1 //===- llvm/CodeGen/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file describes the target machine instruction set to the code generator. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_CODEGEN_TARGETINSTRINFO_H 14 #define LLVM_CODEGEN_TARGETINSTRINFO_H 15 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseMapInfo.h" 19 #include "llvm/ADT/Uniformity.h" 20 #include "llvm/CodeGen/MIRFormatter.h" 21 #include "llvm/CodeGen/MachineBasicBlock.h" 22 #include "llvm/CodeGen/MachineCombinerPattern.h" 23 #include "llvm/CodeGen/MachineCycleAnalysis.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstr.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineOperand.h" 28 #include "llvm/CodeGen/MachineOutliner.h" 29 #include "llvm/CodeGen/RegisterClassInfo.h" 30 #include "llvm/CodeGen/VirtRegMap.h" 31 #include "llvm/MC/MCInstrInfo.h" 32 #include "llvm/Support/BranchProbability.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include <array> 35 #include <cassert> 36 #include <cstddef> 37 #include <cstdint> 38 #include <utility> 39 #include <vector> 40 41 namespace llvm { 42 43 class DFAPacketizer; 44 class InstrItineraryData; 45 class LiveIntervals; 46 class LiveVariables; 47 class MachineLoop; 48 class MachineMemOperand; 49 class MachineRegisterInfo; 50 class MCAsmInfo; 51 class MCInst; 52 struct MCSchedModel; 53 class Module; 54 class ScheduleDAG; 55 class ScheduleDAGMI; 56 class ScheduleHazardRecognizer; 57 class SDNode; 58 class SelectionDAG; 59 class SMSchedule; 60 class SwingSchedulerDAG; 61 class RegScavenger; 62 class TargetRegisterClass; 63 class TargetRegisterInfo; 64 class TargetSchedModel; 65 class TargetSubtargetInfo; 66 enum class MachineTraceStrategy; 67 68 template <class T> class SmallVectorImpl; 69 70 using ParamLoadedValue = std::pair<MachineOperand, DIExpression*>; 71 72 struct DestSourcePair { 73 const MachineOperand *Destination; 74 const MachineOperand *Source; 75 DestSourcePairDestSourcePair76 DestSourcePair(const MachineOperand &Dest, const MachineOperand &Src) 77 : Destination(&Dest), Source(&Src) {} 78 }; 79 80 /// Used to describe a register and immediate addition. 81 struct RegImmPair { 82 Register Reg; 83 int64_t Imm; 84 RegImmPairRegImmPair85 RegImmPair(Register Reg, int64_t Imm) : Reg(Reg), Imm(Imm) {} 86 }; 87 88 /// Used to describe addressing mode similar to ExtAddrMode in CodeGenPrepare. 89 /// It holds the register values, the scale value and the displacement. 90 /// It also holds a descriptor for the expression used to calculate the address 91 /// from the operands. 92 struct ExtAddrMode { 93 enum class Formula { 94 Basic = 0, // BaseReg + ScaledReg * Scale + Displacement 95 SExtScaledReg = 1, // BaseReg + sext(ScaledReg) * Scale + Displacement 96 ZExtScaledReg = 2 // BaseReg + zext(ScaledReg) * Scale + Displacement 97 }; 98 99 Register BaseReg; 100 Register ScaledReg; 101 int64_t Scale = 0; 102 int64_t Displacement = 0; 103 Formula Form = Formula::Basic; 104 ExtAddrMode() = default; 105 }; 106 107 //--------------------------------------------------------------------------- 108 /// 109 /// TargetInstrInfo - Interface to description of machine instruction set 110 /// 111 class TargetInstrInfo : public MCInstrInfo { 112 public: 113 TargetInstrInfo(unsigned CFSetupOpcode = ~0u, unsigned CFDestroyOpcode = ~0u, 114 unsigned CatchRetOpcode = ~0u, unsigned ReturnOpcode = ~0u) CallFrameSetupOpcode(CFSetupOpcode)115 : CallFrameSetupOpcode(CFSetupOpcode), 116 CallFrameDestroyOpcode(CFDestroyOpcode), CatchRetOpcode(CatchRetOpcode), 117 ReturnOpcode(ReturnOpcode) {} 118 TargetInstrInfo(const TargetInstrInfo &) = delete; 119 TargetInstrInfo &operator=(const TargetInstrInfo &) = delete; 120 virtual ~TargetInstrInfo(); 121 isGenericOpcode(unsigned Opc)122 static bool isGenericOpcode(unsigned Opc) { 123 return Opc <= TargetOpcode::GENERIC_OP_END; 124 } 125 isGenericAtomicRMWOpcode(unsigned Opc)126 static bool isGenericAtomicRMWOpcode(unsigned Opc) { 127 return Opc >= TargetOpcode::GENERIC_ATOMICRMW_OP_START && 128 Opc <= TargetOpcode::GENERIC_ATOMICRMW_OP_END; 129 } 130 131 /// Given a machine instruction descriptor, returns the register 132 /// class constraint for OpNum, or NULL. 133 virtual 134 const TargetRegisterClass *getRegClass(const MCInstrDesc &MCID, unsigned OpNum, 135 const TargetRegisterInfo *TRI, 136 const MachineFunction &MF) const; 137 138 /// Return true if the instruction is trivially rematerializable, meaning it 139 /// has no side effects and requires no operands that aren't always available. 140 /// This means the only allowed uses are constants and unallocatable physical 141 /// registers so that the instructions result is independent of the place 142 /// in the function. isTriviallyReMaterializable(const MachineInstr & MI)143 bool isTriviallyReMaterializable(const MachineInstr &MI) const { 144 return (MI.getOpcode() == TargetOpcode::IMPLICIT_DEF && 145 MI.getNumOperands() == 1) || 146 (MI.getDesc().isRematerializable() && 147 isReallyTriviallyReMaterializable(MI)); 148 } 149 150 /// Given \p MO is a PhysReg use return if it can be ignored for the purpose 151 /// of instruction rematerialization or sinking. isIgnorableUse(const MachineOperand & MO)152 virtual bool isIgnorableUse(const MachineOperand &MO) const { 153 return false; 154 } 155 isSafeToSink(MachineInstr & MI,MachineBasicBlock * SuccToSinkTo,MachineCycleInfo * CI)156 virtual bool isSafeToSink(MachineInstr &MI, MachineBasicBlock *SuccToSinkTo, 157 MachineCycleInfo *CI) const { 158 return true; 159 } 160 161 protected: 162 /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is 163 /// set, this hook lets the target specify whether the instruction is actually 164 /// trivially rematerializable, taking into consideration its operands. This 165 /// predicate must return false if the instruction has any side effects other 166 /// than producing a value, or if it requres any address registers that are 167 /// not always available. 168 virtual bool isReallyTriviallyReMaterializable(const MachineInstr &MI) const; 169 170 /// This method commutes the operands of the given machine instruction MI. 171 /// The operands to be commuted are specified by their indices OpIdx1 and 172 /// OpIdx2. 173 /// 174 /// If a target has any instructions that are commutable but require 175 /// converting to different instructions or making non-trivial changes 176 /// to commute them, this method can be overloaded to do that. 177 /// The default implementation simply swaps the commutable operands. 178 /// 179 /// If NewMI is false, MI is modified in place and returned; otherwise, a 180 /// new machine instruction is created and returned. 181 /// 182 /// Do not call this method for a non-commutable instruction. 183 /// Even though the instruction is commutable, the method may still 184 /// fail to commute the operands, null pointer is returned in such cases. 185 virtual MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI, 186 unsigned OpIdx1, 187 unsigned OpIdx2) const; 188 189 /// Assigns the (CommutableOpIdx1, CommutableOpIdx2) pair of commutable 190 /// operand indices to (ResultIdx1, ResultIdx2). 191 /// One or both input values of the pair: (ResultIdx1, ResultIdx2) may be 192 /// predefined to some indices or be undefined (designated by the special 193 /// value 'CommuteAnyOperandIndex'). 194 /// The predefined result indices cannot be re-defined. 195 /// The function returns true iff after the result pair redefinition 196 /// the fixed result pair is equal to or equivalent to the source pair of 197 /// indices: (CommutableOpIdx1, CommutableOpIdx2). It is assumed here that 198 /// the pairs (x,y) and (y,x) are equivalent. 199 static bool fixCommutedOpIndices(unsigned &ResultIdx1, unsigned &ResultIdx2, 200 unsigned CommutableOpIdx1, 201 unsigned CommutableOpIdx2); 202 203 public: 204 /// These methods return the opcode of the frame setup/destroy instructions 205 /// if they exist (-1 otherwise). Some targets use pseudo instructions in 206 /// order to abstract away the difference between operating with a frame 207 /// pointer and operating without, through the use of these two instructions. 208 /// A FrameSetup MI in MF implies MFI::AdjustsStack. 209 /// getCallFrameSetupOpcode()210 unsigned getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; } getCallFrameDestroyOpcode()211 unsigned getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; } 212 213 /// Returns true if the argument is a frame pseudo instruction. isFrameInstr(const MachineInstr & I)214 bool isFrameInstr(const MachineInstr &I) const { 215 return I.getOpcode() == getCallFrameSetupOpcode() || 216 I.getOpcode() == getCallFrameDestroyOpcode(); 217 } 218 219 /// Returns true if the argument is a frame setup pseudo instruction. isFrameSetup(const MachineInstr & I)220 bool isFrameSetup(const MachineInstr &I) const { 221 return I.getOpcode() == getCallFrameSetupOpcode(); 222 } 223 224 /// Returns size of the frame associated with the given frame instruction. 225 /// For frame setup instruction this is frame that is set up space set up 226 /// after the instruction. For frame destroy instruction this is the frame 227 /// freed by the caller. 228 /// Note, in some cases a call frame (or a part of it) may be prepared prior 229 /// to the frame setup instruction. It occurs in the calls that involve 230 /// inalloca arguments. This function reports only the size of the frame part 231 /// that is set up between the frame setup and destroy pseudo instructions. getFrameSize(const MachineInstr & I)232 int64_t getFrameSize(const MachineInstr &I) const { 233 assert(isFrameInstr(I) && "Not a frame instruction"); 234 assert(I.getOperand(0).getImm() >= 0); 235 return I.getOperand(0).getImm(); 236 } 237 238 /// Returns the total frame size, which is made up of the space set up inside 239 /// the pair of frame start-stop instructions and the space that is set up 240 /// prior to the pair. getFrameTotalSize(const MachineInstr & I)241 int64_t getFrameTotalSize(const MachineInstr &I) const { 242 if (isFrameSetup(I)) { 243 assert(I.getOperand(1).getImm() >= 0 && 244 "Frame size must not be negative"); 245 return getFrameSize(I) + I.getOperand(1).getImm(); 246 } 247 return getFrameSize(I); 248 } 249 getCatchReturnOpcode()250 unsigned getCatchReturnOpcode() const { return CatchRetOpcode; } getReturnOpcode()251 unsigned getReturnOpcode() const { return ReturnOpcode; } 252 253 /// Returns the actual stack pointer adjustment made by an instruction 254 /// as part of a call sequence. By default, only call frame setup/destroy 255 /// instructions adjust the stack, but targets may want to override this 256 /// to enable more fine-grained adjustment, or adjust by a different value. 257 virtual int getSPAdjust(const MachineInstr &MI) const; 258 259 /// Return true if the instruction is a "coalescable" extension instruction. 260 /// That is, it's like a copy where it's legal for the source to overlap the 261 /// destination. e.g. X86::MOVSX64rr32. If this returns true, then it's 262 /// expected the pre-extension value is available as a subreg of the result 263 /// register. This also returns the sub-register index in SubIdx. isCoalescableExtInstr(const MachineInstr & MI,Register & SrcReg,Register & DstReg,unsigned & SubIdx)264 virtual bool isCoalescableExtInstr(const MachineInstr &MI, Register &SrcReg, 265 Register &DstReg, unsigned &SubIdx) const { 266 return false; 267 } 268 269 /// If the specified machine instruction is a direct 270 /// load from a stack slot, return the virtual or physical register number of 271 /// the destination along with the FrameIndex of the loaded stack slot. If 272 /// not, return 0. This predicate must return 0 if the instruction has 273 /// any side effects other than loading from the stack slot. isLoadFromStackSlot(const MachineInstr & MI,int & FrameIndex)274 virtual Register isLoadFromStackSlot(const MachineInstr &MI, 275 int &FrameIndex) const { 276 return 0; 277 } 278 279 /// Optional extension of isLoadFromStackSlot that returns the number of 280 /// bytes loaded from the stack. This must be implemented if a backend 281 /// supports partial stack slot spills/loads to further disambiguate 282 /// what the load does. isLoadFromStackSlot(const MachineInstr & MI,int & FrameIndex,unsigned & MemBytes)283 virtual Register isLoadFromStackSlot(const MachineInstr &MI, 284 int &FrameIndex, 285 unsigned &MemBytes) const { 286 MemBytes = 0; 287 return isLoadFromStackSlot(MI, FrameIndex); 288 } 289 290 /// Check for post-frame ptr elimination stack locations as well. 291 /// This uses a heuristic so it isn't reliable for correctness. isLoadFromStackSlotPostFE(const MachineInstr & MI,int & FrameIndex)292 virtual Register isLoadFromStackSlotPostFE(const MachineInstr &MI, 293 int &FrameIndex) const { 294 return 0; 295 } 296 297 /// If the specified machine instruction has a load from a stack slot, 298 /// return true along with the FrameIndices of the loaded stack slot and the 299 /// machine mem operands containing the reference. 300 /// If not, return false. Unlike isLoadFromStackSlot, this returns true for 301 /// any instructions that loads from the stack. This is just a hint, as some 302 /// cases may be missed. 303 virtual bool hasLoadFromStackSlot( 304 const MachineInstr &MI, 305 SmallVectorImpl<const MachineMemOperand *> &Accesses) const; 306 307 /// If the specified machine instruction is a direct 308 /// store to a stack slot, return the virtual or physical register number of 309 /// the source reg along with the FrameIndex of the loaded stack slot. If 310 /// not, return 0. This predicate must return 0 if the instruction has 311 /// any side effects other than storing to the stack slot. isStoreToStackSlot(const MachineInstr & MI,int & FrameIndex)312 virtual Register isStoreToStackSlot(const MachineInstr &MI, 313 int &FrameIndex) const { 314 return 0; 315 } 316 317 /// Optional extension of isStoreToStackSlot that returns the number of 318 /// bytes stored to the stack. This must be implemented if a backend 319 /// supports partial stack slot spills/loads to further disambiguate 320 /// what the store does. isStoreToStackSlot(const MachineInstr & MI,int & FrameIndex,unsigned & MemBytes)321 virtual Register isStoreToStackSlot(const MachineInstr &MI, 322 int &FrameIndex, 323 unsigned &MemBytes) const { 324 MemBytes = 0; 325 return isStoreToStackSlot(MI, FrameIndex); 326 } 327 328 /// Check for post-frame ptr elimination stack locations as well. 329 /// This uses a heuristic, so it isn't reliable for correctness. isStoreToStackSlotPostFE(const MachineInstr & MI,int & FrameIndex)330 virtual Register isStoreToStackSlotPostFE(const MachineInstr &MI, 331 int &FrameIndex) const { 332 return 0; 333 } 334 335 /// If the specified machine instruction has a store to a stack slot, 336 /// return true along with the FrameIndices of the loaded stack slot and the 337 /// machine mem operands containing the reference. 338 /// If not, return false. Unlike isStoreToStackSlot, 339 /// this returns true for any instructions that stores to the 340 /// stack. This is just a hint, as some cases may be missed. 341 virtual bool hasStoreToStackSlot( 342 const MachineInstr &MI, 343 SmallVectorImpl<const MachineMemOperand *> &Accesses) const; 344 345 /// Return true if the specified machine instruction 346 /// is a copy of one stack slot to another and has no other effect. 347 /// Provide the identity of the two frame indices. isStackSlotCopy(const MachineInstr & MI,int & DestFrameIndex,int & SrcFrameIndex)348 virtual bool isStackSlotCopy(const MachineInstr &MI, int &DestFrameIndex, 349 int &SrcFrameIndex) const { 350 return false; 351 } 352 353 /// Compute the size in bytes and offset within a stack slot of a spilled 354 /// register or subregister. 355 /// 356 /// \param [out] Size in bytes of the spilled value. 357 /// \param [out] Offset in bytes within the stack slot. 358 /// \returns true if both Size and Offset are successfully computed. 359 /// 360 /// Not all subregisters have computable spill slots. For example, 361 /// subregisters registers may not be byte-sized, and a pair of discontiguous 362 /// subregisters has no single offset. 363 /// 364 /// Targets with nontrivial bigendian implementations may need to override 365 /// this, particularly to support spilled vector registers. 366 virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx, 367 unsigned &Size, unsigned &Offset, 368 const MachineFunction &MF) const; 369 370 /// Return true if the given instruction is terminator that is unspillable, 371 /// according to isUnspillableTerminatorImpl. isUnspillableTerminator(const MachineInstr * MI)372 bool isUnspillableTerminator(const MachineInstr *MI) const { 373 return MI->isTerminator() && isUnspillableTerminatorImpl(MI); 374 } 375 376 /// Returns the size in bytes of the specified MachineInstr, or ~0U 377 /// when this function is not implemented by a target. getInstSizeInBytes(const MachineInstr & MI)378 virtual unsigned getInstSizeInBytes(const MachineInstr &MI) const { 379 return ~0U; 380 } 381 382 /// Return true if the instruction is as cheap as a move instruction. 383 /// 384 /// Targets for different archs need to override this, and different 385 /// micro-architectures can also be finely tuned inside. isAsCheapAsAMove(const MachineInstr & MI)386 virtual bool isAsCheapAsAMove(const MachineInstr &MI) const { 387 return MI.isAsCheapAsAMove(); 388 } 389 390 /// Return true if the instruction should be sunk by MachineSink. 391 /// 392 /// MachineSink determines on its own whether the instruction is safe to sink; 393 /// this gives the target a hook to override the default behavior with regards 394 /// to which instructions should be sunk. shouldSink(const MachineInstr & MI)395 virtual bool shouldSink(const MachineInstr &MI) const { return true; } 396 397 /// Return false if the instruction should not be hoisted by MachineLICM. 398 /// 399 /// MachineLICM determines on its own whether the instruction is safe to 400 /// hoist; this gives the target a hook to extend this assessment and prevent 401 /// an instruction being hoisted from a given loop for target specific 402 /// reasons. shouldHoist(const MachineInstr & MI,const MachineLoop * FromLoop)403 virtual bool shouldHoist(const MachineInstr &MI, 404 const MachineLoop *FromLoop) const { 405 return true; 406 } 407 408 /// Re-issue the specified 'original' instruction at the 409 /// specific location targeting a new destination register. 410 /// The register in Orig->getOperand(0).getReg() will be substituted by 411 /// DestReg:SubIdx. Any existing subreg index is preserved or composed with 412 /// SubIdx. 413 virtual void reMaterialize(MachineBasicBlock &MBB, 414 MachineBasicBlock::iterator MI, Register DestReg, 415 unsigned SubIdx, const MachineInstr &Orig, 416 const TargetRegisterInfo &TRI) const; 417 418 /// Clones instruction or the whole instruction bundle \p Orig and 419 /// insert into \p MBB before \p InsertBefore. The target may update operands 420 /// that are required to be unique. 421 /// 422 /// \p Orig must not return true for MachineInstr::isNotDuplicable(). 423 virtual MachineInstr &duplicate(MachineBasicBlock &MBB, 424 MachineBasicBlock::iterator InsertBefore, 425 const MachineInstr &Orig) const; 426 427 /// This method must be implemented by targets that 428 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target 429 /// may be able to convert a two-address instruction into one or more true 430 /// three-address instructions on demand. This allows the X86 target (for 431 /// example) to convert ADD and SHL instructions into LEA instructions if they 432 /// would require register copies due to two-addressness. 433 /// 434 /// This method returns a null pointer if the transformation cannot be 435 /// performed, otherwise it returns the last new instruction. 436 /// 437 /// If \p LIS is not nullptr, the LiveIntervals info should be updated for 438 /// replacing \p MI with new instructions, even though this function does not 439 /// remove MI. convertToThreeAddress(MachineInstr & MI,LiveVariables * LV,LiveIntervals * LIS)440 virtual MachineInstr *convertToThreeAddress(MachineInstr &MI, 441 LiveVariables *LV, 442 LiveIntervals *LIS) const { 443 return nullptr; 444 } 445 446 // This constant can be used as an input value of operand index passed to 447 // the method findCommutedOpIndices() to tell the method that the 448 // corresponding operand index is not pre-defined and that the method 449 // can pick any commutable operand. 450 static const unsigned CommuteAnyOperandIndex = ~0U; 451 452 /// This method commutes the operands of the given machine instruction MI. 453 /// 454 /// The operands to be commuted are specified by their indices OpIdx1 and 455 /// OpIdx2. OpIdx1 and OpIdx2 arguments may be set to a special value 456 /// 'CommuteAnyOperandIndex', which means that the method is free to choose 457 /// any arbitrarily chosen commutable operand. If both arguments are set to 458 /// 'CommuteAnyOperandIndex' then the method looks for 2 different commutable 459 /// operands; then commutes them if such operands could be found. 460 /// 461 /// If NewMI is false, MI is modified in place and returned; otherwise, a 462 /// new machine instruction is created and returned. 463 /// 464 /// Do not call this method for a non-commutable instruction or 465 /// for non-commuable operands. 466 /// Even though the instruction is commutable, the method may still 467 /// fail to commute the operands, null pointer is returned in such cases. 468 MachineInstr * 469 commuteInstruction(MachineInstr &MI, bool NewMI = false, 470 unsigned OpIdx1 = CommuteAnyOperandIndex, 471 unsigned OpIdx2 = CommuteAnyOperandIndex) const; 472 473 /// Returns true iff the routine could find two commutable operands in the 474 /// given machine instruction. 475 /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments. 476 /// If any of the INPUT values is set to the special value 477 /// 'CommuteAnyOperandIndex' then the method arbitrarily picks a commutable 478 /// operand, then returns its index in the corresponding argument. 479 /// If both of INPUT values are set to 'CommuteAnyOperandIndex' then method 480 /// looks for 2 commutable operands. 481 /// If INPUT values refer to some operands of MI, then the method simply 482 /// returns true if the corresponding operands are commutable and returns 483 /// false otherwise. 484 /// 485 /// For example, calling this method this way: 486 /// unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex; 487 /// findCommutedOpIndices(MI, Op1, Op2); 488 /// can be interpreted as a query asking to find an operand that would be 489 /// commutable with the operand#1. 490 virtual bool findCommutedOpIndices(const MachineInstr &MI, 491 unsigned &SrcOpIdx1, 492 unsigned &SrcOpIdx2) const; 493 494 /// Returns true if the target has a preference on the operands order of 495 /// the given machine instruction. And specify if \p Commute is required to 496 /// get the desired operands order. hasCommutePreference(MachineInstr & MI,bool & Commute)497 virtual bool hasCommutePreference(MachineInstr &MI, bool &Commute) const { 498 return false; 499 } 500 501 /// A pair composed of a register and a sub-register index. 502 /// Used to give some type checking when modeling Reg:SubReg. 503 struct RegSubRegPair { 504 Register Reg; 505 unsigned SubReg; 506 507 RegSubRegPair(Register Reg = Register(), unsigned SubReg = 0) RegRegSubRegPair508 : Reg(Reg), SubReg(SubReg) {} 509 510 bool operator==(const RegSubRegPair& P) const { 511 return Reg == P.Reg && SubReg == P.SubReg; 512 } 513 bool operator!=(const RegSubRegPair& P) const { 514 return !(*this == P); 515 } 516 }; 517 518 /// A pair composed of a pair of a register and a sub-register index, 519 /// and another sub-register index. 520 /// Used to give some type checking when modeling Reg:SubReg1, SubReg2. 521 struct RegSubRegPairAndIdx : RegSubRegPair { 522 unsigned SubIdx; 523 524 RegSubRegPairAndIdx(Register Reg = Register(), unsigned SubReg = 0, 525 unsigned SubIdx = 0) RegSubRegPairRegSubRegPairAndIdx526 : RegSubRegPair(Reg, SubReg), SubIdx(SubIdx) {} 527 }; 528 529 /// Build the equivalent inputs of a REG_SEQUENCE for the given \p MI 530 /// and \p DefIdx. 531 /// \p [out] InputRegs of the equivalent REG_SEQUENCE. Each element of 532 /// the list is modeled as <Reg:SubReg, SubIdx>. Operands with the undef 533 /// flag are not added to this list. 534 /// E.g., REG_SEQUENCE %1:sub1, sub0, %2, sub1 would produce 535 /// two elements: 536 /// - %1:sub1, sub0 537 /// - %2<:0>, sub1 538 /// 539 /// \returns true if it is possible to build such an input sequence 540 /// with the pair \p MI, \p DefIdx. False otherwise. 541 /// 542 /// \pre MI.isRegSequence() or MI.isRegSequenceLike(). 543 /// 544 /// \note The generic implementation does not provide any support for 545 /// MI.isRegSequenceLike(). In other words, one has to override 546 /// getRegSequenceLikeInputs for target specific instructions. 547 bool 548 getRegSequenceInputs(const MachineInstr &MI, unsigned DefIdx, 549 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const; 550 551 /// Build the equivalent inputs of a EXTRACT_SUBREG for the given \p MI 552 /// and \p DefIdx. 553 /// \p [out] InputReg of the equivalent EXTRACT_SUBREG. 554 /// E.g., EXTRACT_SUBREG %1:sub1, sub0, sub1 would produce: 555 /// - %1:sub1, sub0 556 /// 557 /// \returns true if it is possible to build such an input sequence 558 /// with the pair \p MI, \p DefIdx and the operand has no undef flag set. 559 /// False otherwise. 560 /// 561 /// \pre MI.isExtractSubreg() or MI.isExtractSubregLike(). 562 /// 563 /// \note The generic implementation does not provide any support for 564 /// MI.isExtractSubregLike(). In other words, one has to override 565 /// getExtractSubregLikeInputs for target specific instructions. 566 bool getExtractSubregInputs(const MachineInstr &MI, unsigned DefIdx, 567 RegSubRegPairAndIdx &InputReg) const; 568 569 /// Build the equivalent inputs of a INSERT_SUBREG for the given \p MI 570 /// and \p DefIdx. 571 /// \p [out] BaseReg and \p [out] InsertedReg contain 572 /// the equivalent inputs of INSERT_SUBREG. 573 /// E.g., INSERT_SUBREG %0:sub0, %1:sub1, sub3 would produce: 574 /// - BaseReg: %0:sub0 575 /// - InsertedReg: %1:sub1, sub3 576 /// 577 /// \returns true if it is possible to build such an input sequence 578 /// with the pair \p MI, \p DefIdx and the operand has no undef flag set. 579 /// False otherwise. 580 /// 581 /// \pre MI.isInsertSubreg() or MI.isInsertSubregLike(). 582 /// 583 /// \note The generic implementation does not provide any support for 584 /// MI.isInsertSubregLike(). In other words, one has to override 585 /// getInsertSubregLikeInputs for target specific instructions. 586 bool getInsertSubregInputs(const MachineInstr &MI, unsigned DefIdx, 587 RegSubRegPair &BaseReg, 588 RegSubRegPairAndIdx &InsertedReg) const; 589 590 /// Return true if two machine instructions would produce identical values. 591 /// By default, this is only true when the two instructions 592 /// are deemed identical except for defs. If this function is called when the 593 /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for 594 /// aggressive checks. 595 virtual bool produceSameValue(const MachineInstr &MI0, 596 const MachineInstr &MI1, 597 const MachineRegisterInfo *MRI = nullptr) const; 598 599 /// \returns true if a branch from an instruction with opcode \p BranchOpc 600 /// bytes is capable of jumping to a position \p BrOffset bytes away. isBranchOffsetInRange(unsigned BranchOpc,int64_t BrOffset)601 virtual bool isBranchOffsetInRange(unsigned BranchOpc, 602 int64_t BrOffset) const { 603 llvm_unreachable("target did not implement"); 604 } 605 606 /// \returns The block that branch instruction \p MI jumps to. getBranchDestBlock(const MachineInstr & MI)607 virtual MachineBasicBlock *getBranchDestBlock(const MachineInstr &MI) const { 608 llvm_unreachable("target did not implement"); 609 } 610 611 /// Insert an unconditional indirect branch at the end of \p MBB to \p 612 /// NewDestBB. Optionally, insert the clobbered register restoring in \p 613 /// RestoreBB. \p BrOffset indicates the offset of \p NewDestBB relative to 614 /// the offset of the position to insert the new branch. 615 virtual void insertIndirectBranch(MachineBasicBlock &MBB, 616 MachineBasicBlock &NewDestBB, 617 MachineBasicBlock &RestoreBB, 618 const DebugLoc &DL, int64_t BrOffset = 0, 619 RegScavenger *RS = nullptr) const { 620 llvm_unreachable("target did not implement"); 621 } 622 623 /// Analyze the branching code at the end of MBB, returning 624 /// true if it cannot be understood (e.g. it's a switch dispatch or isn't 625 /// implemented for a target). Upon success, this returns false and returns 626 /// with the following information in various cases: 627 /// 628 /// 1. If this block ends with no branches (it just falls through to its succ) 629 /// just return false, leaving TBB/FBB null. 630 /// 2. If this block ends with only an unconditional branch, it sets TBB to be 631 /// the destination block. 632 /// 3. If this block ends with a conditional branch and it falls through to a 633 /// successor block, it sets TBB to be the branch destination block and a 634 /// list of operands that evaluate the condition. These operands can be 635 /// passed to other TargetInstrInfo methods to create new branches. 636 /// 4. If this block ends with a conditional branch followed by an 637 /// unconditional branch, it returns the 'true' destination in TBB, the 638 /// 'false' destination in FBB, and a list of operands that evaluate the 639 /// condition. These operands can be passed to other TargetInstrInfo 640 /// methods to create new branches. 641 /// 642 /// Note that removeBranch and insertBranch must be implemented to support 643 /// cases where this method returns success. 644 /// 645 /// If AllowModify is true, then this routine is allowed to modify the basic 646 /// block (e.g. delete instructions after the unconditional branch). 647 /// 648 /// The CFG information in MBB.Predecessors and MBB.Successors must be valid 649 /// before calling this function. 650 virtual bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, 651 MachineBasicBlock *&FBB, 652 SmallVectorImpl<MachineOperand> &Cond, 653 bool AllowModify = false) const { 654 return true; 655 } 656 657 /// Represents a predicate at the MachineFunction level. The control flow a 658 /// MachineBranchPredicate represents is: 659 /// 660 /// Reg = LHS `Predicate` RHS == ConditionDef 661 /// if Reg then goto TrueDest else goto FalseDest 662 /// 663 struct MachineBranchPredicate { 664 enum ComparePredicate { 665 PRED_EQ, // True if two values are equal 666 PRED_NE, // True if two values are not equal 667 PRED_INVALID // Sentinel value 668 }; 669 670 ComparePredicate Predicate = PRED_INVALID; 671 MachineOperand LHS = MachineOperand::CreateImm(0); 672 MachineOperand RHS = MachineOperand::CreateImm(0); 673 MachineBasicBlock *TrueDest = nullptr; 674 MachineBasicBlock *FalseDest = nullptr; 675 MachineInstr *ConditionDef = nullptr; 676 677 /// SingleUseCondition is true if ConditionDef is dead except for the 678 /// branch(es) at the end of the basic block. 679 /// 680 bool SingleUseCondition = false; 681 682 explicit MachineBranchPredicate() = default; 683 }; 684 685 /// Analyze the branching code at the end of MBB and parse it into the 686 /// MachineBranchPredicate structure if possible. Returns false on success 687 /// and true on failure. 688 /// 689 /// If AllowModify is true, then this routine is allowed to modify the basic 690 /// block (e.g. delete instructions after the unconditional branch). 691 /// 692 virtual bool analyzeBranchPredicate(MachineBasicBlock &MBB, 693 MachineBranchPredicate &MBP, 694 bool AllowModify = false) const { 695 return true; 696 } 697 698 /// Remove the branching code at the end of the specific MBB. 699 /// This is only invoked in cases where analyzeBranch returns success. It 700 /// returns the number of instructions that were removed. 701 /// If \p BytesRemoved is non-null, report the change in code size from the 702 /// removed instructions. 703 virtual unsigned removeBranch(MachineBasicBlock &MBB, 704 int *BytesRemoved = nullptr) const { 705 llvm_unreachable("Target didn't implement TargetInstrInfo::removeBranch!"); 706 } 707 708 /// Insert branch code into the end of the specified MachineBasicBlock. The 709 /// operands to this method are the same as those returned by analyzeBranch. 710 /// This is only invoked in cases where analyzeBranch returns success. It 711 /// returns the number of instructions inserted. If \p BytesAdded is non-null, 712 /// report the change in code size from the added instructions. 713 /// 714 /// It is also invoked by tail merging to add unconditional branches in 715 /// cases where analyzeBranch doesn't apply because there was no original 716 /// branch to analyze. At least this much must be implemented, else tail 717 /// merging needs to be disabled. 718 /// 719 /// The CFG information in MBB.Predecessors and MBB.Successors must be valid 720 /// before calling this function. 721 virtual unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, 722 MachineBasicBlock *FBB, 723 ArrayRef<MachineOperand> Cond, 724 const DebugLoc &DL, 725 int *BytesAdded = nullptr) const { 726 llvm_unreachable("Target didn't implement TargetInstrInfo::insertBranch!"); 727 } 728 729 unsigned insertUnconditionalBranch(MachineBasicBlock &MBB, 730 MachineBasicBlock *DestBB, 731 const DebugLoc &DL, 732 int *BytesAdded = nullptr) const { 733 return insertBranch(MBB, DestBB, nullptr, ArrayRef<MachineOperand>(), DL, 734 BytesAdded); 735 } 736 737 /// Object returned by analyzeLoopForPipelining. Allows software pipelining 738 /// implementations to query attributes of the loop being pipelined and to 739 /// apply target-specific updates to the loop once pipelining is complete. 740 class PipelinerLoopInfo { 741 public: 742 virtual ~PipelinerLoopInfo(); 743 /// Return true if the given instruction should not be pipelined and should 744 /// be ignored. An example could be a loop comparison, or induction variable 745 /// update with no users being pipelined. 746 virtual bool shouldIgnoreForPipelining(const MachineInstr *MI) const = 0; 747 748 /// Return true if the proposed schedule should used. Otherwise return 749 /// false to not pipeline the loop. This function should be used to ensure 750 /// that pipelined loops meet target-specific quality heuristics. shouldUseSchedule(SwingSchedulerDAG & SSD,SMSchedule & SMS)751 virtual bool shouldUseSchedule(SwingSchedulerDAG &SSD, SMSchedule &SMS) { 752 return true; 753 } 754 755 /// Create a condition to determine if the trip count of the loop is greater 756 /// than TC, where TC is always one more than for the previous prologue or 757 /// 0 if this is being called for the outermost prologue. 758 /// 759 /// If the trip count is statically known to be greater than TC, return 760 /// true. If the trip count is statically known to be not greater than TC, 761 /// return false. Otherwise return nullopt and fill out Cond with the test 762 /// condition. 763 /// 764 /// Note: This hook is guaranteed to be called from the innermost to the 765 /// outermost prologue of the loop being software pipelined. 766 virtual std::optional<bool> 767 createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB, 768 SmallVectorImpl<MachineOperand> &Cond) = 0; 769 770 /// Create a condition to determine if the remaining trip count for a phase 771 /// is greater than TC. Some instructions such as comparisons may be 772 /// inserted at the bottom of MBB. All instructions expanded for the 773 /// phase must be inserted in MBB before calling this function. 774 /// LastStage0Insts is the map from the original instructions scheduled at 775 /// stage#0 to the expanded instructions for the last iteration of the 776 /// kernel. LastStage0Insts is intended to obtain the instruction that 777 /// refers the latest loop counter value. 778 /// 779 /// MBB can also be a predecessor of the prologue block. Then 780 /// LastStage0Insts must be empty and the compared value is the initial 781 /// value of the trip count. createRemainingIterationsGreaterCondition(int TC,MachineBasicBlock & MBB,SmallVectorImpl<MachineOperand> & Cond,DenseMap<MachineInstr *,MachineInstr * > & LastStage0Insts)782 virtual void createRemainingIterationsGreaterCondition( 783 int TC, MachineBasicBlock &MBB, SmallVectorImpl<MachineOperand> &Cond, 784 DenseMap<MachineInstr *, MachineInstr *> &LastStage0Insts) { 785 llvm_unreachable( 786 "Target didn't implement " 787 "PipelinerLoopInfo::createRemainingIterationsGreaterCondition!"); 788 } 789 790 /// Modify the loop such that the trip count is 791 /// OriginalTC + TripCountAdjust. 792 virtual void adjustTripCount(int TripCountAdjust) = 0; 793 794 /// Called when the loop's preheader has been modified to NewPreheader. 795 virtual void setPreheader(MachineBasicBlock *NewPreheader) = 0; 796 797 /// Called when the loop is being removed. Any instructions in the preheader 798 /// should be removed. 799 /// 800 /// Once this function is called, no other functions on this object are 801 /// valid; the loop has been removed. 802 virtual void disposed() = 0; 803 804 /// Return true if the target can expand pipelined schedule with modulo 805 /// variable expansion. isMVEExpanderSupported()806 virtual bool isMVEExpanderSupported() { return false; } 807 }; 808 809 /// Analyze loop L, which must be a single-basic-block loop, and if the 810 /// conditions can be understood enough produce a PipelinerLoopInfo object. 811 virtual std::unique_ptr<PipelinerLoopInfo> analyzeLoopForPipelining(MachineBasicBlock * LoopBB)812 analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const { 813 return nullptr; 814 } 815 816 /// Analyze the loop code, return true if it cannot be understood. Upon 817 /// success, this function returns false and returns information about the 818 /// induction variable and compare instruction used at the end. analyzeLoop(MachineLoop & L,MachineInstr * & IndVarInst,MachineInstr * & CmpInst)819 virtual bool analyzeLoop(MachineLoop &L, MachineInstr *&IndVarInst, 820 MachineInstr *&CmpInst) const { 821 return true; 822 } 823 824 /// Generate code to reduce the loop iteration by one and check if the loop 825 /// is finished. Return the value/register of the new loop count. We need 826 /// this function when peeling off one or more iterations of a loop. This 827 /// function assumes the nth iteration is peeled first. reduceLoopCount(MachineBasicBlock & MBB,MachineBasicBlock & PreHeader,MachineInstr * IndVar,MachineInstr & Cmp,SmallVectorImpl<MachineOperand> & Cond,SmallVectorImpl<MachineInstr * > & PrevInsts,unsigned Iter,unsigned MaxIter)828 virtual unsigned reduceLoopCount(MachineBasicBlock &MBB, 829 MachineBasicBlock &PreHeader, 830 MachineInstr *IndVar, MachineInstr &Cmp, 831 SmallVectorImpl<MachineOperand> &Cond, 832 SmallVectorImpl<MachineInstr *> &PrevInsts, 833 unsigned Iter, unsigned MaxIter) const { 834 llvm_unreachable("Target didn't implement ReduceLoopCount"); 835 } 836 837 /// Delete the instruction OldInst and everything after it, replacing it with 838 /// an unconditional branch to NewDest. This is used by the tail merging pass. 839 virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail, 840 MachineBasicBlock *NewDest) const; 841 842 /// Return true if it's legal to split the given basic 843 /// block at the specified instruction (i.e. instruction would be the start 844 /// of a new basic block). isLegalToSplitMBBAt(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI)845 virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB, 846 MachineBasicBlock::iterator MBBI) const { 847 return true; 848 } 849 850 /// Return true if it's profitable to predicate 851 /// instructions with accumulated instruction latency of "NumCycles" 852 /// of the specified basic block, where the probability of the instructions 853 /// being executed is given by Probability, and Confidence is a measure 854 /// of our confidence that it will be properly predicted. isProfitableToIfCvt(MachineBasicBlock & MBB,unsigned NumCycles,unsigned ExtraPredCycles,BranchProbability Probability)855 virtual bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, 856 unsigned ExtraPredCycles, 857 BranchProbability Probability) const { 858 return false; 859 } 860 861 /// Second variant of isProfitableToIfCvt. This one 862 /// checks for the case where two basic blocks from true and false path 863 /// of a if-then-else (diamond) are predicated on mutually exclusive 864 /// predicates, where the probability of the true path being taken is given 865 /// by Probability, and Confidence is a measure of our confidence that it 866 /// will be properly predicted. isProfitableToIfCvt(MachineBasicBlock & TMBB,unsigned NumTCycles,unsigned ExtraTCycles,MachineBasicBlock & FMBB,unsigned NumFCycles,unsigned ExtraFCycles,BranchProbability Probability)867 virtual bool isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumTCycles, 868 unsigned ExtraTCycles, 869 MachineBasicBlock &FMBB, unsigned NumFCycles, 870 unsigned ExtraFCycles, 871 BranchProbability Probability) const { 872 return false; 873 } 874 875 /// Return true if it's profitable for if-converter to duplicate instructions 876 /// of specified accumulated instruction latencies in the specified MBB to 877 /// enable if-conversion. 878 /// The probability of the instructions being executed is given by 879 /// Probability, and Confidence is a measure of our confidence that it 880 /// will be properly predicted. isProfitableToDupForIfCvt(MachineBasicBlock & MBB,unsigned NumCycles,BranchProbability Probability)881 virtual bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, 882 unsigned NumCycles, 883 BranchProbability Probability) const { 884 return false; 885 } 886 887 /// Return the increase in code size needed to predicate a contiguous run of 888 /// NumInsts instructions. extraSizeToPredicateInstructions(const MachineFunction & MF,unsigned NumInsts)889 virtual unsigned extraSizeToPredicateInstructions(const MachineFunction &MF, 890 unsigned NumInsts) const { 891 return 0; 892 } 893 894 /// Return an estimate for the code size reduction (in bytes) which will be 895 /// caused by removing the given branch instruction during if-conversion. predictBranchSizeForIfCvt(MachineInstr & MI)896 virtual unsigned predictBranchSizeForIfCvt(MachineInstr &MI) const { 897 return getInstSizeInBytes(MI); 898 } 899 900 /// Return true if it's profitable to unpredicate 901 /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually 902 /// exclusive predicates. 903 /// e.g. 904 /// subeq r0, r1, #1 905 /// addne r0, r1, #1 906 /// => 907 /// sub r0, r1, #1 908 /// addne r0, r1, #1 909 /// 910 /// This may be profitable is conditional instructions are always executed. isProfitableToUnpredicate(MachineBasicBlock & TMBB,MachineBasicBlock & FMBB)911 virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB, 912 MachineBasicBlock &FMBB) const { 913 return false; 914 } 915 916 /// Return true if it is possible to insert a select 917 /// instruction that chooses between TrueReg and FalseReg based on the 918 /// condition code in Cond. 919 /// 920 /// When successful, also return the latency in cycles from TrueReg, 921 /// FalseReg, and Cond to the destination register. In most cases, a select 922 /// instruction will be 1 cycle, so CondCycles = TrueCycles = FalseCycles = 1 923 /// 924 /// Some x86 implementations have 2-cycle cmov instructions. 925 /// 926 /// @param MBB Block where select instruction would be inserted. 927 /// @param Cond Condition returned by analyzeBranch. 928 /// @param DstReg Virtual dest register that the result should write to. 929 /// @param TrueReg Virtual register to select when Cond is true. 930 /// @param FalseReg Virtual register to select when Cond is false. 931 /// @param CondCycles Latency from Cond+Branch to select output. 932 /// @param TrueCycles Latency from TrueReg to select output. 933 /// @param FalseCycles Latency from FalseReg to select output. canInsertSelect(const MachineBasicBlock & MBB,ArrayRef<MachineOperand> Cond,Register DstReg,Register TrueReg,Register FalseReg,int & CondCycles,int & TrueCycles,int & FalseCycles)934 virtual bool canInsertSelect(const MachineBasicBlock &MBB, 935 ArrayRef<MachineOperand> Cond, Register DstReg, 936 Register TrueReg, Register FalseReg, 937 int &CondCycles, int &TrueCycles, 938 int &FalseCycles) const { 939 return false; 940 } 941 942 /// Insert a select instruction into MBB before I that will copy TrueReg to 943 /// DstReg when Cond is true, and FalseReg to DstReg when Cond is false. 944 /// 945 /// This function can only be called after canInsertSelect() returned true. 946 /// The condition in Cond comes from analyzeBranch, and it can be assumed 947 /// that the same flags or registers required by Cond are available at the 948 /// insertion point. 949 /// 950 /// @param MBB Block where select instruction should be inserted. 951 /// @param I Insertion point. 952 /// @param DL Source location for debugging. 953 /// @param DstReg Virtual register to be defined by select instruction. 954 /// @param Cond Condition as computed by analyzeBranch. 955 /// @param TrueReg Virtual register to copy when Cond is true. 956 /// @param FalseReg Virtual register to copy when Cons is false. insertSelect(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,const DebugLoc & DL,Register DstReg,ArrayRef<MachineOperand> Cond,Register TrueReg,Register FalseReg)957 virtual void insertSelect(MachineBasicBlock &MBB, 958 MachineBasicBlock::iterator I, const DebugLoc &DL, 959 Register DstReg, ArrayRef<MachineOperand> Cond, 960 Register TrueReg, Register FalseReg) const { 961 llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!"); 962 } 963 964 /// Analyze the given select instruction, returning true if 965 /// it cannot be understood. It is assumed that MI->isSelect() is true. 966 /// 967 /// When successful, return the controlling condition and the operands that 968 /// determine the true and false result values. 969 /// 970 /// Result = SELECT Cond, TrueOp, FalseOp 971 /// 972 /// Some targets can optimize select instructions, for example by predicating 973 /// the instruction defining one of the operands. Such targets should set 974 /// Optimizable. 975 /// 976 /// @param MI Select instruction to analyze. 977 /// @param Cond Condition controlling the select. 978 /// @param TrueOp Operand number of the value selected when Cond is true. 979 /// @param FalseOp Operand number of the value selected when Cond is false. 980 /// @param Optimizable Returned as true if MI is optimizable. 981 /// @returns False on success. analyzeSelect(const MachineInstr & MI,SmallVectorImpl<MachineOperand> & Cond,unsigned & TrueOp,unsigned & FalseOp,bool & Optimizable)982 virtual bool analyzeSelect(const MachineInstr &MI, 983 SmallVectorImpl<MachineOperand> &Cond, 984 unsigned &TrueOp, unsigned &FalseOp, 985 bool &Optimizable) const { 986 assert(MI.getDesc().isSelect() && "MI must be a select instruction"); 987 return true; 988 } 989 990 /// Given a select instruction that was understood by 991 /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by 992 /// merging it with one of its operands. Returns NULL on failure. 993 /// 994 /// When successful, returns the new select instruction. The client is 995 /// responsible for deleting MI. 996 /// 997 /// If both sides of the select can be optimized, PreferFalse is used to pick 998 /// a side. 999 /// 1000 /// @param MI Optimizable select instruction. 1001 /// @param NewMIs Set that record all MIs in the basic block up to \p 1002 /// MI. Has to be updated with any newly created MI or deleted ones. 1003 /// @param PreferFalse Try to optimize FalseOp instead of TrueOp. 1004 /// @returns Optimized instruction or NULL. 1005 virtual MachineInstr *optimizeSelect(MachineInstr &MI, 1006 SmallPtrSetImpl<MachineInstr *> &NewMIs, 1007 bool PreferFalse = false) const { 1008 // This function must be implemented if Optimizable is ever set. 1009 llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!"); 1010 } 1011 1012 /// Emit instructions to copy a pair of physical registers. 1013 /// 1014 /// This function should support copies within any legal register class as 1015 /// well as any cross-class copies created during instruction selection. 1016 /// 1017 /// The source and destination registers may overlap, which may require a 1018 /// careful implementation when multiple copy instructions are required for 1019 /// large registers. See for example the ARM target. copyPhysReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,const DebugLoc & DL,MCRegister DestReg,MCRegister SrcReg,bool KillSrc)1020 virtual void copyPhysReg(MachineBasicBlock &MBB, 1021 MachineBasicBlock::iterator MI, const DebugLoc &DL, 1022 MCRegister DestReg, MCRegister SrcReg, 1023 bool KillSrc) const { 1024 llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!"); 1025 } 1026 1027 /// Allow targets to tell MachineVerifier whether a specific register 1028 /// MachineOperand can be used as part of PC-relative addressing. 1029 /// PC-relative addressing modes in many CISC architectures contain 1030 /// (non-PC) registers as offsets or scaling values, which inherently 1031 /// tags the corresponding MachineOperand with OPERAND_PCREL. 1032 /// 1033 /// @param MO The MachineOperand in question. MO.isReg() should always 1034 /// be true. 1035 /// @return Whether this operand is allowed to be used PC-relatively. isPCRelRegisterOperandLegal(const MachineOperand & MO)1036 virtual bool isPCRelRegisterOperandLegal(const MachineOperand &MO) const { 1037 return false; 1038 } 1039 1040 /// Return an index for MachineJumpTableInfo if \p insn is an indirect jump 1041 /// using a jump table, otherwise -1. getJumpTableIndex(const MachineInstr & MI)1042 virtual int getJumpTableIndex(const MachineInstr &MI) const { return -1; } 1043 1044 protected: 1045 /// Target-dependent implementation for IsCopyInstr. 1046 /// If the specific machine instruction is a instruction that moves/copies 1047 /// value from one register to another register return destination and source 1048 /// registers as machine operands. 1049 virtual std::optional<DestSourcePair> isCopyInstrImpl(const MachineInstr & MI)1050 isCopyInstrImpl(const MachineInstr &MI) const { 1051 return std::nullopt; 1052 } 1053 1054 virtual std::optional<DestSourcePair> isCopyLikeInstrImpl(const MachineInstr & MI)1055 isCopyLikeInstrImpl(const MachineInstr &MI) const { 1056 return std::nullopt; 1057 } 1058 1059 /// Return true if the given terminator MI is not expected to spill. This 1060 /// sets the live interval as not spillable and adjusts phi node lowering to 1061 /// not introduce copies after the terminator. Use with care, these are 1062 /// currently used for hardware loop intrinsics in very controlled situations, 1063 /// created prior to registry allocation in loops that only have single phi 1064 /// users for the terminators value. They may run out of registers if not used 1065 /// carefully. isUnspillableTerminatorImpl(const MachineInstr * MI)1066 virtual bool isUnspillableTerminatorImpl(const MachineInstr *MI) const { 1067 return false; 1068 } 1069 1070 public: 1071 /// If the specific machine instruction is a instruction that moves/copies 1072 /// value from one register to another register return destination and source 1073 /// registers as machine operands. 1074 /// For COPY-instruction the method naturally returns destination and source 1075 /// registers as machine operands, for all other instructions the method calls 1076 /// target-dependent implementation. isCopyInstr(const MachineInstr & MI)1077 std::optional<DestSourcePair> isCopyInstr(const MachineInstr &MI) const { 1078 if (MI.isCopy()) { 1079 return DestSourcePair{MI.getOperand(0), MI.getOperand(1)}; 1080 } 1081 return isCopyInstrImpl(MI); 1082 } 1083 1084 // Similar to `isCopyInstr`, but adds non-copy semantics on MIR, but 1085 // ultimately generates a copy instruction. isCopyLikeInstr(const MachineInstr & MI)1086 std::optional<DestSourcePair> isCopyLikeInstr(const MachineInstr &MI) const { 1087 if (auto IsCopyInstr = isCopyInstr(MI)) 1088 return IsCopyInstr; 1089 return isCopyLikeInstrImpl(MI); 1090 } 1091 isFullCopyInstr(const MachineInstr & MI)1092 bool isFullCopyInstr(const MachineInstr &MI) const { 1093 auto DestSrc = isCopyInstr(MI); 1094 if (!DestSrc) 1095 return false; 1096 1097 const MachineOperand *DestRegOp = DestSrc->Destination; 1098 const MachineOperand *SrcRegOp = DestSrc->Source; 1099 return !DestRegOp->getSubReg() && !SrcRegOp->getSubReg(); 1100 } 1101 1102 /// If the specific machine instruction is an instruction that adds an 1103 /// immediate value and a register, and stores the result in the given 1104 /// register \c Reg, return a pair of the source register and the offset 1105 /// which has been added. isAddImmediate(const MachineInstr & MI,Register Reg)1106 virtual std::optional<RegImmPair> isAddImmediate(const MachineInstr &MI, 1107 Register Reg) const { 1108 return std::nullopt; 1109 } 1110 1111 /// Returns true if MI is an instruction that defines Reg to have a constant 1112 /// value and the value is recorded in ImmVal. The ImmVal is a result that 1113 /// should be interpreted as modulo size of Reg. getConstValDefinedInReg(const MachineInstr & MI,const Register Reg,int64_t & ImmVal)1114 virtual bool getConstValDefinedInReg(const MachineInstr &MI, 1115 const Register Reg, 1116 int64_t &ImmVal) const { 1117 return false; 1118 } 1119 1120 /// Store the specified register of the given register class to the specified 1121 /// stack frame index. The store instruction is to be added to the given 1122 /// machine basic block before the specified machine instruction. If isKill 1123 /// is true, the register operand is the last use and must be marked kill. If 1124 /// \p SrcReg is being directly spilled as part of assigning a virtual 1125 /// register, \p VReg is the register being assigned. This additional register 1126 /// argument is needed for certain targets when invoked from RegAllocFast to 1127 /// map the spilled physical register to its virtual register. A null register 1128 /// can be passed elsewhere. storeRegToStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,Register SrcReg,bool isKill,int FrameIndex,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI,Register VReg)1129 virtual void storeRegToStackSlot(MachineBasicBlock &MBB, 1130 MachineBasicBlock::iterator MI, 1131 Register SrcReg, bool isKill, int FrameIndex, 1132 const TargetRegisterClass *RC, 1133 const TargetRegisterInfo *TRI, 1134 Register VReg) const { 1135 llvm_unreachable("Target didn't implement " 1136 "TargetInstrInfo::storeRegToStackSlot!"); 1137 } 1138 1139 /// Load the specified register of the given register class from the specified 1140 /// stack frame index. The load instruction is to be added to the given 1141 /// machine basic block before the specified machine instruction. If \p 1142 /// DestReg is being directly reloaded as part of assigning a virtual 1143 /// register, \p VReg is the register being assigned. This additional register 1144 /// argument is needed for certain targets when invoked from RegAllocFast to 1145 /// map the loaded physical register to its virtual register. A null register 1146 /// can be passed elsewhere. loadRegFromStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,Register DestReg,int FrameIndex,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI,Register VReg)1147 virtual void loadRegFromStackSlot(MachineBasicBlock &MBB, 1148 MachineBasicBlock::iterator MI, 1149 Register DestReg, int FrameIndex, 1150 const TargetRegisterClass *RC, 1151 const TargetRegisterInfo *TRI, 1152 Register VReg) const { 1153 llvm_unreachable("Target didn't implement " 1154 "TargetInstrInfo::loadRegFromStackSlot!"); 1155 } 1156 1157 /// This function is called for all pseudo instructions 1158 /// that remain after register allocation. Many pseudo instructions are 1159 /// created to help register allocation. This is the place to convert them 1160 /// into real instructions. The target can edit MI in place, or it can insert 1161 /// new instructions and erase MI. The function should return true if 1162 /// anything was changed. expandPostRAPseudo(MachineInstr & MI)1163 virtual bool expandPostRAPseudo(MachineInstr &MI) const { return false; } 1164 1165 /// Check whether the target can fold a load that feeds a subreg operand 1166 /// (or a subreg operand that feeds a store). 1167 /// For example, X86 may want to return true if it can fold 1168 /// movl (%esp), %eax 1169 /// subb, %al, ... 1170 /// Into: 1171 /// subb (%esp), ... 1172 /// 1173 /// Ideally, we'd like the target implementation of foldMemoryOperand() to 1174 /// reject subregs - but since this behavior used to be enforced in the 1175 /// target-independent code, moving this responsibility to the targets 1176 /// has the potential of causing nasty silent breakage in out-of-tree targets. isSubregFoldable()1177 virtual bool isSubregFoldable() const { return false; } 1178 1179 /// For a patchpoint, stackmap, or statepoint intrinsic, return the range of 1180 /// operands which can't be folded into stack references. Operands outside 1181 /// of the range are most likely foldable but it is not guaranteed. 1182 /// These instructions are unique in that stack references for some operands 1183 /// have the same execution cost (e.g. none) as the unfolded register forms. 1184 /// The ranged return is guaranteed to include all operands which can't be 1185 /// folded at zero cost. 1186 virtual std::pair<unsigned, unsigned> 1187 getPatchpointUnfoldableRange(const MachineInstr &MI) const; 1188 1189 /// Attempt to fold a load or store of the specified stack 1190 /// slot into the specified machine instruction for the specified operand(s). 1191 /// If this is possible, a new instruction is returned with the specified 1192 /// operand folded, otherwise NULL is returned. 1193 /// The new instruction is inserted before MI, and the client is responsible 1194 /// for removing the old instruction. 1195 /// If VRM is passed, the assigned physregs can be inspected by target to 1196 /// decide on using an opcode (note that those assignments can still change). 1197 MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops, 1198 int FI, 1199 LiveIntervals *LIS = nullptr, 1200 VirtRegMap *VRM = nullptr) const; 1201 1202 /// Same as the previous version except it allows folding of any load and 1203 /// store from / to any address, not just from a specific stack slot. 1204 MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops, 1205 MachineInstr &LoadMI, 1206 LiveIntervals *LIS = nullptr) const; 1207 1208 /// This function defines the logic to lower COPY instruction to 1209 /// target specific instruction(s). 1210 void lowerCopy(MachineInstr *MI, const TargetRegisterInfo *TRI) const; 1211 1212 /// Return true when there is potentially a faster code sequence 1213 /// for an instruction chain ending in \p Root. All potential patterns are 1214 /// returned in the \p Pattern vector. Pattern should be sorted in priority 1215 /// order since the pattern evaluator stops checking as soon as it finds a 1216 /// faster sequence. 1217 /// \param Root - Instruction that could be combined with one of its operands 1218 /// \param Patterns - Vector of possible combination patterns 1219 virtual bool getMachineCombinerPatterns(MachineInstr &Root, 1220 SmallVectorImpl<unsigned> &Patterns, 1221 bool DoRegPressureReduce) const; 1222 1223 /// Return true if target supports reassociation of instructions in machine 1224 /// combiner pass to reduce register pressure for a given BB. 1225 virtual bool shouldReduceRegisterPressure(const MachineBasicBlock * MBB,const RegisterClassInfo * RegClassInfo)1226 shouldReduceRegisterPressure(const MachineBasicBlock *MBB, 1227 const RegisterClassInfo *RegClassInfo) const { 1228 return false; 1229 } 1230 1231 /// Fix up the placeholder we may add in genAlternativeCodeSequence(). 1232 virtual void finalizeInsInstrs(MachineInstr & Root,unsigned & Pattern,SmallVectorImpl<MachineInstr * > & InsInstrs)1233 finalizeInsInstrs(MachineInstr &Root, unsigned &Pattern, 1234 SmallVectorImpl<MachineInstr *> &InsInstrs) const {} 1235 1236 /// Return true when a code sequence can improve throughput. It 1237 /// should be called only for instructions in loops. 1238 /// \param Pattern - combiner pattern 1239 virtual bool isThroughputPattern(unsigned Pattern) const; 1240 1241 /// Return the objective of a combiner pattern. 1242 /// \param Pattern - combiner pattern 1243 virtual CombinerObjective getCombinerObjective(unsigned Pattern) const; 1244 1245 /// Return true if the input \P Inst is part of a chain of dependent ops 1246 /// that are suitable for reassociation, otherwise return false. 1247 /// If the instruction's operands must be commuted to have a previous 1248 /// instruction of the same type define the first source operand, \P Commuted 1249 /// will be set to true. 1250 bool isReassociationCandidate(const MachineInstr &Inst, bool &Commuted) const; 1251 1252 /// Return true when \P Inst is both associative and commutative. If \P Invert 1253 /// is true, then the inverse of \P Inst operation must be tested. 1254 virtual bool isAssociativeAndCommutative(const MachineInstr &Inst, 1255 bool Invert = false) const { 1256 return false; 1257 } 1258 1259 /// Return the inverse operation opcode if it exists for \P Opcode (e.g. add 1260 /// for sub and vice versa). getInverseOpcode(unsigned Opcode)1261 virtual std::optional<unsigned> getInverseOpcode(unsigned Opcode) const { 1262 return std::nullopt; 1263 } 1264 1265 /// Return true when \P Opcode1 or its inversion is equal to \P Opcode2. 1266 bool areOpcodesEqualOrInverse(unsigned Opcode1, unsigned Opcode2) const; 1267 1268 /// Return true when \P Inst has reassociable operands in the same \P MBB. 1269 virtual bool hasReassociableOperands(const MachineInstr &Inst, 1270 const MachineBasicBlock *MBB) const; 1271 1272 /// Return true when \P Inst has reassociable sibling. 1273 virtual bool hasReassociableSibling(const MachineInstr &Inst, 1274 bool &Commuted) const; 1275 1276 /// When getMachineCombinerPatterns() finds patterns, this function generates 1277 /// the instructions that could replace the original code sequence. The client 1278 /// has to decide whether the actual replacement is beneficial or not. 1279 /// \param Root - Instruction that could be combined with one of its operands 1280 /// \param Pattern - Combination pattern for Root 1281 /// \param InsInstrs - Vector of new instructions that implement P 1282 /// \param DelInstrs - Old instructions, including Root, that could be 1283 /// replaced by InsInstr 1284 /// \param InstIdxForVirtReg - map of virtual register to instruction in 1285 /// InsInstr that defines it 1286 virtual void genAlternativeCodeSequence( 1287 MachineInstr &Root, unsigned Pattern, 1288 SmallVectorImpl<MachineInstr *> &InsInstrs, 1289 SmallVectorImpl<MachineInstr *> &DelInstrs, 1290 DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const; 1291 1292 /// When calculate the latency of the root instruction, accumulate the 1293 /// latency of the sequence to the root latency. 1294 /// \param Root - Instruction that could be combined with one of its operands accumulateInstrSeqToRootLatency(MachineInstr & Root)1295 virtual bool accumulateInstrSeqToRootLatency(MachineInstr &Root) const { 1296 return true; 1297 } 1298 1299 /// The returned array encodes the operand index for each parameter because 1300 /// the operands may be commuted; the operand indices for associative 1301 /// operations might also be target-specific. Each element specifies the index 1302 /// of {Prev, A, B, X, Y}. 1303 virtual void 1304 getReassociateOperandIndices(const MachineInstr &Root, unsigned Pattern, 1305 std::array<unsigned, 5> &OperandIndices) const; 1306 1307 /// Attempt to reassociate \P Root and \P Prev according to \P Pattern to 1308 /// reduce critical path length. 1309 void reassociateOps(MachineInstr &Root, MachineInstr &Prev, unsigned Pattern, 1310 SmallVectorImpl<MachineInstr *> &InsInstrs, 1311 SmallVectorImpl<MachineInstr *> &DelInstrs, 1312 ArrayRef<unsigned> OperandIndices, 1313 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const; 1314 1315 /// Reassociation of some instructions requires inverse operations (e.g. 1316 /// (X + A) - Y => (X - Y) + A). This method returns a pair of new opcodes 1317 /// (new root opcode, new prev opcode) that must be used to reassociate \P 1318 /// Root and \P Prev accoring to \P Pattern. 1319 std::pair<unsigned, unsigned> 1320 getReassociationOpcodes(unsigned Pattern, const MachineInstr &Root, 1321 const MachineInstr &Prev) const; 1322 1323 /// The limit on resource length extension we accept in MachineCombiner Pass. getExtendResourceLenLimit()1324 virtual int getExtendResourceLenLimit() const { return 0; } 1325 1326 /// This is an architecture-specific helper function of reassociateOps. 1327 /// Set special operand attributes for new instructions after reassociation. setSpecialOperandAttr(MachineInstr & OldMI1,MachineInstr & OldMI2,MachineInstr & NewMI1,MachineInstr & NewMI2)1328 virtual void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2, 1329 MachineInstr &NewMI1, 1330 MachineInstr &NewMI2) const {} 1331 1332 /// Return true when a target supports MachineCombiner. useMachineCombiner()1333 virtual bool useMachineCombiner() const { return false; } 1334 1335 /// Return a strategy that MachineCombiner must use when creating traces. 1336 virtual MachineTraceStrategy getMachineCombinerTraceStrategy() const; 1337 1338 /// Return true if the given SDNode can be copied during scheduling 1339 /// even if it has glue. canCopyGluedNodeDuringSchedule(SDNode * N)1340 virtual bool canCopyGluedNodeDuringSchedule(SDNode *N) const { return false; } 1341 1342 protected: 1343 /// Target-dependent implementation for foldMemoryOperand. 1344 /// Target-independent code in foldMemoryOperand will 1345 /// take care of adding a MachineMemOperand to the newly created instruction. 1346 /// The instruction and any auxiliary instructions necessary will be inserted 1347 /// at InsertPt. 1348 virtual MachineInstr * 1349 foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI, 1350 ArrayRef<unsigned> Ops, 1351 MachineBasicBlock::iterator InsertPt, int FrameIndex, 1352 LiveIntervals *LIS = nullptr, 1353 VirtRegMap *VRM = nullptr) const { 1354 return nullptr; 1355 } 1356 1357 /// Target-dependent implementation for foldMemoryOperand. 1358 /// Target-independent code in foldMemoryOperand will 1359 /// take care of adding a MachineMemOperand to the newly created instruction. 1360 /// The instruction and any auxiliary instructions necessary will be inserted 1361 /// at InsertPt. 1362 virtual MachineInstr *foldMemoryOperandImpl( 1363 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, 1364 MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI, 1365 LiveIntervals *LIS = nullptr) const { 1366 return nullptr; 1367 } 1368 1369 /// Target-dependent implementation of getRegSequenceInputs. 1370 /// 1371 /// \returns true if it is possible to build the equivalent 1372 /// REG_SEQUENCE inputs with the pair \p MI, \p DefIdx. False otherwise. 1373 /// 1374 /// \pre MI.isRegSequenceLike(). 1375 /// 1376 /// \see TargetInstrInfo::getRegSequenceInputs. getRegSequenceLikeInputs(const MachineInstr & MI,unsigned DefIdx,SmallVectorImpl<RegSubRegPairAndIdx> & InputRegs)1377 virtual bool getRegSequenceLikeInputs( 1378 const MachineInstr &MI, unsigned DefIdx, 1379 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { 1380 return false; 1381 } 1382 1383 /// Target-dependent implementation of getExtractSubregInputs. 1384 /// 1385 /// \returns true if it is possible to build the equivalent 1386 /// EXTRACT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise. 1387 /// 1388 /// \pre MI.isExtractSubregLike(). 1389 /// 1390 /// \see TargetInstrInfo::getExtractSubregInputs. getExtractSubregLikeInputs(const MachineInstr & MI,unsigned DefIdx,RegSubRegPairAndIdx & InputReg)1391 virtual bool getExtractSubregLikeInputs(const MachineInstr &MI, 1392 unsigned DefIdx, 1393 RegSubRegPairAndIdx &InputReg) const { 1394 return false; 1395 } 1396 1397 /// Target-dependent implementation of getInsertSubregInputs. 1398 /// 1399 /// \returns true if it is possible to build the equivalent 1400 /// INSERT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise. 1401 /// 1402 /// \pre MI.isInsertSubregLike(). 1403 /// 1404 /// \see TargetInstrInfo::getInsertSubregInputs. 1405 virtual bool getInsertSubregLikeInputs(const MachineInstr & MI,unsigned DefIdx,RegSubRegPair & BaseReg,RegSubRegPairAndIdx & InsertedReg)1406 getInsertSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx, 1407 RegSubRegPair &BaseReg, 1408 RegSubRegPairAndIdx &InsertedReg) const { 1409 return false; 1410 } 1411 1412 public: 1413 /// unfoldMemoryOperand - Separate a single instruction which folded a load or 1414 /// a store or a load and a store into two or more instruction. If this is 1415 /// possible, returns true as well as the new instructions by reference. 1416 virtual bool unfoldMemoryOperand(MachineFunction & MF,MachineInstr & MI,unsigned Reg,bool UnfoldLoad,bool UnfoldStore,SmallVectorImpl<MachineInstr * > & NewMIs)1417 unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, unsigned Reg, 1418 bool UnfoldLoad, bool UnfoldStore, 1419 SmallVectorImpl<MachineInstr *> &NewMIs) const { 1420 return false; 1421 } 1422 unfoldMemoryOperand(SelectionDAG & DAG,SDNode * N,SmallVectorImpl<SDNode * > & NewNodes)1423 virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, 1424 SmallVectorImpl<SDNode *> &NewNodes) const { 1425 return false; 1426 } 1427 1428 /// Returns the opcode of the would be new 1429 /// instruction after load / store are unfolded from an instruction of the 1430 /// specified opcode. It returns zero if the specified unfolding is not 1431 /// possible. If LoadRegIndex is non-null, it is filled in with the operand 1432 /// index of the operand which will hold the register holding the loaded 1433 /// value. 1434 virtual unsigned 1435 getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore, 1436 unsigned *LoadRegIndex = nullptr) const { 1437 return 0; 1438 } 1439 1440 /// This is used by the pre-regalloc scheduler to determine if two loads are 1441 /// loading from the same base address. It should only return true if the base 1442 /// pointers are the same and the only differences between the two addresses 1443 /// are the offset. It also returns the offsets by reference. areLoadsFromSameBasePtr(SDNode * Load1,SDNode * Load2,int64_t & Offset1,int64_t & Offset2)1444 virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, 1445 int64_t &Offset1, 1446 int64_t &Offset2) const { 1447 return false; 1448 } 1449 1450 /// This is a used by the pre-regalloc scheduler to determine (in conjunction 1451 /// with areLoadsFromSameBasePtr) if two loads should be scheduled together. 1452 /// On some targets if two loads are loading from 1453 /// addresses in the same cache line, it's better if they are scheduled 1454 /// together. This function takes two integers that represent the load offsets 1455 /// from the common base address. It returns true if it decides it's desirable 1456 /// to schedule the two loads together. "NumLoads" is the number of loads that 1457 /// have already been scheduled after Load1. shouldScheduleLoadsNear(SDNode * Load1,SDNode * Load2,int64_t Offset1,int64_t Offset2,unsigned NumLoads)1458 virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, 1459 int64_t Offset1, int64_t Offset2, 1460 unsigned NumLoads) const { 1461 return false; 1462 } 1463 1464 /// Get the base operand and byte offset of an instruction that reads/writes 1465 /// memory. This is a convenience function for callers that are only prepared 1466 /// to handle a single base operand. 1467 /// FIXME: Move Offset and OffsetIsScalable to some ElementCount-style 1468 /// abstraction that supports negative offsets. 1469 bool getMemOperandWithOffset(const MachineInstr &MI, 1470 const MachineOperand *&BaseOp, int64_t &Offset, 1471 bool &OffsetIsScalable, 1472 const TargetRegisterInfo *TRI) const; 1473 1474 /// Get zero or more base operands and the byte offset of an instruction that 1475 /// reads/writes memory. Note that there may be zero base operands if the 1476 /// instruction accesses a constant address. 1477 /// It returns false if MI does not read/write memory. 1478 /// It returns false if base operands and offset could not be determined. 1479 /// It is not guaranteed to always recognize base operands and offsets in all 1480 /// cases. 1481 /// FIXME: Move Offset and OffsetIsScalable to some ElementCount-style 1482 /// abstraction that supports negative offsets. getMemOperandsWithOffsetWidth(const MachineInstr & MI,SmallVectorImpl<const MachineOperand * > & BaseOps,int64_t & Offset,bool & OffsetIsScalable,LocationSize & Width,const TargetRegisterInfo * TRI)1483 virtual bool getMemOperandsWithOffsetWidth( 1484 const MachineInstr &MI, SmallVectorImpl<const MachineOperand *> &BaseOps, 1485 int64_t &Offset, bool &OffsetIsScalable, LocationSize &Width, 1486 const TargetRegisterInfo *TRI) const { 1487 return false; 1488 } 1489 1490 /// Return true if the instruction contains a base register and offset. If 1491 /// true, the function also sets the operand position in the instruction 1492 /// for the base register and offset. getBaseAndOffsetPosition(const MachineInstr & MI,unsigned & BasePos,unsigned & OffsetPos)1493 virtual bool getBaseAndOffsetPosition(const MachineInstr &MI, 1494 unsigned &BasePos, 1495 unsigned &OffsetPos) const { 1496 return false; 1497 } 1498 1499 /// Target dependent implementation to get the values constituting the address 1500 /// MachineInstr that is accessing memory. These values are returned as a 1501 /// struct ExtAddrMode which contains all relevant information to make up the 1502 /// address. 1503 virtual std::optional<ExtAddrMode> getAddrModeFromMemoryOp(const MachineInstr & MemI,const TargetRegisterInfo * TRI)1504 getAddrModeFromMemoryOp(const MachineInstr &MemI, 1505 const TargetRegisterInfo *TRI) const { 1506 return std::nullopt; 1507 } 1508 1509 /// Check if it's possible and beneficial to fold the addressing computation 1510 /// `AddrI` into the addressing mode of the load/store instruction `MemI`. The 1511 /// memory instruction is a user of the virtual register `Reg`, which in turn 1512 /// is the ultimate destination of zero or more COPY instructions from the 1513 /// output register of `AddrI`. 1514 /// Return the adddressing mode after folding in `AM`. canFoldIntoAddrMode(const MachineInstr & MemI,Register Reg,const MachineInstr & AddrI,ExtAddrMode & AM)1515 virtual bool canFoldIntoAddrMode(const MachineInstr &MemI, Register Reg, 1516 const MachineInstr &AddrI, 1517 ExtAddrMode &AM) const { 1518 return false; 1519 } 1520 1521 /// Emit a load/store instruction with the same value register as `MemI`, but 1522 /// using the address from `AM`. The addressing mode must have been obtained 1523 /// from `canFoldIntoAddr` for the same memory instruction. emitLdStWithAddr(MachineInstr & MemI,const ExtAddrMode & AM)1524 virtual MachineInstr *emitLdStWithAddr(MachineInstr &MemI, 1525 const ExtAddrMode &AM) const { 1526 llvm_unreachable("target did not implement emitLdStWithAddr()"); 1527 } 1528 1529 /// Returns true if MI's Def is NullValueReg, and the MI 1530 /// does not change the Zero value. i.e. cases such as rax = shr rax, X where 1531 /// NullValueReg = rax. Note that if the NullValueReg is non-zero, this 1532 /// function can return true even if becomes zero. Specifically cases such as 1533 /// NullValueReg = shl NullValueReg, 63. preservesZeroValueInReg(const MachineInstr * MI,const Register NullValueReg,const TargetRegisterInfo * TRI)1534 virtual bool preservesZeroValueInReg(const MachineInstr *MI, 1535 const Register NullValueReg, 1536 const TargetRegisterInfo *TRI) const { 1537 return false; 1538 } 1539 1540 /// If the instruction is an increment of a constant value, return the amount. getIncrementValue(const MachineInstr & MI,int & Value)1541 virtual bool getIncrementValue(const MachineInstr &MI, int &Value) const { 1542 return false; 1543 } 1544 1545 /// Returns true if the two given memory operations should be scheduled 1546 /// adjacent. Note that you have to add: 1547 /// DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 1548 /// or 1549 /// DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 1550 /// to TargetPassConfig::createMachineScheduler() to have an effect. 1551 /// 1552 /// \p BaseOps1 and \p BaseOps2 are memory operands of two memory operations. 1553 /// \p Offset1 and \p Offset2 are the byte offsets for the memory 1554 /// operations. 1555 /// \p OffsetIsScalable1 and \p OffsetIsScalable2 indicate if the offset is 1556 /// scaled by a runtime quantity. 1557 /// \p ClusterSize is the number of operations in the resulting load/store 1558 /// cluster if this hook returns true. 1559 /// \p NumBytes is the number of bytes that will be loaded from all the 1560 /// clustered loads if this hook returns true. shouldClusterMemOps(ArrayRef<const MachineOperand * > BaseOps1,int64_t Offset1,bool OffsetIsScalable1,ArrayRef<const MachineOperand * > BaseOps2,int64_t Offset2,bool OffsetIsScalable2,unsigned ClusterSize,unsigned NumBytes)1561 virtual bool shouldClusterMemOps(ArrayRef<const MachineOperand *> BaseOps1, 1562 int64_t Offset1, bool OffsetIsScalable1, 1563 ArrayRef<const MachineOperand *> BaseOps2, 1564 int64_t Offset2, bool OffsetIsScalable2, 1565 unsigned ClusterSize, 1566 unsigned NumBytes) const { 1567 llvm_unreachable("target did not implement shouldClusterMemOps()"); 1568 } 1569 1570 /// Reverses the branch condition of the specified condition list, 1571 /// returning false on success and true if it cannot be reversed. 1572 virtual bool reverseBranchCondition(SmallVectorImpl<MachineOperand> & Cond)1573 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 1574 return true; 1575 } 1576 1577 /// Insert a noop into the instruction stream at the specified point. 1578 virtual void insertNoop(MachineBasicBlock &MBB, 1579 MachineBasicBlock::iterator MI) const; 1580 1581 /// Insert noops into the instruction stream at the specified point. 1582 virtual void insertNoops(MachineBasicBlock &MBB, 1583 MachineBasicBlock::iterator MI, 1584 unsigned Quantity) const; 1585 1586 /// Return the noop instruction to use for a noop. 1587 virtual MCInst getNop() const; 1588 1589 /// Return true for post-incremented instructions. isPostIncrement(const MachineInstr & MI)1590 virtual bool isPostIncrement(const MachineInstr &MI) const { return false; } 1591 1592 /// Returns true if the instruction is already predicated. isPredicated(const MachineInstr & MI)1593 virtual bool isPredicated(const MachineInstr &MI) const { return false; } 1594 1595 /// Assumes the instruction is already predicated and returns true if the 1596 /// instruction can be predicated again. canPredicatePredicatedInstr(const MachineInstr & MI)1597 virtual bool canPredicatePredicatedInstr(const MachineInstr &MI) const { 1598 assert(isPredicated(MI) && "Instruction is not predicated"); 1599 return false; 1600 } 1601 1602 // Returns a MIRPrinter comment for this machine operand. 1603 virtual std::string 1604 createMIROperandComment(const MachineInstr &MI, const MachineOperand &Op, 1605 unsigned OpIdx, const TargetRegisterInfo *TRI) const; 1606 1607 /// Returns true if the instruction is a 1608 /// terminator instruction that has not been predicated. 1609 bool isUnpredicatedTerminator(const MachineInstr &MI) const; 1610 1611 /// Returns true if MI is an unconditional tail call. isUnconditionalTailCall(const MachineInstr & MI)1612 virtual bool isUnconditionalTailCall(const MachineInstr &MI) const { 1613 return false; 1614 } 1615 1616 /// Returns true if the tail call can be made conditional on BranchCond. canMakeTailCallConditional(SmallVectorImpl<MachineOperand> & Cond,const MachineInstr & TailCall)1617 virtual bool canMakeTailCallConditional(SmallVectorImpl<MachineOperand> &Cond, 1618 const MachineInstr &TailCall) const { 1619 return false; 1620 } 1621 1622 /// Replace the conditional branch in MBB with a conditional tail call. replaceBranchWithTailCall(MachineBasicBlock & MBB,SmallVectorImpl<MachineOperand> & Cond,const MachineInstr & TailCall)1623 virtual void replaceBranchWithTailCall(MachineBasicBlock &MBB, 1624 SmallVectorImpl<MachineOperand> &Cond, 1625 const MachineInstr &TailCall) const { 1626 llvm_unreachable("Target didn't implement replaceBranchWithTailCall!"); 1627 } 1628 1629 /// Convert the instruction into a predicated instruction. 1630 /// It returns true if the operation was successful. 1631 virtual bool PredicateInstruction(MachineInstr &MI, 1632 ArrayRef<MachineOperand> Pred) const; 1633 1634 /// Returns true if the first specified predicate 1635 /// subsumes the second, e.g. GE subsumes GT. SubsumesPredicate(ArrayRef<MachineOperand> Pred1,ArrayRef<MachineOperand> Pred2)1636 virtual bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 1637 ArrayRef<MachineOperand> Pred2) const { 1638 return false; 1639 } 1640 1641 /// If the specified instruction defines any predicate 1642 /// or condition code register(s) used for predication, returns true as well 1643 /// as the definition predicate(s) by reference. 1644 /// SkipDead should be set to false at any point that dead 1645 /// predicate instructions should be considered as being defined. 1646 /// A dead predicate instruction is one that is guaranteed to be removed 1647 /// after a call to PredicateInstruction. ClobbersPredicate(MachineInstr & MI,std::vector<MachineOperand> & Pred,bool SkipDead)1648 virtual bool ClobbersPredicate(MachineInstr &MI, 1649 std::vector<MachineOperand> &Pred, 1650 bool SkipDead) const { 1651 return false; 1652 } 1653 1654 /// Return true if the specified instruction can be predicated. 1655 /// By default, this returns true for every instruction with a 1656 /// PredicateOperand. isPredicable(const MachineInstr & MI)1657 virtual bool isPredicable(const MachineInstr &MI) const { 1658 return MI.getDesc().isPredicable(); 1659 } 1660 1661 /// Return true if it's safe to move a machine 1662 /// instruction that defines the specified register class. isSafeToMoveRegClassDefs(const TargetRegisterClass * RC)1663 virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const { 1664 return true; 1665 } 1666 1667 /// Test if the given instruction should be considered a scheduling boundary. 1668 /// This primarily includes labels and terminators. 1669 virtual bool isSchedulingBoundary(const MachineInstr &MI, 1670 const MachineBasicBlock *MBB, 1671 const MachineFunction &MF) const; 1672 1673 /// Measure the specified inline asm to determine an approximation of its 1674 /// length. 1675 virtual unsigned getInlineAsmLength( 1676 const char *Str, const MCAsmInfo &MAI, 1677 const TargetSubtargetInfo *STI = nullptr) const; 1678 1679 /// Allocate and return a hazard recognizer to use for this target when 1680 /// scheduling the machine instructions before register allocation. 1681 virtual ScheduleHazardRecognizer * 1682 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 1683 const ScheduleDAG *DAG) const; 1684 1685 /// Allocate and return a hazard recognizer to use for this target when 1686 /// scheduling the machine instructions before register allocation. 1687 virtual ScheduleHazardRecognizer * 1688 CreateTargetMIHazardRecognizer(const InstrItineraryData *, 1689 const ScheduleDAGMI *DAG) const; 1690 1691 /// Allocate and return a hazard recognizer to use for this target when 1692 /// scheduling the machine instructions after register allocation. 1693 virtual ScheduleHazardRecognizer * 1694 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *, 1695 const ScheduleDAG *DAG) const; 1696 1697 /// Allocate and return a hazard recognizer to use for by non-scheduling 1698 /// passes. 1699 virtual ScheduleHazardRecognizer * CreateTargetPostRAHazardRecognizer(const MachineFunction & MF)1700 CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const { 1701 return nullptr; 1702 } 1703 1704 /// Provide a global flag for disabling the PreRA hazard recognizer that 1705 /// targets may choose to honor. 1706 bool usePreRAHazardRecognizer() const; 1707 1708 /// For a comparison instruction, return the source registers 1709 /// in SrcReg and SrcReg2 if having two register operands, and the value it 1710 /// compares against in CmpValue. Return true if the comparison instruction 1711 /// can be analyzed. analyzeCompare(const MachineInstr & MI,Register & SrcReg,Register & SrcReg2,int64_t & Mask,int64_t & Value)1712 virtual bool analyzeCompare(const MachineInstr &MI, Register &SrcReg, 1713 Register &SrcReg2, int64_t &Mask, 1714 int64_t &Value) const { 1715 return false; 1716 } 1717 1718 /// See if the comparison instruction can be converted 1719 /// into something more efficient. E.g., on ARM most instructions can set the 1720 /// flags register, obviating the need for a separate CMP. optimizeCompareInstr(MachineInstr & CmpInstr,Register SrcReg,Register SrcReg2,int64_t Mask,int64_t Value,const MachineRegisterInfo * MRI)1721 virtual bool optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg, 1722 Register SrcReg2, int64_t Mask, 1723 int64_t Value, 1724 const MachineRegisterInfo *MRI) const { 1725 return false; 1726 } optimizeCondBranch(MachineInstr & MI)1727 virtual bool optimizeCondBranch(MachineInstr &MI) const { return false; } 1728 1729 /// Try to remove the load by folding it to a register operand at the use. 1730 /// We fold the load instructions if and only if the 1731 /// def and use are in the same BB. We only look at one load and see 1732 /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register 1733 /// defined by the load we are trying to fold. DefMI returns the machine 1734 /// instruction that defines FoldAsLoadDefReg, and the function returns 1735 /// the machine instruction generated due to folding. optimizeLoadInstr(MachineInstr & MI,const MachineRegisterInfo * MRI,Register & FoldAsLoadDefReg,MachineInstr * & DefMI)1736 virtual MachineInstr *optimizeLoadInstr(MachineInstr &MI, 1737 const MachineRegisterInfo *MRI, 1738 Register &FoldAsLoadDefReg, 1739 MachineInstr *&DefMI) const { 1740 return nullptr; 1741 } 1742 1743 /// 'Reg' is known to be defined by a move immediate instruction, 1744 /// try to fold the immediate into the use instruction. 1745 /// If MRI->hasOneNonDBGUse(Reg) is true, and this function returns true, 1746 /// then the caller may assume that DefMI has been erased from its parent 1747 /// block. The caller may assume that it will not be erased by this 1748 /// function otherwise. foldImmediate(MachineInstr & UseMI,MachineInstr & DefMI,Register Reg,MachineRegisterInfo * MRI)1749 virtual bool foldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 1750 Register Reg, MachineRegisterInfo *MRI) const { 1751 return false; 1752 } 1753 1754 /// Return the number of u-operations the given machine 1755 /// instruction will be decoded to on the target cpu. The itinerary's 1756 /// IssueWidth is the number of microops that can be dispatched each 1757 /// cycle. An instruction with zero microops takes no dispatch resources. 1758 virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData, 1759 const MachineInstr &MI) const; 1760 1761 /// Return true for pseudo instructions that don't consume any 1762 /// machine resources in their current form. These are common cases that the 1763 /// scheduler should consider free, rather than conservatively handling them 1764 /// as instructions with no itinerary. isZeroCost(unsigned Opcode)1765 bool isZeroCost(unsigned Opcode) const { 1766 return Opcode <= TargetOpcode::COPY; 1767 } 1768 1769 virtual std::optional<unsigned> 1770 getOperandLatency(const InstrItineraryData *ItinData, SDNode *DefNode, 1771 unsigned DefIdx, SDNode *UseNode, unsigned UseIdx) const; 1772 1773 /// Compute and return the use operand latency of a given pair of def and use. 1774 /// In most cases, the static scheduling itinerary was enough to determine the 1775 /// operand latency. But it may not be possible for instructions with variable 1776 /// number of defs / uses. 1777 /// 1778 /// This is a raw interface to the itinerary that may be directly overridden 1779 /// by a target. Use computeOperandLatency to get the best estimate of 1780 /// latency. 1781 virtual std::optional<unsigned> 1782 getOperandLatency(const InstrItineraryData *ItinData, 1783 const MachineInstr &DefMI, unsigned DefIdx, 1784 const MachineInstr &UseMI, unsigned UseIdx) const; 1785 1786 /// Compute the instruction latency of a given instruction. 1787 /// If the instruction has higher cost when predicated, it's returned via 1788 /// PredCost. 1789 virtual unsigned getInstrLatency(const InstrItineraryData *ItinData, 1790 const MachineInstr &MI, 1791 unsigned *PredCost = nullptr) const; 1792 1793 virtual unsigned getPredicationCost(const MachineInstr &MI) const; 1794 1795 virtual unsigned getInstrLatency(const InstrItineraryData *ItinData, 1796 SDNode *Node) const; 1797 1798 /// Return the default expected latency for a def based on its opcode. 1799 unsigned defaultDefLatency(const MCSchedModel &SchedModel, 1800 const MachineInstr &DefMI) const; 1801 1802 /// Return true if this opcode has high latency to its result. isHighLatencyDef(int opc)1803 virtual bool isHighLatencyDef(int opc) const { return false; } 1804 1805 /// Compute operand latency between a def of 'Reg' 1806 /// and a use in the current loop. Return true if the target considered 1807 /// it 'high'. This is used by optimization passes such as machine LICM to 1808 /// determine whether it makes sense to hoist an instruction out even in a 1809 /// high register pressure situation. hasHighOperandLatency(const TargetSchedModel & SchedModel,const MachineRegisterInfo * MRI,const MachineInstr & DefMI,unsigned DefIdx,const MachineInstr & UseMI,unsigned UseIdx)1810 virtual bool hasHighOperandLatency(const TargetSchedModel &SchedModel, 1811 const MachineRegisterInfo *MRI, 1812 const MachineInstr &DefMI, unsigned DefIdx, 1813 const MachineInstr &UseMI, 1814 unsigned UseIdx) const { 1815 return false; 1816 } 1817 1818 /// Compute operand latency of a def of 'Reg'. Return true 1819 /// if the target considered it 'low'. 1820 virtual bool hasLowDefLatency(const TargetSchedModel &SchedModel, 1821 const MachineInstr &DefMI, 1822 unsigned DefIdx) const; 1823 1824 /// Perform target-specific instruction verification. verifyInstruction(const MachineInstr & MI,StringRef & ErrInfo)1825 virtual bool verifyInstruction(const MachineInstr &MI, 1826 StringRef &ErrInfo) const { 1827 return true; 1828 } 1829 1830 /// Return the current execution domain and bit mask of 1831 /// possible domains for instruction. 1832 /// 1833 /// Some micro-architectures have multiple execution domains, and multiple 1834 /// opcodes that perform the same operation in different domains. For 1835 /// example, the x86 architecture provides the por, orps, and orpd 1836 /// instructions that all do the same thing. There is a latency penalty if a 1837 /// register is written in one domain and read in another. 1838 /// 1839 /// This function returns a pair (domain, mask) containing the execution 1840 /// domain of MI, and a bit mask of possible domains. The setExecutionDomain 1841 /// function can be used to change the opcode to one of the domains in the 1842 /// bit mask. Instructions whose execution domain can't be changed should 1843 /// return a 0 mask. 1844 /// 1845 /// The execution domain numbers don't have any special meaning except domain 1846 /// 0 is used for instructions that are not associated with any interesting 1847 /// execution domain. 1848 /// 1849 virtual std::pair<uint16_t, uint16_t> getExecutionDomain(const MachineInstr & MI)1850 getExecutionDomain(const MachineInstr &MI) const { 1851 return std::make_pair(0, 0); 1852 } 1853 1854 /// Change the opcode of MI to execute in Domain. 1855 /// 1856 /// The bit (1 << Domain) must be set in the mask returned from 1857 /// getExecutionDomain(MI). setExecutionDomain(MachineInstr & MI,unsigned Domain)1858 virtual void setExecutionDomain(MachineInstr &MI, unsigned Domain) const {} 1859 1860 /// Returns the preferred minimum clearance 1861 /// before an instruction with an unwanted partial register update. 1862 /// 1863 /// Some instructions only write part of a register, and implicitly need to 1864 /// read the other parts of the register. This may cause unwanted stalls 1865 /// preventing otherwise unrelated instructions from executing in parallel in 1866 /// an out-of-order CPU. 1867 /// 1868 /// For example, the x86 instruction cvtsi2ss writes its result to bits 1869 /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so 1870 /// the instruction needs to wait for the old value of the register to become 1871 /// available: 1872 /// 1873 /// addps %xmm1, %xmm0 1874 /// movaps %xmm0, (%rax) 1875 /// cvtsi2ss %rbx, %xmm0 1876 /// 1877 /// In the code above, the cvtsi2ss instruction needs to wait for the addps 1878 /// instruction before it can issue, even though the high bits of %xmm0 1879 /// probably aren't needed. 1880 /// 1881 /// This hook returns the preferred clearance before MI, measured in 1882 /// instructions. Other defs of MI's operand OpNum are avoided in the last N 1883 /// instructions before MI. It should only return a positive value for 1884 /// unwanted dependencies. If the old bits of the defined register have 1885 /// useful values, or if MI is determined to otherwise read the dependency, 1886 /// the hook should return 0. 1887 /// 1888 /// The unwanted dependency may be handled by: 1889 /// 1890 /// 1. Allocating the same register for an MI def and use. That makes the 1891 /// unwanted dependency identical to a required dependency. 1892 /// 1893 /// 2. Allocating a register for the def that has no defs in the previous N 1894 /// instructions. 1895 /// 1896 /// 3. Calling breakPartialRegDependency() with the same arguments. This 1897 /// allows the target to insert a dependency breaking instruction. 1898 /// 1899 virtual unsigned getPartialRegUpdateClearance(const MachineInstr & MI,unsigned OpNum,const TargetRegisterInfo * TRI)1900 getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum, 1901 const TargetRegisterInfo *TRI) const { 1902 // The default implementation returns 0 for no partial register dependency. 1903 return 0; 1904 } 1905 1906 /// Return the minimum clearance before an instruction that reads an 1907 /// unused register. 1908 /// 1909 /// For example, AVX instructions may copy part of a register operand into 1910 /// the unused high bits of the destination register. 1911 /// 1912 /// vcvtsi2sdq %rax, undef %xmm0, %xmm14 1913 /// 1914 /// In the code above, vcvtsi2sdq copies %xmm0[127:64] into %xmm14 creating a 1915 /// false dependence on any previous write to %xmm0. 1916 /// 1917 /// This hook works similarly to getPartialRegUpdateClearance, except that it 1918 /// does not take an operand index. Instead sets \p OpNum to the index of the 1919 /// unused register. getUndefRegClearance(const MachineInstr & MI,unsigned OpNum,const TargetRegisterInfo * TRI)1920 virtual unsigned getUndefRegClearance(const MachineInstr &MI, unsigned OpNum, 1921 const TargetRegisterInfo *TRI) const { 1922 // The default implementation returns 0 for no undef register dependency. 1923 return 0; 1924 } 1925 1926 /// Insert a dependency-breaking instruction 1927 /// before MI to eliminate an unwanted dependency on OpNum. 1928 /// 1929 /// If it wasn't possible to avoid a def in the last N instructions before MI 1930 /// (see getPartialRegUpdateClearance), this hook will be called to break the 1931 /// unwanted dependency. 1932 /// 1933 /// On x86, an xorps instruction can be used as a dependency breaker: 1934 /// 1935 /// addps %xmm1, %xmm0 1936 /// movaps %xmm0, (%rax) 1937 /// xorps %xmm0, %xmm0 1938 /// cvtsi2ss %rbx, %xmm0 1939 /// 1940 /// An <imp-kill> operand should be added to MI if an instruction was 1941 /// inserted. This ties the instructions together in the post-ra scheduler. 1942 /// breakPartialRegDependency(MachineInstr & MI,unsigned OpNum,const TargetRegisterInfo * TRI)1943 virtual void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum, 1944 const TargetRegisterInfo *TRI) const {} 1945 1946 /// Create machine specific model for scheduling. 1947 virtual DFAPacketizer * CreateTargetScheduleState(const TargetSubtargetInfo &)1948 CreateTargetScheduleState(const TargetSubtargetInfo &) const { 1949 return nullptr; 1950 } 1951 1952 /// Sometimes, it is possible for the target 1953 /// to tell, even without aliasing information, that two MIs access different 1954 /// memory addresses. This function returns true if two MIs access different 1955 /// memory addresses and false otherwise. 1956 /// 1957 /// Assumes any physical registers used to compute addresses have the same 1958 /// value for both instructions. (This is the most useful assumption for 1959 /// post-RA scheduling.) 1960 /// 1961 /// See also MachineInstr::mayAlias, which is implemented on top of this 1962 /// function. 1963 virtual bool areMemAccessesTriviallyDisjoint(const MachineInstr & MIa,const MachineInstr & MIb)1964 areMemAccessesTriviallyDisjoint(const MachineInstr &MIa, 1965 const MachineInstr &MIb) const { 1966 assert(MIa.mayLoadOrStore() && 1967 "MIa must load from or modify a memory location"); 1968 assert(MIb.mayLoadOrStore() && 1969 "MIb must load from or modify a memory location"); 1970 return false; 1971 } 1972 1973 /// Return the value to use for the MachineCSE's LookAheadLimit, 1974 /// which is a heuristic used for CSE'ing phys reg defs. getMachineCSELookAheadLimit()1975 virtual unsigned getMachineCSELookAheadLimit() const { 1976 // The default lookahead is small to prevent unprofitable quadratic 1977 // behavior. 1978 return 5; 1979 } 1980 1981 /// Return the maximal number of alias checks on memory operands. For 1982 /// instructions with more than one memory operands, the alias check on a 1983 /// single MachineInstr pair has quadratic overhead and results in 1984 /// unacceptable performance in the worst case. The limit here is to clamp 1985 /// that maximal checks performed. Usually, that's the product of memory 1986 /// operand numbers from that pair of MachineInstr to be checked. For 1987 /// instance, with two MachineInstrs with 4 and 5 memory operands 1988 /// correspondingly, a total of 20 checks are required. With this limit set to 1989 /// 16, their alias check is skipped. We choose to limit the product instead 1990 /// of the individual instruction as targets may have special MachineInstrs 1991 /// with a considerably high number of memory operands, such as `ldm` in ARM. 1992 /// Setting this limit per MachineInstr would result in either too high 1993 /// overhead or too rigid restriction. getMemOperandAACheckLimit()1994 virtual unsigned getMemOperandAACheckLimit() const { return 16; } 1995 1996 /// Return an array that contains the ids of the target indices (used for the 1997 /// TargetIndex machine operand) and their names. 1998 /// 1999 /// MIR Serialization is able to serialize only the target indices that are 2000 /// defined by this method. 2001 virtual ArrayRef<std::pair<int, const char *>> getSerializableTargetIndices()2002 getSerializableTargetIndices() const { 2003 return std::nullopt; 2004 } 2005 2006 /// Decompose the machine operand's target flags into two values - the direct 2007 /// target flag value and any of bit flags that are applied. 2008 virtual std::pair<unsigned, unsigned> decomposeMachineOperandsTargetFlags(unsigned)2009 decomposeMachineOperandsTargetFlags(unsigned /*TF*/) const { 2010 return std::make_pair(0u, 0u); 2011 } 2012 2013 /// Return an array that contains the direct target flag values and their 2014 /// names. 2015 /// 2016 /// MIR Serialization is able to serialize only the target flags that are 2017 /// defined by this method. 2018 virtual ArrayRef<std::pair<unsigned, const char *>> getSerializableDirectMachineOperandTargetFlags()2019 getSerializableDirectMachineOperandTargetFlags() const { 2020 return std::nullopt; 2021 } 2022 2023 /// Return an array that contains the bitmask target flag values and their 2024 /// names. 2025 /// 2026 /// MIR Serialization is able to serialize only the target flags that are 2027 /// defined by this method. 2028 virtual ArrayRef<std::pair<unsigned, const char *>> getSerializableBitmaskMachineOperandTargetFlags()2029 getSerializableBitmaskMachineOperandTargetFlags() const { 2030 return std::nullopt; 2031 } 2032 2033 /// Return an array that contains the MMO target flag values and their 2034 /// names. 2035 /// 2036 /// MIR Serialization is able to serialize only the MMO target flags that are 2037 /// defined by this method. 2038 virtual ArrayRef<std::pair<MachineMemOperand::Flags, const char *>> getSerializableMachineMemOperandTargetFlags()2039 getSerializableMachineMemOperandTargetFlags() const { 2040 return std::nullopt; 2041 } 2042 2043 /// Determines whether \p Inst is a tail call instruction. Override this 2044 /// method on targets that do not properly set MCID::Return and MCID::Call on 2045 /// tail call instructions." isTailCall(const MachineInstr & Inst)2046 virtual bool isTailCall(const MachineInstr &Inst) const { 2047 return Inst.isReturn() && Inst.isCall(); 2048 } 2049 2050 /// True if the instruction is bound to the top of its basic block and no 2051 /// other instructions shall be inserted before it. This can be implemented 2052 /// to prevent register allocator to insert spills for \p Reg before such 2053 /// instructions. 2054 virtual bool isBasicBlockPrologue(const MachineInstr &MI, 2055 Register Reg = Register()) const { 2056 return false; 2057 } 2058 2059 /// Allows targets to use appropriate copy instruction while spilitting live 2060 /// range of a register in register allocation. getLiveRangeSplitOpcode(Register Reg,const MachineFunction & MF)2061 virtual unsigned getLiveRangeSplitOpcode(Register Reg, 2062 const MachineFunction &MF) const { 2063 return TargetOpcode::COPY; 2064 } 2065 2066 /// During PHI eleimination lets target to make necessary checks and 2067 /// insert the copy to the PHI destination register in a target specific 2068 /// manner. createPHIDestinationCopy(MachineBasicBlock & MBB,MachineBasicBlock::iterator InsPt,const DebugLoc & DL,Register Src,Register Dst)2069 virtual MachineInstr *createPHIDestinationCopy( 2070 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsPt, 2071 const DebugLoc &DL, Register Src, Register Dst) const { 2072 return BuildMI(MBB, InsPt, DL, get(TargetOpcode::COPY), Dst) 2073 .addReg(Src); 2074 } 2075 2076 /// During PHI eleimination lets target to make necessary checks and 2077 /// insert the copy to the PHI destination register in a target specific 2078 /// manner. createPHISourceCopy(MachineBasicBlock & MBB,MachineBasicBlock::iterator InsPt,const DebugLoc & DL,Register Src,unsigned SrcSubReg,Register Dst)2079 virtual MachineInstr *createPHISourceCopy(MachineBasicBlock &MBB, 2080 MachineBasicBlock::iterator InsPt, 2081 const DebugLoc &DL, Register Src, 2082 unsigned SrcSubReg, 2083 Register Dst) const { 2084 return BuildMI(MBB, InsPt, DL, get(TargetOpcode::COPY), Dst) 2085 .addReg(Src, 0, SrcSubReg); 2086 } 2087 2088 /// Returns a \p outliner::OutlinedFunction struct containing target-specific 2089 /// information for a set of outlining candidates. Returns std::nullopt if the 2090 /// candidates are not suitable for outlining. getOutliningCandidateInfo(std::vector<outliner::Candidate> & RepeatedSequenceLocs)2091 virtual std::optional<outliner::OutlinedFunction> getOutliningCandidateInfo( 2092 std::vector<outliner::Candidate> &RepeatedSequenceLocs) const { 2093 llvm_unreachable( 2094 "Target didn't implement TargetInstrInfo::getOutliningCandidateInfo!"); 2095 } 2096 2097 /// Optional target hook to create the LLVM IR attributes for the outlined 2098 /// function. If overridden, the overriding function must call the default 2099 /// implementation. 2100 virtual void mergeOutliningCandidateAttributes( 2101 Function &F, std::vector<outliner::Candidate> &Candidates) const; 2102 2103 protected: 2104 /// Target-dependent implementation for getOutliningTypeImpl. 2105 virtual outliner::InstrType getOutliningTypeImpl(MachineBasicBlock::iterator & MIT,unsigned Flags)2106 getOutliningTypeImpl(MachineBasicBlock::iterator &MIT, unsigned Flags) const { 2107 llvm_unreachable( 2108 "Target didn't implement TargetInstrInfo::getOutliningTypeImpl!"); 2109 } 2110 2111 public: 2112 /// Returns how or if \p MIT should be outlined. \p Flags is the 2113 /// target-specific information returned by isMBBSafeToOutlineFrom. 2114 outliner::InstrType 2115 getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const; 2116 2117 /// Optional target hook that returns true if \p MBB is safe to outline from, 2118 /// and returns any target-specific information in \p Flags. 2119 virtual bool isMBBSafeToOutlineFrom(MachineBasicBlock &MBB, 2120 unsigned &Flags) const; 2121 2122 /// Optional target hook which partitions \p MBB into outlinable ranges for 2123 /// instruction mapping purposes. Each range is defined by two iterators: 2124 /// [start, end). 2125 /// 2126 /// Ranges are expected to be ordered top-down. That is, ranges closer to the 2127 /// top of the block should come before ranges closer to the end of the block. 2128 /// 2129 /// Ranges cannot overlap. 2130 /// 2131 /// If an entire block is mappable, then its range is [MBB.begin(), MBB.end()) 2132 /// 2133 /// All instructions not present in an outlinable range are considered 2134 /// illegal. 2135 virtual SmallVector< 2136 std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator>> getOutlinableRanges(MachineBasicBlock & MBB,unsigned & Flags)2137 getOutlinableRanges(MachineBasicBlock &MBB, unsigned &Flags) const { 2138 return {std::make_pair(MBB.begin(), MBB.end())}; 2139 } 2140 2141 /// Insert a custom frame for outlined functions. buildOutlinedFrame(MachineBasicBlock & MBB,MachineFunction & MF,const outliner::OutlinedFunction & OF)2142 virtual void buildOutlinedFrame(MachineBasicBlock &MBB, MachineFunction &MF, 2143 const outliner::OutlinedFunction &OF) const { 2144 llvm_unreachable( 2145 "Target didn't implement TargetInstrInfo::buildOutlinedFrame!"); 2146 } 2147 2148 /// Insert a call to an outlined function into the program. 2149 /// Returns an iterator to the spot where we inserted the call. This must be 2150 /// implemented by the target. 2151 virtual MachineBasicBlock::iterator insertOutlinedCall(Module & M,MachineBasicBlock & MBB,MachineBasicBlock::iterator & It,MachineFunction & MF,outliner::Candidate & C)2152 insertOutlinedCall(Module &M, MachineBasicBlock &MBB, 2153 MachineBasicBlock::iterator &It, MachineFunction &MF, 2154 outliner::Candidate &C) const { 2155 llvm_unreachable( 2156 "Target didn't implement TargetInstrInfo::insertOutlinedCall!"); 2157 } 2158 2159 /// Insert an architecture-specific instruction to clear a register. If you 2160 /// need to avoid sideeffects (e.g. avoid XOR on x86, which sets EFLAGS), set 2161 /// \p AllowSideEffects to \p false. 2162 virtual void buildClearRegister(Register Reg, MachineBasicBlock &MBB, 2163 MachineBasicBlock::iterator Iter, 2164 DebugLoc &DL, 2165 bool AllowSideEffects = true) const { 2166 #if 0 2167 // FIXME: This should exist once all platforms that use stack protectors 2168 // implements it. 2169 llvm_unreachable( 2170 "Target didn't implement TargetInstrInfo::buildClearRegister!"); 2171 #endif 2172 } 2173 2174 /// Return true if the function can safely be outlined from. 2175 /// A function \p MF is considered safe for outlining if an outlined function 2176 /// produced from instructions in F will produce a program which produces the 2177 /// same output for any set of given inputs. isFunctionSafeToOutlineFrom(MachineFunction & MF,bool OutlineFromLinkOnceODRs)2178 virtual bool isFunctionSafeToOutlineFrom(MachineFunction &MF, 2179 bool OutlineFromLinkOnceODRs) const { 2180 llvm_unreachable("Target didn't implement " 2181 "TargetInstrInfo::isFunctionSafeToOutlineFrom!"); 2182 } 2183 2184 /// Return true if the function should be outlined from by default. shouldOutlineFromFunctionByDefault(MachineFunction & MF)2185 virtual bool shouldOutlineFromFunctionByDefault(MachineFunction &MF) const { 2186 return false; 2187 } 2188 2189 /// Return true if the function is a viable candidate for machine function 2190 /// splitting. The criteria for if a function can be split may vary by target. 2191 virtual bool isFunctionSafeToSplit(const MachineFunction &MF) const; 2192 2193 /// Return true if the MachineBasicBlock can safely be split to the cold 2194 /// section. On AArch64, certain instructions may cause a block to be unsafe 2195 /// to split to the cold section. isMBBSafeToSplitToCold(const MachineBasicBlock & MBB)2196 virtual bool isMBBSafeToSplitToCold(const MachineBasicBlock &MBB) const { 2197 return true; 2198 } 2199 2200 /// Produce the expression describing the \p MI loading a value into 2201 /// the physical register \p Reg. This hook should only be used with 2202 /// \p MIs belonging to VReg-less functions. 2203 virtual std::optional<ParamLoadedValue> 2204 describeLoadedValue(const MachineInstr &MI, Register Reg) const; 2205 2206 /// Given the generic extension instruction \p ExtMI, returns true if this 2207 /// extension is a likely candidate for being folded into an another 2208 /// instruction. isExtendLikelyToBeFolded(MachineInstr & ExtMI,MachineRegisterInfo & MRI)2209 virtual bool isExtendLikelyToBeFolded(MachineInstr &ExtMI, 2210 MachineRegisterInfo &MRI) const { 2211 return false; 2212 } 2213 2214 /// Return MIR formatter to format/parse MIR operands. Target can override 2215 /// this virtual function and return target specific MIR formatter. getMIRFormatter()2216 virtual const MIRFormatter *getMIRFormatter() const { 2217 if (!Formatter) 2218 Formatter = std::make_unique<MIRFormatter>(); 2219 return Formatter.get(); 2220 } 2221 2222 /// Returns the target-specific default value for tail duplication. 2223 /// This value will be used if the tail-dup-placement-threshold argument is 2224 /// not provided. getTailDuplicateSize(CodeGenOptLevel OptLevel)2225 virtual unsigned getTailDuplicateSize(CodeGenOptLevel OptLevel) const { 2226 return OptLevel >= CodeGenOptLevel::Aggressive ? 4 : 2; 2227 } 2228 2229 /// Returns the target-specific default value for tail merging. 2230 /// This value will be used if the tail-merge-size argument is not provided. getTailMergeSize(const MachineFunction & MF)2231 virtual unsigned getTailMergeSize(const MachineFunction &MF) const { 2232 return 3; 2233 } 2234 2235 /// Returns the callee operand from the given \p MI. getCalleeOperand(const MachineInstr & MI)2236 virtual const MachineOperand &getCalleeOperand(const MachineInstr &MI) const { 2237 return MI.getOperand(0); 2238 } 2239 2240 /// Return the uniformity behavior of the given instruction. 2241 virtual InstructionUniformity getInstructionUniformity(const MachineInstr & MI)2242 getInstructionUniformity(const MachineInstr &MI) const { 2243 return InstructionUniformity::Default; 2244 } 2245 2246 /// Returns true if the given \p MI defines a TargetIndex operand that can be 2247 /// tracked by their offset, can have values, and can have debug info 2248 /// associated with it. If so, sets \p Index and \p Offset of the target index 2249 /// operand. isExplicitTargetIndexDef(const MachineInstr & MI,int & Index,int64_t & Offset)2250 virtual bool isExplicitTargetIndexDef(const MachineInstr &MI, int &Index, 2251 int64_t &Offset) const { 2252 return false; 2253 } 2254 2255 // Get the call frame size just before MI. 2256 unsigned getCallFrameSizeAt(MachineInstr &MI) const; 2257 2258 /// Fills in the necessary MachineOperands to refer to a frame index. 2259 /// The best way to understand this is to print `asm(""::"m"(x));` after 2260 /// finalize-isel. Example: 2261 /// INLINEASM ... 262190 /* mem:m */, %stack.0.x.addr, 1, $noreg, 0, $noreg 2262 /// we would add placeholders for: ^ ^ ^ ^ getFrameIndexOperands(SmallVectorImpl<MachineOperand> & Ops,int FI)2263 virtual void getFrameIndexOperands(SmallVectorImpl<MachineOperand> &Ops, 2264 int FI) const { 2265 llvm_unreachable("unknown number of operands necessary"); 2266 } 2267 2268 /// Gets the opcode for the Pseudo Instruction used to initialize 2269 /// the undef value. If no Instruction is available, this will 2270 /// fail compilation. getUndefInitOpcode(unsigned RegClassID)2271 virtual unsigned getUndefInitOpcode(unsigned RegClassID) const { 2272 (void)RegClassID; 2273 2274 llvm_unreachable("Unexpected register class."); 2275 } 2276 2277 private: 2278 mutable std::unique_ptr<MIRFormatter> Formatter; 2279 unsigned CallFrameSetupOpcode, CallFrameDestroyOpcode; 2280 unsigned CatchRetOpcode; 2281 unsigned ReturnOpcode; 2282 }; 2283 2284 /// Provide DenseMapInfo for TargetInstrInfo::RegSubRegPair. 2285 template <> struct DenseMapInfo<TargetInstrInfo::RegSubRegPair> { 2286 using RegInfo = DenseMapInfo<unsigned>; 2287 2288 static inline TargetInstrInfo::RegSubRegPair getEmptyKey() { 2289 return TargetInstrInfo::RegSubRegPair(RegInfo::getEmptyKey(), 2290 RegInfo::getEmptyKey()); 2291 } 2292 2293 static inline TargetInstrInfo::RegSubRegPair getTombstoneKey() { 2294 return TargetInstrInfo::RegSubRegPair(RegInfo::getTombstoneKey(), 2295 RegInfo::getTombstoneKey()); 2296 } 2297 2298 /// Reuse getHashValue implementation from 2299 /// std::pair<unsigned, unsigned>. 2300 static unsigned getHashValue(const TargetInstrInfo::RegSubRegPair &Val) { 2301 std::pair<unsigned, unsigned> PairVal = std::make_pair(Val.Reg, Val.SubReg); 2302 return DenseMapInfo<std::pair<unsigned, unsigned>>::getHashValue(PairVal); 2303 } 2304 2305 static bool isEqual(const TargetInstrInfo::RegSubRegPair &LHS, 2306 const TargetInstrInfo::RegSubRegPair &RHS) { 2307 return RegInfo::isEqual(LHS.Reg, RHS.Reg) && 2308 RegInfo::isEqual(LHS.SubReg, RHS.SubReg); 2309 } 2310 }; 2311 2312 } // end namespace llvm 2313 2314 #endif // LLVM_CODEGEN_TARGETINSTRINFO_H 2315