xref: /freebsd/contrib/llvm-project/llvm/include/llvm/CodeGen/TargetInstrInfo.h (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===- llvm/CodeGen/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file describes the target machine instruction set to the code generator.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CODEGEN_TARGETINSTRINFO_H
14 #define LLVM_CODEGEN_TARGETINSTRINFO_H
15 
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseMapInfo.h"
19 #include "llvm/ADT/Uniformity.h"
20 #include "llvm/CodeGen/MIRFormatter.h"
21 #include "llvm/CodeGen/MachineBasicBlock.h"
22 #include "llvm/CodeGen/MachineCombinerPattern.h"
23 #include "llvm/CodeGen/MachineCycleAnalysis.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineOperand.h"
28 #include "llvm/CodeGen/MachineOutliner.h"
29 #include "llvm/CodeGen/RegisterClassInfo.h"
30 #include "llvm/CodeGen/VirtRegMap.h"
31 #include "llvm/MC/MCInstrInfo.h"
32 #include "llvm/Support/BranchProbability.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include <array>
35 #include <cassert>
36 #include <cstddef>
37 #include <cstdint>
38 #include <utility>
39 #include <vector>
40 
41 namespace llvm {
42 
43 class DFAPacketizer;
44 class InstrItineraryData;
45 class LiveIntervals;
46 class LiveVariables;
47 class MachineLoop;
48 class MachineMemOperand;
49 class MachineRegisterInfo;
50 class MCAsmInfo;
51 class MCInst;
52 struct MCSchedModel;
53 class Module;
54 class ScheduleDAG;
55 class ScheduleDAGMI;
56 class ScheduleHazardRecognizer;
57 class SDNode;
58 class SelectionDAG;
59 class SMSchedule;
60 class SwingSchedulerDAG;
61 class RegScavenger;
62 class TargetRegisterClass;
63 class TargetRegisterInfo;
64 class TargetSchedModel;
65 class TargetSubtargetInfo;
66 enum class MachineTraceStrategy;
67 
68 template <class T> class SmallVectorImpl;
69 
70 using ParamLoadedValue = std::pair<MachineOperand, DIExpression*>;
71 
72 struct DestSourcePair {
73   const MachineOperand *Destination;
74   const MachineOperand *Source;
75 
DestSourcePairDestSourcePair76   DestSourcePair(const MachineOperand &Dest, const MachineOperand &Src)
77       : Destination(&Dest), Source(&Src) {}
78 };
79 
80 /// Used to describe a register and immediate addition.
81 struct RegImmPair {
82   Register Reg;
83   int64_t Imm;
84 
RegImmPairRegImmPair85   RegImmPair(Register Reg, int64_t Imm) : Reg(Reg), Imm(Imm) {}
86 };
87 
88 /// Used to describe addressing mode similar to ExtAddrMode in CodeGenPrepare.
89 /// It holds the register values, the scale value and the displacement.
90 /// It also holds a descriptor for the expression used to calculate the address
91 /// from the operands.
92 struct ExtAddrMode {
93   enum class Formula {
94     Basic = 0,         // BaseReg + ScaledReg * Scale + Displacement
95     SExtScaledReg = 1, // BaseReg + sext(ScaledReg) * Scale + Displacement
96     ZExtScaledReg = 2  // BaseReg + zext(ScaledReg) * Scale + Displacement
97   };
98 
99   Register BaseReg;
100   Register ScaledReg;
101   int64_t Scale = 0;
102   int64_t Displacement = 0;
103   Formula Form = Formula::Basic;
104   ExtAddrMode() = default;
105 };
106 
107 //---------------------------------------------------------------------------
108 ///
109 /// TargetInstrInfo - Interface to description of machine instruction set
110 ///
111 class TargetInstrInfo : public MCInstrInfo {
112 public:
113   TargetInstrInfo(unsigned CFSetupOpcode = ~0u, unsigned CFDestroyOpcode = ~0u,
114                   unsigned CatchRetOpcode = ~0u, unsigned ReturnOpcode = ~0u)
CallFrameSetupOpcode(CFSetupOpcode)115       : CallFrameSetupOpcode(CFSetupOpcode),
116         CallFrameDestroyOpcode(CFDestroyOpcode), CatchRetOpcode(CatchRetOpcode),
117         ReturnOpcode(ReturnOpcode) {}
118   TargetInstrInfo(const TargetInstrInfo &) = delete;
119   TargetInstrInfo &operator=(const TargetInstrInfo &) = delete;
120   virtual ~TargetInstrInfo();
121 
isGenericOpcode(unsigned Opc)122   static bool isGenericOpcode(unsigned Opc) {
123     return Opc <= TargetOpcode::GENERIC_OP_END;
124   }
125 
isGenericAtomicRMWOpcode(unsigned Opc)126   static bool isGenericAtomicRMWOpcode(unsigned Opc) {
127     return Opc >= TargetOpcode::GENERIC_ATOMICRMW_OP_START &&
128            Opc <= TargetOpcode::GENERIC_ATOMICRMW_OP_END;
129   }
130 
131   /// Given a machine instruction descriptor, returns the register
132   /// class constraint for OpNum, or NULL.
133   virtual
134   const TargetRegisterClass *getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
135                                          const TargetRegisterInfo *TRI,
136                                          const MachineFunction &MF) const;
137 
138   /// Return true if the instruction is trivially rematerializable, meaning it
139   /// has no side effects and requires no operands that aren't always available.
140   /// This means the only allowed uses are constants and unallocatable physical
141   /// registers so that the instructions result is independent of the place
142   /// in the function.
isTriviallyReMaterializable(const MachineInstr & MI)143   bool isTriviallyReMaterializable(const MachineInstr &MI) const {
144     return (MI.getOpcode() == TargetOpcode::IMPLICIT_DEF &&
145             MI.getNumOperands() == 1) ||
146            (MI.getDesc().isRematerializable() &&
147             isReallyTriviallyReMaterializable(MI));
148   }
149 
150   /// Given \p MO is a PhysReg use return if it can be ignored for the purpose
151   /// of instruction rematerialization or sinking.
isIgnorableUse(const MachineOperand & MO)152   virtual bool isIgnorableUse(const MachineOperand &MO) const {
153     return false;
154   }
155 
isSafeToSink(MachineInstr & MI,MachineBasicBlock * SuccToSinkTo,MachineCycleInfo * CI)156   virtual bool isSafeToSink(MachineInstr &MI, MachineBasicBlock *SuccToSinkTo,
157                             MachineCycleInfo *CI) const {
158     return true;
159   }
160 
161 protected:
162   /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
163   /// set, this hook lets the target specify whether the instruction is actually
164   /// trivially rematerializable, taking into consideration its operands. This
165   /// predicate must return false if the instruction has any side effects other
166   /// than producing a value, or if it requres any address registers that are
167   /// not always available.
168   virtual bool isReallyTriviallyReMaterializable(const MachineInstr &MI) const;
169 
170   /// This method commutes the operands of the given machine instruction MI.
171   /// The operands to be commuted are specified by their indices OpIdx1 and
172   /// OpIdx2.
173   ///
174   /// If a target has any instructions that are commutable but require
175   /// converting to different instructions or making non-trivial changes
176   /// to commute them, this method can be overloaded to do that.
177   /// The default implementation simply swaps the commutable operands.
178   ///
179   /// If NewMI is false, MI is modified in place and returned; otherwise, a
180   /// new machine instruction is created and returned.
181   ///
182   /// Do not call this method for a non-commutable instruction.
183   /// Even though the instruction is commutable, the method may still
184   /// fail to commute the operands, null pointer is returned in such cases.
185   virtual MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
186                                                unsigned OpIdx1,
187                                                unsigned OpIdx2) const;
188 
189   /// Assigns the (CommutableOpIdx1, CommutableOpIdx2) pair of commutable
190   /// operand indices to (ResultIdx1, ResultIdx2).
191   /// One or both input values of the pair: (ResultIdx1, ResultIdx2) may be
192   /// predefined to some indices or be undefined (designated by the special
193   /// value 'CommuteAnyOperandIndex').
194   /// The predefined result indices cannot be re-defined.
195   /// The function returns true iff after the result pair redefinition
196   /// the fixed result pair is equal to or equivalent to the source pair of
197   /// indices: (CommutableOpIdx1, CommutableOpIdx2). It is assumed here that
198   /// the pairs (x,y) and (y,x) are equivalent.
199   static bool fixCommutedOpIndices(unsigned &ResultIdx1, unsigned &ResultIdx2,
200                                    unsigned CommutableOpIdx1,
201                                    unsigned CommutableOpIdx2);
202 
203 public:
204   /// These methods return the opcode of the frame setup/destroy instructions
205   /// if they exist (-1 otherwise).  Some targets use pseudo instructions in
206   /// order to abstract away the difference between operating with a frame
207   /// pointer and operating without, through the use of these two instructions.
208   /// A FrameSetup MI in MF implies MFI::AdjustsStack.
209   ///
getCallFrameSetupOpcode()210   unsigned getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
getCallFrameDestroyOpcode()211   unsigned getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
212 
213   /// Returns true if the argument is a frame pseudo instruction.
isFrameInstr(const MachineInstr & I)214   bool isFrameInstr(const MachineInstr &I) const {
215     return I.getOpcode() == getCallFrameSetupOpcode() ||
216            I.getOpcode() == getCallFrameDestroyOpcode();
217   }
218 
219   /// Returns true if the argument is a frame setup pseudo instruction.
isFrameSetup(const MachineInstr & I)220   bool isFrameSetup(const MachineInstr &I) const {
221     return I.getOpcode() == getCallFrameSetupOpcode();
222   }
223 
224   /// Returns size of the frame associated with the given frame instruction.
225   /// For frame setup instruction this is frame that is set up space set up
226   /// after the instruction. For frame destroy instruction this is the frame
227   /// freed by the caller.
228   /// Note, in some cases a call frame (or a part of it) may be prepared prior
229   /// to the frame setup instruction. It occurs in the calls that involve
230   /// inalloca arguments. This function reports only the size of the frame part
231   /// that is set up between the frame setup and destroy pseudo instructions.
getFrameSize(const MachineInstr & I)232   int64_t getFrameSize(const MachineInstr &I) const {
233     assert(isFrameInstr(I) && "Not a frame instruction");
234     assert(I.getOperand(0).getImm() >= 0);
235     return I.getOperand(0).getImm();
236   }
237 
238   /// Returns the total frame size, which is made up of the space set up inside
239   /// the pair of frame start-stop instructions and the space that is set up
240   /// prior to the pair.
getFrameTotalSize(const MachineInstr & I)241   int64_t getFrameTotalSize(const MachineInstr &I) const {
242     if (isFrameSetup(I)) {
243       assert(I.getOperand(1).getImm() >= 0 &&
244              "Frame size must not be negative");
245       return getFrameSize(I) + I.getOperand(1).getImm();
246     }
247     return getFrameSize(I);
248   }
249 
getCatchReturnOpcode()250   unsigned getCatchReturnOpcode() const { return CatchRetOpcode; }
getReturnOpcode()251   unsigned getReturnOpcode() const { return ReturnOpcode; }
252 
253   /// Returns the actual stack pointer adjustment made by an instruction
254   /// as part of a call sequence. By default, only call frame setup/destroy
255   /// instructions adjust the stack, but targets may want to override this
256   /// to enable more fine-grained adjustment, or adjust by a different value.
257   virtual int getSPAdjust(const MachineInstr &MI) const;
258 
259   /// Return true if the instruction is a "coalescable" extension instruction.
260   /// That is, it's like a copy where it's legal for the source to overlap the
261   /// destination. e.g. X86::MOVSX64rr32. If this returns true, then it's
262   /// expected the pre-extension value is available as a subreg of the result
263   /// register. This also returns the sub-register index in SubIdx.
isCoalescableExtInstr(const MachineInstr & MI,Register & SrcReg,Register & DstReg,unsigned & SubIdx)264   virtual bool isCoalescableExtInstr(const MachineInstr &MI, Register &SrcReg,
265                                      Register &DstReg, unsigned &SubIdx) const {
266     return false;
267   }
268 
269   /// If the specified machine instruction is a direct
270   /// load from a stack slot, return the virtual or physical register number of
271   /// the destination along with the FrameIndex of the loaded stack slot.  If
272   /// not, return 0.  This predicate must return 0 if the instruction has
273   /// any side effects other than loading from the stack slot.
isLoadFromStackSlot(const MachineInstr & MI,int & FrameIndex)274   virtual Register isLoadFromStackSlot(const MachineInstr &MI,
275                                        int &FrameIndex) const {
276     return 0;
277   }
278 
279   /// Optional extension of isLoadFromStackSlot that returns the number of
280   /// bytes loaded from the stack. This must be implemented if a backend
281   /// supports partial stack slot spills/loads to further disambiguate
282   /// what the load does.
isLoadFromStackSlot(const MachineInstr & MI,int & FrameIndex,unsigned & MemBytes)283   virtual Register isLoadFromStackSlot(const MachineInstr &MI,
284                                        int &FrameIndex,
285                                        unsigned &MemBytes) const {
286     MemBytes = 0;
287     return isLoadFromStackSlot(MI, FrameIndex);
288   }
289 
290   /// Check for post-frame ptr elimination stack locations as well.
291   /// This uses a heuristic so it isn't reliable for correctness.
isLoadFromStackSlotPostFE(const MachineInstr & MI,int & FrameIndex)292   virtual Register isLoadFromStackSlotPostFE(const MachineInstr &MI,
293                                              int &FrameIndex) const {
294     return 0;
295   }
296 
297   /// If the specified machine instruction has a load from a stack slot,
298   /// return true along with the FrameIndices of the loaded stack slot and the
299   /// machine mem operands containing the reference.
300   /// If not, return false.  Unlike isLoadFromStackSlot, this returns true for
301   /// any instructions that loads from the stack.  This is just a hint, as some
302   /// cases may be missed.
303   virtual bool hasLoadFromStackSlot(
304       const MachineInstr &MI,
305       SmallVectorImpl<const MachineMemOperand *> &Accesses) const;
306 
307   /// If the specified machine instruction is a direct
308   /// store to a stack slot, return the virtual or physical register number of
309   /// the source reg along with the FrameIndex of the loaded stack slot.  If
310   /// not, return 0.  This predicate must return 0 if the instruction has
311   /// any side effects other than storing to the stack slot.
isStoreToStackSlot(const MachineInstr & MI,int & FrameIndex)312   virtual Register isStoreToStackSlot(const MachineInstr &MI,
313                                       int &FrameIndex) const {
314     return 0;
315   }
316 
317   /// Optional extension of isStoreToStackSlot that returns the number of
318   /// bytes stored to the stack. This must be implemented if a backend
319   /// supports partial stack slot spills/loads to further disambiguate
320   /// what the store does.
isStoreToStackSlot(const MachineInstr & MI,int & FrameIndex,unsigned & MemBytes)321   virtual Register isStoreToStackSlot(const MachineInstr &MI,
322                                       int &FrameIndex,
323                                       unsigned &MemBytes) const {
324     MemBytes = 0;
325     return isStoreToStackSlot(MI, FrameIndex);
326   }
327 
328   /// Check for post-frame ptr elimination stack locations as well.
329   /// This uses a heuristic, so it isn't reliable for correctness.
isStoreToStackSlotPostFE(const MachineInstr & MI,int & FrameIndex)330   virtual Register isStoreToStackSlotPostFE(const MachineInstr &MI,
331                                             int &FrameIndex) const {
332     return 0;
333   }
334 
335   /// If the specified machine instruction has a store to a stack slot,
336   /// return true along with the FrameIndices of the loaded stack slot and the
337   /// machine mem operands containing the reference.
338   /// If not, return false.  Unlike isStoreToStackSlot,
339   /// this returns true for any instructions that stores to the
340   /// stack.  This is just a hint, as some cases may be missed.
341   virtual bool hasStoreToStackSlot(
342       const MachineInstr &MI,
343       SmallVectorImpl<const MachineMemOperand *> &Accesses) const;
344 
345   /// Return true if the specified machine instruction
346   /// is a copy of one stack slot to another and has no other effect.
347   /// Provide the identity of the two frame indices.
isStackSlotCopy(const MachineInstr & MI,int & DestFrameIndex,int & SrcFrameIndex)348   virtual bool isStackSlotCopy(const MachineInstr &MI, int &DestFrameIndex,
349                                int &SrcFrameIndex) const {
350     return false;
351   }
352 
353   /// Compute the size in bytes and offset within a stack slot of a spilled
354   /// register or subregister.
355   ///
356   /// \param [out] Size in bytes of the spilled value.
357   /// \param [out] Offset in bytes within the stack slot.
358   /// \returns true if both Size and Offset are successfully computed.
359   ///
360   /// Not all subregisters have computable spill slots. For example,
361   /// subregisters registers may not be byte-sized, and a pair of discontiguous
362   /// subregisters has no single offset.
363   ///
364   /// Targets with nontrivial bigendian implementations may need to override
365   /// this, particularly to support spilled vector registers.
366   virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx,
367                                  unsigned &Size, unsigned &Offset,
368                                  const MachineFunction &MF) const;
369 
370   /// Return true if the given instruction is terminator that is unspillable,
371   /// according to isUnspillableTerminatorImpl.
isUnspillableTerminator(const MachineInstr * MI)372   bool isUnspillableTerminator(const MachineInstr *MI) const {
373     return MI->isTerminator() && isUnspillableTerminatorImpl(MI);
374   }
375 
376   /// Returns the size in bytes of the specified MachineInstr, or ~0U
377   /// when this function is not implemented by a target.
getInstSizeInBytes(const MachineInstr & MI)378   virtual unsigned getInstSizeInBytes(const MachineInstr &MI) const {
379     return ~0U;
380   }
381 
382   /// Return true if the instruction is as cheap as a move instruction.
383   ///
384   /// Targets for different archs need to override this, and different
385   /// micro-architectures can also be finely tuned inside.
isAsCheapAsAMove(const MachineInstr & MI)386   virtual bool isAsCheapAsAMove(const MachineInstr &MI) const {
387     return MI.isAsCheapAsAMove();
388   }
389 
390   /// Return true if the instruction should be sunk by MachineSink.
391   ///
392   /// MachineSink determines on its own whether the instruction is safe to sink;
393   /// this gives the target a hook to override the default behavior with regards
394   /// to which instructions should be sunk.
shouldSink(const MachineInstr & MI)395   virtual bool shouldSink(const MachineInstr &MI) const { return true; }
396 
397   /// Return false if the instruction should not be hoisted by MachineLICM.
398   ///
399   /// MachineLICM determines on its own whether the instruction is safe to
400   /// hoist; this gives the target a hook to extend this assessment and prevent
401   /// an instruction being hoisted from a given loop for target specific
402   /// reasons.
shouldHoist(const MachineInstr & MI,const MachineLoop * FromLoop)403   virtual bool shouldHoist(const MachineInstr &MI,
404                            const MachineLoop *FromLoop) const {
405     return true;
406   }
407 
408   /// Re-issue the specified 'original' instruction at the
409   /// specific location targeting a new destination register.
410   /// The register in Orig->getOperand(0).getReg() will be substituted by
411   /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
412   /// SubIdx.
413   virtual void reMaterialize(MachineBasicBlock &MBB,
414                              MachineBasicBlock::iterator MI, Register DestReg,
415                              unsigned SubIdx, const MachineInstr &Orig,
416                              const TargetRegisterInfo &TRI) const;
417 
418   /// Clones instruction or the whole instruction bundle \p Orig and
419   /// insert into \p MBB before \p InsertBefore. The target may update operands
420   /// that are required to be unique.
421   ///
422   /// \p Orig must not return true for MachineInstr::isNotDuplicable().
423   virtual MachineInstr &duplicate(MachineBasicBlock &MBB,
424                                   MachineBasicBlock::iterator InsertBefore,
425                                   const MachineInstr &Orig) const;
426 
427   /// This method must be implemented by targets that
428   /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
429   /// may be able to convert a two-address instruction into one or more true
430   /// three-address instructions on demand.  This allows the X86 target (for
431   /// example) to convert ADD and SHL instructions into LEA instructions if they
432   /// would require register copies due to two-addressness.
433   ///
434   /// This method returns a null pointer if the transformation cannot be
435   /// performed, otherwise it returns the last new instruction.
436   ///
437   /// If \p LIS is not nullptr, the LiveIntervals info should be updated for
438   /// replacing \p MI with new instructions, even though this function does not
439   /// remove MI.
convertToThreeAddress(MachineInstr & MI,LiveVariables * LV,LiveIntervals * LIS)440   virtual MachineInstr *convertToThreeAddress(MachineInstr &MI,
441                                               LiveVariables *LV,
442                                               LiveIntervals *LIS) const {
443     return nullptr;
444   }
445 
446   // This constant can be used as an input value of operand index passed to
447   // the method findCommutedOpIndices() to tell the method that the
448   // corresponding operand index is not pre-defined and that the method
449   // can pick any commutable operand.
450   static const unsigned CommuteAnyOperandIndex = ~0U;
451 
452   /// This method commutes the operands of the given machine instruction MI.
453   ///
454   /// The operands to be commuted are specified by their indices OpIdx1 and
455   /// OpIdx2. OpIdx1 and OpIdx2 arguments may be set to a special value
456   /// 'CommuteAnyOperandIndex', which means that the method is free to choose
457   /// any arbitrarily chosen commutable operand. If both arguments are set to
458   /// 'CommuteAnyOperandIndex' then the method looks for 2 different commutable
459   /// operands; then commutes them if such operands could be found.
460   ///
461   /// If NewMI is false, MI is modified in place and returned; otherwise, a
462   /// new machine instruction is created and returned.
463   ///
464   /// Do not call this method for a non-commutable instruction or
465   /// for non-commuable operands.
466   /// Even though the instruction is commutable, the method may still
467   /// fail to commute the operands, null pointer is returned in such cases.
468   MachineInstr *
469   commuteInstruction(MachineInstr &MI, bool NewMI = false,
470                      unsigned OpIdx1 = CommuteAnyOperandIndex,
471                      unsigned OpIdx2 = CommuteAnyOperandIndex) const;
472 
473   /// Returns true iff the routine could find two commutable operands in the
474   /// given machine instruction.
475   /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments.
476   /// If any of the INPUT values is set to the special value
477   /// 'CommuteAnyOperandIndex' then the method arbitrarily picks a commutable
478   /// operand, then returns its index in the corresponding argument.
479   /// If both of INPUT values are set to 'CommuteAnyOperandIndex' then method
480   /// looks for 2 commutable operands.
481   /// If INPUT values refer to some operands of MI, then the method simply
482   /// returns true if the corresponding operands are commutable and returns
483   /// false otherwise.
484   ///
485   /// For example, calling this method this way:
486   ///     unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
487   ///     findCommutedOpIndices(MI, Op1, Op2);
488   /// can be interpreted as a query asking to find an operand that would be
489   /// commutable with the operand#1.
490   virtual bool findCommutedOpIndices(const MachineInstr &MI,
491                                      unsigned &SrcOpIdx1,
492                                      unsigned &SrcOpIdx2) const;
493 
494   /// Returns true if the target has a preference on the operands order of
495   /// the given machine instruction. And specify if \p Commute is required to
496   /// get the desired operands order.
hasCommutePreference(MachineInstr & MI,bool & Commute)497   virtual bool hasCommutePreference(MachineInstr &MI, bool &Commute) const {
498     return false;
499   }
500 
501   /// A pair composed of a register and a sub-register index.
502   /// Used to give some type checking when modeling Reg:SubReg.
503   struct RegSubRegPair {
504     Register Reg;
505     unsigned SubReg;
506 
507     RegSubRegPair(Register Reg = Register(), unsigned SubReg = 0)
RegRegSubRegPair508         : Reg(Reg), SubReg(SubReg) {}
509 
510     bool operator==(const RegSubRegPair& P) const {
511       return Reg == P.Reg && SubReg == P.SubReg;
512     }
513     bool operator!=(const RegSubRegPair& P) const {
514       return !(*this == P);
515     }
516   };
517 
518   /// A pair composed of a pair of a register and a sub-register index,
519   /// and another sub-register index.
520   /// Used to give some type checking when modeling Reg:SubReg1, SubReg2.
521   struct RegSubRegPairAndIdx : RegSubRegPair {
522     unsigned SubIdx;
523 
524     RegSubRegPairAndIdx(Register Reg = Register(), unsigned SubReg = 0,
525                         unsigned SubIdx = 0)
RegSubRegPairRegSubRegPairAndIdx526         : RegSubRegPair(Reg, SubReg), SubIdx(SubIdx) {}
527   };
528 
529   /// Build the equivalent inputs of a REG_SEQUENCE for the given \p MI
530   /// and \p DefIdx.
531   /// \p [out] InputRegs of the equivalent REG_SEQUENCE. Each element of
532   /// the list is modeled as <Reg:SubReg, SubIdx>. Operands with the undef
533   /// flag are not added to this list.
534   /// E.g., REG_SEQUENCE %1:sub1, sub0, %2, sub1 would produce
535   /// two elements:
536   /// - %1:sub1, sub0
537   /// - %2<:0>, sub1
538   ///
539   /// \returns true if it is possible to build such an input sequence
540   /// with the pair \p MI, \p DefIdx. False otherwise.
541   ///
542   /// \pre MI.isRegSequence() or MI.isRegSequenceLike().
543   ///
544   /// \note The generic implementation does not provide any support for
545   /// MI.isRegSequenceLike(). In other words, one has to override
546   /// getRegSequenceLikeInputs for target specific instructions.
547   bool
548   getRegSequenceInputs(const MachineInstr &MI, unsigned DefIdx,
549                        SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const;
550 
551   /// Build the equivalent inputs of a EXTRACT_SUBREG for the given \p MI
552   /// and \p DefIdx.
553   /// \p [out] InputReg of the equivalent EXTRACT_SUBREG.
554   /// E.g., EXTRACT_SUBREG %1:sub1, sub0, sub1 would produce:
555   /// - %1:sub1, sub0
556   ///
557   /// \returns true if it is possible to build such an input sequence
558   /// with the pair \p MI, \p DefIdx and the operand has no undef flag set.
559   /// False otherwise.
560   ///
561   /// \pre MI.isExtractSubreg() or MI.isExtractSubregLike().
562   ///
563   /// \note The generic implementation does not provide any support for
564   /// MI.isExtractSubregLike(). In other words, one has to override
565   /// getExtractSubregLikeInputs for target specific instructions.
566   bool getExtractSubregInputs(const MachineInstr &MI, unsigned DefIdx,
567                               RegSubRegPairAndIdx &InputReg) const;
568 
569   /// Build the equivalent inputs of a INSERT_SUBREG for the given \p MI
570   /// and \p DefIdx.
571   /// \p [out] BaseReg and \p [out] InsertedReg contain
572   /// the equivalent inputs of INSERT_SUBREG.
573   /// E.g., INSERT_SUBREG %0:sub0, %1:sub1, sub3 would produce:
574   /// - BaseReg: %0:sub0
575   /// - InsertedReg: %1:sub1, sub3
576   ///
577   /// \returns true if it is possible to build such an input sequence
578   /// with the pair \p MI, \p DefIdx and the operand has no undef flag set.
579   /// False otherwise.
580   ///
581   /// \pre MI.isInsertSubreg() or MI.isInsertSubregLike().
582   ///
583   /// \note The generic implementation does not provide any support for
584   /// MI.isInsertSubregLike(). In other words, one has to override
585   /// getInsertSubregLikeInputs for target specific instructions.
586   bool getInsertSubregInputs(const MachineInstr &MI, unsigned DefIdx,
587                              RegSubRegPair &BaseReg,
588                              RegSubRegPairAndIdx &InsertedReg) const;
589 
590   /// Return true if two machine instructions would produce identical values.
591   /// By default, this is only true when the two instructions
592   /// are deemed identical except for defs. If this function is called when the
593   /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
594   /// aggressive checks.
595   virtual bool produceSameValue(const MachineInstr &MI0,
596                                 const MachineInstr &MI1,
597                                 const MachineRegisterInfo *MRI = nullptr) const;
598 
599   /// \returns true if a branch from an instruction with opcode \p BranchOpc
600   ///  bytes is capable of jumping to a position \p BrOffset bytes away.
isBranchOffsetInRange(unsigned BranchOpc,int64_t BrOffset)601   virtual bool isBranchOffsetInRange(unsigned BranchOpc,
602                                      int64_t BrOffset) const {
603     llvm_unreachable("target did not implement");
604   }
605 
606   /// \returns The block that branch instruction \p MI jumps to.
getBranchDestBlock(const MachineInstr & MI)607   virtual MachineBasicBlock *getBranchDestBlock(const MachineInstr &MI) const {
608     llvm_unreachable("target did not implement");
609   }
610 
611   /// Insert an unconditional indirect branch at the end of \p MBB to \p
612   /// NewDestBB. Optionally, insert the clobbered register restoring in \p
613   /// RestoreBB. \p BrOffset indicates the offset of \p NewDestBB relative to
614   /// the offset of the position to insert the new branch.
615   virtual void insertIndirectBranch(MachineBasicBlock &MBB,
616                                     MachineBasicBlock &NewDestBB,
617                                     MachineBasicBlock &RestoreBB,
618                                     const DebugLoc &DL, int64_t BrOffset = 0,
619                                     RegScavenger *RS = nullptr) const {
620     llvm_unreachable("target did not implement");
621   }
622 
623   /// Analyze the branching code at the end of MBB, returning
624   /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
625   /// implemented for a target).  Upon success, this returns false and returns
626   /// with the following information in various cases:
627   ///
628   /// 1. If this block ends with no branches (it just falls through to its succ)
629   ///    just return false, leaving TBB/FBB null.
630   /// 2. If this block ends with only an unconditional branch, it sets TBB to be
631   ///    the destination block.
632   /// 3. If this block ends with a conditional branch and it falls through to a
633   ///    successor block, it sets TBB to be the branch destination block and a
634   ///    list of operands that evaluate the condition. These operands can be
635   ///    passed to other TargetInstrInfo methods to create new branches.
636   /// 4. If this block ends with a conditional branch followed by an
637   ///    unconditional branch, it returns the 'true' destination in TBB, the
638   ///    'false' destination in FBB, and a list of operands that evaluate the
639   ///    condition.  These operands can be passed to other TargetInstrInfo
640   ///    methods to create new branches.
641   ///
642   /// Note that removeBranch and insertBranch must be implemented to support
643   /// cases where this method returns success.
644   ///
645   /// If AllowModify is true, then this routine is allowed to modify the basic
646   /// block (e.g. delete instructions after the unconditional branch).
647   ///
648   /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
649   /// before calling this function.
650   virtual bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
651                              MachineBasicBlock *&FBB,
652                              SmallVectorImpl<MachineOperand> &Cond,
653                              bool AllowModify = false) const {
654     return true;
655   }
656 
657   /// Represents a predicate at the MachineFunction level.  The control flow a
658   /// MachineBranchPredicate represents is:
659   ///
660   ///  Reg = LHS `Predicate` RHS         == ConditionDef
661   ///  if Reg then goto TrueDest else goto FalseDest
662   ///
663   struct MachineBranchPredicate {
664     enum ComparePredicate {
665       PRED_EQ,     // True if two values are equal
666       PRED_NE,     // True if two values are not equal
667       PRED_INVALID // Sentinel value
668     };
669 
670     ComparePredicate Predicate = PRED_INVALID;
671     MachineOperand LHS = MachineOperand::CreateImm(0);
672     MachineOperand RHS = MachineOperand::CreateImm(0);
673     MachineBasicBlock *TrueDest = nullptr;
674     MachineBasicBlock *FalseDest = nullptr;
675     MachineInstr *ConditionDef = nullptr;
676 
677     /// SingleUseCondition is true if ConditionDef is dead except for the
678     /// branch(es) at the end of the basic block.
679     ///
680     bool SingleUseCondition = false;
681 
682     explicit MachineBranchPredicate() = default;
683   };
684 
685   /// Analyze the branching code at the end of MBB and parse it into the
686   /// MachineBranchPredicate structure if possible.  Returns false on success
687   /// and true on failure.
688   ///
689   /// If AllowModify is true, then this routine is allowed to modify the basic
690   /// block (e.g. delete instructions after the unconditional branch).
691   ///
692   virtual bool analyzeBranchPredicate(MachineBasicBlock &MBB,
693                                       MachineBranchPredicate &MBP,
694                                       bool AllowModify = false) const {
695     return true;
696   }
697 
698   /// Remove the branching code at the end of the specific MBB.
699   /// This is only invoked in cases where analyzeBranch returns success. It
700   /// returns the number of instructions that were removed.
701   /// If \p BytesRemoved is non-null, report the change in code size from the
702   /// removed instructions.
703   virtual unsigned removeBranch(MachineBasicBlock &MBB,
704                                 int *BytesRemoved = nullptr) const {
705     llvm_unreachable("Target didn't implement TargetInstrInfo::removeBranch!");
706   }
707 
708   /// Insert branch code into the end of the specified MachineBasicBlock. The
709   /// operands to this method are the same as those returned by analyzeBranch.
710   /// This is only invoked in cases where analyzeBranch returns success. It
711   /// returns the number of instructions inserted. If \p BytesAdded is non-null,
712   /// report the change in code size from the added instructions.
713   ///
714   /// It is also invoked by tail merging to add unconditional branches in
715   /// cases where analyzeBranch doesn't apply because there was no original
716   /// branch to analyze.  At least this much must be implemented, else tail
717   /// merging needs to be disabled.
718   ///
719   /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
720   /// before calling this function.
721   virtual unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
722                                 MachineBasicBlock *FBB,
723                                 ArrayRef<MachineOperand> Cond,
724                                 const DebugLoc &DL,
725                                 int *BytesAdded = nullptr) const {
726     llvm_unreachable("Target didn't implement TargetInstrInfo::insertBranch!");
727   }
728 
729   unsigned insertUnconditionalBranch(MachineBasicBlock &MBB,
730                                      MachineBasicBlock *DestBB,
731                                      const DebugLoc &DL,
732                                      int *BytesAdded = nullptr) const {
733     return insertBranch(MBB, DestBB, nullptr, ArrayRef<MachineOperand>(), DL,
734                         BytesAdded);
735   }
736 
737   /// Object returned by analyzeLoopForPipelining. Allows software pipelining
738   /// implementations to query attributes of the loop being pipelined and to
739   /// apply target-specific updates to the loop once pipelining is complete.
740   class PipelinerLoopInfo {
741   public:
742     virtual ~PipelinerLoopInfo();
743     /// Return true if the given instruction should not be pipelined and should
744     /// be ignored. An example could be a loop comparison, or induction variable
745     /// update with no users being pipelined.
746     virtual bool shouldIgnoreForPipelining(const MachineInstr *MI) const = 0;
747 
748     /// Return true if the proposed schedule should used.  Otherwise return
749     /// false to not pipeline the loop. This function should be used to ensure
750     /// that pipelined loops meet target-specific quality heuristics.
shouldUseSchedule(SwingSchedulerDAG & SSD,SMSchedule & SMS)751     virtual bool shouldUseSchedule(SwingSchedulerDAG &SSD, SMSchedule &SMS) {
752       return true;
753     }
754 
755     /// Create a condition to determine if the trip count of the loop is greater
756     /// than TC, where TC is always one more than for the previous prologue or
757     /// 0 if this is being called for the outermost prologue.
758     ///
759     /// If the trip count is statically known to be greater than TC, return
760     /// true. If the trip count is statically known to be not greater than TC,
761     /// return false. Otherwise return nullopt and fill out Cond with the test
762     /// condition.
763     ///
764     /// Note: This hook is guaranteed to be called from the innermost to the
765     /// outermost prologue of the loop being software pipelined.
766     virtual std::optional<bool>
767     createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB,
768                                     SmallVectorImpl<MachineOperand> &Cond) = 0;
769 
770     /// Create a condition to determine if the remaining trip count for a phase
771     /// is greater than TC. Some instructions such as comparisons may be
772     /// inserted at the bottom of MBB. All instructions expanded for the
773     /// phase must be inserted in MBB before calling this function.
774     /// LastStage0Insts is the map from the original instructions scheduled at
775     /// stage#0 to the expanded instructions for the last iteration of the
776     /// kernel. LastStage0Insts is intended to obtain the instruction that
777     /// refers the latest loop counter value.
778     ///
779     /// MBB can also be a predecessor of the prologue block. Then
780     /// LastStage0Insts must be empty and the compared value is the initial
781     /// value of the trip count.
createRemainingIterationsGreaterCondition(int TC,MachineBasicBlock & MBB,SmallVectorImpl<MachineOperand> & Cond,DenseMap<MachineInstr *,MachineInstr * > & LastStage0Insts)782     virtual void createRemainingIterationsGreaterCondition(
783         int TC, MachineBasicBlock &MBB, SmallVectorImpl<MachineOperand> &Cond,
784         DenseMap<MachineInstr *, MachineInstr *> &LastStage0Insts) {
785       llvm_unreachable(
786           "Target didn't implement "
787           "PipelinerLoopInfo::createRemainingIterationsGreaterCondition!");
788     }
789 
790     /// Modify the loop such that the trip count is
791     /// OriginalTC + TripCountAdjust.
792     virtual void adjustTripCount(int TripCountAdjust) = 0;
793 
794     /// Called when the loop's preheader has been modified to NewPreheader.
795     virtual void setPreheader(MachineBasicBlock *NewPreheader) = 0;
796 
797     /// Called when the loop is being removed. Any instructions in the preheader
798     /// should be removed.
799     ///
800     /// Once this function is called, no other functions on this object are
801     /// valid; the loop has been removed.
802     virtual void disposed() = 0;
803 
804     /// Return true if the target can expand pipelined schedule with modulo
805     /// variable expansion.
isMVEExpanderSupported()806     virtual bool isMVEExpanderSupported() { return false; }
807   };
808 
809   /// Analyze loop L, which must be a single-basic-block loop, and if the
810   /// conditions can be understood enough produce a PipelinerLoopInfo object.
811   virtual std::unique_ptr<PipelinerLoopInfo>
analyzeLoopForPipelining(MachineBasicBlock * LoopBB)812   analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const {
813     return nullptr;
814   }
815 
816   /// Analyze the loop code, return true if it cannot be understood. Upon
817   /// success, this function returns false and returns information about the
818   /// induction variable and compare instruction used at the end.
analyzeLoop(MachineLoop & L,MachineInstr * & IndVarInst,MachineInstr * & CmpInst)819   virtual bool analyzeLoop(MachineLoop &L, MachineInstr *&IndVarInst,
820                            MachineInstr *&CmpInst) const {
821     return true;
822   }
823 
824   /// Generate code to reduce the loop iteration by one and check if the loop
825   /// is finished.  Return the value/register of the new loop count.  We need
826   /// this function when peeling off one or more iterations of a loop. This
827   /// function assumes the nth iteration is peeled first.
reduceLoopCount(MachineBasicBlock & MBB,MachineBasicBlock & PreHeader,MachineInstr * IndVar,MachineInstr & Cmp,SmallVectorImpl<MachineOperand> & Cond,SmallVectorImpl<MachineInstr * > & PrevInsts,unsigned Iter,unsigned MaxIter)828   virtual unsigned reduceLoopCount(MachineBasicBlock &MBB,
829                                    MachineBasicBlock &PreHeader,
830                                    MachineInstr *IndVar, MachineInstr &Cmp,
831                                    SmallVectorImpl<MachineOperand> &Cond,
832                                    SmallVectorImpl<MachineInstr *> &PrevInsts,
833                                    unsigned Iter, unsigned MaxIter) const {
834     llvm_unreachable("Target didn't implement ReduceLoopCount");
835   }
836 
837   /// Delete the instruction OldInst and everything after it, replacing it with
838   /// an unconditional branch to NewDest. This is used by the tail merging pass.
839   virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
840                                        MachineBasicBlock *NewDest) const;
841 
842   /// Return true if it's legal to split the given basic
843   /// block at the specified instruction (i.e. instruction would be the start
844   /// of a new basic block).
isLegalToSplitMBBAt(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI)845   virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
846                                    MachineBasicBlock::iterator MBBI) const {
847     return true;
848   }
849 
850   /// Return true if it's profitable to predicate
851   /// instructions with accumulated instruction latency of "NumCycles"
852   /// of the specified basic block, where the probability of the instructions
853   /// being executed is given by Probability, and Confidence is a measure
854   /// of our confidence that it will be properly predicted.
isProfitableToIfCvt(MachineBasicBlock & MBB,unsigned NumCycles,unsigned ExtraPredCycles,BranchProbability Probability)855   virtual bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
856                                    unsigned ExtraPredCycles,
857                                    BranchProbability Probability) const {
858     return false;
859   }
860 
861   /// Second variant of isProfitableToIfCvt. This one
862   /// checks for the case where two basic blocks from true and false path
863   /// of a if-then-else (diamond) are predicated on mutually exclusive
864   /// predicates, where the probability of the true path being taken is given
865   /// by Probability, and Confidence is a measure of our confidence that it
866   /// will be properly predicted.
isProfitableToIfCvt(MachineBasicBlock & TMBB,unsigned NumTCycles,unsigned ExtraTCycles,MachineBasicBlock & FMBB,unsigned NumFCycles,unsigned ExtraFCycles,BranchProbability Probability)867   virtual bool isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumTCycles,
868                                    unsigned ExtraTCycles,
869                                    MachineBasicBlock &FMBB, unsigned NumFCycles,
870                                    unsigned ExtraFCycles,
871                                    BranchProbability Probability) const {
872     return false;
873   }
874 
875   /// Return true if it's profitable for if-converter to duplicate instructions
876   /// of specified accumulated instruction latencies in the specified MBB to
877   /// enable if-conversion.
878   /// The probability of the instructions being executed is given by
879   /// Probability, and Confidence is a measure of our confidence that it
880   /// will be properly predicted.
isProfitableToDupForIfCvt(MachineBasicBlock & MBB,unsigned NumCycles,BranchProbability Probability)881   virtual bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
882                                          unsigned NumCycles,
883                                          BranchProbability Probability) const {
884     return false;
885   }
886 
887   /// Return the increase in code size needed to predicate a contiguous run of
888   /// NumInsts instructions.
extraSizeToPredicateInstructions(const MachineFunction & MF,unsigned NumInsts)889   virtual unsigned extraSizeToPredicateInstructions(const MachineFunction &MF,
890                                                     unsigned NumInsts) const {
891     return 0;
892   }
893 
894   /// Return an estimate for the code size reduction (in bytes) which will be
895   /// caused by removing the given branch instruction during if-conversion.
predictBranchSizeForIfCvt(MachineInstr & MI)896   virtual unsigned predictBranchSizeForIfCvt(MachineInstr &MI) const {
897     return getInstSizeInBytes(MI);
898   }
899 
900   /// Return true if it's profitable to unpredicate
901   /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
902   /// exclusive predicates.
903   /// e.g.
904   ///   subeq  r0, r1, #1
905   ///   addne  r0, r1, #1
906   /// =>
907   ///   sub    r0, r1, #1
908   ///   addne  r0, r1, #1
909   ///
910   /// This may be profitable is conditional instructions are always executed.
isProfitableToUnpredicate(MachineBasicBlock & TMBB,MachineBasicBlock & FMBB)911   virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
912                                          MachineBasicBlock &FMBB) const {
913     return false;
914   }
915 
916   /// Return true if it is possible to insert a select
917   /// instruction that chooses between TrueReg and FalseReg based on the
918   /// condition code in Cond.
919   ///
920   /// When successful, also return the latency in cycles from TrueReg,
921   /// FalseReg, and Cond to the destination register. In most cases, a select
922   /// instruction will be 1 cycle, so CondCycles = TrueCycles = FalseCycles = 1
923   ///
924   /// Some x86 implementations have 2-cycle cmov instructions.
925   ///
926   /// @param MBB         Block where select instruction would be inserted.
927   /// @param Cond        Condition returned by analyzeBranch.
928   /// @param DstReg      Virtual dest register that the result should write to.
929   /// @param TrueReg     Virtual register to select when Cond is true.
930   /// @param FalseReg    Virtual register to select when Cond is false.
931   /// @param CondCycles  Latency from Cond+Branch to select output.
932   /// @param TrueCycles  Latency from TrueReg to select output.
933   /// @param FalseCycles Latency from FalseReg to select output.
canInsertSelect(const MachineBasicBlock & MBB,ArrayRef<MachineOperand> Cond,Register DstReg,Register TrueReg,Register FalseReg,int & CondCycles,int & TrueCycles,int & FalseCycles)934   virtual bool canInsertSelect(const MachineBasicBlock &MBB,
935                                ArrayRef<MachineOperand> Cond, Register DstReg,
936                                Register TrueReg, Register FalseReg,
937                                int &CondCycles, int &TrueCycles,
938                                int &FalseCycles) const {
939     return false;
940   }
941 
942   /// Insert a select instruction into MBB before I that will copy TrueReg to
943   /// DstReg when Cond is true, and FalseReg to DstReg when Cond is false.
944   ///
945   /// This function can only be called after canInsertSelect() returned true.
946   /// The condition in Cond comes from analyzeBranch, and it can be assumed
947   /// that the same flags or registers required by Cond are available at the
948   /// insertion point.
949   ///
950   /// @param MBB      Block where select instruction should be inserted.
951   /// @param I        Insertion point.
952   /// @param DL       Source location for debugging.
953   /// @param DstReg   Virtual register to be defined by select instruction.
954   /// @param Cond     Condition as computed by analyzeBranch.
955   /// @param TrueReg  Virtual register to copy when Cond is true.
956   /// @param FalseReg Virtual register to copy when Cons is false.
insertSelect(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,const DebugLoc & DL,Register DstReg,ArrayRef<MachineOperand> Cond,Register TrueReg,Register FalseReg)957   virtual void insertSelect(MachineBasicBlock &MBB,
958                             MachineBasicBlock::iterator I, const DebugLoc &DL,
959                             Register DstReg, ArrayRef<MachineOperand> Cond,
960                             Register TrueReg, Register FalseReg) const {
961     llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!");
962   }
963 
964   /// Analyze the given select instruction, returning true if
965   /// it cannot be understood. It is assumed that MI->isSelect() is true.
966   ///
967   /// When successful, return the controlling condition and the operands that
968   /// determine the true and false result values.
969   ///
970   ///   Result = SELECT Cond, TrueOp, FalseOp
971   ///
972   /// Some targets can optimize select instructions, for example by predicating
973   /// the instruction defining one of the operands. Such targets should set
974   /// Optimizable.
975   ///
976   /// @param         MI Select instruction to analyze.
977   /// @param Cond    Condition controlling the select.
978   /// @param TrueOp  Operand number of the value selected when Cond is true.
979   /// @param FalseOp Operand number of the value selected when Cond is false.
980   /// @param Optimizable Returned as true if MI is optimizable.
981   /// @returns False on success.
analyzeSelect(const MachineInstr & MI,SmallVectorImpl<MachineOperand> & Cond,unsigned & TrueOp,unsigned & FalseOp,bool & Optimizable)982   virtual bool analyzeSelect(const MachineInstr &MI,
983                              SmallVectorImpl<MachineOperand> &Cond,
984                              unsigned &TrueOp, unsigned &FalseOp,
985                              bool &Optimizable) const {
986     assert(MI.getDesc().isSelect() && "MI must be a select instruction");
987     return true;
988   }
989 
990   /// Given a select instruction that was understood by
991   /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by
992   /// merging it with one of its operands. Returns NULL on failure.
993   ///
994   /// When successful, returns the new select instruction. The client is
995   /// responsible for deleting MI.
996   ///
997   /// If both sides of the select can be optimized, PreferFalse is used to pick
998   /// a side.
999   ///
1000   /// @param MI          Optimizable select instruction.
1001   /// @param NewMIs     Set that record all MIs in the basic block up to \p
1002   /// MI. Has to be updated with any newly created MI or deleted ones.
1003   /// @param PreferFalse Try to optimize FalseOp instead of TrueOp.
1004   /// @returns Optimized instruction or NULL.
1005   virtual MachineInstr *optimizeSelect(MachineInstr &MI,
1006                                        SmallPtrSetImpl<MachineInstr *> &NewMIs,
1007                                        bool PreferFalse = false) const {
1008     // This function must be implemented if Optimizable is ever set.
1009     llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!");
1010   }
1011 
1012   /// Emit instructions to copy a pair of physical registers.
1013   ///
1014   /// This function should support copies within any legal register class as
1015   /// well as any cross-class copies created during instruction selection.
1016   ///
1017   /// The source and destination registers may overlap, which may require a
1018   /// careful implementation when multiple copy instructions are required for
1019   /// large registers. See for example the ARM target.
copyPhysReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,const DebugLoc & DL,MCRegister DestReg,MCRegister SrcReg,bool KillSrc)1020   virtual void copyPhysReg(MachineBasicBlock &MBB,
1021                            MachineBasicBlock::iterator MI, const DebugLoc &DL,
1022                            MCRegister DestReg, MCRegister SrcReg,
1023                            bool KillSrc) const {
1024     llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!");
1025   }
1026 
1027   /// Allow targets to tell MachineVerifier whether a specific register
1028   /// MachineOperand can be used as part of PC-relative addressing.
1029   /// PC-relative addressing modes in many CISC architectures contain
1030   /// (non-PC) registers as offsets or scaling values, which inherently
1031   /// tags the corresponding MachineOperand with OPERAND_PCREL.
1032   ///
1033   /// @param MO The MachineOperand in question. MO.isReg() should always
1034   /// be true.
1035   /// @return Whether this operand is allowed to be used PC-relatively.
isPCRelRegisterOperandLegal(const MachineOperand & MO)1036   virtual bool isPCRelRegisterOperandLegal(const MachineOperand &MO) const {
1037     return false;
1038   }
1039 
1040   /// Return an index for MachineJumpTableInfo if \p insn is an indirect jump
1041   /// using a jump table, otherwise -1.
getJumpTableIndex(const MachineInstr & MI)1042   virtual int getJumpTableIndex(const MachineInstr &MI) const { return -1; }
1043 
1044 protected:
1045   /// Target-dependent implementation for IsCopyInstr.
1046   /// If the specific machine instruction is a instruction that moves/copies
1047   /// value from one register to another register return destination and source
1048   /// registers as machine operands.
1049   virtual std::optional<DestSourcePair>
isCopyInstrImpl(const MachineInstr & MI)1050   isCopyInstrImpl(const MachineInstr &MI) const {
1051     return std::nullopt;
1052   }
1053 
1054   virtual std::optional<DestSourcePair>
isCopyLikeInstrImpl(const MachineInstr & MI)1055   isCopyLikeInstrImpl(const MachineInstr &MI) const {
1056     return std::nullopt;
1057   }
1058 
1059   /// Return true if the given terminator MI is not expected to spill. This
1060   /// sets the live interval as not spillable and adjusts phi node lowering to
1061   /// not introduce copies after the terminator. Use with care, these are
1062   /// currently used for hardware loop intrinsics in very controlled situations,
1063   /// created prior to registry allocation in loops that only have single phi
1064   /// users for the terminators value. They may run out of registers if not used
1065   /// carefully.
isUnspillableTerminatorImpl(const MachineInstr * MI)1066   virtual bool isUnspillableTerminatorImpl(const MachineInstr *MI) const {
1067     return false;
1068   }
1069 
1070 public:
1071   /// If the specific machine instruction is a instruction that moves/copies
1072   /// value from one register to another register return destination and source
1073   /// registers as machine operands.
1074   /// For COPY-instruction the method naturally returns destination and source
1075   /// registers as machine operands, for all other instructions the method calls
1076   /// target-dependent implementation.
isCopyInstr(const MachineInstr & MI)1077   std::optional<DestSourcePair> isCopyInstr(const MachineInstr &MI) const {
1078     if (MI.isCopy()) {
1079       return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
1080     }
1081     return isCopyInstrImpl(MI);
1082   }
1083 
1084   // Similar to `isCopyInstr`, but adds non-copy semantics on MIR, but
1085   // ultimately generates a copy instruction.
isCopyLikeInstr(const MachineInstr & MI)1086   std::optional<DestSourcePair> isCopyLikeInstr(const MachineInstr &MI) const {
1087     if (auto IsCopyInstr = isCopyInstr(MI))
1088       return IsCopyInstr;
1089     return isCopyLikeInstrImpl(MI);
1090   }
1091 
isFullCopyInstr(const MachineInstr & MI)1092   bool isFullCopyInstr(const MachineInstr &MI) const {
1093     auto DestSrc = isCopyInstr(MI);
1094     if (!DestSrc)
1095       return false;
1096 
1097     const MachineOperand *DestRegOp = DestSrc->Destination;
1098     const MachineOperand *SrcRegOp = DestSrc->Source;
1099     return !DestRegOp->getSubReg() && !SrcRegOp->getSubReg();
1100   }
1101 
1102   /// If the specific machine instruction is an instruction that adds an
1103   /// immediate value and a register, and stores the result in the given
1104   /// register \c Reg, return a pair of the source register and the offset
1105   /// which has been added.
isAddImmediate(const MachineInstr & MI,Register Reg)1106   virtual std::optional<RegImmPair> isAddImmediate(const MachineInstr &MI,
1107                                                    Register Reg) const {
1108     return std::nullopt;
1109   }
1110 
1111   /// Returns true if MI is an instruction that defines Reg to have a constant
1112   /// value and the value is recorded in ImmVal. The ImmVal is a result that
1113   /// should be interpreted as modulo size of Reg.
getConstValDefinedInReg(const MachineInstr & MI,const Register Reg,int64_t & ImmVal)1114   virtual bool getConstValDefinedInReg(const MachineInstr &MI,
1115                                        const Register Reg,
1116                                        int64_t &ImmVal) const {
1117     return false;
1118   }
1119 
1120   /// Store the specified register of the given register class to the specified
1121   /// stack frame index. The store instruction is to be added to the given
1122   /// machine basic block before the specified machine instruction. If isKill
1123   /// is true, the register operand is the last use and must be marked kill. If
1124   /// \p SrcReg is being directly spilled as part of assigning a virtual
1125   /// register, \p VReg is the register being assigned. This additional register
1126   /// argument is needed for certain targets when invoked from RegAllocFast to
1127   /// map the spilled physical register to its virtual register. A null register
1128   /// can be passed elsewhere.
storeRegToStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,Register SrcReg,bool isKill,int FrameIndex,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI,Register VReg)1129   virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
1130                                    MachineBasicBlock::iterator MI,
1131                                    Register SrcReg, bool isKill, int FrameIndex,
1132                                    const TargetRegisterClass *RC,
1133                                    const TargetRegisterInfo *TRI,
1134                                    Register VReg) const {
1135     llvm_unreachable("Target didn't implement "
1136                      "TargetInstrInfo::storeRegToStackSlot!");
1137   }
1138 
1139   /// Load the specified register of the given register class from the specified
1140   /// stack frame index. The load instruction is to be added to the given
1141   /// machine basic block before the specified machine instruction. If \p
1142   /// DestReg is being directly reloaded as part of assigning a virtual
1143   /// register, \p VReg is the register being assigned. This additional register
1144   /// argument is needed for certain targets when invoked from RegAllocFast to
1145   /// map the loaded physical register to its virtual register. A null register
1146   /// can be passed elsewhere.
loadRegFromStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,Register DestReg,int FrameIndex,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI,Register VReg)1147   virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
1148                                     MachineBasicBlock::iterator MI,
1149                                     Register DestReg, int FrameIndex,
1150                                     const TargetRegisterClass *RC,
1151                                     const TargetRegisterInfo *TRI,
1152                                     Register VReg) const {
1153     llvm_unreachable("Target didn't implement "
1154                      "TargetInstrInfo::loadRegFromStackSlot!");
1155   }
1156 
1157   /// This function is called for all pseudo instructions
1158   /// that remain after register allocation. Many pseudo instructions are
1159   /// created to help register allocation. This is the place to convert them
1160   /// into real instructions. The target can edit MI in place, or it can insert
1161   /// new instructions and erase MI. The function should return true if
1162   /// anything was changed.
expandPostRAPseudo(MachineInstr & MI)1163   virtual bool expandPostRAPseudo(MachineInstr &MI) const { return false; }
1164 
1165   /// Check whether the target can fold a load that feeds a subreg operand
1166   /// (or a subreg operand that feeds a store).
1167   /// For example, X86 may want to return true if it can fold
1168   /// movl (%esp), %eax
1169   /// subb, %al, ...
1170   /// Into:
1171   /// subb (%esp), ...
1172   ///
1173   /// Ideally, we'd like the target implementation of foldMemoryOperand() to
1174   /// reject subregs - but since this behavior used to be enforced in the
1175   /// target-independent code, moving this responsibility to the targets
1176   /// has the potential of causing nasty silent breakage in out-of-tree targets.
isSubregFoldable()1177   virtual bool isSubregFoldable() const { return false; }
1178 
1179   /// For a patchpoint, stackmap, or statepoint intrinsic, return the range of
1180   /// operands which can't be folded into stack references. Operands outside
1181   /// of the range are most likely foldable but it is not guaranteed.
1182   /// These instructions are unique in that stack references for some operands
1183   /// have the same execution cost (e.g. none) as the unfolded register forms.
1184   /// The ranged return is guaranteed to include all operands which can't be
1185   /// folded at zero cost.
1186   virtual std::pair<unsigned, unsigned>
1187   getPatchpointUnfoldableRange(const MachineInstr &MI) const;
1188 
1189   /// Attempt to fold a load or store of the specified stack
1190   /// slot into the specified machine instruction for the specified operand(s).
1191   /// If this is possible, a new instruction is returned with the specified
1192   /// operand folded, otherwise NULL is returned.
1193   /// The new instruction is inserted before MI, and the client is responsible
1194   /// for removing the old instruction.
1195   /// If VRM is passed, the assigned physregs can be inspected by target to
1196   /// decide on using an opcode (note that those assignments can still change).
1197   MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops,
1198                                   int FI,
1199                                   LiveIntervals *LIS = nullptr,
1200                                   VirtRegMap *VRM = nullptr) const;
1201 
1202   /// Same as the previous version except it allows folding of any load and
1203   /// store from / to any address, not just from a specific stack slot.
1204   MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops,
1205                                   MachineInstr &LoadMI,
1206                                   LiveIntervals *LIS = nullptr) const;
1207 
1208   /// This function defines the logic to lower COPY instruction to
1209   /// target specific instruction(s).
1210   void lowerCopy(MachineInstr *MI, const TargetRegisterInfo *TRI) const;
1211 
1212   /// Return true when there is potentially a faster code sequence
1213   /// for an instruction chain ending in \p Root. All potential patterns are
1214   /// returned in the \p Pattern vector. Pattern should be sorted in priority
1215   /// order since the pattern evaluator stops checking as soon as it finds a
1216   /// faster sequence.
1217   /// \param Root - Instruction that could be combined with one of its operands
1218   /// \param Patterns - Vector of possible combination patterns
1219   virtual bool getMachineCombinerPatterns(MachineInstr &Root,
1220                                           SmallVectorImpl<unsigned> &Patterns,
1221                                           bool DoRegPressureReduce) const;
1222 
1223   /// Return true if target supports reassociation of instructions in machine
1224   /// combiner pass to reduce register pressure for a given BB.
1225   virtual bool
shouldReduceRegisterPressure(const MachineBasicBlock * MBB,const RegisterClassInfo * RegClassInfo)1226   shouldReduceRegisterPressure(const MachineBasicBlock *MBB,
1227                                const RegisterClassInfo *RegClassInfo) const {
1228     return false;
1229   }
1230 
1231   /// Fix up the placeholder we may add in genAlternativeCodeSequence().
1232   virtual void
finalizeInsInstrs(MachineInstr & Root,unsigned & Pattern,SmallVectorImpl<MachineInstr * > & InsInstrs)1233   finalizeInsInstrs(MachineInstr &Root, unsigned &Pattern,
1234                     SmallVectorImpl<MachineInstr *> &InsInstrs) const {}
1235 
1236   /// Return true when a code sequence can improve throughput. It
1237   /// should be called only for instructions in loops.
1238   /// \param Pattern - combiner pattern
1239   virtual bool isThroughputPattern(unsigned Pattern) const;
1240 
1241   /// Return the objective of a combiner pattern.
1242   /// \param Pattern - combiner pattern
1243   virtual CombinerObjective getCombinerObjective(unsigned Pattern) const;
1244 
1245   /// Return true if the input \P Inst is part of a chain of dependent ops
1246   /// that are suitable for reassociation, otherwise return false.
1247   /// If the instruction's operands must be commuted to have a previous
1248   /// instruction of the same type define the first source operand, \P Commuted
1249   /// will be set to true.
1250   bool isReassociationCandidate(const MachineInstr &Inst, bool &Commuted) const;
1251 
1252   /// Return true when \P Inst is both associative and commutative. If \P Invert
1253   /// is true, then the inverse of \P Inst operation must be tested.
1254   virtual bool isAssociativeAndCommutative(const MachineInstr &Inst,
1255                                            bool Invert = false) const {
1256     return false;
1257   }
1258 
1259   /// Return the inverse operation opcode if it exists for \P Opcode (e.g. add
1260   /// for sub and vice versa).
getInverseOpcode(unsigned Opcode)1261   virtual std::optional<unsigned> getInverseOpcode(unsigned Opcode) const {
1262     return std::nullopt;
1263   }
1264 
1265   /// Return true when \P Opcode1 or its inversion is equal to \P Opcode2.
1266   bool areOpcodesEqualOrInverse(unsigned Opcode1, unsigned Opcode2) const;
1267 
1268   /// Return true when \P Inst has reassociable operands in the same \P MBB.
1269   virtual bool hasReassociableOperands(const MachineInstr &Inst,
1270                                        const MachineBasicBlock *MBB) const;
1271 
1272   /// Return true when \P Inst has reassociable sibling.
1273   virtual bool hasReassociableSibling(const MachineInstr &Inst,
1274                                       bool &Commuted) const;
1275 
1276   /// When getMachineCombinerPatterns() finds patterns, this function generates
1277   /// the instructions that could replace the original code sequence. The client
1278   /// has to decide whether the actual replacement is beneficial or not.
1279   /// \param Root - Instruction that could be combined with one of its operands
1280   /// \param Pattern - Combination pattern for Root
1281   /// \param InsInstrs - Vector of new instructions that implement P
1282   /// \param DelInstrs - Old instructions, including Root, that could be
1283   /// replaced by InsInstr
1284   /// \param InstIdxForVirtReg - map of virtual register to instruction in
1285   /// InsInstr that defines it
1286   virtual void genAlternativeCodeSequence(
1287       MachineInstr &Root, unsigned Pattern,
1288       SmallVectorImpl<MachineInstr *> &InsInstrs,
1289       SmallVectorImpl<MachineInstr *> &DelInstrs,
1290       DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const;
1291 
1292   /// When calculate the latency of the root instruction, accumulate the
1293   /// latency of the sequence to the root latency.
1294   /// \param Root - Instruction that could be combined with one of its operands
accumulateInstrSeqToRootLatency(MachineInstr & Root)1295   virtual bool accumulateInstrSeqToRootLatency(MachineInstr &Root) const {
1296     return true;
1297   }
1298 
1299   /// The returned array encodes the operand index for each parameter because
1300   /// the operands may be commuted; the operand indices for associative
1301   /// operations might also be target-specific. Each element specifies the index
1302   /// of {Prev, A, B, X, Y}.
1303   virtual void
1304   getReassociateOperandIndices(const MachineInstr &Root, unsigned Pattern,
1305                                std::array<unsigned, 5> &OperandIndices) const;
1306 
1307   /// Attempt to reassociate \P Root and \P Prev according to \P Pattern to
1308   /// reduce critical path length.
1309   void reassociateOps(MachineInstr &Root, MachineInstr &Prev, unsigned Pattern,
1310                       SmallVectorImpl<MachineInstr *> &InsInstrs,
1311                       SmallVectorImpl<MachineInstr *> &DelInstrs,
1312                       ArrayRef<unsigned> OperandIndices,
1313                       DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const;
1314 
1315   /// Reassociation of some instructions requires inverse operations (e.g.
1316   /// (X + A) - Y => (X - Y) + A). This method returns a pair of new opcodes
1317   /// (new root opcode, new prev opcode) that must be used to reassociate \P
1318   /// Root and \P Prev accoring to \P Pattern.
1319   std::pair<unsigned, unsigned>
1320   getReassociationOpcodes(unsigned Pattern, const MachineInstr &Root,
1321                           const MachineInstr &Prev) const;
1322 
1323   /// The limit on resource length extension we accept in MachineCombiner Pass.
getExtendResourceLenLimit()1324   virtual int getExtendResourceLenLimit() const { return 0; }
1325 
1326   /// This is an architecture-specific helper function of reassociateOps.
1327   /// Set special operand attributes for new instructions after reassociation.
setSpecialOperandAttr(MachineInstr & OldMI1,MachineInstr & OldMI2,MachineInstr & NewMI1,MachineInstr & NewMI2)1328   virtual void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
1329                                      MachineInstr &NewMI1,
1330                                      MachineInstr &NewMI2) const {}
1331 
1332   /// Return true when a target supports MachineCombiner.
useMachineCombiner()1333   virtual bool useMachineCombiner() const { return false; }
1334 
1335   /// Return a strategy that MachineCombiner must use when creating traces.
1336   virtual MachineTraceStrategy getMachineCombinerTraceStrategy() const;
1337 
1338   /// Return true if the given SDNode can be copied during scheduling
1339   /// even if it has glue.
canCopyGluedNodeDuringSchedule(SDNode * N)1340   virtual bool canCopyGluedNodeDuringSchedule(SDNode *N) const { return false; }
1341 
1342 protected:
1343   /// Target-dependent implementation for foldMemoryOperand.
1344   /// Target-independent code in foldMemoryOperand will
1345   /// take care of adding a MachineMemOperand to the newly created instruction.
1346   /// The instruction and any auxiliary instructions necessary will be inserted
1347   /// at InsertPt.
1348   virtual MachineInstr *
1349   foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
1350                         ArrayRef<unsigned> Ops,
1351                         MachineBasicBlock::iterator InsertPt, int FrameIndex,
1352                         LiveIntervals *LIS = nullptr,
1353                         VirtRegMap *VRM = nullptr) const {
1354     return nullptr;
1355   }
1356 
1357   /// Target-dependent implementation for foldMemoryOperand.
1358   /// Target-independent code in foldMemoryOperand will
1359   /// take care of adding a MachineMemOperand to the newly created instruction.
1360   /// The instruction and any auxiliary instructions necessary will be inserted
1361   /// at InsertPt.
1362   virtual MachineInstr *foldMemoryOperandImpl(
1363       MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
1364       MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
1365       LiveIntervals *LIS = nullptr) const {
1366     return nullptr;
1367   }
1368 
1369   /// Target-dependent implementation of getRegSequenceInputs.
1370   ///
1371   /// \returns true if it is possible to build the equivalent
1372   /// REG_SEQUENCE inputs with the pair \p MI, \p DefIdx. False otherwise.
1373   ///
1374   /// \pre MI.isRegSequenceLike().
1375   ///
1376   /// \see TargetInstrInfo::getRegSequenceInputs.
getRegSequenceLikeInputs(const MachineInstr & MI,unsigned DefIdx,SmallVectorImpl<RegSubRegPairAndIdx> & InputRegs)1377   virtual bool getRegSequenceLikeInputs(
1378       const MachineInstr &MI, unsigned DefIdx,
1379       SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
1380     return false;
1381   }
1382 
1383   /// Target-dependent implementation of getExtractSubregInputs.
1384   ///
1385   /// \returns true if it is possible to build the equivalent
1386   /// EXTRACT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
1387   ///
1388   /// \pre MI.isExtractSubregLike().
1389   ///
1390   /// \see TargetInstrInfo::getExtractSubregInputs.
getExtractSubregLikeInputs(const MachineInstr & MI,unsigned DefIdx,RegSubRegPairAndIdx & InputReg)1391   virtual bool getExtractSubregLikeInputs(const MachineInstr &MI,
1392                                           unsigned DefIdx,
1393                                           RegSubRegPairAndIdx &InputReg) const {
1394     return false;
1395   }
1396 
1397   /// Target-dependent implementation of getInsertSubregInputs.
1398   ///
1399   /// \returns true if it is possible to build the equivalent
1400   /// INSERT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
1401   ///
1402   /// \pre MI.isInsertSubregLike().
1403   ///
1404   /// \see TargetInstrInfo::getInsertSubregInputs.
1405   virtual bool
getInsertSubregLikeInputs(const MachineInstr & MI,unsigned DefIdx,RegSubRegPair & BaseReg,RegSubRegPairAndIdx & InsertedReg)1406   getInsertSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx,
1407                             RegSubRegPair &BaseReg,
1408                             RegSubRegPairAndIdx &InsertedReg) const {
1409     return false;
1410   }
1411 
1412 public:
1413   /// unfoldMemoryOperand - Separate a single instruction which folded a load or
1414   /// a store or a load and a store into two or more instruction. If this is
1415   /// possible, returns true as well as the new instructions by reference.
1416   virtual bool
unfoldMemoryOperand(MachineFunction & MF,MachineInstr & MI,unsigned Reg,bool UnfoldLoad,bool UnfoldStore,SmallVectorImpl<MachineInstr * > & NewMIs)1417   unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, unsigned Reg,
1418                       bool UnfoldLoad, bool UnfoldStore,
1419                       SmallVectorImpl<MachineInstr *> &NewMIs) const {
1420     return false;
1421   }
1422 
unfoldMemoryOperand(SelectionDAG & DAG,SDNode * N,SmallVectorImpl<SDNode * > & NewNodes)1423   virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
1424                                    SmallVectorImpl<SDNode *> &NewNodes) const {
1425     return false;
1426   }
1427 
1428   /// Returns the opcode of the would be new
1429   /// instruction after load / store are unfolded from an instruction of the
1430   /// specified opcode. It returns zero if the specified unfolding is not
1431   /// possible. If LoadRegIndex is non-null, it is filled in with the operand
1432   /// index of the operand which will hold the register holding the loaded
1433   /// value.
1434   virtual unsigned
1435   getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore,
1436                              unsigned *LoadRegIndex = nullptr) const {
1437     return 0;
1438   }
1439 
1440   /// This is used by the pre-regalloc scheduler to determine if two loads are
1441   /// loading from the same base address. It should only return true if the base
1442   /// pointers are the same and the only differences between the two addresses
1443   /// are the offset. It also returns the offsets by reference.
areLoadsFromSameBasePtr(SDNode * Load1,SDNode * Load2,int64_t & Offset1,int64_t & Offset2)1444   virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1445                                        int64_t &Offset1,
1446                                        int64_t &Offset2) const {
1447     return false;
1448   }
1449 
1450   /// This is a used by the pre-regalloc scheduler to determine (in conjunction
1451   /// with areLoadsFromSameBasePtr) if two loads should be scheduled together.
1452   /// On some targets if two loads are loading from
1453   /// addresses in the same cache line, it's better if they are scheduled
1454   /// together. This function takes two integers that represent the load offsets
1455   /// from the common base address. It returns true if it decides it's desirable
1456   /// to schedule the two loads together. "NumLoads" is the number of loads that
1457   /// have already been scheduled after Load1.
shouldScheduleLoadsNear(SDNode * Load1,SDNode * Load2,int64_t Offset1,int64_t Offset2,unsigned NumLoads)1458   virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
1459                                        int64_t Offset1, int64_t Offset2,
1460                                        unsigned NumLoads) const {
1461     return false;
1462   }
1463 
1464   /// Get the base operand and byte offset of an instruction that reads/writes
1465   /// memory. This is a convenience function for callers that are only prepared
1466   /// to handle a single base operand.
1467   /// FIXME: Move Offset and OffsetIsScalable to some ElementCount-style
1468   /// abstraction that supports negative offsets.
1469   bool getMemOperandWithOffset(const MachineInstr &MI,
1470                                const MachineOperand *&BaseOp, int64_t &Offset,
1471                                bool &OffsetIsScalable,
1472                                const TargetRegisterInfo *TRI) const;
1473 
1474   /// Get zero or more base operands and the byte offset of an instruction that
1475   /// reads/writes memory. Note that there may be zero base operands if the
1476   /// instruction accesses a constant address.
1477   /// It returns false if MI does not read/write memory.
1478   /// It returns false if base operands and offset could not be determined.
1479   /// It is not guaranteed to always recognize base operands and offsets in all
1480   /// cases.
1481   /// FIXME: Move Offset and OffsetIsScalable to some ElementCount-style
1482   /// abstraction that supports negative offsets.
getMemOperandsWithOffsetWidth(const MachineInstr & MI,SmallVectorImpl<const MachineOperand * > & BaseOps,int64_t & Offset,bool & OffsetIsScalable,LocationSize & Width,const TargetRegisterInfo * TRI)1483   virtual bool getMemOperandsWithOffsetWidth(
1484       const MachineInstr &MI, SmallVectorImpl<const MachineOperand *> &BaseOps,
1485       int64_t &Offset, bool &OffsetIsScalable, LocationSize &Width,
1486       const TargetRegisterInfo *TRI) const {
1487     return false;
1488   }
1489 
1490   /// Return true if the instruction contains a base register and offset. If
1491   /// true, the function also sets the operand position in the instruction
1492   /// for the base register and offset.
getBaseAndOffsetPosition(const MachineInstr & MI,unsigned & BasePos,unsigned & OffsetPos)1493   virtual bool getBaseAndOffsetPosition(const MachineInstr &MI,
1494                                         unsigned &BasePos,
1495                                         unsigned &OffsetPos) const {
1496     return false;
1497   }
1498 
1499   /// Target dependent implementation to get the values constituting the address
1500   /// MachineInstr that is accessing memory. These values are returned as a
1501   /// struct ExtAddrMode which contains all relevant information to make up the
1502   /// address.
1503   virtual std::optional<ExtAddrMode>
getAddrModeFromMemoryOp(const MachineInstr & MemI,const TargetRegisterInfo * TRI)1504   getAddrModeFromMemoryOp(const MachineInstr &MemI,
1505                           const TargetRegisterInfo *TRI) const {
1506     return std::nullopt;
1507   }
1508 
1509   /// Check if it's possible and beneficial to fold the addressing computation
1510   /// `AddrI` into the addressing mode of the load/store instruction `MemI`. The
1511   /// memory instruction is a user of the virtual register `Reg`, which in turn
1512   /// is the ultimate destination of zero or more COPY instructions from the
1513   /// output register of `AddrI`.
1514   /// Return the adddressing mode after folding in `AM`.
canFoldIntoAddrMode(const MachineInstr & MemI,Register Reg,const MachineInstr & AddrI,ExtAddrMode & AM)1515   virtual bool canFoldIntoAddrMode(const MachineInstr &MemI, Register Reg,
1516                                    const MachineInstr &AddrI,
1517                                    ExtAddrMode &AM) const {
1518     return false;
1519   }
1520 
1521   /// Emit a load/store instruction with the same value register as `MemI`, but
1522   /// using the address from `AM`. The addressing mode must have been obtained
1523   /// from `canFoldIntoAddr` for the same memory instruction.
emitLdStWithAddr(MachineInstr & MemI,const ExtAddrMode & AM)1524   virtual MachineInstr *emitLdStWithAddr(MachineInstr &MemI,
1525                                          const ExtAddrMode &AM) const {
1526     llvm_unreachable("target did not implement emitLdStWithAddr()");
1527   }
1528 
1529   /// Returns true if MI's Def is NullValueReg, and the MI
1530   /// does not change the Zero value. i.e. cases such as rax = shr rax, X where
1531   /// NullValueReg = rax. Note that if the NullValueReg is non-zero, this
1532   /// function can return true even if becomes zero. Specifically cases such as
1533   /// NullValueReg = shl NullValueReg, 63.
preservesZeroValueInReg(const MachineInstr * MI,const Register NullValueReg,const TargetRegisterInfo * TRI)1534   virtual bool preservesZeroValueInReg(const MachineInstr *MI,
1535                                        const Register NullValueReg,
1536                                        const TargetRegisterInfo *TRI) const {
1537     return false;
1538   }
1539 
1540   /// If the instruction is an increment of a constant value, return the amount.
getIncrementValue(const MachineInstr & MI,int & Value)1541   virtual bool getIncrementValue(const MachineInstr &MI, int &Value) const {
1542     return false;
1543   }
1544 
1545   /// Returns true if the two given memory operations should be scheduled
1546   /// adjacent. Note that you have to add:
1547   ///   DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
1548   /// or
1549   ///   DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
1550   /// to TargetPassConfig::createMachineScheduler() to have an effect.
1551   ///
1552   /// \p BaseOps1 and \p BaseOps2 are memory operands of two memory operations.
1553   /// \p Offset1 and \p Offset2 are the byte offsets for the memory
1554   /// operations.
1555   /// \p OffsetIsScalable1 and \p OffsetIsScalable2 indicate if the offset is
1556   /// scaled by a runtime quantity.
1557   /// \p ClusterSize is the number of operations in the resulting load/store
1558   /// cluster if this hook returns true.
1559   /// \p NumBytes is the number of bytes that will be loaded from all the
1560   /// clustered loads if this hook returns true.
shouldClusterMemOps(ArrayRef<const MachineOperand * > BaseOps1,int64_t Offset1,bool OffsetIsScalable1,ArrayRef<const MachineOperand * > BaseOps2,int64_t Offset2,bool OffsetIsScalable2,unsigned ClusterSize,unsigned NumBytes)1561   virtual bool shouldClusterMemOps(ArrayRef<const MachineOperand *> BaseOps1,
1562                                    int64_t Offset1, bool OffsetIsScalable1,
1563                                    ArrayRef<const MachineOperand *> BaseOps2,
1564                                    int64_t Offset2, bool OffsetIsScalable2,
1565                                    unsigned ClusterSize,
1566                                    unsigned NumBytes) const {
1567     llvm_unreachable("target did not implement shouldClusterMemOps()");
1568   }
1569 
1570   /// Reverses the branch condition of the specified condition list,
1571   /// returning false on success and true if it cannot be reversed.
1572   virtual bool
reverseBranchCondition(SmallVectorImpl<MachineOperand> & Cond)1573   reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1574     return true;
1575   }
1576 
1577   /// Insert a noop into the instruction stream at the specified point.
1578   virtual void insertNoop(MachineBasicBlock &MBB,
1579                           MachineBasicBlock::iterator MI) const;
1580 
1581   /// Insert noops into the instruction stream at the specified point.
1582   virtual void insertNoops(MachineBasicBlock &MBB,
1583                            MachineBasicBlock::iterator MI,
1584                            unsigned Quantity) const;
1585 
1586   /// Return the noop instruction to use for a noop.
1587   virtual MCInst getNop() const;
1588 
1589   /// Return true for post-incremented instructions.
isPostIncrement(const MachineInstr & MI)1590   virtual bool isPostIncrement(const MachineInstr &MI) const { return false; }
1591 
1592   /// Returns true if the instruction is already predicated.
isPredicated(const MachineInstr & MI)1593   virtual bool isPredicated(const MachineInstr &MI) const { return false; }
1594 
1595   /// Assumes the instruction is already predicated and returns true if the
1596   /// instruction can be predicated again.
canPredicatePredicatedInstr(const MachineInstr & MI)1597   virtual bool canPredicatePredicatedInstr(const MachineInstr &MI) const {
1598     assert(isPredicated(MI) && "Instruction is not predicated");
1599     return false;
1600   }
1601 
1602   // Returns a MIRPrinter comment for this machine operand.
1603   virtual std::string
1604   createMIROperandComment(const MachineInstr &MI, const MachineOperand &Op,
1605                           unsigned OpIdx, const TargetRegisterInfo *TRI) const;
1606 
1607   /// Returns true if the instruction is a
1608   /// terminator instruction that has not been predicated.
1609   bool isUnpredicatedTerminator(const MachineInstr &MI) const;
1610 
1611   /// Returns true if MI is an unconditional tail call.
isUnconditionalTailCall(const MachineInstr & MI)1612   virtual bool isUnconditionalTailCall(const MachineInstr &MI) const {
1613     return false;
1614   }
1615 
1616   /// Returns true if the tail call can be made conditional on BranchCond.
canMakeTailCallConditional(SmallVectorImpl<MachineOperand> & Cond,const MachineInstr & TailCall)1617   virtual bool canMakeTailCallConditional(SmallVectorImpl<MachineOperand> &Cond,
1618                                           const MachineInstr &TailCall) const {
1619     return false;
1620   }
1621 
1622   /// Replace the conditional branch in MBB with a conditional tail call.
replaceBranchWithTailCall(MachineBasicBlock & MBB,SmallVectorImpl<MachineOperand> & Cond,const MachineInstr & TailCall)1623   virtual void replaceBranchWithTailCall(MachineBasicBlock &MBB,
1624                                          SmallVectorImpl<MachineOperand> &Cond,
1625                                          const MachineInstr &TailCall) const {
1626     llvm_unreachable("Target didn't implement replaceBranchWithTailCall!");
1627   }
1628 
1629   /// Convert the instruction into a predicated instruction.
1630   /// It returns true if the operation was successful.
1631   virtual bool PredicateInstruction(MachineInstr &MI,
1632                                     ArrayRef<MachineOperand> Pred) const;
1633 
1634   /// Returns true if the first specified predicate
1635   /// subsumes the second, e.g. GE subsumes GT.
SubsumesPredicate(ArrayRef<MachineOperand> Pred1,ArrayRef<MachineOperand> Pred2)1636   virtual bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1637                                  ArrayRef<MachineOperand> Pred2) const {
1638     return false;
1639   }
1640 
1641   /// If the specified instruction defines any predicate
1642   /// or condition code register(s) used for predication, returns true as well
1643   /// as the definition predicate(s) by reference.
1644   /// SkipDead should be set to false at any point that dead
1645   /// predicate instructions should be considered as being defined.
1646   /// A dead predicate instruction is one that is guaranteed to be removed
1647   /// after a call to PredicateInstruction.
ClobbersPredicate(MachineInstr & MI,std::vector<MachineOperand> & Pred,bool SkipDead)1648   virtual bool ClobbersPredicate(MachineInstr &MI,
1649                                  std::vector<MachineOperand> &Pred,
1650                                  bool SkipDead) const {
1651     return false;
1652   }
1653 
1654   /// Return true if the specified instruction can be predicated.
1655   /// By default, this returns true for every instruction with a
1656   /// PredicateOperand.
isPredicable(const MachineInstr & MI)1657   virtual bool isPredicable(const MachineInstr &MI) const {
1658     return MI.getDesc().isPredicable();
1659   }
1660 
1661   /// Return true if it's safe to move a machine
1662   /// instruction that defines the specified register class.
isSafeToMoveRegClassDefs(const TargetRegisterClass * RC)1663   virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
1664     return true;
1665   }
1666 
1667   /// Test if the given instruction should be considered a scheduling boundary.
1668   /// This primarily includes labels and terminators.
1669   virtual bool isSchedulingBoundary(const MachineInstr &MI,
1670                                     const MachineBasicBlock *MBB,
1671                                     const MachineFunction &MF) const;
1672 
1673   /// Measure the specified inline asm to determine an approximation of its
1674   /// length.
1675   virtual unsigned getInlineAsmLength(
1676     const char *Str, const MCAsmInfo &MAI,
1677     const TargetSubtargetInfo *STI = nullptr) const;
1678 
1679   /// Allocate and return a hazard recognizer to use for this target when
1680   /// scheduling the machine instructions before register allocation.
1681   virtual ScheduleHazardRecognizer *
1682   CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
1683                                const ScheduleDAG *DAG) const;
1684 
1685   /// Allocate and return a hazard recognizer to use for this target when
1686   /// scheduling the machine instructions before register allocation.
1687   virtual ScheduleHazardRecognizer *
1688   CreateTargetMIHazardRecognizer(const InstrItineraryData *,
1689                                  const ScheduleDAGMI *DAG) const;
1690 
1691   /// Allocate and return a hazard recognizer to use for this target when
1692   /// scheduling the machine instructions after register allocation.
1693   virtual ScheduleHazardRecognizer *
1694   CreateTargetPostRAHazardRecognizer(const InstrItineraryData *,
1695                                      const ScheduleDAG *DAG) const;
1696 
1697   /// Allocate and return a hazard recognizer to use for by non-scheduling
1698   /// passes.
1699   virtual ScheduleHazardRecognizer *
CreateTargetPostRAHazardRecognizer(const MachineFunction & MF)1700   CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const {
1701     return nullptr;
1702   }
1703 
1704   /// Provide a global flag for disabling the PreRA hazard recognizer that
1705   /// targets may choose to honor.
1706   bool usePreRAHazardRecognizer() const;
1707 
1708   /// For a comparison instruction, return the source registers
1709   /// in SrcReg and SrcReg2 if having two register operands, and the value it
1710   /// compares against in CmpValue. Return true if the comparison instruction
1711   /// can be analyzed.
analyzeCompare(const MachineInstr & MI,Register & SrcReg,Register & SrcReg2,int64_t & Mask,int64_t & Value)1712   virtual bool analyzeCompare(const MachineInstr &MI, Register &SrcReg,
1713                               Register &SrcReg2, int64_t &Mask,
1714                               int64_t &Value) const {
1715     return false;
1716   }
1717 
1718   /// See if the comparison instruction can be converted
1719   /// into something more efficient. E.g., on ARM most instructions can set the
1720   /// flags register, obviating the need for a separate CMP.
optimizeCompareInstr(MachineInstr & CmpInstr,Register SrcReg,Register SrcReg2,int64_t Mask,int64_t Value,const MachineRegisterInfo * MRI)1721   virtual bool optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
1722                                     Register SrcReg2, int64_t Mask,
1723                                     int64_t Value,
1724                                     const MachineRegisterInfo *MRI) const {
1725     return false;
1726   }
optimizeCondBranch(MachineInstr & MI)1727   virtual bool optimizeCondBranch(MachineInstr &MI) const { return false; }
1728 
1729   /// Try to remove the load by folding it to a register operand at the use.
1730   /// We fold the load instructions if and only if the
1731   /// def and use are in the same BB. We only look at one load and see
1732   /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
1733   /// defined by the load we are trying to fold. DefMI returns the machine
1734   /// instruction that defines FoldAsLoadDefReg, and the function returns
1735   /// the machine instruction generated due to folding.
optimizeLoadInstr(MachineInstr & MI,const MachineRegisterInfo * MRI,Register & FoldAsLoadDefReg,MachineInstr * & DefMI)1736   virtual MachineInstr *optimizeLoadInstr(MachineInstr &MI,
1737                                           const MachineRegisterInfo *MRI,
1738                                           Register &FoldAsLoadDefReg,
1739                                           MachineInstr *&DefMI) const {
1740     return nullptr;
1741   }
1742 
1743   /// 'Reg' is known to be defined by a move immediate instruction,
1744   /// try to fold the immediate into the use instruction.
1745   /// If MRI->hasOneNonDBGUse(Reg) is true, and this function returns true,
1746   /// then the caller may assume that DefMI has been erased from its parent
1747   /// block. The caller may assume that it will not be erased by this
1748   /// function otherwise.
foldImmediate(MachineInstr & UseMI,MachineInstr & DefMI,Register Reg,MachineRegisterInfo * MRI)1749   virtual bool foldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1750                              Register Reg, MachineRegisterInfo *MRI) const {
1751     return false;
1752   }
1753 
1754   /// Return the number of u-operations the given machine
1755   /// instruction will be decoded to on the target cpu. The itinerary's
1756   /// IssueWidth is the number of microops that can be dispatched each
1757   /// cycle. An instruction with zero microops takes no dispatch resources.
1758   virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
1759                                   const MachineInstr &MI) const;
1760 
1761   /// Return true for pseudo instructions that don't consume any
1762   /// machine resources in their current form. These are common cases that the
1763   /// scheduler should consider free, rather than conservatively handling them
1764   /// as instructions with no itinerary.
isZeroCost(unsigned Opcode)1765   bool isZeroCost(unsigned Opcode) const {
1766     return Opcode <= TargetOpcode::COPY;
1767   }
1768 
1769   virtual std::optional<unsigned>
1770   getOperandLatency(const InstrItineraryData *ItinData, SDNode *DefNode,
1771                     unsigned DefIdx, SDNode *UseNode, unsigned UseIdx) const;
1772 
1773   /// Compute and return the use operand latency of a given pair of def and use.
1774   /// In most cases, the static scheduling itinerary was enough to determine the
1775   /// operand latency. But it may not be possible for instructions with variable
1776   /// number of defs / uses.
1777   ///
1778   /// This is a raw interface to the itinerary that may be directly overridden
1779   /// by a target. Use computeOperandLatency to get the best estimate of
1780   /// latency.
1781   virtual std::optional<unsigned>
1782   getOperandLatency(const InstrItineraryData *ItinData,
1783                     const MachineInstr &DefMI, unsigned DefIdx,
1784                     const MachineInstr &UseMI, unsigned UseIdx) const;
1785 
1786   /// Compute the instruction latency of a given instruction.
1787   /// If the instruction has higher cost when predicated, it's returned via
1788   /// PredCost.
1789   virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
1790                                    const MachineInstr &MI,
1791                                    unsigned *PredCost = nullptr) const;
1792 
1793   virtual unsigned getPredicationCost(const MachineInstr &MI) const;
1794 
1795   virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
1796                                    SDNode *Node) const;
1797 
1798   /// Return the default expected latency for a def based on its opcode.
1799   unsigned defaultDefLatency(const MCSchedModel &SchedModel,
1800                              const MachineInstr &DefMI) const;
1801 
1802   /// Return true if this opcode has high latency to its result.
isHighLatencyDef(int opc)1803   virtual bool isHighLatencyDef(int opc) const { return false; }
1804 
1805   /// Compute operand latency between a def of 'Reg'
1806   /// and a use in the current loop. Return true if the target considered
1807   /// it 'high'. This is used by optimization passes such as machine LICM to
1808   /// determine whether it makes sense to hoist an instruction out even in a
1809   /// high register pressure situation.
hasHighOperandLatency(const TargetSchedModel & SchedModel,const MachineRegisterInfo * MRI,const MachineInstr & DefMI,unsigned DefIdx,const MachineInstr & UseMI,unsigned UseIdx)1810   virtual bool hasHighOperandLatency(const TargetSchedModel &SchedModel,
1811                                      const MachineRegisterInfo *MRI,
1812                                      const MachineInstr &DefMI, unsigned DefIdx,
1813                                      const MachineInstr &UseMI,
1814                                      unsigned UseIdx) const {
1815     return false;
1816   }
1817 
1818   /// Compute operand latency of a def of 'Reg'. Return true
1819   /// if the target considered it 'low'.
1820   virtual bool hasLowDefLatency(const TargetSchedModel &SchedModel,
1821                                 const MachineInstr &DefMI,
1822                                 unsigned DefIdx) const;
1823 
1824   /// Perform target-specific instruction verification.
verifyInstruction(const MachineInstr & MI,StringRef & ErrInfo)1825   virtual bool verifyInstruction(const MachineInstr &MI,
1826                                  StringRef &ErrInfo) const {
1827     return true;
1828   }
1829 
1830   /// Return the current execution domain and bit mask of
1831   /// possible domains for instruction.
1832   ///
1833   /// Some micro-architectures have multiple execution domains, and multiple
1834   /// opcodes that perform the same operation in different domains.  For
1835   /// example, the x86 architecture provides the por, orps, and orpd
1836   /// instructions that all do the same thing.  There is a latency penalty if a
1837   /// register is written in one domain and read in another.
1838   ///
1839   /// This function returns a pair (domain, mask) containing the execution
1840   /// domain of MI, and a bit mask of possible domains.  The setExecutionDomain
1841   /// function can be used to change the opcode to one of the domains in the
1842   /// bit mask.  Instructions whose execution domain can't be changed should
1843   /// return a 0 mask.
1844   ///
1845   /// The execution domain numbers don't have any special meaning except domain
1846   /// 0 is used for instructions that are not associated with any interesting
1847   /// execution domain.
1848   ///
1849   virtual std::pair<uint16_t, uint16_t>
getExecutionDomain(const MachineInstr & MI)1850   getExecutionDomain(const MachineInstr &MI) const {
1851     return std::make_pair(0, 0);
1852   }
1853 
1854   /// Change the opcode of MI to execute in Domain.
1855   ///
1856   /// The bit (1 << Domain) must be set in the mask returned from
1857   /// getExecutionDomain(MI).
setExecutionDomain(MachineInstr & MI,unsigned Domain)1858   virtual void setExecutionDomain(MachineInstr &MI, unsigned Domain) const {}
1859 
1860   /// Returns the preferred minimum clearance
1861   /// before an instruction with an unwanted partial register update.
1862   ///
1863   /// Some instructions only write part of a register, and implicitly need to
1864   /// read the other parts of the register.  This may cause unwanted stalls
1865   /// preventing otherwise unrelated instructions from executing in parallel in
1866   /// an out-of-order CPU.
1867   ///
1868   /// For example, the x86 instruction cvtsi2ss writes its result to bits
1869   /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
1870   /// the instruction needs to wait for the old value of the register to become
1871   /// available:
1872   ///
1873   ///   addps %xmm1, %xmm0
1874   ///   movaps %xmm0, (%rax)
1875   ///   cvtsi2ss %rbx, %xmm0
1876   ///
1877   /// In the code above, the cvtsi2ss instruction needs to wait for the addps
1878   /// instruction before it can issue, even though the high bits of %xmm0
1879   /// probably aren't needed.
1880   ///
1881   /// This hook returns the preferred clearance before MI, measured in
1882   /// instructions.  Other defs of MI's operand OpNum are avoided in the last N
1883   /// instructions before MI.  It should only return a positive value for
1884   /// unwanted dependencies.  If the old bits of the defined register have
1885   /// useful values, or if MI is determined to otherwise read the dependency,
1886   /// the hook should return 0.
1887   ///
1888   /// The unwanted dependency may be handled by:
1889   ///
1890   /// 1. Allocating the same register for an MI def and use.  That makes the
1891   ///    unwanted dependency identical to a required dependency.
1892   ///
1893   /// 2. Allocating a register for the def that has no defs in the previous N
1894   ///    instructions.
1895   ///
1896   /// 3. Calling breakPartialRegDependency() with the same arguments.  This
1897   ///    allows the target to insert a dependency breaking instruction.
1898   ///
1899   virtual unsigned
getPartialRegUpdateClearance(const MachineInstr & MI,unsigned OpNum,const TargetRegisterInfo * TRI)1900   getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum,
1901                                const TargetRegisterInfo *TRI) const {
1902     // The default implementation returns 0 for no partial register dependency.
1903     return 0;
1904   }
1905 
1906   /// Return the minimum clearance before an instruction that reads an
1907   /// unused register.
1908   ///
1909   /// For example, AVX instructions may copy part of a register operand into
1910   /// the unused high bits of the destination register.
1911   ///
1912   /// vcvtsi2sdq %rax, undef %xmm0, %xmm14
1913   ///
1914   /// In the code above, vcvtsi2sdq copies %xmm0[127:64] into %xmm14 creating a
1915   /// false dependence on any previous write to %xmm0.
1916   ///
1917   /// This hook works similarly to getPartialRegUpdateClearance, except that it
1918   /// does not take an operand index. Instead sets \p OpNum to the index of the
1919   /// unused register.
getUndefRegClearance(const MachineInstr & MI,unsigned OpNum,const TargetRegisterInfo * TRI)1920   virtual unsigned getUndefRegClearance(const MachineInstr &MI, unsigned OpNum,
1921                                         const TargetRegisterInfo *TRI) const {
1922     // The default implementation returns 0 for no undef register dependency.
1923     return 0;
1924   }
1925 
1926   /// Insert a dependency-breaking instruction
1927   /// before MI to eliminate an unwanted dependency on OpNum.
1928   ///
1929   /// If it wasn't possible to avoid a def in the last N instructions before MI
1930   /// (see getPartialRegUpdateClearance), this hook will be called to break the
1931   /// unwanted dependency.
1932   ///
1933   /// On x86, an xorps instruction can be used as a dependency breaker:
1934   ///
1935   ///   addps %xmm1, %xmm0
1936   ///   movaps %xmm0, (%rax)
1937   ///   xorps %xmm0, %xmm0
1938   ///   cvtsi2ss %rbx, %xmm0
1939   ///
1940   /// An <imp-kill> operand should be added to MI if an instruction was
1941   /// inserted.  This ties the instructions together in the post-ra scheduler.
1942   ///
breakPartialRegDependency(MachineInstr & MI,unsigned OpNum,const TargetRegisterInfo * TRI)1943   virtual void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum,
1944                                          const TargetRegisterInfo *TRI) const {}
1945 
1946   /// Create machine specific model for scheduling.
1947   virtual DFAPacketizer *
CreateTargetScheduleState(const TargetSubtargetInfo &)1948   CreateTargetScheduleState(const TargetSubtargetInfo &) const {
1949     return nullptr;
1950   }
1951 
1952   /// Sometimes, it is possible for the target
1953   /// to tell, even without aliasing information, that two MIs access different
1954   /// memory addresses. This function returns true if two MIs access different
1955   /// memory addresses and false otherwise.
1956   ///
1957   /// Assumes any physical registers used to compute addresses have the same
1958   /// value for both instructions. (This is the most useful assumption for
1959   /// post-RA scheduling.)
1960   ///
1961   /// See also MachineInstr::mayAlias, which is implemented on top of this
1962   /// function.
1963   virtual bool
areMemAccessesTriviallyDisjoint(const MachineInstr & MIa,const MachineInstr & MIb)1964   areMemAccessesTriviallyDisjoint(const MachineInstr &MIa,
1965                                   const MachineInstr &MIb) const {
1966     assert(MIa.mayLoadOrStore() &&
1967            "MIa must load from or modify a memory location");
1968     assert(MIb.mayLoadOrStore() &&
1969            "MIb must load from or modify a memory location");
1970     return false;
1971   }
1972 
1973   /// Return the value to use for the MachineCSE's LookAheadLimit,
1974   /// which is a heuristic used for CSE'ing phys reg defs.
getMachineCSELookAheadLimit()1975   virtual unsigned getMachineCSELookAheadLimit() const {
1976     // The default lookahead is small to prevent unprofitable quadratic
1977     // behavior.
1978     return 5;
1979   }
1980 
1981   /// Return the maximal number of alias checks on memory operands. For
1982   /// instructions with more than one memory operands, the alias check on a
1983   /// single MachineInstr pair has quadratic overhead and results in
1984   /// unacceptable performance in the worst case. The limit here is to clamp
1985   /// that maximal checks performed. Usually, that's the product of memory
1986   /// operand numbers from that pair of MachineInstr to be checked. For
1987   /// instance, with two MachineInstrs with 4 and 5 memory operands
1988   /// correspondingly, a total of 20 checks are required. With this limit set to
1989   /// 16, their alias check is skipped. We choose to limit the product instead
1990   /// of the individual instruction as targets may have special MachineInstrs
1991   /// with a considerably high number of memory operands, such as `ldm` in ARM.
1992   /// Setting this limit per MachineInstr would result in either too high
1993   /// overhead or too rigid restriction.
getMemOperandAACheckLimit()1994   virtual unsigned getMemOperandAACheckLimit() const { return 16; }
1995 
1996   /// Return an array that contains the ids of the target indices (used for the
1997   /// TargetIndex machine operand) and their names.
1998   ///
1999   /// MIR Serialization is able to serialize only the target indices that are
2000   /// defined by this method.
2001   virtual ArrayRef<std::pair<int, const char *>>
getSerializableTargetIndices()2002   getSerializableTargetIndices() const {
2003     return std::nullopt;
2004   }
2005 
2006   /// Decompose the machine operand's target flags into two values - the direct
2007   /// target flag value and any of bit flags that are applied.
2008   virtual std::pair<unsigned, unsigned>
decomposeMachineOperandsTargetFlags(unsigned)2009   decomposeMachineOperandsTargetFlags(unsigned /*TF*/) const {
2010     return std::make_pair(0u, 0u);
2011   }
2012 
2013   /// Return an array that contains the direct target flag values and their
2014   /// names.
2015   ///
2016   /// MIR Serialization is able to serialize only the target flags that are
2017   /// defined by this method.
2018   virtual ArrayRef<std::pair<unsigned, const char *>>
getSerializableDirectMachineOperandTargetFlags()2019   getSerializableDirectMachineOperandTargetFlags() const {
2020     return std::nullopt;
2021   }
2022 
2023   /// Return an array that contains the bitmask target flag values and their
2024   /// names.
2025   ///
2026   /// MIR Serialization is able to serialize only the target flags that are
2027   /// defined by this method.
2028   virtual ArrayRef<std::pair<unsigned, const char *>>
getSerializableBitmaskMachineOperandTargetFlags()2029   getSerializableBitmaskMachineOperandTargetFlags() const {
2030     return std::nullopt;
2031   }
2032 
2033   /// Return an array that contains the MMO target flag values and their
2034   /// names.
2035   ///
2036   /// MIR Serialization is able to serialize only the MMO target flags that are
2037   /// defined by this method.
2038   virtual ArrayRef<std::pair<MachineMemOperand::Flags, const char *>>
getSerializableMachineMemOperandTargetFlags()2039   getSerializableMachineMemOperandTargetFlags() const {
2040     return std::nullopt;
2041   }
2042 
2043   /// Determines whether \p Inst is a tail call instruction. Override this
2044   /// method on targets that do not properly set MCID::Return and MCID::Call on
2045   /// tail call instructions."
isTailCall(const MachineInstr & Inst)2046   virtual bool isTailCall(const MachineInstr &Inst) const {
2047     return Inst.isReturn() && Inst.isCall();
2048   }
2049 
2050   /// True if the instruction is bound to the top of its basic block and no
2051   /// other instructions shall be inserted before it. This can be implemented
2052   /// to prevent register allocator to insert spills for \p Reg before such
2053   /// instructions.
2054   virtual bool isBasicBlockPrologue(const MachineInstr &MI,
2055                                     Register Reg = Register()) const {
2056     return false;
2057   }
2058 
2059   /// Allows targets to use appropriate copy instruction while spilitting live
2060   /// range of a register in register allocation.
getLiveRangeSplitOpcode(Register Reg,const MachineFunction & MF)2061   virtual unsigned getLiveRangeSplitOpcode(Register Reg,
2062                                            const MachineFunction &MF) const {
2063     return TargetOpcode::COPY;
2064   }
2065 
2066   /// During PHI eleimination lets target to make necessary checks and
2067   /// insert the copy to the PHI destination register in a target specific
2068   /// manner.
createPHIDestinationCopy(MachineBasicBlock & MBB,MachineBasicBlock::iterator InsPt,const DebugLoc & DL,Register Src,Register Dst)2069   virtual MachineInstr *createPHIDestinationCopy(
2070       MachineBasicBlock &MBB, MachineBasicBlock::iterator InsPt,
2071       const DebugLoc &DL, Register Src, Register Dst) const {
2072     return BuildMI(MBB, InsPt, DL, get(TargetOpcode::COPY), Dst)
2073         .addReg(Src);
2074   }
2075 
2076   /// During PHI eleimination lets target to make necessary checks and
2077   /// insert the copy to the PHI destination register in a target specific
2078   /// manner.
createPHISourceCopy(MachineBasicBlock & MBB,MachineBasicBlock::iterator InsPt,const DebugLoc & DL,Register Src,unsigned SrcSubReg,Register Dst)2079   virtual MachineInstr *createPHISourceCopy(MachineBasicBlock &MBB,
2080                                             MachineBasicBlock::iterator InsPt,
2081                                             const DebugLoc &DL, Register Src,
2082                                             unsigned SrcSubReg,
2083                                             Register Dst) const {
2084     return BuildMI(MBB, InsPt, DL, get(TargetOpcode::COPY), Dst)
2085         .addReg(Src, 0, SrcSubReg);
2086   }
2087 
2088   /// Returns a \p outliner::OutlinedFunction struct containing target-specific
2089   /// information for a set of outlining candidates. Returns std::nullopt if the
2090   /// candidates are not suitable for outlining.
getOutliningCandidateInfo(std::vector<outliner::Candidate> & RepeatedSequenceLocs)2091   virtual std::optional<outliner::OutlinedFunction> getOutliningCandidateInfo(
2092       std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
2093     llvm_unreachable(
2094         "Target didn't implement TargetInstrInfo::getOutliningCandidateInfo!");
2095   }
2096 
2097   /// Optional target hook to create the LLVM IR attributes for the outlined
2098   /// function. If overridden, the overriding function must call the default
2099   /// implementation.
2100   virtual void mergeOutliningCandidateAttributes(
2101       Function &F, std::vector<outliner::Candidate> &Candidates) const;
2102 
2103 protected:
2104   /// Target-dependent implementation for getOutliningTypeImpl.
2105   virtual outliner::InstrType
getOutliningTypeImpl(MachineBasicBlock::iterator & MIT,unsigned Flags)2106   getOutliningTypeImpl(MachineBasicBlock::iterator &MIT, unsigned Flags) const {
2107     llvm_unreachable(
2108         "Target didn't implement TargetInstrInfo::getOutliningTypeImpl!");
2109   }
2110 
2111 public:
2112   /// Returns how or if \p MIT should be outlined. \p Flags is the
2113   /// target-specific information returned by isMBBSafeToOutlineFrom.
2114   outliner::InstrType
2115   getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const;
2116 
2117   /// Optional target hook that returns true if \p MBB is safe to outline from,
2118   /// and returns any target-specific information in \p Flags.
2119   virtual bool isMBBSafeToOutlineFrom(MachineBasicBlock &MBB,
2120                                       unsigned &Flags) const;
2121 
2122   /// Optional target hook which partitions \p MBB into outlinable ranges for
2123   /// instruction mapping purposes. Each range is defined by two iterators:
2124   /// [start, end).
2125   ///
2126   /// Ranges are expected to be ordered top-down. That is, ranges closer to the
2127   /// top of the block should come before ranges closer to the end of the block.
2128   ///
2129   /// Ranges cannot overlap.
2130   ///
2131   /// If an entire block is mappable, then its range is [MBB.begin(), MBB.end())
2132   ///
2133   /// All instructions not present in an outlinable range are considered
2134   /// illegal.
2135   virtual SmallVector<
2136       std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator>>
getOutlinableRanges(MachineBasicBlock & MBB,unsigned & Flags)2137   getOutlinableRanges(MachineBasicBlock &MBB, unsigned &Flags) const {
2138     return {std::make_pair(MBB.begin(), MBB.end())};
2139   }
2140 
2141   /// Insert a custom frame for outlined functions.
buildOutlinedFrame(MachineBasicBlock & MBB,MachineFunction & MF,const outliner::OutlinedFunction & OF)2142   virtual void buildOutlinedFrame(MachineBasicBlock &MBB, MachineFunction &MF,
2143                                   const outliner::OutlinedFunction &OF) const {
2144     llvm_unreachable(
2145         "Target didn't implement TargetInstrInfo::buildOutlinedFrame!");
2146   }
2147 
2148   /// Insert a call to an outlined function into the program.
2149   /// Returns an iterator to the spot where we inserted the call. This must be
2150   /// implemented by the target.
2151   virtual MachineBasicBlock::iterator
insertOutlinedCall(Module & M,MachineBasicBlock & MBB,MachineBasicBlock::iterator & It,MachineFunction & MF,outliner::Candidate & C)2152   insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
2153                      MachineBasicBlock::iterator &It, MachineFunction &MF,
2154                      outliner::Candidate &C) const {
2155     llvm_unreachable(
2156         "Target didn't implement TargetInstrInfo::insertOutlinedCall!");
2157   }
2158 
2159   /// Insert an architecture-specific instruction to clear a register. If you
2160   /// need to avoid sideeffects (e.g. avoid XOR on x86, which sets EFLAGS), set
2161   /// \p AllowSideEffects to \p false.
2162   virtual void buildClearRegister(Register Reg, MachineBasicBlock &MBB,
2163                                   MachineBasicBlock::iterator Iter,
2164                                   DebugLoc &DL,
2165                                   bool AllowSideEffects = true) const {
2166 #if 0
2167     // FIXME: This should exist once all platforms that use stack protectors
2168     // implements it.
2169     llvm_unreachable(
2170         "Target didn't implement TargetInstrInfo::buildClearRegister!");
2171 #endif
2172   }
2173 
2174   /// Return true if the function can safely be outlined from.
2175   /// A function \p MF is considered safe for outlining if an outlined function
2176   /// produced from instructions in F will produce a program which produces the
2177   /// same output for any set of given inputs.
isFunctionSafeToOutlineFrom(MachineFunction & MF,bool OutlineFromLinkOnceODRs)2178   virtual bool isFunctionSafeToOutlineFrom(MachineFunction &MF,
2179                                            bool OutlineFromLinkOnceODRs) const {
2180     llvm_unreachable("Target didn't implement "
2181                      "TargetInstrInfo::isFunctionSafeToOutlineFrom!");
2182   }
2183 
2184   /// Return true if the function should be outlined from by default.
shouldOutlineFromFunctionByDefault(MachineFunction & MF)2185   virtual bool shouldOutlineFromFunctionByDefault(MachineFunction &MF) const {
2186     return false;
2187   }
2188 
2189   /// Return true if the function is a viable candidate for machine function
2190   /// splitting. The criteria for if a function can be split may vary by target.
2191   virtual bool isFunctionSafeToSplit(const MachineFunction &MF) const;
2192 
2193   /// Return true if the MachineBasicBlock can safely be split to the cold
2194   /// section. On AArch64, certain instructions may cause a block to be unsafe
2195   /// to split to the cold section.
isMBBSafeToSplitToCold(const MachineBasicBlock & MBB)2196   virtual bool isMBBSafeToSplitToCold(const MachineBasicBlock &MBB) const {
2197     return true;
2198   }
2199 
2200   /// Produce the expression describing the \p MI loading a value into
2201   /// the physical register \p Reg. This hook should only be used with
2202   /// \p MIs belonging to VReg-less functions.
2203   virtual std::optional<ParamLoadedValue>
2204   describeLoadedValue(const MachineInstr &MI, Register Reg) const;
2205 
2206   /// Given the generic extension instruction \p ExtMI, returns true if this
2207   /// extension is a likely candidate for being folded into an another
2208   /// instruction.
isExtendLikelyToBeFolded(MachineInstr & ExtMI,MachineRegisterInfo & MRI)2209   virtual bool isExtendLikelyToBeFolded(MachineInstr &ExtMI,
2210                                         MachineRegisterInfo &MRI) const {
2211     return false;
2212   }
2213 
2214   /// Return MIR formatter to format/parse MIR operands.  Target can override
2215   /// this virtual function and return target specific MIR formatter.
getMIRFormatter()2216   virtual const MIRFormatter *getMIRFormatter() const {
2217     if (!Formatter)
2218       Formatter = std::make_unique<MIRFormatter>();
2219     return Formatter.get();
2220   }
2221 
2222   /// Returns the target-specific default value for tail duplication.
2223   /// This value will be used if the tail-dup-placement-threshold argument is
2224   /// not provided.
getTailDuplicateSize(CodeGenOptLevel OptLevel)2225   virtual unsigned getTailDuplicateSize(CodeGenOptLevel OptLevel) const {
2226     return OptLevel >= CodeGenOptLevel::Aggressive ? 4 : 2;
2227   }
2228 
2229   /// Returns the target-specific default value for tail merging.
2230   /// This value will be used if the tail-merge-size argument is not provided.
getTailMergeSize(const MachineFunction & MF)2231   virtual unsigned getTailMergeSize(const MachineFunction &MF) const {
2232     return 3;
2233   }
2234 
2235   /// Returns the callee operand from the given \p MI.
getCalleeOperand(const MachineInstr & MI)2236   virtual const MachineOperand &getCalleeOperand(const MachineInstr &MI) const {
2237     return MI.getOperand(0);
2238   }
2239 
2240   /// Return the uniformity behavior of the given instruction.
2241   virtual InstructionUniformity
getInstructionUniformity(const MachineInstr & MI)2242   getInstructionUniformity(const MachineInstr &MI) const {
2243     return InstructionUniformity::Default;
2244   }
2245 
2246   /// Returns true if the given \p MI defines a TargetIndex operand that can be
2247   /// tracked by their offset, can have values, and can have debug info
2248   /// associated with it. If so, sets \p Index and \p Offset of the target index
2249   /// operand.
isExplicitTargetIndexDef(const MachineInstr & MI,int & Index,int64_t & Offset)2250   virtual bool isExplicitTargetIndexDef(const MachineInstr &MI, int &Index,
2251                                         int64_t &Offset) const {
2252     return false;
2253   }
2254 
2255   // Get the call frame size just before MI.
2256   unsigned getCallFrameSizeAt(MachineInstr &MI) const;
2257 
2258   /// Fills in the necessary MachineOperands to refer to a frame index.
2259   /// The best way to understand this is to print `asm(""::"m"(x));` after
2260   /// finalize-isel. Example:
2261   /// INLINEASM ... 262190 /* mem:m */, %stack.0.x.addr, 1, $noreg, 0, $noreg
2262   /// we would add placeholders for:                     ^  ^       ^  ^
getFrameIndexOperands(SmallVectorImpl<MachineOperand> & Ops,int FI)2263   virtual void getFrameIndexOperands(SmallVectorImpl<MachineOperand> &Ops,
2264                                      int FI) const {
2265     llvm_unreachable("unknown number of operands necessary");
2266   }
2267 
2268   /// Gets the opcode for the Pseudo Instruction used to initialize
2269   /// the undef value. If no Instruction is available, this will
2270   /// fail compilation.
getUndefInitOpcode(unsigned RegClassID)2271   virtual unsigned getUndefInitOpcode(unsigned RegClassID) const {
2272     (void)RegClassID;
2273 
2274     llvm_unreachable("Unexpected register class.");
2275   }
2276 
2277 private:
2278   mutable std::unique_ptr<MIRFormatter> Formatter;
2279   unsigned CallFrameSetupOpcode, CallFrameDestroyOpcode;
2280   unsigned CatchRetOpcode;
2281   unsigned ReturnOpcode;
2282 };
2283 
2284 /// Provide DenseMapInfo for TargetInstrInfo::RegSubRegPair.
2285 template <> struct DenseMapInfo<TargetInstrInfo::RegSubRegPair> {
2286   using RegInfo = DenseMapInfo<unsigned>;
2287 
2288   static inline TargetInstrInfo::RegSubRegPair getEmptyKey() {
2289     return TargetInstrInfo::RegSubRegPair(RegInfo::getEmptyKey(),
2290                                           RegInfo::getEmptyKey());
2291   }
2292 
2293   static inline TargetInstrInfo::RegSubRegPair getTombstoneKey() {
2294     return TargetInstrInfo::RegSubRegPair(RegInfo::getTombstoneKey(),
2295                                           RegInfo::getTombstoneKey());
2296   }
2297 
2298   /// Reuse getHashValue implementation from
2299   /// std::pair<unsigned, unsigned>.
2300   static unsigned getHashValue(const TargetInstrInfo::RegSubRegPair &Val) {
2301     std::pair<unsigned, unsigned> PairVal = std::make_pair(Val.Reg, Val.SubReg);
2302     return DenseMapInfo<std::pair<unsigned, unsigned>>::getHashValue(PairVal);
2303   }
2304 
2305   static bool isEqual(const TargetInstrInfo::RegSubRegPair &LHS,
2306                       const TargetInstrInfo::RegSubRegPair &RHS) {
2307     return RegInfo::isEqual(LHS.Reg, RHS.Reg) &&
2308            RegInfo::isEqual(LHS.SubReg, RHS.SubReg);
2309   }
2310 };
2311 
2312 } // end namespace llvm
2313 
2314 #endif // LLVM_CODEGEN_TARGETINSTRINFO_H
2315