than the bitwidth, the result of
5317       // the shift is undefined. Don't try to analyze it, because the
5318       // resolution chosen here may differ from the resolution chosen in
5319       // other parts of the compiler.
5320       if (SA->getValue().ult(BitWidth)) {
5321         Constant *X =
5322             ConstantInt::get(SA->getContext(),
5323                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
5324         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
5325       }
5326     }
5327     return BinaryOp(Op);
5328 
5329   case Instruction::ExtractValue: {
5330     auto *EVI = cast<ExtractValueInst>(Op);
5331     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
5332       break;
5333 
5334     auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand());
5335     if (!WO)
5336       break;
5337 
5338     Instruction::BinaryOps BinOp = WO->getBinaryOp();
5339     bool Signed = WO->isSigned();
5340     // TODO: Should add nuw/nsw flags for mul as well.
5341     if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT))
5342       return BinaryOp(BinOp, WO->getLHS(), WO->getRHS());
5343 
5344     // Now that we know that all uses of the arithmetic-result component of
5345     // CI are guarded by the overflow check, we can go ahead and pretend
5346     // that the arithmetic is non-overflowing.
5347     return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(),
5348                     /* IsNSW = */ Signed, /* IsNUW = */ !Signed);
5349   }
5350 
5351   default:
5352     break;
5353   }
5354 
5355   // Recognise intrinsic loop.decrement.reg, and as this has exactly the same
5356   // semantics as a Sub, return a binary sub expression.
5357   if (auto *II = dyn_cast<IntrinsicInst>(V))
5358     if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg)
5359       return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1));
5360 
5361   return std::nullopt;
5362 }
5363 
5364 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
5365 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
5366 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
5367 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
5368 /// follows one of the following patterns:
5369 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
5370 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
5371 /// If the SCEV expression of \p Op conforms with one of the expected patterns
5372 /// we return the type of the truncation operation, and indicate whether the
5373 /// truncated type should be treated as signed/unsigned by setting
5374 /// \p Signed to true/false, respectively.
isSimpleCastedPHI(const SCEV * Op,const SCEVUnknown * SymbolicPHI,bool & Signed,ScalarEvolution & SE)5375 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
5376                                bool &Signed, ScalarEvolution &SE) {
5377   // The case where Op == SymbolicPHI (that is, with no type conversions on
5378   // the way) is handled by the regular add recurrence creating logic and
5379   // would have already been triggered in createAddRecForPHI. Reaching it here
5380   // means that createAddRecFromPHI had failed for this PHI before (e.g.,
5381   // because one of the other operands of the SCEVAddExpr updating this PHI is
5382   // not invariant).
5383   //
5384   // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
5385   // this case predicates that allow us to prove that Op == SymbolicPHI will
5386   // be added.
5387   if (Op == SymbolicPHI)
5388     return nullptr;
5389 
5390   unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
5391   unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
5392   if (SourceBits != NewBits)
5393     return nullptr;
5394 
5395   const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
5396   const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
5397   if (!SExt && !ZExt)
5398     return nullptr;
5399   const SCEVTruncateExpr *Trunc =
5400       SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
5401            : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
5402   if (!Trunc)
5403     return nullptr;
5404   const SCEV *X = Trunc->getOperand();
5405   if (X != SymbolicPHI)
5406     return nullptr;
5407   Signed = SExt != nullptr;
5408   return Trunc->getType();
5409 }
5410 
isIntegerLoopHeaderPHI(const PHINode * PN,LoopInfo & LI)5411 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
5412   if (!PN->getType()->isIntegerTy())
5413     return nullptr;
5414   const Loop *L = LI.getLoopFor(PN->getParent());
5415   if (!L || L->getHeader() != PN->getParent())
5416     return nullptr;
5417   return L;
5418 }
5419 
5420 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
5421 // computation that updates the phi follows the following pattern:
5422 //   (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
5423 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
5424 // If so, try to see if it can be rewritten as an AddRecExpr under some
5425 // Predicates. If successful, return them as a pair. Also cache the results
5426 // of the analysis.
5427 //
5428 // Example usage scenario:
5429 //    Say the Rewriter is called for the following SCEV:
5430 //         8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
5431 //    where:
5432 //         %X = phi i64 (%Start, %BEValue)
5433 //    It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
5434 //    and call this function with %SymbolicPHI = %X.
5435 //
5436 //    The analysis will find that the value coming around the backedge has
5437 //    the following SCEV:
5438 //         BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
5439 //    Upon concluding that this matches the desired pattern, the function
5440 //    will return the pair {NewAddRec, SmallPredsVec} where:
5441 //         NewAddRec = {%Start,+,%Step}
5442 //         SmallPredsVec = {P1, P2, P3} as follows:
5443 //           P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
5444 //           P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
5445 //           P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
5446 //    The returned pair means that SymbolicPHI can be rewritten into NewAddRec
5447 //    under the predicates {P1,P2,P3}.
5448 //    This predicated rewrite will be cached in PredicatedSCEVRewrites:
5449 //         PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
5450 //
5451 // TODO's:
5452 //
5453 // 1) Extend the Induction descriptor to also support inductions that involve
5454 //    casts: When needed (namely, when we are called in the context of the
5455 //    vectorizer induction analysis), a Set of cast instructions will be
5456 //    populated by this method, and provided back to isInductionPHI. This is
5457 //    needed to allow the vectorizer to properly record them to be ignored by
5458 //    the cost model and to avoid vectorizing them (otherwise these casts,
5459 //    which are redundant under the runtime overflow checks, will be
5460 //    vectorized, which can be costly).
5461 //
5462 // 2) Support additional induction/PHISCEV patterns: We also want to support
5463 //    inductions where the sext-trunc / zext-trunc operations (partly) occur
5464 //    after the induction update operation (the induction increment):
5465 //
5466 //      (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
5467 //    which correspond to a phi->add->trunc->sext/zext->phi update chain.
5468 //
5469 //      (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
5470 //    which correspond to a phi->trunc->add->sext/zext->phi update chain.
5471 //
5472 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
5473 std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
createAddRecFromPHIWithCastsImpl(const SCEVUnknown * SymbolicPHI)5474 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
5475   SmallVector<const SCEVPredicate *, 3> Predicates;
5476 
5477   // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
5478   // return an AddRec expression under some predicate.
5479 
5480   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
5481   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
5482   assert(L && "Expecting an integer loop header phi");
5483 
5484   // The loop may have multiple entrances or multiple exits; we can analyze
5485   // this phi as an addrec if it has a unique entry value and a unique
5486   // backedge value.
5487   Value *BEValueV = nullptr, *StartValueV = nullptr;
5488   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5489     Value *V = PN->getIncomingValue(i);
5490     if (L->contains(PN->getIncomingBlock(i))) {
5491       if (!BEValueV) {
5492         BEValueV = V;
5493       } else if (BEValueV != V) {
5494         BEValueV = nullptr;
5495         break;
5496       }
5497     } else if (!StartValueV) {
5498       StartValueV = V;
5499     } else if (StartValueV != V) {
5500       StartValueV = nullptr;
5501       break;
5502     }
5503   }
5504   if (!BEValueV || !StartValueV)
5505     return std::nullopt;
5506 
5507   const SCEV *BEValue = getSCEV(BEValueV);
5508 
5509   // If the value coming around the backedge is an add with the symbolic
5510   // value we just inserted, possibly with casts that we can ignore under
5511   // an appropriate runtime guard, then we found a simple induction variable!
5512   const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
5513   if (!Add)
5514     return std::nullopt;
5515 
5516   // If there is a single occurrence of the symbolic value, possibly
5517   // casted, replace it with a recurrence.
5518   unsigned FoundIndex = Add->getNumOperands();
5519   Type *TruncTy = nullptr;
5520   bool Signed;
5521   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5522     if ((TruncTy =
5523              isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
5524       if (FoundIndex == e) {
5525         FoundIndex = i;
5526         break;
5527       }
5528 
5529   if (FoundIndex == Add->getNumOperands())
5530     return std::nullopt;
5531 
5532   // Create an add with everything but the specified operand.
5533   SmallVector<const SCEV *, 8> Ops;
5534   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5535     if (i != FoundIndex)
5536       Ops.push_back(Add->getOperand(i));
5537   const SCEV *Accum = getAddExpr(Ops);
5538 
5539   // The runtime checks will not be valid if the step amount is
5540   // varying inside the loop.
5541   if (!isLoopInvariant(Accum, L))
5542     return std::nullopt;
5543 
5544   // *** Part2: Create the predicates
5545 
5546   // Analysis was successful: we have a phi-with-cast pattern for which we
5547   // can return an AddRec expression under the following predicates:
5548   //
5549   // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
5550   //     fits within the truncated type (does not overflow) for i = 0 to n-1.
5551   // P2: An Equal predicate that guarantees that
5552   //     Start = (Ext ix (Trunc iy (Start) to ix) to iy)
5553   // P3: An Equal predicate that guarantees that
5554   //     Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
5555   //
5556   // As we next prove, the above predicates guarantee that:
5557   //     Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
5558   //
5559   //
5560   // More formally, we want to prove that:
5561   //     Expr(i+1) = Start + (i+1) * Accum
5562   //               = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5563   //
5564   // Given that:
5565   // 1) Expr(0) = Start
5566   // 2) Expr(1) = Start + Accum
5567   //            = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
5568   // 3) Induction hypothesis (step i):
5569   //    Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
5570   //
5571   // Proof:
5572   //  Expr(i+1) =
5573   //   = Start + (i+1)*Accum
5574   //   = (Start + i*Accum) + Accum
5575   //   = Expr(i) + Accum
5576   //   = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
5577   //                                                             :: from step i
5578   //
5579   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
5580   //
5581   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
5582   //     + (Ext ix (Trunc iy (Accum) to ix) to iy)
5583   //     + Accum                                                     :: from P3
5584   //
5585   //   = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
5586   //     + Accum                            :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
5587   //
5588   //   = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
5589   //   = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5590   //
5591   // By induction, the same applies to all iterations 1<=i<n:
5592   //
5593 
5594   // Create a truncated addrec for which we will add a no overflow check (P1).
5595   const SCEV *StartVal = getSCEV(StartValueV);
5596   const SCEV *PHISCEV =
5597       getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
5598                     getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
5599 
5600   // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
5601   // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
5602   // will be constant.
5603   //
5604   //  If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
5605   // add P1.
5606   if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
5607     SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
5608         Signed ? SCEVWrapPredicate::IncrementNSSW
5609                : SCEVWrapPredicate::IncrementNUSW;
5610     const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
5611     Predicates.push_back(AddRecPred);
5612   }
5613 
5614   // Create the Equal Predicates P2,P3:
5615 
5616   // It is possible that the predicates P2 and/or P3 are computable at
5617   // compile time due to StartVal and/or Accum being constants.
5618   // If either one is, then we can check that now and escape if either P2
5619   // or P3 is false.
5620 
5621   // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
5622   // for each of StartVal and Accum
5623   auto getExtendedExpr = [&](const SCEV *Expr,
5624                              bool CreateSignExtend) -> const SCEV * {
5625     assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
5626     const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
5627     const SCEV *ExtendedExpr =
5628         CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
5629                          : getZeroExtendExpr(TruncatedExpr, Expr->getType());
5630     return ExtendedExpr;
5631   };
5632 
5633   // Given:
5634   //  ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
5635   //               = getExtendedExpr(Expr)
5636   // Determine whether the predicate P: Expr == ExtendedExpr
5637   // is known to be false at compile time
5638   auto PredIsKnownFalse = [&](const SCEV *Expr,
5639                               const SCEV *ExtendedExpr) -> bool {
5640     return Expr != ExtendedExpr &&
5641            isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
5642   };
5643 
5644   const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
5645   if (PredIsKnownFalse(StartVal, StartExtended)) {
5646     LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
5647     return std::nullopt;
5648   }
5649 
5650   // The Step is always Signed (because the overflow checks are either
5651   // NSSW or NUSW)
5652   const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
5653   if (PredIsKnownFalse(Accum, AccumExtended)) {
5654     LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
5655     return std::nullopt;
5656   }
5657 
5658   auto AppendPredicate = [&](const SCEV *Expr,
5659                              const SCEV *ExtendedExpr) -> void {
5660     if (Expr != ExtendedExpr &&
5661         !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
5662       const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
5663       LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
5664       Predicates.push_back(Pred);
5665     }
5666   };
5667 
5668   AppendPredicate(StartVal, StartExtended);
5669   AppendPredicate(Accum, AccumExtended);
5670 
5671   // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
5672   // which the casts had been folded away. The caller can rewrite SymbolicPHI
5673   // into NewAR if it will also add the runtime overflow checks specified in
5674   // Predicates.
5675   auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
5676 
5677   std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
5678       std::make_pair(NewAR, Predicates);
5679   // Remember the result of the analysis for this SCEV at this locayyytion.
5680   PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
5681   return PredRewrite;
5682 }
5683 
5684 std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
createAddRecFromPHIWithCasts(const SCEVUnknown * SymbolicPHI)5685 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
5686   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
5687   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
5688   if (!L)
5689     return std::nullopt;
5690 
5691   // Check to see if we already analyzed this PHI.
5692   auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
5693   if (I != PredicatedSCEVRewrites.end()) {
5694     std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
5695         I->second;
5696     // Analysis was done before and failed to create an AddRec:
5697     if (Rewrite.first == SymbolicPHI)
5698       return std::nullopt;
5699     // Analysis was done before and succeeded to create an AddRec under
5700     // a predicate:
5701     assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
5702     assert(!(Rewrite.second).empty() && "Expected to find Predicates");
5703     return Rewrite;
5704   }
5705 
5706   std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5707     Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
5708 
5709   // Record in the cache that the analysis failed
5710   if (!Rewrite) {
5711     SmallVector<const SCEVPredicate *, 3> Predicates;
5712     PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
5713     return std::nullopt;
5714   }
5715 
5716   return Rewrite;
5717 }
5718 
5719 // FIXME: This utility is currently required because the Rewriter currently
5720 // does not rewrite this expression:
5721 // {0, +, (sext ix (trunc iy to ix) to iy)}
5722 // into {0, +, %step},
5723 // even when the following Equal predicate exists:
5724 // "%step == (sext ix (trunc iy to ix) to iy)".
areAddRecsEqualWithPreds(const SCEVAddRecExpr * AR1,const SCEVAddRecExpr * AR2) const5725 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
5726     const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
5727   if (AR1 == AR2)
5728     return true;
5729 
5730   auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
5731     if (Expr1 != Expr2 && !Preds->implies(SE.getEqualPredicate(Expr1, Expr2)) &&
5732         !Preds->implies(SE.getEqualPredicate(Expr2, Expr1)))
5733       return false;
5734     return true;
5735   };
5736 
5737   if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
5738       !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
5739     return false;
5740   return true;
5741 }
5742 
5743 /// A helper function for createAddRecFromPHI to handle simple cases.
5744 ///
5745 /// This function tries to find an AddRec expression for the simplest (yet most
5746 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
5747 /// If it fails, createAddRecFromPHI will use a more general, but slow,
5748 /// technique for finding the AddRec expression.
createSimpleAffineAddRec(PHINode * PN,Value * BEValueV,Value * StartValueV)5749 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
5750                                                       Value *BEValueV,
5751                                                       Value *StartValueV) {
5752   const Loop *L = LI.getLoopFor(PN->getParent());
5753   assert(L && L->getHeader() == PN->getParent());
5754   assert(BEValueV && StartValueV);
5755 
5756   auto BO = MatchBinaryOp(BEValueV, getDataLayout(), AC, DT, PN);
5757   if (!BO)
5758     return nullptr;
5759 
5760   if (BO->Opcode != Instruction::Add)
5761     return nullptr;
5762 
5763   const SCEV *Accum = nullptr;
5764   if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
5765     Accum = getSCEV(BO->RHS);
5766   else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
5767     Accum = getSCEV(BO->LHS);
5768 
5769   if (!Accum)
5770     return nullptr;
5771 
5772   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5773   if (BO->IsNUW)
5774     Flags = setFlags(Flags, SCEV::FlagNUW);
5775   if (BO->IsNSW)
5776     Flags = setFlags(Flags, SCEV::FlagNSW);
5777 
5778   const SCEV *StartVal = getSCEV(StartValueV);
5779   const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5780   insertValueToMap(PN, PHISCEV);
5781 
5782   if (auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
5783     setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR),
5784                    (SCEV::NoWrapFlags)(AR->getNoWrapFlags() |
5785                                        proveNoWrapViaConstantRanges(AR)));
5786   }
5787 
5788   // We can add Flags to the post-inc expression only if we
5789   // know that it is *undefined behavior* for BEValueV to
5790   // overflow.
5791   if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) {
5792     assert(isLoopInvariant(Accum, L) &&
5793            "Accum is defined outside L, but is not invariant?");
5794     if (isAddRecNeverPoison(BEInst, L))
5795       (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5796   }
5797 
5798   return PHISCEV;
5799 }
5800 
createAddRecFromPHI(PHINode * PN)5801 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
5802   const Loop *L = LI.getLoopFor(PN->getParent());
5803   if (!L || L->getHeader() != PN->getParent())
5804     return nullptr;
5805 
5806   // The loop may have multiple entrances or multiple exits; we can analyze
5807   // this phi as an addrec if it has a unique entry value and a unique
5808   // backedge value.
5809   Value *BEValueV = nullptr, *StartValueV = nullptr;
5810   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5811     Value *V = PN->getIncomingValue(i);
5812     if (L->contains(PN->getIncomingBlock(i))) {
5813       if (!BEValueV) {
5814         BEValueV = V;
5815       } else if (BEValueV != V) {
5816         BEValueV = nullptr;
5817         break;
5818       }
5819     } else if (!StartValueV) {
5820       StartValueV = V;
5821     } else if (StartValueV != V) {
5822       StartValueV = nullptr;
5823       break;
5824     }
5825   }
5826   if (!BEValueV || !StartValueV)
5827     return nullptr;
5828 
5829   assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
5830          "PHI node already processed?");
5831 
5832   // First, try to find AddRec expression without creating a fictituos symbolic
5833   // value for PN.
5834   if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
5835     return S;
5836 
5837   // Handle PHI node value symbolically.
5838   const SCEV *SymbolicName = getUnknown(PN);
5839   insertValueToMap(PN, SymbolicName);
5840 
5841   // Using this symbolic name for the PHI, analyze the value coming around
5842   // the back-edge.
5843   const SCEV *BEValue = getSCEV(BEValueV);
5844 
5845   // NOTE: If BEValue is loop invariant, we know that the PHI node just
5846   // has a special value for the first iteration of the loop.
5847 
5848   // If the value coming around the backedge is an add with the symbolic
5849   // value we just inserted, then we found a simple induction variable!
5850   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
5851     // If there is a single occurrence of the symbolic value, replace it
5852     // with a recurrence.
5853     unsigned FoundIndex = Add->getNumOperands();
5854     for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5855       if (Add->getOperand(i) == SymbolicName)
5856         if (FoundIndex == e) {
5857           FoundIndex = i;
5858           break;
5859         }
5860 
5861     if (FoundIndex != Add->getNumOperands()) {
5862       // Create an add with everything but the specified operand.
5863       SmallVector<const SCEV *, 8> Ops;
5864       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5865         if (i != FoundIndex)
5866           Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
5867                                                              L, *this));
5868       const SCEV *Accum = getAddExpr(Ops);
5869 
5870       // This is not a valid addrec if the step amount is varying each
5871       // loop iteration, but is not itself an addrec in this loop.
5872       if (isLoopInvariant(Accum, L) ||
5873           (isa<SCEVAddRecExpr>(Accum) &&
5874            cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
5875         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5876 
5877         if (auto BO = MatchBinaryOp(BEValueV, getDataLayout(), AC, DT, PN)) {
5878           if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
5879             if (BO->IsNUW)
5880               Flags = setFlags(Flags, SCEV::FlagNUW);
5881             if (BO->IsNSW)
5882               Flags = setFlags(Flags, SCEV::FlagNSW);
5883           }
5884         } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
5885           if (GEP->getOperand(0) == PN) {
5886             GEPNoWrapFlags NW = GEP->getNoWrapFlags();
5887             // If the increment has any nowrap flags, then we know the address
5888             // space cannot be wrapped around.
5889             if (NW != GEPNoWrapFlags::none())
5890               Flags = setFlags(Flags, SCEV::FlagNW);
5891             // If the GEP is nuw or nusw with non-negative offset, we know that
5892             // no unsigned wrap occurs. We cannot set the nsw flag as only the
5893             // offset is treated as signed, while the base is unsigned.
5894             if (NW.hasNoUnsignedWrap() ||
5895                 (NW.hasNoUnsignedSignedWrap() && isKnownNonNegative(Accum)))
5896               Flags = setFlags(Flags, SCEV::FlagNUW);
5897           }
5898 
5899           // We cannot transfer nuw and nsw flags from subtraction
5900           // operations -- sub nuw X, Y is not the same as add nuw X, -Y
5901           // for instance.
5902         }
5903 
5904         const SCEV *StartVal = getSCEV(StartValueV);
5905         const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5906 
5907         // Okay, for the entire analysis of this edge we assumed the PHI
5908         // to be symbolic.  We now need to go back and purge all of the
5909         // entries for the scalars that use the symbolic expression.
5910         forgetMemoizedResults(SymbolicName);
5911         insertValueToMap(PN, PHISCEV);
5912 
5913         if (auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
5914           setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR),
5915                          (SCEV::NoWrapFlags)(AR->getNoWrapFlags() |
5916                                              proveNoWrapViaConstantRanges(AR)));
5917         }
5918 
5919         // We can add Flags to the post-inc expression only if we
5920         // know that it is *undefined behavior* for BEValueV to
5921         // overflow.
5922         if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5923           if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5924             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5925 
5926         return PHISCEV;
5927       }
5928     }
5929   } else {
5930     // Otherwise, this could be a loop like this:
5931     //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
5932     // In this case, j = {1,+,1}  and BEValue is j.
5933     // Because the other in-value of i (0) fits the evolution of BEValue
5934     // i really is an addrec evolution.
5935     //
5936     // We can generalize this saying that i is the shifted value of BEValue
5937     // by one iteration:
5938     //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
5939     const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
5940     const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
5941     if (Shifted != getCouldNotCompute() &&
5942         Start != getCouldNotCompute()) {
5943       const SCEV *StartVal = getSCEV(StartValueV);
5944       if (Start == StartVal) {
5945         // Okay, for the entire analysis of this edge we assumed the PHI
5946         // to be symbolic.  We now need to go back and purge all of the
5947         // entries for the scalars that use the symbolic expression.
5948         forgetMemoizedResults(SymbolicName);
5949         insertValueToMap(PN, Shifted);
5950         return Shifted;
5951       }
5952     }
5953   }
5954 
5955   // Remove the temporary PHI node SCEV that has been inserted while intending
5956   // to create an AddRecExpr for this PHI node. We can not keep this temporary
5957   // as it will prevent later (possibly simpler) SCEV expressions to be added
5958   // to the ValueExprMap.
5959   eraseValueFromMap(PN);
5960 
5961   return nullptr;
5962 }
5963 
5964 // Try to match a control flow sequence that branches out at BI and merges back
5965 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
5966 // match.
BrPHIToSelect(DominatorTree & DT,BranchInst * BI,PHINode * Merge,Value * & C,Value * & LHS,Value * & RHS)5967 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5968                           Value *&C, Value *&LHS, Value *&RHS) {
5969   C = BI->getCondition();
5970 
5971   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
5972   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
5973 
5974   if (!LeftEdge.isSingleEdge())
5975     return false;
5976 
5977   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5978 
5979   Use &LeftUse = Merge->getOperandUse(0);
5980   Use &RightUse = Merge->getOperandUse(1);
5981 
5982   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
5983     LHS = LeftUse;
5984     RHS = RightUse;
5985     return true;
5986   }
5987 
5988   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
5989     LHS = RightUse;
5990     RHS = LeftUse;
5991     return true;
5992   }
5993 
5994   return false;
5995 }
5996 
createNodeFromSelectLikePHI(PHINode * PN)5997 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
5998   auto IsReachable =
5999       [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
6000   if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
6001     // Try to match
6002     //
6003     //  br %cond, label %left, label %right
6004     // left:
6005     //  br label %merge
6006     // right:
6007     //  br label %merge
6008     // merge:
6009     //  V = phi [ %x, %left ], [ %y, %right ]
6010     //
6011     // as "select %cond, %x, %y"
6012 
6013     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
6014     assert(IDom && "At least the entry block should dominate PN");
6015 
6016     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
6017     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
6018 
6019     if (BI && BI->isConditional() &&
6020         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
6021         properlyDominates(getSCEV(LHS), PN->getParent()) &&
6022         properlyDominates(getSCEV(RHS), PN->getParent()))
6023       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
6024   }
6025 
6026   return nullptr;
6027 }
6028 
createNodeForPHI(PHINode * PN)6029 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
6030   if (const SCEV *S = createAddRecFromPHI(PN))
6031     return S;
6032 
6033   if (Value *V = simplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
6034     return getSCEV(V);
6035 
6036   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
6037     return S;
6038 
6039   // If it's not a loop phi, we can't handle it yet.
6040   return getUnknown(PN);
6041 }
6042 
SCEVMinMaxExprContains(const SCEV * Root,const SCEV * OperandToFind,SCEVTypes RootKind)6043 bool SCEVMinMaxExprContains(const SCEV *Root, const SCEV *OperandToFind,
6044                             SCEVTypes RootKind) {
6045   struct FindClosure {
6046     const SCEV *OperandToFind;
6047     const SCEVTypes RootKind; // Must be a sequential min/max expression.
6048     const SCEVTypes NonSequentialRootKind; // Non-seq variant of RootKind.
6049 
6050     bool Found = false;
6051 
6052     bool canRecurseInto(SCEVTypes Kind) const {
6053       // We can only recurse into the SCEV expression of the same effective type
6054       // as the type of our root SCEV expression, and into zero-extensions.
6055       return RootKind == Kind || NonSequentialRootKind == Kind ||
6056              scZeroExtend == Kind;
6057     };
6058 
6059     FindClosure(const SCEV *OperandToFind, SCEVTypes RootKind)
6060         : OperandToFind(OperandToFind), RootKind(RootKind),
6061           NonSequentialRootKind(
6062               SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(
6063                   RootKind)) {}
6064 
6065     bool follow(const SCEV *S) {
6066       Found = S == OperandToFind;
6067 
6068       return !isDone() && canRecurseInto(S->getSCEVType());
6069     }
6070 
6071     bool isDone() const { return Found; }
6072   };
6073 
6074   FindClosure FC(OperandToFind, RootKind);
6075   visitAll(Root, FC);
6076   return FC.Found;
6077 }
6078 
6079 std::optional<const SCEV *>
createNodeForSelectOrPHIInstWithICmpInstCond(Type * Ty,ICmpInst * Cond,Value * TrueVal,Value * FalseVal)6080 ScalarEvolution::createNodeForSelectOrPHIInstWithICmpInstCond(Type *Ty,
6081                                                               ICmpInst *Cond,
6082                                                               Value *TrueVal,
6083                                                               Value *FalseVal) {
6084   // Try to match some simple smax or umax patterns.
6085   auto *ICI = Cond;
6086 
6087   Value *LHS = ICI->getOperand(0);
6088   Value *RHS = ICI->getOperand(1);
6089 
6090   switch (ICI->getPredicate()) {
6091   case ICmpInst::ICMP_SLT:
6092   case ICmpInst::ICMP_SLE:
6093   case ICmpInst::ICMP_ULT:
6094   case ICmpInst::ICMP_ULE:
6095     std::swap(LHS, RHS);
6096     [[fallthrough]];
6097   case ICmpInst::ICMP_SGT:
6098   case ICmpInst::ICMP_SGE:
6099   case ICmpInst::ICMP_UGT:
6100   case ICmpInst::ICMP_UGE:
6101     // a > b ? a+x : b+x  ->  max(a, b)+x
6102     // a > b ? b+x : a+x  ->  min(a, b)+x
6103     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(Ty)) {
6104       bool Signed = ICI->isSigned();
6105       const SCEV *LA = getSCEV(TrueVal);
6106       const SCEV *RA = getSCEV(FalseVal);
6107       const SCEV *LS = getSCEV(LHS);
6108       const SCEV *RS = getSCEV(RHS);
6109       if (LA->getType()->isPointerTy()) {
6110         // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA.
6111         // Need to make sure we can't produce weird expressions involving
6112         // negated pointers.
6113         if (LA == LS && RA == RS)
6114           return Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS);
6115         if (LA == RS && RA == LS)
6116           return Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS);
6117       }
6118       auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * {
6119         if (Op->getType()->isPointerTy()) {
6120           Op = getLosslessPtrToIntExpr(Op);
6121           if (isa<SCEVCouldNotCompute>(Op))
6122             return Op;
6123         }
6124         if (Signed)
6125           Op = getNoopOrSignExtend(Op, Ty);
6126         else
6127           Op = getNoopOrZeroExtend(Op, Ty);
6128         return Op;
6129       };
6130       LS = CoerceOperand(LS);
6131       RS = CoerceOperand(RS);
6132       if (isa<SCEVCouldNotCompute>(LS) || isa<SCEVCouldNotCompute>(RS))
6133         break;
6134       const SCEV *LDiff = getMinusSCEV(LA, LS);
6135       const SCEV *RDiff = getMinusSCEV(RA, RS);
6136       if (LDiff == RDiff)
6137         return getAddExpr(Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS),
6138                           LDiff);
6139       LDiff = getMinusSCEV(LA, RS);
6140       RDiff = getMinusSCEV(RA, LS);
6141       if (LDiff == RDiff)
6142         return getAddExpr(Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS),
6143                           LDiff);
6144     }
6145     break;
6146   case ICmpInst::ICMP_NE:
6147     // x != 0 ? x+y : C+y  ->  x == 0 ? C+y : x+y
6148     std::swap(TrueVal, FalseVal);
6149     [[fallthrough]];
6150   case ICmpInst::ICMP_EQ:
6151     // x == 0 ? C+y : x+y  ->  umax(x, C)+y   iff C u<= 1
6152     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(Ty) &&
6153         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
6154       const SCEV *X = getNoopOrZeroExtend(getSCEV(LHS), Ty);
6155       const SCEV *TrueValExpr = getSCEV(TrueVal);    // C+y
6156       const SCEV *FalseValExpr = getSCEV(FalseVal);  // x+y
6157       const SCEV *Y = getMinusSCEV(FalseValExpr, X); // y = (x+y)-x
6158       const SCEV *C = getMinusSCEV(TrueValExpr, Y);  // C = (C+y)-y
6159       if (isa<SCEVConstant>(C) && cast<SCEVConstant>(C)->getAPInt().ule(1))
6160         return getAddExpr(getUMaxExpr(X, C), Y);
6161     }
6162     // x == 0 ? 0 : umin    (..., x, ...)  ->  umin_seq(x, umin    (...))
6163     // x == 0 ? 0 : umin_seq(..., x, ...)  ->  umin_seq(x, umin_seq(...))
6164     // x == 0 ? 0 : umin    (..., umin_seq(..., x, ...), ...)
6165     //                    ->  umin_seq(x, umin (..., umin_seq(...), ...))
6166     if (isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero() &&
6167         isa<ConstantInt>(TrueVal) && cast<ConstantInt>(TrueVal)->isZero()) {
6168       const SCEV *X = getSCEV(LHS);
6169       while (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(X))
6170         X = ZExt->getOperand();
6171       if (getTypeSizeInBits(X->getType()) <= getTypeSizeInBits(Ty)) {
6172         const SCEV *FalseValExpr = getSCEV(FalseVal);
6173         if (SCEVMinMaxExprContains(FalseValExpr, X, scSequentialUMinExpr))
6174           return getUMinExpr(getNoopOrZeroExtend(X, Ty), FalseValExpr,
6175                              /*Sequential=*/true);
6176       }
6177     }
6178     break;
6179   default:
6180     break;
6181   }
6182 
6183   return std::nullopt;
6184 }
6185 
6186 static std::optional<const SCEV *>
createNodeForSelectViaUMinSeq(ScalarEvolution * SE,const SCEV * CondExpr,const SCEV * TrueExpr,const SCEV * FalseExpr)6187 createNodeForSelectViaUMinSeq(ScalarEvolution *SE, const SCEV *CondExpr,
6188                               const SCEV *TrueExpr, const SCEV *FalseExpr) {
6189   assert(CondExpr->getType()->isIntegerTy(1) &&
6190          TrueExpr->getType() == FalseExpr->getType() &&
6191          TrueExpr->getType()->isIntegerTy(1) &&
6192          "Unexpected operands of a select.");
6193 
6194   // i1 cond ? i1 x : i1 C  -->  C + (i1  cond ? (i1 x - i1 C) : i1 0)
6195   //                        -->  C + (umin_seq  cond, x - C)
6196   //
6197   // i1 cond ? i1 C : i1 x  -->  C + (i1  cond ? i1 0 : (i1 x - i1 C))
6198   //                        -->  C + (i1 ~cond ? (i1 x - i1 C) : i1 0)
6199   //                        -->  C + (umin_seq ~cond, x - C)
6200 
6201   // FIXME: while we can't legally model the case where both of the hands
6202   // are fully variable, we only require that the *difference* is constant.
6203   if (!isa<SCEVConstant>(TrueExpr) && !isa<SCEVConstant>(FalseExpr))
6204     return std::nullopt;
6205 
6206   const SCEV *X, *C;
6207   if (isa<SCEVConstant>(TrueExpr)) {
6208     CondExpr = SE->getNotSCEV(CondExpr);
6209     X = FalseExpr;
6210     C = TrueExpr;
6211   } else {
6212     X = TrueExpr;
6213     C = FalseExpr;
6214   }
6215   return SE->getAddExpr(C, SE->getUMinExpr(CondExpr, SE->getMinusSCEV(X, C),
6216                                            /*Sequential=*/true));
6217 }
6218 
6219 static std::optional<const SCEV *>
createNodeForSelectViaUMinSeq(ScalarEvolution * SE,Value * Cond,Value * TrueVal,Value * FalseVal)6220 createNodeForSelectViaUMinSeq(ScalarEvolution *SE, Value *Cond, Value *TrueVal,
6221                               Value *FalseVal) {
6222   if (!isa<ConstantInt>(TrueVal) && !isa<ConstantInt>(FalseVal))
6223     return std::nullopt;
6224 
6225   const auto *SECond = SE->getSCEV(Cond);
6226   const auto *SETrue = SE->getSCEV(TrueVal);
6227   const auto *SEFalse = SE->getSCEV(FalseVal);
6228   return createNodeForSelectViaUMinSeq(SE, SECond, SETrue, SEFalse);
6229 }
6230 
createNodeForSelectOrPHIViaUMinSeq(Value * V,Value * Cond,Value * TrueVal,Value * FalseVal)6231 const SCEV *ScalarEvolution::createNodeForSelectOrPHIViaUMinSeq(
6232     Value *V, Value *Cond, Value *TrueVal, Value *FalseVal) {
6233   assert(Cond->getType()->isIntegerTy(1) && "Select condition is not an i1?");
6234   assert(TrueVal->getType() == FalseVal->getType() &&
6235          V->getType() == TrueVal->getType() &&
6236          "Types of select hands and of the result must match.");
6237 
6238   // For now, only deal with i1-typed `select`s.
6239   if (!V->getType()->isIntegerTy(1))
6240     return getUnknown(V);
6241 
6242   if (std::optional<const SCEV *> S =
6243           createNodeForSelectViaUMinSeq(this, Cond, TrueVal, FalseVal))
6244     return *S;
6245 
6246   return getUnknown(V);
6247 }
6248 
createNodeForSelectOrPHI(Value * V,Value * Cond,Value * TrueVal,Value * FalseVal)6249 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Value *V, Value *Cond,
6250                                                       Value *TrueVal,
6251                                                       Value *FalseVal) {
6252   // Handle "constant" branch or select. This can occur for instance when a
6253   // loop pass transforms an inner loop and moves on to process the outer loop.
6254   if (auto *CI = dyn_cast<ConstantInt>(Cond))
6255     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
6256 
6257   if (auto *I = dyn_cast<Instruction>(V)) {
6258     if (auto *ICI = dyn_cast<ICmpInst>(Cond)) {
6259       if (std::optional<const SCEV *> S =
6260               createNodeForSelectOrPHIInstWithICmpInstCond(I->getType(), ICI,
6261                                                            TrueVal, FalseVal))
6262         return *S;
6263     }
6264   }
6265 
6266   return createNodeForSelectOrPHIViaUMinSeq(V, Cond, TrueVal, FalseVal);
6267 }
6268 
6269 /// Expand GEP instructions into add and multiply operations. This allows them
6270 /// to be analyzed by regular SCEV code.
createNodeForGEP(GEPOperator * GEP)6271 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
6272   assert(GEP->getSourceElementType()->isSized() &&
6273          "GEP source element type must be sized");
6274 
6275   SmallVector<const SCEV *, 4> IndexExprs;
6276   for (Value *Index : GEP->indices())
6277     IndexExprs.push_back(getSCEV(Index));
6278   return getGEPExpr(GEP, IndexExprs);
6279 }
6280 
getConstantMultipleImpl(const SCEV * S)6281 APInt ScalarEvolution::getConstantMultipleImpl(const SCEV *S) {
6282   uint64_t BitWidth = getTypeSizeInBits(S->getType());
6283   auto GetShiftedByZeros = [BitWidth](uint32_t TrailingZeros) {
6284     return TrailingZeros >= BitWidth
6285                ? APInt::getZero(BitWidth)
6286                : APInt::getOneBitSet(BitWidth, TrailingZeros);
6287   };
6288   auto GetGCDMultiple = [this](const SCEVNAryExpr *N) {
6289     // The result is GCD of all operands results.
6290     APInt Res = getConstantMultiple(N->getOperand(0));
6291     for (unsigned I = 1, E = N->getNumOperands(); I < E && Res != 1; ++I)
6292       Res = APIntOps::GreatestCommonDivisor(
6293           Res, getConstantMultiple(N->getOperand(I)));
6294     return Res;
6295   };
6296 
6297   switch (S->getSCEVType()) {
6298   case scConstant:
6299     return cast<SCEVConstant>(S)->getAPInt();
6300   case scPtrToInt:
6301     return getConstantMultiple(cast<SCEVPtrToIntExpr>(S)->getOperand());
6302   case scUDivExpr:
6303   case scVScale:
6304     return APInt(BitWidth, 1);
6305   case scTruncate: {
6306     // Only multiples that are a power of 2 will hold after truncation.
6307     const SCEVTruncateExpr *T = cast<SCEVTruncateExpr>(S);
6308     uint32_t TZ = getMinTrailingZeros(T->getOperand());
6309     return GetShiftedByZeros(TZ);
6310   }
6311   case scZeroExtend: {
6312     const SCEVZeroExtendExpr *Z = cast<SCEVZeroExtendExpr>(S);
6313     return getConstantMultiple(Z->getOperand()).zext(BitWidth);
6314   }
6315   case scSignExtend: {
6316     const SCEVSignExtendExpr *E = cast<SCEVSignExtendExpr>(S);
6317     return getConstantMultiple(E->getOperand()).sext(BitWidth);
6318   }
6319   case scMulExpr: {
6320     const SCEVMulExpr *M = cast<SCEVMulExpr>(S);
6321     if (M->hasNoUnsignedWrap()) {
6322       // The result is the product of all operand results.
6323       APInt Res = getConstantMultiple(M->getOperand(0));
6324       for (const SCEV *Operand : M->operands().drop_front())
6325         Res = Res * getConstantMultiple(Operand);
6326       return Res;
6327     }
6328 
6329     // If there are no wrap guarentees, find the trailing zeros, which is the
6330     // sum of trailing zeros for all its operands.
6331     uint32_t TZ = 0;
6332     for (const SCEV *Operand : M->operands())
6333       TZ += getMinTrailingZeros(Operand);
6334     return GetShiftedByZeros(TZ);
6335   }
6336   case scAddExpr:
6337   case scAddRecExpr: {
6338     const SCEVNAryExpr *N = cast<SCEVNAryExpr>(S);
6339     if (N->hasNoUnsignedWrap())
6340         return GetGCDMultiple(N);
6341     // Find the trailing bits, which is the minimum of its operands.
6342     uint32_t TZ = getMinTrailingZeros(N->getOperand(0));
6343     for (const SCEV *Operand : N->operands().drop_front())
6344       TZ = std::min(TZ, getMinTrailingZeros(Operand));
6345     return GetShiftedByZeros(TZ);
6346   }
6347   case scUMaxExpr:
6348   case scSMaxExpr:
6349   case scUMinExpr:
6350   case scSMinExpr:
6351   case scSequentialUMinExpr:
6352     return GetGCDMultiple(cast<SCEVNAryExpr>(S));
6353   case scUnknown: {
6354     // ask ValueTracking for known bits
6355     const SCEVUnknown *U = cast<SCEVUnknown>(S);
6356     unsigned Known =
6357         computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT)
6358             .countMinTrailingZeros();
6359     return GetShiftedByZeros(Known);
6360   }
6361   case scCouldNotCompute:
6362     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6363   }
6364   llvm_unreachable("Unknown SCEV kind!");
6365 }
6366 
getConstantMultiple(const SCEV * S)6367 APInt ScalarEvolution::getConstantMultiple(const SCEV *S) {
6368   auto I = ConstantMultipleCache.find(S);
6369   if (I != ConstantMultipleCache.end())
6370     return I->second;
6371 
6372   APInt Result = getConstantMultipleImpl(S);
6373   auto InsertPair = ConstantMultipleCache.insert({S, Result});
6374   assert(InsertPair.second && "Should insert a new key");
6375   return InsertPair.first->second;
6376 }
6377 
getNonZeroConstantMultiple(const SCEV * S)6378 APInt ScalarEvolution::getNonZeroConstantMultiple(const SCEV *S) {
6379   APInt Multiple = getConstantMultiple(S);
6380   return Multiple == 0 ? APInt(Multiple.getBitWidth(), 1) : Multiple;
6381 }
6382 
getMinTrailingZeros(const SCEV * S)6383 uint32_t ScalarEvolution::getMinTrailingZeros(const SCEV *S) {
6384   return std::min(getConstantMultiple(S).countTrailingZeros(),
6385                   (unsigned)getTypeSizeInBits(S->getType()));
6386 }
6387 
6388 /// Helper method to assign a range to V from metadata present in the IR.
GetRangeFromMetadata(Value * V)6389 static std::optional<ConstantRange> GetRangeFromMetadata(Value *V) {
6390   if (Instruction *I = dyn_cast<Instruction>(V)) {
6391     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
6392       return getConstantRangeFromMetadata(*MD);
6393     if (const auto *CB = dyn_cast<CallBase>(V))
6394       if (std::optional<ConstantRange> Range = CB->getRange())
6395         return Range;
6396   }
6397   if (auto *A = dyn_cast<Argument>(V))
6398     if (std::optional<ConstantRange> Range = A->getRange())
6399       return Range;
6400 
6401   return std::nullopt;
6402 }
6403 
setNoWrapFlags(SCEVAddRecExpr * AddRec,SCEV::NoWrapFlags Flags)6404 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec,
6405                                      SCEV::NoWrapFlags Flags) {
6406   if (AddRec->getNoWrapFlags(Flags) != Flags) {
6407     AddRec->setNoWrapFlags(Flags);
6408     UnsignedRanges.erase(AddRec);
6409     SignedRanges.erase(AddRec);
6410     ConstantMultipleCache.erase(AddRec);
6411   }
6412 }
6413 
6414 ConstantRange ScalarEvolution::
getRangeForUnknownRecurrence(const SCEVUnknown * U)6415 getRangeForUnknownRecurrence(const SCEVUnknown *U) {
6416   const DataLayout &DL = getDataLayout();
6417 
6418   unsigned BitWidth = getTypeSizeInBits(U->getType());
6419   const ConstantRange FullSet(BitWidth, /*isFullSet=*/true);
6420 
6421   // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then
6422   // use information about the trip count to improve our available range.  Note
6423   // that the trip count independent cases are already handled by known bits.
6424   // WARNING: The definition of recurrence used here is subtly different than
6425   // the one used by AddRec (and thus most of this file).  Step is allowed to
6426   // be arbitrarily loop varying here, where AddRec allows only loop invariant
6427   // and other addrecs in the same loop (for non-affine addrecs).  The code
6428   // below intentionally handles the case where step is not loop invariant.
6429   auto *P = dyn_cast<PHINode>(U->getValue());
6430   if (!P)
6431     return FullSet;
6432 
6433   // Make sure that no Phi input comes from an unreachable block. Otherwise,
6434   // even the values that are not available in these blocks may come from them,
6435   // and this leads to false-positive recurrence test.
6436   for (auto *Pred : predecessors(P->getParent()))
6437     if (!DT.isReachableFromEntry(Pred))
6438       return FullSet;
6439 
6440   BinaryOperator *BO;
6441   Value *Start, *Step;
6442   if (!matchSimpleRecurrence(P, BO, Start, Step))
6443     return FullSet;
6444 
6445   // If we found a recurrence in reachable code, we must be in a loop. Note
6446   // that BO might be in some subloop of L, and that's completely okay.
6447   auto *L = LI.getLoopFor(P->getParent());
6448   assert(L && L->getHeader() == P->getParent());
6449   if (!L->contains(BO->getParent()))
6450     // NOTE: This bailout should be an assert instead.  However, asserting
6451     // the condition here exposes a case where LoopFusion is querying SCEV
6452     // with malformed loop information during the midst of the transform.
6453     // There doesn't appear to be an obvious fix, so for the moment bailout
6454     // until the caller issue can be fixed.  PR49566 tracks the bug.
6455     return FullSet;
6456 
6457   // TODO: Extend to other opcodes such as mul, and div
6458   switch (BO->getOpcode()) {
6459   default:
6460     return FullSet;
6461   case Instruction::AShr:
6462   case Instruction::LShr:
6463   case Instruction::Shl:
6464     break;
6465   };
6466 
6467   if (BO->getOperand(0) != P)
6468     // TODO: Handle the power function forms some day.
6469     return FullSet;
6470 
6471   unsigned TC = getSmallConstantMaxTripCount(L);
6472   if (!TC || TC >= BitWidth)
6473     return FullSet;
6474 
6475   auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT);
6476   auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT);
6477   assert(KnownStart.getBitWidth() == BitWidth &&
6478          KnownStep.getBitWidth() == BitWidth);
6479 
6480   // Compute total shift amount, being careful of overflow and bitwidths.
6481   auto MaxShiftAmt = KnownStep.getMaxValue();
6482   APInt TCAP(BitWidth, TC-1);
6483   bool Overflow = false;
6484   auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow);
6485   if (Overflow)
6486     return FullSet;
6487 
6488   switch (BO->getOpcode()) {
6489   default:
6490     llvm_unreachable("filtered out above");
6491   case Instruction::AShr: {
6492     // For each ashr, three cases:
6493     //   shift = 0 => unchanged value
6494     //   saturation => 0 or -1
6495     //   other => a value closer to zero (of the same sign)
6496     // Thus, the end value is closer to zero than the start.
6497     auto KnownEnd = KnownBits::ashr(KnownStart,
6498                                     KnownBits::makeConstant(TotalShift));
6499     if (KnownStart.isNonNegative())
6500       // Analogous to lshr (simply not yet canonicalized)
6501       return ConstantRange::getNonEmpty(KnownEnd.getMinValue(),
6502                                         KnownStart.getMaxValue() + 1);
6503     if (KnownStart.isNegative())
6504       // End >=u Start && End <=s Start
6505       return ConstantRange::getNonEmpty(KnownStart.getMinValue(),
6506                                         KnownEnd.getMaxValue() + 1);
6507     break;
6508   }
6509   case Instruction::LShr: {
6510     // For each lshr, three cases:
6511     //   shift = 0 => unchanged value
6512     //   saturation => 0
6513     //   other => a smaller positive number
6514     // Thus, the low end of the unsigned range is the last value produced.
6515     auto KnownEnd = KnownBits::lshr(KnownStart,
6516                                     KnownBits::makeConstant(TotalShift));
6517     return ConstantRange::getNonEmpty(KnownEnd.getMinValue(),
6518                                       KnownStart.getMaxValue() + 1);
6519   }
6520   case Instruction::Shl: {
6521     // Iff no bits are shifted out, value increases on every shift.
6522     auto KnownEnd = KnownBits::shl(KnownStart,
6523                                    KnownBits::makeConstant(TotalShift));
6524     if (TotalShift.ult(KnownStart.countMinLeadingZeros()))
6525       return ConstantRange(KnownStart.getMinValue(),
6526                            KnownEnd.getMaxValue() + 1);
6527     break;
6528   }
6529   };
6530   return FullSet;
6531 }
6532 
6533 const ConstantRange &
getRangeRefIter(const SCEV * S,ScalarEvolution::RangeSignHint SignHint)6534 ScalarEvolution::getRangeRefIter(const SCEV *S,
6535                                  ScalarEvolution::RangeSignHint SignHint) {
6536   DenseMap<const SCEV *, ConstantRange> &Cache =
6537       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
6538                                                        : SignedRanges;
6539   SmallVector<const SCEV *> WorkList;
6540   SmallPtrSet<const SCEV *, 8> Seen;
6541 
6542   // Add Expr to the worklist, if Expr is either an N-ary expression or a
6543   // SCEVUnknown PHI node.
6544   auto AddToWorklist = [&WorkList, &Seen, &Cache](const SCEV *Expr) {
6545     if (!Seen.insert(Expr).second)
6546       return;
6547     if (Cache.contains(Expr))
6548       return;
6549     switch (Expr->getSCEVType()) {
6550     case scUnknown:
6551       if (!isa<PHINode>(cast<SCEVUnknown>(Expr)->getValue()))
6552         break;
6553       [[fallthrough]];
6554     case scConstant:
6555     case scVScale:
6556     case scTruncate:
6557     case scZeroExtend:
6558     case scSignExtend:
6559     case scPtrToInt:
6560     case scAddExpr:
6561     case scMulExpr:
6562     case scUDivExpr:
6563     case scAddRecExpr:
6564     case scUMaxExpr:
6565     case scSMaxExpr:
6566     case scUMinExpr:
6567     case scSMinExpr:
6568     case scSequentialUMinExpr:
6569       WorkList.push_back(Expr);
6570       break;
6571     case scCouldNotCompute:
6572       llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6573     }
6574   };
6575   AddToWorklist(S);
6576 
6577   // Build worklist by queuing operands of N-ary expressions and phi nodes.
6578   for (unsigned I = 0; I != WorkList.size(); ++I) {
6579     const SCEV *P = WorkList[I];
6580     auto *UnknownS = dyn_cast<SCEVUnknown>(P);
6581     // If it is not a `SCEVUnknown`, just recurse into operands.
6582     if (!UnknownS) {
6583       for (const SCEV *Op : P->operands())
6584         AddToWorklist(Op);
6585       continue;
6586     }
6587     // `SCEVUnknown`'s require special treatment.
6588     if (const PHINode *P = dyn_cast<PHINode>(UnknownS->getValue())) {
6589       if (!PendingPhiRangesIter.insert(P).second)
6590         continue;
6591       for (auto &Op : reverse(P->operands()))
6592         AddToWorklist(getSCEV(Op));
6593     }
6594   }
6595 
6596   if (!WorkList.empty()) {
6597     // Use getRangeRef to compute ranges for items in the worklist in reverse
6598     // order. This will force ranges for earlier operands to be computed before
6599     // their users in most cases.
6600     for (const SCEV *P : reverse(drop_begin(WorkList))) {
6601       getRangeRef(P, SignHint);
6602 
6603       if (auto *UnknownS = dyn_cast<SCEVUnknown>(P))
6604         if (const PHINode *P = dyn_cast<PHINode>(UnknownS->getValue()))
6605           PendingPhiRangesIter.erase(P);
6606     }
6607   }
6608 
6609   return getRangeRef(S, SignHint, 0);
6610 }
6611 
6612 /// Determine the range for a particular SCEV.  If SignHint is
6613 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
6614 /// with a "cleaner" unsigned (resp. signed) representation.
getRangeRef(const SCEV * S,ScalarEvolution::RangeSignHint SignHint,unsigned Depth)6615 const ConstantRange &ScalarEvolution::getRangeRef(
6616     const SCEV *S, ScalarEvolution::RangeSignHint SignHint, unsigned Depth) {
6617   DenseMap<const SCEV *, ConstantRange> &Cache =
6618       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
6619                                                        : SignedRanges;
6620   ConstantRange::PreferredRangeType RangeType =
6621       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? ConstantRange::Unsigned
6622                                                        : ConstantRange::Signed;
6623 
6624   // See if we've computed this range already.
6625   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
6626   if (I != Cache.end())
6627     return I->second;
6628 
6629   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
6630     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
6631 
6632   // Switch to iteratively computing the range for S, if it is part of a deeply
6633   // nested expression.
6634   if (Depth > RangeIterThreshold)
6635     return getRangeRefIter(S, SignHint);
6636 
6637   unsigned BitWidth = getTypeSizeInBits(S->getType());
6638   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
6639   using OBO = OverflowingBinaryOperator;
6640 
6641   // If the value has known zeros, the maximum value will have those known zeros
6642   // as well.
6643   if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
6644     APInt Multiple = getNonZeroConstantMultiple(S);
6645     APInt Remainder = APInt::getMaxValue(BitWidth).urem(Multiple);
6646     if (!Remainder.isZero())
6647       ConservativeResult =
6648           ConstantRange(APInt::getMinValue(BitWidth),
6649                         APInt::getMaxValue(BitWidth) - Remainder + 1);
6650   }
6651   else {
6652     uint32_t TZ = getMinTrailingZeros(S);
6653     if (TZ != 0) {
6654       ConservativeResult = ConstantRange(
6655           APInt::getSignedMinValue(BitWidth),
6656           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
6657     }
6658   }
6659 
6660   switch (S->getSCEVType()) {
6661   case scConstant:
6662     llvm_unreachable("Already handled above.");
6663   case scVScale:
6664     return setRange(S, SignHint, getVScaleRange(&F, BitWidth));
6665   case scTruncate: {
6666     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(S);
6667     ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint, Depth + 1);
6668     return setRange(
6669         Trunc, SignHint,
6670         ConservativeResult.intersectWith(X.truncate(BitWidth), RangeType));
6671   }
6672   case scZeroExtend: {
6673     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(S);
6674     ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint, Depth + 1);
6675     return setRange(
6676         ZExt, SignHint,
6677         ConservativeResult.intersectWith(X.zeroExtend(BitWidth), RangeType));
6678   }
6679   case scSignExtend: {
6680     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(S);
6681     ConstantRange X = getRangeRef(SExt->getOperand(), SignHint, Depth + 1);
6682     return setRange(
6683         SExt, SignHint,
6684         ConservativeResult.intersectWith(X.signExtend(BitWidth), RangeType));
6685   }
6686   case scPtrToInt: {
6687     const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(S);
6688     ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint, Depth + 1);
6689     return setRange(PtrToInt, SignHint, X);
6690   }
6691   case scAddExpr: {
6692     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
6693     ConstantRange X = getRangeRef(Add->getOperand(0), SignHint, Depth + 1);
6694     unsigned WrapType = OBO::AnyWrap;
6695     if (Add->hasNoSignedWrap())
6696       WrapType |= OBO::NoSignedWrap;
6697     if (Add->hasNoUnsignedWrap())
6698       WrapType |= OBO::NoUnsignedWrap;
6699     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
6700       X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint, Depth + 1),
6701                           WrapType, RangeType);
6702     return setRange(Add, SignHint,
6703                     ConservativeResult.intersectWith(X, RangeType));
6704   }
6705   case scMulExpr: {
6706     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(S);
6707     ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint, Depth + 1);
6708     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
6709       X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint, Depth + 1));
6710     return setRange(Mul, SignHint,
6711                     ConservativeResult.intersectWith(X, RangeType));
6712   }
6713   case scUDivExpr: {
6714     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6715     ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint, Depth + 1);
6716     ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint, Depth + 1);
6717     return setRange(UDiv, SignHint,
6718                     ConservativeResult.intersectWith(X.udiv(Y), RangeType));
6719   }
6720   case scAddRecExpr: {
6721     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(S);
6722     // If there's no unsigned wrap, the value will never be less than its
6723     // initial value.
6724     if (AddRec->hasNoUnsignedWrap()) {
6725       APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart());
6726       if (!UnsignedMinValue.isZero())
6727         ConservativeResult = ConservativeResult.intersectWith(
6728             ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType);
6729     }
6730 
6731     // If there's no signed wrap, and all the operands except initial value have
6732     // the same sign or zero, the value won't ever be:
6733     // 1: smaller than initial value if operands are non negative,
6734     // 2: bigger than initial value if operands are non positive.
6735     // For both cases, value can not cross signed min/max boundary.
6736     if (AddRec->hasNoSignedWrap()) {
6737       bool AllNonNeg = true;
6738       bool AllNonPos = true;
6739       for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) {
6740         if (!isKnownNonNegative(AddRec->getOperand(i)))
6741           AllNonNeg = false;
6742         if (!isKnownNonPositive(AddRec->getOperand(i)))
6743           AllNonPos = false;
6744       }
6745       if (AllNonNeg)
6746         ConservativeResult = ConservativeResult.intersectWith(
6747             ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()),
6748                                        APInt::getSignedMinValue(BitWidth)),
6749             RangeType);
6750       else if (AllNonPos)
6751         ConservativeResult = ConservativeResult.intersectWith(
6752             ConstantRange::getNonEmpty(APInt::getSignedMinValue(BitWidth),
6753                                        getSignedRangeMax(AddRec->getStart()) +
6754                                            1),
6755             RangeType);
6756     }
6757 
6758     // TODO: non-affine addrec
6759     if (AddRec->isAffine()) {
6760       const SCEV *MaxBEScev =
6761           getConstantMaxBackedgeTakenCount(AddRec->getLoop());
6762       if (!isa<SCEVCouldNotCompute>(MaxBEScev)) {
6763         APInt MaxBECount = cast<SCEVConstant>(MaxBEScev)->getAPInt();
6764 
6765         // Adjust MaxBECount to the same bitwidth as AddRec. We can truncate if
6766         // MaxBECount's active bits are all <= AddRec's bit width.
6767         if (MaxBECount.getBitWidth() > BitWidth &&
6768             MaxBECount.getActiveBits() <= BitWidth)
6769           MaxBECount = MaxBECount.trunc(BitWidth);
6770         else if (MaxBECount.getBitWidth() < BitWidth)
6771           MaxBECount = MaxBECount.zext(BitWidth);
6772 
6773         if (MaxBECount.getBitWidth() == BitWidth) {
6774           auto RangeFromAffine = getRangeForAffineAR(
6775               AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount);
6776           ConservativeResult =
6777               ConservativeResult.intersectWith(RangeFromAffine, RangeType);
6778 
6779           auto RangeFromFactoring = getRangeViaFactoring(
6780               AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount);
6781           ConservativeResult =
6782               ConservativeResult.intersectWith(RangeFromFactoring, RangeType);
6783         }
6784       }
6785 
6786       // Now try symbolic BE count and more powerful methods.
6787       if (UseExpensiveRangeSharpening) {
6788         const SCEV *SymbolicMaxBECount =
6789             getSymbolicMaxBackedgeTakenCount(AddRec->getLoop());
6790         if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) &&
6791             getTypeSizeInBits(MaxBEScev->getType()) <= BitWidth &&
6792             AddRec->hasNoSelfWrap()) {
6793           auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR(
6794               AddRec, SymbolicMaxBECount, BitWidth, SignHint);
6795           ConservativeResult =
6796               ConservativeResult.intersectWith(RangeFromAffineNew, RangeType);
6797         }
6798       }
6799     }
6800 
6801     return setRange(AddRec, SignHint, std::move(ConservativeResult));
6802   }
6803   case scUMaxExpr:
6804   case scSMaxExpr:
6805   case scUMinExpr:
6806   case scSMinExpr:
6807   case scSequentialUMinExpr: {
6808     Intrinsic::ID ID;
6809     switch (S->getSCEVType()) {
6810     case scUMaxExpr:
6811       ID = Intrinsic::umax;
6812       break;
6813     case scSMaxExpr:
6814       ID = Intrinsic::smax;
6815       break;
6816     case scUMinExpr:
6817     case scSequentialUMinExpr:
6818       ID = Intrinsic::umin;
6819       break;
6820     case scSMinExpr:
6821       ID = Intrinsic::smin;
6822       break;
6823     default:
6824       llvm_unreachable("Unknown SCEVMinMaxExpr/SCEVSequentialMinMaxExpr.");
6825     }
6826 
6827     const auto *NAry = cast<SCEVNAryExpr>(S);
6828     ConstantRange X = getRangeRef(NAry->getOperand(0), SignHint, Depth + 1);
6829     for (unsigned i = 1, e = NAry->getNumOperands(); i != e; ++i)
6830       X = X.intrinsic(
6831           ID, {X, getRangeRef(NAry->getOperand(i), SignHint, Depth + 1)});
6832     return setRange(S, SignHint,
6833                     ConservativeResult.intersectWith(X, RangeType));
6834   }
6835   case scUnknown: {
6836     const SCEVUnknown *U = cast<SCEVUnknown>(S);
6837     Value *V = U->getValue();
6838 
6839     // Check if the IR explicitly contains !range metadata.
6840     std::optional<ConstantRange> MDRange = GetRangeFromMetadata(V);
6841     if (MDRange)
6842       ConservativeResult =
6843           ConservativeResult.intersectWith(*MDRange, RangeType);
6844 
6845     // Use facts about recurrences in the underlying IR.  Note that add
6846     // recurrences are AddRecExprs and thus don't hit this path.  This
6847     // primarily handles shift recurrences.
6848     auto CR = getRangeForUnknownRecurrence(U);
6849     ConservativeResult = ConservativeResult.intersectWith(CR);
6850 
6851     // See if ValueTracking can give us a useful range.
6852     const DataLayout &DL = getDataLayout();
6853     KnownBits Known = computeKnownBits(V, DL, 0, &AC, nullptr, &DT);
6854     if (Known.getBitWidth() != BitWidth)
6855       Known = Known.zextOrTrunc(BitWidth);
6856 
6857     // ValueTracking may be able to compute a tighter result for the number of
6858     // sign bits than for the value of those sign bits.
6859     unsigned NS = ComputeNumSignBits(V, DL, 0, &AC, nullptr, &DT);
6860     if (U->getType()->isPointerTy()) {
6861       // If the pointer size is larger than the index size type, this can cause
6862       // NS to be larger than BitWidth. So compensate for this.
6863       unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType());
6864       int ptrIdxDiff = ptrSize - BitWidth;
6865       if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff)
6866         NS -= ptrIdxDiff;
6867     }
6868 
6869     if (NS > 1) {
6870       // If we know any of the sign bits, we know all of the sign bits.
6871       if (!Known.Zero.getHiBits(NS).isZero())
6872         Known.Zero.setHighBits(NS);
6873       if (!Known.One.getHiBits(NS).isZero())
6874         Known.One.setHighBits(NS);
6875     }
6876 
6877     if (Known.getMinValue() != Known.getMaxValue() + 1)
6878       ConservativeResult = ConservativeResult.intersectWith(
6879           ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1),
6880           RangeType);
6881     if (NS > 1)
6882       ConservativeResult = ConservativeResult.intersectWith(
6883           ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
6884                         APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1),
6885           RangeType);
6886 
6887     if (U->getType()->isPointerTy() && SignHint == HINT_RANGE_UNSIGNED) {
6888       // Strengthen the range if the underlying IR value is a
6889       // global/alloca/heap allocation using the size of the object.
6890       ObjectSizeOpts Opts;
6891       Opts.RoundToAlign = false;
6892       Opts.NullIsUnknownSize = true;
6893       uint64_t ObjSize;
6894       if ((isa<GlobalVariable>(V) || isa<AllocaInst>(V) ||
6895            isAllocationFn(V, &TLI)) &&
6896           getObjectSize(V, ObjSize, DL, &TLI, Opts) && ObjSize > 1) {
6897         // The highest address the object can start is ObjSize bytes before the
6898         // end (unsigned max value). If this value is not a multiple of the
6899         // alignment, the last possible start value is the next lowest multiple
6900         // of the alignment. Note: The computations below cannot overflow,
6901         // because if they would there's no possible start address for the
6902         // object.
6903         APInt MaxVal = APInt::getMaxValue(BitWidth) - APInt(BitWidth, ObjSize);
6904         uint64_t Align = U->getValue()->getPointerAlignment(DL).value();
6905         uint64_t Rem = MaxVal.urem(Align);
6906         MaxVal -= APInt(BitWidth, Rem);
6907         APInt MinVal = APInt::getZero(BitWidth);
6908         if (llvm::isKnownNonZero(V, DL))
6909           MinVal = Align;
6910         ConservativeResult = ConservativeResult.intersectWith(
6911             ConstantRange::getNonEmpty(MinVal, MaxVal + 1), RangeType);
6912       }
6913     }
6914 
6915     // A range of Phi is a subset of union of all ranges of its input.
6916     if (PHINode *Phi = dyn_cast<PHINode>(V)) {
6917       // Make sure that we do not run over cycled Phis.
6918       if (PendingPhiRanges.insert(Phi).second) {
6919         ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
6920 
6921         for (const auto &Op : Phi->operands()) {
6922           auto OpRange = getRangeRef(getSCEV(Op), SignHint, Depth + 1);
6923           RangeFromOps = RangeFromOps.unionWith(OpRange);
6924           // No point to continue if we already have a full set.
6925           if (RangeFromOps.isFullSet())
6926             break;
6927         }
6928         ConservativeResult =
6929             ConservativeResult.intersectWith(RangeFromOps, RangeType);
6930         bool Erased = PendingPhiRanges.erase(Phi);
6931         assert(Erased && "Failed to erase Phi properly?");
6932         (void)Erased;
6933       }
6934     }
6935 
6936     // vscale can't be equal to zero
6937     if (const auto *II = dyn_cast<IntrinsicInst>(V))
6938       if (II->getIntrinsicID() == Intrinsic::vscale) {
6939         ConstantRange Disallowed = APInt::getZero(BitWidth);
6940         ConservativeResult = ConservativeResult.difference(Disallowed);
6941       }
6942 
6943     return setRange(U, SignHint, std::move(ConservativeResult));
6944   }
6945   case scCouldNotCompute:
6946     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6947   }
6948 
6949   return setRange(S, SignHint, std::move(ConservativeResult));
6950 }
6951 
6952 // Given a StartRange, Step and MaxBECount for an expression compute a range of
6953 // values that the expression can take. Initially, the expression has a value
6954 // from StartRange and then is changed by Step up to MaxBECount times. Signed
6955 // argument defines if we treat Step as signed or unsigned.
getRangeForAffineARHelper(APInt Step,const ConstantRange & StartRange,const APInt & MaxBECount,bool Signed)6956 static ConstantRange getRangeForAffineARHelper(APInt Step,
6957                                                const ConstantRange &StartRange,
6958                                                const APInt &MaxBECount,
6959                                                bool Signed) {
6960   unsigned BitWidth = Step.getBitWidth();
6961   assert(BitWidth == StartRange.getBitWidth() &&
6962          BitWidth == MaxBECount.getBitWidth() && "mismatched bit widths");
6963   // If either Step or MaxBECount is 0, then the expression won't change, and we
6964   // just need to return the initial range.
6965   if (Step == 0 || MaxBECount == 0)
6966     return StartRange;
6967 
6968   // If we don't know anything about the initial value (i.e. StartRange is
6969   // FullRange), then we don't know anything about the final range either.
6970   // Return FullRange.
6971   if (StartRange.isFullSet())
6972     return ConstantRange::getFull(BitWidth);
6973 
6974   // If Step is signed and negative, then we use its absolute value, but we also
6975   // note that we're moving in the opposite direction.
6976   bool Descending = Signed && Step.isNegative();
6977 
6978   if (Signed)
6979     // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
6980     // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
6981     // This equations hold true due to the well-defined wrap-around behavior of
6982     // APInt.
6983     Step = Step.abs();
6984 
6985   // Check if Offset is more than full span of BitWidth. If it is, the
6986   // expression is guaranteed to overflow.
6987   if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
6988     return ConstantRange::getFull(BitWidth);
6989 
6990   // Offset is by how much the expression can change. Checks above guarantee no
6991   // overflow here.
6992   APInt Offset = Step * MaxBECount;
6993 
6994   // Minimum value of the final range will match the minimal value of StartRange
6995   // if the expression is increasing and will be decreased by Offset otherwise.
6996   // Maximum value of the final range will match the maximal value of StartRange
6997   // if the expression is decreasing and will be increased by Offset otherwise.
6998   APInt StartLower = StartRange.getLower();
6999   APInt StartUpper = StartRange.getUpper() - 1;
7000   APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
7001                                    : (StartUpper + std::move(Offset));
7002 
7003   // It's possible that the new minimum/maximum value will fall into the initial
7004   // range (due to wrap around). This means that the expression can take any
7005   // value in this bitwidth, and we have to return full range.
7006   if (StartRange.contains(MovedBoundary))
7007     return ConstantRange::getFull(BitWidth);
7008 
7009   APInt NewLower =
7010       Descending ? std::move(MovedBoundary) : std::move(StartLower);
7011   APInt NewUpper =
7012       Descending ? std::move(StartUpper) : std::move(MovedBoundary);
7013   NewUpper += 1;
7014 
7015   // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
7016   return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper));
7017 }
7018 
getRangeForAffineAR(const SCEV * Start,const SCEV * Step,const APInt & MaxBECount)7019 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
7020                                                    const SCEV *Step,
7021                                                    const APInt &MaxBECount) {
7022   assert(getTypeSizeInBits(Start->getType()) ==
7023              getTypeSizeInBits(Step->getType()) &&
7024          getTypeSizeInBits(Start->getType()) == MaxBECount.getBitWidth() &&
7025          "mismatched bit widths");
7026 
7027   // First, consider step signed.
7028   ConstantRange StartSRange = getSignedRange(Start);
7029   ConstantRange StepSRange = getSignedRange(Step);
7030 
7031   // If Step can be both positive and negative, we need to find ranges for the
7032   // maximum absolute step values in both directions and union them.
7033   ConstantRange SR = getRangeForAffineARHelper(
7034       StepSRange.getSignedMin(), StartSRange, MaxBECount, /* Signed = */ true);
7035   SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
7036                                               StartSRange, MaxBECount,
7037                                               /* Signed = */ true));
7038 
7039   // Next, consider step unsigned.
7040   ConstantRange UR = getRangeForAffineARHelper(
7041       getUnsignedRangeMax(Step), getUnsignedRange(Start), MaxBECount,
7042       /* Signed = */ false);
7043 
7044   // Finally, intersect signed and unsigned ranges.
7045   return SR.intersectWith(UR, ConstantRange::Smallest);
7046 }
7047 
getRangeForAffineNoSelfWrappingAR(const SCEVAddRecExpr * AddRec,const SCEV * MaxBECount,unsigned BitWidth,ScalarEvolution::RangeSignHint SignHint)7048 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR(
7049     const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth,
7050     ScalarEvolution::RangeSignHint SignHint) {
7051   assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n");
7052   assert(AddRec->hasNoSelfWrap() &&
7053          "This only works for non-self-wrapping AddRecs!");
7054   const bool IsSigned = SignHint == HINT_RANGE_SIGNED;
7055   const SCEV *Step = AddRec->getStepRecurrence(*this);
7056   // Only deal with constant step to save compile time.
7057   if (!isa<SCEVConstant>(Step))
7058     return ConstantRange::getFull(BitWidth);
7059   // Let's make sure that we can prove that we do not self-wrap during
7060   // MaxBECount iterations. We need this because MaxBECount is a maximum
7061   // iteration count estimate, and we might infer nw from some exit for which we
7062   // do not know max exit count (or any other side reasoning).
7063   // TODO: Turn into assert at some point.
7064   if (getTypeSizeInBits(MaxBECount->getType()) >
7065       getTypeSizeInBits(AddRec->getType()))
7066     return ConstantRange::getFull(BitWidth);
7067   MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType());
7068   const SCEV *RangeWidth = getMinusOne(AddRec->getType());
7069   const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step));
7070   const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs);
7071   if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount,
7072                                          MaxItersWithoutWrap))
7073     return ConstantRange::getFull(BitWidth);
7074 
7075   ICmpInst::Predicate LEPred =
7076       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
7077   ICmpInst::Predicate GEPred =
7078       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
7079   const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
7080 
7081   // We know that there is no self-wrap. Let's take Start and End values and
7082   // look at all intermediate values V1, V2, ..., Vn that IndVar takes during
7083   // the iteration. They either lie inside the range [Min(Start, End),
7084   // Max(Start, End)] or outside it:
7085   //
7086   // Case 1:   RangeMin    ...    Start V1 ... VN End ...           RangeMax;
7087   // Case 2:   RangeMin Vk ... V1 Start    ...    End Vn ... Vk + 1 RangeMax;
7088   //
7089   // No self wrap flag guarantees that the intermediate values cannot be BOTH
7090   // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that
7091   // knowledge, let's try to prove that we are dealing with Case 1. It is so if
7092   // Start <= End and step is positive, or Start >= End and step is negative.
7093   const SCEV *Start = applyLoopGuards(AddRec->getStart(), AddRec->getLoop());
7094   ConstantRange StartRange = getRangeRef(Start, SignHint);
7095   ConstantRange EndRange = getRangeRef(End, SignHint);
7096   ConstantRange RangeBetween = StartRange.unionWith(EndRange);
7097   // If they already cover full iteration space, we will know nothing useful
7098   // even if we prove what we want to prove.
7099   if (RangeBetween.isFullSet())
7100     return RangeBetween;
7101   // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax).
7102   bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet()
7103                                : RangeBetween.isWrappedSet();
7104   if (IsWrappedSet)
7105     return ConstantRange::getFull(BitWidth);
7106 
7107   if (isKnownPositive(Step) &&
7108       isKnownPredicateViaConstantRanges(LEPred, Start, End))
7109     return RangeBetween;
7110   if (isKnownNegative(Step) &&
7111            isKnownPredicateViaConstantRanges(GEPred, Start, End))
7112     return RangeBetween;
7113   return ConstantRange::getFull(BitWidth);
7114 }
7115 
getRangeViaFactoring(const SCEV * Start,const SCEV * Step,const APInt & MaxBECount)7116 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
7117                                                     const SCEV *Step,
7118                                                     const APInt &MaxBECount) {
7119   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
7120   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
7121 
7122   unsigned BitWidth = MaxBECount.getBitWidth();
7123   assert(getTypeSizeInBits(Start->getType()) == BitWidth &&
7124          getTypeSizeInBits(Step->getType()) == BitWidth &&
7125          "mismatched bit widths");
7126 
7127   struct SelectPattern {
7128     Value *Condition = nullptr;
7129     APInt TrueValue;
7130     APInt FalseValue;
7131 
7132     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
7133                            const SCEV *S) {
7134       std::optional<unsigned> CastOp;
7135       APInt Offset(BitWidth, 0);
7136 
7137       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
7138              "Should be!");
7139 
7140       // Peel off a constant offset:
7141       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
7142         // In the future we could consider being smarter here and handle
7143         // {Start+Step,+,Step} too.
7144         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
7145           return;
7146 
7147         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
7148         S = SA->getOperand(1);
7149       }
7150 
7151       // Peel off a cast operation
7152       if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) {
7153         CastOp = SCast->getSCEVType();
7154         S = SCast->getOperand();
7155       }
7156 
7157       using namespace llvm::PatternMatch;
7158 
7159       auto *SU = dyn_cast<SCEVUnknown>(S);
7160       const APInt *TrueVal, *FalseVal;
7161       if (!SU ||
7162           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
7163                                           m_APInt(FalseVal)))) {
7164         Condition = nullptr;
7165         return;
7166       }
7167 
7168       TrueValue = *TrueVal;
7169       FalseValue = *FalseVal;
7170 
7171       // Re-apply the cast we peeled off earlier
7172       if (CastOp)
7173         switch (*CastOp) {
7174         default:
7175           llvm_unreachable("Unknown SCEV cast type!");
7176 
7177         case scTruncate:
7178           TrueValue = TrueValue.trunc(BitWidth);
7179           FalseValue = FalseValue.trunc(BitWidth);
7180           break;
7181         case scZeroExtend:
7182           TrueValue = TrueValue.zext(BitWidth);
7183           FalseValue = FalseValue.zext(BitWidth);
7184           break;
7185         case scSignExtend:
7186           TrueValue = TrueValue.sext(BitWidth);
7187           FalseValue = FalseValue.sext(BitWidth);
7188           break;
7189         }
7190 
7191       // Re-apply the constant offset we peeled off earlier
7192       TrueValue += Offset;
7193       FalseValue += Offset;
7194     }
7195 
7196     bool isRecognized() { return Condition != nullptr; }
7197   };
7198 
7199   SelectPattern StartPattern(*this, BitWidth, Start);
7200   if (!StartPattern.isRecognized())
7201     return ConstantRange::getFull(BitWidth);
7202 
7203   SelectPattern StepPattern(*this, BitWidth, Step);
7204   if (!StepPattern.isRecognized())
7205     return ConstantRange::getFull(BitWidth);
7206 
7207   if (StartPattern.Condition != StepPattern.Condition) {
7208     // We don't handle this case today; but we could, by considering four
7209     // possibilities below instead of two. I'm not sure if there are cases where
7210     // that will help over what getRange already does, though.
7211     return ConstantRange::getFull(BitWidth);
7212   }
7213 
7214   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
7215   // construct arbitrary general SCEV expressions here.  This function is called
7216   // from deep in the call stack, and calling getSCEV (on a sext instruction,
7217   // say) can end up caching a suboptimal value.
7218 
7219   // FIXME: without the explicit `this` receiver below, MSVC errors out with
7220   // C2352 and C2512 (otherwise it isn't needed).
7221 
7222   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
7223   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
7224   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
7225   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
7226 
7227   ConstantRange TrueRange =
7228       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount);
7229   ConstantRange FalseRange =
7230       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount);
7231 
7232   return TrueRange.unionWith(FalseRange);
7233 }
7234 
getNoWrapFlagsFromUB(const Value * V)7235 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
7236   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
7237   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
7238 
7239   // Return early if there are no flags to propagate to the SCEV.
7240   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
7241   if (BinOp->hasNoUnsignedWrap())
7242     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
7243   if (BinOp->hasNoSignedWrap())
7244     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
7245   if (Flags == SCEV::FlagAnyWrap)
7246     return SCEV::FlagAnyWrap;
7247 
7248   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
7249 }
7250 
7251 const Instruction *
getNonTrivialDefiningScopeBound(const SCEV * S)7252 ScalarEvolution::getNonTrivialDefiningScopeBound(const SCEV *S) {
7253   if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(S))
7254     return &*AddRec->getLoop()->getHeader()->begin();
7255   if (auto *U = dyn_cast<SCEVUnknown>(S))
7256     if (auto *I = dyn_cast<Instruction>(U->getValue()))
7257       return I;
7258   return nullptr;
7259 }
7260 
7261 const Instruction *
getDefiningScopeBound(ArrayRef<const SCEV * > Ops,bool & Precise)7262 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops,
7263                                        bool &Precise) {
7264   Precise = true;
7265   // Do a bounded search of the def relation of the requested SCEVs.
7266   SmallSet<const SCEV *, 16> Visited;
7267   SmallVector<const SCEV *> Worklist;
7268   auto pushOp = [&](const SCEV *S) {
7269     if (!Visited.insert(S).second)
7270       return;
7271     // Threshold of 30 here is arbitrary.
7272     if (Visited.size() > 30) {
7273       Precise = false;
7274       return;
7275     }
7276     Worklist.push_back(S);
7277   };
7278 
7279   for (const auto *S : Ops)
7280     pushOp(S);
7281 
7282   const Instruction *Bound = nullptr;
7283   while (!Worklist.empty()) {
7284     auto *S = Worklist.pop_back_val();
7285     if (auto *DefI = getNonTrivialDefiningScopeBound(S)) {
7286       if (!Bound || DT.dominates(Bound, DefI))
7287         Bound = DefI;
7288     } else {
7289       for (const auto *Op : S->operands())
7290         pushOp(Op);
7291     }
7292   }
7293   return Bound ? Bound : &*F.getEntryBlock().begin();
7294 }
7295 
7296 const Instruction *
getDefiningScopeBound(ArrayRef<const SCEV * > Ops)7297 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops) {
7298   bool Discard;
7299   return getDefiningScopeBound(Ops, Discard);
7300 }
7301 
isGuaranteedToTransferExecutionTo(const Instruction * A,const Instruction * B)7302 bool ScalarEvolution::isGuaranteedToTransferExecutionTo(const Instruction *A,
7303                                                         const Instruction *B) {
7304   if (A->getParent() == B->getParent() &&
7305       isGuaranteedToTransferExecutionToSuccessor(A->getIterator(),
7306                                                  B->getIterator()))
7307     return true;
7308 
7309   auto *BLoop = LI.getLoopFor(B->getParent());
7310   if (BLoop && BLoop->getHeader() == B->getParent() &&
7311       BLoop->getLoopPreheader() == A->getParent() &&
7312       isGuaranteedToTransferExecutionToSuccessor(A->getIterator(),
7313                                                  A->getParent()->end()) &&
7314       isGuaranteedToTransferExecutionToSuccessor(B->getParent()->begin(),
7315                                                  B->getIterator()))
7316     return true;
7317   return false;
7318 }
7319 
7320 
isSCEVExprNeverPoison(const Instruction * I)7321 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
7322   // Only proceed if we can prove that I does not yield poison.
7323   if (!programUndefinedIfPoison(I))
7324     return false;
7325 
7326   // At this point we know that if I is executed, then it does not wrap
7327   // according to at least one of NSW or NUW. If I is not executed, then we do
7328   // not know if the calculation that I represents would wrap. Multiple
7329   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
7330   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
7331   // derived from other instructions that map to the same SCEV. We cannot make
7332   // that guarantee for cases where I is not executed. So we need to find a
7333   // upper bound on the defining scope for the SCEV, and prove that I is
7334   // executed every time we enter that scope.  When the bounding scope is a
7335   // loop (the common case), this is equivalent to proving I executes on every
7336   // iteration of that loop.
7337   SmallVector<const SCEV *> SCEVOps;
7338   for (const Use &Op : I->operands()) {
7339     // I could be an extractvalue from a call to an overflow intrinsic.
7340     // TODO: We can do better here in some cases.
7341     if (isSCEVable(Op->getType()))
7342       SCEVOps.push_back(getSCEV(Op));
7343   }
7344   auto *DefI = getDefiningScopeBound(SCEVOps);
7345   return isGuaranteedToTransferExecutionTo(DefI, I);
7346 }
7347 
isAddRecNeverPoison(const Instruction * I,const Loop * L)7348 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
7349   // If we know that \c I can never be poison period, then that's enough.
7350   if (isSCEVExprNeverPoison(I))
7351     return true;
7352 
7353   // If the loop only has one exit, then we know that, if the loop is entered,
7354   // any instruction dominating that exit will be executed. If any such
7355   // instruction would result in UB, the addrec cannot be poison.
7356   //
7357   // This is basically the same reasoning as in isSCEVExprNeverPoison(), but
7358   // also handles uses outside the loop header (they just need to dominate the
7359   // single exit).
7360 
7361   auto *ExitingBB = L->getExitingBlock();
7362   if (!ExitingBB || !loopHasNoAbnormalExits(L))
7363     return false;
7364 
7365   SmallPtrSet<const Value *, 16> KnownPoison;
7366   SmallVector<const Instruction *, 8> Worklist;
7367 
7368   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
7369   // things that are known to be poison under that assumption go on the
7370   // Worklist.
7371   KnownPoison.insert(I);
7372   Worklist.push_back(I);
7373 
7374   while (!Worklist.empty()) {
7375     const Instruction *Poison = Worklist.pop_back_val();
7376 
7377     for (const Use &U : Poison->uses()) {
7378       const Instruction *PoisonUser = cast<Instruction>(U.getUser());
7379       if (mustTriggerUB(PoisonUser, KnownPoison) &&
7380           DT.dominates(PoisonUser->getParent(), ExitingBB))
7381         return true;
7382 
7383       if (propagatesPoison(U) && L->contains(PoisonUser))
7384         if (KnownPoison.insert(PoisonUser).second)
7385           Worklist.push_back(PoisonUser);
7386     }
7387   }
7388 
7389   return false;
7390 }
7391 
7392 ScalarEvolution::LoopProperties
getLoopProperties(const Loop * L)7393 ScalarEvolution::getLoopProperties(const Loop *L) {
7394   using LoopProperties = ScalarEvolution::LoopProperties;
7395 
7396   auto Itr = LoopPropertiesCache.find(L);
7397   if (Itr == LoopPropertiesCache.end()) {
7398     auto HasSideEffects = [](Instruction *I) {
7399       if (auto *SI = dyn_cast<StoreInst>(I))
7400         return !SI->isSimple();
7401 
7402       return I->mayThrow() || I->mayWriteToMemory();
7403     };
7404 
7405     LoopProperties LP = {/* HasNoAbnormalExits */ true,
7406                          /*HasNoSideEffects*/ true};
7407 
7408     for (auto *BB : L->getBlocks())
7409       for (auto &I : *BB) {
7410         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
7411           LP.HasNoAbnormalExits = false;
7412         if (HasSideEffects(&I))
7413           LP.HasNoSideEffects = false;
7414         if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
7415           break; // We're already as pessimistic as we can get.
7416       }
7417 
7418     auto InsertPair = LoopPropertiesCache.insert({L, LP});
7419     assert(InsertPair.second && "We just checked!");
7420     Itr = InsertPair.first;
7421   }
7422 
7423   return Itr->second;
7424 }
7425 
loopIsFiniteByAssumption(const Loop * L)7426 bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) {
7427   // A mustprogress loop without side effects must be finite.
7428   // TODO: The check used here is very conservative.  It's only *specific*
7429   // side effects which are well defined in infinite loops.
7430   return isFinite(L) || (isMustProgress(L) && loopHasNoSideEffects(L));
7431 }
7432 
createSCEVIter(Value * V)7433 const SCEV *ScalarEvolution::createSCEVIter(Value *V) {
7434   // Worklist item with a Value and a bool indicating whether all operands have
7435   // been visited already.
7436   using PointerTy = PointerIntPair<Value *, 1, bool>;
7437   SmallVector<PointerTy> Stack;
7438 
7439   Stack.emplace_back(V, true);
7440   Stack.emplace_back(V, false);
7441   while (!Stack.empty()) {
7442     auto E = Stack.pop_back_val();
7443     Value *CurV = E.getPointer();
7444 
7445     if (getExistingSCEV(CurV))
7446       continue;
7447 
7448     SmallVector<Value *> Ops;
7449     const SCEV *CreatedSCEV = nullptr;
7450     // If all operands have been visited already, create the SCEV.
7451     if (E.getInt()) {
7452       CreatedSCEV = createSCEV(CurV);
7453     } else {
7454       // Otherwise get the operands we need to create SCEV's for before creating
7455       // the SCEV for CurV. If the SCEV for CurV can be constructed trivially,
7456       // just use it.
7457       CreatedSCEV = getOperandsToCreate(CurV, Ops);
7458     }
7459 
7460     if (CreatedSCEV) {
7461       insertValueToMap(CurV, CreatedSCEV);
7462     } else {
7463       // Queue CurV for SCEV creation, followed by its's operands which need to
7464       // be constructed first.
7465       Stack.emplace_back(CurV, true);
7466       for (Value *Op : Ops)
7467         Stack.emplace_back(Op, false);
7468     }
7469   }
7470 
7471   return getExistingSCEV(V);
7472 }
7473 
7474 const SCEV *
getOperandsToCreate(Value * V,SmallVectorImpl<Value * > & Ops)7475 ScalarEvolution::getOperandsToCreate(Value *V, SmallVectorImpl<Value *> &Ops) {
7476   if (!isSCEVable(V->getType()))
7477     return getUnknown(V);
7478 
7479   if (Instruction *I = dyn_cast<Instruction>(V)) {
7480     // Don't attempt to analyze instructions in blocks that aren't
7481     // reachable. Such instructions don't matter, and they aren't required
7482     // to obey basic rules for definitions dominating uses which this
7483     // analysis depends on.
7484     if (!DT.isReachableFromEntry(I->getParent()))
7485       return getUnknown(PoisonValue::get(V->getType()));
7486   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
7487     return getConstant(CI);
7488   else if (isa<GlobalAlias>(V))
7489     return getUnknown(V);
7490   else if (!isa<ConstantExpr>(V))
7491     return getUnknown(V);
7492 
7493   Operator *U = cast<Operator>(V);
7494   if (auto BO =
7495           MatchBinaryOp(U, getDataLayout(), AC, DT, dyn_cast<Instruction>(V))) {
7496     bool IsConstArg = isa<ConstantInt>(BO->RHS);
7497     switch (BO->Opcode) {
7498     case Instruction::Add:
7499     case Instruction::Mul: {
7500       // For additions and multiplications, traverse add/mul chains for which we
7501       // can potentially create a single SCEV, to reduce the number of
7502       // get{Add,Mul}Expr calls.
7503       do {
7504         if (BO->Op) {
7505           if (BO->Op != V && getExistingSCEV(BO->Op)) {
7506             Ops.push_back(BO->Op);
7507             break;
7508           }
7509         }
7510         Ops.push_back(BO->RHS);
7511         auto NewBO = MatchBinaryOp(BO->LHS, getDataLayout(), AC, DT,
7512                                    dyn_cast<Instruction>(V));
7513         if (!NewBO ||
7514             (BO->Opcode == Instruction::Add &&
7515              (NewBO->Opcode != Instruction::Add &&
7516               NewBO->Opcode != Instruction::Sub)) ||
7517             (BO->Opcode == Instruction::Mul &&
7518              NewBO->Opcode != Instruction::Mul)) {
7519           Ops.push_back(BO->LHS);
7520           break;
7521         }
7522         // CreateSCEV calls getNoWrapFlagsFromUB, which under certain conditions
7523         // requires a SCEV for the LHS.
7524         if (BO->Op && (BO->IsNSW || BO->IsNUW)) {
7525           auto *I = dyn_cast<Instruction>(BO->Op);
7526           if (I && programUndefinedIfPoison(I)) {
7527             Ops.push_back(BO->LHS);
7528             break;
7529           }
7530         }
7531         BO = NewBO;
7532       } while (true);
7533       return nullptr;
7534     }
7535     case Instruction::Sub:
7536     case Instruction::UDiv:
7537     case Instruction::URem:
7538       break;
7539     case Instruction::AShr:
7540     case Instruction::Shl:
7541     case Instruction::Xor:
7542       if (!IsConstArg)
7543         return nullptr;
7544       break;
7545     case Instruction::And:
7546     case Instruction::Or:
7547       if (!IsConstArg && !BO->LHS->getType()->isIntegerTy(1))
7548         return nullptr;
7549       break;
7550     case Instruction::LShr:
7551       return getUnknown(V);
7552     default:
7553       llvm_unreachable("Unhandled binop");
7554       break;
7555     }
7556 
7557     Ops.push_back(BO->LHS);
7558     Ops.push_back(BO->RHS);
7559     return nullptr;
7560   }
7561 
7562   switch (U->getOpcode()) {
7563   case Instruction::Trunc:
7564   case Instruction::ZExt:
7565   case Instruction::SExt:
7566   case Instruction::PtrToInt:
7567     Ops.push_back(U->getOperand(0));
7568     return nullptr;
7569 
7570   case Instruction::BitCast:
7571     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) {
7572       Ops.push_back(U->getOperand(0));
7573       return nullptr;
7574     }
7575     return getUnknown(V);
7576 
7577   case Instruction::SDiv:
7578   case Instruction::SRem:
7579     Ops.push_back(U->getOperand(0));
7580     Ops.push_back(U->getOperand(1));
7581     return nullptr;
7582 
7583   case Instruction::GetElementPtr:
7584     assert(cast<GEPOperator>(U)->getSourceElementType()->isSized() &&
7585            "GEP source element type must be sized");
7586     for (Value *Index : U->operands())
7587       Ops.push_back(Index);
7588     return nullptr;
7589 
7590   case Instruction::IntToPtr:
7591     return getUnknown(V);
7592 
7593   case Instruction::PHI:
7594     // Keep constructing SCEVs' for phis recursively for now.
7595     return nullptr;
7596 
7597   case Instruction::Select: {
7598     // Check if U is a select that can be simplified to a SCEVUnknown.
7599     auto CanSimplifyToUnknown = [this, U]() {
7600       if (U->getType()->isIntegerTy(1) || isa<ConstantInt>(U->getOperand(0)))
7601         return false;
7602 
7603       auto *ICI = dyn_cast<ICmpInst>(U->getOperand(0));
7604       if (!ICI)
7605         return false;
7606       Value *LHS = ICI->getOperand(0);
7607       Value *RHS = ICI->getOperand(1);
7608       if (ICI->getPredicate() == CmpInst::ICMP_EQ ||
7609           ICI->getPredicate() == CmpInst::ICMP_NE) {
7610         if (!(isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()))
7611           return true;
7612       } else if (getTypeSizeInBits(LHS->getType()) >
7613                  getTypeSizeInBits(U->getType()))
7614         return true;
7615       return false;
7616     };
7617     if (CanSimplifyToUnknown())
7618       return getUnknown(U);
7619 
7620     for (Value *Inc : U->operands())
7621       Ops.push_back(Inc);
7622     return nullptr;
7623     break;
7624   }
7625   case Instruction::Call:
7626   case Instruction::Invoke:
7627     if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) {
7628       Ops.push_back(RV);
7629       return nullptr;
7630     }
7631 
7632     if (auto *II = dyn_cast<IntrinsicInst>(U)) {
7633       switch (II->getIntrinsicID()) {
7634       case Intrinsic::abs:
7635         Ops.push_back(II->getArgOperand(0));
7636         return nullptr;
7637       case Intrinsic::umax:
7638       case Intrinsic::umin:
7639       case Intrinsic::smax:
7640       case Intrinsic::smin:
7641       case Intrinsic::usub_sat:
7642       case Intrinsic::uadd_sat:
7643         Ops.push_back(II->getArgOperand(0));
7644         Ops.push_back(II->getArgOperand(1));
7645         return nullptr;
7646       case Intrinsic::start_loop_iterations:
7647       case Intrinsic::annotation:
7648       case Intrinsic::ptr_annotation:
7649         Ops.push_back(II->getArgOperand(0));
7650         return nullptr;
7651       default:
7652         break;
7653       }
7654     }
7655     break;
7656   }
7657 
7658   return nullptr;
7659 }
7660 
createSCEV(Value * V)7661 const SCEV *ScalarEvolution::createSCEV(Value *V) {
7662   if (!isSCEVable(V->getType()))
7663     return getUnknown(V);
7664 
7665   if (Instruction *I = dyn_cast<Instruction>(V)) {
7666     // Don't attempt to analyze instructions in blocks that aren't
7667     // reachable. Such instructions don't matter, and they aren't required
7668     // to obey basic rules for definitions dominating uses which this
7669     // analysis depends on.
7670     if (!DT.isReachableFromEntry(I->getParent()))
7671       return getUnknown(PoisonValue::get(V->getType()));
7672   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
7673     return getConstant(CI);
7674   else if (isa<GlobalAlias>(V))
7675     return getUnknown(V);
7676   else if (!isa<ConstantExpr>(V))
7677     return getUnknown(V);
7678 
7679   const SCEV *LHS;
7680   const SCEV *RHS;
7681 
7682   Operator *U = cast<Operator>(V);
7683   if (auto BO =
7684           MatchBinaryOp(U, getDataLayout(), AC, DT, dyn_cast<Instruction>(V))) {
7685     switch (BO->Opcode) {
7686     case Instruction::Add: {
7687       // The simple thing to do would be to just call getSCEV on both operands
7688       // and call getAddExpr with the result. However if we're looking at a
7689       // bunch of things all added together, this can be quite inefficient,
7690       // because it leads to N-1 getAddExpr calls for N ultimate operands.
7691       // Instead, gather up all the operands and make a single getAddExpr call.
7692       // LLVM IR canonical form means we need only traverse the left operands.
7693       SmallVector<const SCEV *, 4> AddOps;
7694       do {
7695         if (BO->Op) {
7696           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
7697             AddOps.push_back(OpSCEV);
7698             break;
7699           }
7700 
7701           // If a NUW or NSW flag can be applied to the SCEV for this
7702           // addition, then compute the SCEV for this addition by itself
7703           // with a separate call to getAddExpr. We need to do that
7704           // instead of pushing the operands of the addition onto AddOps,
7705           // since the flags are only known to apply to this particular
7706           // addition - they may not apply to other additions that can be
7707           // formed with operands from AddOps.
7708           const SCEV *RHS = getSCEV(BO->RHS);
7709           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
7710           if (Flags != SCEV::FlagAnyWrap) {
7711             const SCEV *LHS = getSCEV(BO->LHS);
7712             if (BO->Opcode == Instruction::Sub)
7713               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
7714             else
7715               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
7716             break;
7717           }
7718         }
7719 
7720         if (BO->Opcode == Instruction::Sub)
7721           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
7722         else
7723           AddOps.push_back(getSCEV(BO->RHS));
7724 
7725         auto NewBO = MatchBinaryOp(BO->LHS, getDataLayout(), AC, DT,
7726                                    dyn_cast<Instruction>(V));
7727         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
7728                        NewBO->Opcode != Instruction::Sub)) {
7729           AddOps.push_back(getSCEV(BO->LHS));
7730           break;
7731         }
7732         BO = NewBO;
7733       } while (true);
7734 
7735       return getAddExpr(AddOps);
7736     }
7737 
7738     case Instruction::Mul: {
7739       SmallVector<const SCEV *, 4> MulOps;
7740       do {
7741         if (BO->Op) {
7742           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
7743             MulOps.push_back(OpSCEV);
7744             break;
7745           }
7746 
7747           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
7748           if (Flags != SCEV::FlagAnyWrap) {
7749             LHS = getSCEV(BO->LHS);
7750             RHS = getSCEV(BO->RHS);
7751             MulOps.push_back(getMulExpr(LHS, RHS, Flags));
7752             break;
7753           }
7754         }
7755 
7756         MulOps.push_back(getSCEV(BO->RHS));
7757         auto NewBO = MatchBinaryOp(BO->LHS, getDataLayout(), AC, DT,
7758                                    dyn_cast<Instruction>(V));
7759         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
7760           MulOps.push_back(getSCEV(BO->LHS));
7761           break;
7762         }
7763         BO = NewBO;
7764       } while (true);
7765 
7766       return getMulExpr(MulOps);
7767     }
7768     case Instruction::UDiv:
7769       LHS = getSCEV(BO->LHS);
7770       RHS = getSCEV(BO->RHS);
7771       return getUDivExpr(LHS, RHS);
7772     case Instruction::URem:
7773       LHS = getSCEV(BO->LHS);
7774       RHS = getSCEV(BO->RHS);
7775       return getURemExpr(LHS, RHS);
7776     case Instruction::Sub: {
7777       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
7778       if (BO->Op)
7779         Flags = getNoWrapFlagsFromUB(BO->Op);
7780       LHS = getSCEV(BO->LHS);
7781       RHS = getSCEV(BO->RHS);
7782       return getMinusSCEV(LHS, RHS, Flags);
7783     }
7784     case Instruction::And:
7785       // For an expression like x&255 that merely masks off the high bits,
7786       // use zext(trunc(x)) as the SCEV expression.
7787       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
7788         if (CI->isZero())
7789           return getSCEV(BO->RHS);
7790         if (CI->isMinusOne())
7791           return getSCEV(BO->LHS);
7792         const APInt &A = CI->getValue();
7793 
7794         // Instcombine's ShrinkDemandedConstant may strip bits out of
7795         // constants, obscuring what would otherwise be a low-bits mask.
7796         // Use computeKnownBits to compute what ShrinkDemandedConstant
7797         // knew about to reconstruct a low-bits mask value.
7798         unsigned LZ = A.countl_zero();
7799         unsigned TZ = A.countr_zero();
7800         unsigned BitWidth = A.getBitWidth();
7801         KnownBits Known(BitWidth);
7802         computeKnownBits(BO->LHS, Known, getDataLayout(),
7803                          0, &AC, nullptr, &DT);
7804 
7805         APInt EffectiveMask =
7806             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
7807         if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
7808           const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
7809           const SCEV *LHS = getSCEV(BO->LHS);
7810           const SCEV *ShiftedLHS = nullptr;
7811           if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
7812             if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
7813               // For an expression like (x * 8) & 8, simplify the multiply.
7814               unsigned MulZeros = OpC->getAPInt().countr_zero();
7815               unsigned GCD = std::min(MulZeros, TZ);
7816               APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
7817               SmallVector<const SCEV*, 4> MulOps;
7818               MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
7819               append_range(MulOps, LHSMul->operands().drop_front());
7820               auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
7821               ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
7822             }
7823           }
7824           if (!ShiftedLHS)
7825             ShiftedLHS = getUDivExpr(LHS, MulCount);
7826           return getMulExpr(
7827               getZeroExtendExpr(
7828                   getTruncateExpr(ShiftedLHS,
7829                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
7830                   BO->LHS->getType()),
7831               MulCount);
7832         }
7833       }
7834       // Binary `and` is a bit-wise `umin`.
7835       if (BO->LHS->getType()->isIntegerTy(1)) {
7836         LHS = getSCEV(BO->LHS);
7837         RHS = getSCEV(BO->RHS);
7838         return getUMinExpr(LHS, RHS);
7839       }
7840       break;
7841 
7842     case Instruction::Or:
7843       // Binary `or` is a bit-wise `umax`.
7844       if (BO->LHS->getType()->isIntegerTy(1)) {
7845         LHS = getSCEV(BO->LHS);
7846         RHS = getSCEV(BO->RHS);
7847         return getUMaxExpr(LHS, RHS);
7848       }
7849       break;
7850 
7851     case Instruction::Xor:
7852       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
7853         // If the RHS of xor is -1, then this is a not operation.
7854         if (CI->isMinusOne())
7855           return getNotSCEV(getSCEV(BO->LHS));
7856 
7857         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
7858         // This is a variant of the check for xor with -1, and it handles
7859         // the case where instcombine has trimmed non-demanded bits out
7860         // of an xor with -1.
7861         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
7862           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
7863             if (LBO->getOpcode() == Instruction::And &&
7864                 LCI->getValue() == CI->getValue())
7865               if (const SCEVZeroExtendExpr *Z =
7866                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
7867                 Type *UTy = BO->LHS->getType();
7868                 const SCEV *Z0 = Z->getOperand();
7869                 Type *Z0Ty = Z0->getType();
7870                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
7871 
7872                 // If C is a low-bits mask, the zero extend is serving to
7873                 // mask off the high bits. Complement the operand and
7874                 // re-apply the zext.
7875                 if (CI->getValue().isMask(Z0TySize))
7876                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
7877 
7878                 // If C is a single bit, it may be in the sign-bit position
7879                 // before the zero-extend. In this case, represent the xor
7880                 // using an add, which is equivalent, and re-apply the zext.
7881                 APInt Trunc = CI->getValue().trunc(Z0TySize);
7882                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
7883                     Trunc.isSignMask())
7884                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
7885                                            UTy);
7886               }
7887       }
7888       break;
7889 
7890     case Instruction::Shl:
7891       // Turn shift left of a constant amount into a multiply.
7892       if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
7893         uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
7894 
7895         // If the shift count is not less than the bitwidth, the result of
7896         // the shift is undefined. Don't try to analyze it, because the
7897         // resolution chosen here may differ from the resolution chosen in
7898         // other parts of the compiler.
7899         if (SA->getValue().uge(BitWidth))
7900           break;
7901 
7902         // We can safely preserve the nuw flag in all cases. It's also safe to
7903         // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation
7904         // requires special handling. It can be preserved as long as we're not
7905         // left shifting by bitwidth - 1.
7906         auto Flags = SCEV::FlagAnyWrap;
7907         if (BO->Op) {
7908           auto MulFlags = getNoWrapFlagsFromUB(BO->Op);
7909           if ((MulFlags & SCEV::FlagNSW) &&
7910               ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1)))
7911             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW);
7912           if (MulFlags & SCEV::FlagNUW)
7913             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW);
7914         }
7915 
7916         ConstantInt *X = ConstantInt::get(
7917             getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
7918         return getMulExpr(getSCEV(BO->LHS), getConstant(X), Flags);
7919       }
7920       break;
7921 
7922     case Instruction::AShr:
7923       // AShr X, C, where C is a constant.
7924       ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
7925       if (!CI)
7926         break;
7927 
7928       Type *OuterTy = BO->LHS->getType();
7929       uint64_t BitWidth = getTypeSizeInBits(OuterTy);
7930       // If the shift count is not less than the bitwidth, the result of
7931       // the shift is undefined. Don't try to analyze it, because the
7932       // resolution chosen here may differ from the resolution chosen in
7933       // other parts of the compiler.
7934       if (CI->getValue().uge(BitWidth))
7935         break;
7936 
7937       if (CI->isZero())
7938         return getSCEV(BO->LHS); // shift by zero --> noop
7939 
7940       uint64_t AShrAmt = CI->getZExtValue();
7941       Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
7942 
7943       Operator *L = dyn_cast<Operator>(BO->LHS);
7944       const SCEV *AddTruncateExpr = nullptr;
7945       ConstantInt *ShlAmtCI = nullptr;
7946       const SCEV *AddConstant = nullptr;
7947 
7948       if (L && L->getOpcode() == Instruction::Add) {
7949         // X = Shl A, n
7950         // Y = Add X, c
7951         // Z = AShr Y, m
7952         // n, c and m are constants.
7953 
7954         Operator *LShift = dyn_cast<Operator>(L->getOperand(0));
7955         ConstantInt *AddOperandCI = dyn_cast<ConstantInt>(L->getOperand(1));
7956         if (LShift && LShift->getOpcode() == Instruction::Shl) {
7957           if (AddOperandCI) {
7958             const SCEV *ShlOp0SCEV = getSCEV(LShift->getOperand(0));
7959             ShlAmtCI = dyn_cast<ConstantInt>(LShift->getOperand(1));
7960             // since we truncate to TruncTy, the AddConstant should be of the
7961             // same type, so create a new Constant with type same as TruncTy.
7962             // Also, the Add constant should be shifted right by AShr amount.
7963             APInt AddOperand = AddOperandCI->getValue().ashr(AShrAmt);
7964             AddConstant = getConstant(AddOperand.trunc(BitWidth - AShrAmt));
7965             // we model the expression as sext(add(trunc(A), c << n)), since the
7966             // sext(trunc) part is already handled below, we create a
7967             // AddExpr(TruncExp) which will be used later.
7968             AddTruncateExpr = getTruncateExpr(ShlOp0SCEV, TruncTy);
7969           }
7970         }
7971       } else if (L && L->getOpcode() == Instruction::Shl) {
7972         // X = Shl A, n
7973         // Y = AShr X, m
7974         // Both n and m are constant.
7975 
7976         const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
7977         ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
7978         AddTruncateExpr = getTruncateExpr(ShlOp0SCEV, TruncTy);
7979       }
7980 
7981       if (AddTruncateExpr && ShlAmtCI) {
7982         // We can merge the two given cases into a single SCEV statement,
7983         // incase n = m, the mul expression will be 2^0, so it gets resolved to
7984         // a simpler case. The following code handles the two cases:
7985         //
7986         // 1) For a two-shift sext-inreg, i.e. n = m,
7987         //    use sext(trunc(x)) as the SCEV expression.
7988         //
7989         // 2) When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
7990         //    expression. We already checked that ShlAmt < BitWidth, so
7991         //    the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
7992         //    ShlAmt - AShrAmt < Amt.
7993         const APInt &ShlAmt = ShlAmtCI->getValue();
7994         if (ShlAmt.ult(BitWidth) && ShlAmt.uge(AShrAmt)) {
7995           APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
7996                                           ShlAmtCI->getZExtValue() - AShrAmt);
7997           const SCEV *CompositeExpr =
7998               getMulExpr(AddTruncateExpr, getConstant(Mul));
7999           if (L->getOpcode() != Instruction::Shl)
8000             CompositeExpr = getAddExpr(CompositeExpr, AddConstant);
8001 
8002           return getSignExtendExpr(CompositeExpr, OuterTy);
8003         }
8004       }
8005       break;
8006     }
8007   }
8008 
8009   switch (U->getOpcode()) {
8010   case Instruction::Trunc:
8011     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
8012 
8013   case Instruction::ZExt:
8014     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
8015 
8016   case Instruction::SExt:
8017     if (auto BO = MatchBinaryOp(U->getOperand(0), getDataLayout(), AC, DT,
8018                                 dyn_cast<Instruction>(V))) {
8019       // The NSW flag of a subtract does not always survive the conversion to
8020       // A + (-1)*B.  By pushing sign extension onto its operands we are much
8021       // more likely to preserve NSW and allow later AddRec optimisations.
8022       //
8023       // NOTE: This is effectively duplicating this logic from getSignExtend:
8024       //   sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
8025       // but by that point the NSW information has potentially been lost.
8026       if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
8027         Type *Ty = U->getType();
8028         auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
8029         auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
8030         return getMinusSCEV(V1, V2, SCEV::FlagNSW);
8031       }
8032     }
8033     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
8034 
8035   case Instruction::BitCast:
8036     // BitCasts are no-op casts so we just eliminate the cast.
8037     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
8038       return getSCEV(U->getOperand(0));
8039     break;
8040 
8041   case Instruction::PtrToInt: {
8042     // Pointer to integer cast is straight-forward, so do model it.
8043     const SCEV *Op = getSCEV(U->getOperand(0));
8044     Type *DstIntTy = U->getType();
8045     // But only if effective SCEV (integer) type is wide enough to represent
8046     // all possible pointer values.
8047     const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy);
8048     if (isa<SCEVCouldNotCompute>(IntOp))
8049       return getUnknown(V);
8050     return IntOp;
8051   }
8052   case Instruction::IntToPtr:
8053     // Just don't deal with inttoptr casts.
8054     return getUnknown(V);
8055 
8056   case Instruction::SDiv:
8057     // If both operands are non-negative, this is just an udiv.
8058     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
8059         isKnownNonNegative(getSCEV(U->getOperand(1))))
8060       return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
8061     break;
8062 
8063   case Instruction::SRem:
8064     // If both operands are non-negative, this is just an urem.
8065     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
8066         isKnownNonNegative(getSCEV(U->getOperand(1))))
8067       return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
8068     break;
8069 
8070   case Instruction::GetElementPtr:
8071     return createNodeForGEP(cast<GEPOperator>(U));
8072 
8073   case Instruction::PHI:
8074     return createNodeForPHI(cast<PHINode>(U));
8075 
8076   case Instruction::Select:
8077     return createNodeForSelectOrPHI(U, U->getOperand(0), U->getOperand(1),
8078                                     U->getOperand(2));
8079 
8080   case Instruction::Call:
8081   case Instruction::Invoke:
8082     if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand())
8083       return getSCEV(RV);
8084 
8085     if (auto *II = dyn_cast<IntrinsicInst>(U)) {
8086       switch (II->getIntrinsicID()) {
8087       case Intrinsic::abs:
8088         return getAbsExpr(
8089             getSCEV(II->getArgOperand(0)),
8090             /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne());
8091       case Intrinsic::umax:
8092         LHS = getSCEV(II->getArgOperand(0));
8093         RHS = getSCEV(II->getArgOperand(1));
8094         return getUMaxExpr(LHS, RHS);
8095       case Intrinsic::umin:
8096         LHS = getSCEV(II->getArgOperand(0));
8097         RHS = getSCEV(II->getArgOperand(1));
8098         return getUMinExpr(LHS, RHS);
8099       case Intrinsic::smax:
8100         LHS = getSCEV(II->getArgOperand(0));
8101         RHS = getSCEV(II->getArgOperand(1));
8102         return getSMaxExpr(LHS, RHS);
8103       case Intrinsic::smin:
8104         LHS = getSCEV(II->getArgOperand(0));
8105         RHS = getSCEV(II->getArgOperand(1));
8106         return getSMinExpr(LHS, RHS);
8107       case Intrinsic::usub_sat: {
8108         const SCEV *X = getSCEV(II->getArgOperand(0));
8109         const SCEV *Y = getSCEV(II->getArgOperand(1));
8110         const SCEV *ClampedY = getUMinExpr(X, Y);
8111         return getMinusSCEV(X, ClampedY, SCEV::FlagNUW);
8112       }
8113       case Intrinsic::uadd_sat: {
8114         const SCEV *X = getSCEV(II->getArgOperand(0));
8115         const SCEV *Y = getSCEV(II->getArgOperand(1));
8116         const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y));
8117         return getAddExpr(ClampedX, Y, SCEV::FlagNUW);
8118       }
8119       case Intrinsic::start_loop_iterations:
8120       case Intrinsic::annotation:
8121       case Intrinsic::ptr_annotation:
8122         // A start_loop_iterations or llvm.annotation or llvm.prt.annotation is
8123         // just eqivalent to the first operand for SCEV purposes.
8124         return getSCEV(II->getArgOperand(0));
8125       case Intrinsic::vscale:
8126         return getVScale(II->getType());
8127       default:
8128         break;
8129       }
8130     }
8131     break;
8132   }
8133 
8134   return getUnknown(V);
8135 }
8136 
8137 //===----------------------------------------------------------------------===//
8138 //                   Iteration Count Computation Code
8139 //
8140 
getTripCountFromExitCount(const SCEV * ExitCount)8141 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount) {
8142   if (isa<SCEVCouldNotCompute>(ExitCount))
8143     return getCouldNotCompute();
8144 
8145   auto *ExitCountType = ExitCount->getType();
8146   assert(ExitCountType->isIntegerTy());
8147   auto *EvalTy = Type::getIntNTy(ExitCountType->getContext(),
8148                                  1 + ExitCountType->getScalarSizeInBits());
8149   return getTripCountFromExitCount(ExitCount, EvalTy, nullptr);
8150 }
8151 
getTripCountFromExitCount(const SCEV * ExitCount,Type * EvalTy,const Loop * L)8152 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount,
8153                                                        Type *EvalTy,
8154                                                        const Loop *L) {
8155   if (isa<SCEVCouldNotCompute>(ExitCount))
8156     return getCouldNotCompute();
8157 
8158   unsigned ExitCountSize = getTypeSizeInBits(ExitCount->getType());
8159   unsigned EvalSize = EvalTy->getPrimitiveSizeInBits();
8160 
8161   auto CanAddOneWithoutOverflow = [&]() {
8162     ConstantRange ExitCountRange =
8163       getRangeRef(ExitCount, RangeSignHint::HINT_RANGE_UNSIGNED);
8164     if (!ExitCountRange.contains(APInt::getMaxValue(ExitCountSize)))
8165       return true;
8166 
8167     return L && isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, ExitCount,
8168                                          getMinusOne(ExitCount->getType()));
8169   };
8170 
8171   // If we need to zero extend the backedge count, check if we can add one to
8172   // it prior to zero extending without overflow. Provided this is safe, it
8173   // allows better simplification of the +1.
8174   if (EvalSize > ExitCountSize && CanAddOneWithoutOverflow())
8175     return getZeroExtendExpr(
8176         getAddExpr(ExitCount, getOne(ExitCount->getType())), EvalTy);
8177 
8178   // Get the total trip count from the count by adding 1.  This may wrap.
8179   return getAddExpr(getTruncateOrZeroExtend(ExitCount, EvalTy), getOne(EvalTy));
8180 }
8181 
getConstantTripCount(const SCEVConstant * ExitCount)8182 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
8183   if (!ExitCount)
8184     return 0;
8185 
8186   ConstantInt *ExitConst = ExitCount->getValue();
8187 
8188   // Guard against huge trip counts.
8189   if (ExitConst->getValue().getActiveBits() > 32)
8190     return 0;
8191 
8192   // In case of integer overflow, this returns 0, which is correct.
8193   return ((unsigned)ExitConst->getZExtValue()) + 1;
8194 }
8195 
getSmallConstantTripCount(const Loop * L)8196 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
8197   auto *ExitCount = dyn_cast<SCEVConstant>(getBackedgeTakenCount(L, Exact));
8198   return getConstantTripCount(ExitCount);
8199 }
8200 
8201 unsigned
getSmallConstantTripCount(const Loop * L,const BasicBlock * ExitingBlock)8202 ScalarEvolution::getSmallConstantTripCount(const Loop *L,
8203                                            const BasicBlock *ExitingBlock) {
8204   assert(ExitingBlock && "Must pass a non-null exiting block!");
8205   assert(L->isLoopExiting(ExitingBlock) &&
8206          "Exiting block must actually branch out of the loop!");
8207   const SCEVConstant *ExitCount =
8208       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
8209   return getConstantTripCount(ExitCount);
8210 }
8211 
getSmallConstantMaxTripCount(const Loop * L)8212 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
8213   const auto *MaxExitCount =
8214       dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L));
8215   return getConstantTripCount(MaxExitCount);
8216 }
8217 
getSmallConstantTripMultiple(const Loop * L)8218 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
8219   SmallVector<BasicBlock *, 8> ExitingBlocks;
8220   L->getExitingBlocks(ExitingBlocks);
8221 
8222   std::optional<unsigned> Res;
8223   for (auto *ExitingBB : ExitingBlocks) {
8224     unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBB);
8225     if (!Res)
8226       Res = Multiple;
8227     Res = (unsigned)std::gcd(*Res, Multiple);
8228   }
8229   return Res.value_or(1);
8230 }
8231 
getSmallConstantTripMultiple(const Loop * L,const SCEV * ExitCount)8232 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
8233                                                        const SCEV *ExitCount) {
8234   if (ExitCount == getCouldNotCompute())
8235     return 1;
8236 
8237   // Get the trip count
8238   const SCEV *TCExpr = getTripCountFromExitCount(applyLoopGuards(ExitCount, L));
8239 
8240   APInt Multiple = getNonZeroConstantMultiple(TCExpr);
8241   // If a trip multiple is huge (>=2^32), the trip count is still divisible by
8242   // the greatest power of 2 divisor less than 2^32.
8243   return Multiple.getActiveBits() > 32
8244              ? 1U << std::min((unsigned)31, Multiple.countTrailingZeros())
8245              : (unsigned)Multiple.zextOrTrunc(32).getZExtValue();
8246 }
8247 
8248 /// Returns the largest constant divisor of the trip count of this loop as a
8249 /// normal unsigned value, if possible. This means that the actual trip count is
8250 /// always a multiple of the returned value (don't forget the trip count could
8251 /// very well be zero as well!).
8252 ///
8253 /// Returns 1 if the trip count is unknown or not guaranteed to be the
8254 /// multiple of a constant (which is also the case if the trip count is simply
8255 /// constant, use getSmallConstantTripCount for that case), Will also return 1
8256 /// if the trip count is very large (>= 2^32).
8257 ///
8258 /// As explained in the comments for getSmallConstantTripCount, this assumes
8259 /// that control exits the loop via ExitingBlock.
8260 unsigned
getSmallConstantTripMultiple(const Loop * L,const BasicBlock * ExitingBlock)8261 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
8262                                               const BasicBlock *ExitingBlock) {
8263   assert(ExitingBlock && "Must pass a non-null exiting block!");
8264   assert(L->isLoopExiting(ExitingBlock) &&
8265          "Exiting block must actually branch out of the loop!");
8266   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
8267   return getSmallConstantTripMultiple(L, ExitCount);
8268 }
8269 
getExitCount(const Loop * L,const BasicBlock * ExitingBlock,ExitCountKind Kind)8270 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
8271                                           const BasicBlock *ExitingBlock,
8272                                           ExitCountKind Kind) {
8273   switch (Kind) {
8274   case Exact:
8275     return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
8276   case SymbolicMaximum:
8277     return getBackedgeTakenInfo(L).getSymbolicMax(ExitingBlock, this);
8278   case ConstantMaximum:
8279     return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this);
8280   };
8281   llvm_unreachable("Invalid ExitCountKind!");
8282 }
8283 
8284 const SCEV *
getPredicatedBackedgeTakenCount(const Loop * L,SmallVector<const SCEVPredicate *,4> & Preds)8285 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
8286                                                  SmallVector<const SCEVPredicate *, 4> &Preds) {
8287   return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
8288 }
8289 
getBackedgeTakenCount(const Loop * L,ExitCountKind Kind)8290 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L,
8291                                                    ExitCountKind Kind) {
8292   switch (Kind) {
8293   case Exact:
8294     return getBackedgeTakenInfo(L).getExact(L, this);
8295   case ConstantMaximum:
8296     return getBackedgeTakenInfo(L).getConstantMax(this);
8297   case SymbolicMaximum:
8298     return getBackedgeTakenInfo(L).getSymbolicMax(L, this);
8299   };
8300   llvm_unreachable("Invalid ExitCountKind!");
8301 }
8302 
getPredicatedSymbolicMaxBackedgeTakenCount(const Loop * L,SmallVector<const SCEVPredicate *,4> & Preds)8303 const SCEV *ScalarEvolution::getPredicatedSymbolicMaxBackedgeTakenCount(
8304     const Loop *L, SmallVector<const SCEVPredicate *, 4> &Preds) {
8305   return getPredicatedBackedgeTakenInfo(L).getSymbolicMax(L, this, &Preds);
8306 }
8307 
isBackedgeTakenCountMaxOrZero(const Loop * L)8308 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
8309   return getBackedgeTakenInfo(L).isConstantMaxOrZero(this);
8310 }
8311 
8312 /// Push PHI nodes in the header of the given loop onto the given Worklist.
PushLoopPHIs(const Loop * L,SmallVectorImpl<Instruction * > & Worklist,SmallPtrSetImpl<Instruction * > & Visited)8313 static void PushLoopPHIs(const Loop *L,
8314                          SmallVectorImpl<Instruction *> &Worklist,
8315                          SmallPtrSetImpl<Instruction *> &Visited) {
8316   BasicBlock *Header = L->getHeader();
8317 
8318   // Push all Loop-header PHIs onto the Worklist stack.
8319   for (PHINode &PN : Header->phis())
8320     if (Visited.insert(&PN).second)
8321       Worklist.push_back(&PN);
8322 }
8323 
8324 ScalarEvolution::BackedgeTakenInfo &
getPredicatedBackedgeTakenInfo(const Loop * L)8325 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
8326   auto &BTI = getBackedgeTakenInfo(L);
8327   if (BTI.hasFullInfo())
8328     return BTI;
8329 
8330   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
8331 
8332   if (!Pair.second)
8333     return Pair.first->second;
8334 
8335   BackedgeTakenInfo Result =
8336       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
8337 
8338   return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
8339 }
8340 
8341 ScalarEvolution::BackedgeTakenInfo &
getBackedgeTakenInfo(const Loop * L)8342 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
8343   // Initially insert an invalid entry for this loop. If the insertion
8344   // succeeds, proceed to actually compute a backedge-taken count and
8345   // update the value. The temporary CouldNotCompute value tells SCEV
8346   // code elsewhere that it shouldn't attempt to request a new
8347   // backedge-taken count, which could result in infinite recursion.
8348   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
8349       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
8350   if (!Pair.second)
8351     return Pair.first->second;
8352 
8353   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
8354   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
8355   // must be cleared in this scope.
8356   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
8357 
8358   // Now that we know more about the trip count for this loop, forget any
8359   // existing SCEV values for PHI nodes in this loop since they are only
8360   // conservative estimates made without the benefit of trip count
8361   // information. This invalidation is not necessary for correctness, and is
8362   // only done to produce more precise results.
8363   if (Result.hasAnyInfo()) {
8364     // Invalidate any expression using an addrec in this loop.
8365     SmallVector<const SCEV *, 8> ToForget;
8366     auto LoopUsersIt = LoopUsers.find(L);
8367     if (LoopUsersIt != LoopUsers.end())
8368       append_range(ToForget, LoopUsersIt->second);
8369     forgetMemoizedResults(ToForget);
8370 
8371     // Invalidate constant-evolved loop header phis.
8372     for (PHINode &PN : L->getHeader()->phis())
8373       ConstantEvolutionLoopExitValue.erase(&PN);
8374   }
8375 
8376   // Re-lookup the insert position, since the call to
8377   // computeBackedgeTakenCount above could result in a
8378   // recusive call to getBackedgeTakenInfo (on a different
8379   // loop), which would invalidate the iterator computed
8380   // earlier.
8381   return BackedgeTakenCounts.find(L)->second = std::move(Result);
8382 }
8383 
forgetAllLoops()8384 void ScalarEvolution::forgetAllLoops() {
8385   // This method is intended to forget all info about loops. It should
8386   // invalidate caches as if the following happened:
8387   // - The trip counts of all loops have changed arbitrarily
8388   // - Every llvm::Value has been updated in place to produce a different
8389   // result.
8390   BackedgeTakenCounts.clear();
8391   PredicatedBackedgeTakenCounts.clear();
8392   BECountUsers.clear();
8393   LoopPropertiesCache.clear();
8394   ConstantEvolutionLoopExitValue.clear();
8395   ValueExprMap.clear();
8396   ValuesAtScopes.clear();
8397   ValuesAtScopesUsers.clear();
8398   LoopDispositions.clear();
8399   BlockDispositions.clear();
8400   UnsignedRanges.clear();
8401   SignedRanges.clear();
8402   ExprValueMap.clear();
8403   HasRecMap.clear();
8404   ConstantMultipleCache.clear();
8405   PredicatedSCEVRewrites.clear();
8406   FoldCache.clear();
8407   FoldCacheUser.clear();
8408 }
visitAndClearUsers(SmallVectorImpl<Instruction * > & Worklist,SmallPtrSetImpl<Instruction * > & Visited,SmallVectorImpl<const SCEV * > & ToForget)8409 void ScalarEvolution::visitAndClearUsers(
8410     SmallVectorImpl<Instruction *> &Worklist,
8411     SmallPtrSetImpl<Instruction *> &Visited,
8412     SmallVectorImpl<const SCEV *> &ToForget) {
8413   while (!Worklist.empty()) {
8414     Instruction *I = Worklist.pop_back_val();
8415     if (!isSCEVable(I->getType()) && !isa<WithOverflowInst>(I))
8416       continue;
8417 
8418     ValueExprMapType::iterator It =
8419         ValueExprMap.find_as(static_cast<Value *>(I));
8420     if (It != ValueExprMap.end()) {
8421       eraseValueFromMap(It->first);
8422       ToForget.push_back(It->second);
8423       if (PHINode *PN = dyn_cast<PHINode>(I))
8424         ConstantEvolutionLoopExitValue.erase(PN);
8425     }
8426 
8427     PushDefUseChildren(I, Worklist, Visited);
8428   }
8429 }
8430 
forgetLoop(const Loop * L)8431 void ScalarEvolution::forgetLoop(const Loop *L) {
8432   SmallVector<const Loop *, 16> LoopWorklist(1, L);
8433   SmallVector<Instruction *, 32> Worklist;
8434   SmallPtrSet<Instruction *, 16> Visited;
8435   SmallVector<const SCEV *, 16> ToForget;
8436 
8437   // Iterate over all the loops and sub-loops to drop SCEV information.
8438   while (!LoopWorklist.empty()) {
8439     auto *CurrL = LoopWorklist.pop_back_val();
8440 
8441     // Drop any stored trip count value.
8442     forgetBackedgeTakenCounts(CurrL, /* Predicated */ false);
8443     forgetBackedgeTakenCounts(CurrL, /* Predicated */ true);
8444 
8445     // Drop information about predicated SCEV rewrites for this loop.
8446     for (auto I = PredicatedSCEVRewrites.begin();
8447          I != PredicatedSCEVRewrites.end();) {
8448       std::pair<const SCEV *, const Loop *> Entry = I->first;
8449       if (Entry.second == CurrL)
8450         PredicatedSCEVRewrites.erase(I++);
8451       else
8452         ++I;
8453     }
8454 
8455     auto LoopUsersItr = LoopUsers.find(CurrL);
8456     if (LoopUsersItr != LoopUsers.end()) {
8457       ToForget.insert(ToForget.end(), LoopUsersItr->second.begin(),
8458                 LoopUsersItr->second.end());
8459     }
8460 
8461     // Drop information about expressions based on loop-header PHIs.
8462     PushLoopPHIs(CurrL, Worklist, Visited);
8463     visitAndClearUsers(Worklist, Visited, ToForget);
8464 
8465     LoopPropertiesCache.erase(CurrL);
8466     // Forget all contained loops too, to avoid dangling entries in the
8467     // ValuesAtScopes map.
8468     LoopWorklist.append(CurrL->begin(), CurrL->end());
8469   }
8470   forgetMemoizedResults(ToForget);
8471 }
8472 
forgetTopmostLoop(const Loop * L)8473 void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
8474   forgetLoop(L->getOutermostLoop());
8475 }
8476 
forgetValue(Value * V)8477 void ScalarEvolution::forgetValue(Value *V) {
8478   Instruction *I = dyn_cast<Instruction>(V);
8479   if (!I) return;
8480 
8481   // Drop information about expressions based on loop-header PHIs.
8482   SmallVector<Instruction *, 16> Worklist;
8483   SmallPtrSet<Instruction *, 8> Visited;
8484   SmallVector<const SCEV *, 8> ToForget;
8485   Worklist.push_back(I);
8486   Visited.insert(I);
8487   visitAndClearUsers(Worklist, Visited, ToForget);
8488 
8489   forgetMemoizedResults(ToForget);
8490 }
8491 
forgetLcssaPhiWithNewPredecessor(Loop * L,PHINode * V)8492 void ScalarEvolution::forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V) {
8493   if (!isSCEVable(V->getType()))
8494     return;
8495 
8496   // If SCEV looked through a trivial LCSSA phi node, we might have SCEV's
8497   // directly using a SCEVUnknown/SCEVAddRec defined in the loop. After an
8498   // extra predecessor is added, this is no longer valid. Find all Unknowns and
8499   // AddRecs defined in the loop and invalidate any SCEV's making use of them.
8500   if (const SCEV *S = getExistingSCEV(V)) {
8501     struct InvalidationRootCollector {
8502       Loop *L;
8503       SmallVector<const SCEV *, 8> Roots;
8504 
8505       InvalidationRootCollector(Loop *L) : L(L) {}
8506 
8507       bool follow(const SCEV *S) {
8508         if (auto *SU = dyn_cast<SCEVUnknown>(S)) {
8509           if (auto *I = dyn_cast<Instruction>(SU->getValue()))
8510             if (L->contains(I))
8511               Roots.push_back(S);
8512         } else if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
8513           if (L->contains(AddRec->getLoop()))
8514             Roots.push_back(S);
8515         }
8516         return true;
8517       }
8518       bool isDone() const { return false; }
8519     };
8520 
8521     InvalidationRootCollector C(L);
8522     visitAll(S, C);
8523     forgetMemoizedResults(C.Roots);
8524   }
8525 
8526   // Also perform the normal invalidation.
8527   forgetValue(V);
8528 }
8529 
forgetLoopDispositions()8530 void ScalarEvolution::forgetLoopDispositions() { LoopDispositions.clear(); }
8531 
forgetBlockAndLoopDispositions(Value * V)8532 void ScalarEvolution::forgetBlockAndLoopDispositions(Value *V) {
8533   // Unless a specific value is passed to invalidation, completely clear both
8534   // caches.
8535   if (!V) {
8536     BlockDispositions.clear();
8537     LoopDispositions.clear();
8538     return;
8539   }
8540 
8541   if (!isSCEVable(V->getType()))
8542     return;
8543 
8544   const SCEV *S = getExistingSCEV(V);
8545   if (!S)
8546     return;
8547 
8548   // Invalidate the block and loop dispositions cached for S. Dispositions of
8549   // S's users may change if S's disposition changes (i.e. a user may change to
8550   // loop-invariant, if S changes to loop invariant), so also invalidate
8551   // dispositions of S's users recursively.
8552   SmallVector<const SCEV *, 8> Worklist = {S};
8553   SmallPtrSet<const SCEV *, 8> Seen = {S};
8554   while (!Worklist.empty()) {
8555     const SCEV *Curr = Worklist.pop_back_val();
8556     bool LoopDispoRemoved = LoopDispositions.erase(Curr);
8557     bool BlockDispoRemoved = BlockDispositions.erase(Curr);
8558     if (!LoopDispoRemoved && !BlockDispoRemoved)
8559       continue;
8560     auto Users = SCEVUsers.find(Curr);
8561     if (Users != SCEVUsers.end())
8562       for (const auto *User : Users->second)
8563         if (Seen.insert(User).second)
8564           Worklist.push_back(User);
8565   }
8566 }
8567 
8568 /// Get the exact loop backedge taken count considering all loop exits. A
8569 /// computable result can only be returned for loops with all exiting blocks
8570 /// dominating the latch. howFarToZero assumes that the limit of each loop test
8571 /// is never skipped. This is a valid assumption as long as the loop exits via
8572 /// that test. For precise results, it is the caller's responsibility to specify
8573 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
8574 const SCEV *
getExact(const Loop * L,ScalarEvolution * SE,SmallVector<const SCEVPredicate *,4> * Preds) const8575 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
8576                                              SmallVector<const SCEVPredicate *, 4> *Preds) const {
8577   // If any exits were not computable, the loop is not computable.
8578   if (!isComplete() || ExitNotTaken.empty())
8579     return SE->getCouldNotCompute();
8580 
8581   const BasicBlock *Latch = L->getLoopLatch();
8582   // All exiting blocks we have collected must dominate the only backedge.
8583   if (!Latch)
8584     return SE->getCouldNotCompute();
8585 
8586   // All exiting blocks we have gathered dominate loop's latch, so exact trip
8587   // count is simply a minimum out of all these calculated exit counts.
8588   SmallVector<const SCEV *, 2> Ops;
8589   for (const auto &ENT : ExitNotTaken) {
8590     const SCEV *BECount = ENT.ExactNotTaken;
8591     assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
8592     assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
8593            "We should only have known counts for exiting blocks that dominate "
8594            "latch!");
8595 
8596     Ops.push_back(BECount);
8597 
8598     if (Preds)
8599       for (const auto *P : ENT.Predicates)
8600         Preds->push_back(P);
8601 
8602     assert((Preds || ENT.hasAlwaysTruePredicate()) &&
8603            "Predicate should be always true!");
8604   }
8605 
8606   // If an earlier exit exits on the first iteration (exit count zero), then
8607   // a later poison exit count should not propagate into the result. This are
8608   // exactly the semantics provided by umin_seq.
8609   return SE->getUMinFromMismatchedTypes(Ops, /* Sequential */ true);
8610 }
8611 
8612 /// Get the exact not taken count for this loop exit.
8613 const SCEV *
getExact(const BasicBlock * ExitingBlock,ScalarEvolution * SE) const8614 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock,
8615                                              ScalarEvolution *SE) const {
8616   for (const auto &ENT : ExitNotTaken)
8617     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
8618       return ENT.ExactNotTaken;
8619 
8620   return SE->getCouldNotCompute();
8621 }
8622 
getConstantMax(const BasicBlock * ExitingBlock,ScalarEvolution * SE) const8623 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax(
8624     const BasicBlock *ExitingBlock, ScalarEvolution *SE) const {
8625   for (const auto &ENT : ExitNotTaken)
8626     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
8627       return ENT.ConstantMaxNotTaken;
8628 
8629   return SE->getCouldNotCompute();
8630 }
8631 
getSymbolicMax(const BasicBlock * ExitingBlock,ScalarEvolution * SE) const8632 const SCEV *ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(
8633     const BasicBlock *ExitingBlock, ScalarEvolution *SE) const {
8634   for (const auto &ENT : ExitNotTaken)
8635     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
8636       return ENT.SymbolicMaxNotTaken;
8637 
8638   return SE->getCouldNotCompute();
8639 }
8640 
8641 /// getConstantMax - Get the constant max backedge taken count for the loop.
8642 const SCEV *
getConstantMax(ScalarEvolution * SE) const8643 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const {
8644   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
8645     return !ENT.hasAlwaysTruePredicate();
8646   };
8647 
8648   if (!getConstantMax() || any_of(ExitNotTaken, PredicateNotAlwaysTrue))
8649     return SE->getCouldNotCompute();
8650 
8651   assert((isa<SCEVCouldNotCompute>(getConstantMax()) ||
8652           isa<SCEVConstant>(getConstantMax())) &&
8653          "No point in having a non-constant max backedge taken count!");
8654   return getConstantMax();
8655 }
8656 
getSymbolicMax(const Loop * L,ScalarEvolution * SE,SmallVector<const SCEVPredicate *,4> * Predicates)8657 const SCEV *ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(
8658     const Loop *L, ScalarEvolution *SE,
8659     SmallVector<const SCEVPredicate *, 4> *Predicates) {
8660   if (!SymbolicMax) {
8661     // Form an expression for the maximum exit count possible for this loop. We
8662     // merge the max and exact information to approximate a version of
8663     // getConstantMaxBackedgeTakenCount which isn't restricted to just
8664     // constants.
8665     SmallVector<const SCEV *, 4> ExitCounts;
8666 
8667     for (const auto &ENT : ExitNotTaken) {
8668       const SCEV *ExitCount = ENT.SymbolicMaxNotTaken;
8669       if (!isa<SCEVCouldNotCompute>(ExitCount)) {
8670         assert(SE->DT.dominates(ENT.ExitingBlock, L->getLoopLatch()) &&
8671                "We should only have known counts for exiting blocks that "
8672                "dominate latch!");
8673         ExitCounts.push_back(ExitCount);
8674         if (Predicates)
8675           for (const auto *P : ENT.Predicates)
8676             Predicates->push_back(P);
8677 
8678         assert((Predicates || ENT.hasAlwaysTruePredicate()) &&
8679                "Predicate should be always true!");
8680       }
8681     }
8682     if (ExitCounts.empty())
8683       SymbolicMax = SE->getCouldNotCompute();
8684     else
8685       SymbolicMax =
8686           SE->getUMinFromMismatchedTypes(ExitCounts, /*Sequential*/ true);
8687   }
8688   return SymbolicMax;
8689 }
8690 
isConstantMaxOrZero(ScalarEvolution * SE) const8691 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero(
8692     ScalarEvolution *SE) const {
8693   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
8694     return !ENT.hasAlwaysTruePredicate();
8695   };
8696   return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
8697 }
8698 
ExitLimit(const SCEV * E)8699 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
8700     : ExitLimit(E, E, E, false, std::nullopt) {}
8701 
ExitLimit(const SCEV * E,const SCEV * ConstantMaxNotTaken,const SCEV * SymbolicMaxNotTaken,bool MaxOrZero,ArrayRef<const SmallPtrSetImpl<const SCEVPredicate * > * > PredSetList)8702 ScalarEvolution::ExitLimit::ExitLimit(
8703     const SCEV *E, const SCEV *ConstantMaxNotTaken,
8704     const SCEV *SymbolicMaxNotTaken, bool MaxOrZero,
8705     ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
8706     : ExactNotTaken(E), ConstantMaxNotTaken(ConstantMaxNotTaken),
8707       SymbolicMaxNotTaken(SymbolicMaxNotTaken), MaxOrZero(MaxOrZero) {
8708   // If we prove the max count is zero, so is the symbolic bound.  This happens
8709   // in practice due to differences in a) how context sensitive we've chosen
8710   // to be and b) how we reason about bounds implied by UB.
8711   if (ConstantMaxNotTaken->isZero()) {
8712     this->ExactNotTaken = E = ConstantMaxNotTaken;
8713     this->SymbolicMaxNotTaken = SymbolicMaxNotTaken = ConstantMaxNotTaken;
8714   }
8715 
8716   assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
8717           !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken)) &&
8718          "Exact is not allowed to be less precise than Constant Max");
8719   assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
8720           !isa<SCEVCouldNotCompute>(SymbolicMaxNotTaken)) &&
8721          "Exact is not allowed to be less precise than Symbolic Max");
8722   assert((isa<SCEVCouldNotCompute>(SymbolicMaxNotTaken) ||
8723           !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken)) &&
8724          "Symbolic Max is not allowed to be less precise than Constant Max");
8725   assert((isa<SCEVCouldNotCompute>(ConstantMaxNotTaken) ||
8726           isa<SCEVConstant>(ConstantMaxNotTaken)) &&
8727          "No point in having a non-constant max backedge taken count!");
8728   for (const auto *PredSet : PredSetList)
8729     for (const auto *P : *PredSet)
8730       addPredicate(P);
8731   assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) &&
8732          "Backedge count should be int");
8733   assert((isa<SCEVCouldNotCompute>(ConstantMaxNotTaken) ||
8734           !ConstantMaxNotTaken->getType()->isPointerTy()) &&
8735          "Max backedge count should be int");
8736 }
8737 
ExitLimit(const SCEV * E,const SCEV * ConstantMaxNotTaken,const SCEV * SymbolicMaxNotTaken,bool MaxOrZero,const SmallPtrSetImpl<const SCEVPredicate * > & PredSet)8738 ScalarEvolution::ExitLimit::ExitLimit(
8739     const SCEV *E, const SCEV *ConstantMaxNotTaken,
8740     const SCEV *SymbolicMaxNotTaken, bool MaxOrZero,
8741     const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
8742     : ExitLimit(E, ConstantMaxNotTaken, SymbolicMaxNotTaken, MaxOrZero,
8743                 { &PredSet }) {}
8744 
8745 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
8746 /// computable exit into a persistent ExitNotTakenInfo array.
BackedgeTakenInfo(ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts,bool IsComplete,const SCEV * ConstantMax,bool MaxOrZero)8747 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
8748     ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts,
8749     bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero)
8750     : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) {
8751   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
8752 
8753   ExitNotTaken.reserve(ExitCounts.size());
8754   std::transform(ExitCounts.begin(), ExitCounts.end(),
8755                  std::back_inserter(ExitNotTaken),
8756                  [&](const EdgeExitInfo &EEI) {
8757         BasicBlock *ExitBB = EEI.first;
8758         const ExitLimit &EL = EEI.second;
8759         return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken,
8760                                 EL.ConstantMaxNotTaken, EL.SymbolicMaxNotTaken,
8761                                 EL.Predicates);
8762   });
8763   assert((isa<SCEVCouldNotCompute>(ConstantMax) ||
8764           isa<SCEVConstant>(ConstantMax)) &&
8765          "No point in having a non-constant max backedge taken count!");
8766 }
8767 
8768 /// Compute the number of times the backedge of the specified loop will execute.
8769 ScalarEvolution::BackedgeTakenInfo
computeBackedgeTakenCount(const Loop * L,bool AllowPredicates)8770 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
8771                                            bool AllowPredicates) {
8772   SmallVector<BasicBlock *, 8> ExitingBlocks;
8773   L->getExitingBlocks(ExitingBlocks);
8774 
8775   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
8776 
8777   SmallVector<EdgeExitInfo, 4> ExitCounts;
8778   bool CouldComputeBECount = true;
8779   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
8780   const SCEV *MustExitMaxBECount = nullptr;
8781   const SCEV *MayExitMaxBECount = nullptr;
8782   bool MustExitMaxOrZero = false;
8783   bool IsOnlyExit = ExitingBlocks.size() == 1;
8784 
8785   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
8786   // and compute maxBECount.
8787   // Do a union of all the predicates here.
8788   for (BasicBlock *ExitBB : ExitingBlocks) {
8789     // We canonicalize untaken exits to br (constant), ignore them so that
8790     // proving an exit untaken doesn't negatively impact our ability to reason
8791     // about the loop as whole.
8792     if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator()))
8793       if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
8794         bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
8795         if (ExitIfTrue == CI->isZero())
8796           continue;
8797       }
8798 
8799     ExitLimit EL = computeExitLimit(L, ExitBB, IsOnlyExit, AllowPredicates);
8800 
8801     assert((AllowPredicates || EL.Predicates.empty()) &&
8802            "Predicated exit limit when predicates are not allowed!");
8803 
8804     // 1. For each exit that can be computed, add an entry to ExitCounts.
8805     // CouldComputeBECount is true only if all exits can be computed.
8806     if (EL.ExactNotTaken != getCouldNotCompute())
8807       ++NumExitCountsComputed;
8808     else
8809       // We couldn't compute an exact value for this exit, so
8810       // we won't be able to compute an exact value for the loop.
8811       CouldComputeBECount = false;
8812     // Remember exit count if either exact or symbolic is known. Because
8813     // Exact always implies symbolic, only check symbolic.
8814     if (EL.SymbolicMaxNotTaken != getCouldNotCompute())
8815       ExitCounts.emplace_back(ExitBB, EL);
8816     else {
8817       assert(EL.ExactNotTaken == getCouldNotCompute() &&
8818              "Exact is known but symbolic isn't?");
8819       ++NumExitCountsNotComputed;
8820     }
8821 
8822     // 2. Derive the loop's MaxBECount from each exit's max number of
8823     // non-exiting iterations. Partition the loop exits into two kinds:
8824     // LoopMustExits and LoopMayExits.
8825     //
8826     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
8827     // is a LoopMayExit.  If any computable LoopMustExit is found, then
8828     // MaxBECount is the minimum EL.ConstantMaxNotTaken of computable
8829     // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
8830     // EL.ConstantMaxNotTaken, where CouldNotCompute is considered greater than
8831     // any
8832     // computable EL.ConstantMaxNotTaken.
8833     if (EL.ConstantMaxNotTaken != getCouldNotCompute() && Latch &&
8834         DT.dominates(ExitBB, Latch)) {
8835       if (!MustExitMaxBECount) {
8836         MustExitMaxBECount = EL.ConstantMaxNotTaken;
8837         MustExitMaxOrZero = EL.MaxOrZero;
8838       } else {
8839         MustExitMaxBECount = getUMinFromMismatchedTypes(MustExitMaxBECount,
8840                                                         EL.ConstantMaxNotTaken);
8841       }
8842     } else if (MayExitMaxBECount != getCouldNotCompute()) {
8843       if (!MayExitMaxBECount || EL.ConstantMaxNotTaken == getCouldNotCompute())
8844         MayExitMaxBECount = EL.ConstantMaxNotTaken;
8845       else {
8846         MayExitMaxBECount = getUMaxFromMismatchedTypes(MayExitMaxBECount,
8847                                                        EL.ConstantMaxNotTaken);
8848       }
8849     }
8850   }
8851   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
8852     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
8853   // The loop backedge will be taken the maximum or zero times if there's
8854   // a single exit that must be taken the maximum or zero times.
8855   bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
8856 
8857   // Remember which SCEVs are used in exit limits for invalidation purposes.
8858   // We only care about non-constant SCEVs here, so we can ignore
8859   // EL.ConstantMaxNotTaken
8860   // and MaxBECount, which must be SCEVConstant.
8861   for (const auto &Pair : ExitCounts) {
8862     if (!isa<SCEVConstant>(Pair.second.ExactNotTaken))
8863       BECountUsers[Pair.second.ExactNotTaken].insert({L, AllowPredicates});
8864     if (!isa<SCEVConstant>(Pair.second.SymbolicMaxNotTaken))
8865       BECountUsers[Pair.second.SymbolicMaxNotTaken].insert(
8866           {L, AllowPredicates});
8867   }
8868   return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
8869                            MaxBECount, MaxOrZero);
8870 }
8871 
8872 ScalarEvolution::ExitLimit
computeExitLimit(const Loop * L,BasicBlock * ExitingBlock,bool IsOnlyExit,bool AllowPredicates)8873 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
8874                                   bool IsOnlyExit, bool AllowPredicates) {
8875   assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
8876   // If our exiting block does not dominate the latch, then its connection with
8877   // loop's exit limit may be far from trivial.
8878   const BasicBlock *Latch = L->getLoopLatch();
8879   if (!Latch || !DT.dominates(ExitingBlock, Latch))
8880     return getCouldNotCompute();
8881 
8882   Instruction *Term = ExitingBlock->getTerminator();
8883   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
8884     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
8885     bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
8886     assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
8887            "It should have one successor in loop and one exit block!");
8888     // Proceed to the next level to examine the exit condition expression.
8889     return computeExitLimitFromCond(L, BI->getCondition(), ExitIfTrue,
8890                                     /*ControlsOnlyExit=*/IsOnlyExit,
8891                                     AllowPredicates);
8892   }
8893 
8894   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
8895     // For switch, make sure that there is a single exit from the loop.
8896     BasicBlock *Exit = nullptr;
8897     for (auto *SBB : successors(ExitingBlock))
8898       if (!L->contains(SBB)) {
8899         if (Exit) // Multiple exit successors.
8900           return getCouldNotCompute();
8901         Exit = SBB;
8902       }
8903     assert(Exit && "Exiting block must have at least one exit");
8904     return computeExitLimitFromSingleExitSwitch(
8905         L, SI, Exit, /*ControlsOnlyExit=*/IsOnlyExit);
8906   }
8907 
8908   return getCouldNotCompute();
8909 }
8910 
computeExitLimitFromCond(const Loop * L,Value * ExitCond,bool ExitIfTrue,bool ControlsOnlyExit,bool AllowPredicates)8911 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
8912     const Loop *L, Value *ExitCond, bool ExitIfTrue, bool ControlsOnlyExit,
8913     bool AllowPredicates) {
8914   ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
8915   return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
8916                                         ControlsOnlyExit, AllowPredicates);
8917 }
8918 
8919 std::optional<ScalarEvolution::ExitLimit>
find(const Loop * L,Value * ExitCond,bool ExitIfTrue,bool ControlsOnlyExit,bool AllowPredicates)8920 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
8921                                       bool ExitIfTrue, bool ControlsOnlyExit,
8922                                       bool AllowPredicates) {
8923   (void)this->L;
8924   (void)this->ExitIfTrue;
8925   (void)this->AllowPredicates;
8926 
8927   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
8928          this->AllowPredicates == AllowPredicates &&
8929          "Variance in assumed invariant key components!");
8930   auto Itr = TripCountMap.find({ExitCond, ControlsOnlyExit});
8931   if (Itr == TripCountMap.end())
8932     return std::nullopt;
8933   return Itr->second;
8934 }
8935 
insert(const Loop * L,Value * ExitCond,bool ExitIfTrue,bool ControlsOnlyExit,bool AllowPredicates,const ExitLimit & EL)8936 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
8937                                              bool ExitIfTrue,
8938                                              bool ControlsOnlyExit,
8939                                              bool AllowPredicates,
8940                                              const ExitLimit &EL) {
8941   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
8942          this->AllowPredicates == AllowPredicates &&
8943          "Variance in assumed invariant key components!");
8944 
8945   auto InsertResult = TripCountMap.insert({{ExitCond, ControlsOnlyExit}, EL});
8946   assert(InsertResult.second && "Expected successful insertion!");
8947   (void)InsertResult;
8948   (void)ExitIfTrue;
8949 }
8950 
computeExitLimitFromCondCached(ExitLimitCacheTy & Cache,const Loop * L,Value * ExitCond,bool ExitIfTrue,bool ControlsOnlyExit,bool AllowPredicates)8951 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
8952     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
8953     bool ControlsOnlyExit, bool AllowPredicates) {
8954 
8955   if (auto MaybeEL = Cache.find(L, ExitCond, ExitIfTrue, ControlsOnlyExit,
8956                                 AllowPredicates))
8957     return *MaybeEL;
8958 
8959   ExitLimit EL = computeExitLimitFromCondImpl(
8960       Cache, L, ExitCond, ExitIfTrue, ControlsOnlyExit, AllowPredicates);
8961   Cache.insert(L, ExitCond, ExitIfTrue, ControlsOnlyExit, AllowPredicates, EL);
8962   return EL;
8963 }
8964 
computeExitLimitFromCondImpl(ExitLimitCacheTy & Cache,const Loop * L,Value * ExitCond,bool ExitIfTrue,bool ControlsOnlyExit,bool AllowPredicates)8965 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
8966     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
8967     bool ControlsOnlyExit, bool AllowPredicates) {
8968   // Handle BinOp conditions (And, Or).
8969   if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp(
8970           Cache, L, ExitCond, ExitIfTrue, ControlsOnlyExit, AllowPredicates))
8971     return *LimitFromBinOp;
8972 
8973   // With an icmp, it may be feasible to compute an exact backedge-taken count.
8974   // Proceed to the next level to examine the icmp.
8975   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
8976     ExitLimit EL =
8977         computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsOnlyExit);
8978     if (EL.hasFullInfo() || !AllowPredicates)
8979       return EL;
8980 
8981     // Try again, but use SCEV predicates this time.
8982     return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue,
8983                                     ControlsOnlyExit,
8984                                     /*AllowPredicates=*/true);
8985   }
8986 
8987   // Check for a constant condition. These are normally stripped out by
8988   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
8989   // preserve the CFG and is temporarily leaving constant conditions
8990   // in place.
8991   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
8992     if (ExitIfTrue == !CI->getZExtValue())
8993       // The backedge is always taken.
8994       return getCouldNotCompute();
8995     // The backedge is never taken.
8996     return getZero(CI->getType());
8997   }
8998 
8999   // If we're exiting based on the overflow flag of an x.with.overflow intrinsic
9000   // with a constant step, we can form an equivalent icmp predicate and figure
9001   // out how many iterations will be taken before we exit.
9002   const WithOverflowInst *WO;
9003   const APInt *C;
9004   if (match(ExitCond, m_ExtractValue<1>(m_WithOverflowInst(WO))) &&
9005       match(WO->getRHS(), m_APInt(C))) {
9006     ConstantRange NWR =
9007       ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C,
9008                                            WO->getNoWrapKind());
9009     CmpInst::Predicate Pred;
9010     APInt NewRHSC, Offset;
9011     NWR.getEquivalentICmp(Pred, NewRHSC, Offset);
9012     if (!ExitIfTrue)
9013       Pred = ICmpInst::getInversePredicate(Pred);
9014     auto *LHS = getSCEV(WO->getLHS());
9015     if (Offset != 0)
9016       LHS = getAddExpr(LHS, getConstant(Offset));
9017     auto EL = computeExitLimitFromICmp(L, Pred, LHS, getConstant(NewRHSC),
9018                                        ControlsOnlyExit, AllowPredicates);
9019     if (EL.hasAnyInfo())
9020       return EL;
9021   }
9022 
9023   // If it's not an integer or pointer comparison then compute it the hard way.
9024   return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
9025 }
9026 
9027 std::optional<ScalarEvolution::ExitLimit>
computeExitLimitFromCondFromBinOp(ExitLimitCacheTy & Cache,const Loop * L,Value * ExitCond,bool ExitIfTrue,bool ControlsOnlyExit,bool AllowPredicates)9028 ScalarEvolution::computeExitLimitFromCondFromBinOp(
9029     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
9030     bool ControlsOnlyExit, bool AllowPredicates) {
9031   // Check if the controlling expression for this loop is an And or Or.
9032   Value *Op0, *Op1;
9033   bool IsAnd = false;
9034   if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1))))
9035     IsAnd = true;
9036   else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1))))
9037     IsAnd = false;
9038   else
9039     return std::nullopt;
9040 
9041   // EitherMayExit is true in these two cases:
9042   //   br (and Op0 Op1), loop, exit
9043   //   br (or  Op0 Op1), exit, loop
9044   bool EitherMayExit = IsAnd ^ ExitIfTrue;
9045   ExitLimit EL0 = computeExitLimitFromCondCached(
9046       Cache, L, Op0, ExitIfTrue, ControlsOnlyExit && !EitherMayExit,
9047       AllowPredicates);
9048   ExitLimit EL1 = computeExitLimitFromCondCached(
9049       Cache, L, Op1, ExitIfTrue, ControlsOnlyExit && !EitherMayExit,
9050       AllowPredicates);
9051 
9052   // Be robust against unsimplified IR for the form "op i1 X, NeutralElement"
9053   const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd);
9054   if (isa<ConstantInt>(Op1))
9055     return Op1 == NeutralElement ? EL0 : EL1;
9056   if (isa<ConstantInt>(Op0))
9057     return Op0 == NeutralElement ? EL1 : EL0;
9058 
9059   const SCEV *BECount = getCouldNotCompute();
9060   const SCEV *ConstantMaxBECount = getCouldNotCompute();
9061   const SCEV *SymbolicMaxBECount = getCouldNotCompute();
9062   if (EitherMayExit) {
9063     bool UseSequentialUMin = !isa<BinaryOperator>(ExitCond);
9064     // Both conditions must be same for the loop to continue executing.
9065     // Choose the less conservative count.
9066     if (EL0.ExactNotTaken != getCouldNotCompute() &&
9067         EL1.ExactNotTaken != getCouldNotCompute()) {
9068       BECount = getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken,
9069                                            UseSequentialUMin);
9070     }
9071     if (EL0.ConstantMaxNotTaken == getCouldNotCompute())
9072       ConstantMaxBECount = EL1.ConstantMaxNotTaken;
9073     else if (EL1.ConstantMaxNotTaken == getCouldNotCompute())
9074       ConstantMaxBECount = EL0.ConstantMaxNotTaken;
9075     else
9076       ConstantMaxBECount = getUMinFromMismatchedTypes(EL0.ConstantMaxNotTaken,
9077                                                       EL1.ConstantMaxNotTaken);
9078     if (EL0.SymbolicMaxNotTaken == getCouldNotCompute())
9079       SymbolicMaxBECount = EL1.SymbolicMaxNotTaken;
9080     else if (EL1.SymbolicMaxNotTaken == getCouldNotCompute())
9081       SymbolicMaxBECount = EL0.SymbolicMaxNotTaken;
9082     else
9083       SymbolicMaxBECount = getUMinFromMismatchedTypes(
9084           EL0.SymbolicMaxNotTaken, EL1.SymbolicMaxNotTaken, UseSequentialUMin);
9085   } else {
9086     // Both conditions must be same at the same time for the loop to exit.
9087     // For now, be conservative.
9088     if (EL0.ExactNotTaken == EL1.ExactNotTaken)
9089       BECount = EL0.ExactNotTaken;
9090   }
9091 
9092   // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
9093   // to be more aggressive when computing BECount than when computing
9094   // ConstantMaxBECount.  In these cases it is possible for EL0.ExactNotTaken
9095   // and
9096   // EL1.ExactNotTaken to match, but for EL0.ConstantMaxNotTaken and
9097   // EL1.ConstantMaxNotTaken to not.
9098   if (isa<SCEVCouldNotCompute>(ConstantMaxBECount) &&
9099       !isa<SCEVCouldNotCompute>(BECount))
9100     ConstantMaxBECount = getConstant(getUnsignedRangeMax(BECount));
9101   if (isa<SCEVCouldNotCompute>(SymbolicMaxBECount))
9102     SymbolicMaxBECount =
9103         isa<SCEVCouldNotCompute>(BECount) ? ConstantMaxBECount : BECount;
9104   return ExitLimit(BECount, ConstantMaxBECount, SymbolicMaxBECount, false,
9105                    { &EL0.Predicates, &EL1.Predicates });
9106 }
9107 
computeExitLimitFromICmp(const Loop * L,ICmpInst * ExitCond,bool ExitIfTrue,bool ControlsOnlyExit,bool AllowPredicates)9108 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromICmp(
9109     const Loop *L, ICmpInst *ExitCond, bool ExitIfTrue, bool ControlsOnlyExit,
9110     bool AllowPredicates) {
9111   // If the condition was exit on true, convert the condition to exit on false
9112   ICmpInst::Predicate Pred;
9113   if (!ExitIfTrue)
9114     Pred = ExitCond->getPredicate();
9115   else
9116     Pred = ExitCond->getInversePredicate();
9117   const ICmpInst::Predicate OriginalPred = Pred;
9118 
9119   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
9120   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
9121 
9122   ExitLimit EL = computeExitLimitFromICmp(L, Pred, LHS, RHS, ControlsOnlyExit,
9123                                           AllowPredicates);
9124   if (EL.hasAnyInfo())
9125     return EL;
9126 
9127   auto *ExhaustiveCount =
9128       computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
9129 
9130   if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
9131     return ExhaustiveCount;
9132 
9133   return computeShiftCompareExitLimit(ExitCond->getOperand(0),
9134                                       ExitCond->getOperand(1), L, OriginalPred);
9135 }
computeExitLimitFromICmp(const Loop * L,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,bool ControlsOnlyExit,bool AllowPredicates)9136 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromICmp(
9137     const Loop *L, ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
9138     bool ControlsOnlyExit, bool AllowPredicates) {
9139 
9140   // Try to evaluate any dependencies out of the loop.
9141   LHS = getSCEVAtScope(LHS, L);
9142   RHS = getSCEVAtScope(RHS, L);
9143 
9144   // At this point, we would like to compute how many iterations of the
9145   // loop the predicate will return true for these inputs.
9146   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
9147     // If there is a loop-invariant, force it into the RHS.
9148     std::swap(LHS, RHS);
9149     Pred = ICmpInst::getSwappedPredicate(Pred);
9150   }
9151 
9152   bool ControllingFiniteLoop = ControlsOnlyExit && loopHasNoAbnormalExits(L) &&
9153                                loopIsFiniteByAssumption(L);
9154   // Simplify the operands before analyzing them.
9155   (void)SimplifyICmpOperands(Pred, LHS, RHS, /*Depth=*/0);
9156 
9157   // If we have a comparison of a chrec against a constant, try to use value
9158   // ranges to answer this query.
9159   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
9160     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
9161       if (AddRec->getLoop() == L) {
9162         // Form the constant range.
9163         ConstantRange CompRange =
9164             ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
9165 
9166         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
9167         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
9168       }
9169 
9170   // If this loop must exit based on this condition (or execute undefined
9171   // behaviour), and we can prove the test sequence produced must repeat
9172   // the same values on self-wrap of the IV, then we can infer that IV
9173   // doesn't self wrap because if it did, we'd have an infinite (undefined)
9174   // loop.
9175   if (ControllingFiniteLoop && isLoopInvariant(RHS, L)) {
9176     // TODO: We can peel off any functions which are invertible *in L*.  Loop
9177     // invariant terms are effectively constants for our purposes here.
9178     auto *InnerLHS = LHS;
9179     if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS))
9180       InnerLHS = ZExt->getOperand();
9181     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(InnerLHS)) {
9182       auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this));
9183       if (!AR->hasNoSelfWrap() && AR->getLoop() == L && AR->isAffine() &&
9184           StrideC && StrideC->getAPInt().isPowerOf2()) {
9185         auto Flags = AR->getNoWrapFlags();
9186         Flags = setFlags(Flags, SCEV::FlagNW);
9187         SmallVector<const SCEV*> Operands{AR->operands()};
9188         Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
9189         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags);
9190       }
9191     }
9192   }
9193 
9194   switch (Pred) {
9195   case ICmpInst::ICMP_NE: {                     // while (X != Y)
9196     // Convert to: while (X-Y != 0)
9197     if (LHS->getType()->isPointerTy()) {
9198       LHS = getLosslessPtrToIntExpr(LHS);
9199       if (isa<SCEVCouldNotCompute>(LHS))
9200         return LHS;
9201     }
9202     if (RHS->getType()->isPointerTy()) {
9203       RHS = getLosslessPtrToIntExpr(RHS);
9204       if (isa<SCEVCouldNotCompute>(RHS))
9205         return RHS;
9206     }
9207     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsOnlyExit,
9208                                 AllowPredicates);
9209     if (EL.hasAnyInfo())
9210       return EL;
9211     break;
9212   }
9213   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
9214     // Convert to: while (X-Y == 0)
9215     if (LHS->getType()->isPointerTy()) {
9216       LHS = getLosslessPtrToIntExpr(LHS);
9217       if (isa<SCEVCouldNotCompute>(LHS))
9218         return LHS;
9219     }
9220     if (RHS->getType()->isPointerTy()) {
9221       RHS = getLosslessPtrToIntExpr(RHS);
9222       if (isa<SCEVCouldNotCompute>(RHS))
9223         return RHS;
9224     }
9225     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
9226     if (EL.hasAnyInfo()) return EL;
9227     break;
9228   }
9229   case ICmpInst::ICMP_SLE:
9230   case ICmpInst::ICMP_ULE:
9231     // Since the loop is finite, an invariant RHS cannot include the boundary
9232     // value, otherwise it would loop forever.
9233     if (!EnableFiniteLoopControl || !ControllingFiniteLoop ||
9234         !isLoopInvariant(RHS, L)) {
9235       // Otherwise, perform the addition in a wider type, to avoid overflow.
9236       // If the LHS is an addrec with the appropriate nowrap flag, the
9237       // extension will be sunk into it and the exit count can be analyzed.
9238       auto *OldType = dyn_cast<IntegerType>(LHS->getType());
9239       if (!OldType)
9240         break;
9241       // Prefer doubling the bitwidth over adding a single bit to make it more
9242       // likely that we use a legal type.
9243       auto *NewType =
9244           Type::getIntNTy(OldType->getContext(), OldType->getBitWidth() * 2);
9245       if (ICmpInst::isSigned(Pred)) {
9246         LHS = getSignExtendExpr(LHS, NewType);
9247         RHS = getSignExtendExpr(RHS, NewType);
9248       } else {
9249         LHS = getZeroExtendExpr(LHS, NewType);
9250         RHS = getZeroExtendExpr(RHS, NewType);
9251       }
9252     }
9253     RHS = getAddExpr(getOne(RHS->getType()), RHS);
9254     [[fallthrough]];
9255   case ICmpInst::ICMP_SLT:
9256   case ICmpInst::ICMP_ULT: { // while (X < Y)
9257     bool IsSigned = ICmpInst::isSigned(Pred);
9258     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsOnlyExit,
9259                                     AllowPredicates);
9260     if (EL.hasAnyInfo())
9261       return EL;
9262     break;
9263   }
9264   case ICmpInst::ICMP_SGE:
9265   case ICmpInst::ICMP_UGE:
9266     // Since the loop is finite, an invariant RHS cannot include the boundary
9267     // value, otherwise it would loop forever.
9268     if (!EnableFiniteLoopControl || !ControllingFiniteLoop ||
9269         !isLoopInvariant(RHS, L))
9270       break;
9271     RHS = getAddExpr(getMinusOne(RHS->getType()), RHS);
9272     [[fallthrough]];
9273   case ICmpInst::ICMP_SGT:
9274   case ICmpInst::ICMP_UGT: { // while (X > Y)
9275     bool IsSigned = ICmpInst::isSigned(Pred);
9276     ExitLimit EL = howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsOnlyExit,
9277                                        AllowPredicates);
9278     if (EL.hasAnyInfo())
9279       return EL;
9280     break;
9281   }
9282   default:
9283     break;
9284   }
9285 
9286   return getCouldNotCompute();
9287 }
9288 
9289 ScalarEvolution::ExitLimit
computeExitLimitFromSingleExitSwitch(const Loop * L,SwitchInst * Switch,BasicBlock * ExitingBlock,bool ControlsOnlyExit)9290 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
9291                                                       SwitchInst *Switch,
9292                                                       BasicBlock *ExitingBlock,
9293                                                       bool ControlsOnlyExit) {
9294   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
9295 
9296   // Give up if the exit is the default dest of a switch.
9297   if (Switch->getDefaultDest() == ExitingBlock)
9298     return getCouldNotCompute();
9299 
9300   assert(L->contains(Switch->getDefaultDest()) &&
9301          "Default case must not exit the loop!");
9302   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
9303   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
9304 
9305   // while (X != Y) --> while (X-Y != 0)
9306   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsOnlyExit);
9307   if (EL.hasAnyInfo())
9308     return EL;
9309 
9310   return getCouldNotCompute();
9311 }
9312 
9313 static ConstantInt *
EvaluateConstantChrecAtConstant(const SCEVAddRecExpr * AddRec,ConstantInt * C,ScalarEvolution & SE)9314 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
9315                                 ScalarEvolution &SE) {
9316   const SCEV *InVal = SE.getConstant(C);
9317   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
9318   assert(isa<SCEVConstant>(Val) &&
9319          "Evaluation of SCEV at constant didn't fold correctly?");
9320   return cast<SCEVConstant>(Val)->getValue();
9321 }
9322 
computeShiftCompareExitLimit(Value * LHS,Value * RHSV,const Loop * L,ICmpInst::Predicate Pred)9323 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
9324     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
9325   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
9326   if (!RHS)
9327     return getCouldNotCompute();
9328 
9329   const BasicBlock *Latch = L->getLoopLatch();
9330   if (!Latch)
9331     return getCouldNotCompute();
9332 
9333   const BasicBlock *Predecessor = L->getLoopPredecessor();
9334   if (!Predecessor)
9335     return getCouldNotCompute();
9336 
9337   // Return true if V is of the form "LHS `shift_op` <positive constant>".
9338   // Return LHS in OutLHS and shift_opt in OutOpCode.
9339   auto MatchPositiveShift =
9340       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
9341 
9342     using namespace PatternMatch;
9343 
9344     ConstantInt *ShiftAmt;
9345     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
9346       OutOpCode = Instruction::LShr;
9347     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
9348       OutOpCode = Instruction::AShr;
9349     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
9350       OutOpCode = Instruction::Shl;
9351     else
9352       return false;
9353 
9354     return ShiftAmt->getValue().isStrictlyPositive();
9355   };
9356 
9357   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
9358   //
9359   // loop:
9360   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
9361   //   %iv.shifted = lshr i32 %iv, <positive constant>
9362   //
9363   // Return true on a successful match.  Return the corresponding PHI node (%iv
9364   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
9365   auto MatchShiftRecurrence =
9366       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
9367     std::optional<Instruction::BinaryOps> PostShiftOpCode;
9368 
9369     {
9370       Instruction::BinaryOps OpC;
9371       Value *V;
9372 
9373       // If we encounter a shift instruction, "peel off" the shift operation,
9374       // and remember that we did so.  Later when we inspect %iv's backedge
9375       // value, we will make sure that the backedge value uses the same
9376       // operation.
9377       //
9378       // Note: the peeled shift operation does not have to be the same
9379       // instruction as the one feeding into the PHI's backedge value.  We only
9380       // really care about it being the same *kind* of shift instruction --
9381       // that's all that is required for our later inferences to hold.
9382       if (MatchPositiveShift(LHS, V, OpC)) {
9383         PostShiftOpCode = OpC;
9384         LHS = V;
9385       }
9386     }
9387 
9388     PNOut = dyn_cast<PHINode>(LHS);
9389     if (!PNOut || PNOut->getParent() != L->getHeader())
9390       return false;
9391 
9392     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
9393     Value *OpLHS;
9394 
9395     return
9396         // The backedge value for the PHI node must be a shift by a positive
9397         // amount
9398         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
9399 
9400         // of the PHI node itself
9401         OpLHS == PNOut &&
9402 
9403         // and the kind of shift should be match the kind of shift we peeled
9404         // off, if any.
9405         (!PostShiftOpCode || *PostShiftOpCode == OpCodeOut);
9406   };
9407 
9408   PHINode *PN;
9409   Instruction::BinaryOps OpCode;
9410   if (!MatchShiftRecurrence(LHS, PN, OpCode))
9411     return getCouldNotCompute();
9412 
9413   const DataLayout &DL = getDataLayout();
9414 
9415   // The key rationale for this optimization is that for some kinds of shift
9416   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
9417   // within a finite number of iterations.  If the condition guarding the
9418   // backedge (in the sense that the backedge is taken if the condition is true)
9419   // is false for the value the shift recurrence stabilizes to, then we know
9420   // that the backedge is taken only a finite number of times.
9421 
9422   ConstantInt *StableValue = nullptr;
9423   switch (OpCode) {
9424   default:
9425     llvm_unreachable("Impossible case!");
9426 
9427   case Instruction::AShr: {
9428     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
9429     // bitwidth(K) iterations.
9430     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
9431     KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC,
9432                                        Predecessor->getTerminator(), &DT);
9433     auto *Ty = cast<IntegerType>(RHS->getType());
9434     if (Known.isNonNegative())
9435       StableValue = ConstantInt::get(Ty, 0);
9436     else if (Known.isNegative())
9437       StableValue = ConstantInt::get(Ty, -1, true);
9438     else
9439       return getCouldNotCompute();
9440 
9441     break;
9442   }
9443   case Instruction::LShr:
9444   case Instruction::Shl:
9445     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
9446     // stabilize to 0 in at most bitwidth(K) iterations.
9447     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
9448     break;
9449   }
9450 
9451   auto *Result =
9452       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
9453   assert(Result->getType()->isIntegerTy(1) &&
9454          "Otherwise cannot be an operand to a branch instruction");
9455 
9456   if (Result->isZeroValue()) {
9457     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
9458     const SCEV *UpperBound =
9459         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
9460     return ExitLimit(getCouldNotCompute(), UpperBound, UpperBound, false);
9461   }
9462 
9463   return getCouldNotCompute();
9464 }
9465 
9466 /// Return true if we can constant fold an instruction of the specified type,
9467 /// assuming that all operands were constants.
CanConstantFold(const Instruction * I)9468 static bool CanConstantFold(const Instruction *I) {
9469   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
9470       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
9471       isa<LoadInst>(I) || isa<ExtractValueInst>(I))
9472     return true;
9473 
9474   if (const CallInst *CI = dyn_cast<CallInst>(I))
9475     if (const Function *F = CI->getCalledFunction())
9476       return canConstantFoldCallTo(CI, F);
9477   return false;
9478 }
9479 
9480 /// Determine whether this instruction can constant evolve within this loop
9481 /// assuming its operands can all constant evolve.
canConstantEvolve(Instruction * I,const Loop * L)9482 static bool canConstantEvolve(Instruction *I, const Loop *L) {
9483   // An instruction outside of the loop can't be derived from a loop PHI.
9484   if (!L->contains(I)) return false;
9485 
9486   if (isa<PHINode>(I)) {
9487     // We don't currently keep track of the control flow needed to evaluate
9488     // PHIs, so we cannot handle PHIs inside of loops.
9489     return L->getHeader() == I->getParent();
9490   }
9491 
9492   // If we won't be able to constant fold this expression even if the operands
9493   // are constants, bail early.
9494   return CanConstantFold(I);
9495 }
9496 
9497 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
9498 /// recursing through each instruction operand until reaching a loop header phi.
9499 static PHINode *
getConstantEvolvingPHIOperands(Instruction * UseInst,const Loop * L,DenseMap<Instruction *,PHINode * > & PHIMap,unsigned Depth)9500 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
9501                                DenseMap<Instruction *, PHINode *> &PHIMap,
9502                                unsigned Depth) {
9503   if (Depth > MaxConstantEvolvingDepth)
9504     return nullptr;
9505 
9506   // Otherwise, we can evaluate this instruction if all of its operands are
9507   // constant or derived from a PHI node themselves.
9508   PHINode *PHI = nullptr;
9509   for (Value *Op : UseInst->operands()) {
9510     if (isa<Constant>(Op)) continue;
9511 
9512     Instruction *OpInst = dyn_cast<Instruction>(Op);
9513     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
9514 
9515     PHINode *P = dyn_cast<PHINode>(OpInst);
9516     if (!P)
9517       // If this operand is already visited, reuse the prior result.
9518       // We may have P != PHI if this is the deepest point at which the
9519       // inconsistent paths meet.
9520       P = PHIMap.lookup(OpInst);
9521     if (!P) {
9522       // Recurse and memoize the results, whether a phi is found or not.
9523       // This recursive call invalidates pointers into PHIMap.
9524       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
9525       PHIMap[OpInst] = P;
9526     }
9527     if (!P)
9528       return nullptr;  // Not evolving from PHI
9529     if (PHI && PHI != P)
9530       return nullptr;  // Evolving from multiple different PHIs.
9531     PHI = P;
9532   }
9533   // This is a expression evolving from a constant PHI!
9534   return PHI;
9535 }
9536 
9537 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
9538 /// in the loop that V is derived from.  We allow arbitrary operations along the
9539 /// way, but the operands of an operation must either be constants or a value
9540 /// derived from a constant PHI.  If this expression does not fit with these
9541 /// constraints, return null.
getConstantEvolvingPHI(Value * V,const Loop * L)9542 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
9543   Instruction *I = dyn_cast<Instruction>(V);
9544   if (!I || !canConstantEvolve(I, L)) return nullptr;
9545 
9546   if (PHINode *PN = dyn_cast<PHINode>(I))
9547     return PN;
9548 
9549   // Record non-constant instructions contained by the loop.
9550   DenseMap<Instruction *, PHINode *> PHIMap;
9551   return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
9552 }
9553 
9554 /// EvaluateExpression - Given an expression that passes the
9555 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
9556 /// in the loop has the value PHIVal.  If we can't fold this expression for some
9557 /// reason, return null.
EvaluateExpression(Value * V,const Loop * L,DenseMap<Instruction *,Constant * > & Vals,const DataLayout & DL,const TargetLibraryInfo * TLI)9558 static Constant *EvaluateExpression(Value *V, const Loop *L,
9559                                     DenseMap<Instruction *, Constant *> &Vals,
9560                                     const DataLayout &DL,
9561                                     const TargetLibraryInfo *TLI) {
9562   // Convenient constant check, but redundant for recursive calls.
9563   if (Constant *C = dyn_cast<Constant>(V)) return C;
9564   Instruction *I = dyn_cast<Instruction>(V);
9565   if (!I) return nullptr;
9566 
9567   if (Constant *C = Vals.lookup(I)) return C;
9568 
9569   // An instruction inside the loop depends on a value outside the loop that we
9570   // weren't given a mapping for, or a value such as a call inside the loop.
9571   if (!canConstantEvolve(I, L)) return nullptr;
9572 
9573   // An unmapped PHI can be due to a branch or another loop inside this loop,
9574   // or due to this not being the initial iteration through a loop where we
9575   // couldn't compute the evolution of this particular PHI last time.
9576   if (isa<PHINode>(I)) return nullptr;
9577 
9578   std::vector<Constant*> Operands(I->getNumOperands());
9579 
9580   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
9581     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
9582     if (!Operand) {
9583       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
9584       if (!Operands[i]) return nullptr;
9585       continue;
9586     }
9587     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
9588     Vals[Operand] = C;
9589     if (!C) return nullptr;
9590     Operands[i] = C;
9591   }
9592 
9593   return ConstantFoldInstOperands(I, Operands, DL, TLI,
9594                                   /*AllowNonDeterministic=*/false);
9595 }
9596 
9597 
9598 // If every incoming value to PN except the one for BB is a specific Constant,
9599 // return that, else return nullptr.
getOtherIncomingValue(PHINode * PN,BasicBlock * BB)9600 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
9601   Constant *IncomingVal = nullptr;
9602 
9603   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
9604     if (PN->getIncomingBlock(i) == BB)
9605       continue;
9606 
9607     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
9608     if (!CurrentVal)
9609       return nullptr;
9610 
9611     if (IncomingVal != CurrentVal) {
9612       if (IncomingVal)
9613         return nullptr;
9614       IncomingVal = CurrentVal;
9615     }
9616   }
9617 
9618   return IncomingVal;
9619 }
9620 
9621 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
9622 /// in the header of its containing loop, we know the loop executes a
9623 /// constant number of times, and the PHI node is just a recurrence
9624 /// involving constants, fold it.
9625 Constant *
getConstantEvolutionLoopExitValue(PHINode * PN,const APInt & BEs,const Loop * L)9626 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
9627                                                    const APInt &BEs,
9628                                                    const Loop *L) {
9629   auto I = ConstantEvolutionLoopExitValue.find(PN);
9630   if (I != ConstantEvolutionLoopExitValue.end())
9631     return I->second;
9632 
9633   if (BEs.ugt(MaxBruteForceIterations))
9634     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
9635 
9636   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
9637 
9638   DenseMap<Instruction *, Constant *> CurrentIterVals;
9639   BasicBlock *Header = L->getHeader();
9640   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
9641 
9642   BasicBlock *Latch = L->getLoopLatch();
9643   if (!Latch)
9644     return nullptr;
9645 
9646   for (PHINode &PHI : Header->phis()) {
9647     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
9648       CurrentIterVals[&PHI] = StartCST;
9649   }
9650   if (!CurrentIterVals.count(PN))
9651     return RetVal = nullptr;
9652 
9653   Value *BEValue = PN->getIncomingValueForBlock(Latch);
9654 
9655   // Execute the loop symbolically to determine the exit value.
9656   assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
9657          "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
9658 
9659   unsigned NumIterations = BEs.getZExtValue(); // must be in range
9660   unsigned IterationNum = 0;
9661   const DataLayout &DL = getDataLayout();
9662   for (; ; ++IterationNum) {
9663     if (IterationNum == NumIterations)
9664       return RetVal = CurrentIterVals[PN];  // Got exit value!
9665 
9666     // Compute the value of the PHIs for the next iteration.
9667     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
9668     DenseMap<Instruction *, Constant *> NextIterVals;
9669     Constant *NextPHI =
9670         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
9671     if (!NextPHI)
9672       return nullptr;        // Couldn't evaluate!
9673     NextIterVals[PN] = NextPHI;
9674 
9675     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
9676 
9677     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
9678     // cease to be able to evaluate one of them or if they stop evolving,
9679     // because that doesn't necessarily prevent us from computing PN.
9680     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
9681     for (const auto &I : CurrentIterVals) {
9682       PHINode *PHI = dyn_cast<PHINode>(I.first);
9683       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
9684       PHIsToCompute.emplace_back(PHI, I.second);
9685     }
9686     // We use two distinct loops because EvaluateExpression may invalidate any
9687     // iterators into CurrentIterVals.
9688     for (const auto &I : PHIsToCompute) {
9689       PHINode *PHI = I.first;
9690       Constant *&NextPHI = NextIterVals[PHI];
9691       if (!NextPHI) {   // Not already computed.
9692         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
9693         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
9694       }
9695       if (NextPHI != I.second)
9696         StoppedEvolving = false;
9697     }
9698 
9699     // If all entries in CurrentIterVals == NextIterVals then we can stop
9700     // iterating, the loop can't continue to change.
9701     if (StoppedEvolving)
9702       return RetVal = CurrentIterVals[PN];
9703 
9704     CurrentIterVals.swap(NextIterVals);
9705   }
9706 }
9707 
computeExitCountExhaustively(const Loop * L,Value * Cond,bool ExitWhen)9708 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
9709                                                           Value *Cond,
9710                                                           bool ExitWhen) {
9711   PHINode *PN = getConstantEvolvingPHI(Cond, L);
9712   if (!PN) return getCouldNotCompute();
9713 
9714   // If the loop is canonicalized, the PHI will have exactly two entries.
9715   // That's the only form we support here.
9716   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
9717 
9718   DenseMap<Instruction *, Constant *> CurrentIterVals;
9719   BasicBlock *Header = L->getHeader();
9720   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
9721 
9722   BasicBlock *Latch = L->getLoopLatch();
9723   assert(Latch && "Should follow from NumIncomingValues == 2!");
9724 
9725   for (PHINode &PHI : Header->phis()) {
9726     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
9727       CurrentIterVals[&PHI] = StartCST;
9728   }
9729   if (!CurrentIterVals.count(PN))
9730     return getCouldNotCompute();
9731 
9732   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
9733   // the loop symbolically to determine when the condition gets a value of
9734   // "ExitWhen".
9735   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
9736   const DataLayout &DL = getDataLayout();
9737   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
9738     auto *CondVal = dyn_cast_or_null<ConstantInt>(
9739         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
9740 
9741     // Couldn't symbolically evaluate.
9742     if (!CondVal) return getCouldNotCompute();
9743 
9744     if (CondVal->getValue() == uint64_t(ExitWhen)) {
9745       ++NumBruteForceTripCountsComputed;
9746       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
9747     }
9748 
9749     // Update all the PHI nodes for the next iteration.
9750     DenseMap<Instruction *, Constant *> NextIterVals;
9751 
9752     // Create a list of which PHIs we need to compute. We want to do this before
9753     // calling EvaluateExpression on them because that may invalidate iterators
9754     // into CurrentIterVals.
9755     SmallVector<PHINode *, 8> PHIsToCompute;
9756     for (const auto &I : CurrentIterVals) {
9757       PHINode *PHI = dyn_cast<PHINode>(I.first);
9758       if (!PHI || PHI->getParent() != Header) continue;
9759       PHIsToCompute.push_back(PHI);
9760     }
9761     for (PHINode *PHI : PHIsToCompute) {
9762       Constant *&NextPHI = NextIterVals[PHI];
9763       if (NextPHI) continue;    // Already computed!
9764 
9765       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
9766       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
9767     }
9768     CurrentIterVals.swap(NextIterVals);
9769   }
9770 
9771   // Too many iterations were needed to evaluate.
9772   return getCouldNotCompute();
9773 }
9774 
getSCEVAtScope(const SCEV * V,const Loop * L)9775 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
9776   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
9777       ValuesAtScopes[V];
9778   // Check to see if we've folded this expression at this loop before.
9779   for (auto &LS : Values)
9780     if (LS.first == L)
9781       return LS.second ? LS.second : V;
9782 
9783   Values.emplace_back(L, nullptr);
9784 
9785   // Otherwise compute it.
9786   const SCEV *C = computeSCEVAtScope(V, L);
9787   for (auto &LS : reverse(ValuesAtScopes[V]))
9788     if (LS.first == L) {
9789       LS.second = C;
9790       if (!isa<SCEVConstant>(C))
9791         ValuesAtScopesUsers[C].push_back({L, V});
9792       break;
9793     }
9794   return C;
9795 }
9796 
9797 /// This builds up a Constant using the ConstantExpr interface.  That way, we
9798 /// will return Constants for objects which aren't represented by a
9799 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
9800 /// Returns NULL if the SCEV isn't representable as a Constant.
BuildConstantFromSCEV(const SCEV * V)9801 static Constant *BuildConstantFromSCEV(const SCEV *V) {
9802   switch (V->getSCEVType()) {
9803   case scCouldNotCompute:
9804   case scAddRecExpr:
9805   case scVScale:
9806     return nullptr;
9807   case scConstant:
9808     return cast<SCEVConstant>(V)->getValue();
9809   case scUnknown:
9810     return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
9811   case scPtrToInt: {
9812     const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V);
9813     if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand()))
9814       return ConstantExpr::getPtrToInt(CastOp, P2I->getType());
9815 
9816     return nullptr;
9817   }
9818   case scTruncate: {
9819     const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
9820     if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
9821       return ConstantExpr::getTrunc(CastOp, ST->getType());
9822     return nullptr;
9823   }
9824   case scAddExpr: {
9825     const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
9826     Constant *C = nullptr;
9827     for (const SCEV *Op : SA->operands()) {
9828       Constant *OpC = BuildConstantFromSCEV(Op);
9829       if (!OpC)
9830         return nullptr;
9831       if (!C) {
9832         C = OpC;
9833         continue;
9834       }
9835       assert(!C->getType()->isPointerTy() &&
9836              "Can only have one pointer, and it must be last");
9837       if (OpC->getType()->isPointerTy()) {
9838         // The offsets have been converted to bytes.  We can add bytes using
9839         // an i8 GEP.
9840         C = ConstantExpr::getGetElementPtr(Type::getInt8Ty(C->getContext()),
9841                                            OpC, C);
9842       } else {
9843         C = ConstantExpr::getAdd(C, OpC);
9844       }
9845     }
9846     return C;
9847   }
9848   case scMulExpr:
9849   case scSignExtend:
9850   case scZeroExtend:
9851   case scUDivExpr:
9852   case scSMaxExpr:
9853   case scUMaxExpr:
9854   case scSMinExpr:
9855   case scUMinExpr:
9856   case scSequentialUMinExpr:
9857     return nullptr;
9858   }
9859   llvm_unreachable("Unknown SCEV kind!");
9860 }
9861 
9862 const SCEV *
getWithOperands(const SCEV * S,SmallVectorImpl<const SCEV * > & NewOps)9863 ScalarEvolution::getWithOperands(const SCEV *S,
9864                                  SmallVectorImpl<const SCEV *> &NewOps) {
9865   switch (S->getSCEVType()) {
9866   case scTruncate:
9867   case scZeroExtend:
9868   case scSignExtend:
9869   case scPtrToInt:
9870     return getCastExpr(S->getSCEVType(), NewOps[0], S->getType());
9871   case scAddRecExpr: {
9872     auto *AddRec = cast<SCEVAddRecExpr>(S);
9873     return getAddRecExpr(NewOps, AddRec->getLoop(), AddRec->getNoWrapFlags());
9874   }
9875   case scAddExpr:
9876     return getAddExpr(NewOps, cast<SCEVAddExpr>(S)->getNoWrapFlags());
9877   case scMulExpr:
9878     return getMulExpr(NewOps, cast<SCEVMulExpr>(S)->getNoWrapFlags());
9879   case scUDivExpr:
9880     return getUDivExpr(NewOps[0], NewOps[1]);
9881   case scUMaxExpr:
9882   case scSMaxExpr:
9883   case scUMinExpr:
9884   case scSMinExpr:
9885     return getMinMaxExpr(S->getSCEVType(), NewOps);
9886   case scSequentialUMinExpr:
9887     return getSequentialMinMaxExpr(S->getSCEVType(), NewOps);
9888   case scConstant:
9889   case scVScale:
9890   case scUnknown:
9891     return S;
9892   case scCouldNotCompute:
9893     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
9894   }
9895   llvm_unreachable("Unknown SCEV kind!");
9896 }
9897 
computeSCEVAtScope(const SCEV * V,const Loop * L)9898 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
9899   switch (V->getSCEVType()) {
9900   case scConstant:
9901   case scVScale:
9902     return V;
9903   case scAddRecExpr: {
9904     // If this is a loop recurrence for a loop that does not contain L, then we
9905     // are dealing with the final value computed by the loop.
9906     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(V);
9907     // First, attempt to evaluate each operand.
9908     // Avoid performing the look-up in the common case where the specified
9909     // expression has no loop-variant portions.
9910     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
9911       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
9912       if (OpAtScope == AddRec->getOperand(i))
9913         continue;
9914 
9915       // Okay, at least one of these operands is loop variant but might be
9916       // foldable.  Build a new instance of the folded commutative expression.
9917       SmallVector<const SCEV *, 8> NewOps;
9918       NewOps.reserve(AddRec->getNumOperands());
9919       append_range(NewOps, AddRec->operands().take_front(i));
9920       NewOps.push_back(OpAtScope);
9921       for (++i; i != e; ++i)
9922         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
9923 
9924       const SCEV *FoldedRec = getAddRecExpr(
9925           NewOps, AddRec->getLoop(), AddRec->getNoWrapFlags(SCEV::FlagNW));
9926       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
9927       // The addrec may be folded to a nonrecurrence, for example, if the
9928       // induction variable is multiplied by zero after constant folding. Go
9929       // ahead and return the folded value.
9930       if (!AddRec)
9931         return FoldedRec;
9932       break;
9933     }
9934 
9935     // If the scope is outside the addrec's loop, evaluate it by using the
9936     // loop exit value of the addrec.
9937     if (!AddRec->getLoop()->contains(L)) {
9938       // To evaluate this recurrence, we need to know how many times the AddRec
9939       // loop iterates.  Compute this now.
9940       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
9941       if (BackedgeTakenCount == getCouldNotCompute())
9942         return AddRec;
9943 
9944       // Then, evaluate the AddRec.
9945       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
9946     }
9947 
9948     return AddRec;
9949   }
9950   case scTruncate:
9951   case scZeroExtend:
9952   case scSignExtend:
9953   case scPtrToInt:
9954   case scAddExpr:
9955   case scMulExpr:
9956   case scUDivExpr:
9957   case scUMaxExpr:
9958   case scSMaxExpr:
9959   case scUMinExpr:
9960   case scSMinExpr:
9961   case scSequentialUMinExpr: {
9962     ArrayRef<const SCEV *> Ops = V->operands();
9963     // Avoid performing the look-up in the common case where the specified
9964     // expression has no loop-variant portions.
9965     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
9966       const SCEV *OpAtScope = getSCEVAtScope(Ops[i], L);
9967       if (OpAtScope != Ops[i]) {
9968         // Okay, at least one of these operands is loop variant but might be
9969         // foldable.  Build a new instance of the folded commutative expression.
9970         SmallVector<const SCEV *, 8> NewOps;
9971         NewOps.reserve(Ops.size());
9972         append_range(NewOps, Ops.take_front(i));
9973         NewOps.push_back(OpAtScope);
9974 
9975         for (++i; i != e; ++i) {
9976           OpAtScope = getSCEVAtScope(Ops[i], L);
9977           NewOps.push_back(OpAtScope);
9978         }
9979 
9980         return getWithOperands(V, NewOps);
9981       }
9982     }
9983     // If we got here, all operands are loop invariant.
9984     return V;
9985   }
9986   case scUnknown: {
9987     // If this instruction is evolved from a constant-evolving PHI, compute the
9988     // exit value from the loop without using SCEVs.
9989     const SCEVUnknown *SU = cast<SCEVUnknown>(V);
9990     Instruction *I = dyn_cast<Instruction>(SU->getValue());
9991     if (!I)
9992       return V; // This is some other type of SCEVUnknown, just return it.
9993 
9994     if (PHINode *PN = dyn_cast<PHINode>(I)) {
9995       const Loop *CurrLoop = this->LI[I->getParent()];
9996       // Looking for loop exit value.
9997       if (CurrLoop && CurrLoop->getParentLoop() == L &&
9998           PN->getParent() == CurrLoop->getHeader()) {
9999         // Okay, there is no closed form solution for the PHI node.  Check
10000         // to see if the loop that contains it has a known backedge-taken
10001         // count.  If so, we may be able to force computation of the exit
10002         // value.
10003         const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop);
10004         // This trivial case can show up in some degenerate cases where
10005         // the incoming IR has not yet been fully simplified.
10006         if (BackedgeTakenCount->isZero()) {
10007           Value *InitValue = nullptr;
10008           bool MultipleInitValues = false;
10009           for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
10010             if (!CurrLoop->contains(PN->getIncomingBlock(i))) {
10011               if (!InitValue)
10012                 InitValue = PN->getIncomingValue(i);
10013               else if (InitValue != PN->getIncomingValue(i)) {
10014                 MultipleInitValues = true;
10015                 break;
10016               }
10017             }
10018           }
10019           if (!MultipleInitValues && InitValue)
10020             return getSCEV(InitValue);
10021         }
10022         // Do we have a loop invariant value flowing around the backedge
10023         // for a loop which must execute the backedge?
10024         if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
10025             isKnownNonZero(BackedgeTakenCount) &&
10026             PN->getNumIncomingValues() == 2) {
10027 
10028           unsigned InLoopPred =
10029               CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1;
10030           Value *BackedgeVal = PN->getIncomingValue(InLoopPred);
10031           if (CurrLoop->isLoopInvariant(BackedgeVal))
10032             return getSCEV(BackedgeVal);
10033         }
10034         if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
10035           // Okay, we know how many times the containing loop executes.  If
10036           // this is a constant evolving PHI node, get the final value at
10037           // the specified iteration number.
10038           Constant *RV =
10039               getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), CurrLoop);
10040           if (RV)
10041             return getSCEV(RV);
10042         }
10043       }
10044     }
10045 
10046     // Okay, this is an expression that we cannot symbolically evaluate
10047     // into a SCEV.  Check to see if it's possible to symbolically evaluate
10048     // the arguments into constants, and if so, try to constant propagate the
10049     // result.  This is particularly useful for computing loop exit values.
10050     if (!CanConstantFold(I))
10051       return V; // This is some other type of SCEVUnknown, just return it.
10052 
10053     SmallVector<Constant *, 4> Operands;
10054     Operands.reserve(I->getNumOperands());
10055     bool MadeImprovement = false;
10056     for (Value *Op : I->operands()) {
10057       if (Constant *C = dyn_cast<Constant>(Op)) {
10058         Operands.push_back(C);
10059         continue;
10060       }
10061 
10062       // If any of the operands is non-constant and if they are
10063       // non-integer and non-pointer, don't even try to analyze them
10064       // with scev techniques.
10065       if (!isSCEVable(Op->getType()))
10066         return V;
10067 
10068       const SCEV *OrigV = getSCEV(Op);
10069       const SCEV *OpV = getSCEVAtScope(OrigV, L);
10070       MadeImprovement |= OrigV != OpV;
10071 
10072       Constant *C = BuildConstantFromSCEV(OpV);
10073       if (!C)
10074         return V;
10075       assert(C->getType() == Op->getType() && "Type mismatch");
10076       Operands.push_back(C);
10077     }
10078 
10079     // Check to see if getSCEVAtScope actually made an improvement.
10080     if (!MadeImprovement)
10081       return V; // This is some other type of SCEVUnknown, just return it.
10082 
10083     Constant *C = nullptr;
10084     const DataLayout &DL = getDataLayout();
10085     C = ConstantFoldInstOperands(I, Operands, DL, &TLI,
10086                                  /*AllowNonDeterministic=*/false);
10087     if (!C)
10088       return V;
10089     return getSCEV(C);
10090   }
10091   case scCouldNotCompute:
10092     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
10093   }
10094   llvm_unreachable("Unknown SCEV type!");
10095 }
10096 
getSCEVAtScope(Value * V,const Loop * L)10097 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
10098   return getSCEVAtScope(getSCEV(V), L);
10099 }
10100 
stripInjectiveFunctions(const SCEV * S) const10101 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
10102   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
10103     return stripInjectiveFunctions(ZExt->getOperand());
10104   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
10105     return stripInjectiveFunctions(SExt->getOperand());
10106   return S;
10107 }
10108 
10109 /// Finds the minimum unsigned root of the following equation:
10110 ///
10111 ///     A * X = B (mod N)
10112 ///
10113 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
10114 /// A and B isn't important.
10115 ///
10116 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
SolveLinEquationWithOverflow(const APInt & A,const SCEV * B,ScalarEvolution & SE)10117 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
10118                                                ScalarEvolution &SE) {
10119   uint32_t BW = A.getBitWidth();
10120   assert(BW == SE.getTypeSizeInBits(B->getType()));
10121   assert(A != 0 && "A must be non-zero.");
10122 
10123   // 1. D = gcd(A, N)
10124   //
10125   // The gcd of A and N may have only one prime factor: 2. The number of
10126   // trailing zeros in A is its multiplicity
10127   uint32_t Mult2 = A.countr_zero();
10128   // D = 2^Mult2
10129 
10130   // 2. Check if B is divisible by D.
10131   //
10132   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
10133   // is not less than multiplicity of this prime factor for D.
10134   if (SE.getMinTrailingZeros(B) < Mult2)
10135     return SE.getCouldNotCompute();
10136 
10137   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
10138   // modulo (N / D).
10139   //
10140   // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
10141   // (N / D) in general. The inverse itself always fits into BW bits, though,
10142   // so we immediately truncate it.
10143   APInt AD = A.lshr(Mult2).trunc(BW - Mult2); // AD = A / D
10144   APInt I = AD.multiplicativeInverse().zext(BW);
10145 
10146   // 4. Compute the minimum unsigned root of the equation:
10147   // I * (B / D) mod (N / D)
10148   // To simplify the computation, we factor out the divide by D:
10149   // (I * B mod N) / D
10150   const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
10151   return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
10152 }
10153 
10154 /// For a given quadratic addrec, generate coefficients of the corresponding
10155 /// quadratic equation, multiplied by a common value to ensure that they are
10156 /// integers.
10157 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
10158 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
10159 /// were multiplied by, and BitWidth is the bit width of the original addrec
10160 /// coefficients.
10161 /// This function returns std::nullopt if the addrec coefficients are not
10162 /// compile- time constants.
10163 static std::optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
GetQuadraticEquation(const SCEVAddRecExpr * AddRec)10164 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
10165   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
10166   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
10167   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
10168   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
10169   LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
10170                     << *AddRec << '\n');
10171 
10172   // We currently can only solve this if the coefficients are constants.
10173   if (!LC || !MC || !NC) {
10174     LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
10175     return std::nullopt;
10176   }
10177 
10178   APInt L = LC->getAPInt();
10179   APInt M = MC->getAPInt();
10180   APInt N = NC->getAPInt();
10181   assert(!N.isZero() && "This is not a quadratic addrec");
10182 
10183   unsigned BitWidth = LC->getAPInt().getBitWidth();
10184   unsigned NewWidth = BitWidth + 1;
10185   LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
10186                     << BitWidth << '\n');
10187   // The sign-extension (as opposed to a zero-extension) here matches the
10188   // extension used in SolveQuadraticEquationWrap (with the same motivation).
10189   N = N.sext(NewWidth);
10190   M = M.sext(NewWidth);
10191   L = L.sext(NewWidth);
10192 
10193   // The increments are M, M+N, M+2N, ..., so the accumulated values are
10194   //   L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
10195   //   L+M, L+2M+N, L+3M+3N, ...
10196   // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
10197   //
10198   // The equation Acc = 0 is then
10199   //   L + nM + n(n-1)/2 N = 0,  or  2L + 2M n + n(n-1) N = 0.
10200   // In a quadratic form it becomes:
10201   //   N n^2 + (2M-N) n + 2L = 0.
10202 
10203   APInt A = N;
10204   APInt B = 2 * M - A;
10205   APInt C = 2 * L;
10206   APInt T = APInt(NewWidth, 2);
10207   LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
10208                     << "x + " << C << ", coeff bw: " << NewWidth
10209                     << ", multiplied by " << T << '\n');
10210   return std::make_tuple(A, B, C, T, BitWidth);
10211 }
10212 
10213 /// Helper function to compare optional APInts:
10214 /// (a) if X and Y both exist, return min(X, Y),
10215 /// (b) if neither X nor Y exist, return std::nullopt,
10216 /// (c) if exactly one of X and Y exists, return that value.
MinOptional(std::optional<APInt> X,std::optional<APInt> Y)10217 static std::optional<APInt> MinOptional(std::optional<APInt> X,
10218                                         std::optional<APInt> Y) {
10219   if (X && Y) {
10220     unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
10221     APInt XW = X->sext(W);
10222     APInt YW = Y->sext(W);
10223     return XW.slt(YW) ? *X : *Y;
10224   }
10225   if (!X && !Y)
10226     return std::nullopt;
10227   return X ? *X : *Y;
10228 }
10229 
10230 /// Helper function to truncate an optional APInt to a given BitWidth.
10231 /// When solving addrec-related equations, it is preferable to return a value
10232 /// that has the same bit width as the original addrec's coefficients. If the
10233 /// solution fits in the original bit width, truncate it (except for i1).
10234 /// Returning a value of a different bit width may inhibit some optimizations.
10235 ///
10236 /// In general, a solution to a quadratic equation generated from an addrec
10237 /// may require BW+1 bits, where BW is the bit width of the addrec's
10238 /// coefficients. The reason is that the coefficients of the quadratic
10239 /// equation are BW+1 bits wide (to avoid truncation when converting from
10240 /// the addrec to the equation).
TruncIfPossible(std::optional<APInt> X,unsigned BitWidth)10241 static std::optional<APInt> TruncIfPossible(std::optional<APInt> X,
10242                                             unsigned BitWidth) {
10243   if (!X)
10244     return std::nullopt;
10245   unsigned W = X->getBitWidth();
10246   if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
10247     return X->trunc(BitWidth);
10248   return X;
10249 }
10250 
10251 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
10252 /// iterations. The values L, M, N are assumed to be signed, and they
10253 /// should all have the same bit widths.
10254 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
10255 /// where BW is the bit width of the addrec's coefficients.
10256 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
10257 /// returned as such, otherwise the bit width of the returned value may
10258 /// be greater than BW.
10259 ///
10260 /// This function returns std::nullopt if
10261 /// (a) the addrec coefficients are not constant, or
10262 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
10263 ///     like x^2 = 5, no integer solutions exist, in other cases an integer
10264 ///     solution may exist, but SolveQuadraticEquationWrap may fail to find it.
10265 static std::optional<APInt>
SolveQuadraticAddRecExact(const SCEVAddRecExpr * AddRec,ScalarEvolution & SE)10266 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
10267   APInt A, B, C, M;
10268   unsigned BitWidth;
10269   auto T = GetQuadraticEquation(AddRec);
10270   if (!T)
10271     return std::nullopt;
10272 
10273   std::tie(A, B, C, M, BitWidth) = *T;
10274   LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
10275   std::optional<APInt> X =
10276       APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth + 1);
10277   if (!X)
10278     return std::nullopt;
10279 
10280   ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
10281   ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
10282   if (!V->isZero())
10283     return std::nullopt;
10284 
10285   return TruncIfPossible(X, BitWidth);
10286 }
10287 
10288 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
10289 /// iterations. The values M, N are assumed to be signed, and they
10290 /// should all have the same bit widths.
10291 /// Find the least n such that c(n) does not belong to the given range,
10292 /// while c(n-1) does.
10293 ///
10294 /// This function returns std::nullopt if
10295 /// (a) the addrec coefficients are not constant, or
10296 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
10297 ///     bounds of the range.
10298 static std::optional<APInt>
SolveQuadraticAddRecRange(const SCEVAddRecExpr * AddRec,const ConstantRange & Range,ScalarEvolution & SE)10299 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
10300                           const ConstantRange &Range, ScalarEvolution &SE) {
10301   assert(AddRec->getOperand(0)->isZero() &&
10302          "Starting value of addrec should be 0");
10303   LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
10304                     << Range << ", addrec " << *AddRec << '\n');
10305   // This case is handled in getNumIterationsInRange. Here we can assume that
10306   // we start in the range.
10307   assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
10308          "Addrec's initial value should be in range");
10309 
10310   APInt A, B, C, M;
10311   unsigned BitWidth;
10312   auto T = GetQuadraticEquation(AddRec);
10313   if (!T)
10314     return std::nullopt;
10315 
10316   // Be careful about the return value: there can be two reasons for not
10317   // returning an actual number. First, if no solutions to the equations
10318   // were found, and second, if the solutions don't leave the given range.
10319   // The first case means that the actual solution is "unknown", the second
10320   // means that it's known, but not valid. If the solution is unknown, we
10321   // cannot make any conclusions.
10322   // Return a pair: the optional solution and a flag indicating if the
10323   // solution was found.
10324   auto SolveForBoundary =
10325       [&](APInt Bound) -> std::pair<std::optional<APInt>, bool> {
10326     // Solve for signed overflow and unsigned overflow, pick the lower
10327     // solution.
10328     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
10329                       << Bound << " (before multiplying by " << M << ")\n");
10330     Bound *= M; // The quadratic equation multiplier.
10331 
10332     std::optional<APInt> SO;
10333     if (BitWidth > 1) {
10334       LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
10335                            "signed overflow\n");
10336       SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
10337     }
10338     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
10339                          "unsigned overflow\n");
10340     std::optional<APInt> UO =
10341         APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth + 1);
10342 
10343     auto LeavesRange = [&] (const APInt &X) {
10344       ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
10345       ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
10346       if (Range.contains(V0->getValue()))
10347         return false;
10348       // X should be at least 1, so X-1 is non-negative.
10349       ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
10350       ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
10351       if (Range.contains(V1->getValue()))
10352         return true;
10353       return false;
10354     };
10355 
10356     // If SolveQuadraticEquationWrap returns std::nullopt, it means that there
10357     // can be a solution, but the function failed to find it. We cannot treat it
10358     // as "no solution".
10359     if (!SO || !UO)
10360       return {std::nullopt, false};
10361 
10362     // Check the smaller value first to see if it leaves the range.
10363     // At this point, both SO and UO must have values.
10364     std::optional<APInt> Min = MinOptional(SO, UO);
10365     if (LeavesRange(*Min))
10366       return { Min, true };
10367     std::optional<APInt> Max = Min == SO ? UO : SO;
10368     if (LeavesRange(*Max))
10369       return { Max, true };
10370 
10371     // Solutions were found, but were eliminated, hence the "true".
10372     return {std::nullopt, true};
10373   };
10374 
10375   std::tie(A, B, C, M, BitWidth) = *T;
10376   // Lower bound is inclusive, subtract 1 to represent the exiting value.
10377   APInt Lower = Range.getLower().sext(A.getBitWidth()) - 1;
10378   APInt Upper = Range.getUpper().sext(A.getBitWidth());
10379   auto SL = SolveForBoundary(Lower);
10380   auto SU = SolveForBoundary(Upper);
10381   // If any of the solutions was unknown, no meaninigful conclusions can
10382   // be made.
10383   if (!SL.second || !SU.second)
10384     return std::nullopt;
10385 
10386   // Claim: The correct solution is not some value between Min and Max.
10387   //
10388   // Justification: Assuming that Min and Max are different values, one of
10389   // them is when the first signed overflow happens, the other is when the
10390   // first unsigned overflow happens. Crossing the range boundary is only
10391   // possible via an overflow (treating 0 as a special case of it, modeling
10392   // an overflow as crossing k*2^W for some k).
10393   //
10394   // The interesting case here is when Min was eliminated as an invalid
10395   // solution, but Max was not. The argument is that if there was another
10396   // overflow between Min and Max, it would also have been eliminated if
10397   // it was considered.
10398   //
10399   // For a given boundary, it is possible to have two overflows of the same
10400   // type (signed/unsigned) without having the other type in between: this
10401   // can happen when the vertex of the parabola is between the iterations
10402   // corresponding to the overflows. This is only possible when the two
10403   // overflows cross k*2^W for the same k. In such case, if the second one
10404   // left the range (and was the first one to do so), the first overflow
10405   // would have to enter the range, which would mean that either we had left
10406   // the range before or that we started outside of it. Both of these cases
10407   // are contradictions.
10408   //
10409   // Claim: In the case where SolveForBoundary returns std::nullopt, the correct
10410   // solution is not some value between the Max for this boundary and the
10411   // Min of the other boundary.
10412   //
10413   // Justification: Assume that we had such Max_A and Min_B corresponding
10414   // to range boundaries A and B and such that Max_A < Min_B. If there was
10415   // a solution between Max_A and Min_B, it would have to be caused by an
10416   // overflow corresponding to either A or B. It cannot correspond to B,
10417   // since Min_B is the first occurrence of such an overflow. If it
10418   // corresponded to A, it would have to be either a signed or an unsigned
10419   // overflow that is larger than both eliminated overflows for A. But
10420   // between the eliminated overflows and this overflow, the values would
10421   // cover the entire value space, thus crossing the other boundary, which
10422   // is a contradiction.
10423 
10424   return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
10425 }
10426 
howFarToZero(const SCEV * V,const Loop * L,bool ControlsOnlyExit,bool AllowPredicates)10427 ScalarEvolution::ExitLimit ScalarEvolution::howFarToZero(const SCEV *V,
10428                                                          const Loop *L,
10429                                                          bool ControlsOnlyExit,
10430                                                          bool AllowPredicates) {
10431 
10432   // This is only used for loops with a "x != y" exit test. The exit condition
10433   // is now expressed as a single expression, V = x-y. So the exit test is
10434   // effectively V != 0.  We know and take advantage of the fact that this
10435   // expression only being used in a comparison by zero context.
10436 
10437   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
10438   // If the value is a constant
10439   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
10440     // If the value is already zero, the branch will execute zero times.
10441     if (C->getValue()->isZero()) return C;
10442     return getCouldNotCompute();  // Otherwise it will loop infinitely.
10443   }
10444 
10445   const SCEVAddRecExpr *AddRec =
10446       dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
10447 
10448   if (!AddRec && AllowPredicates)
10449     // Try to make this an AddRec using runtime tests, in the first X
10450     // iterations of this loop, where X is the SCEV expression found by the
10451     // algorithm below.
10452     AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
10453 
10454   if (!AddRec || AddRec->getLoop() != L)
10455     return getCouldNotCompute();
10456 
10457   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
10458   // the quadratic equation to solve it.
10459   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
10460     // We can only use this value if the chrec ends up with an exact zero
10461     // value at this index.  When solving for "X*X != 5", for example, we
10462     // should not accept a root of 2.
10463     if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
10464       const auto *R = cast<SCEVConstant>(getConstant(*S));
10465       return ExitLimit(R, R, R, false, Predicates);
10466     }
10467     return getCouldNotCompute();
10468   }
10469 
10470   // Otherwise we can only handle this if it is affine.
10471   if (!AddRec->isAffine())
10472     return getCouldNotCompute();
10473 
10474   // If this is an affine expression, the execution count of this branch is
10475   // the minimum unsigned root of the following equation:
10476   //
10477   //     Start + Step*N = 0 (mod 2^BW)
10478   //
10479   // equivalent to:
10480   //
10481   //             Step*N = -Start (mod 2^BW)
10482   //
10483   // where BW is the common bit width of Start and Step.
10484 
10485   // Get the initial value for the loop.
10486   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
10487   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
10488   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
10489 
10490   if (!isLoopInvariant(Step, L))
10491     return getCouldNotCompute();
10492 
10493   LoopGuards Guards = LoopGuards::collect(L, *this);
10494   // Specialize step for this loop so we get context sensitive facts below.
10495   const SCEV *StepWLG = applyLoopGuards(Step, Guards);
10496 
10497   // For positive steps (counting up until unsigned overflow):
10498   //   N = -Start/Step (as unsigned)
10499   // For negative steps (counting down to zero):
10500   //   N = Start/-Step
10501   // First compute the unsigned distance from zero in the direction of Step.
10502   bool CountDown = isKnownNegative(StepWLG);
10503   if (!CountDown && !isKnownNonNegative(StepWLG))
10504     return getCouldNotCompute();
10505 
10506   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
10507   // Handle unitary steps, which cannot wraparound.
10508   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
10509   //   N = Distance (as unsigned)
10510   if (StepC &&
10511       (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne())) {
10512     APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, Guards));
10513     MaxBECount = APIntOps::umin(MaxBECount, getUnsignedRangeMax(Distance));
10514 
10515     // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
10516     // we end up with a loop whose backedge-taken count is n - 1.  Detect this
10517     // case, and see if we can improve the bound.
10518     //
10519     // Explicitly handling this here is necessary because getUnsignedRange
10520     // isn't context-sensitive; it doesn't know that we only care about the
10521     // range inside the loop.
10522     const SCEV *Zero = getZero(Distance->getType());
10523     const SCEV *One = getOne(Distance->getType());
10524     const SCEV *DistancePlusOne = getAddExpr(Distance, One);
10525     if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
10526       // If Distance + 1 doesn't overflow, we can compute the maximum distance
10527       // as "unsigned_max(Distance + 1) - 1".
10528       ConstantRange CR = getUnsignedRange(DistancePlusOne);
10529       MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
10530     }
10531     return ExitLimit(Distance, getConstant(MaxBECount), Distance, false,
10532                      Predicates);
10533   }
10534 
10535   // If the condition controls loop exit (the loop exits only if the expression
10536   // is true) and the addition is no-wrap we can use unsigned divide to
10537   // compute the backedge count.  In this case, the step may not divide the
10538   // distance, but we don't care because if the condition is "missed" the loop
10539   // will have undefined behavior due to wrapping.
10540   if (ControlsOnlyExit && AddRec->hasNoSelfWrap() &&
10541       loopHasNoAbnormalExits(AddRec->getLoop())) {
10542 
10543     // If the stride is zero, the loop must be infinite.  In C++, most loops
10544     // are finite by assumption, in which case the step being zero implies
10545     // UB must execute if the loop is entered.
10546     if (!loopIsFiniteByAssumption(L) && !isKnownNonZero(StepWLG))
10547       return getCouldNotCompute();
10548 
10549     const SCEV *Exact =
10550         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
10551     const SCEV *ConstantMax = getCouldNotCompute();
10552     if (Exact != getCouldNotCompute()) {
10553       APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, Guards));
10554       ConstantMax =
10555           getConstant(APIntOps::umin(MaxInt, getUnsignedRangeMax(Exact)));
10556     }
10557     const SCEV *SymbolicMax =
10558         isa<SCEVCouldNotCompute>(Exact) ? ConstantMax : Exact;
10559     return ExitLimit(Exact, ConstantMax, SymbolicMax, false, Predicates);
10560   }
10561 
10562   // Solve the general equation.
10563   if (!StepC || StepC->getValue()->isZero())
10564     return getCouldNotCompute();
10565   const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
10566                                                getNegativeSCEV(Start), *this);
10567 
10568   const SCEV *M = E;
10569   if (E != getCouldNotCompute()) {
10570     APInt MaxWithGuards = getUnsignedRangeMax(applyLoopGuards(E, Guards));
10571     M = getConstant(APIntOps::umin(MaxWithGuards, getUnsignedRangeMax(E)));
10572   }
10573   auto *S = isa<SCEVCouldNotCompute>(E) ? M : E;
10574   return ExitLimit(E, M, S, false, Predicates);
10575 }
10576 
10577 ScalarEvolution::ExitLimit
howFarToNonZero(const SCEV * V,const Loop * L)10578 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
10579   // Loops that look like: while (X == 0) are very strange indeed.  We don't
10580   // handle them yet except for the trivial case.  This could be expanded in the
10581   // future as needed.
10582 
10583   // If the value is a constant, check to see if it is known to be non-zero
10584   // already.  If so, the backedge will execute zero times.
10585   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
10586     if (!C->getValue()->isZero())
10587       return getZero(C->getType());
10588     return getCouldNotCompute();  // Otherwise it will loop infinitely.
10589   }
10590 
10591   // We could implement others, but I really doubt anyone writes loops like
10592   // this, and if they did, they would already be constant folded.
10593   return getCouldNotCompute();
10594 }
10595 
10596 std::pair<const BasicBlock *, const BasicBlock *>
getPredecessorWithUniqueSuccessorForBB(const BasicBlock * BB) const10597 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB)
10598     const {
10599   // If the block has a unique predecessor, then there is no path from the
10600   // predecessor to the block that does not go through the direct edge
10601   // from the predecessor to the block.
10602   if (const BasicBlock *Pred = BB->getSinglePredecessor())
10603     return {Pred, BB};
10604 
10605   // A loop's header is defined to be a block that dominates the loop.
10606   // If the header has a unique predecessor outside the loop, it must be
10607   // a block that has exactly one successor that can reach the loop.
10608   if (const Loop *L = LI.getLoopFor(BB))
10609     return {L->getLoopPredecessor(), L->getHeader()};
10610 
10611   return {nullptr, nullptr};
10612 }
10613 
10614 /// SCEV structural equivalence is usually sufficient for testing whether two
10615 /// expressions are equal, however for the purposes of looking for a condition
10616 /// guarding a loop, it can be useful to be a little more general, since a
10617 /// front-end may have replicated the controlling expression.
HasSameValue(const SCEV * A,const SCEV * B)10618 static bool HasSameValue(const SCEV *A, const SCEV *B) {
10619   // Quick check to see if they are the same SCEV.
10620   if (A == B) return true;
10621 
10622   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
10623     // Not all instructions that are "identical" compute the same value.  For
10624     // instance, two distinct alloca instructions allocating the same type are
10625     // identical and do not read memory; but compute distinct values.
10626     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
10627   };
10628 
10629   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
10630   // two different instructions with the same value. Check for this case.
10631   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
10632     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
10633       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
10634         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
10635           if (ComputesEqualValues(AI, BI))
10636             return true;
10637 
10638   // Otherwise assume they may have a different value.
10639   return false;
10640 }
10641 
MatchBinarySub(const SCEV * S,const SCEV * & LHS,const SCEV * & RHS)10642 static bool MatchBinarySub(const SCEV *S, const SCEV *&LHS, const SCEV *&RHS) {
10643   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S);
10644   if (!Add || Add->getNumOperands() != 2)
10645     return false;
10646   if (auto *ME = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
10647       ME && ME->getNumOperands() == 2 && ME->getOperand(0)->isAllOnesValue()) {
10648     LHS = Add->getOperand(1);
10649     RHS = ME->getOperand(1);
10650     return true;
10651   }
10652   if (auto *ME = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
10653       ME && ME->getNumOperands() == 2 && ME->getOperand(0)->isAllOnesValue()) {
10654     LHS = Add->getOperand(0);
10655     RHS = ME->getOperand(1);
10656     return true;
10657   }
10658   return false;
10659 }
10660 
SimplifyICmpOperands(ICmpInst::Predicate & Pred,const SCEV * & LHS,const SCEV * & RHS,unsigned Depth)10661 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
10662                                            const SCEV *&LHS, const SCEV *&RHS,
10663                                            unsigned Depth) {
10664   bool Changed = false;
10665   // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
10666   // '0 != 0'.
10667   auto TrivialCase = [&](bool TriviallyTrue) {
10668     LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
10669     Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
10670     return true;
10671   };
10672   // If we hit the max recursion limit bail out.
10673   if (Depth >= 3)
10674     return false;
10675 
10676   // Canonicalize a constant to the right side.
10677   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
10678     // Check for both operands constant.
10679     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
10680       if (!ICmpInst::compare(LHSC->getAPInt(), RHSC->getAPInt(), Pred))
10681         return TrivialCase(false);
10682       return TrivialCase(true);
10683     }
10684     // Otherwise swap the operands to put the constant on the right.
10685     std::swap(LHS, RHS);
10686     Pred = ICmpInst::getSwappedPredicate(Pred);
10687     Changed = true;
10688   }
10689 
10690   // If we're comparing an addrec with a value which is loop-invariant in the
10691   // addrec's loop, put the addrec on the left. Also make a dominance check,
10692   // as both operands could be addrecs loop-invariant in each other's loop.
10693   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
10694     const Loop *L = AR->getLoop();
10695     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
10696       std::swap(LHS, RHS);
10697       Pred = ICmpInst::getSwappedPredicate(Pred);
10698       Changed = true;
10699     }
10700   }
10701 
10702   // If there's a constant operand, canonicalize comparisons with boundary
10703   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
10704   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
10705     const APInt &RA = RC->getAPInt();
10706 
10707     bool SimplifiedByConstantRange = false;
10708 
10709     if (!ICmpInst::isEquality(Pred)) {
10710       ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
10711       if (ExactCR.isFullSet())
10712         return TrivialCase(true);
10713       if (ExactCR.isEmptySet())
10714         return TrivialCase(false);
10715 
10716       APInt NewRHS;
10717       CmpInst::Predicate NewPred;
10718       if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
10719           ICmpInst::isEquality(NewPred)) {
10720         // We were able to convert an inequality to an equality.
10721         Pred = NewPred;
10722         RHS = getConstant(NewRHS);
10723         Changed = SimplifiedByConstantRange = true;
10724       }
10725     }
10726 
10727     if (!SimplifiedByConstantRange) {
10728       switch (Pred) {
10729       default:
10730         break;
10731       case ICmpInst::ICMP_EQ:
10732       case ICmpInst::ICMP_NE:
10733         // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
10734         if (RA.isZero() && MatchBinarySub(LHS, LHS, RHS))
10735           Changed = true;
10736         break;
10737 
10738         // The "Should have been caught earlier!" messages refer to the fact
10739         // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
10740         // should have fired on the corresponding cases, and canonicalized the
10741         // check to trivial case.
10742 
10743       case ICmpInst::ICMP_UGE:
10744         assert(!RA.isMinValue() && "Should have been caught earlier!");
10745         Pred = ICmpInst::ICMP_UGT;
10746         RHS = getConstant(RA - 1);
10747         Changed = true;
10748         break;
10749       case ICmpInst::ICMP_ULE:
10750         assert(!RA.isMaxValue() && "Should have been caught earlier!");
10751         Pred = ICmpInst::ICMP_ULT;
10752         RHS = getConstant(RA + 1);
10753         Changed = true;
10754         break;
10755       case ICmpInst::ICMP_SGE:
10756         assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
10757         Pred = ICmpInst::ICMP_SGT;
10758         RHS = getConstant(RA - 1);
10759         Changed = true;
10760         break;
10761       case ICmpInst::ICMP_SLE:
10762         assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
10763         Pred = ICmpInst::ICMP_SLT;
10764         RHS = getConstant(RA + 1);
10765         Changed = true;
10766         break;
10767       }
10768     }
10769   }
10770 
10771   // Check for obvious equality.
10772   if (HasSameValue(LHS, RHS)) {
10773     if (ICmpInst::isTrueWhenEqual(Pred))
10774       return TrivialCase(true);
10775     if (ICmpInst::isFalseWhenEqual(Pred))
10776       return TrivialCase(false);
10777   }
10778 
10779   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
10780   // adding or subtracting 1 from one of the operands.
10781   switch (Pred) {
10782   case ICmpInst::ICMP_SLE:
10783     if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
10784       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
10785                        SCEV::FlagNSW);
10786       Pred = ICmpInst::ICMP_SLT;
10787       Changed = true;
10788     } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
10789       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
10790                        SCEV::FlagNSW);
10791       Pred = ICmpInst::ICMP_SLT;
10792       Changed = true;
10793     }
10794     break;
10795   case ICmpInst::ICMP_SGE:
10796     if (!getSignedRangeMin(RHS).isMinSignedValue()) {
10797       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
10798                        SCEV::FlagNSW);
10799       Pred = ICmpInst::ICMP_SGT;
10800       Changed = true;
10801     } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
10802       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
10803                        SCEV::FlagNSW);
10804       Pred = ICmpInst::ICMP_SGT;
10805       Changed = true;
10806     }
10807     break;
10808   case ICmpInst::ICMP_ULE:
10809     if (!getUnsignedRangeMax(RHS).isMaxValue()) {
10810       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
10811                        SCEV::FlagNUW);
10812       Pred = ICmpInst::ICMP_ULT;
10813       Changed = true;
10814     } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
10815       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
10816       Pred = ICmpInst::ICMP_ULT;
10817       Changed = true;
10818     }
10819     break;
10820   case ICmpInst::ICMP_UGE:
10821     if (!getUnsignedRangeMin(RHS).isMinValue()) {
10822       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
10823       Pred = ICmpInst::ICMP_UGT;
10824       Changed = true;
10825     } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
10826       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
10827                        SCEV::FlagNUW);
10828       Pred = ICmpInst::ICMP_UGT;
10829       Changed = true;
10830     }
10831     break;
10832   default:
10833     break;
10834   }
10835 
10836   // TODO: More simplifications are possible here.
10837 
10838   // Recursively simplify until we either hit a recursion limit or nothing
10839   // changes.
10840   if (Changed)
10841     return SimplifyICmpOperands(Pred, LHS, RHS, Depth + 1);
10842 
10843   return Changed;
10844 }
10845 
isKnownNegative(const SCEV * S)10846 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
10847   return getSignedRangeMax(S).isNegative();
10848 }
10849 
isKnownPositive(const SCEV * S)10850 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
10851   return getSignedRangeMin(S).isStrictlyPositive();
10852 }
10853 
isKnownNonNegative(const SCEV * S)10854 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
10855   return !getSignedRangeMin(S).isNegative();
10856 }
10857 
isKnownNonPositive(const SCEV * S)10858 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
10859   return !getSignedRangeMax(S).isStrictlyPositive();
10860 }
10861 
isKnownNonZero(const SCEV * S)10862 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
10863   // Query push down for cases where the unsigned range is
10864   // less than sufficient.
10865   if (const auto *SExt = dyn_cast<SCEVSignExtendExpr>(S))
10866     return isKnownNonZero(SExt->getOperand(0));
10867   return getUnsignedRangeMin(S) != 0;
10868 }
10869 
10870 std::pair<const SCEV *, const SCEV *>
SplitIntoInitAndPostInc(const Loop * L,const SCEV * S)10871 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
10872   // Compute SCEV on entry of loop L.
10873   const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
10874   if (Start == getCouldNotCompute())
10875     return { Start, Start };
10876   // Compute post increment SCEV for loop L.
10877   const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
10878   assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
10879   return { Start, PostInc };
10880 }
10881 
isKnownViaInduction(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)10882 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
10883                                           const SCEV *LHS, const SCEV *RHS) {
10884   // First collect all loops.
10885   SmallPtrSet<const Loop *, 8> LoopsUsed;
10886   getUsedLoops(LHS, LoopsUsed);
10887   getUsedLoops(RHS, LoopsUsed);
10888 
10889   if (LoopsUsed.empty())
10890     return false;
10891 
10892   // Domination relationship must be a linear order on collected loops.
10893 #ifndef NDEBUG
10894   for (const auto *L1 : LoopsUsed)
10895     for (const auto *L2 : LoopsUsed)
10896       assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
10897               DT.dominates(L2->getHeader(), L1->getHeader())) &&
10898              "Domination relationship is not a linear order");
10899 #endif
10900 
10901   const Loop *MDL =
10902       *llvm::max_element(LoopsUsed, [&](const Loop *L1, const Loop *L2) {
10903         return DT.properlyDominates(L1->getHeader(), L2->getHeader());
10904       });
10905 
10906   // Get init and post increment value for LHS.
10907   auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
10908   // if LHS contains unknown non-invariant SCEV then bail out.
10909   if (SplitLHS.first == getCouldNotCompute())
10910     return false;
10911   assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
10912   // Get init and post increment value for RHS.
10913   auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
10914   // if RHS contains unknown non-invariant SCEV then bail out.
10915   if (SplitRHS.first == getCouldNotCompute())
10916     return false;
10917   assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
10918   // It is possible that init SCEV contains an invariant load but it does
10919   // not dominate MDL and is not available at MDL loop entry, so we should
10920   // check it here.
10921   if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
10922       !isAvailableAtLoopEntry(SplitRHS.first, MDL))
10923     return false;
10924 
10925   // It seems backedge guard check is faster than entry one so in some cases
10926   // it can speed up whole estimation by short circuit
10927   return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
10928                                      SplitRHS.second) &&
10929          isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first);
10930 }
10931 
isKnownPredicate(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)10932 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
10933                                        const SCEV *LHS, const SCEV *RHS) {
10934   // Canonicalize the inputs first.
10935   (void)SimplifyICmpOperands(Pred, LHS, RHS);
10936 
10937   if (isKnownViaInduction(Pred, LHS, RHS))
10938     return true;
10939 
10940   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
10941     return true;
10942 
10943   // Otherwise see what can be done with some simple reasoning.
10944   return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
10945 }
10946 
evaluatePredicate(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)10947 std::optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred,
10948                                                        const SCEV *LHS,
10949                                                        const SCEV *RHS) {
10950   if (isKnownPredicate(Pred, LHS, RHS))
10951     return true;
10952   if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS))
10953     return false;
10954   return std::nullopt;
10955 }
10956 
isKnownPredicateAt(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const Instruction * CtxI)10957 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred,
10958                                          const SCEV *LHS, const SCEV *RHS,
10959                                          const Instruction *CtxI) {
10960   // TODO: Analyze guards and assumes from Context's block.
10961   return isKnownPredicate(Pred, LHS, RHS) ||
10962          isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS);
10963 }
10964 
10965 std::optional<bool>
evaluatePredicateAt(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const Instruction * CtxI)10966 ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred, const SCEV *LHS,
10967                                      const SCEV *RHS, const Instruction *CtxI) {
10968   std::optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS);
10969   if (KnownWithoutContext)
10970     return KnownWithoutContext;
10971 
10972   if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS))
10973     return true;
10974   if (isBasicBlockEntryGuardedByCond(CtxI->getParent(),
10975                                           ICmpInst::getInversePredicate(Pred),
10976                                           LHS, RHS))
10977     return false;
10978   return std::nullopt;
10979 }
10980 
isKnownOnEveryIteration(ICmpInst::Predicate Pred,const SCEVAddRecExpr * LHS,const SCEV * RHS)10981 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
10982                                               const SCEVAddRecExpr *LHS,
10983                                               const SCEV *RHS) {
10984   const Loop *L = LHS->getLoop();
10985   return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
10986          isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
10987 }
10988 
10989 std::optional<ScalarEvolution::MonotonicPredicateType>
getMonotonicPredicateType(const SCEVAddRecExpr * LHS,ICmpInst::Predicate Pred)10990 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS,
10991                                            ICmpInst::Predicate Pred) {
10992   auto Result = getMonotonicPredicateTypeImpl(LHS, Pred);
10993 
10994 #ifndef NDEBUG
10995   // Verify an invariant: inverting the predicate should turn a monotonically
10996   // increasing change to a monotonically decreasing one, and vice versa.
10997   if (Result) {
10998     auto ResultSwapped =
10999         getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred));
11000 
11001     assert(*ResultSwapped != *Result &&
11002            "monotonicity should flip as we flip the predicate");
11003   }
11004 #endif
11005 
11006   return Result;
11007 }
11008 
11009 std::optional<ScalarEvolution::MonotonicPredicateType>
getMonotonicPredicateTypeImpl(const SCEVAddRecExpr * LHS,ICmpInst::Predicate Pred)11010 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS,
11011                                                ICmpInst::Predicate Pred) {
11012   // A zero step value for LHS means the induction variable is essentially a
11013   // loop invariant value. We don't really depend on the predicate actually
11014   // flipping from false to true (for increasing predicates, and the other way
11015   // around for decreasing predicates), all we care about is that *if* the
11016   // predicate changes then it only changes from false to true.
11017   //
11018   // A zero step value in itself is not very useful, but there may be places
11019   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
11020   // as general as possible.
11021 
11022   // Only handle LE/LT/GE/GT predicates.
11023   if (!ICmpInst::isRelational(Pred))
11024     return std::nullopt;
11025 
11026   bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred);
11027   assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) &&
11028          "Should be greater or less!");
11029 
11030   // Check that AR does not wrap.
11031   if (ICmpInst::isUnsigned(Pred)) {
11032     if (!LHS->hasNoUnsignedWrap())
11033       return std::nullopt;
11034     return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
11035   }
11036   assert(ICmpInst::isSigned(Pred) &&
11037          "Relational predicate is either signed or unsigned!");
11038   if (!LHS->hasNoSignedWrap())
11039     return std::nullopt;
11040 
11041   const SCEV *Step = LHS->getStepRecurrence(*this);
11042 
11043   if (isKnownNonNegative(Step))
11044     return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
11045 
11046   if (isKnownNonPositive(Step))
11047     return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
11048 
11049   return std::nullopt;
11050 }
11051 
11052 std::optional<ScalarEvolution::LoopInvariantPredicate>
getLoopInvariantPredicate(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const Loop * L,const Instruction * CtxI)11053 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred,
11054                                            const SCEV *LHS, const SCEV *RHS,
11055                                            const Loop *L,
11056                                            const Instruction *CtxI) {
11057   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
11058   if (!isLoopInvariant(RHS, L)) {
11059     if (!isLoopInvariant(LHS, L))
11060       return std::nullopt;
11061 
11062     std::swap(LHS, RHS);
11063     Pred = ICmpInst::getSwappedPredicate(Pred);
11064   }
11065 
11066   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
11067   if (!ArLHS || ArLHS->getLoop() != L)
11068     return std::nullopt;
11069 
11070   auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred);
11071   if (!MonotonicType)
11072     return std::nullopt;
11073   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
11074   // true as the loop iterates, and the backedge is control dependent on
11075   // "ArLHS `Pred` RHS" == true then we can reason as follows:
11076   //
11077   //   * if the predicate was false in the first iteration then the predicate
11078   //     is never evaluated again, since the loop exits without taking the
11079   //     backedge.
11080   //   * if the predicate was true in the first iteration then it will
11081   //     continue to be true for all future iterations since it is
11082   //     monotonically increasing.
11083   //
11084   // For both the above possibilities, we can replace the loop varying
11085   // predicate with its value on the first iteration of the loop (which is
11086   // loop invariant).
11087   //
11088   // A similar reasoning applies for a monotonically decreasing predicate, by
11089   // replacing true with false and false with true in the above two bullets.
11090   bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing;
11091   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
11092 
11093   if (isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
11094     return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(),
11095                                                    RHS);
11096 
11097   if (!CtxI)
11098     return std::nullopt;
11099   // Try to prove via context.
11100   // TODO: Support other cases.
11101   switch (Pred) {
11102   default:
11103     break;
11104   case ICmpInst::ICMP_ULE:
11105   case ICmpInst::ICMP_ULT: {
11106     assert(ArLHS->hasNoUnsignedWrap() && "Is a requirement of monotonicity!");
11107     // Given preconditions
11108     // (1) ArLHS does not cross the border of positive and negative parts of
11109     //     range because of:
11110     //     - Positive step; (TODO: lift this limitation)
11111     //     - nuw - does not cross zero boundary;
11112     //     - nsw - does not cross SINT_MAX boundary;
11113     // (2) ArLHS <s RHS
11114     // (3) RHS >=s 0
11115     // we can replace the loop variant ArLHS <u RHS condition with loop
11116     // invariant Start(ArLHS) <u RHS.
11117     //
11118     // Because of (1) there are two options:
11119     // - ArLHS is always negative. It means that ArLHS <u RHS is always false;
11120     // - ArLHS is always non-negative. Because of (3) RHS is also non-negative.
11121     //   It means that ArLHS <s RHS <=> ArLHS <u RHS.
11122     //   Because of (2) ArLHS <u RHS is trivially true.
11123     // All together it means that ArLHS <u RHS <=> Start(ArLHS) >=s 0.
11124     // We can strengthen this to Start(ArLHS) <u RHS.
11125     auto SignFlippedPred = ICmpInst::getFlippedSignednessPredicate(Pred);
11126     if (ArLHS->hasNoSignedWrap() && ArLHS->isAffine() &&
11127         isKnownPositive(ArLHS->getStepRecurrence(*this)) &&
11128         isKnownNonNegative(RHS) &&
11129         isKnownPredicateAt(SignFlippedPred, ArLHS, RHS, CtxI))
11130       return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(),
11131                                                      RHS);
11132   }
11133   }
11134 
11135   return std::nullopt;
11136 }
11137 
11138 std::optional<ScalarEvolution::LoopInvariantPredicate>
getLoopInvariantExitCondDuringFirstIterations(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const Loop * L,const Instruction * CtxI,const SCEV * MaxIter)11139 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations(
11140     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
11141     const Instruction *CtxI, const SCEV *MaxIter) {
11142   if (auto LIP = getLoopInvariantExitCondDuringFirstIterationsImpl(
11143           Pred, LHS, RHS, L, CtxI, MaxIter))
11144     return LIP;
11145   if (auto *UMin = dyn_cast<SCEVUMinExpr>(MaxIter))
11146     // Number of iterations expressed as UMIN isn't always great for expressing
11147     // the value on the last iteration. If the straightforward approach didn't
11148     // work, try the following trick: if the a predicate is invariant for X, it
11149     // is also invariant for umin(X, ...). So try to find something that works
11150     // among subexpressions of MaxIter expressed as umin.
11151     for (auto *Op : UMin->operands())
11152       if (auto LIP = getLoopInvariantExitCondDuringFirstIterationsImpl(
11153               Pred, LHS, RHS, L, CtxI, Op))
11154         return LIP;
11155   return std::nullopt;
11156 }
11157 
11158 std::optional<ScalarEvolution::LoopInvariantPredicate>
getLoopInvariantExitCondDuringFirstIterationsImpl(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const Loop * L,const Instruction * CtxI,const SCEV * MaxIter)11159 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterationsImpl(
11160     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
11161     const Instruction *CtxI, const SCEV *MaxIter) {
11162   // Try to prove the following set of facts:
11163   // - The predicate is monotonic in the iteration space.
11164   // - If the check does not fail on the 1st iteration:
11165   //   - No overflow will happen during first MaxIter iterations;
11166   //   - It will not fail on the MaxIter'th iteration.
11167   // If the check does fail on the 1st iteration, we leave the loop and no
11168   // other checks matter.
11169 
11170   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
11171   if (!isLoopInvariant(RHS, L)) {
11172     if (!isLoopInvariant(LHS, L))
11173       return std::nullopt;
11174 
11175     std::swap(LHS, RHS);
11176     Pred = ICmpInst::getSwappedPredicate(Pred);
11177   }
11178 
11179   auto *AR = dyn_cast<SCEVAddRecExpr>(LHS);
11180   if (!AR || AR->getLoop() != L)
11181     return std::nullopt;
11182 
11183   // The predicate must be relational (i.e. <, <=, >=, >).
11184   if (!ICmpInst::isRelational(Pred))
11185     return std::nullopt;
11186 
11187   // TODO: Support steps other than +/- 1.
11188   const SCEV *Step = AR->getStepRecurrence(*this);
11189   auto *One = getOne(Step->getType());
11190   auto *MinusOne = getNegativeSCEV(One);
11191   if (Step != One && Step != MinusOne)
11192     return std::nullopt;
11193 
11194   // Type mismatch here means that MaxIter is potentially larger than max
11195   // unsigned value in start type, which mean we cannot prove no wrap for the
11196   // indvar.
11197   if (AR->getType() != MaxIter->getType())
11198     return std::nullopt;
11199 
11200   // Value of IV on suggested last iteration.
11201   const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this);
11202   // Does it still meet the requirement?
11203   if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS))
11204     return std::nullopt;
11205   // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does
11206   // not exceed max unsigned value of this type), this effectively proves
11207   // that there is no wrap during the iteration. To prove that there is no
11208   // signed/unsigned wrap, we need to check that
11209   // Start <= Last for step = 1 or Start >= Last for step = -1.
11210   ICmpInst::Predicate NoOverflowPred =
11211       CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
11212   if (Step == MinusOne)
11213     NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred);
11214   const SCEV *Start = AR->getStart();
11215   if (!isKnownPredicateAt(NoOverflowPred, Start, Last, CtxI))
11216     return std::nullopt;
11217 
11218   // Everything is fine.
11219   return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS);
11220 }
11221 
isKnownPredicateViaConstantRanges(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)11222 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
11223     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
11224   if (HasSameValue(LHS, RHS))
11225     return ICmpInst::isTrueWhenEqual(Pred);
11226 
11227   // This code is split out from isKnownPredicate because it is called from
11228   // within isLoopEntryGuardedByCond.
11229 
11230   auto CheckRanges = [&](const ConstantRange &RangeLHS,
11231                          const ConstantRange &RangeRHS) {
11232     return RangeLHS.icmp(Pred, RangeRHS);
11233   };
11234 
11235   // The check at the top of the function catches the case where the values are
11236   // known to be equal.
11237   if (Pred == CmpInst::ICMP_EQ)
11238     return false;
11239 
11240   if (Pred == CmpInst::ICMP_NE) {
11241     auto SL = getSignedRange(LHS);
11242     auto SR = getSignedRange(RHS);
11243     if (CheckRanges(SL, SR))
11244       return true;
11245     auto UL = getUnsignedRange(LHS);
11246     auto UR = getUnsignedRange(RHS);
11247     if (CheckRanges(UL, UR))
11248       return true;
11249     auto *Diff = getMinusSCEV(LHS, RHS);
11250     return !isa<SCEVCouldNotCompute>(Diff) && isKnownNonZero(Diff);
11251   }
11252 
11253   if (CmpInst::isSigned(Pred)) {
11254     auto SL = getSignedRange(LHS);
11255     auto SR = getSignedRange(RHS);
11256     return CheckRanges(SL, SR);
11257   }
11258 
11259   auto UL = getUnsignedRange(LHS);
11260   auto UR = getUnsignedRange(RHS);
11261   return CheckRanges(UL, UR);
11262 }
11263 
isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)11264 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
11265                                                     const SCEV *LHS,
11266                                                     const SCEV *RHS) {
11267   // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where
11268   // C1 and C2 are constant integers. If either X or Y are not add expressions,
11269   // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via
11270   // OutC1 and OutC2.
11271   auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y,
11272                                       APInt &OutC1, APInt &OutC2,
11273                                       SCEV::NoWrapFlags ExpectedFlags) {
11274     const SCEV *XNonConstOp, *XConstOp;
11275     const SCEV *YNonConstOp, *YConstOp;
11276     SCEV::NoWrapFlags XFlagsPresent;
11277     SCEV::NoWrapFlags YFlagsPresent;
11278 
11279     if (!splitBinaryAdd(X, XConstOp, XNonConstOp, XFlagsPresent)) {
11280       XConstOp = getZero(X->getType());
11281       XNonConstOp = X;
11282       XFlagsPresent = ExpectedFlags;
11283     }
11284     if (!isa<SCEVConstant>(XConstOp) ||
11285         (XFlagsPresent & ExpectedFlags) != ExpectedFlags)
11286       return false;
11287 
11288     if (!splitBinaryAdd(Y, YConstOp, YNonConstOp, YFlagsPresent)) {
11289       YConstOp = getZero(Y->getType());
11290       YNonConstOp = Y;
11291       YFlagsPresent = ExpectedFlags;
11292     }
11293 
11294     if (!isa<SCEVConstant>(YConstOp) ||
11295         (YFlagsPresent & ExpectedFlags) != ExpectedFlags)
11296       return false;
11297 
11298     if (YNonConstOp != XNonConstOp)
11299       return false;
11300 
11301     OutC1 = cast<SCEVConstant>(XConstOp)->getAPInt();
11302     OutC2 = cast<SCEVConstant>(YConstOp)->getAPInt();
11303 
11304     return true;
11305   };
11306 
11307   APInt C1;
11308   APInt C2;
11309 
11310   switch (Pred) {
11311   default:
11312     break;
11313 
11314   case ICmpInst::ICMP_SGE:
11315     std::swap(LHS, RHS);
11316     [[fallthrough]];
11317   case ICmpInst::ICMP_SLE:
11318     // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2.
11319     if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(C2))
11320       return true;
11321 
11322     break;
11323 
11324   case ICmpInst::ICMP_SGT:
11325     std::swap(LHS, RHS);
11326     [[fallthrough]];
11327   case ICmpInst::ICMP_SLT:
11328     // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2.
11329     if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(C2))
11330       return true;
11331 
11332     break;
11333 
11334   case ICmpInst::ICMP_UGE:
11335     std::swap(LHS, RHS);
11336     [[fallthrough]];
11337   case ICmpInst::ICMP_ULE:
11338     // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2.
11339     if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNUW) && C1.ule(C2))
11340       return true;
11341 
11342     break;
11343 
11344   case ICmpInst::ICMP_UGT:
11345     std::swap(LHS, RHS);
11346     [[fallthrough]];
11347   case ICmpInst::ICMP_ULT:
11348     // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2.
11349     if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNUW) && C1.ult(C2))
11350       return true;
11351     break;
11352   }
11353 
11354   return false;
11355 }
11356 
isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)11357 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
11358                                                    const SCEV *LHS,
11359                                                    const SCEV *RHS) {
11360   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
11361     return false;
11362 
11363   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
11364   // the stack can result in exponential time complexity.
11365   SaveAndRestore Restore(ProvingSplitPredicate, true);
11366 
11367   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
11368   //
11369   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
11370   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
11371   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
11372   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
11373   // use isKnownPredicate later if needed.
11374   return isKnownNonNegative(RHS) &&
11375          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
11376          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
11377 }
11378 
isImpliedViaGuard(const BasicBlock * BB,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)11379 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB,
11380                                         ICmpInst::Predicate Pred,
11381                                         const SCEV *LHS, const SCEV *RHS) {
11382   // No need to even try if we know the module has no guards.
11383   if (!HasGuards)
11384     return false;
11385 
11386   return any_of(*BB, [&](const Instruction &I) {
11387     using namespace llvm::PatternMatch;
11388 
11389     Value *Condition;
11390     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
11391                          m_Value(Condition))) &&
11392            isImpliedCond(Pred, LHS, RHS, Condition, false);
11393   });
11394 }
11395 
11396 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
11397 /// protected by a conditional between LHS and RHS.  This is used to
11398 /// to eliminate casts.
11399 bool
isLoopBackedgeGuardedByCond(const Loop * L,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)11400 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
11401                                              ICmpInst::Predicate Pred,
11402                                              const SCEV *LHS, const SCEV *RHS) {
11403   // Interpret a null as meaning no loop, where there is obviously no guard
11404   // (interprocedural conditions notwithstanding). Do not bother about
11405   // unreachable loops.
11406   if (!L || !DT.isReachableFromEntry(L->getHeader()))
11407     return true;
11408 
11409   if (VerifyIR)
11410     assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
11411            "This cannot be done on broken IR!");
11412 
11413 
11414   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
11415     return true;
11416 
11417   BasicBlock *Latch = L->getLoopLatch();
11418   if (!Latch)
11419     return false;
11420 
11421   BranchInst *LoopContinuePredicate =
11422     dyn_cast<BranchInst>(Latch->getTerminator());
11423   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
11424       isImpliedCond(Pred, LHS, RHS,
11425                     LoopContinuePredicate->getCondition(),
11426                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
11427     return true;
11428 
11429   // We don't want more than one activation of the following loops on the stack
11430   // -- that can lead to O(n!) time complexity.
11431   if (WalkingBEDominatingConds)
11432     return false;
11433 
11434   SaveAndRestore ClearOnExit(WalkingBEDominatingConds, true);
11435 
11436   // See if we can exploit a trip count to prove the predicate.
11437   const auto &BETakenInfo = getBackedgeTakenInfo(L);
11438   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
11439   if (LatchBECount != getCouldNotCompute()) {
11440     // We know that Latch branches back to the loop header exactly
11441     // LatchBECount times.  This means the backdege condition at Latch is
11442     // equivalent to  "{0,+,1} u< LatchBECount".
11443     Type *Ty = LatchBECount->getType();
11444     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
11445     const SCEV *LoopCounter =
11446       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
11447     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
11448                       LatchBECount))
11449       return true;
11450   }
11451 
11452   // Check conditions due to any @llvm.assume intrinsics.
11453   for (auto &AssumeVH : AC.assumptions()) {
11454     if (!AssumeVH)
11455       continue;
11456     auto *CI = cast<CallInst>(AssumeVH);
11457     if (!DT.dominates(CI, Latch->getTerminator()))
11458       continue;
11459 
11460     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
11461       return true;
11462   }
11463 
11464   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
11465     return true;
11466 
11467   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
11468        DTN != HeaderDTN; DTN = DTN->getIDom()) {
11469     assert(DTN && "should reach the loop header before reaching the root!");
11470 
11471     BasicBlock *BB = DTN->getBlock();
11472     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
11473       return true;
11474 
11475     BasicBlock *PBB = BB->getSinglePredecessor();
11476     if (!PBB)
11477       continue;
11478 
11479     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
11480     if (!ContinuePredicate || !ContinuePredicate->isConditional())
11481       continue;
11482 
11483     Value *Condition = ContinuePredicate->getCondition();
11484 
11485     // If we have an edge `E` within the loop body that dominates the only
11486     // latch, the condition guarding `E` also guards the backedge.  This
11487     // reasoning works only for loops with a single latch.
11488 
11489     BasicBlockEdge DominatingEdge(PBB, BB);
11490     if (DominatingEdge.isSingleEdge()) {
11491       // We're constructively (and conservatively) enumerating edges within the
11492       // loop body that dominate the latch.  The dominator tree better agree
11493       // with us on this:
11494       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
11495 
11496       if (isImpliedCond(Pred, LHS, RHS, Condition,
11497                         BB != ContinuePredicate->getSuccessor(0)))
11498         return true;
11499     }
11500   }
11501 
11502   return false;
11503 }
11504 
isBasicBlockEntryGuardedByCond(const BasicBlock * BB,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)11505 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB,
11506                                                      ICmpInst::Predicate Pred,
11507                                                      const SCEV *LHS,
11508                                                      const SCEV *RHS) {
11509   // Do not bother proving facts for unreachable code.
11510   if (!DT.isReachableFromEntry(BB))
11511     return true;
11512   if (VerifyIR)
11513     assert(!verifyFunction(*BB->getParent(), &dbgs()) &&
11514            "This cannot be done on broken IR!");
11515 
11516   // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
11517   // the facts (a >= b && a != b) separately. A typical situation is when the
11518   // non-strict comparison is known from ranges and non-equality is known from
11519   // dominating predicates. If we are proving strict comparison, we always try
11520   // to prove non-equality and non-strict comparison separately.
11521   auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
11522   const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
11523   bool ProvedNonStrictComparison = false;
11524   bool ProvedNonEquality = false;
11525 
11526   auto SplitAndProve =
11527     [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool {
11528     if (!ProvedNonStrictComparison)
11529       ProvedNonStrictComparison = Fn(NonStrictPredicate);
11530     if (!ProvedNonEquality)
11531       ProvedNonEquality = Fn(ICmpInst::ICMP_NE);
11532     if (ProvedNonStrictComparison && ProvedNonEquality)
11533       return true;
11534     return false;
11535   };
11536 
11537   if (ProvingStrictComparison) {
11538     auto ProofFn = [&](ICmpInst::Predicate P) {
11539       return isKnownViaNonRecursiveReasoning(P, LHS, RHS);
11540     };
11541     if (SplitAndProve(ProofFn))
11542       return true;
11543   }
11544 
11545   // Try to prove (Pred, LHS, RHS) using isImpliedCond.
11546   auto ProveViaCond = [&](const Value *Condition, bool Inverse) {
11547     const Instruction *CtxI = &BB->front();
11548     if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, CtxI))
11549       return true;
11550     if (ProvingStrictComparison) {
11551       auto ProofFn = [&](ICmpInst::Predicate P) {
11552         return isImpliedCond(P, LHS, RHS, Condition, Inverse, CtxI);
11553       };
11554       if (SplitAndProve(ProofFn))
11555         return true;
11556     }
11557     return false;
11558   };
11559 
11560   // Starting at the block's predecessor, climb up the predecessor chain, as long
11561   // as there are predecessors that can be found that have unique successors
11562   // leading to the original block.
11563   const Loop *ContainingLoop = LI.getLoopFor(BB);
11564   const BasicBlock *PredBB;
11565   if (ContainingLoop && ContainingLoop->getHeader() == BB)
11566     PredBB = ContainingLoop->getLoopPredecessor();
11567   else
11568     PredBB = BB->getSinglePredecessor();
11569   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB);
11570        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
11571     const BranchInst *BlockEntryPredicate =
11572         dyn_cast<BranchInst>(Pair.first->getTerminator());
11573     if (!BlockEntryPredicate || BlockEntryPredicate->isUnconditional())
11574       continue;
11575 
11576     if (ProveViaCond(BlockEntryPredicate->getCondition(),
11577                      BlockEntryPredicate->getSuccessor(0) != Pair.second))
11578       return true;
11579   }
11580 
11581   // Check conditions due to any @llvm.assume intrinsics.
11582   for (auto &AssumeVH : AC.assumptions()) {
11583     if (!AssumeVH)
11584       continue;
11585     auto *CI = cast<CallInst>(AssumeVH);
11586     if (!DT.dominates(CI, BB))
11587       continue;
11588 
11589     if (ProveViaCond(CI->getArgOperand(0), false))
11590       return true;
11591   }
11592 
11593   // Check conditions due to any @llvm.experimental.guard intrinsics.
11594   auto *GuardDecl = F.getParent()->getFunction(
11595       Intrinsic::getName(Intrinsic::experimental_guard));
11596   if (GuardDecl)
11597     for (const auto *GU : GuardDecl->users())
11598       if (const auto *Guard = dyn_cast<IntrinsicInst>(GU))
11599         if (Guard->getFunction() == BB->getParent() && DT.dominates(Guard, BB))
11600           if (ProveViaCond(Guard->getArgOperand(0), false))
11601             return true;
11602   return false;
11603 }
11604 
isLoopEntryGuardedByCond(const Loop * L,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)11605 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
11606                                                ICmpInst::Predicate Pred,
11607                                                const SCEV *LHS,
11608                                                const SCEV *RHS) {
11609   // Interpret a null as meaning no loop, where there is obviously no guard
11610   // (interprocedural conditions notwithstanding).
11611   if (!L)
11612     return false;
11613 
11614   // Both LHS and RHS must be available at loop entry.
11615   assert(isAvailableAtLoopEntry(LHS, L) &&
11616          "LHS is not available at Loop Entry");
11617   assert(isAvailableAtLoopEntry(RHS, L) &&
11618          "RHS is not available at Loop Entry");
11619 
11620   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
11621     return true;
11622 
11623   return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS);
11624 }
11625 
isImpliedCond(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const Value * FoundCondValue,bool Inverse,const Instruction * CtxI)11626 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
11627                                     const SCEV *RHS,
11628                                     const Value *FoundCondValue, bool Inverse,
11629                                     const Instruction *CtxI) {
11630   // False conditions implies anything. Do not bother analyzing it further.
11631   if (FoundCondValue ==
11632       ConstantInt::getBool(FoundCondValue->getContext(), Inverse))
11633     return true;
11634 
11635   if (!PendingLoopPredicates.insert(FoundCondValue).second)
11636     return false;
11637 
11638   auto ClearOnExit =
11639       make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
11640 
11641   // Recursively handle And and Or conditions.
11642   const Value *Op0, *Op1;
11643   if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
11644     if (!Inverse)
11645       return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) ||
11646              isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI);
11647   } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
11648     if (Inverse)
11649       return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) ||
11650              isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI);
11651   }
11652 
11653   const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
11654   if (!ICI) return false;
11655 
11656   // Now that we found a conditional branch that dominates the loop or controls
11657   // the loop latch. Check to see if it is the comparison we are looking for.
11658   ICmpInst::Predicate FoundPred;
11659   if (Inverse)
11660     FoundPred = ICI->getInversePredicate();
11661   else
11662     FoundPred = ICI->getPredicate();
11663 
11664   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
11665   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
11666 
11667   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, CtxI);
11668 }
11669 
isImpliedCond(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,ICmpInst::Predicate FoundPred,const SCEV * FoundLHS,const SCEV * FoundRHS,const Instruction * CtxI)11670 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
11671                                     const SCEV *RHS,
11672                                     ICmpInst::Predicate FoundPred,
11673                                     const SCEV *FoundLHS, const SCEV *FoundRHS,
11674                                     const Instruction *CtxI) {
11675   // Balance the types.
11676   if (getTypeSizeInBits(LHS->getType()) <
11677       getTypeSizeInBits(FoundLHS->getType())) {
11678     // For unsigned and equality predicates, try to prove that both found
11679     // operands fit into narrow unsigned range. If so, try to prove facts in
11680     // narrow types.
11681     if (!CmpInst::isSigned(FoundPred) && !FoundLHS->getType()->isPointerTy() &&
11682         !FoundRHS->getType()->isPointerTy()) {
11683       auto *NarrowType = LHS->getType();
11684       auto *WideType = FoundLHS->getType();
11685       auto BitWidth = getTypeSizeInBits(NarrowType);
11686       const SCEV *MaxValue = getZeroExtendExpr(
11687           getConstant(APInt::getMaxValue(BitWidth)), WideType);
11688       if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundLHS,
11689                                           MaxValue) &&
11690           isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundRHS,
11691                                           MaxValue)) {
11692         const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType);
11693         const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType);
11694         if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS,
11695                                        TruncFoundRHS, CtxI))
11696           return true;
11697       }
11698     }
11699 
11700     if (LHS->getType()->isPointerTy() || RHS->getType()->isPointerTy())
11701       return false;
11702     if (CmpInst::isSigned(Pred)) {
11703       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
11704       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
11705     } else {
11706       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
11707       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
11708     }
11709   } else if (getTypeSizeInBits(LHS->getType()) >
11710       getTypeSizeInBits(FoundLHS->getType())) {
11711     if (FoundLHS->getType()->isPointerTy() || FoundRHS->getType()->isPointerTy())
11712       return false;
11713     if (CmpInst::isSigned(FoundPred)) {
11714       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
11715       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
11716     } else {
11717       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
11718       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
11719     }
11720   }
11721   return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS,
11722                                     FoundRHS, CtxI);
11723 }
11724 
isImpliedCondBalancedTypes(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,ICmpInst::Predicate FoundPred,const SCEV * FoundLHS,const SCEV * FoundRHS,const Instruction * CtxI)11725 bool ScalarEvolution::isImpliedCondBalancedTypes(
11726     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
11727     ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS,
11728     const Instruction *CtxI) {
11729   assert(getTypeSizeInBits(LHS->getType()) ==
11730              getTypeSizeInBits(FoundLHS->getType()) &&
11731          "Types should be balanced!");
11732   // Canonicalize the query to match the way instcombine will have
11733   // canonicalized the comparison.
11734   if (SimplifyICmpOperands(Pred, LHS, RHS))
11735     if (LHS == RHS)
11736       return CmpInst::isTrueWhenEqual(Pred);
11737   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
11738     if (FoundLHS == FoundRHS)
11739       return CmpInst::isFalseWhenEqual(FoundPred);
11740 
11741   // Check to see if we can make the LHS or RHS match.
11742   if (LHS == FoundRHS || RHS == FoundLHS) {
11743     if (isa<SCEVConstant>(RHS)) {
11744       std::swap(FoundLHS, FoundRHS);
11745       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
11746     } else {
11747       std::swap(LHS, RHS);
11748       Pred = ICmpInst::getSwappedPredicate(Pred);
11749     }
11750   }
11751 
11752   // Check whether the found predicate is the same as the desired predicate.
11753   if (FoundPred == Pred)
11754     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI);
11755 
11756   // Check whether swapping the found predicate makes it the same as the
11757   // desired predicate.
11758   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
11759     // We can write the implication
11760     // 0.  LHS Pred      RHS  <-   FoundLHS SwapPred  FoundRHS
11761     // using one of the following ways:
11762     // 1.  LHS Pred      RHS  <-   FoundRHS Pred      FoundLHS
11763     // 2.  RHS SwapPred  LHS  <-   FoundLHS SwapPred  FoundRHS
11764     // 3.  LHS Pred      RHS  <-  ~FoundLHS Pred     ~FoundRHS
11765     // 4. ~LHS SwapPred ~RHS  <-   FoundLHS SwapPred  FoundRHS
11766     // Forms 1. and 2. require swapping the operands of one condition. Don't
11767     // do this if it would break canonical constant/addrec ordering.
11768     if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS))
11769       return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS,
11770                                    CtxI);
11771     if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS))
11772       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, CtxI);
11773 
11774     // There's no clear preference between forms 3. and 4., try both.  Avoid
11775     // forming getNotSCEV of pointer values as the resulting subtract is
11776     // not legal.
11777     if (!LHS->getType()->isPointerTy() && !RHS->getType()->isPointerTy() &&
11778         isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS),
11779                               FoundLHS, FoundRHS, CtxI))
11780       return true;
11781 
11782     if (!FoundLHS->getType()->isPointerTy() &&
11783         !FoundRHS->getType()->isPointerTy() &&
11784         isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS),
11785                               getNotSCEV(FoundRHS), CtxI))
11786       return true;
11787 
11788     return false;
11789   }
11790 
11791   auto IsSignFlippedPredicate = [](CmpInst::Predicate P1,
11792                                    CmpInst::Predicate P2) {
11793     assert(P1 != P2 && "Handled earlier!");
11794     return CmpInst::isRelational(P2) &&
11795            P1 == CmpInst::getFlippedSignednessPredicate(P2);
11796   };
11797   if (IsSignFlippedPredicate(Pred, FoundPred)) {
11798     // Unsigned comparison is the same as signed comparison when both the
11799     // operands are non-negative or negative.
11800     if ((isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) ||
11801         (isKnownNegative(FoundLHS) && isKnownNegative(FoundRHS)))
11802       return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI);
11803     // Create local copies that we can freely swap and canonicalize our
11804     // conditions to "le/lt".
11805     ICmpInst::Predicate CanonicalPred = Pred, CanonicalFoundPred = FoundPred;
11806     const SCEV *CanonicalLHS = LHS, *CanonicalRHS = RHS,
11807                *CanonicalFoundLHS = FoundLHS, *CanonicalFoundRHS = FoundRHS;
11808     if (ICmpInst::isGT(CanonicalPred) || ICmpInst::isGE(CanonicalPred)) {
11809       CanonicalPred = ICmpInst::getSwappedPredicate(CanonicalPred);
11810       CanonicalFoundPred = ICmpInst::getSwappedPredicate(CanonicalFoundPred);
11811       std::swap(CanonicalLHS, CanonicalRHS);
11812       std::swap(CanonicalFoundLHS, CanonicalFoundRHS);
11813     }
11814     assert((ICmpInst::isLT(CanonicalPred) || ICmpInst::isLE(CanonicalPred)) &&
11815            "Must be!");
11816     assert((ICmpInst::isLT(CanonicalFoundPred) ||
11817             ICmpInst::isLE(CanonicalFoundPred)) &&
11818            "Must be!");
11819     if (ICmpInst::isSigned(CanonicalPred) && isKnownNonNegative(CanonicalRHS))
11820       // Use implication:
11821       // x <u y && y >=s 0 --> x <s y.
11822       // If we can prove the left part, the right part is also proven.
11823       return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS,
11824                                    CanonicalRHS, CanonicalFoundLHS,
11825                                    CanonicalFoundRHS);
11826     if (ICmpInst::isUnsigned(CanonicalPred) && isKnownNegative(CanonicalRHS))
11827       // Use implication:
11828       // x <s y && y <s 0 --> x <u y.
11829       // If we can prove the left part, the right part is also proven.
11830       return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS,
11831                                    CanonicalRHS, CanonicalFoundLHS,
11832                                    CanonicalFoundRHS);
11833   }
11834 
11835   // Check if we can make progress by sharpening ranges.
11836   if (FoundPred == ICmpInst::ICMP_NE &&
11837       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
11838 
11839     const SCEVConstant *C = nullptr;
11840     const SCEV *V = nullptr;
11841 
11842     if (isa<SCEVConstant>(FoundLHS)) {
11843       C = cast<SCEVConstant>(FoundLHS);
11844       V = FoundRHS;
11845     } else {
11846       C = cast<SCEVConstant>(FoundRHS);
11847       V = FoundLHS;
11848     }
11849 
11850     // The guarding predicate tells us that C != V. If the known range
11851     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
11852     // range we consider has to correspond to same signedness as the
11853     // predicate we're interested in folding.
11854 
11855     APInt Min = ICmpInst::isSigned(Pred) ?
11856         getSignedRangeMin(V) : getUnsignedRangeMin(V);
11857 
11858     if (Min == C->getAPInt()) {
11859       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
11860       // This is true even if (Min + 1) wraps around -- in case of
11861       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
11862 
11863       APInt SharperMin = Min + 1;
11864 
11865       switch (Pred) {
11866         case ICmpInst::ICMP_SGE:
11867         case ICmpInst::ICMP_UGE:
11868           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
11869           // RHS, we're done.
11870           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin),
11871                                     CtxI))
11872             return true;
11873           [[fallthrough]];
11874 
11875         case ICmpInst::ICMP_SGT:
11876         case ICmpInst::ICMP_UGT:
11877           // We know from the range information that (V `Pred` Min ||
11878           // V == Min).  We know from the guarding condition that !(V
11879           // == Min).  This gives us
11880           //
11881           //       V `Pred` Min || V == Min && !(V == Min)
11882           //   =>  V `Pred` Min
11883           //
11884           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
11885 
11886           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), CtxI))
11887             return true;
11888           break;
11889 
11890         // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively.
11891         case ICmpInst::ICMP_SLE:
11892         case ICmpInst::ICMP_ULE:
11893           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
11894                                     LHS, V, getConstant(SharperMin), CtxI))
11895             return true;
11896           [[fallthrough]];
11897 
11898         case ICmpInst::ICMP_SLT:
11899         case ICmpInst::ICMP_ULT:
11900           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
11901                                     LHS, V, getConstant(Min), CtxI))
11902             return true;
11903           break;
11904 
11905         default:
11906           // No change
11907           break;
11908       }
11909     }
11910   }
11911 
11912   // Check whether the actual condition is beyond sufficient.
11913   if (FoundPred == ICmpInst::ICMP_EQ)
11914     if (ICmpInst::isTrueWhenEqual(Pred))
11915       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI))
11916         return true;
11917   if (Pred == ICmpInst::ICMP_NE)
11918     if (!ICmpInst::isTrueWhenEqual(FoundPred))
11919       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, CtxI))
11920         return true;
11921 
11922   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS))
11923     return true;
11924 
11925   // Otherwise assume the worst.
11926   return false;
11927 }
11928 
splitBinaryAdd(const SCEV * Expr,const SCEV * & L,const SCEV * & R,SCEV::NoWrapFlags & Flags)11929 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
11930                                      const SCEV *&L, const SCEV *&R,
11931                                      SCEV::NoWrapFlags &Flags) {
11932   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
11933   if (!AE || AE->getNumOperands() != 2)
11934     return false;
11935 
11936   L = AE->getOperand(0);
11937   R = AE->getOperand(1);
11938   Flags = AE->getNoWrapFlags();
11939   return true;
11940 }
11941 
11942 std::optional<APInt>
computeConstantDifference(const SCEV * More,const SCEV * Less)11943 ScalarEvolution::computeConstantDifference(const SCEV *More, const SCEV *Less) {
11944   // We avoid subtracting expressions here because this function is usually
11945   // fairly deep in the call stack (i.e. is called many times).
11946 
11947   // X - X = 0.
11948   if (More == Less)
11949     return APInt(getTypeSizeInBits(More->getType()), 0);
11950 
11951   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
11952     const auto *LAR = cast<SCEVAddRecExpr>(Less);
11953     const auto *MAR = cast<SCEVAddRecExpr>(More);
11954 
11955     if (LAR->getLoop() != MAR->getLoop())
11956       return std::nullopt;
11957 
11958     // We look at affine expressions only; not for correctness but to keep
11959     // getStepRecurrence cheap.
11960     if (!LAR->isAffine() || !MAR->isAffine())
11961       return std::nullopt;
11962 
11963     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
11964       return std::nullopt;
11965 
11966     Less = LAR->getStart();
11967     More = MAR->getStart();
11968 
11969     // fall through
11970   }
11971 
11972   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
11973     const auto &M = cast<SCEVConstant>(More)->getAPInt();
11974     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
11975     return M - L;
11976   }
11977 
11978   SCEV::NoWrapFlags Flags;
11979   const SCEV *LLess = nullptr, *RLess = nullptr;
11980   const SCEV *LMore = nullptr, *RMore = nullptr;
11981   const SCEVConstant *C1 = nullptr, *C2 = nullptr;
11982   // Compare (X + C1) vs X.
11983   if (splitBinaryAdd(Less, LLess, RLess, Flags))
11984     if ((C1 = dyn_cast<SCEVConstant>(LLess)))
11985       if (RLess == More)
11986         return -(C1->getAPInt());
11987 
11988   // Compare X vs (X + C2).
11989   if (splitBinaryAdd(More, LMore, RMore, Flags))
11990     if ((C2 = dyn_cast<SCEVConstant>(LMore)))
11991       if (RMore == Less)
11992         return C2->getAPInt();
11993 
11994   // Compare (X + C1) vs (X + C2).
11995   if (C1 && C2 && RLess == RMore)
11996     return C2->getAPInt() - C1->getAPInt();
11997 
11998   return std::nullopt;
11999 }
12000 
isImpliedCondOperandsViaAddRecStart(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS,const Instruction * CtxI)12001 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart(
12002     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
12003     const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *CtxI) {
12004   // Try to recognize the following pattern:
12005   //
12006   //   FoundRHS = ...
12007   // ...
12008   // loop:
12009   //   FoundLHS = {Start,+,W}
12010   // context_bb: // Basic block from the same loop
12011   //   known(Pred, FoundLHS, FoundRHS)
12012   //
12013   // If some predicate is known in the context of a loop, it is also known on
12014   // each iteration of this loop, including the first iteration. Therefore, in
12015   // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to
12016   // prove the original pred using this fact.
12017   if (!CtxI)
12018     return false;
12019   const BasicBlock *ContextBB = CtxI->getParent();
12020   // Make sure AR varies in the context block.
12021   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) {
12022     const Loop *L = AR->getLoop();
12023     // Make sure that context belongs to the loop and executes on 1st iteration
12024     // (if it ever executes at all).
12025     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
12026       return false;
12027     if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop()))
12028       return false;
12029     return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS);
12030   }
12031 
12032   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) {
12033     const Loop *L = AR->getLoop();
12034     // Make sure that context belongs to the loop and executes on 1st iteration
12035     // (if it ever executes at all).
12036     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
12037       return false;
12038     if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop()))
12039       return false;
12040     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart());
12041   }
12042 
12043   return false;
12044 }
12045 
isImpliedCondOperandsViaNoOverflow(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS)12046 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
12047     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
12048     const SCEV *FoundLHS, const SCEV *FoundRHS) {
12049   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
12050     return false;
12051 
12052   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
12053   if (!AddRecLHS)
12054     return false;
12055 
12056   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
12057   if (!AddRecFoundLHS)
12058     return false;
12059 
12060   // We'd like to let SCEV reason about control dependencies, so we constrain
12061   // both the inequalities to be about add recurrences on the same loop.  This
12062   // way we can use isLoopEntryGuardedByCond later.
12063 
12064   const Loop *L = AddRecFoundLHS->getLoop();
12065   if (L != AddRecLHS->getLoop())
12066     return false;
12067 
12068   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
12069   //
12070   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
12071   //                                                                  ... (2)
12072   //
12073   // Informal proof for (2), assuming (1) [*]:
12074   //
12075   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
12076   //
12077   // Then
12078   //
12079   //       FoundLHS s< FoundRHS s< INT_MIN - C
12080   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
12081   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
12082   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
12083   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
12084   // <=>  FoundLHS + C s< FoundRHS + C
12085   //
12086   // [*]: (1) can be proved by ruling out overflow.
12087   //
12088   // [**]: This can be proved by analyzing all the four possibilities:
12089   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
12090   //    (A s>= 0, B s>= 0).
12091   //
12092   // Note:
12093   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
12094   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
12095   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
12096   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
12097   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
12098   // C)".
12099 
12100   std::optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
12101   std::optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
12102   if (!LDiff || !RDiff || *LDiff != *RDiff)
12103     return false;
12104 
12105   if (LDiff->isMinValue())
12106     return true;
12107 
12108   APInt FoundRHSLimit;
12109 
12110   if (Pred == CmpInst::ICMP_ULT) {
12111     FoundRHSLimit = -(*RDiff);
12112   } else {
12113     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
12114     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
12115   }
12116 
12117   // Try to prove (1) or (2), as needed.
12118   return isAvailableAtLoopEntry(FoundRHS, L) &&
12119          isLoopEntryGuardedByCond(L, Pred, FoundRHS,
12120                                   getConstant(FoundRHSLimit));
12121 }
12122 
isImpliedViaMerge(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS,unsigned Depth)12123 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
12124                                         const SCEV *LHS, const SCEV *RHS,
12125                                         const SCEV *FoundLHS,
12126                                         const SCEV *FoundRHS, unsigned Depth) {
12127   const PHINode *LPhi = nullptr, *RPhi = nullptr;
12128 
12129   auto ClearOnExit = make_scope_exit([&]() {
12130     if (LPhi) {
12131       bool Erased = PendingMerges.erase(LPhi);
12132       assert(Erased && "Failed to erase LPhi!");
12133       (void)Erased;
12134     }
12135     if (RPhi) {
12136       bool Erased = PendingMerges.erase(RPhi);
12137       assert(Erased && "Failed to erase RPhi!");
12138       (void)Erased;
12139     }
12140   });
12141 
12142   // Find respective Phis and check that they are not being pending.
12143   if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
12144     if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
12145       if (!PendingMerges.insert(Phi).second)
12146         return false;
12147       LPhi = Phi;
12148     }
12149   if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
12150     if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
12151       // If we detect a loop of Phi nodes being processed by this method, for
12152       // example:
12153       //
12154       //   %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
12155       //   %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
12156       //
12157       // we don't want to deal with a case that complex, so return conservative
12158       // answer false.
12159       if (!PendingMerges.insert(Phi).second)
12160         return false;
12161       RPhi = Phi;
12162     }
12163 
12164   // If none of LHS, RHS is a Phi, nothing to do here.
12165   if (!LPhi && !RPhi)
12166     return false;
12167 
12168   // If there is a SCEVUnknown Phi we are interested in, make it left.
12169   if (!LPhi) {
12170     std::swap(LHS, RHS);
12171     std::swap(FoundLHS, FoundRHS);
12172     std::swap(LPhi, RPhi);
12173     Pred = ICmpInst::getSwappedPredicate(Pred);
12174   }
12175 
12176   assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
12177   const BasicBlock *LBB = LPhi->getParent();
12178   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
12179 
12180   auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
12181     return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
12182            isImpliedCondOperandsViaRanges(Pred, S1, S2, Pred, FoundLHS, FoundRHS) ||
12183            isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
12184   };
12185 
12186   if (RPhi && RPhi->getParent() == LBB) {
12187     // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
12188     // If we compare two Phis from the same block, and for each entry block
12189     // the predicate is true for incoming values from this block, then the
12190     // predicate is also true for the Phis.
12191     for (const BasicBlock *IncBB : predecessors(LBB)) {
12192       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
12193       const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
12194       if (!ProvedEasily(L, R))
12195         return false;
12196     }
12197   } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
12198     // Case two: RHS is also a Phi from the same basic block, and it is an
12199     // AddRec. It means that there is a loop which has both AddRec and Unknown
12200     // PHIs, for it we can compare incoming values of AddRec from above the loop
12201     // and latch with their respective incoming values of LPhi.
12202     // TODO: Generalize to handle loops with many inputs in a header.
12203     if (LPhi->getNumIncomingValues() != 2) return false;
12204 
12205     auto *RLoop = RAR->getLoop();
12206     auto *Predecessor = RLoop->getLoopPredecessor();
12207     assert(Predecessor && "Loop with AddRec with no predecessor?");
12208     const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
12209     if (!ProvedEasily(L1, RAR->getStart()))
12210       return false;
12211     auto *Latch = RLoop->getLoopLatch();
12212     assert(Latch && "Loop with AddRec with no latch?");
12213     const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
12214     if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
12215       return false;
12216   } else {
12217     // In all other cases go over inputs of LHS and compare each of them to RHS,
12218     // the predicate is true for (LHS, RHS) if it is true for all such pairs.
12219     // At this point RHS is either a non-Phi, or it is a Phi from some block
12220     // different from LBB.
12221     for (const BasicBlock *IncBB : predecessors(LBB)) {
12222       // Check that RHS is available in this block.
12223       if (!dominates(RHS, IncBB))
12224         return false;
12225       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
12226       // Make sure L does not refer to a value from a potentially previous
12227       // iteration of a loop.
12228       if (!properlyDominates(L, LBB))
12229         return false;
12230       if (!ProvedEasily(L, RHS))
12231         return false;
12232     }
12233   }
12234   return true;
12235 }
12236 
isImpliedCondOperandsViaShift(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS)12237 bool ScalarEvolution::isImpliedCondOperandsViaShift(ICmpInst::Predicate Pred,
12238                                                     const SCEV *LHS,
12239                                                     const SCEV *RHS,
12240                                                     const SCEV *FoundLHS,
12241                                                     const SCEV *FoundRHS) {
12242   // We want to imply LHS < RHS from LHS < (RHS >> shiftvalue).  First, make
12243   // sure that we are dealing with same LHS.
12244   if (RHS == FoundRHS) {
12245     std::swap(LHS, RHS);
12246     std::swap(FoundLHS, FoundRHS);
12247     Pred = ICmpInst::getSwappedPredicate(Pred);
12248   }
12249   if (LHS != FoundLHS)
12250     return false;
12251 
12252   auto *SUFoundRHS = dyn_cast<SCEVUnknown>(FoundRHS);
12253   if (!SUFoundRHS)
12254     return false;
12255 
12256   Value *Shiftee, *ShiftValue;
12257 
12258   using namespace PatternMatch;
12259   if (match(SUFoundRHS->getValue(),
12260             m_LShr(m_Value(Shiftee), m_Value(ShiftValue)))) {
12261     auto *ShifteeS = getSCEV(Shiftee);
12262     // Prove one of the following:
12263     // LHS <u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <u RHS
12264     // LHS <=u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <=u RHS
12265     // LHS <s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0
12266     //   ---> LHS <s RHS
12267     // LHS <=s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0
12268     //   ---> LHS <=s RHS
12269     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
12270       return isKnownPredicate(ICmpInst::ICMP_ULE, ShifteeS, RHS);
12271     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
12272       if (isKnownNonNegative(ShifteeS))
12273         return isKnownPredicate(ICmpInst::ICMP_SLE, ShifteeS, RHS);
12274   }
12275 
12276   return false;
12277 }
12278 
isImpliedCondOperands(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS,const Instruction * CtxI)12279 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
12280                                             const SCEV *LHS, const SCEV *RHS,
12281                                             const SCEV *FoundLHS,
12282                                             const SCEV *FoundRHS,
12283                                             const Instruction *CtxI) {
12284   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, Pred, FoundLHS, FoundRHS))
12285     return true;
12286 
12287   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
12288     return true;
12289 
12290   if (isImpliedCondOperandsViaShift(Pred, LHS, RHS, FoundLHS, FoundRHS))
12291     return true;
12292 
12293   if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS,
12294                                           CtxI))
12295     return true;
12296 
12297   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
12298                                      FoundLHS, FoundRHS);
12299 }
12300 
12301 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
12302 template <typename MinMaxExprType>
IsMinMaxConsistingOf(const SCEV * MaybeMinMaxExpr,const SCEV * Candidate)12303 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr,
12304                                  const SCEV *Candidate) {
12305   const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr);
12306   if (!MinMaxExpr)
12307     return false;
12308 
12309   return is_contained(MinMaxExpr->operands(), Candidate);
12310 }
12311 
IsKnownPredicateViaAddRecStart(ScalarEvolution & SE,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)12312 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
12313                                            ICmpInst::Predicate Pred,
12314                                            const SCEV *LHS, const SCEV *RHS) {
12315   // If both sides are affine addrecs for the same loop, with equal
12316   // steps, and we know the recurrences don't wrap, then we only
12317   // need to check the predicate on the starting values.
12318 
12319   if (!ICmpInst::isRelational(Pred))
12320     return false;
12321 
12322   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
12323   if (!LAR)
12324     return false;
12325   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
12326   if (!RAR)
12327     return false;
12328   if (LAR->getLoop() != RAR->getLoop())
12329     return false;
12330   if (!LAR->isAffine() || !RAR->isAffine())
12331     return false;
12332 
12333   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
12334     return false;
12335 
12336   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
12337                          SCEV::FlagNSW : SCEV::FlagNUW;
12338   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
12339     return false;
12340 
12341   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
12342 }
12343 
12344 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
12345 /// expression?
IsKnownPredicateViaMinOrMax(ScalarEvolution & SE,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)12346 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
12347                                         ICmpInst::Predicate Pred,
12348                                         const SCEV *LHS, const SCEV *RHS) {
12349   switch (Pred) {
12350   default:
12351     return false;
12352 
12353   case ICmpInst::ICMP_SGE:
12354     std::swap(LHS, RHS);
12355     [[fallthrough]];
12356   case ICmpInst::ICMP_SLE:
12357     return
12358         // min(A, ...) <= A
12359         IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) ||
12360         // A <= max(A, ...)
12361         IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
12362 
12363   case ICmpInst::ICMP_UGE:
12364     std::swap(LHS, RHS);
12365     [[fallthrough]];
12366   case ICmpInst::ICMP_ULE:
12367     return
12368         // min(A, ...) <= A
12369         // FIXME: what about umin_seq?
12370         IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) ||
12371         // A <= max(A, ...)
12372         IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
12373   }
12374 
12375   llvm_unreachable("covered switch fell through?!");
12376 }
12377 
isImpliedViaOperations(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS,unsigned Depth)12378 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
12379                                              const SCEV *LHS, const SCEV *RHS,
12380                                              const SCEV *FoundLHS,
12381                                              const SCEV *FoundRHS,
12382                                              unsigned Depth) {
12383   assert(getTypeSizeInBits(LHS->getType()) ==
12384              getTypeSizeInBits(RHS->getType()) &&
12385          "LHS and RHS have different sizes?");
12386   assert(getTypeSizeInBits(FoundLHS->getType()) ==
12387              getTypeSizeInBits(FoundRHS->getType()) &&
12388          "FoundLHS and FoundRHS have different sizes?");
12389   // We want to avoid hurting the compile time with analysis of too big trees.
12390   if (Depth > MaxSCEVOperationsImplicationDepth)
12391     return false;
12392 
12393   // We only want to work with GT comparison so far.
12394   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) {
12395     Pred = CmpInst::getSwappedPredicate(Pred);
12396     std::swap(LHS, RHS);
12397     std::swap(FoundLHS, FoundRHS);
12398   }
12399 
12400   // For unsigned, try to reduce it to corresponding signed comparison.
12401   if (Pred == ICmpInst::ICMP_UGT)
12402     // We can replace unsigned predicate with its signed counterpart if all
12403     // involved values are non-negative.
12404     // TODO: We could have better support for unsigned.
12405     if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) {
12406       // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing
12407       // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us
12408       // use this fact to prove that LHS and RHS are non-negative.
12409       const SCEV *MinusOne = getMinusOne(LHS->getType());
12410       if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS,
12411                                 FoundRHS) &&
12412           isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS,
12413                                 FoundRHS))
12414         Pred = ICmpInst::ICMP_SGT;
12415     }
12416 
12417   if (Pred != ICmpInst::ICMP_SGT)
12418     return false;
12419 
12420   auto GetOpFromSExt = [&](const SCEV *S) {
12421     if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
12422       return Ext->getOperand();
12423     // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
12424     // the constant in some cases.
12425     return S;
12426   };
12427 
12428   // Acquire values from extensions.
12429   auto *OrigLHS = LHS;
12430   auto *OrigFoundLHS = FoundLHS;
12431   LHS = GetOpFromSExt(LHS);
12432   FoundLHS = GetOpFromSExt(FoundLHS);
12433 
12434   // Is the SGT predicate can be proved trivially or using the found context.
12435   auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
12436     return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
12437            isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
12438                                   FoundRHS, Depth + 1);
12439   };
12440 
12441   if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
12442     // We want to avoid creation of any new non-constant SCEV. Since we are
12443     // going to compare the operands to RHS, we should be certain that we don't
12444     // need any size extensions for this. So let's decline all cases when the
12445     // sizes of types of LHS and RHS do not match.
12446     // TODO: Maybe try to get RHS from sext to catch more cases?
12447     if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
12448       return false;
12449 
12450     // Should not overflow.
12451     if (!LHSAddExpr->hasNoSignedWrap())
12452       return false;
12453 
12454     auto *LL = LHSAddExpr->getOperand(0);
12455     auto *LR = LHSAddExpr->getOperand(1);
12456     auto *MinusOne = getMinusOne(RHS->getType());
12457 
12458     // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
12459     auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
12460       return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
12461     };
12462     // Try to prove the following rule:
12463     // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
12464     // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
12465     if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
12466       return true;
12467   } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
12468     Value *LL, *LR;
12469     // FIXME: Once we have SDiv implemented, we can get rid of this matching.
12470 
12471     using namespace llvm::PatternMatch;
12472 
12473     if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
12474       // Rules for division.
12475       // We are going to perform some comparisons with Denominator and its
12476       // derivative expressions. In general case, creating a SCEV for it may
12477       // lead to a complex analysis of the entire graph, and in particular it
12478       // can request trip count recalculation for the same loop. This would
12479       // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
12480       // this, we only want to create SCEVs that are constants in this section.
12481       // So we bail if Denominator is not a constant.
12482       if (!isa<ConstantInt>(LR))
12483         return false;
12484 
12485       auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
12486 
12487       // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
12488       // then a SCEV for the numerator already exists and matches with FoundLHS.
12489       auto *Numerator = getExistingSCEV(LL);
12490       if (!Numerator || Numerator->getType() != FoundLHS->getType())
12491         return false;
12492 
12493       // Make sure that the numerator matches with FoundLHS and the denominator
12494       // is positive.
12495       if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
12496         return false;
12497 
12498       auto *DTy = Denominator->getType();
12499       auto *FRHSTy = FoundRHS->getType();
12500       if (DTy->isPointerTy() != FRHSTy->isPointerTy())
12501         // One of types is a pointer and another one is not. We cannot extend
12502         // them properly to a wider type, so let us just reject this case.
12503         // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
12504         // to avoid this check.
12505         return false;
12506 
12507       // Given that:
12508       // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
12509       auto *WTy = getWiderType(DTy, FRHSTy);
12510       auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
12511       auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
12512 
12513       // Try to prove the following rule:
12514       // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
12515       // For example, given that FoundLHS > 2. It means that FoundLHS is at
12516       // least 3. If we divide it by Denominator < 4, we will have at least 1.
12517       auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
12518       if (isKnownNonPositive(RHS) &&
12519           IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
12520         return true;
12521 
12522       // Try to prove the following rule:
12523       // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
12524       // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
12525       // If we divide it by Denominator > 2, then:
12526       // 1. If FoundLHS is negative, then the result is 0.
12527       // 2. If FoundLHS is non-negative, then the result is non-negative.
12528       // Anyways, the result is non-negative.
12529       auto *MinusOne = getMinusOne(WTy);
12530       auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
12531       if (isKnownNegative(RHS) &&
12532           IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
12533         return true;
12534     }
12535   }
12536 
12537   // If our expression contained SCEVUnknown Phis, and we split it down and now
12538   // need to prove something for them, try to prove the predicate for every
12539   // possible incoming values of those Phis.
12540   if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
12541     return true;
12542 
12543   return false;
12544 }
12545 
isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)12546 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred,
12547                                         const SCEV *LHS, const SCEV *RHS) {
12548   // zext x u<= sext x, sext x s<= zext x
12549   switch (Pred) {
12550   case ICmpInst::ICMP_SGE:
12551     std::swap(LHS, RHS);
12552     [[fallthrough]];
12553   case ICmpInst::ICMP_SLE: {
12554     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then SExt <s ZExt.
12555     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS);
12556     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS);
12557     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
12558       return true;
12559     break;
12560   }
12561   case ICmpInst::ICMP_UGE:
12562     std::swap(LHS, RHS);
12563     [[fallthrough]];
12564   case ICmpInst::ICMP_ULE: {
12565     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then ZExt <u SExt.
12566     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS);
12567     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS);
12568     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
12569       return true;
12570     break;
12571   }
12572   default:
12573     break;
12574   };
12575   return false;
12576 }
12577 
12578 bool
isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)12579 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
12580                                            const SCEV *LHS, const SCEV *RHS) {
12581   return isKnownPredicateExtendIdiom(Pred, LHS, RHS) ||
12582          isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
12583          IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
12584          IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
12585          isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
12586 }
12587 
12588 bool
isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS)12589 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
12590                                              const SCEV *LHS, const SCEV *RHS,
12591                                              const SCEV *FoundLHS,
12592                                              const SCEV *FoundRHS) {
12593   switch (Pred) {
12594   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
12595   case ICmpInst::ICMP_EQ:
12596   case ICmpInst::ICMP_NE:
12597     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
12598       return true;
12599     break;
12600   case ICmpInst::ICMP_SLT:
12601   case ICmpInst::ICMP_SLE:
12602     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
12603         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
12604       return true;
12605     break;
12606   case ICmpInst::ICMP_SGT:
12607   case ICmpInst::ICMP_SGE:
12608     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
12609         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
12610       return true;
12611     break;
12612   case ICmpInst::ICMP_ULT:
12613   case ICmpInst::ICMP_ULE:
12614     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
12615         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
12616       return true;
12617     break;
12618   case ICmpInst::ICMP_UGT:
12619   case ICmpInst::ICMP_UGE:
12620     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
12621         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
12622       return true;
12623     break;
12624   }
12625 
12626   // Maybe it can be proved via operations?
12627   if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
12628     return true;
12629 
12630   return false;
12631 }
12632 
isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,ICmpInst::Predicate FoundPred,const SCEV * FoundLHS,const SCEV * FoundRHS)12633 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
12634                                                      const SCEV *LHS,
12635                                                      const SCEV *RHS,
12636                                                      ICmpInst::Predicate FoundPred,
12637                                                      const SCEV *FoundLHS,
12638                                                      const SCEV *FoundRHS) {
12639   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
12640     // The restriction on `FoundRHS` be lifted easily -- it exists only to
12641     // reduce the compile time impact of this optimization.
12642     return false;
12643 
12644   std::optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
12645   if (!Addend)
12646     return false;
12647 
12648   const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
12649 
12650   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
12651   // antecedent "`FoundLHS` `FoundPred` `FoundRHS`".
12652   ConstantRange FoundLHSRange =
12653       ConstantRange::makeExactICmpRegion(FoundPred, ConstFoundRHS);
12654 
12655   // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
12656   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
12657 
12658   // We can also compute the range of values for `LHS` that satisfy the
12659   // consequent, "`LHS` `Pred` `RHS`":
12660   const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
12661   // The antecedent implies the consequent if every value of `LHS` that
12662   // satisfies the antecedent also satisfies the consequent.
12663   return LHSRange.icmp(Pred, ConstRHS);
12664 }
12665 
canIVOverflowOnLT(const SCEV * RHS,const SCEV * Stride,bool IsSigned)12666 bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
12667                                         bool IsSigned) {
12668   assert(isKnownPositive(Stride) && "Positive stride expected!");
12669 
12670   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
12671   const SCEV *One = getOne(Stride->getType());
12672 
12673   if (IsSigned) {
12674     APInt MaxRHS = getSignedRangeMax(RHS);
12675     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
12676     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
12677 
12678     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
12679     return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
12680   }
12681 
12682   APInt MaxRHS = getUnsignedRangeMax(RHS);
12683   APInt MaxValue = APInt::getMaxValue(BitWidth);
12684   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
12685 
12686   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
12687   return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
12688 }
12689 
canIVOverflowOnGT(const SCEV * RHS,const SCEV * Stride,bool IsSigned)12690 bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
12691                                         bool IsSigned) {
12692 
12693   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
12694   const SCEV *One = getOne(Stride->getType());
12695 
12696   if (IsSigned) {
12697     APInt MinRHS = getSignedRangeMin(RHS);
12698     APInt MinValue = APInt::getSignedMinValue(BitWidth);
12699     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
12700 
12701     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
12702     return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
12703   }
12704 
12705   APInt MinRHS = getUnsignedRangeMin(RHS);
12706   APInt MinValue = APInt::getMinValue(BitWidth);
12707   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
12708 
12709   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
12710   return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
12711 }
12712 
getUDivCeilSCEV(const SCEV * N,const SCEV * D)12713 const SCEV *ScalarEvolution::getUDivCeilSCEV(const SCEV *N, const SCEV *D) {
12714   // umin(N, 1) + floor((N - umin(N, 1)) / D)
12715   // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin
12716   // expression fixes the case of N=0.
12717   const SCEV *MinNOne = getUMinExpr(N, getOne(N->getType()));
12718   const SCEV *NMinusOne = getMinusSCEV(N, MinNOne);
12719   return getAddExpr(MinNOne, getUDivExpr(NMinusOne, D));
12720 }
12721 
computeMaxBECountForLT(const SCEV * Start,const SCEV * Stride,const SCEV * End,unsigned BitWidth,bool IsSigned)12722 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
12723                                                     const SCEV *Stride,
12724                                                     const SCEV *End,
12725                                                     unsigned BitWidth,
12726                                                     bool IsSigned) {
12727   // The logic in this function assumes we can represent a positive stride.
12728   // If we can't, the backedge-taken count must be zero.
12729   if (IsSigned && BitWidth == 1)
12730     return getZero(Stride->getType());
12731 
12732   // This code below only been closely audited for negative strides in the
12733   // unsigned comparison case, it may be correct for signed comparison, but
12734   // that needs to be established.
12735   if (IsSigned && isKnownNegative(Stride))
12736     return getCouldNotCompute();
12737 
12738   // Calculate the maximum backedge count based on the range of values
12739   // permitted by Start, End, and Stride.
12740   APInt MinStart =
12741       IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
12742 
12743   APInt MinStride =
12744       IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
12745 
12746   // We assume either the stride is positive, or the backedge-taken count
12747   // is zero. So force StrideForMaxBECount to be at least one.
12748   APInt One(BitWidth, 1);
12749   APInt StrideForMaxBECount = IsSigned ? APIntOps::smax(One, MinStride)
12750                                        : APIntOps::umax(One, MinStride);
12751 
12752   APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
12753                             : APInt::getMaxValue(BitWidth);
12754   APInt Limit = MaxValue - (StrideForMaxBECount - 1);
12755 
12756   // Although End can be a MAX expression we estimate MaxEnd considering only
12757   // the case End = RHS of the loop termination condition. This is safe because
12758   // in the other case (End - Start) is zero, leading to a zero maximum backedge
12759   // taken count.
12760   APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
12761                           : APIntOps::umin(getUnsignedRangeMax(End), Limit);
12762 
12763   // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride)
12764   MaxEnd = IsSigned ? APIntOps::smax(MaxEnd, MinStart)
12765                     : APIntOps::umax(MaxEnd, MinStart);
12766 
12767   return getUDivCeilSCEV(getConstant(MaxEnd - MinStart) /* Delta */,
12768                          getConstant(StrideForMaxBECount) /* Step */);
12769 }
12770 
12771 ScalarEvolution::ExitLimit
howManyLessThans(const SCEV * LHS,const SCEV * RHS,const Loop * L,bool IsSigned,bool ControlsOnlyExit,bool AllowPredicates)12772 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
12773                                   const Loop *L, bool IsSigned,
12774                                   bool ControlsOnlyExit, bool AllowPredicates) {
12775   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
12776 
12777   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
12778   bool PredicatedIV = false;
12779 
12780   auto canAssumeNoSelfWrap = [&](const SCEVAddRecExpr *AR) {
12781     // Can we prove this loop *must* be UB if overflow of IV occurs?
12782     // Reasoning goes as follows:
12783     // * Suppose the IV did self wrap.
12784     // * If Stride evenly divides the iteration space, then once wrap
12785     //   occurs, the loop must revisit the same values.
12786     // * We know that RHS is invariant, and that none of those values
12787     //   caused this exit to be taken previously.  Thus, this exit is
12788     //   dynamically dead.
12789     // * If this is the sole exit, then a dead exit implies the loop
12790     //   must be infinite if there are no abnormal exits.
12791     // * If the loop were infinite, then it must either not be mustprogress
12792     //   or have side effects. Otherwise, it must be UB.
12793     // * It can't (by assumption), be UB so we have contradicted our
12794     //   premise and can conclude the IV did not in fact self-wrap.
12795     if (!isLoopInvariant(RHS, L))
12796       return false;
12797 
12798     auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this));
12799     if (!StrideC || !StrideC->getAPInt().isPowerOf2())
12800       return false;
12801 
12802     if (!ControlsOnlyExit || !loopHasNoAbnormalExits(L))
12803       return false;
12804 
12805     return loopIsFiniteByAssumption(L);
12806   };
12807 
12808   if (!IV) {
12809     if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) {
12810       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ZExt->getOperand());
12811       if (AR && AR->getLoop() == L && AR->isAffine()) {
12812         auto canProveNUW = [&]() {
12813           // We can use the comparison to infer no-wrap flags only if it fully
12814           // controls the loop exit.
12815           if (!ControlsOnlyExit)
12816             return false;
12817 
12818           if (!isLoopInvariant(RHS, L))
12819             return false;
12820 
12821           if (!isKnownNonZero(AR->getStepRecurrence(*this)))
12822             // We need the sequence defined by AR to strictly increase in the
12823             // unsigned integer domain for the logic below to hold.
12824             return false;
12825 
12826           const unsigned InnerBitWidth = getTypeSizeInBits(AR->getType());
12827           const unsigned OuterBitWidth = getTypeSizeInBits(RHS->getType());
12828           // If RHS <=u Limit, then there must exist a value V in the sequence
12829           // defined by AR (e.g. {Start,+,Step}) such that V >u RHS, and
12830           // V <=u UINT_MAX.  Thus, we must exit the loop before unsigned
12831           // overflow occurs.  This limit also implies that a signed comparison
12832           // (in the wide bitwidth) is equivalent to an unsigned comparison as
12833           // the high bits on both sides must be zero.
12834           APInt StrideMax = getUnsignedRangeMax(AR->getStepRecurrence(*this));
12835           APInt Limit = APInt::getMaxValue(InnerBitWidth) - (StrideMax - 1);
12836           Limit = Limit.zext(OuterBitWidth);
12837           return getUnsignedRangeMax(applyLoopGuards(RHS, L)).ule(Limit);
12838         };
12839         auto Flags = AR->getNoWrapFlags();
12840         if (!hasFlags(Flags, SCEV::FlagNUW) && canProveNUW())
12841           Flags = setFlags(Flags, SCEV::FlagNUW);
12842 
12843         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags);
12844         if (AR->hasNoUnsignedWrap()) {
12845           // Emulate what getZeroExtendExpr would have done during construction
12846           // if we'd been able to infer the fact just above at that time.
12847           const SCEV *Step = AR->getStepRecurrence(*this);
12848           Type *Ty = ZExt->getType();
12849           auto *S = getAddRecExpr(
12850             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 0),
12851             getZeroExtendExpr(Step, Ty, 0), L, AR->getNoWrapFlags());
12852           IV = dyn_cast<SCEVAddRecExpr>(S);
12853         }
12854       }
12855     }
12856   }
12857 
12858 
12859   if (!IV && AllowPredicates) {
12860     // Try to make this an AddRec using runtime tests, in the first X
12861     // iterations of this loop, where X is the SCEV expression found by the
12862     // algorithm below.
12863     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
12864     PredicatedIV = true;
12865   }
12866 
12867   // Avoid weird loops
12868   if (!IV || IV->getLoop() != L || !IV->isAffine())
12869     return getCouldNotCompute();
12870 
12871   // A precondition of this method is that the condition being analyzed
12872   // reaches an exiting branch which dominates the latch.  Given that, we can
12873   // assume that an increment which violates the nowrap specification and
12874   // produces poison must cause undefined behavior when the resulting poison
12875   // value is branched upon and thus we can conclude that the backedge is
12876   // taken no more often than would be required to produce that poison value.
12877   // Note that a well defined loop can exit on the iteration which violates
12878   // the nowrap specification if there is another exit (either explicit or
12879   // implicit/exceptional) which causes the loop to execute before the
12880   // exiting instruction we're analyzing would trigger UB.
12881   auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW;
12882   bool NoWrap = ControlsOnlyExit && IV->getNoWrapFlags(WrapType);
12883   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
12884 
12885   const SCEV *Stride = IV->getStepRecurrence(*this);
12886 
12887   bool PositiveStride = isKnownPositive(Stride);
12888 
12889   // Avoid negative or zero stride values.
12890   if (!PositiveStride) {
12891     // We can compute the correct backedge taken count for loops with unknown
12892     // strides if we can prove that the loop is not an infinite loop with side
12893     // effects. Here's the loop structure we are trying to handle -
12894     //
12895     // i = start
12896     // do {
12897     //   A[i] = i;
12898     //   i += s;
12899     // } while (i < end);
12900     //
12901     // The backedge taken count for such loops is evaluated as -
12902     // (max(end, start + stride) - start - 1) /u stride
12903     //
12904     // The additional preconditions that we need to check to prove correctness
12905     // of the above formula is as follows -
12906     //
12907     // a) IV is either nuw or nsw depending upon signedness (indicated by the
12908     //    NoWrap flag).
12909     // b) the loop is guaranteed to be finite (e.g. is mustprogress and has
12910     //    no side effects within the loop)
12911     // c) loop has a single static exit (with no abnormal exits)
12912     //
12913     // Precondition a) implies that if the stride is negative, this is a single
12914     // trip loop. The backedge taken count formula reduces to zero in this case.
12915     //
12916     // Precondition b) and c) combine to imply that if rhs is invariant in L,
12917     // then a zero stride means the backedge can't be taken without executing
12918     // undefined behavior.
12919     //
12920     // The positive stride case is the same as isKnownPositive(Stride) returning
12921     // true (original behavior of the function).
12922     //
12923     if (PredicatedIV || !NoWrap || !loopIsFiniteByAssumption(L) ||
12924         !loopHasNoAbnormalExits(L))
12925       return getCouldNotCompute();
12926 
12927     if (!isKnownNonZero(Stride)) {
12928       // If we have a step of zero, and RHS isn't invariant in L, we don't know
12929       // if it might eventually be greater than start and if so, on which
12930       // iteration.  We can't even produce a useful upper bound.
12931       if (!isLoopInvariant(RHS, L))
12932         return getCouldNotCompute();
12933 
12934       // We allow a potentially zero stride, but we need to divide by stride
12935       // below.  Since the loop can't be infinite and this check must control
12936       // the sole exit, we can infer the exit must be taken on the first
12937       // iteration (e.g. backedge count = 0) if the stride is zero.  Given that,
12938       // we know the numerator in the divides below must be zero, so we can
12939       // pick an arbitrary non-zero value for the denominator (e.g. stride)
12940       // and produce the right result.
12941       // FIXME: Handle the case where Stride is poison?
12942       auto wouldZeroStrideBeUB = [&]() {
12943         // Proof by contradiction.  Suppose the stride were zero.  If we can
12944         // prove that the backedge *is* taken on the first iteration, then since
12945         // we know this condition controls the sole exit, we must have an
12946         // infinite loop.  We can't have a (well defined) infinite loop per
12947         // check just above.
12948         // Note: The (Start - Stride) term is used to get the start' term from
12949         // (start' + stride,+,stride). Remember that we only care about the
12950         // result of this expression when stride == 0 at runtime.
12951         auto *StartIfZero = getMinusSCEV(IV->getStart(), Stride);
12952         return isLoopEntryGuardedByCond(L, Cond, StartIfZero, RHS);
12953       };
12954       if (!wouldZeroStrideBeUB()) {
12955         Stride = getUMaxExpr(Stride, getOne(Stride->getType()));
12956       }
12957     }
12958   } else if (!Stride->isOne() && !NoWrap) {
12959     auto isUBOnWrap = [&]() {
12960       // From no-self-wrap, we need to then prove no-(un)signed-wrap.  This
12961       // follows trivially from the fact that every (un)signed-wrapped, but
12962       // not self-wrapped value must be LT than the last value before
12963       // (un)signed wrap.  Since we know that last value didn't exit, nor
12964       // will any smaller one.
12965       return canAssumeNoSelfWrap(IV);
12966     };
12967 
12968     // Avoid proven overflow cases: this will ensure that the backedge taken
12969     // count will not generate any unsigned overflow. Relaxed no-overflow
12970     // conditions exploit NoWrapFlags, allowing to optimize in presence of
12971     // undefined behaviors like the case of C language.
12972     if (canIVOverflowOnLT(RHS, Stride, IsSigned) && !isUBOnWrap())
12973       return getCouldNotCompute();
12974   }
12975 
12976   // On all paths just preceeding, we established the following invariant:
12977   //   IV can be assumed not to overflow up to and including the exiting
12978   //   iteration.  We proved this in one of two ways:
12979   //   1) We can show overflow doesn't occur before the exiting iteration
12980   //      1a) canIVOverflowOnLT, and b) step of one
12981   //   2) We can show that if overflow occurs, the loop must execute UB
12982   //      before any possible exit.
12983   // Note that we have not yet proved RHS invariant (in general).
12984 
12985   const SCEV *Start = IV->getStart();
12986 
12987   // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond.
12988   // If we convert to integers, isLoopEntryGuardedByCond will miss some cases.
12989   // Use integer-typed versions for actual computation; we can't subtract
12990   // pointers in general.
12991   const SCEV *OrigStart = Start;
12992   const SCEV *OrigRHS = RHS;
12993   if (Start->getType()->isPointerTy()) {
12994     Start = getLosslessPtrToIntExpr(Start);
12995     if (isa<SCEVCouldNotCompute>(Start))
12996       return Start;
12997   }
12998   if (RHS->getType()->isPointerTy()) {
12999     RHS = getLosslessPtrToIntExpr(RHS);
13000     if (isa<SCEVCouldNotCompute>(RHS))
13001       return RHS;
13002   }
13003 
13004   const SCEV *End = nullptr, *BECount = nullptr,
13005              *BECountIfBackedgeTaken = nullptr;
13006   if (!isLoopInvariant(RHS, L)) {
13007     const auto *RHSAddRec = dyn_cast<SCEVAddRecExpr>(RHS);
13008     if (PositiveStride && RHSAddRec != nullptr && RHSAddRec->getLoop() == L &&
13009         RHSAddRec->getNoWrapFlags()) {
13010       // The structure of loop we are trying to calculate backedge count of:
13011       //
13012       //  left = left_start
13013       //  right = right_start
13014       //
13015       //  while(left < right){
13016       //    ... do something here ...
13017       //    left += s1; // stride of left is s1 (s1 > 0)
13018       //    right += s2; // stride of right is s2 (s2 < 0)
13019       //  }
13020       //
13021 
13022       const SCEV *RHSStart = RHSAddRec->getStart();
13023       const SCEV *RHSStride = RHSAddRec->getStepRecurrence(*this);
13024 
13025       // If Stride - RHSStride is positive and does not overflow, we can write
13026       // backedge count as ->
13027       //    ceil((End - Start) /u (Stride - RHSStride))
13028       //    Where, End = max(RHSStart, Start)
13029 
13030       // Check if RHSStride < 0 and Stride - RHSStride will not overflow.
13031       if (isKnownNegative(RHSStride) &&
13032           willNotOverflow(Instruction::Sub, /*Signed=*/true, Stride,
13033                           RHSStride)) {
13034 
13035         const SCEV *Denominator = getMinusSCEV(Stride, RHSStride);
13036         if (isKnownPositive(Denominator)) {
13037           End = IsSigned ? getSMaxExpr(RHSStart, Start)
13038                          : getUMaxExpr(RHSStart, Start);
13039 
13040           // We can do this because End >= Start, as End = max(RHSStart, Start)
13041           const SCEV *Delta = getMinusSCEV(End, Start);
13042 
13043           BECount = getUDivCeilSCEV(Delta, Denominator);
13044           BECountIfBackedgeTaken =
13045               getUDivCeilSCEV(getMinusSCEV(RHSStart, Start), Denominator);
13046         }
13047       }
13048     }
13049     if (BECount == nullptr) {
13050       // If we cannot calculate ExactBECount, we can calculate the MaxBECount,
13051       // given the start, stride and max value for the end bound of the
13052       // loop (RHS), and the fact that IV does not overflow (which is
13053       // checked above).
13054       const SCEV *MaxBECount = computeMaxBECountForLT(
13055           Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
13056       return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
13057                        MaxBECount, false /*MaxOrZero*/, Predicates);
13058     }
13059   } else {
13060     // We use the expression (max(End,Start)-Start)/Stride to describe the
13061     // backedge count, as if the backedge is taken at least once
13062     // max(End,Start) is End and so the result is as above, and if not
13063     // max(End,Start) is Start so we get a backedge count of zero.
13064     auto *OrigStartMinusStride = getMinusSCEV(OrigStart, Stride);
13065     assert(isAvailableAtLoopEntry(OrigStartMinusStride, L) && "Must be!");
13066     assert(isAvailableAtLoopEntry(OrigStart, L) && "Must be!");
13067     assert(isAvailableAtLoopEntry(OrigRHS, L) && "Must be!");
13068     // Can we prove (max(RHS,Start) > Start - Stride?
13069     if (isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigStart) &&
13070         isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigRHS)) {
13071       // In this case, we can use a refined formula for computing backedge
13072       // taken count.  The general formula remains:
13073       //   "End-Start /uceiling Stride" where "End = max(RHS,Start)"
13074       // We want to use the alternate formula:
13075       //   "((End - 1) - (Start - Stride)) /u Stride"
13076       // Let's do a quick case analysis to show these are equivalent under
13077       // our precondition that max(RHS,Start) > Start - Stride.
13078       // * For RHS <= Start, the backedge-taken count must be zero.
13079       //   "((End - 1) - (Start - Stride)) /u Stride" reduces to
13080       //   "((Start - 1) - (Start - Stride)) /u Stride" which simplies to
13081       //   "Stride - 1 /u Stride" which is indeed zero for all non-zero values
13082       //     of Stride.  For 0 stride, we've use umin(1,Stride) above,
13083       //     reducing this to the stride of 1 case.
13084       // * For RHS >= Start, the backedge count must be "RHS-Start /uceil
13085       // Stride".
13086       //   "((End - 1) - (Start - Stride)) /u Stride" reduces to
13087       //   "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to
13088       //   "((RHS - (Start - Stride) - 1) /u Stride".
13089       //   Our preconditions trivially imply no overflow in that form.
13090       const SCEV *MinusOne = getMinusOne(Stride->getType());
13091       const SCEV *Numerator =
13092           getMinusSCEV(getAddExpr(RHS, MinusOne), getMinusSCEV(Start, Stride));
13093       BECount = getUDivExpr(Numerator, Stride);
13094     }
13095 
13096     if (!BECount) {
13097       auto canProveRHSGreaterThanEqualStart = [&]() {
13098         auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
13099         const SCEV *GuardedRHS = applyLoopGuards(OrigRHS, L);
13100         const SCEV *GuardedStart = applyLoopGuards(OrigStart, L);
13101 
13102         if (isLoopEntryGuardedByCond(L, CondGE, OrigRHS, OrigStart) ||
13103             isKnownPredicate(CondGE, GuardedRHS, GuardedStart))
13104           return true;
13105 
13106         // (RHS > Start - 1) implies RHS >= Start.
13107         // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if
13108         //   "Start - 1" doesn't overflow.
13109         // * For signed comparison, if Start - 1 does overflow, it's equal
13110         //   to INT_MAX, and "RHS >s INT_MAX" is trivially false.
13111         // * For unsigned comparison, if Start - 1 does overflow, it's equal
13112         //   to UINT_MAX, and "RHS >u UINT_MAX" is trivially false.
13113         //
13114         // FIXME: Should isLoopEntryGuardedByCond do this for us?
13115         auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
13116         auto *StartMinusOne =
13117             getAddExpr(OrigStart, getMinusOne(OrigStart->getType()));
13118         return isLoopEntryGuardedByCond(L, CondGT, OrigRHS, StartMinusOne);
13119       };
13120 
13121       // If we know that RHS >= Start in the context of loop, then we know
13122       // that max(RHS, Start) = RHS at this point.
13123       if (canProveRHSGreaterThanEqualStart()) {
13124         End = RHS;
13125       } else {
13126         // If RHS < Start, the backedge will be taken zero times.  So in
13127         // general, we can write the backedge-taken count as:
13128         //
13129         //     RHS >= Start ? ceil(RHS - Start) / Stride : 0
13130         //
13131         // We convert it to the following to make it more convenient for SCEV:
13132         //
13133         //     ceil(max(RHS, Start) - Start) / Stride
13134         End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
13135 
13136         // See what would happen if we assume the backedge is taken. This is
13137         // used to compute MaxBECount.
13138         BECountIfBackedgeTaken =
13139             getUDivCeilSCEV(getMinusSCEV(RHS, Start), Stride);
13140       }
13141 
13142       // At this point, we know:
13143       //
13144       // 1. If IsSigned, Start <=s End; otherwise, Start <=u End
13145       // 2. The index variable doesn't overflow.
13146       //
13147       // Therefore, we know N exists such that
13148       // (Start + Stride * N) >= End, and computing "(Start + Stride * N)"
13149       // doesn't overflow.
13150       //
13151       // Using this information, try to prove whether the addition in
13152       // "(Start - End) + (Stride - 1)" has unsigned overflow.
13153       const SCEV *One = getOne(Stride->getType());
13154       bool MayAddOverflow = [&] {
13155         if (auto *StrideC = dyn_cast<SCEVConstant>(Stride)) {
13156           if (StrideC->getAPInt().isPowerOf2()) {
13157             // Suppose Stride is a power of two, and Start/End are unsigned
13158             // integers.  Let UMAX be the largest representable unsigned
13159             // integer.
13160             //
13161             // By the preconditions of this function, we know
13162             // "(Start + Stride * N) >= End", and this doesn't overflow.
13163             // As a formula:
13164             //
13165             //   End <= (Start + Stride * N) <= UMAX
13166             //
13167             // Subtracting Start from all the terms:
13168             //
13169             //   End - Start <= Stride * N <= UMAX - Start
13170             //
13171             // Since Start is unsigned, UMAX - Start <= UMAX.  Therefore:
13172             //
13173             //   End - Start <= Stride * N <= UMAX
13174             //
13175             // Stride * N is a multiple of Stride. Therefore,
13176             //
13177             //   End - Start <= Stride * N <= UMAX - (UMAX mod Stride)
13178             //
13179             // Since Stride is a power of two, UMAX + 1 is divisible by
13180             // Stride. Therefore, UMAX mod Stride == Stride - 1.  So we can
13181             // write:
13182             //
13183             //   End - Start <= Stride * N <= UMAX - Stride - 1
13184             //
13185             // Dropping the middle term:
13186             //
13187             //   End - Start <= UMAX - Stride - 1
13188             //
13189             // Adding Stride - 1 to both sides:
13190             //
13191             //   (End - Start) + (Stride - 1) <= UMAX
13192             //
13193             // In other words, the addition doesn't have unsigned overflow.
13194             //
13195             // A similar proof works if we treat Start/End as signed values.
13196             // Just rewrite steps before "End - Start <= Stride * N <= UMAX"
13197             // to use signed max instead of unsigned max. Note that we're
13198             // trying to prove a lack of unsigned overflow in either case.
13199             return false;
13200           }
13201         }
13202         if (Start == Stride || Start == getMinusSCEV(Stride, One)) {
13203           // If Start is equal to Stride, (End - Start) + (Stride - 1) == End
13204           // - 1. If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1
13205           // <u End. If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End -
13206           // 1 <s End.
13207           //
13208           // If Start is equal to Stride - 1, (End - Start) + Stride - 1 ==
13209           // End.
13210           return false;
13211         }
13212         return true;
13213       }();
13214 
13215       const SCEV *Delta = getMinusSCEV(End, Start);
13216       if (!MayAddOverflow) {
13217         // floor((D + (S - 1)) / S)
13218         // We prefer this formulation if it's legal because it's fewer
13219         // operations.
13220         BECount =
13221             getUDivExpr(getAddExpr(Delta, getMinusSCEV(Stride, One)), Stride);
13222       } else {
13223         BECount = getUDivCeilSCEV(Delta, Stride);
13224       }
13225     }
13226   }
13227 
13228   const SCEV *ConstantMaxBECount;
13229   bool MaxOrZero = false;
13230   if (isa<SCEVConstant>(BECount)) {
13231     ConstantMaxBECount = BECount;
13232   } else if (BECountIfBackedgeTaken &&
13233              isa<SCEVConstant>(BECountIfBackedgeTaken)) {
13234     // If we know exactly how many times the backedge will be taken if it's
13235     // taken at least once, then the backedge count will either be that or
13236     // zero.
13237     ConstantMaxBECount = BECountIfBackedgeTaken;
13238     MaxOrZero = true;
13239   } else {
13240     ConstantMaxBECount = computeMaxBECountForLT(
13241         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
13242   }
13243 
13244   if (isa<SCEVCouldNotCompute>(ConstantMaxBECount) &&
13245       !isa<SCEVCouldNotCompute>(BECount))
13246     ConstantMaxBECount = getConstant(getUnsignedRangeMax(BECount));
13247 
13248   const SCEV *SymbolicMaxBECount =
13249       isa<SCEVCouldNotCompute>(BECount) ? ConstantMaxBECount : BECount;
13250   return ExitLimit(BECount, ConstantMaxBECount, SymbolicMaxBECount, MaxOrZero,
13251                    Predicates);
13252 }
13253 
howManyGreaterThans(const SCEV * LHS,const SCEV * RHS,const Loop * L,bool IsSigned,bool ControlsOnlyExit,bool AllowPredicates)13254 ScalarEvolution::ExitLimit ScalarEvolution::howManyGreaterThans(
13255     const SCEV *LHS, const SCEV *RHS, const Loop *L, bool IsSigned,
13256     bool ControlsOnlyExit, bool AllowPredicates) {
13257   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
13258   // We handle only IV > Invariant
13259   if (!isLoopInvariant(RHS, L))
13260     return getCouldNotCompute();
13261 
13262   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
13263   if (!IV && AllowPredicates)
13264     // Try to make this an AddRec using runtime tests, in the first X
13265     // iterations of this loop, where X is the SCEV expression found by the
13266     // algorithm below.
13267     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
13268 
13269   // Avoid weird loops
13270   if (!IV || IV->getLoop() != L || !IV->isAffine())
13271     return getCouldNotCompute();
13272 
13273   auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW;
13274   bool NoWrap = ControlsOnlyExit && IV->getNoWrapFlags(WrapType);
13275   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
13276 
13277   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
13278 
13279   // Avoid negative or zero stride values
13280   if (!isKnownPositive(Stride))
13281     return getCouldNotCompute();
13282 
13283   // Avoid proven overflow cases: this will ensure that the backedge taken count
13284   // will not generate any unsigned overflow. Relaxed no-overflow conditions
13285   // exploit NoWrapFlags, allowing to optimize in presence of undefined
13286   // behaviors like the case of C language.
13287   if (!Stride->isOne() && !NoWrap)
13288     if (canIVOverflowOnGT(RHS, Stride, IsSigned))
13289       return getCouldNotCompute();
13290 
13291   const SCEV *Start = IV->getStart();
13292   const SCEV *End = RHS;
13293   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
13294     // If we know that Start >= RHS in the context of loop, then we know that
13295     // min(RHS, Start) = RHS at this point.
13296     if (isLoopEntryGuardedByCond(
13297             L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS))
13298       End = RHS;
13299     else
13300       End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
13301   }
13302 
13303   if (Start->getType()->isPointerTy()) {
13304     Start = getLosslessPtrToIntExpr(Start);
13305     if (isa<SCEVCouldNotCompute>(Start))
13306       return Start;
13307   }
13308   if (End->getType()->isPointerTy()) {
13309     End = getLosslessPtrToIntExpr(End);
13310     if (isa<SCEVCouldNotCompute>(End))
13311       return End;
13312   }
13313 
13314   // Compute ((Start - End) + (Stride - 1)) / Stride.
13315   // FIXME: This can overflow. Holding off on fixing this for now;
13316   // howManyGreaterThans will hopefully be gone soon.
13317   const SCEV *One = getOne(Stride->getType());
13318   const SCEV *BECount = getUDivExpr(
13319       getAddExpr(getMinusSCEV(Start, End), getMinusSCEV(Stride, One)), Stride);
13320 
13321   APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
13322                             : getUnsignedRangeMax(Start);
13323 
13324   APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
13325                              : getUnsignedRangeMin(Stride);
13326 
13327   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
13328   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
13329                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
13330 
13331   // Although End can be a MIN expression we estimate MinEnd considering only
13332   // the case End = RHS. This is safe because in the other case (Start - End)
13333   // is zero, leading to a zero maximum backedge taken count.
13334   APInt MinEnd =
13335     IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
13336              : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
13337 
13338   const SCEV *ConstantMaxBECount =
13339       isa<SCEVConstant>(BECount)
13340           ? BECount
13341           : getUDivCeilSCEV(getConstant(MaxStart - MinEnd),
13342                             getConstant(MinStride));
13343 
13344   if (isa<SCEVCouldNotCompute>(ConstantMaxBECount))
13345     ConstantMaxBECount = BECount;
13346   const SCEV *SymbolicMaxBECount =
13347       isa<SCEVCouldNotCompute>(BECount) ? ConstantMaxBECount : BECount;
13348 
13349   return ExitLimit(BECount, ConstantMaxBECount, SymbolicMaxBECount, false,
13350                    Predicates);
13351 }
13352 
getNumIterationsInRange(const ConstantRange & Range,ScalarEvolution & SE) const13353 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
13354                                                     ScalarEvolution &SE) const {
13355   if (Range.isFullSet())  // Infinite loop.
13356     return SE.getCouldNotCompute();
13357 
13358   // If the start is a non-zero constant, shift the range to simplify things.
13359   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
13360     if (!SC->getValue()->isZero()) {
13361       SmallVector<const SCEV *, 4> Operands(operands());
13362       Operands[0] = SE.getZero(SC->getType());
13363       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
13364                                              getNoWrapFlags(FlagNW));
13365       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
13366         return ShiftedAddRec->getNumIterationsInRange(
13367             Range.subtract(SC->getAPInt()), SE);
13368       // This is strange and shouldn't happen.
13369       return SE.getCouldNotCompute();
13370     }
13371 
13372   // The only time we can solve this is when we have all constant indices.
13373   // Otherwise, we cannot determine the overflow conditions.
13374   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
13375     return SE.getCouldNotCompute();
13376 
13377   // Okay at this point we know that all elements of the chrec are constants and
13378   // that the start element is zero.
13379 
13380   // First check to see if the range contains zero.  If not, the first
13381   // iteration exits.
13382   unsigned BitWidth = SE.getTypeSizeInBits(getType());
13383   if (!Range.contains(APInt(BitWidth, 0)))
13384     return SE.getZero(getType());
13385 
13386   if (isAffine()) {
13387     // If this is an affine expression then we have this situation:
13388     //   Solve {0,+,A} in Range  ===  Ax in Range
13389 
13390     // We know that zero is in the range.  If A is positive then we know that
13391     // the upper value of the range must be the first possible exit value.
13392     // If A is negative then the lower of the range is the last possible loop
13393     // value.  Also note that we already checked for a full range.
13394     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
13395     APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
13396 
13397     // The exit value should be (End+A)/A.
13398     APInt ExitVal = (End + A).udiv(A);
13399     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
13400 
13401     // Evaluate at the exit value.  If we really did fall out of the valid
13402     // range, then we computed our trip count, otherwise wrap around or other
13403     // things must have happened.
13404     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
13405     if (Range.contains(Val->getValue()))
13406       return SE.getCouldNotCompute();  // Something strange happened
13407 
13408     // Ensure that the previous value is in the range.
13409     assert(Range.contains(
13410            EvaluateConstantChrecAtConstant(this,
13411            ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
13412            "Linear scev computation is off in a bad way!");
13413     return SE.getConstant(ExitValue);
13414   }
13415 
13416   if (isQuadratic()) {
13417     if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
13418       return SE.getConstant(*S);
13419   }
13420 
13421   return SE.getCouldNotCompute();
13422 }
13423 
13424 const SCEVAddRecExpr *
getPostIncExpr(ScalarEvolution & SE) const13425 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
13426   assert(getNumOperands() > 1 && "AddRec with zero step?");
13427   // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
13428   // but in this case we cannot guarantee that the value returned will be an
13429   // AddRec because SCEV does not have a fixed point where it stops
13430   // simplification: it is legal to return ({rec1} + {rec2}). For example, it
13431   // may happen if we reach arithmetic depth limit while simplifying. So we
13432   // construct the returned value explicitly.
13433   SmallVector<const SCEV *, 3> Ops;
13434   // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
13435   // (this + Step) is {A+B,+,B+C,+...,+,N}.
13436   for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
13437     Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
13438   // We know that the last operand is not a constant zero (otherwise it would
13439   // have been popped out earlier). This guarantees us that if the result has
13440   // the same last operand, then it will also not be popped out, meaning that
13441   // the returned value will be an AddRec.
13442   const SCEV *Last = getOperand(getNumOperands() - 1);
13443   assert(!Last->isZero() && "Recurrency with zero step?");
13444   Ops.push_back(Last);
13445   return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
13446                                                SCEV::FlagAnyWrap));
13447 }
13448 
13449 // Return true when S contains at least an undef value.
containsUndefs(const SCEV * S) const13450 bool ScalarEvolution::containsUndefs(const SCEV *S) const {
13451   return SCEVExprContains(S, [](const SCEV *S) {
13452     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
13453       return isa<UndefValue>(SU->getValue());
13454     return false;
13455   });
13456 }
13457 
13458 // Return true when S contains a value that is a nullptr.
containsErasedValue(const SCEV * S) const13459 bool ScalarEvolution::containsErasedValue(const SCEV *S) const {
13460   return SCEVExprContains(S, [](const SCEV *S) {
13461     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
13462       return SU->getValue() == nullptr;
13463     return false;
13464   });
13465 }
13466 
13467 /// Return the size of an element read or written by Inst.
getElementSize(Instruction * Inst)13468 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
13469   Type *Ty;
13470   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
13471     Ty = Store->getValueOperand()->getType();
13472   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
13473     Ty = Load->getType();
13474   else
13475     return nullptr;
13476 
13477   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
13478   return getSizeOfExpr(ETy, Ty);
13479 }
13480 
13481 //===----------------------------------------------------------------------===//
13482 //                   SCEVCallbackVH Class Implementation
13483 //===----------------------------------------------------------------------===//
13484 
deleted()13485 void ScalarEvolution::SCEVCallbackVH::deleted() {
13486   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
13487   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
13488     SE->ConstantEvolutionLoopExitValue.erase(PN);
13489   SE->eraseValueFromMap(getValPtr());
13490   // this now dangles!
13491 }
13492 
allUsesReplacedWith(Value * V)13493 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
13494   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
13495 
13496   // Forget all the expressions associated with users of the old value,
13497   // so that future queries will recompute the expressions using the new
13498   // value.
13499   SE->forgetValue(getValPtr());
13500   // this now dangles!
13501 }
13502 
SCEVCallbackVH(Value * V,ScalarEvolution * se)13503 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
13504   : CallbackVH(V), SE(se) {}
13505 
13506 //===----------------------------------------------------------------------===//
13507 //                   ScalarEvolution Class Implementation
13508 //===----------------------------------------------------------------------===//
13509 
ScalarEvolution(Function & F,TargetLibraryInfo & TLI,AssumptionCache & AC,DominatorTree & DT,LoopInfo & LI)13510 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
13511                                  AssumptionCache &AC, DominatorTree &DT,
13512                                  LoopInfo &LI)
13513     : F(F), DL(F.getDataLayout()), TLI(TLI), AC(AC), DT(DT), LI(LI),
13514       CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
13515       LoopDispositions(64), BlockDispositions(64) {
13516   // To use guards for proving predicates, we need to scan every instruction in
13517   // relevant basic blocks, and not just terminators.  Doing this is a waste of
13518   // time if the IR does not actually contain any calls to
13519   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
13520   //
13521   // This pessimizes the case where a pass that preserves ScalarEvolution wants
13522   // to _add_ guards to the module when there weren't any before, and wants
13523   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
13524   // efficient in lieu of being smart in that rather obscure case.
13525 
13526   auto *GuardDecl = F.getParent()->getFunction(
13527       Intrinsic::getName(Intrinsic::experimental_guard));
13528   HasGuards = GuardDecl && !GuardDecl->use_empty();
13529 }
13530 
ScalarEvolution(ScalarEvolution && Arg)13531 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
13532     : F(Arg.F), DL(Arg.DL), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC),
13533       DT(Arg.DT), LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
13534       ValueExprMap(std::move(Arg.ValueExprMap)),
13535       PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
13536       PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
13537       PendingMerges(std::move(Arg.PendingMerges)),
13538       ConstantMultipleCache(std::move(Arg.ConstantMultipleCache)),
13539       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
13540       PredicatedBackedgeTakenCounts(
13541           std::move(Arg.PredicatedBackedgeTakenCounts)),
13542       BECountUsers(std::move(Arg.BECountUsers)),
13543       ConstantEvolutionLoopExitValue(
13544           std::move(Arg.ConstantEvolutionLoopExitValue)),
13545       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
13546       ValuesAtScopesUsers(std::move(Arg.ValuesAtScopesUsers)),
13547       LoopDispositions(std::move(Arg.LoopDispositions)),
13548       LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
13549       BlockDispositions(std::move(Arg.BlockDispositions)),
13550       SCEVUsers(std::move(Arg.SCEVUsers)),
13551       UnsignedRanges(std::move(Arg.UnsignedRanges)),
13552       SignedRanges(std::move(Arg.SignedRanges)),
13553       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
13554       UniquePreds(std::move(Arg.UniquePreds)),
13555       SCEVAllocator(std::move(Arg.SCEVAllocator)),
13556       LoopUsers(std::move(Arg.LoopUsers)),
13557       PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
13558       FirstUnknown(Arg.FirstUnknown) {
13559   Arg.FirstUnknown = nullptr;
13560 }
13561 
~ScalarEvolution()13562 ScalarEvolution::~ScalarEvolution() {
13563   // Iterate through all the SCEVUnknown instances and call their
13564   // destructors, so that they release their references to their values.
13565   for (SCEVUnknown *U = FirstUnknown; U;) {
13566     SCEVUnknown *Tmp = U;
13567     U = U->Next;
13568     Tmp->~SCEVUnknown();
13569   }
13570   FirstUnknown = nullptr;
13571 
13572   ExprValueMap.clear();
13573   ValueExprMap.clear();
13574   HasRecMap.clear();
13575   BackedgeTakenCounts.clear();
13576   PredicatedBackedgeTakenCounts.clear();
13577 
13578   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
13579   assert(PendingPhiRanges.empty() && "getRangeRef garbage");
13580   assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
13581   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
13582   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
13583 }
13584 
hasLoopInvariantBackedgeTakenCount(const Loop * L)13585 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
13586   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
13587 }
13588 
13589 /// When printing a top-level SCEV for trip counts, it's helpful to include
13590 /// a type for constants which are otherwise hard to disambiguate.
PrintSCEVWithTypeHint(raw_ostream & OS,const SCEV * S)13591 static void PrintSCEVWithTypeHint(raw_ostream &OS, const SCEV* S) {
13592   if (isa<SCEVConstant>(S))
13593     OS << *S->getType() << " ";
13594   OS << *S;
13595 }
13596 
PrintLoopInfo(raw_ostream & OS,ScalarEvolution * SE,const Loop * L)13597 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
13598                           const Loop *L) {
13599   // Print all inner loops first
13600   for (Loop *I : *L)
13601     PrintLoopInfo(OS, SE, I);
13602 
13603   OS << "Loop ";
13604   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13605   OS << ": ";
13606 
13607   SmallVector<BasicBlock *, 8> ExitingBlocks;
13608   L->getExitingBlocks(ExitingBlocks);
13609   if (ExitingBlocks.size() != 1)
13610     OS << "<multiple exits> ";
13611 
13612   auto *BTC = SE->getBackedgeTakenCount(L);
13613   if (!isa<SCEVCouldNotCompute>(BTC)) {
13614     OS << "backedge-taken count is ";
13615     PrintSCEVWithTypeHint(OS, BTC);
13616   } else
13617     OS << "Unpredictable backedge-taken count.";
13618   OS << "\n";
13619 
13620   if (ExitingBlocks.size() > 1)
13621     for (BasicBlock *ExitingBlock : ExitingBlocks) {
13622       OS << "  exit count for " << ExitingBlock->getName() << ": ";
13623       PrintSCEVWithTypeHint(OS, SE->getExitCount(L, ExitingBlock));
13624       OS << "\n";
13625     }
13626 
13627   OS << "Loop ";
13628   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13629   OS << ": ";
13630 
13631   auto *ConstantBTC = SE->getConstantMaxBackedgeTakenCount(L);
13632   if (!isa<SCEVCouldNotCompute>(ConstantBTC)) {
13633     OS << "constant max backedge-taken count is ";
13634     PrintSCEVWithTypeHint(OS, ConstantBTC);
13635     if (SE->isBackedgeTakenCountMaxOrZero(L))
13636       OS << ", actual taken count either this or zero.";
13637   } else {
13638     OS << "Unpredictable constant max backedge-taken count. ";
13639   }
13640 
13641   OS << "\n"
13642         "Loop ";
13643   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13644   OS << ": ";
13645 
13646   auto *SymbolicBTC = SE->getSymbolicMaxBackedgeTakenCount(L);
13647   if (!isa<SCEVCouldNotCompute>(SymbolicBTC)) {
13648     OS << "symbolic max backedge-taken count is ";
13649     PrintSCEVWithTypeHint(OS, SymbolicBTC);
13650     if (SE->isBackedgeTakenCountMaxOrZero(L))
13651       OS << ", actual taken count either this or zero.";
13652   } else {
13653     OS << "Unpredictable symbolic max backedge-taken count. ";
13654   }
13655   OS << "\n";
13656 
13657   if (ExitingBlocks.size() > 1)
13658     for (BasicBlock *ExitingBlock : ExitingBlocks) {
13659       OS << "  symbolic max exit count for " << ExitingBlock->getName() << ": ";
13660       auto *ExitBTC = SE->getExitCount(L, ExitingBlock,
13661                                        ScalarEvolution::SymbolicMaximum);
13662       PrintSCEVWithTypeHint(OS, ExitBTC);
13663       OS << "\n";
13664     }
13665 
13666   SmallVector<const SCEVPredicate *, 4> Preds;
13667   auto *PBT = SE->getPredicatedBackedgeTakenCount(L, Preds);
13668   if (PBT != BTC || !Preds.empty()) {
13669     OS << "Loop ";
13670     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13671     OS << ": ";
13672     if (!isa<SCEVCouldNotCompute>(PBT)) {
13673       OS << "Predicated backedge-taken count is ";
13674       PrintSCEVWithTypeHint(OS, PBT);
13675     } else
13676       OS << "Unpredictable predicated backedge-taken count.";
13677     OS << "\n";
13678     OS << " Predicates:\n";
13679     for (const auto *P : Preds)
13680       P->print(OS, 4);
13681   }
13682 
13683   Preds.clear();
13684   auto *PredSymbolicMax =
13685       SE->getPredicatedSymbolicMaxBackedgeTakenCount(L, Preds);
13686   if (SymbolicBTC != PredSymbolicMax) {
13687     OS << "Loop ";
13688     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13689     OS << ": ";
13690     if (!isa<SCEVCouldNotCompute>(PredSymbolicMax)) {
13691       OS << "Predicated symbolic max backedge-taken count is ";
13692       PrintSCEVWithTypeHint(OS, PredSymbolicMax);
13693     } else
13694       OS << "Unpredictable predicated symbolic max backedge-taken count.";
13695     OS << "\n";
13696     OS << " Predicates:\n";
13697     for (const auto *P : Preds)
13698       P->print(OS, 4);
13699   }
13700 
13701   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
13702     OS << "Loop ";
13703     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13704     OS << ": ";
13705     OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
13706   }
13707 }
13708 
13709 namespace llvm {
operator <<(raw_ostream & OS,ScalarEvolution::LoopDisposition LD)13710 raw_ostream &operator<<(raw_ostream &OS, ScalarEvolution::LoopDisposition LD) {
13711   switch (LD) {
13712   case ScalarEvolution::LoopVariant:
13713     OS << "Variant";
13714     break;
13715   case ScalarEvolution::LoopInvariant:
13716     OS << "Invariant";
13717     break;
13718   case ScalarEvolution::LoopComputable:
13719     OS << "Computable";
13720     break;
13721   }
13722   return OS;
13723 }
13724 
operator <<(raw_ostream & OS,ScalarEvolution::BlockDisposition BD)13725 raw_ostream &operator<<(raw_ostream &OS, ScalarEvolution::BlockDisposition BD) {
13726   switch (BD) {
13727   case ScalarEvolution::DoesNotDominateBlock:
13728     OS << "DoesNotDominate";
13729     break;
13730   case ScalarEvolution::DominatesBlock:
13731     OS << "Dominates";
13732     break;
13733   case ScalarEvolution::ProperlyDominatesBlock:
13734     OS << "ProperlyDominates";
13735     break;
13736   }
13737   return OS;
13738 }
13739 } // namespace llvm
13740 
print(raw_ostream & OS) const13741 void ScalarEvolution::print(raw_ostream &OS) const {
13742   // ScalarEvolution's implementation of the print method is to print
13743   // out SCEV values of all instructions that are interesting. Doing
13744   // this potentially causes it to create new SCEV objects though,
13745   // which technically conflicts with the const qualifier. This isn't
13746   // observable from outside the class though, so casting away the
13747   // const isn't dangerous.
13748   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
13749 
13750   if (ClassifyExpressions) {
13751     OS << "Classifying expressions for: ";
13752     F.printAsOperand(OS, /*PrintType=*/false);
13753     OS << "\n";
13754     for (Instruction &I : instructions(F))
13755       if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
13756         OS << I << '\n';
13757         OS << "  -->  ";
13758         const SCEV *SV = SE.getSCEV(&I);
13759         SV->print(OS);
13760         if (!isa<SCEVCouldNotCompute>(SV)) {
13761           OS << " U: ";
13762           SE.getUnsignedRange(SV).print(OS);
13763           OS << " S: ";
13764           SE.getSignedRange(SV).print(OS);
13765         }
13766 
13767         const Loop *L = LI.getLoopFor(I.getParent());
13768 
13769         const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
13770         if (AtUse != SV) {
13771           OS << "  -->  ";
13772           AtUse->print(OS);
13773           if (!isa<SCEVCouldNotCompute>(AtUse)) {
13774             OS << " U: ";
13775             SE.getUnsignedRange(AtUse).print(OS);
13776             OS << " S: ";
13777             SE.getSignedRange(AtUse).print(OS);
13778           }
13779         }
13780 
13781         if (L) {
13782           OS << "\t\t" "Exits: ";
13783           const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
13784           if (!SE.isLoopInvariant(ExitValue, L)) {
13785             OS << "<<Unknown>>";
13786           } else {
13787             OS << *ExitValue;
13788           }
13789 
13790           bool First = true;
13791           for (const auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
13792             if (First) {
13793               OS << "\t\t" "LoopDispositions: { ";
13794               First = false;
13795             } else {
13796               OS << ", ";
13797             }
13798 
13799             Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13800             OS << ": " << SE.getLoopDisposition(SV, Iter);
13801           }
13802 
13803           for (const auto *InnerL : depth_first(L)) {
13804             if (InnerL == L)
13805               continue;
13806             if (First) {
13807               OS << "\t\t" "LoopDispositions: { ";
13808               First = false;
13809             } else {
13810               OS << ", ";
13811             }
13812 
13813             InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13814             OS << ": " << SE.getLoopDisposition(SV, InnerL);
13815           }
13816 
13817           OS << " }";
13818         }
13819 
13820         OS << "\n";
13821       }
13822   }
13823 
13824   OS << "Determining loop execution counts for: ";
13825   F.printAsOperand(OS, /*PrintType=*/false);
13826   OS << "\n";
13827   for (Loop *I : LI)
13828     PrintLoopInfo(OS, &SE, I);
13829 }
13830 
13831 ScalarEvolution::LoopDisposition
getLoopDisposition(const SCEV * S,const Loop * L)13832 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
13833   auto &Values = LoopDispositions[S];
13834   for (auto &V : Values) {
13835     if (V.getPointer() == L)
13836       return V.getInt();
13837   }
13838   Values.emplace_back(L, LoopVariant);
13839   LoopDisposition D = computeLoopDisposition(S, L);
13840   auto &Values2 = LoopDispositions[S];
13841   for (auto &V : llvm::reverse(Values2)) {
13842     if (V.getPointer() == L) {
13843       V.setInt(D);
13844       break;
13845     }
13846   }
13847   return D;
13848 }
13849 
13850 ScalarEvolution::LoopDisposition
computeLoopDisposition(const SCEV * S,const Loop * L)13851 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
13852   switch (S->getSCEVType()) {
13853   case scConstant:
13854   case scVScale:
13855     return LoopInvariant;
13856   case scAddRecExpr: {
13857     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
13858 
13859     // If L is the addrec's loop, it's computable.
13860     if (AR->getLoop() == L)
13861       return LoopComputable;
13862 
13863     // Add recurrences are never invariant in the function-body (null loop).
13864     if (!L)
13865       return LoopVariant;
13866 
13867     // Everything that is not defined at loop entry is variant.
13868     if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
13869       return LoopVariant;
13870     assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
13871            " dominate the contained loop's header?");
13872 
13873     // This recurrence is invariant w.r.t. L if AR's loop contains L.
13874     if (AR->getLoop()->contains(L))
13875       return LoopInvariant;
13876 
13877     // This recurrence is variant w.r.t. L if any of its operands
13878     // are variant.
13879     for (const auto *Op : AR->operands())
13880       if (!isLoopInvariant(Op, L))
13881         return LoopVariant;
13882 
13883     // Otherwise it's loop-invariant.
13884     return LoopInvariant;
13885   }
13886   case scTruncate:
13887   case scZeroExtend:
13888   case scSignExtend:
13889   case scPtrToInt:
13890   case scAddExpr:
13891   case scMulExpr:
13892   case scUDivExpr:
13893   case scUMaxExpr:
13894   case scSMaxExpr:
13895   case scUMinExpr:
13896   case scSMinExpr:
13897   case scSequentialUMinExpr: {
13898     bool HasVarying = false;
13899     for (const auto *Op : S->operands()) {
13900       LoopDisposition D = getLoopDisposition(Op, L);
13901       if (D == LoopVariant)
13902         return LoopVariant;
13903       if (D == LoopComputable)
13904         HasVarying = true;
13905     }
13906     return HasVarying ? LoopComputable : LoopInvariant;
13907   }
13908   case scUnknown:
13909     // All non-instruction values are loop invariant.  All instructions are loop
13910     // invariant if they are not contained in the specified loop.
13911     // Instructions are never considered invariant in the function body
13912     // (null loop) because they are defined within the "loop".
13913     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
13914       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
13915     return LoopInvariant;
13916   case scCouldNotCompute:
13917     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
13918   }
13919   llvm_unreachable("Unknown SCEV kind!");
13920 }
13921 
isLoopInvariant(const SCEV * S,const Loop * L)13922 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
13923   return getLoopDisposition(S, L) == LoopInvariant;
13924 }
13925 
hasComputableLoopEvolution(const SCEV * S,const Loop * L)13926 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
13927   return getLoopDisposition(S, L) == LoopComputable;
13928 }
13929 
13930 ScalarEvolution::BlockDisposition
getBlockDisposition(const SCEV * S,const BasicBlock * BB)13931 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
13932   auto &Values = BlockDispositions[S];
13933   for (auto &V : Values) {
13934     if (V.getPointer() == BB)
13935       return V.getInt();
13936   }
13937   Values.emplace_back(BB, DoesNotDominateBlock);
13938   BlockDisposition D = computeBlockDisposition(S, BB);
13939   auto &Values2 = BlockDispositions[S];
13940   for (auto &V : llvm::reverse(Values2)) {
13941     if (V.getPointer() == BB) {
13942       V.setInt(D);
13943       break;
13944     }
13945   }
13946   return D;
13947 }
13948 
13949 ScalarEvolution::BlockDisposition
computeBlockDisposition(const SCEV * S,const BasicBlock * BB)13950 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
13951   switch (S->getSCEVType()) {
13952   case scConstant:
13953   case scVScale:
13954     return ProperlyDominatesBlock;
13955   case scAddRecExpr: {
13956     // This uses a "dominates" query instead of "properly dominates" query
13957     // to test for proper dominance too, because the instruction which
13958     // produces the addrec's value is a PHI, and a PHI effectively properly
13959     // dominates its entire containing block.
13960     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
13961     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
13962       return DoesNotDominateBlock;
13963 
13964     // Fall through into SCEVNAryExpr handling.
13965     [[fallthrough]];
13966   }
13967   case scTruncate:
13968   case scZeroExtend:
13969   case scSignExtend:
13970   case scPtrToInt:
13971   case scAddExpr:
13972   case scMulExpr:
13973   case scUDivExpr:
13974   case scUMaxExpr:
13975   case scSMaxExpr:
13976   case scUMinExpr:
13977   case scSMinExpr:
13978   case scSequentialUMinExpr: {
13979     bool Proper = true;
13980     for (const SCEV *NAryOp : S->operands()) {
13981       BlockDisposition D = getBlockDisposition(NAryOp, BB);
13982       if (D == DoesNotDominateBlock)
13983         return DoesNotDominateBlock;
13984       if (D == DominatesBlock)
13985         Proper = false;
13986     }
13987     return Proper ? ProperlyDominatesBlock : DominatesBlock;
13988   }
13989   case scUnknown:
13990     if (Instruction *I =
13991           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
13992       if (I->getParent() == BB)
13993         return DominatesBlock;
13994       if (DT.properlyDominates(I->getParent(), BB))
13995         return ProperlyDominatesBlock;
13996       return DoesNotDominateBlock;
13997     }
13998     return ProperlyDominatesBlock;
13999   case scCouldNotCompute:
14000     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
14001   }
14002   llvm_unreachable("Unknown SCEV kind!");
14003 }
14004 
dominates(const SCEV * S,const BasicBlock * BB)14005 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
14006   return getBlockDisposition(S, BB) >= DominatesBlock;
14007 }
14008 
properlyDominates(const SCEV * S,const BasicBlock * BB)14009 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
14010   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
14011 }
14012 
hasOperand(const SCEV * S,const SCEV * Op) const14013 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
14014   return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
14015 }
14016 
forgetBackedgeTakenCounts(const Loop * L,bool Predicated)14017 void ScalarEvolution::forgetBackedgeTakenCounts(const Loop *L,
14018                                                 bool Predicated) {
14019   auto &BECounts =
14020       Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts;
14021   auto It = BECounts.find(L);
14022   if (It != BECounts.end()) {
14023     for (const ExitNotTakenInfo &ENT : It->second.ExitNotTaken) {
14024       for (const SCEV *S : {ENT.ExactNotTaken, ENT.SymbolicMaxNotTaken}) {
14025         if (!isa<SCEVConstant>(S)) {
14026           auto UserIt = BECountUsers.find(S);
14027           assert(UserIt != BECountUsers.end());
14028           UserIt->second.erase({L, Predicated});
14029         }
14030       }
14031     }
14032     BECounts.erase(It);
14033   }
14034 }
14035 
forgetMemoizedResults(ArrayRef<const SCEV * > SCEVs)14036 void ScalarEvolution::forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs) {
14037   SmallPtrSet<const SCEV *, 8> ToForget(SCEVs.begin(), SCEVs.end());
14038   SmallVector<const SCEV *, 8> Worklist(ToForget.begin(), ToForget.end());
14039 
14040   while (!Worklist.empty()) {
14041     const SCEV *Curr = Worklist.pop_back_val();
14042     auto Users = SCEVUsers.find(Curr);
14043     if (Users != SCEVUsers.end())
14044       for (const auto *User : Users->second)
14045         if (ToForget.insert(User).second)
14046           Worklist.push_back(User);
14047   }
14048 
14049   for (const auto *S : ToForget)
14050     forgetMemoizedResultsImpl(S);
14051 
14052   for (auto I = PredicatedSCEVRewrites.begin();
14053        I != PredicatedSCEVRewrites.end();) {
14054     std::pair<const SCEV *, const Loop *> Entry = I->first;
14055     if (ToForget.count(Entry.first))
14056       PredicatedSCEVRewrites.erase(I++);
14057     else
14058       ++I;
14059   }
14060 }
14061 
forgetMemoizedResultsImpl(const SCEV * S)14062 void ScalarEvolution::forgetMemoizedResultsImpl(const SCEV *S) {
14063   LoopDispositions.erase(S);
14064   BlockDispositions.erase(S);
14065   UnsignedRanges.erase(S);
14066   SignedRanges.erase(S);
14067   HasRecMap.erase(S);
14068   ConstantMultipleCache.erase(S);
14069 
14070   if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) {
14071     UnsignedWrapViaInductionTried.erase(AR);
14072     SignedWrapViaInductionTried.erase(AR);
14073   }
14074 
14075   auto ExprIt = ExprValueMap.find(S);
14076   if (ExprIt != ExprValueMap.end()) {
14077     for (Value *V : ExprIt->second) {
14078       auto ValueIt = ValueExprMap.find_as(V);
14079       if (ValueIt != ValueExprMap.end())
14080         ValueExprMap.erase(ValueIt);
14081     }
14082     ExprValueMap.erase(ExprIt);
14083   }
14084 
14085   auto ScopeIt = ValuesAtScopes.find(S);
14086   if (ScopeIt != ValuesAtScopes.end()) {
14087     for (const auto &Pair : ScopeIt->second)
14088       if (!isa_and_nonnull<SCEVConstant>(Pair.second))
14089         llvm::erase(ValuesAtScopesUsers[Pair.second],
14090                     std::make_pair(Pair.first, S));
14091     ValuesAtScopes.erase(ScopeIt);
14092   }
14093 
14094   auto ScopeUserIt = ValuesAtScopesUsers.find(S);
14095   if (ScopeUserIt != ValuesAtScopesUsers.end()) {
14096     for (const auto &Pair : ScopeUserIt->second)
14097       llvm::erase(ValuesAtScopes[Pair.second], std::make_pair(Pair.first, S));
14098     ValuesAtScopesUsers.erase(ScopeUserIt);
14099   }
14100 
14101   auto BEUsersIt = BECountUsers.find(S);
14102   if (BEUsersIt != BECountUsers.end()) {
14103     // Work on a copy, as forgetBackedgeTakenCounts() will modify the original.
14104     auto Copy = BEUsersIt->second;
14105     for (const auto &Pair : Copy)
14106       forgetBackedgeTakenCounts(Pair.getPointer(), Pair.getInt());
14107     BECountUsers.erase(BEUsersIt);
14108   }
14109 
14110   auto FoldUser = FoldCacheUser.find(S);
14111   if (FoldUser != FoldCacheUser.end())
14112     for (auto &KV : FoldUser->second)
14113       FoldCache.erase(KV);
14114   FoldCacheUser.erase(S);
14115 }
14116 
14117 void
getUsedLoops(const SCEV * S,SmallPtrSetImpl<const Loop * > & LoopsUsed)14118 ScalarEvolution::getUsedLoops(const SCEV *S,
14119                               SmallPtrSetImpl<const Loop *> &LoopsUsed) {
14120   struct FindUsedLoops {
14121     FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
14122         : LoopsUsed(LoopsUsed) {}
14123     SmallPtrSetImpl<const Loop *> &LoopsUsed;
14124     bool follow(const SCEV *S) {
14125       if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
14126         LoopsUsed.insert(AR->getLoop());
14127       return true;
14128     }
14129 
14130     bool isDone() const { return false; }
14131   };
14132 
14133   FindUsedLoops F(LoopsUsed);
14134   SCEVTraversal<FindUsedLoops>(F).visitAll(S);
14135 }
14136 
getReachableBlocks(SmallPtrSetImpl<BasicBlock * > & Reachable,Function & F)14137 void ScalarEvolution::getReachableBlocks(
14138     SmallPtrSetImpl<BasicBlock *> &Reachable, Function &F) {
14139   SmallVector<BasicBlock *> Worklist;
14140   Worklist.push_back(&F.getEntryBlock());
14141   while (!Worklist.empty()) {
14142     BasicBlock *BB = Worklist.pop_back_val();
14143     if (!Reachable.insert(BB).second)
14144       continue;
14145 
14146     Value *Cond;
14147     BasicBlock *TrueBB, *FalseBB;
14148     if (match(BB->getTerminator(), m_Br(m_Value(Cond), m_BasicBlock(TrueBB),
14149                                         m_BasicBlock(FalseBB)))) {
14150       if (auto *C = dyn_cast<ConstantInt>(Cond)) {
14151         Worklist.push_back(C->isOne() ? TrueBB : FalseBB);
14152         continue;
14153       }
14154 
14155       if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) {
14156         const SCEV *L = getSCEV(Cmp->getOperand(0));
14157         const SCEV *R = getSCEV(Cmp->getOperand(1));
14158         if (isKnownPredicateViaConstantRanges(Cmp->getPredicate(), L, R)) {
14159           Worklist.push_back(TrueBB);
14160           continue;
14161         }
14162         if (isKnownPredicateViaConstantRanges(Cmp->getInversePredicate(), L,
14163                                               R)) {
14164           Worklist.push_back(FalseBB);
14165           continue;
14166         }
14167       }
14168     }
14169 
14170     append_range(Worklist, successors(BB));
14171   }
14172 }
14173 
verify() const14174 void ScalarEvolution::verify() const {
14175   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
14176   ScalarEvolution SE2(F, TLI, AC, DT, LI);
14177 
14178   SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
14179 
14180   // Map's SCEV expressions from one ScalarEvolution "universe" to another.
14181   struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
14182     SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
14183 
14184     const SCEV *visitConstant(const SCEVConstant *Constant) {
14185       return SE.getConstant(Constant->getAPInt());
14186     }
14187 
14188     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
14189       return SE.getUnknown(Expr->getValue());
14190     }
14191 
14192     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
14193       return SE.getCouldNotCompute();
14194     }
14195   };
14196 
14197   SCEVMapper SCM(SE2);
14198   SmallPtrSet<BasicBlock *, 16> ReachableBlocks;
14199   SE2.getReachableBlocks(ReachableBlocks, F);
14200 
14201   auto GetDelta = [&](const SCEV *Old, const SCEV *New) -> const SCEV * {
14202     if (containsUndefs(Old) || containsUndefs(New)) {
14203       // SCEV treats "undef" as an unknown but consistent value (i.e. it does
14204       // not propagate undef aggressively).  This means we can (and do) fail
14205       // verification in cases where a transform makes a value go from "undef"
14206       // to "undef+1" (say).  The transform is fine, since in both cases the
14207       // result is "undef", but SCEV thinks the value increased by 1.
14208       return nullptr;
14209     }
14210 
14211     // Unless VerifySCEVStrict is set, we only compare constant deltas.
14212     const SCEV *Delta = SE2.getMinusSCEV(Old, New);
14213     if (!VerifySCEVStrict && !isa<SCEVConstant>(Delta))
14214       return nullptr;
14215 
14216     return Delta;
14217   };
14218 
14219   while (!LoopStack.empty()) {
14220     auto *L = LoopStack.pop_back_val();
14221     llvm::append_range(LoopStack, *L);
14222 
14223     // Only verify BECounts in reachable loops. For an unreachable loop,
14224     // any BECount is legal.
14225     if (!ReachableBlocks.contains(L->getHeader()))
14226       continue;
14227 
14228     // Only verify cached BECounts. Computing new BECounts may change the
14229     // results of subsequent SCEV uses.
14230     auto It = BackedgeTakenCounts.find(L);
14231     if (It == BackedgeTakenCounts.end())
14232       continue;
14233 
14234     auto *CurBECount =
14235         SCM.visit(It->second.getExact(L, const_cast<ScalarEvolution *>(this)));
14236     auto *NewBECount = SE2.getBackedgeTakenCount(L);
14237 
14238     if (CurBECount == SE2.getCouldNotCompute() ||
14239         NewBECount == SE2.getCouldNotCompute()) {
14240       // NB! This situation is legal, but is very suspicious -- whatever pass
14241       // change the loop to make a trip count go from could not compute to
14242       // computable or vice-versa *should have* invalidated SCEV.  However, we
14243       // choose not to assert here (for now) since we don't want false
14244       // positives.
14245       continue;
14246     }
14247 
14248     if (SE.getTypeSizeInBits(CurBECount->getType()) >
14249         SE.getTypeSizeInBits(NewBECount->getType()))
14250       NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
14251     else if (SE.getTypeSizeInBits(CurBECount->getType()) <
14252              SE.getTypeSizeInBits(NewBECount->getType()))
14253       CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
14254 
14255     const SCEV *Delta = GetDelta(CurBECount, NewBECount);
14256     if (Delta && !Delta->isZero()) {
14257       dbgs() << "Trip Count for " << *L << " Changed!\n";
14258       dbgs() << "Old: " << *CurBECount << "\n";
14259       dbgs() << "New: " << *NewBECount << "\n";
14260       dbgs() << "Delta: " << *Delta << "\n";
14261       std::abort();
14262     }
14263   }
14264 
14265   // Collect all valid loops currently in LoopInfo.
14266   SmallPtrSet<Loop *, 32> ValidLoops;
14267   SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end());
14268   while (!Worklist.empty()) {
14269     Loop *L = Worklist.pop_back_val();
14270     if (ValidLoops.insert(L).second)
14271       Worklist.append(L->begin(), L->end());
14272   }
14273   for (const auto &KV : ValueExprMap) {
14274 #ifndef NDEBUG
14275     // Check for SCEV expressions referencing invalid/deleted loops.
14276     if (auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second)) {
14277       assert(ValidLoops.contains(AR->getLoop()) &&
14278              "AddRec references invalid loop");
14279     }
14280 #endif
14281 
14282     // Check that the value is also part of the reverse map.
14283     auto It = ExprValueMap.find(KV.second);
14284     if (It == ExprValueMap.end() || !It->second.contains(KV.first)) {
14285       dbgs() << "Value " << *KV.first
14286              << " is in ValueExprMap but not in ExprValueMap\n";
14287       std::abort();
14288     }
14289 
14290     if (auto *I = dyn_cast<Instruction>(&*KV.first)) {
14291       if (!ReachableBlocks.contains(I->getParent()))
14292         continue;
14293       const SCEV *OldSCEV = SCM.visit(KV.second);
14294       const SCEV *NewSCEV = SE2.getSCEV(I);
14295       const SCEV *Delta = GetDelta(OldSCEV, NewSCEV);
14296       if (Delta && !Delta->isZero()) {
14297         dbgs() << "SCEV for value " << *I << " changed!\n"
14298                << "Old: " << *OldSCEV << "\n"
14299                << "New: " << *NewSCEV << "\n"
14300                << "Delta: " << *Delta << "\n";
14301         std::abort();
14302       }
14303     }
14304   }
14305 
14306   for (const auto &KV : ExprValueMap) {
14307     for (Value *V : KV.second) {
14308       auto It = ValueExprMap.find_as(V);
14309       if (It == ValueExprMap.end()) {
14310         dbgs() << "Value " << *V
14311                << " is in ExprValueMap but not in ValueExprMap\n";
14312         std::abort();
14313       }
14314       if (It->second != KV.first) {
14315         dbgs() << "Value " << *V << " mapped to " << *It->second
14316                << " rather than " << *KV.first << "\n";
14317         std::abort();
14318       }
14319     }
14320   }
14321 
14322   // Verify integrity of SCEV users.
14323   for (const auto &S : UniqueSCEVs) {
14324     for (const auto *Op : S.operands()) {
14325       // We do not store dependencies of constants.
14326       if (isa<SCEVConstant>(Op))
14327         continue;
14328       auto It = SCEVUsers.find(Op);
14329       if (It != SCEVUsers.end() && It->second.count(&S))
14330         continue;
14331       dbgs() << "Use of operand  " << *Op << " by user " << S
14332              << " is not being tracked!\n";
14333       std::abort();
14334     }
14335   }
14336 
14337   // Verify integrity of ValuesAtScopes users.
14338   for (const auto &ValueAndVec : ValuesAtScopes) {
14339     const SCEV *Value = ValueAndVec.first;
14340     for (const auto &LoopAndValueAtScope : ValueAndVec.second) {
14341       const Loop *L = LoopAndValueAtScope.first;
14342       const SCEV *ValueAtScope = LoopAndValueAtScope.second;
14343       if (!isa<SCEVConstant>(ValueAtScope)) {
14344         auto It = ValuesAtScopesUsers.find(ValueAtScope);
14345         if (It != ValuesAtScopesUsers.end() &&
14346             is_contained(It->second, std::make_pair(L, Value)))
14347           continue;
14348         dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: "
14349                << *ValueAtScope << " missing in ValuesAtScopesUsers\n";
14350         std::abort();
14351       }
14352     }
14353   }
14354 
14355   for (const auto &ValueAtScopeAndVec : ValuesAtScopesUsers) {
14356     const SCEV *ValueAtScope = ValueAtScopeAndVec.first;
14357     for (const auto &LoopAndValue : ValueAtScopeAndVec.second) {
14358       const Loop *L = LoopAndValue.first;
14359       const SCEV *Value = LoopAndValue.second;
14360       assert(!isa<SCEVConstant>(Value));
14361       auto It = ValuesAtScopes.find(Value);
14362       if (It != ValuesAtScopes.end() &&
14363           is_contained(It->second, std::make_pair(L, ValueAtScope)))
14364         continue;
14365       dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: "
14366              << *ValueAtScope << " missing in ValuesAtScopes\n";
14367       std::abort();
14368     }
14369   }
14370 
14371   // Verify integrity of BECountUsers.
14372   auto VerifyBECountUsers = [&](bool Predicated) {
14373     auto &BECounts =
14374         Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts;
14375     for (const auto &LoopAndBEInfo : BECounts) {
14376       for (const ExitNotTakenInfo &ENT : LoopAndBEInfo.second.ExitNotTaken) {
14377         for (const SCEV *S : {ENT.ExactNotTaken, ENT.SymbolicMaxNotTaken}) {
14378           if (!isa<SCEVConstant>(S)) {
14379             auto UserIt = BECountUsers.find(S);
14380             if (UserIt != BECountUsers.end() &&
14381                 UserIt->second.contains({ LoopAndBEInfo.first, Predicated }))
14382               continue;
14383             dbgs() << "Value " << *S << " for loop " << *LoopAndBEInfo.first
14384                    << " missing from BECountUsers\n";
14385             std::abort();
14386           }
14387         }
14388       }
14389     }
14390   };
14391   VerifyBECountUsers(/* Predicated */ false);
14392   VerifyBECountUsers(/* Predicated */ true);
14393 
14394   // Verify intergity of loop disposition cache.
14395   for (auto &[S, Values] : LoopDispositions) {
14396     for (auto [Loop, CachedDisposition] : Values) {
14397       const auto RecomputedDisposition = SE2.getLoopDisposition(S, Loop);
14398       if (CachedDisposition != RecomputedDisposition) {
14399         dbgs() << "Cached disposition of " << *S << " for loop " << *Loop
14400                << " is incorrect: cached " << CachedDisposition << ", actual "
14401                << RecomputedDisposition << "\n";
14402         std::abort();
14403       }
14404     }
14405   }
14406 
14407   // Verify integrity of the block disposition cache.
14408   for (auto &[S, Values] : BlockDispositions) {
14409     for (auto [BB, CachedDisposition] : Values) {
14410       const auto RecomputedDisposition = SE2.getBlockDisposition(S, BB);
14411       if (CachedDisposition != RecomputedDisposition) {
14412         dbgs() << "Cached disposition of " << *S << " for block %"
14413                << BB->getName() << " is incorrect: cached " << CachedDisposition
14414                << ", actual " << RecomputedDisposition << "\n";
14415         std::abort();
14416       }
14417     }
14418   }
14419 
14420   // Verify FoldCache/FoldCacheUser caches.
14421   for (auto [FoldID, Expr] : FoldCache) {
14422     auto I = FoldCacheUser.find(Expr);
14423     if (I == FoldCacheUser.end()) {
14424       dbgs() << "Missing entry in FoldCacheUser for cached expression " << *Expr
14425              << "!\n";
14426       std::abort();
14427     }
14428     if (!is_contained(I->second, FoldID)) {
14429       dbgs() << "Missing FoldID in cached users of " << *Expr << "!\n";
14430       std::abort();
14431     }
14432   }
14433   for (auto [Expr, IDs] : FoldCacheUser) {
14434     for (auto &FoldID : IDs) {
14435       auto I = FoldCache.find(FoldID);
14436       if (I == FoldCache.end()) {
14437         dbgs() << "Missing entry in FoldCache for expression " << *Expr
14438                << "!\n";
14439         std::abort();
14440       }
14441       if (I->second != Expr) {
14442         dbgs() << "Entry in FoldCache doesn't match FoldCacheUser: "
14443                << *I->second << " != " << *Expr << "!\n";
14444         std::abort();
14445       }
14446     }
14447   }
14448 
14449   // Verify that ConstantMultipleCache computations are correct. We check that
14450   // cached multiples and recomputed multiples are multiples of each other to
14451   // verify correctness. It is possible that a recomputed multiple is different
14452   // from the cached multiple due to strengthened no wrap flags or changes in
14453   // KnownBits computations.
14454   for (auto [S, Multiple] : ConstantMultipleCache) {
14455     APInt RecomputedMultiple = SE2.getConstantMultiple(S);
14456     if ((Multiple != 0 && RecomputedMultiple != 0 &&
14457          Multiple.urem(RecomputedMultiple) != 0 &&
14458          RecomputedMultiple.urem(Multiple) != 0)) {
14459       dbgs() << "Incorrect cached computation in ConstantMultipleCache for "
14460              << *S << " : Computed " << RecomputedMultiple
14461              << " but cache contains " << Multiple << "!\n";
14462       std::abort();
14463     }
14464   }
14465 }
14466 
invalidate(Function & F,const PreservedAnalyses & PA,FunctionAnalysisManager::Invalidator & Inv)14467 bool ScalarEvolution::invalidate(
14468     Function &F, const PreservedAnalyses &PA,
14469     FunctionAnalysisManager::Invalidator &Inv) {
14470   // Invalidate the ScalarEvolution object whenever it isn't preserved or one
14471   // of its dependencies is invalidated.
14472   auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
14473   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
14474          Inv.invalidate<AssumptionAnalysis>(F, PA) ||
14475          Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
14476          Inv.invalidate<LoopAnalysis>(F, PA);
14477 }
14478 
14479 AnalysisKey ScalarEvolutionAnalysis::Key;
14480 
run(Function & F,FunctionAnalysisManager & AM)14481 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
14482                                              FunctionAnalysisManager &AM) {
14483   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
14484   auto &AC = AM.getResult<AssumptionAnalysis>(F);
14485   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
14486   auto &LI = AM.getResult<LoopAnalysis>(F);
14487   return ScalarEvolution(F, TLI, AC, DT, LI);
14488 }
14489 
14490 PreservedAnalyses
run(Function & F,FunctionAnalysisManager & AM)14491 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
14492   AM.getResult<ScalarEvolutionAnalysis>(F).verify();
14493   return PreservedAnalyses::all();
14494 }
14495 
14496 PreservedAnalyses
run(Function & F,FunctionAnalysisManager & AM)14497 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
14498   // For compatibility with opt's -analyze feature under legacy pass manager
14499   // which was not ported to NPM. This keeps tests using
14500   // update_analyze_test_checks.py working.
14501   OS << "Printing analysis 'Scalar Evolution Analysis' for function '"
14502      << F.getName() << "':\n";
14503   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
14504   return PreservedAnalyses::all();
14505 }
14506 
14507 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
14508                       "Scalar Evolution Analysis", false, true)
14509 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
14510 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
14511 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
14512 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
14513 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
14514                     "Scalar Evolution Analysis", false, true)
14515 
14516 char ScalarEvolutionWrapperPass::ID = 0;
14517 
ScalarEvolutionWrapperPass()14518 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
14519   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
14520 }
14521 
runOnFunction(Function & F)14522 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
14523   SE.reset(new ScalarEvolution(
14524       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
14525       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
14526       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
14527       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
14528   return false;
14529 }
14530 
releaseMemory()14531 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
14532 
print(raw_ostream & OS,const Module *) const14533 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
14534   SE->print(OS);
14535 }
14536 
verifyAnalysis() const14537 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
14538   if (!VerifySCEV)
14539     return;
14540 
14541   SE->verify();
14542 }
14543 
getAnalysisUsage(AnalysisUsage & AU) const14544 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
14545   AU.setPreservesAll();
14546   AU.addRequiredTransitive<AssumptionCacheTracker>();
14547   AU.addRequiredTransitive<LoopInfoWrapperPass>();
14548   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
14549   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
14550 }
14551 
getEqualPredicate(const SCEV * LHS,const SCEV * RHS)14552 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
14553                                                         const SCEV *RHS) {
14554   return getComparePredicate(ICmpInst::ICMP_EQ, LHS, RHS);
14555 }
14556 
14557 const SCEVPredicate *
getComparePredicate(const ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)14558 ScalarEvolution::getComparePredicate(const ICmpInst::Predicate Pred,
14559                                      const SCEV *LHS, const SCEV *RHS) {
14560   FoldingSetNodeID ID;
14561   assert(LHS->getType() == RHS->getType() &&
14562          "Type mismatch between LHS and RHS");
14563   // Unique this node based on the arguments
14564   ID.AddInteger(SCEVPredicate::P_Compare);
14565   ID.AddInteger(Pred);
14566   ID.AddPointer(LHS);
14567   ID.AddPointer(RHS);
14568   void *IP = nullptr;
14569   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
14570     return S;
14571   SCEVComparePredicate *Eq = new (SCEVAllocator)
14572     SCEVComparePredicate(ID.Intern(SCEVAllocator), Pred, LHS, RHS);
14573   UniquePreds.InsertNode(Eq, IP);
14574   return Eq;
14575 }
14576 
getWrapPredicate(const SCEVAddRecExpr * AR,SCEVWrapPredicate::IncrementWrapFlags AddedFlags)14577 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
14578     const SCEVAddRecExpr *AR,
14579     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
14580   FoldingSetNodeID ID;
14581   // Unique this node based on the arguments
14582   ID.AddInteger(SCEVPredicate::P_Wrap);
14583   ID.AddPointer(AR);
14584   ID.AddInteger(AddedFlags);
14585   void *IP = nullptr;
14586   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
14587     return S;
14588   auto *OF = new (SCEVAllocator)
14589       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
14590   UniquePreds.InsertNode(OF, IP);
14591   return OF;
14592 }
14593 
14594 namespace {
14595 
14596 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
14597 public:
14598 
14599   /// Rewrites \p S in the context of a loop L and the SCEV predication
14600   /// infrastructure.
14601   ///
14602   /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
14603   /// equivalences present in \p Pred.
14604   ///
14605   /// If \p NewPreds is non-null, rewrite is free to add further predicates to
14606   /// \p NewPreds such that the result will be an AddRecExpr.
rewrite(const SCEV * S,const Loop * L,ScalarEvolution & SE,SmallPtrSetImpl<const SCEVPredicate * > * NewPreds,const SCEVPredicate * Pred)14607   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
14608                              SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
14609                              const SCEVPredicate *Pred) {
14610     SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
14611     return Rewriter.visit(S);
14612   }
14613 
visitUnknown(const SCEVUnknown * Expr)14614   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
14615     if (Pred) {
14616       if (auto *U = dyn_cast<SCEVUnionPredicate>(Pred)) {
14617         for (const auto *Pred : U->getPredicates())
14618           if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Pred))
14619             if (IPred->getLHS() == Expr &&
14620                 IPred->getPredicate() == ICmpInst::ICMP_EQ)
14621               return IPred->getRHS();
14622       } else if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Pred)) {
14623         if (IPred->getLHS() == Expr &&
14624             IPred->getPredicate() == ICmpInst::ICMP_EQ)
14625           return IPred->getRHS();
14626       }
14627     }
14628     return convertToAddRecWithPreds(Expr);
14629   }
14630 
visitZeroExtendExpr(const SCEVZeroExtendExpr * Expr)14631   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
14632     const SCEV *Operand = visit(Expr->getOperand());
14633     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
14634     if (AR && AR->getLoop() == L && AR->isAffine()) {
14635       // This couldn't be folded because the operand didn't have the nuw
14636       // flag. Add the nusw flag as an assumption that we could make.
14637       const SCEV *Step = AR->getStepRecurrence(SE);
14638       Type *Ty = Expr->getType();
14639       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
14640         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
14641                                 SE.getSignExtendExpr(Step, Ty), L,
14642                                 AR->getNoWrapFlags());
14643     }
14644     return SE.getZeroExtendExpr(Operand, Expr->getType());
14645   }
14646 
visitSignExtendExpr(const SCEVSignExtendExpr * Expr)14647   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
14648     const SCEV *Operand = visit(Expr->getOperand());
14649     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
14650     if (AR && AR->getLoop() == L && AR->isAffine()) {
14651       // This couldn't be folded because the operand didn't have the nsw
14652       // flag. Add the nssw flag as an assumption that we could make.
14653       const SCEV *Step = AR->getStepRecurrence(SE);
14654       Type *Ty = Expr->getType();
14655       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
14656         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
14657                                 SE.getSignExtendExpr(Step, Ty), L,
14658                                 AR->getNoWrapFlags());
14659     }
14660     return SE.getSignExtendExpr(Operand, Expr->getType());
14661   }
14662 
14663 private:
SCEVPredicateRewriter(const Loop * L,ScalarEvolution & SE,SmallPtrSetImpl<const SCEVPredicate * > * NewPreds,const SCEVPredicate * Pred)14664   explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
14665                         SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
14666                         const SCEVPredicate *Pred)
14667       : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
14668 
addOverflowAssumption(const SCEVPredicate * P)14669   bool addOverflowAssumption(const SCEVPredicate *P) {
14670     if (!NewPreds) {
14671       // Check if we've already made this assumption.
14672       return Pred && Pred->implies(P);
14673     }
14674     NewPreds->insert(P);
14675     return true;
14676   }
14677 
addOverflowAssumption(const SCEVAddRecExpr * AR,SCEVWrapPredicate::IncrementWrapFlags AddedFlags)14678   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
14679                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
14680     auto *A = SE.getWrapPredicate(AR, AddedFlags);
14681     return addOverflowAssumption(A);
14682   }
14683 
14684   // If \p Expr represents a PHINode, we try to see if it can be represented
14685   // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
14686   // to add this predicate as a runtime overflow check, we return the AddRec.
14687   // If \p Expr does not meet these conditions (is not a PHI node, or we
14688   // couldn't create an AddRec for it, or couldn't add the predicate), we just
14689   // return \p Expr.
convertToAddRecWithPreds(const SCEVUnknown * Expr)14690   const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
14691     if (!isa<PHINode>(Expr->getValue()))
14692       return Expr;
14693     std::optional<
14694         std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
14695         PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
14696     if (!PredicatedRewrite)
14697       return Expr;
14698     for (const auto *P : PredicatedRewrite->second){
14699       // Wrap predicates from outer loops are not supported.
14700       if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
14701         if (L != WP->getExpr()->getLoop())
14702           return Expr;
14703       }
14704       if (!addOverflowAssumption(P))
14705         return Expr;
14706     }
14707     return PredicatedRewrite->first;
14708   }
14709 
14710   SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
14711   const SCEVPredicate *Pred;
14712   const Loop *L;
14713 };
14714 
14715 } // end anonymous namespace
14716 
14717 const SCEV *
rewriteUsingPredicate(const SCEV * S,const Loop * L,const SCEVPredicate & Preds)14718 ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
14719                                        const SCEVPredicate &Preds) {
14720   return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
14721 }
14722 
convertSCEVToAddRecWithPredicates(const SCEV * S,const Loop * L,SmallPtrSetImpl<const SCEVPredicate * > & Preds)14723 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
14724     const SCEV *S, const Loop *L,
14725     SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
14726   SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
14727   S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
14728   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
14729 
14730   if (!AddRec)
14731     return nullptr;
14732 
14733   // Since the transformation was successful, we can now transfer the SCEV
14734   // predicates.
14735   for (const auto *P : TransformPreds)
14736     Preds.insert(P);
14737 
14738   return AddRec;
14739 }
14740 
14741 /// SCEV predicates
SCEVPredicate(const FoldingSetNodeIDRef ID,SCEVPredicateKind Kind)14742 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
14743                              SCEVPredicateKind Kind)
14744     : FastID(ID), Kind(Kind) {}
14745 
SCEVComparePredicate(const FoldingSetNodeIDRef ID,const ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)14746 SCEVComparePredicate::SCEVComparePredicate(const FoldingSetNodeIDRef ID,
14747                                    const ICmpInst::Predicate Pred,
14748                                    const SCEV *LHS, const SCEV *RHS)
14749   : SCEVPredicate(ID, P_Compare), Pred(Pred), LHS(LHS), RHS(RHS) {
14750   assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
14751   assert(LHS != RHS && "LHS and RHS are the same SCEV");
14752 }
14753 
implies(const SCEVPredicate * N) const14754 bool SCEVComparePredicate::implies(const SCEVPredicate *N) const {
14755   const auto *Op = dyn_cast<SCEVComparePredicate>(N);
14756 
14757   if (!Op)
14758     return false;
14759 
14760   if (Pred != ICmpInst::ICMP_EQ)
14761     return false;
14762 
14763   return Op->LHS == LHS && Op->RHS == RHS;
14764 }
14765 
isAlwaysTrue() const14766 bool SCEVComparePredicate::isAlwaysTrue() const { return false; }
14767 
print(raw_ostream & OS,unsigned Depth) const14768 void SCEVComparePredicate::print(raw_ostream &OS, unsigned Depth) const {
14769   if (Pred == ICmpInst::ICMP_EQ)
14770     OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
14771   else
14772     OS.indent(Depth) << "Compare predicate: " << *LHS << " " << Pred << ") "
14773                      << *RHS << "\n";
14774 
14775 }
14776 
SCEVWrapPredicate(const FoldingSetNodeIDRef ID,const SCEVAddRecExpr * AR,IncrementWrapFlags Flags)14777 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
14778                                      const SCEVAddRecExpr *AR,
14779                                      IncrementWrapFlags Flags)
14780     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
14781 
getExpr() const14782 const SCEVAddRecExpr *SCEVWrapPredicate::getExpr() const { return AR; }
14783 
implies(const SCEVPredicate * N) const14784 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
14785   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
14786 
14787   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
14788 }
14789 
isAlwaysTrue() const14790 bool SCEVWrapPredicate::isAlwaysTrue() const {
14791   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
14792   IncrementWrapFlags IFlags = Flags;
14793 
14794   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
14795     IFlags = clearFlags(IFlags, IncrementNSSW);
14796 
14797   return IFlags == IncrementAnyWrap;
14798 }
14799 
print(raw_ostream & OS,unsigned Depth) const14800 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
14801   OS.indent(Depth) << *getExpr() << " Added Flags: ";
14802   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
14803     OS << "<nusw>";
14804   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
14805     OS << "<nssw>";
14806   OS << "\n";
14807 }
14808 
14809 SCEVWrapPredicate::IncrementWrapFlags
getImpliedFlags(const SCEVAddRecExpr * AR,ScalarEvolution & SE)14810 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
14811                                    ScalarEvolution &SE) {
14812   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
14813   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
14814 
14815   // We can safely transfer the NSW flag as NSSW.
14816   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
14817     ImpliedFlags = IncrementNSSW;
14818 
14819   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
14820     // If the increment is positive, the SCEV NUW flag will also imply the
14821     // WrapPredicate NUSW flag.
14822     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
14823       if (Step->getValue()->getValue().isNonNegative())
14824         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
14825   }
14826 
14827   return ImpliedFlags;
14828 }
14829 
14830 /// Union predicates don't get cached so create a dummy set ID for it.
SCEVUnionPredicate(ArrayRef<const SCEVPredicate * > Preds)14831 SCEVUnionPredicate::SCEVUnionPredicate(ArrayRef<const SCEVPredicate *> Preds)
14832   : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {
14833   for (const auto *P : Preds)
14834     add(P);
14835 }
14836 
isAlwaysTrue() const14837 bool SCEVUnionPredicate::isAlwaysTrue() const {
14838   return all_of(Preds,
14839                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
14840 }
14841 
implies(const SCEVPredicate * N) const14842 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
14843   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
14844     return all_of(Set->Preds,
14845                   [this](const SCEVPredicate *I) { return this->implies(I); });
14846 
14847   return any_of(Preds,
14848                 [N](const SCEVPredicate *I) { return I->implies(N); });
14849 }
14850 
print(raw_ostream & OS,unsigned Depth) const14851 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
14852   for (const auto *Pred : Preds)
14853     Pred->print(OS, Depth);
14854 }
14855 
add(const SCEVPredicate * N)14856 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
14857   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
14858     for (const auto *Pred : Set->Preds)
14859       add(Pred);
14860     return;
14861   }
14862 
14863   // Only add predicate if it is not already implied by this union predicate.
14864   if (!implies(N))
14865     Preds.push_back(N);
14866 }
14867 
PredicatedScalarEvolution(ScalarEvolution & SE,Loop & L)14868 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
14869                                                      Loop &L)
14870     : SE(SE), L(L) {
14871   SmallVector<const SCEVPredicate*, 4> Empty;
14872   Preds = std::make_unique<SCEVUnionPredicate>(Empty);
14873 }
14874 
registerUser(const SCEV * User,ArrayRef<const SCEV * > Ops)14875 void ScalarEvolution::registerUser(const SCEV *User,
14876                                    ArrayRef<const SCEV *> Ops) {
14877   for (const auto *Op : Ops)
14878     // We do not expect that forgetting cached data for SCEVConstants will ever
14879     // open any prospects for sharpening or introduce any correctness issues,
14880     // so we don't bother storing their dependencies.
14881     if (!isa<SCEVConstant>(Op))
14882       SCEVUsers[Op].insert(User);
14883 }
14884 
getSCEV(Value * V)14885 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
14886   const SCEV *Expr = SE.getSCEV(V);
14887   RewriteEntry &Entry = RewriteMap[Expr];
14888 
14889   // If we already have an entry and the version matches, return it.
14890   if (Entry.second && Generation == Entry.first)
14891     return Entry.second;
14892 
14893   // We found an entry but it's stale. Rewrite the stale entry
14894   // according to the current predicate.
14895   if (Entry.second)
14896     Expr = Entry.second;
14897 
14898   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, *Preds);
14899   Entry = {Generation, NewSCEV};
14900 
14901   return NewSCEV;
14902 }
14903 
getBackedgeTakenCount()14904 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
14905   if (!BackedgeCount) {
14906     SmallVector<const SCEVPredicate *, 4> Preds;
14907     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, Preds);
14908     for (const auto *P : Preds)
14909       addPredicate(*P);
14910   }
14911   return BackedgeCount;
14912 }
14913 
getSymbolicMaxBackedgeTakenCount()14914 const SCEV *PredicatedScalarEvolution::getSymbolicMaxBackedgeTakenCount() {
14915   if (!SymbolicMaxBackedgeCount) {
14916     SmallVector<const SCEVPredicate *, 4> Preds;
14917     SymbolicMaxBackedgeCount =
14918         SE.getPredicatedSymbolicMaxBackedgeTakenCount(&L, Preds);
14919     for (const auto *P : Preds)
14920       addPredicate(*P);
14921   }
14922   return SymbolicMaxBackedgeCount;
14923 }
14924 
addPredicate(const SCEVPredicate & Pred)14925 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
14926   if (Preds->implies(&Pred))
14927     return;
14928 
14929   auto &OldPreds = Preds->getPredicates();
14930   SmallVector<const SCEVPredicate*, 4> NewPreds(OldPreds.begin(), OldPreds.end());
14931   NewPreds.push_back(&Pred);
14932   Preds = std::make_unique<SCEVUnionPredicate>(NewPreds);
14933   updateGeneration();
14934 }
14935 
getPredicate() const14936 const SCEVPredicate &PredicatedScalarEvolution::getPredicate() const {
14937   return *Preds;
14938 }
14939 
updateGeneration()14940 void PredicatedScalarEvolution::updateGeneration() {
14941   // If the generation number wrapped recompute everything.
14942   if (++Generation == 0) {
14943     for (auto &II : RewriteMap) {
14944       const SCEV *Rewritten = II.second.second;
14945       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, *Preds)};
14946     }
14947   }
14948 }
14949 
setNoOverflow(Value * V,SCEVWrapPredicate::IncrementWrapFlags Flags)14950 void PredicatedScalarEvolution::setNoOverflow(
14951     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
14952   const SCEV *Expr = getSCEV(V);
14953   const auto *AR = cast<SCEVAddRecExpr>(Expr);
14954 
14955   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
14956 
14957   // Clear the statically implied flags.
14958   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
14959   addPredicate(*SE.getWrapPredicate(AR, Flags));
14960 
14961   auto II = FlagsMap.insert({V, Flags});
14962   if (!II.second)
14963     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
14964 }
14965 
hasNoOverflow(Value * V,SCEVWrapPredicate::IncrementWrapFlags Flags)14966 bool PredicatedScalarEvolution::hasNoOverflow(
14967     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
14968   const SCEV *Expr = getSCEV(V);
14969   const auto *AR = cast<SCEVAddRecExpr>(Expr);
14970 
14971   Flags = SCEVWrapPredicate::clearFlags(
14972       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
14973 
14974   auto II = FlagsMap.find(V);
14975 
14976   if (II != FlagsMap.end())
14977     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
14978 
14979   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
14980 }
14981 
getAsAddRec(Value * V)14982 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
14983   const SCEV *Expr = this->getSCEV(V);
14984   SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
14985   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
14986 
14987   if (!New)
14988     return nullptr;
14989 
14990   for (const auto *P : NewPreds)
14991     addPredicate(*P);
14992 
14993   RewriteMap[SE.getSCEV(V)] = {Generation, New};
14994   return New;
14995 }
14996 
PredicatedScalarEvolution(const PredicatedScalarEvolution & Init)14997 PredicatedScalarEvolution::PredicatedScalarEvolution(
14998     const PredicatedScalarEvolution &Init)
14999   : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L),
15000     Preds(std::make_unique<SCEVUnionPredicate>(Init.Preds->getPredicates())),
15001     Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
15002   for (auto I : Init.FlagsMap)
15003     FlagsMap.insert(I);
15004 }
15005 
print(raw_ostream & OS,unsigned Depth) const15006 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
15007   // For each block.
15008   for (auto *BB : L.getBlocks())
15009     for (auto &I : *BB) {
15010       if (!SE.isSCEVable(I.getType()))
15011         continue;
15012 
15013       auto *Expr = SE.getSCEV(&I);
15014       auto II = RewriteMap.find(Expr);
15015 
15016       if (II == RewriteMap.end())
15017         continue;
15018 
15019       // Don't print things that are not interesting.
15020       if (II->second.second == Expr)
15021         continue;
15022 
15023       OS.indent(Depth) << "[PSE]" << I << ":\n";
15024       OS.indent(Depth + 2) << *Expr << "\n";
15025       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
15026     }
15027 }
15028 
15029 // Match the mathematical pattern A - (A / B) * B, where A and B can be
15030 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used
15031 // for URem with constant power-of-2 second operands.
15032 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
15033 // 4, A / B becomes X / 8).
matchURem(const SCEV * Expr,const SCEV * & LHS,const SCEV * & RHS)15034 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
15035                                 const SCEV *&RHS) {
15036   if (Expr->getType()->isPointerTy())
15037     return false;
15038 
15039   // Try to match 'zext (trunc A to iB) to iY', which is used
15040   // for URem with constant power-of-2 second operands. Make sure the size of
15041   // the operand A matches the size of the whole expressions.
15042   if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr))
15043     if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) {
15044       LHS = Trunc->getOperand();
15045       // Bail out if the type of the LHS is larger than the type of the
15046       // expression for now.
15047       if (getTypeSizeInBits(LHS->getType()) >
15048           getTypeSizeInBits(Expr->getType()))
15049         return false;
15050       if (LHS->getType() != Expr->getType())
15051         LHS = getZeroExtendExpr(LHS, Expr->getType());
15052       RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1)
15053                         << getTypeSizeInBits(Trunc->getType()));
15054       return true;
15055     }
15056   const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
15057   if (Add == nullptr || Add->getNumOperands() != 2)
15058     return false;
15059 
15060   const SCEV *A = Add->getOperand(1);
15061   const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
15062 
15063   if (Mul == nullptr)
15064     return false;
15065 
15066   const auto MatchURemWithDivisor = [&](const SCEV *B) {
15067     // (SomeExpr + (-(SomeExpr / B) * B)).
15068     if (Expr == getURemExpr(A, B)) {
15069       LHS = A;
15070       RHS = B;
15071       return true;
15072     }
15073     return false;
15074   };
15075 
15076   // (SomeExpr + (-1 * (SomeExpr / B) * B)).
15077   if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
15078     return MatchURemWithDivisor(Mul->getOperand(1)) ||
15079            MatchURemWithDivisor(Mul->getOperand(2));
15080 
15081   // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
15082   if (Mul->getNumOperands() == 2)
15083     return MatchURemWithDivisor(Mul->getOperand(1)) ||
15084            MatchURemWithDivisor(Mul->getOperand(0)) ||
15085            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
15086            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
15087   return false;
15088 }
15089 
15090 ScalarEvolution::LoopGuards
collect(const Loop * L,ScalarEvolution & SE)15091 ScalarEvolution::LoopGuards::collect(const Loop *L, ScalarEvolution &SE) {
15092   LoopGuards Guards(SE);
15093   SmallVector<const SCEV *> ExprsToRewrite;
15094   auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS,
15095                               const SCEV *RHS,
15096                               DenseMap<const SCEV *, const SCEV *>
15097                                   &RewriteMap) {
15098     // WARNING: It is generally unsound to apply any wrap flags to the proposed
15099     // replacement SCEV which isn't directly implied by the structure of that
15100     // SCEV.  In particular, using contextual facts to imply flags is *NOT*
15101     // legal.  See the scoping rules for flags in the header to understand why.
15102 
15103     // If LHS is a constant, apply information to the other expression.
15104     if (isa<SCEVConstant>(LHS)) {
15105       std::swap(LHS, RHS);
15106       Predicate = CmpInst::getSwappedPredicate(Predicate);
15107     }
15108 
15109     // Check for a condition of the form (-C1 + X < C2).  InstCombine will
15110     // create this form when combining two checks of the form (X u< C2 + C1) and
15111     // (X >=u C1).
15112     auto MatchRangeCheckIdiom = [&SE, Predicate, LHS, RHS, &RewriteMap,
15113                                  &ExprsToRewrite]() {
15114       auto *AddExpr = dyn_cast<SCEVAddExpr>(LHS);
15115       if (!AddExpr || AddExpr->getNumOperands() != 2)
15116         return false;
15117 
15118       auto *C1 = dyn_cast<SCEVConstant>(AddExpr->getOperand(0));
15119       auto *LHSUnknown = dyn_cast<SCEVUnknown>(AddExpr->getOperand(1));
15120       auto *C2 = dyn_cast<SCEVConstant>(RHS);
15121       if (!C1 || !C2 || !LHSUnknown)
15122         return false;
15123 
15124       auto ExactRegion =
15125           ConstantRange::makeExactICmpRegion(Predicate, C2->getAPInt())
15126               .sub(C1->getAPInt());
15127 
15128       // Bail out, unless we have a non-wrapping, monotonic range.
15129       if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet())
15130         return false;
15131       auto I = RewriteMap.find(LHSUnknown);
15132       const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHSUnknown;
15133       RewriteMap[LHSUnknown] = SE.getUMaxExpr(
15134           SE.getConstant(ExactRegion.getUnsignedMin()),
15135           SE.getUMinExpr(RewrittenLHS,
15136                          SE.getConstant(ExactRegion.getUnsignedMax())));
15137       ExprsToRewrite.push_back(LHSUnknown);
15138       return true;
15139     };
15140     if (MatchRangeCheckIdiom())
15141       return;
15142 
15143     // Return true if \p Expr is a MinMax SCEV expression with a non-negative
15144     // constant operand. If so, return in \p SCTy the SCEV type and in \p RHS
15145     // the non-constant operand and in \p LHS the constant operand.
15146     auto IsMinMaxSCEVWithNonNegativeConstant =
15147         [&](const SCEV *Expr, SCEVTypes &SCTy, const SCEV *&LHS,
15148             const SCEV *&RHS) {
15149           if (auto *MinMax = dyn_cast<SCEVMinMaxExpr>(Expr)) {
15150             if (MinMax->getNumOperands() != 2)
15151               return false;
15152             if (auto *C = dyn_cast<SCEVConstant>(MinMax->getOperand(0))) {
15153               if (C->getAPInt().isNegative())
15154                 return false;
15155               SCTy = MinMax->getSCEVType();
15156               LHS = MinMax->getOperand(0);
15157               RHS = MinMax->getOperand(1);
15158               return true;
15159             }
15160           }
15161           return false;
15162         };
15163 
15164     // Checks whether Expr is a non-negative constant, and Divisor is a positive
15165     // constant, and returns their APInt in ExprVal and in DivisorVal.
15166     auto GetNonNegExprAndPosDivisor = [&](const SCEV *Expr, const SCEV *Divisor,
15167                                           APInt &ExprVal, APInt &DivisorVal) {
15168       auto *ConstExpr = dyn_cast<SCEVConstant>(Expr);
15169       auto *ConstDivisor = dyn_cast<SCEVConstant>(Divisor);
15170       if (!ConstExpr || !ConstDivisor)
15171         return false;
15172       ExprVal = ConstExpr->getAPInt();
15173       DivisorVal = ConstDivisor->getAPInt();
15174       return ExprVal.isNonNegative() && !DivisorVal.isNonPositive();
15175     };
15176 
15177     // Return a new SCEV that modifies \p Expr to the closest number divides by
15178     // \p Divisor and greater or equal than Expr.
15179     // For now, only handle constant Expr and Divisor.
15180     auto GetNextSCEVDividesByDivisor = [&](const SCEV *Expr,
15181                                            const SCEV *Divisor) {
15182       APInt ExprVal;
15183       APInt DivisorVal;
15184       if (!GetNonNegExprAndPosDivisor(Expr, Divisor, ExprVal, DivisorVal))
15185         return Expr;
15186       APInt Rem = ExprVal.urem(DivisorVal);
15187       if (!Rem.isZero())
15188         // return the SCEV: Expr + Divisor - Expr % Divisor
15189         return SE.getConstant(ExprVal + DivisorVal - Rem);
15190       return Expr;
15191     };
15192 
15193     // Return a new SCEV that modifies \p Expr to the closest number divides by
15194     // \p Divisor and less or equal than Expr.
15195     // For now, only handle constant Expr and Divisor.
15196     auto GetPreviousSCEVDividesByDivisor = [&](const SCEV *Expr,
15197                                                const SCEV *Divisor) {
15198       APInt ExprVal;
15199       APInt DivisorVal;
15200       if (!GetNonNegExprAndPosDivisor(Expr, Divisor, ExprVal, DivisorVal))
15201         return Expr;
15202       APInt Rem = ExprVal.urem(DivisorVal);
15203       // return the SCEV: Expr - Expr % Divisor
15204       return SE.getConstant(ExprVal - Rem);
15205     };
15206 
15207     // Apply divisibilty by \p Divisor on MinMaxExpr with constant values,
15208     // recursively. This is done by aligning up/down the constant value to the
15209     // Divisor.
15210     std::function<const SCEV *(const SCEV *, const SCEV *)>
15211         ApplyDivisibiltyOnMinMaxExpr = [&](const SCEV *MinMaxExpr,
15212                                            const SCEV *Divisor) {
15213           const SCEV *MinMaxLHS = nullptr, *MinMaxRHS = nullptr;
15214           SCEVTypes SCTy;
15215           if (!IsMinMaxSCEVWithNonNegativeConstant(MinMaxExpr, SCTy, MinMaxLHS,
15216                                                    MinMaxRHS))
15217             return MinMaxExpr;
15218           auto IsMin =
15219               isa<SCEVSMinExpr>(MinMaxExpr) || isa<SCEVUMinExpr>(MinMaxExpr);
15220           assert(SE.isKnownNonNegative(MinMaxLHS) &&
15221                  "Expected non-negative operand!");
15222           auto *DivisibleExpr =
15223               IsMin ? GetPreviousSCEVDividesByDivisor(MinMaxLHS, Divisor)
15224                     : GetNextSCEVDividesByDivisor(MinMaxLHS, Divisor);
15225           SmallVector<const SCEV *> Ops = {
15226               ApplyDivisibiltyOnMinMaxExpr(MinMaxRHS, Divisor), DivisibleExpr};
15227           return SE.getMinMaxExpr(SCTy, Ops);
15228         };
15229 
15230     // If we have LHS == 0, check if LHS is computing a property of some unknown
15231     // SCEV %v which we can rewrite %v to express explicitly.
15232     const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS);
15233     if (Predicate == CmpInst::ICMP_EQ && RHSC &&
15234         RHSC->getValue()->isNullValue()) {
15235       // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to
15236       // explicitly express that.
15237       const SCEV *URemLHS = nullptr;
15238       const SCEV *URemRHS = nullptr;
15239       if (SE.matchURem(LHS, URemLHS, URemRHS)) {
15240         if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) {
15241           auto I = RewriteMap.find(LHSUnknown);
15242           const SCEV *RewrittenLHS =
15243               I != RewriteMap.end() ? I->second : LHSUnknown;
15244           RewrittenLHS = ApplyDivisibiltyOnMinMaxExpr(RewrittenLHS, URemRHS);
15245           const auto *Multiple =
15246               SE.getMulExpr(SE.getUDivExpr(RewrittenLHS, URemRHS), URemRHS);
15247           RewriteMap[LHSUnknown] = Multiple;
15248           ExprsToRewrite.push_back(LHSUnknown);
15249           return;
15250         }
15251       }
15252     }
15253 
15254     // Do not apply information for constants or if RHS contains an AddRec.
15255     if (isa<SCEVConstant>(LHS) || SE.containsAddRecurrence(RHS))
15256       return;
15257 
15258     // If RHS is SCEVUnknown, make sure the information is applied to it.
15259     if (!isa<SCEVUnknown>(LHS) && isa<SCEVUnknown>(RHS)) {
15260       std::swap(LHS, RHS);
15261       Predicate = CmpInst::getSwappedPredicate(Predicate);
15262     }
15263 
15264     // Puts rewrite rule \p From -> \p To into the rewrite map. Also if \p From
15265     // and \p FromRewritten are the same (i.e. there has been no rewrite
15266     // registered for \p From), then puts this value in the list of rewritten
15267     // expressions.
15268     auto AddRewrite = [&](const SCEV *From, const SCEV *FromRewritten,
15269                           const SCEV *To) {
15270       if (From == FromRewritten)
15271         ExprsToRewrite.push_back(From);
15272       RewriteMap[From] = To;
15273     };
15274 
15275     // Checks whether \p S has already been rewritten. In that case returns the
15276     // existing rewrite because we want to chain further rewrites onto the
15277     // already rewritten value. Otherwise returns \p S.
15278     auto GetMaybeRewritten = [&](const SCEV *S) {
15279       auto I = RewriteMap.find(S);
15280       return I != RewriteMap.end() ? I->second : S;
15281     };
15282 
15283     // Check for the SCEV expression (A /u B) * B while B is a constant, inside
15284     // \p Expr. The check is done recuresively on \p Expr, which is assumed to
15285     // be a composition of Min/Max SCEVs. Return whether the SCEV expression (A
15286     // /u B) * B was found, and return the divisor B in \p DividesBy. For
15287     // example, if Expr = umin (umax ((A /u 8) * 8, 16), 64), return true since
15288     // (A /u 8) * 8 matched the pattern, and return the constant SCEV 8 in \p
15289     // DividesBy.
15290     std::function<bool(const SCEV *, const SCEV *&)> HasDivisibiltyInfo =
15291         [&](const SCEV *Expr, const SCEV *&DividesBy) {
15292           if (auto *Mul = dyn_cast<SCEVMulExpr>(Expr)) {
15293             if (Mul->getNumOperands() != 2)
15294               return false;
15295             auto *MulLHS = Mul->getOperand(0);
15296             auto *MulRHS = Mul->getOperand(1);
15297             if (isa<SCEVConstant>(MulLHS))
15298               std::swap(MulLHS, MulRHS);
15299             if (auto *Div = dyn_cast<SCEVUDivExpr>(MulLHS))
15300               if (Div->getOperand(1) == MulRHS) {
15301                 DividesBy = MulRHS;
15302                 return true;
15303               }
15304           }
15305           if (auto *MinMax = dyn_cast<SCEVMinMaxExpr>(Expr))
15306             return HasDivisibiltyInfo(MinMax->getOperand(0), DividesBy) ||
15307                    HasDivisibiltyInfo(MinMax->getOperand(1), DividesBy);
15308           return false;
15309         };
15310 
15311     // Return true if Expr known to divide by \p DividesBy.
15312     std::function<bool(const SCEV *, const SCEV *&)> IsKnownToDivideBy =
15313         [&](const SCEV *Expr, const SCEV *DividesBy) {
15314           if (SE.getURemExpr(Expr, DividesBy)->isZero())
15315             return true;
15316           if (auto *MinMax = dyn_cast<SCEVMinMaxExpr>(Expr))
15317             return IsKnownToDivideBy(MinMax->getOperand(0), DividesBy) &&
15318                    IsKnownToDivideBy(MinMax->getOperand(1), DividesBy);
15319           return false;
15320         };
15321 
15322     const SCEV *RewrittenLHS = GetMaybeRewritten(LHS);
15323     const SCEV *DividesBy = nullptr;
15324     if (HasDivisibiltyInfo(RewrittenLHS, DividesBy))
15325       // Check that the whole expression is divided by DividesBy
15326       DividesBy =
15327           IsKnownToDivideBy(RewrittenLHS, DividesBy) ? DividesBy : nullptr;
15328 
15329     // Collect rewrites for LHS and its transitive operands based on the
15330     // condition.
15331     // For min/max expressions, also apply the guard to its operands:
15332     //  'min(a, b) >= c'   ->   '(a >= c) and (b >= c)',
15333     //  'min(a, b) >  c'   ->   '(a >  c) and (b >  c)',
15334     //  'max(a, b) <= c'   ->   '(a <= c) and (b <= c)',
15335     //  'max(a, b) <  c'   ->   '(a <  c) and (b <  c)'.
15336 
15337     // We cannot express strict predicates in SCEV, so instead we replace them
15338     // with non-strict ones against plus or minus one of RHS depending on the
15339     // predicate.
15340     const SCEV *One = SE.getOne(RHS->getType());
15341     switch (Predicate) {
15342       case CmpInst::ICMP_ULT:
15343         if (RHS->getType()->isPointerTy())
15344           return;
15345         RHS = SE.getUMaxExpr(RHS, One);
15346         [[fallthrough]];
15347       case CmpInst::ICMP_SLT: {
15348         RHS = SE.getMinusSCEV(RHS, One);
15349         RHS = DividesBy ? GetPreviousSCEVDividesByDivisor(RHS, DividesBy) : RHS;
15350         break;
15351       }
15352       case CmpInst::ICMP_UGT:
15353       case CmpInst::ICMP_SGT:
15354         RHS = SE.getAddExpr(RHS, One);
15355         RHS = DividesBy ? GetNextSCEVDividesByDivisor(RHS, DividesBy) : RHS;
15356         break;
15357       case CmpInst::ICMP_ULE:
15358       case CmpInst::ICMP_SLE:
15359         RHS = DividesBy ? GetPreviousSCEVDividesByDivisor(RHS, DividesBy) : RHS;
15360         break;
15361       case CmpInst::ICMP_UGE:
15362       case CmpInst::ICMP_SGE:
15363         RHS = DividesBy ? GetNextSCEVDividesByDivisor(RHS, DividesBy) : RHS;
15364         break;
15365       default:
15366         break;
15367     }
15368 
15369     SmallVector<const SCEV *, 16> Worklist(1, LHS);
15370     SmallPtrSet<const SCEV *, 16> Visited;
15371 
15372     auto EnqueueOperands = [&Worklist](const SCEVNAryExpr *S) {
15373       append_range(Worklist, S->operands());
15374     };
15375 
15376     while (!Worklist.empty()) {
15377       const SCEV *From = Worklist.pop_back_val();
15378       if (isa<SCEVConstant>(From))
15379         continue;
15380       if (!Visited.insert(From).second)
15381         continue;
15382       const SCEV *FromRewritten = GetMaybeRewritten(From);
15383       const SCEV *To = nullptr;
15384 
15385       switch (Predicate) {
15386       case CmpInst::ICMP_ULT:
15387       case CmpInst::ICMP_ULE:
15388         To = SE.getUMinExpr(FromRewritten, RHS);
15389         if (auto *UMax = dyn_cast<SCEVUMaxExpr>(FromRewritten))
15390           EnqueueOperands(UMax);
15391         break;
15392       case CmpInst::ICMP_SLT:
15393       case CmpInst::ICMP_SLE:
15394         To = SE.getSMinExpr(FromRewritten, RHS);
15395         if (auto *SMax = dyn_cast<SCEVSMaxExpr>(FromRewritten))
15396           EnqueueOperands(SMax);
15397         break;
15398       case CmpInst::ICMP_UGT:
15399       case CmpInst::ICMP_UGE:
15400         To = SE.getUMaxExpr(FromRewritten, RHS);
15401         if (auto *UMin = dyn_cast<SCEVUMinExpr>(FromRewritten))
15402           EnqueueOperands(UMin);
15403         break;
15404       case CmpInst::ICMP_SGT:
15405       case CmpInst::ICMP_SGE:
15406         To = SE.getSMaxExpr(FromRewritten, RHS);
15407         if (auto *SMin = dyn_cast<SCEVSMinExpr>(FromRewritten))
15408           EnqueueOperands(SMin);
15409         break;
15410       case CmpInst::ICMP_EQ:
15411         if (isa<SCEVConstant>(RHS))
15412           To = RHS;
15413         break;
15414       case CmpInst::ICMP_NE:
15415         if (isa<SCEVConstant>(RHS) &&
15416             cast<SCEVConstant>(RHS)->getValue()->isNullValue()) {
15417           const SCEV *OneAlignedUp =
15418               DividesBy ? GetNextSCEVDividesByDivisor(One, DividesBy) : One;
15419           To = SE.getUMaxExpr(FromRewritten, OneAlignedUp);
15420         }
15421         break;
15422       default:
15423         break;
15424       }
15425 
15426       if (To)
15427         AddRewrite(From, FromRewritten, To);
15428     }
15429   };
15430 
15431   BasicBlock *Header = L->getHeader();
15432   SmallVector<PointerIntPair<Value *, 1, bool>> Terms;
15433   // First, collect information from assumptions dominating the loop.
15434   for (auto &AssumeVH : SE.AC.assumptions()) {
15435     if (!AssumeVH)
15436       continue;
15437     auto *AssumeI = cast<CallInst>(AssumeVH);
15438     if (!SE.DT.dominates(AssumeI, Header))
15439       continue;
15440     Terms.emplace_back(AssumeI->getOperand(0), true);
15441   }
15442 
15443   // Second, collect information from llvm.experimental.guards dominating the loop.
15444   auto *GuardDecl = SE.F.getParent()->getFunction(
15445       Intrinsic::getName(Intrinsic::experimental_guard));
15446   if (GuardDecl)
15447     for (const auto *GU : GuardDecl->users())
15448       if (const auto *Guard = dyn_cast<IntrinsicInst>(GU))
15449         if (Guard->getFunction() == Header->getParent() &&
15450             SE.DT.dominates(Guard, Header))
15451           Terms.emplace_back(Guard->getArgOperand(0), true);
15452 
15453   // Third, collect conditions from dominating branches. Starting at the loop
15454   // predecessor, climb up the predecessor chain, as long as there are
15455   // predecessors that can be found that have unique successors leading to the
15456   // original header.
15457   // TODO: share this logic with isLoopEntryGuardedByCond.
15458   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(
15459            L->getLoopPredecessor(), Header);
15460        Pair.first;
15461        Pair = SE.getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
15462 
15463     const BranchInst *LoopEntryPredicate =
15464         dyn_cast<BranchInst>(Pair.first->getTerminator());
15465     if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional())
15466       continue;
15467 
15468     Terms.emplace_back(LoopEntryPredicate->getCondition(),
15469                        LoopEntryPredicate->getSuccessor(0) == Pair.second);
15470   }
15471 
15472   // Now apply the information from the collected conditions to
15473   // Guards.RewriteMap. Conditions are processed in reverse order, so the
15474   // earliest conditions is processed first. This ensures the SCEVs with the
15475   // shortest dependency chains are constructed first.
15476   for (auto [Term, EnterIfTrue] : reverse(Terms)) {
15477     SmallVector<Value *, 8> Worklist;
15478     SmallPtrSet<Value *, 8> Visited;
15479     Worklist.push_back(Term);
15480     while (!Worklist.empty()) {
15481       Value *Cond = Worklist.pop_back_val();
15482       if (!Visited.insert(Cond).second)
15483         continue;
15484 
15485       if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) {
15486         auto Predicate =
15487             EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate();
15488         const auto *LHS = SE.getSCEV(Cmp->getOperand(0));
15489         const auto *RHS = SE.getSCEV(Cmp->getOperand(1));
15490         CollectCondition(Predicate, LHS, RHS, Guards.RewriteMap);
15491         continue;
15492       }
15493 
15494       Value *L, *R;
15495       if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R)))
15496                       : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) {
15497         Worklist.push_back(L);
15498         Worklist.push_back(R);
15499       }
15500     }
15501   }
15502 
15503   // Let the rewriter preserve NUW/NSW flags if the unsigned/signed ranges of
15504   // the replacement expressions are contained in the ranges of the replaced
15505   // expressions.
15506   Guards.PreserveNUW = true;
15507   Guards.PreserveNSW = true;
15508   for (const SCEV *Expr : ExprsToRewrite) {
15509     const SCEV *RewriteTo = Guards.RewriteMap[Expr];
15510     Guards.PreserveNUW &=
15511         SE.getUnsignedRange(Expr).contains(SE.getUnsignedRange(RewriteTo));
15512     Guards.PreserveNSW &=
15513         SE.getSignedRange(Expr).contains(SE.getSignedRange(RewriteTo));
15514   }
15515 
15516   // Now that all rewrite information is collect, rewrite the collected
15517   // expressions with the information in the map. This applies information to
15518   // sub-expressions.
15519   if (ExprsToRewrite.size() > 1) {
15520     for (const SCEV *Expr : ExprsToRewrite) {
15521       const SCEV *RewriteTo = Guards.RewriteMap[Expr];
15522       Guards.RewriteMap.erase(Expr);
15523       Guards.RewriteMap.insert({Expr, Guards.rewrite(RewriteTo)});
15524     }
15525   }
15526   return Guards;
15527 }
15528 
rewrite(const SCEV * Expr) const15529 const SCEV *ScalarEvolution::LoopGuards::rewrite(const SCEV *Expr) const {
15530   /// A rewriter to replace SCEV expressions in Map with the corresponding entry
15531   /// in the map. It skips AddRecExpr because we cannot guarantee that the
15532   /// replacement is loop invariant in the loop of the AddRec.
15533   class SCEVLoopGuardRewriter
15534       : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> {
15535     const DenseMap<const SCEV *, const SCEV *> &Map;
15536 
15537     SCEV::NoWrapFlags FlagMask = SCEV::FlagAnyWrap;
15538 
15539   public:
15540     SCEVLoopGuardRewriter(ScalarEvolution &SE,
15541                           const ScalarEvolution::LoopGuards &Guards)
15542         : SCEVRewriteVisitor(SE), Map(Guards.RewriteMap) {
15543       if (Guards.PreserveNUW)
15544         FlagMask = ScalarEvolution::setFlags(FlagMask, SCEV::FlagNUW);
15545       if (Guards.PreserveNSW)
15546         FlagMask = ScalarEvolution::setFlags(FlagMask, SCEV::FlagNSW);
15547     }
15548 
15549     const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; }
15550 
15551     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
15552       auto I = Map.find(Expr);
15553       if (I == Map.end())
15554         return Expr;
15555       return I->second;
15556     }
15557 
15558     const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
15559       auto I = Map.find(Expr);
15560       if (I == Map.end()) {
15561         // If we didn't find the extact ZExt expr in the map, check if there's
15562         // an entry for a smaller ZExt we can use instead.
15563         Type *Ty = Expr->getType();
15564         const SCEV *Op = Expr->getOperand(0);
15565         unsigned Bitwidth = Ty->getScalarSizeInBits() / 2;
15566         while (Bitwidth % 8 == 0 && Bitwidth >= 8 &&
15567                Bitwidth > Op->getType()->getScalarSizeInBits()) {
15568           Type *NarrowTy = IntegerType::get(SE.getContext(), Bitwidth);
15569           auto *NarrowExt = SE.getZeroExtendExpr(Op, NarrowTy);
15570           auto I = Map.find(NarrowExt);
15571           if (I != Map.end())
15572             return SE.getZeroExtendExpr(I->second, Ty);
15573           Bitwidth = Bitwidth / 2;
15574         }
15575 
15576         return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitZeroExtendExpr(
15577             Expr);
15578       }
15579       return I->second;
15580     }
15581 
15582     const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
15583       auto I = Map.find(Expr);
15584       if (I == Map.end())
15585         return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitSignExtendExpr(
15586             Expr);
15587       return I->second;
15588     }
15589 
15590     const SCEV *visitUMinExpr(const SCEVUMinExpr *Expr) {
15591       auto I = Map.find(Expr);
15592       if (I == Map.end())
15593         return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitUMinExpr(Expr);
15594       return I->second;
15595     }
15596 
15597     const SCEV *visitSMinExpr(const SCEVSMinExpr *Expr) {
15598       auto I = Map.find(Expr);
15599       if (I == Map.end())
15600         return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitSMinExpr(Expr);
15601       return I->second;
15602     }
15603 
15604     const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
15605       SmallVector<const SCEV *, 2> Operands;
15606       bool Changed = false;
15607       for (const auto *Op : Expr->operands()) {
15608         Operands.push_back(
15609             SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visit(Op));
15610         Changed |= Op != Operands.back();
15611       }
15612       // We are only replacing operands with equivalent values, so transfer the
15613       // flags from the original expression.
15614       return !Changed ? Expr
15615                       : SE.getAddExpr(Operands,
15616                                       ScalarEvolution::maskFlags(
15617                                           Expr->getNoWrapFlags(), FlagMask));
15618     }
15619 
15620     const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
15621       SmallVector<const SCEV *, 2> Operands;
15622       bool Changed = false;
15623       for (const auto *Op : Expr->operands()) {
15624         Operands.push_back(
15625             SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visit(Op));
15626         Changed |= Op != Operands.back();
15627       }
15628       // We are only replacing operands with equivalent values, so transfer the
15629       // flags from the original expression.
15630       return !Changed ? Expr
15631                       : SE.getMulExpr(Operands,
15632                                       ScalarEvolution::maskFlags(
15633                                           Expr->getNoWrapFlags(), FlagMask));
15634     }
15635   };
15636 
15637   if (RewriteMap.empty())
15638     return Expr;
15639 
15640   SCEVLoopGuardRewriter Rewriter(SE, *this);
15641   return Rewriter.visit(Expr);
15642 }
15643 
applyLoopGuards(const SCEV * Expr,const Loop * L)15644 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) {
15645   return applyLoopGuards(Expr, LoopGuards::collect(L, *this));
15646 }
15647 
applyLoopGuards(const SCEV * Expr,const LoopGuards & Guards)15648 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr,
15649                                              const LoopGuards &Guards) {
15650   return Guards.rewrite(Expr);
15651 }
15652