xref: /freebsd/contrib/llvm-project/llvm/include/llvm/IR/Constants.h (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===-- llvm/Constants.h - Constant class subclass definitions --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// @file
10 /// This file contains the declarations for the subclasses of Constant,
11 /// which represent the different flavors of constant values that live in LLVM.
12 /// Note that Constants are immutable (once created they never change) and are
13 /// fully shared by structural equivalence.  This means that two structurally
14 /// equivalent constants will always have the same address.  Constants are
15 /// created on demand as needed and never deleted: thus clients don't have to
16 /// worry about the lifetime of the objects.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #ifndef LLVM_IR_CONSTANTS_H
21 #define LLVM_IR_CONSTANTS_H
22 
23 #include "llvm/ADT/APFloat.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/ArrayRef.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/IR/Constant.h"
29 #include "llvm/IR/ConstantRange.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/GEPNoWrapFlags.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/OperandTraits.h"
34 #include "llvm/IR/User.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Support/Casting.h"
37 #include "llvm/Support/Compiler.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include <cassert>
40 #include <cstddef>
41 #include <cstdint>
42 #include <optional>
43 
44 namespace llvm {
45 
46 template <class ConstantClass> struct ConstantAggrKeyType;
47 
48 /// Base class for constants with no operands.
49 ///
50 /// These constants have no operands; they represent their data directly.
51 /// Since they can be in use by unrelated modules (and are never based on
52 /// GlobalValues), it never makes sense to RAUW them.
53 class ConstantData : public Constant {
54   friend class Constant;
55 
handleOperandChangeImpl(Value * From,Value * To)56   Value *handleOperandChangeImpl(Value *From, Value *To) {
57     llvm_unreachable("Constant data does not have operands!");
58   }
59 
60 protected:
ConstantData(Type * Ty,ValueTy VT)61   explicit ConstantData(Type *Ty, ValueTy VT) : Constant(Ty, VT, nullptr, 0) {}
62 
new(size_t S)63   void *operator new(size_t S) { return User::operator new(S, 0); }
64 
65 public:
delete(void * Ptr)66   void operator delete(void *Ptr) { User::operator delete(Ptr); }
67 
68   ConstantData(const ConstantData &) = delete;
69 
70   /// Methods to support type inquiry through isa, cast, and dyn_cast.
classof(const Value * V)71   static bool classof(const Value *V) {
72     return V->getValueID() >= ConstantDataFirstVal &&
73            V->getValueID() <= ConstantDataLastVal;
74   }
75 };
76 
77 //===----------------------------------------------------------------------===//
78 /// This is the shared class of boolean and integer constants. This class
79 /// represents both boolean and integral constants.
80 /// Class for constant integers.
81 class ConstantInt final : public ConstantData {
82   friend class Constant;
83   friend class ConstantVector;
84 
85   APInt Val;
86 
87   ConstantInt(Type *Ty, const APInt &V);
88 
89   void destroyConstantImpl();
90 
91   /// Return a ConstantInt with the specified value and an implied Type. The
92   /// type is the vector type whose integer element type corresponds to the bit
93   /// width of the value.
94   static ConstantInt *get(LLVMContext &Context, ElementCount EC,
95                           const APInt &V);
96 
97 public:
98   ConstantInt(const ConstantInt &) = delete;
99 
100   static ConstantInt *getTrue(LLVMContext &Context);
101   static ConstantInt *getFalse(LLVMContext &Context);
102   static ConstantInt *getBool(LLVMContext &Context, bool V);
103   static Constant *getTrue(Type *Ty);
104   static Constant *getFalse(Type *Ty);
105   static Constant *getBool(Type *Ty, bool V);
106 
107   /// If Ty is a vector type, return a Constant with a splat of the given
108   /// value. Otherwise return a ConstantInt for the given value.
109   static Constant *get(Type *Ty, uint64_t V, bool IsSigned = false);
110 
111   /// Return a ConstantInt with the specified integer value for the specified
112   /// type. If the type is wider than 64 bits, the value will be zero-extended
113   /// to fit the type, unless IsSigned is true, in which case the value will
114   /// be interpreted as a 64-bit signed integer and sign-extended to fit
115   /// the type.
116   /// Get a ConstantInt for a specific value.
117   static ConstantInt *get(IntegerType *Ty, uint64_t V, bool IsSigned = false);
118 
119   /// Return a ConstantInt with the specified value for the specified type. The
120   /// value V will be canonicalized to a an unsigned APInt. Accessing it with
121   /// either getSExtValue() or getZExtValue() will yield a correctly sized and
122   /// signed value for the type Ty.
123   /// Get a ConstantInt for a specific signed value.
getSigned(IntegerType * Ty,int64_t V)124   static ConstantInt *getSigned(IntegerType *Ty, int64_t V) {
125     return get(Ty, V, true);
126   }
getSigned(Type * Ty,int64_t V)127   static Constant *getSigned(Type *Ty, int64_t V) {
128     return get(Ty, V, true);
129   }
130 
131   /// Return a ConstantInt with the specified value and an implied Type. The
132   /// type is the integer type that corresponds to the bit width of the value.
133   static ConstantInt *get(LLVMContext &Context, const APInt &V);
134 
135   /// Return a ConstantInt constructed from the string strStart with the given
136   /// radix.
137   static ConstantInt *get(IntegerType *Ty, StringRef Str, uint8_t Radix);
138 
139   /// If Ty is a vector type, return a Constant with a splat of the given
140   /// value. Otherwise return a ConstantInt for the given value.
141   static Constant *get(Type *Ty, const APInt &V);
142 
143   /// Return the constant as an APInt value reference. This allows clients to
144   /// obtain a full-precision copy of the value.
145   /// Return the constant's value.
getValue()146   inline const APInt &getValue() const { return Val; }
147 
148   /// getBitWidth - Return the scalar bitwidth of this constant.
getBitWidth()149   unsigned getBitWidth() const { return Val.getBitWidth(); }
150 
151   /// Return the constant as a 64-bit unsigned integer value after it
152   /// has been zero extended as appropriate for the type of this constant. Note
153   /// that this method can assert if the value does not fit in 64 bits.
154   /// Return the zero extended value.
getZExtValue()155   inline uint64_t getZExtValue() const { return Val.getZExtValue(); }
156 
157   /// Return the constant as a 64-bit integer value after it has been sign
158   /// extended as appropriate for the type of this constant. Note that
159   /// this method can assert if the value does not fit in 64 bits.
160   /// Return the sign extended value.
getSExtValue()161   inline int64_t getSExtValue() const { return Val.getSExtValue(); }
162 
163   /// Return the constant as an llvm::MaybeAlign.
164   /// Note that this method can assert if the value does not fit in 64 bits or
165   /// is not a power of two.
getMaybeAlignValue()166   inline MaybeAlign getMaybeAlignValue() const {
167     return MaybeAlign(getZExtValue());
168   }
169 
170   /// Return the constant as an llvm::Align, interpreting `0` as `Align(1)`.
171   /// Note that this method can assert if the value does not fit in 64 bits or
172   /// is not a power of two.
getAlignValue()173   inline Align getAlignValue() const {
174     return getMaybeAlignValue().valueOrOne();
175   }
176 
177   /// A helper method that can be used to determine if the constant contained
178   /// within is equal to a constant.  This only works for very small values,
179   /// because this is all that can be represented with all types.
180   /// Determine if this constant's value is same as an unsigned char.
equalsInt(uint64_t V)181   bool equalsInt(uint64_t V) const { return Val == V; }
182 
183   /// Variant of the getType() method to always return an IntegerType, which
184   /// reduces the amount of casting needed in parts of the compiler.
getIntegerType()185   inline IntegerType *getIntegerType() const {
186     return cast<IntegerType>(Value::getType());
187   }
188 
189   /// This static method returns true if the type Ty is big enough to
190   /// represent the value V. This can be used to avoid having the get method
191   /// assert when V is larger than Ty can represent. Note that there are two
192   /// versions of this method, one for unsigned and one for signed integers.
193   /// Although ConstantInt canonicalizes everything to an unsigned integer,
194   /// the signed version avoids callers having to convert a signed quantity
195   /// to the appropriate unsigned type before calling the method.
196   /// @returns true if V is a valid value for type Ty
197   /// Determine if the value is in range for the given type.
198   static bool isValueValidForType(Type *Ty, uint64_t V);
199   static bool isValueValidForType(Type *Ty, int64_t V);
200 
isNegative()201   bool isNegative() const { return Val.isNegative(); }
202 
203   /// This is just a convenience method to make client code smaller for a
204   /// common code. It also correctly performs the comparison without the
205   /// potential for an assertion from getZExtValue().
isZero()206   bool isZero() const { return Val.isZero(); }
207 
208   /// This is just a convenience method to make client code smaller for a
209   /// common case. It also correctly performs the comparison without the
210   /// potential for an assertion from getZExtValue().
211   /// Determine if the value is one.
isOne()212   bool isOne() const { return Val.isOne(); }
213 
214   /// This function will return true iff every bit in this constant is set
215   /// to true.
216   /// @returns true iff this constant's bits are all set to true.
217   /// Determine if the value is all ones.
isMinusOne()218   bool isMinusOne() const { return Val.isAllOnes(); }
219 
220   /// This function will return true iff this constant represents the largest
221   /// value that may be represented by the constant's type.
222   /// @returns true iff this is the largest value that may be represented
223   /// by this type.
224   /// Determine if the value is maximal.
isMaxValue(bool IsSigned)225   bool isMaxValue(bool IsSigned) const {
226     if (IsSigned)
227       return Val.isMaxSignedValue();
228     else
229       return Val.isMaxValue();
230   }
231 
232   /// This function will return true iff this constant represents the smallest
233   /// value that may be represented by this constant's type.
234   /// @returns true if this is the smallest value that may be represented by
235   /// this type.
236   /// Determine if the value is minimal.
isMinValue(bool IsSigned)237   bool isMinValue(bool IsSigned) const {
238     if (IsSigned)
239       return Val.isMinSignedValue();
240     else
241       return Val.isMinValue();
242   }
243 
244   /// This function will return true iff this constant represents a value with
245   /// active bits bigger than 64 bits or a value greater than the given uint64_t
246   /// value.
247   /// @returns true iff this constant is greater or equal to the given number.
248   /// Determine if the value is greater or equal to the given number.
uge(uint64_t Num)249   bool uge(uint64_t Num) const { return Val.uge(Num); }
250 
251   /// getLimitedValue - If the value is smaller than the specified limit,
252   /// return it, otherwise return the limit value.  This causes the value
253   /// to saturate to the limit.
254   /// @returns the min of the value of the constant and the specified value
255   /// Get the constant's value with a saturation limit
256   uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
257     return Val.getLimitedValue(Limit);
258   }
259 
260   /// Methods to support type inquiry through isa, cast, and dyn_cast.
classof(const Value * V)261   static bool classof(const Value *V) {
262     return V->getValueID() == ConstantIntVal;
263   }
264 };
265 
266 //===----------------------------------------------------------------------===//
267 /// ConstantFP - Floating Point Values [float, double]
268 ///
269 class ConstantFP final : public ConstantData {
270   friend class Constant;
271   friend class ConstantVector;
272 
273   APFloat Val;
274 
275   ConstantFP(Type *Ty, const APFloat &V);
276 
277   void destroyConstantImpl();
278 
279   /// Return a ConstantFP with the specified value and an implied Type. The
280   /// type is the vector type whose element type has the same floating point
281   /// semantics as the value.
282   static ConstantFP *get(LLVMContext &Context, ElementCount EC,
283                          const APFloat &V);
284 
285 public:
286   ConstantFP(const ConstantFP &) = delete;
287 
288   /// This returns a ConstantFP, or a vector containing a splat of a ConstantFP,
289   /// for the specified value in the specified type. This should only be used
290   /// for simple constant values like 2.0/1.0 etc, that are known-valid both as
291   /// host double and as the target format.
292   static Constant *get(Type *Ty, double V);
293 
294   /// If Ty is a vector type, return a Constant with a splat of the given
295   /// value. Otherwise return a ConstantFP for the given value.
296   static Constant *get(Type *Ty, const APFloat &V);
297 
298   static Constant *get(Type *Ty, StringRef Str);
299   static ConstantFP *get(LLVMContext &Context, const APFloat &V);
300   static Constant *getNaN(Type *Ty, bool Negative = false,
301                           uint64_t Payload = 0);
302   static Constant *getQNaN(Type *Ty, bool Negative = false,
303                            APInt *Payload = nullptr);
304   static Constant *getSNaN(Type *Ty, bool Negative = false,
305                            APInt *Payload = nullptr);
306   static Constant *getZero(Type *Ty, bool Negative = false);
getNegativeZero(Type * Ty)307   static Constant *getNegativeZero(Type *Ty) { return getZero(Ty, true); }
308   static Constant *getInfinity(Type *Ty, bool Negative = false);
309 
310   /// Return true if Ty is big enough to represent V.
311   static bool isValueValidForType(Type *Ty, const APFloat &V);
getValueAPF()312   inline const APFloat &getValueAPF() const { return Val; }
getValue()313   inline const APFloat &getValue() const { return Val; }
314 
315   /// Return true if the value is positive or negative zero.
isZero()316   bool isZero() const { return Val.isZero(); }
317 
318   /// Return true if the sign bit is set.
isNegative()319   bool isNegative() const { return Val.isNegative(); }
320 
321   /// Return true if the value is infinity
isInfinity()322   bool isInfinity() const { return Val.isInfinity(); }
323 
324   /// Return true if the value is a NaN.
isNaN()325   bool isNaN() const { return Val.isNaN(); }
326 
327   /// We don't rely on operator== working on double values, as it returns true
328   /// for things that are clearly not equal, like -0.0 and 0.0.
329   /// As such, this method can be used to do an exact bit-for-bit comparison of
330   /// two floating point values.  The version with a double operand is retained
331   /// because it's so convenient to write isExactlyValue(2.0), but please use
332   /// it only for simple constants.
333   bool isExactlyValue(const APFloat &V) const;
334 
isExactlyValue(double V)335   bool isExactlyValue(double V) const {
336     bool ignored;
337     APFloat FV(V);
338     FV.convert(Val.getSemantics(), APFloat::rmNearestTiesToEven, &ignored);
339     return isExactlyValue(FV);
340   }
341 
342   /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const Value * V)343   static bool classof(const Value *V) {
344     return V->getValueID() == ConstantFPVal;
345   }
346 };
347 
348 //===----------------------------------------------------------------------===//
349 /// All zero aggregate value
350 ///
351 class ConstantAggregateZero final : public ConstantData {
352   friend class Constant;
353 
ConstantAggregateZero(Type * Ty)354   explicit ConstantAggregateZero(Type *Ty)
355       : ConstantData(Ty, ConstantAggregateZeroVal) {}
356 
357   void destroyConstantImpl();
358 
359 public:
360   ConstantAggregateZero(const ConstantAggregateZero &) = delete;
361 
362   static ConstantAggregateZero *get(Type *Ty);
363 
364   /// If this CAZ has array or vector type, return a zero with the right element
365   /// type.
366   Constant *getSequentialElement() const;
367 
368   /// If this CAZ has struct type, return a zero with the right element type for
369   /// the specified element.
370   Constant *getStructElement(unsigned Elt) const;
371 
372   /// Return a zero of the right value for the specified GEP index if we can,
373   /// otherwise return null (e.g. if C is a ConstantExpr).
374   Constant *getElementValue(Constant *C) const;
375 
376   /// Return a zero of the right value for the specified GEP index.
377   Constant *getElementValue(unsigned Idx) const;
378 
379   /// Return the number of elements in the array, vector, or struct.
380   ElementCount getElementCount() const;
381 
382   /// Methods for support type inquiry through isa, cast, and dyn_cast:
383   ///
classof(const Value * V)384   static bool classof(const Value *V) {
385     return V->getValueID() == ConstantAggregateZeroVal;
386   }
387 };
388 
389 /// Base class for aggregate constants (with operands).
390 ///
391 /// These constants are aggregates of other constants, which are stored as
392 /// operands.
393 ///
394 /// Subclasses are \a ConstantStruct, \a ConstantArray, and \a
395 /// ConstantVector.
396 ///
397 /// \note Some subclasses of \a ConstantData are semantically aggregates --
398 /// such as \a ConstantDataArray -- but are not subclasses of this because they
399 /// use operands.
400 class ConstantAggregate : public Constant {
401 protected:
402   ConstantAggregate(Type *T, ValueTy VT, ArrayRef<Constant *> V);
403 
404 public:
405   /// Transparently provide more efficient getOperand methods.
406   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
407 
408   /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const Value * V)409   static bool classof(const Value *V) {
410     return V->getValueID() >= ConstantAggregateFirstVal &&
411            V->getValueID() <= ConstantAggregateLastVal;
412   }
413 };
414 
415 template <>
416 struct OperandTraits<ConstantAggregate>
417     : public VariadicOperandTraits<ConstantAggregate> {};
418 
419 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantAggregate, Constant)
420 
421 //===----------------------------------------------------------------------===//
422 /// ConstantArray - Constant Array Declarations
423 ///
424 class ConstantArray final : public ConstantAggregate {
425   friend struct ConstantAggrKeyType<ConstantArray>;
426   friend class Constant;
427 
428   ConstantArray(ArrayType *T, ArrayRef<Constant *> Val);
429 
430   void destroyConstantImpl();
431   Value *handleOperandChangeImpl(Value *From, Value *To);
432 
433 public:
434   // ConstantArray accessors
435   static Constant *get(ArrayType *T, ArrayRef<Constant *> V);
436 
437 private:
438   static Constant *getImpl(ArrayType *T, ArrayRef<Constant *> V);
439 
440 public:
441   /// Specialize the getType() method to always return an ArrayType,
442   /// which reduces the amount of casting needed in parts of the compiler.
443   inline ArrayType *getType() const {
444     return cast<ArrayType>(Value::getType());
445   }
446 
447   /// Methods for support type inquiry through isa, cast, and dyn_cast:
448   static bool classof(const Value *V) {
449     return V->getValueID() == ConstantArrayVal;
450   }
451 };
452 
453 //===----------------------------------------------------------------------===//
454 // Constant Struct Declarations
455 //
456 class ConstantStruct final : public ConstantAggregate {
457   friend struct ConstantAggrKeyType<ConstantStruct>;
458   friend class Constant;
459 
460   ConstantStruct(StructType *T, ArrayRef<Constant *> Val);
461 
462   void destroyConstantImpl();
463   Value *handleOperandChangeImpl(Value *From, Value *To);
464 
465 public:
466   // ConstantStruct accessors
467   static Constant *get(StructType *T, ArrayRef<Constant *> V);
468 
469   template <typename... Csts>
470   static std::enable_if_t<are_base_of<Constant, Csts...>::value, Constant *>
471   get(StructType *T, Csts *...Vs) {
472     return get(T, ArrayRef<Constant *>({Vs...}));
473   }
474 
475   /// Return an anonymous struct that has the specified elements.
476   /// If the struct is possibly empty, then you must specify a context.
477   static Constant *getAnon(ArrayRef<Constant *> V, bool Packed = false) {
478     return get(getTypeForElements(V, Packed), V);
479   }
480   static Constant *getAnon(LLVMContext &Ctx, ArrayRef<Constant *> V,
481                            bool Packed = false) {
482     return get(getTypeForElements(Ctx, V, Packed), V);
483   }
484 
485   /// Return an anonymous struct type to use for a constant with the specified
486   /// set of elements. The list must not be empty.
487   static StructType *getTypeForElements(ArrayRef<Constant *> V,
488                                         bool Packed = false);
489   /// This version of the method allows an empty list.
490   static StructType *getTypeForElements(LLVMContext &Ctx,
491                                         ArrayRef<Constant *> V,
492                                         bool Packed = false);
493 
494   /// Specialization - reduce amount of casting.
495   inline StructType *getType() const {
496     return cast<StructType>(Value::getType());
497   }
498 
499   /// Methods for support type inquiry through isa, cast, and dyn_cast:
500   static bool classof(const Value *V) {
501     return V->getValueID() == ConstantStructVal;
502   }
503 };
504 
505 //===----------------------------------------------------------------------===//
506 /// Constant Vector Declarations
507 ///
508 class ConstantVector final : public ConstantAggregate {
509   friend struct ConstantAggrKeyType<ConstantVector>;
510   friend class Constant;
511 
512   ConstantVector(VectorType *T, ArrayRef<Constant *> Val);
513 
514   void destroyConstantImpl();
515   Value *handleOperandChangeImpl(Value *From, Value *To);
516 
517 public:
518   // ConstantVector accessors
519   static Constant *get(ArrayRef<Constant *> V);
520 
521 private:
522   static Constant *getImpl(ArrayRef<Constant *> V);
523 
524 public:
525   /// Return a ConstantVector with the specified constant in each element.
526   /// Note that this might not return an instance of ConstantVector
527   static Constant *getSplat(ElementCount EC, Constant *Elt);
528 
529   /// Specialize the getType() method to always return a FixedVectorType,
530   /// which reduces the amount of casting needed in parts of the compiler.
531   inline FixedVectorType *getType() const {
532     return cast<FixedVectorType>(Value::getType());
533   }
534 
535   /// If all elements of the vector constant have the same value, return that
536   /// value. Otherwise, return nullptr. Ignore poison elements by setting
537   /// AllowPoison to true.
538   Constant *getSplatValue(bool AllowPoison = false) const;
539 
540   /// Methods for support type inquiry through isa, cast, and dyn_cast:
541   static bool classof(const Value *V) {
542     return V->getValueID() == ConstantVectorVal;
543   }
544 };
545 
546 //===----------------------------------------------------------------------===//
547 /// A constant pointer value that points to null
548 ///
549 class ConstantPointerNull final : public ConstantData {
550   friend class Constant;
551 
552   explicit ConstantPointerNull(PointerType *T)
553       : ConstantData(T, Value::ConstantPointerNullVal) {}
554 
555   void destroyConstantImpl();
556 
557 public:
558   ConstantPointerNull(const ConstantPointerNull &) = delete;
559 
560   /// Static factory methods - Return objects of the specified value
561   static ConstantPointerNull *get(PointerType *T);
562 
563   /// Specialize the getType() method to always return an PointerType,
564   /// which reduces the amount of casting needed in parts of the compiler.
565   inline PointerType *getType() const {
566     return cast<PointerType>(Value::getType());
567   }
568 
569   /// Methods for support type inquiry through isa, cast, and dyn_cast:
570   static bool classof(const Value *V) {
571     return V->getValueID() == ConstantPointerNullVal;
572   }
573 };
574 
575 //===----------------------------------------------------------------------===//
576 /// ConstantDataSequential - A vector or array constant whose element type is a
577 /// simple 1/2/4/8-byte integer or half/bfloat/float/double, and whose elements
578 /// are just simple data values (i.e. ConstantInt/ConstantFP).  This Constant
579 /// node has no operands because it stores all of the elements of the constant
580 /// as densely packed data, instead of as Value*'s.
581 ///
582 /// This is the common base class of ConstantDataArray and ConstantDataVector.
583 ///
584 class ConstantDataSequential : public ConstantData {
585   friend class LLVMContextImpl;
586   friend class Constant;
587 
588   /// A pointer to the bytes underlying this constant (which is owned by the
589   /// uniquing StringMap).
590   const char *DataElements;
591 
592   /// This forms a link list of ConstantDataSequential nodes that have
593   /// the same value but different type.  For example, 0,0,0,1 could be a 4
594   /// element array of i8, or a 1-element array of i32.  They'll both end up in
595   /// the same StringMap bucket, linked up.
596   std::unique_ptr<ConstantDataSequential> Next;
597 
598   void destroyConstantImpl();
599 
600 protected:
601   explicit ConstantDataSequential(Type *ty, ValueTy VT, const char *Data)
602       : ConstantData(ty, VT), DataElements(Data) {}
603 
604   static Constant *getImpl(StringRef Bytes, Type *Ty);
605 
606 public:
607   ConstantDataSequential(const ConstantDataSequential &) = delete;
608 
609   /// Return true if a ConstantDataSequential can be formed with a vector or
610   /// array of the specified element type.
611   /// ConstantDataArray only works with normal float and int types that are
612   /// stored densely in memory, not with things like i42 or x86_f80.
613   static bool isElementTypeCompatible(Type *Ty);
614 
615   /// If this is a sequential container of integers (of any size), return the
616   /// specified element in the low bits of a uint64_t.
617   uint64_t getElementAsInteger(unsigned i) const;
618 
619   /// If this is a sequential container of integers (of any size), return the
620   /// specified element as an APInt.
621   APInt getElementAsAPInt(unsigned i) const;
622 
623   /// If this is a sequential container of floating point type, return the
624   /// specified element as an APFloat.
625   APFloat getElementAsAPFloat(unsigned i) const;
626 
627   /// If this is an sequential container of floats, return the specified element
628   /// as a float.
629   float getElementAsFloat(unsigned i) const;
630 
631   /// If this is an sequential container of doubles, return the specified
632   /// element as a double.
633   double getElementAsDouble(unsigned i) const;
634 
635   /// Return a Constant for a specified index's element.
636   /// Note that this has to compute a new constant to return, so it isn't as
637   /// efficient as getElementAsInteger/Float/Double.
638   Constant *getElementAsConstant(unsigned i) const;
639 
640   /// Return the element type of the array/vector.
641   Type *getElementType() const;
642 
643   /// Return the number of elements in the array or vector.
644   unsigned getNumElements() const;
645 
646   /// Return the size (in bytes) of each element in the array/vector.
647   /// The size of the elements is known to be a multiple of one byte.
648   uint64_t getElementByteSize() const;
649 
650   /// This method returns true if this is an array of \p CharSize integers.
651   bool isString(unsigned CharSize = 8) const;
652 
653   /// This method returns true if the array "isString", ends with a null byte,
654   /// and does not contains any other null bytes.
655   bool isCString() const;
656 
657   /// If this array is isString(), then this method returns the array as a
658   /// StringRef. Otherwise, it asserts out.
659   StringRef getAsString() const {
660     assert(isString() && "Not a string");
661     return getRawDataValues();
662   }
663 
664   /// If this array is isCString(), then this method returns the array (without
665   /// the trailing null byte) as a StringRef. Otherwise, it asserts out.
666   StringRef getAsCString() const {
667     assert(isCString() && "Isn't a C string");
668     StringRef Str = getAsString();
669     return Str.substr(0, Str.size() - 1);
670   }
671 
672   /// Return the raw, underlying, bytes of this data. Note that this is an
673   /// extremely tricky thing to work with, as it exposes the host endianness of
674   /// the data elements.
675   StringRef getRawDataValues() const;
676 
677   /// Methods for support type inquiry through isa, cast, and dyn_cast:
678   static bool classof(const Value *V) {
679     return V->getValueID() == ConstantDataArrayVal ||
680            V->getValueID() == ConstantDataVectorVal;
681   }
682 
683 private:
684   const char *getElementPointer(unsigned Elt) const;
685 };
686 
687 //===----------------------------------------------------------------------===//
688 /// An array constant whose element type is a simple 1/2/4/8-byte integer or
689 /// float/double, and whose elements are just simple data values
690 /// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it
691 /// stores all of the elements of the constant as densely packed data, instead
692 /// of as Value*'s.
693 class ConstantDataArray final : public ConstantDataSequential {
694   friend class ConstantDataSequential;
695 
696   explicit ConstantDataArray(Type *ty, const char *Data)
697       : ConstantDataSequential(ty, ConstantDataArrayVal, Data) {}
698 
699 public:
700   ConstantDataArray(const ConstantDataArray &) = delete;
701 
702   /// get() constructor - Return a constant with array type with an element
703   /// count and element type matching the ArrayRef passed in.  Note that this
704   /// can return a ConstantAggregateZero object.
705   template <typename ElementTy>
706   static Constant *get(LLVMContext &Context, ArrayRef<ElementTy> Elts) {
707     const char *Data = reinterpret_cast<const char *>(Elts.data());
708     return getRaw(StringRef(Data, Elts.size() * sizeof(ElementTy)), Elts.size(),
709                   Type::getScalarTy<ElementTy>(Context));
710   }
711 
712   /// get() constructor - ArrayTy needs to be compatible with
713   /// ArrayRef<ElementTy>. Calls get(LLVMContext, ArrayRef<ElementTy>).
714   template <typename ArrayTy>
715   static Constant *get(LLVMContext &Context, ArrayTy &Elts) {
716     return ConstantDataArray::get(Context, ArrayRef(Elts));
717   }
718 
719   /// getRaw() constructor - Return a constant with array type with an element
720   /// count and element type matching the NumElements and ElementTy parameters
721   /// passed in. Note that this can return a ConstantAggregateZero object.
722   /// ElementTy must be one of i8/i16/i32/i64/half/bfloat/float/double. Data is
723   /// the buffer containing the elements. Be careful to make sure Data uses the
724   /// right endianness, the buffer will be used as-is.
725   static Constant *getRaw(StringRef Data, uint64_t NumElements,
726                           Type *ElementTy) {
727     Type *Ty = ArrayType::get(ElementTy, NumElements);
728     return getImpl(Data, Ty);
729   }
730 
731   /// getFP() constructors - Return a constant of array type with a float
732   /// element type taken from argument `ElementType', and count taken from
733   /// argument `Elts'.  The amount of bits of the contained type must match the
734   /// number of bits of the type contained in the passed in ArrayRef.
735   /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note
736   /// that this can return a ConstantAggregateZero object.
737   static Constant *getFP(Type *ElementType, ArrayRef<uint16_t> Elts);
738   static Constant *getFP(Type *ElementType, ArrayRef<uint32_t> Elts);
739   static Constant *getFP(Type *ElementType, ArrayRef<uint64_t> Elts);
740 
741   /// This method constructs a CDS and initializes it with a text string.
742   /// The default behavior (AddNull==true) causes a null terminator to
743   /// be placed at the end of the array (increasing the length of the string by
744   /// one more than the StringRef would normally indicate.  Pass AddNull=false
745   /// to disable this behavior.
746   static Constant *getString(LLVMContext &Context, StringRef Initializer,
747                              bool AddNull = true);
748 
749   /// Specialize the getType() method to always return an ArrayType,
750   /// which reduces the amount of casting needed in parts of the compiler.
751   inline ArrayType *getType() const {
752     return cast<ArrayType>(Value::getType());
753   }
754 
755   /// Methods for support type inquiry through isa, cast, and dyn_cast:
756   static bool classof(const Value *V) {
757     return V->getValueID() == ConstantDataArrayVal;
758   }
759 };
760 
761 //===----------------------------------------------------------------------===//
762 /// A vector constant whose element type is a simple 1/2/4/8-byte integer or
763 /// float/double, and whose elements are just simple data values
764 /// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it
765 /// stores all of the elements of the constant as densely packed data, instead
766 /// of as Value*'s.
767 class ConstantDataVector final : public ConstantDataSequential {
768   friend class ConstantDataSequential;
769 
770   explicit ConstantDataVector(Type *ty, const char *Data)
771       : ConstantDataSequential(ty, ConstantDataVectorVal, Data),
772         IsSplatSet(false) {}
773   // Cache whether or not the constant is a splat.
774   mutable bool IsSplatSet : 1;
775   mutable bool IsSplat : 1;
776   bool isSplatData() const;
777 
778 public:
779   ConstantDataVector(const ConstantDataVector &) = delete;
780 
781   /// get() constructors - Return a constant with vector type with an element
782   /// count and element type matching the ArrayRef passed in.  Note that this
783   /// can return a ConstantAggregateZero object.
784   static Constant *get(LLVMContext &Context, ArrayRef<uint8_t> Elts);
785   static Constant *get(LLVMContext &Context, ArrayRef<uint16_t> Elts);
786   static Constant *get(LLVMContext &Context, ArrayRef<uint32_t> Elts);
787   static Constant *get(LLVMContext &Context, ArrayRef<uint64_t> Elts);
788   static Constant *get(LLVMContext &Context, ArrayRef<float> Elts);
789   static Constant *get(LLVMContext &Context, ArrayRef<double> Elts);
790 
791   /// getRaw() constructor - Return a constant with vector type with an element
792   /// count and element type matching the NumElements and ElementTy parameters
793   /// passed in. Note that this can return a ConstantAggregateZero object.
794   /// ElementTy must be one of i8/i16/i32/i64/half/bfloat/float/double. Data is
795   /// the buffer containing the elements. Be careful to make sure Data uses the
796   /// right endianness, the buffer will be used as-is.
797   static Constant *getRaw(StringRef Data, uint64_t NumElements,
798                           Type *ElementTy) {
799     Type *Ty = VectorType::get(ElementTy, ElementCount::getFixed(NumElements));
800     return getImpl(Data, Ty);
801   }
802 
803   /// getFP() constructors - Return a constant of vector type with a float
804   /// element type taken from argument `ElementType', and count taken from
805   /// argument `Elts'.  The amount of bits of the contained type must match the
806   /// number of bits of the type contained in the passed in ArrayRef.
807   /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note
808   /// that this can return a ConstantAggregateZero object.
809   static Constant *getFP(Type *ElementType, ArrayRef<uint16_t> Elts);
810   static Constant *getFP(Type *ElementType, ArrayRef<uint32_t> Elts);
811   static Constant *getFP(Type *ElementType, ArrayRef<uint64_t> Elts);
812 
813   /// Return a ConstantVector with the specified constant in each element.
814   /// The specified constant has to be a of a compatible type (i8/i16/
815   /// i32/i64/half/bfloat/float/double) and must be a ConstantFP or ConstantInt.
816   static Constant *getSplat(unsigned NumElts, Constant *Elt);
817 
818   /// Returns true if this is a splat constant, meaning that all elements have
819   /// the same value.
820   bool isSplat() const;
821 
822   /// If this is a splat constant, meaning that all of the elements have the
823   /// same value, return that value. Otherwise return NULL.
824   Constant *getSplatValue() const;
825 
826   /// Specialize the getType() method to always return a FixedVectorType,
827   /// which reduces the amount of casting needed in parts of the compiler.
828   inline FixedVectorType *getType() const {
829     return cast<FixedVectorType>(Value::getType());
830   }
831 
832   /// Methods for support type inquiry through isa, cast, and dyn_cast:
833   static bool classof(const Value *V) {
834     return V->getValueID() == ConstantDataVectorVal;
835   }
836 };
837 
838 //===----------------------------------------------------------------------===//
839 /// A constant token which is empty
840 ///
841 class ConstantTokenNone final : public ConstantData {
842   friend class Constant;
843 
844   explicit ConstantTokenNone(LLVMContext &Context)
845       : ConstantData(Type::getTokenTy(Context), ConstantTokenNoneVal) {}
846 
847   void destroyConstantImpl();
848 
849 public:
850   ConstantTokenNone(const ConstantTokenNone &) = delete;
851 
852   /// Return the ConstantTokenNone.
853   static ConstantTokenNone *get(LLVMContext &Context);
854 
855   /// Methods to support type inquiry through isa, cast, and dyn_cast.
856   static bool classof(const Value *V) {
857     return V->getValueID() == ConstantTokenNoneVal;
858   }
859 };
860 
861 /// A constant target extension type default initializer
862 class ConstantTargetNone final : public ConstantData {
863   friend class Constant;
864 
865   explicit ConstantTargetNone(TargetExtType *T)
866       : ConstantData(T, Value::ConstantTargetNoneVal) {}
867 
868   void destroyConstantImpl();
869 
870 public:
871   ConstantTargetNone(const ConstantTargetNone &) = delete;
872 
873   /// Static factory methods - Return objects of the specified value.
874   static ConstantTargetNone *get(TargetExtType *T);
875 
876   /// Specialize the getType() method to always return an TargetExtType,
877   /// which reduces the amount of casting needed in parts of the compiler.
878   inline TargetExtType *getType() const {
879     return cast<TargetExtType>(Value::getType());
880   }
881 
882   /// Methods for support type inquiry through isa, cast, and dyn_cast.
883   static bool classof(const Value *V) {
884     return V->getValueID() == ConstantTargetNoneVal;
885   }
886 };
887 
888 /// The address of a basic block.
889 ///
890 class BlockAddress final : public Constant {
891   friend class Constant;
892 
893   BlockAddress(Function *F, BasicBlock *BB);
894 
895   void *operator new(size_t S) { return User::operator new(S, 2); }
896 
897   void destroyConstantImpl();
898   Value *handleOperandChangeImpl(Value *From, Value *To);
899 
900 public:
901   void operator delete(void *Ptr) { User::operator delete(Ptr); }
902 
903   /// Return a BlockAddress for the specified function and basic block.
904   static BlockAddress *get(Function *F, BasicBlock *BB);
905 
906   /// Return a BlockAddress for the specified basic block.  The basic
907   /// block must be embedded into a function.
908   static BlockAddress *get(BasicBlock *BB);
909 
910   /// Lookup an existing \c BlockAddress constant for the given BasicBlock.
911   ///
912   /// \returns 0 if \c !BB->hasAddressTaken(), otherwise the \c BlockAddress.
913   static BlockAddress *lookup(const BasicBlock *BB);
914 
915   /// Transparently provide more efficient getOperand methods.
916   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
917 
918   Function *getFunction() const { return (Function *)Op<0>().get(); }
919   BasicBlock *getBasicBlock() const { return (BasicBlock *)Op<1>().get(); }
920 
921   /// Methods for support type inquiry through isa, cast, and dyn_cast:
922   static bool classof(const Value *V) {
923     return V->getValueID() == BlockAddressVal;
924   }
925 };
926 
927 template <>
928 struct OperandTraits<BlockAddress>
929     : public FixedNumOperandTraits<BlockAddress, 2> {};
930 
931 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BlockAddress, Value)
932 
933 /// Wrapper for a function that represents a value that
934 /// functionally represents the original function. This can be a function,
935 /// global alias to a function, or an ifunc.
936 class DSOLocalEquivalent final : public Constant {
937   friend class Constant;
938 
939   DSOLocalEquivalent(GlobalValue *GV);
940 
941   void *operator new(size_t S) { return User::operator new(S, 1); }
942 
943   void destroyConstantImpl();
944   Value *handleOperandChangeImpl(Value *From, Value *To);
945 
946 public:
947   void operator delete(void *Ptr) { User::operator delete(Ptr); }
948 
949   /// Return a DSOLocalEquivalent for the specified global value.
950   static DSOLocalEquivalent *get(GlobalValue *GV);
951 
952   /// Transparently provide more efficient getOperand methods.
953   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
954 
955   GlobalValue *getGlobalValue() const {
956     return cast<GlobalValue>(Op<0>().get());
957   }
958 
959   /// Methods for support type inquiry through isa, cast, and dyn_cast:
960   static bool classof(const Value *V) {
961     return V->getValueID() == DSOLocalEquivalentVal;
962   }
963 };
964 
965 template <>
966 struct OperandTraits<DSOLocalEquivalent>
967     : public FixedNumOperandTraits<DSOLocalEquivalent, 1> {};
968 
969 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(DSOLocalEquivalent, Value)
970 
971 /// Wrapper for a value that won't be replaced with a CFI jump table
972 /// pointer in LowerTypeTestsModule.
973 class NoCFIValue final : public Constant {
974   friend class Constant;
975 
976   NoCFIValue(GlobalValue *GV);
977 
978   void *operator new(size_t S) { return User::operator new(S, 1); }
979 
980   void destroyConstantImpl();
981   Value *handleOperandChangeImpl(Value *From, Value *To);
982 
983 public:
984   /// Return a NoCFIValue for the specified function.
985   static NoCFIValue *get(GlobalValue *GV);
986 
987   /// Transparently provide more efficient getOperand methods.
988   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
989 
990   GlobalValue *getGlobalValue() const {
991     return cast<GlobalValue>(Op<0>().get());
992   }
993 
994   /// NoCFIValue is always a pointer.
995   PointerType *getType() const {
996     return cast<PointerType>(Value::getType());
997   }
998 
999   /// Methods for support type inquiry through isa, cast, and dyn_cast:
1000   static bool classof(const Value *V) {
1001     return V->getValueID() == NoCFIValueVal;
1002   }
1003 };
1004 
1005 template <>
1006 struct OperandTraits<NoCFIValue> : public FixedNumOperandTraits<NoCFIValue, 1> {
1007 };
1008 
1009 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(NoCFIValue, Value)
1010 
1011 /// A signed pointer, in the ptrauth sense.
1012 class ConstantPtrAuth final : public Constant {
1013   friend struct ConstantPtrAuthKeyType;
1014   friend class Constant;
1015 
1016   ConstantPtrAuth(Constant *Ptr, ConstantInt *Key, ConstantInt *Disc,
1017                   Constant *AddrDisc);
1018 
1019   void *operator new(size_t s) { return User::operator new(s, 4); }
1020 
1021   void destroyConstantImpl();
1022   Value *handleOperandChangeImpl(Value *From, Value *To);
1023 
1024 public:
1025   /// Return a pointer signed with the specified parameters.
1026   static ConstantPtrAuth *get(Constant *Ptr, ConstantInt *Key,
1027                               ConstantInt *Disc, Constant *AddrDisc);
1028 
1029   /// Produce a new ptrauth expression signing the given value using
1030   /// the same schema as is stored in one.
1031   ConstantPtrAuth *getWithSameSchema(Constant *Pointer) const;
1032 
1033   /// Transparently provide more efficient getOperand methods.
1034   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
1035 
1036   /// The pointer that is signed in this ptrauth signed pointer.
1037   Constant *getPointer() const { return cast<Constant>(Op<0>().get()); }
1038 
1039   /// The Key ID, an i32 constant.
1040   ConstantInt *getKey() const { return cast<ConstantInt>(Op<1>().get()); }
1041 
1042   /// The integer discriminator, an i64 constant, or 0.
1043   ConstantInt *getDiscriminator() const {
1044     return cast<ConstantInt>(Op<2>().get());
1045   }
1046 
1047   /// The address discriminator if any, or the null constant.
1048   /// If present, this must be a value equivalent to the storage location of
1049   /// the only global-initializer user of the ptrauth signed pointer.
1050   Constant *getAddrDiscriminator() const {
1051     return cast<Constant>(Op<3>().get());
1052   }
1053 
1054   /// Whether there is any non-null address discriminator.
1055   bool hasAddressDiscriminator() const {
1056     return !getAddrDiscriminator()->isNullValue();
1057   }
1058 
1059   /// Check whether an authentication operation with key \p Key and (possibly
1060   /// blended) discriminator \p Discriminator is known to be compatible with
1061   /// this ptrauth signed pointer.
1062   bool isKnownCompatibleWith(const Value *Key, const Value *Discriminator,
1063                              const DataLayout &DL) const;
1064 
1065   /// Methods for support type inquiry through isa, cast, and dyn_cast:
1066   static bool classof(const Value *V) {
1067     return V->getValueID() == ConstantPtrAuthVal;
1068   }
1069 };
1070 
1071 template <>
1072 struct OperandTraits<ConstantPtrAuth>
1073     : public FixedNumOperandTraits<ConstantPtrAuth, 4> {};
1074 
1075 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPtrAuth, Constant)
1076 
1077 //===----------------------------------------------------------------------===//
1078 /// A constant value that is initialized with an expression using
1079 /// other constant values.
1080 ///
1081 /// This class uses the standard Instruction opcodes to define the various
1082 /// constant expressions.  The Opcode field for the ConstantExpr class is
1083 /// maintained in the Value::SubclassData field.
1084 class ConstantExpr : public Constant {
1085   friend struct ConstantExprKeyType;
1086   friend class Constant;
1087 
1088   void destroyConstantImpl();
1089   Value *handleOperandChangeImpl(Value *From, Value *To);
1090 
1091 protected:
1092   ConstantExpr(Type *ty, unsigned Opcode, Use *Ops, unsigned NumOps)
1093       : Constant(ty, ConstantExprVal, Ops, NumOps) {
1094     // Operation type (an Instruction opcode) is stored as the SubclassData.
1095     setValueSubclassData(Opcode);
1096   }
1097 
1098   ~ConstantExpr() = default;
1099 
1100 public:
1101   // Static methods to construct a ConstantExpr of different kinds.  Note that
1102   // these methods may return a object that is not an instance of the
1103   // ConstantExpr class, because they will attempt to fold the constant
1104   // expression into something simpler if possible.
1105 
1106   /// getAlignOf constant expr - computes the alignment of a type in a target
1107   /// independent way (Note: the return type is an i64).
1108   static Constant *getAlignOf(Type *Ty);
1109 
1110   /// getSizeOf constant expr - computes the (alloc) size of a type (in
1111   /// address-units, not bits) in a target independent way (Note: the return
1112   /// type is an i64).
1113   ///
1114   static Constant *getSizeOf(Type *Ty);
1115 
1116   static Constant *getNeg(Constant *C, bool HasNSW = false);
1117   static Constant *getNot(Constant *C);
1118   static Constant *getAdd(Constant *C1, Constant *C2, bool HasNUW = false,
1119                           bool HasNSW = false);
1120   static Constant *getSub(Constant *C1, Constant *C2, bool HasNUW = false,
1121                           bool HasNSW = false);
1122   static Constant *getMul(Constant *C1, Constant *C2, bool HasNUW = false,
1123                           bool HasNSW = false);
1124   static Constant *getXor(Constant *C1, Constant *C2);
1125   static Constant *getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced = false);
1126   static Constant *getPtrToInt(Constant *C, Type *Ty,
1127                                bool OnlyIfReduced = false);
1128   static Constant *getIntToPtr(Constant *C, Type *Ty,
1129                                bool OnlyIfReduced = false);
1130   static Constant *getBitCast(Constant *C, Type *Ty,
1131                               bool OnlyIfReduced = false);
1132   static Constant *getAddrSpaceCast(Constant *C, Type *Ty,
1133                                     bool OnlyIfReduced = false);
1134 
1135   static Constant *getNSWNeg(Constant *C) { return getNeg(C, /*HasNSW=*/true); }
1136 
1137   static Constant *getNSWAdd(Constant *C1, Constant *C2) {
1138     return getAdd(C1, C2, false, true);
1139   }
1140 
1141   static Constant *getNUWAdd(Constant *C1, Constant *C2) {
1142     return getAdd(C1, C2, true, false);
1143   }
1144 
1145   static Constant *getNSWSub(Constant *C1, Constant *C2) {
1146     return getSub(C1, C2, false, true);
1147   }
1148 
1149   static Constant *getNUWSub(Constant *C1, Constant *C2) {
1150     return getSub(C1, C2, true, false);
1151   }
1152 
1153   static Constant *getNSWMul(Constant *C1, Constant *C2) {
1154     return getMul(C1, C2, false, true);
1155   }
1156 
1157   static Constant *getNUWMul(Constant *C1, Constant *C2) {
1158     return getMul(C1, C2, true, false);
1159   }
1160 
1161   /// If C is a scalar/fixed width vector of known powers of 2, then this
1162   /// function returns a new scalar/fixed width vector obtained from logBase2
1163   /// of C. Undef vector elements are set to zero.
1164   /// Return a null pointer otherwise.
1165   static Constant *getExactLogBase2(Constant *C);
1166 
1167   /// Return the identity constant for a binary opcode.
1168   /// If the binop is not commutative, callers can acquire the operand 1
1169   /// identity constant by setting AllowRHSConstant to true. For example, any
1170   /// shift has a zero identity constant for operand 1: X shift 0 = X. If this
1171   /// is a fadd/fsub operation and we don't care about signed zeros, then
1172   /// setting NSZ to true returns the identity +0.0 instead of -0.0. Return
1173   /// nullptr if the operator does not have an identity constant.
1174   static Constant *getBinOpIdentity(unsigned Opcode, Type *Ty,
1175                                     bool AllowRHSConstant = false,
1176                                     bool NSZ = false);
1177 
1178   static Constant *getIntrinsicIdentity(Intrinsic::ID, Type *Ty);
1179 
1180   /// Return the identity constant for a binary or intrinsic Instruction.
1181   /// The identity constant C is defined as X op C = X and C op X = X where C
1182   /// and X are the first two operands, and the operation is commutative.
1183   static Constant *getIdentity(Instruction *I, Type *Ty,
1184                                bool AllowRHSConstant = false, bool NSZ = false);
1185 
1186   /// Return the absorbing element for the given binary
1187   /// operation, i.e. a constant C such that X op C = C and C op X = C for
1188   /// every X.  For example, this returns zero for integer multiplication.
1189   /// It returns null if the operator doesn't have an absorbing element.
1190   static Constant *getBinOpAbsorber(unsigned Opcode, Type *Ty);
1191 
1192   /// Transparently provide more efficient getOperand methods.
1193   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
1194 
1195   /// Convenience function for getting a Cast operation.
1196   ///
1197   /// \param ops The opcode for the conversion
1198   /// \param C  The constant to be converted
1199   /// \param Ty The type to which the constant is converted
1200   /// \param OnlyIfReduced see \a getWithOperands() docs.
1201   static Constant *getCast(unsigned ops, Constant *C, Type *Ty,
1202                            bool OnlyIfReduced = false);
1203 
1204   // Create a Trunc or BitCast cast constant expression
1205   static Constant *
1206   getTruncOrBitCast(Constant *C, ///< The constant to trunc or bitcast
1207                     Type *Ty     ///< The type to trunc or bitcast C to
1208   );
1209 
1210   /// Create a BitCast, AddrSpaceCast, or a PtrToInt cast constant
1211   /// expression.
1212   static Constant *
1213   getPointerCast(Constant *C, ///< The pointer value to be casted (operand 0)
1214                  Type *Ty     ///< The type to which cast should be made
1215   );
1216 
1217   /// Create a BitCast or AddrSpaceCast for a pointer type depending on
1218   /// the address space.
1219   static Constant *getPointerBitCastOrAddrSpaceCast(
1220       Constant *C, ///< The constant to addrspacecast or bitcast
1221       Type *Ty     ///< The type to bitcast or addrspacecast C to
1222   );
1223 
1224   /// Return true if this is a convert constant expression
1225   bool isCast() const;
1226 
1227   /// get - Return a binary or shift operator constant expression,
1228   /// folding if possible.
1229   ///
1230   /// \param OnlyIfReducedTy see \a getWithOperands() docs.
1231   static Constant *get(unsigned Opcode, Constant *C1, Constant *C2,
1232                        unsigned Flags = 0, Type *OnlyIfReducedTy = nullptr);
1233 
1234   /// Getelementptr form.  Value* is only accepted for convenience;
1235   /// all elements must be Constants.
1236   ///
1237   /// \param InRange the inrange range if present or std::nullopt.
1238   /// \param OnlyIfReducedTy see \a getWithOperands() docs.
1239   static Constant *
1240   getGetElementPtr(Type *Ty, Constant *C, ArrayRef<Constant *> IdxList,
1241                    GEPNoWrapFlags NW = GEPNoWrapFlags::none(),
1242                    std::optional<ConstantRange> InRange = std::nullopt,
1243                    Type *OnlyIfReducedTy = nullptr) {
1244     return getGetElementPtr(
1245         Ty, C, ArrayRef((Value *const *)IdxList.data(), IdxList.size()), NW,
1246         InRange, OnlyIfReducedTy);
1247   }
1248   static Constant *
1249   getGetElementPtr(Type *Ty, Constant *C, Constant *Idx,
1250                    GEPNoWrapFlags NW = GEPNoWrapFlags::none(),
1251                    std::optional<ConstantRange> InRange = std::nullopt,
1252                    Type *OnlyIfReducedTy = nullptr) {
1253     // This form of the function only exists to avoid ambiguous overload
1254     // warnings about whether to convert Idx to ArrayRef<Constant *> or
1255     // ArrayRef<Value *>.
1256     return getGetElementPtr(Ty, C, cast<Value>(Idx), NW, InRange,
1257                             OnlyIfReducedTy);
1258   }
1259   static Constant *
1260   getGetElementPtr(Type *Ty, Constant *C, ArrayRef<Value *> IdxList,
1261                    GEPNoWrapFlags NW = GEPNoWrapFlags::none(),
1262                    std::optional<ConstantRange> InRange = std::nullopt,
1263                    Type *OnlyIfReducedTy = nullptr);
1264 
1265   /// Create an "inbounds" getelementptr. See the documentation for the
1266   /// "inbounds" flag in LangRef.html for details.
1267   static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
1268                                             ArrayRef<Constant *> IdxList) {
1269     return getGetElementPtr(Ty, C, IdxList, GEPNoWrapFlags::inBounds());
1270   }
1271   static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
1272                                             Constant *Idx) {
1273     // This form of the function only exists to avoid ambiguous overload
1274     // warnings about whether to convert Idx to ArrayRef<Constant *> or
1275     // ArrayRef<Value *>.
1276     return getGetElementPtr(Ty, C, Idx, GEPNoWrapFlags::inBounds());
1277   }
1278   static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
1279                                             ArrayRef<Value *> IdxList) {
1280     return getGetElementPtr(Ty, C, IdxList, GEPNoWrapFlags::inBounds());
1281   }
1282 
1283   static Constant *getExtractElement(Constant *Vec, Constant *Idx,
1284                                      Type *OnlyIfReducedTy = nullptr);
1285   static Constant *getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx,
1286                                     Type *OnlyIfReducedTy = nullptr);
1287   static Constant *getShuffleVector(Constant *V1, Constant *V2,
1288                                     ArrayRef<int> Mask,
1289                                     Type *OnlyIfReducedTy = nullptr);
1290 
1291   /// Return the opcode at the root of this constant expression
1292   unsigned getOpcode() const { return getSubclassDataFromValue(); }
1293 
1294   /// Assert that this is a shufflevector and return the mask. See class
1295   /// ShuffleVectorInst for a description of the mask representation.
1296   ArrayRef<int> getShuffleMask() const;
1297 
1298   /// Assert that this is a shufflevector and return the mask.
1299   ///
1300   /// TODO: This is a temporary hack until we update the bitcode format for
1301   /// shufflevector.
1302   Constant *getShuffleMaskForBitcode() const;
1303 
1304   /// Return a string representation for an opcode.
1305   const char *getOpcodeName() const;
1306 
1307   /// This returns the current constant expression with the operands replaced
1308   /// with the specified values. The specified array must have the same number
1309   /// of operands as our current one.
1310   Constant *getWithOperands(ArrayRef<Constant *> Ops) const {
1311     return getWithOperands(Ops, getType());
1312   }
1313 
1314   /// Get the current expression with the operands replaced.
1315   ///
1316   /// Return the current constant expression with the operands replaced with \c
1317   /// Ops and the type with \c Ty.  The new operands must have the same number
1318   /// as the current ones.
1319   ///
1320   /// If \c OnlyIfReduced is \c true, nullptr will be returned unless something
1321   /// gets constant-folded, the type changes, or the expression is otherwise
1322   /// canonicalized.  This parameter should almost always be \c false.
1323   Constant *getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
1324                             bool OnlyIfReduced = false,
1325                             Type *SrcTy = nullptr) const;
1326 
1327   /// Returns an Instruction which implements the same operation as this
1328   /// ConstantExpr. It is not inserted into any basic block.
1329   ///
1330   /// A better approach to this could be to have a constructor for Instruction
1331   /// which would take a ConstantExpr parameter, but that would have spread
1332   /// implementation details of ConstantExpr outside of Constants.cpp, which
1333   /// would make it harder to remove ConstantExprs altogether.
1334   Instruction *getAsInstruction() const;
1335 
1336   /// Whether creating a constant expression for this binary operator is
1337   /// desirable.
1338   static bool isDesirableBinOp(unsigned Opcode);
1339 
1340   /// Whether creating a constant expression for this binary operator is
1341   /// supported.
1342   static bool isSupportedBinOp(unsigned Opcode);
1343 
1344   /// Whether creating a constant expression for this cast is desirable.
1345   static bool isDesirableCastOp(unsigned Opcode);
1346 
1347   /// Whether creating a constant expression for this cast is supported.
1348   static bool isSupportedCastOp(unsigned Opcode);
1349 
1350   /// Whether creating a constant expression for this getelementptr type is
1351   /// supported.
1352   static bool isSupportedGetElementPtr(const Type *SrcElemTy) {
1353     return !SrcElemTy->isScalableTy();
1354   }
1355 
1356   /// Methods for support type inquiry through isa, cast, and dyn_cast:
1357   static bool classof(const Value *V) {
1358     return V->getValueID() == ConstantExprVal;
1359   }
1360 
1361 private:
1362   // Shadow Value::setValueSubclassData with a private forwarding method so that
1363   // subclasses cannot accidentally use it.
1364   void setValueSubclassData(unsigned short D) {
1365     Value::setValueSubclassData(D);
1366   }
1367 };
1368 
1369 template <>
1370 struct OperandTraits<ConstantExpr>
1371     : public VariadicOperandTraits<ConstantExpr, 1> {};
1372 
1373 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantExpr, Constant)
1374 
1375 //===----------------------------------------------------------------------===//
1376 /// 'undef' values are things that do not have specified contents.
1377 /// These are used for a variety of purposes, including global variable
1378 /// initializers and operands to instructions.  'undef' values can occur with
1379 /// any first-class type.
1380 ///
1381 /// Undef values aren't exactly constants; if they have multiple uses, they
1382 /// can appear to have different bit patterns at each use. See
1383 /// LangRef.html#undefvalues for details.
1384 ///
1385 class UndefValue : public ConstantData {
1386   friend class Constant;
1387 
1388   explicit UndefValue(Type *T) : ConstantData(T, UndefValueVal) {}
1389 
1390   void destroyConstantImpl();
1391 
1392 protected:
1393   explicit UndefValue(Type *T, ValueTy vty) : ConstantData(T, vty) {}
1394 
1395 public:
1396   UndefValue(const UndefValue &) = delete;
1397 
1398   /// Static factory methods - Return an 'undef' object of the specified type.
1399   static UndefValue *get(Type *T);
1400 
1401   /// If this Undef has array or vector type, return a undef with the right
1402   /// element type.
1403   UndefValue *getSequentialElement() const;
1404 
1405   /// If this undef has struct type, return a undef with the right element type
1406   /// for the specified element.
1407   UndefValue *getStructElement(unsigned Elt) const;
1408 
1409   /// Return an undef of the right value for the specified GEP index if we can,
1410   /// otherwise return null (e.g. if C is a ConstantExpr).
1411   UndefValue *getElementValue(Constant *C) const;
1412 
1413   /// Return an undef of the right value for the specified GEP index.
1414   UndefValue *getElementValue(unsigned Idx) const;
1415 
1416   /// Return the number of elements in the array, vector, or struct.
1417   unsigned getNumElements() const;
1418 
1419   /// Methods for support type inquiry through isa, cast, and dyn_cast:
1420   static bool classof(const Value *V) {
1421     return V->getValueID() == UndefValueVal ||
1422            V->getValueID() == PoisonValueVal;
1423   }
1424 };
1425 
1426 //===----------------------------------------------------------------------===//
1427 /// In order to facilitate speculative execution, many instructions do not
1428 /// invoke immediate undefined behavior when provided with illegal operands,
1429 /// and return a poison value instead.
1430 ///
1431 /// see LangRef.html#poisonvalues for details.
1432 ///
1433 class PoisonValue final : public UndefValue {
1434   friend class Constant;
1435 
1436   explicit PoisonValue(Type *T) : UndefValue(T, PoisonValueVal) {}
1437 
1438   void destroyConstantImpl();
1439 
1440 public:
1441   PoisonValue(const PoisonValue &) = delete;
1442 
1443   /// Static factory methods - Return an 'poison' object of the specified type.
1444   static PoisonValue *get(Type *T);
1445 
1446   /// If this poison has array or vector type, return a poison with the right
1447   /// element type.
1448   PoisonValue *getSequentialElement() const;
1449 
1450   /// If this poison has struct type, return a poison with the right element
1451   /// type for the specified element.
1452   PoisonValue *getStructElement(unsigned Elt) const;
1453 
1454   /// Return an poison of the right value for the specified GEP index if we can,
1455   /// otherwise return null (e.g. if C is a ConstantExpr).
1456   PoisonValue *getElementValue(Constant *C) const;
1457 
1458   /// Return an poison of the right value for the specified GEP index.
1459   PoisonValue *getElementValue(unsigned Idx) const;
1460 
1461   /// Methods for support type inquiry through isa, cast, and dyn_cast:
1462   static bool classof(const Value *V) {
1463     return V->getValueID() == PoisonValueVal;
1464   }
1465 };
1466 
1467 } // end namespace llvm
1468 
1469 #endif // LLVM_IR_CONSTANTS_H
1470