1 //===-- llvm/Constants.h - Constant class subclass definitions --*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// @file 10 /// This file contains the declarations for the subclasses of Constant, 11 /// which represent the different flavors of constant values that live in LLVM. 12 /// Note that Constants are immutable (once created they never change) and are 13 /// fully shared by structural equivalence. This means that two structurally 14 /// equivalent constants will always have the same address. Constants are 15 /// created on demand as needed and never deleted: thus clients don't have to 16 /// worry about the lifetime of the objects. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #ifndef LLVM_IR_CONSTANTS_H 21 #define LLVM_IR_CONSTANTS_H 22 23 #include "llvm/ADT/APFloat.h" 24 #include "llvm/ADT/APInt.h" 25 #include "llvm/ADT/ArrayRef.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/IR/Constant.h" 29 #include "llvm/IR/ConstantRange.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/GEPNoWrapFlags.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/OperandTraits.h" 34 #include "llvm/IR/User.h" 35 #include "llvm/IR/Value.h" 36 #include "llvm/Support/Casting.h" 37 #include "llvm/Support/Compiler.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include <cassert> 40 #include <cstddef> 41 #include <cstdint> 42 #include <optional> 43 44 namespace llvm { 45 46 template <class ConstantClass> struct ConstantAggrKeyType; 47 48 /// Base class for constants with no operands. 49 /// 50 /// These constants have no operands; they represent their data directly. 51 /// Since they can be in use by unrelated modules (and are never based on 52 /// GlobalValues), it never makes sense to RAUW them. 53 class ConstantData : public Constant { 54 friend class Constant; 55 handleOperandChangeImpl(Value * From,Value * To)56 Value *handleOperandChangeImpl(Value *From, Value *To) { 57 llvm_unreachable("Constant data does not have operands!"); 58 } 59 60 protected: ConstantData(Type * Ty,ValueTy VT)61 explicit ConstantData(Type *Ty, ValueTy VT) : Constant(Ty, VT, nullptr, 0) {} 62 new(size_t S)63 void *operator new(size_t S) { return User::operator new(S, 0); } 64 65 public: delete(void * Ptr)66 void operator delete(void *Ptr) { User::operator delete(Ptr); } 67 68 ConstantData(const ConstantData &) = delete; 69 70 /// Methods to support type inquiry through isa, cast, and dyn_cast. classof(const Value * V)71 static bool classof(const Value *V) { 72 return V->getValueID() >= ConstantDataFirstVal && 73 V->getValueID() <= ConstantDataLastVal; 74 } 75 }; 76 77 //===----------------------------------------------------------------------===// 78 /// This is the shared class of boolean and integer constants. This class 79 /// represents both boolean and integral constants. 80 /// Class for constant integers. 81 class ConstantInt final : public ConstantData { 82 friend class Constant; 83 friend class ConstantVector; 84 85 APInt Val; 86 87 ConstantInt(Type *Ty, const APInt &V); 88 89 void destroyConstantImpl(); 90 91 /// Return a ConstantInt with the specified value and an implied Type. The 92 /// type is the vector type whose integer element type corresponds to the bit 93 /// width of the value. 94 static ConstantInt *get(LLVMContext &Context, ElementCount EC, 95 const APInt &V); 96 97 public: 98 ConstantInt(const ConstantInt &) = delete; 99 100 static ConstantInt *getTrue(LLVMContext &Context); 101 static ConstantInt *getFalse(LLVMContext &Context); 102 static ConstantInt *getBool(LLVMContext &Context, bool V); 103 static Constant *getTrue(Type *Ty); 104 static Constant *getFalse(Type *Ty); 105 static Constant *getBool(Type *Ty, bool V); 106 107 /// If Ty is a vector type, return a Constant with a splat of the given 108 /// value. Otherwise return a ConstantInt for the given value. 109 static Constant *get(Type *Ty, uint64_t V, bool IsSigned = false); 110 111 /// Return a ConstantInt with the specified integer value for the specified 112 /// type. If the type is wider than 64 bits, the value will be zero-extended 113 /// to fit the type, unless IsSigned is true, in which case the value will 114 /// be interpreted as a 64-bit signed integer and sign-extended to fit 115 /// the type. 116 /// Get a ConstantInt for a specific value. 117 static ConstantInt *get(IntegerType *Ty, uint64_t V, bool IsSigned = false); 118 119 /// Return a ConstantInt with the specified value for the specified type. The 120 /// value V will be canonicalized to a an unsigned APInt. Accessing it with 121 /// either getSExtValue() or getZExtValue() will yield a correctly sized and 122 /// signed value for the type Ty. 123 /// Get a ConstantInt for a specific signed value. getSigned(IntegerType * Ty,int64_t V)124 static ConstantInt *getSigned(IntegerType *Ty, int64_t V) { 125 return get(Ty, V, true); 126 } getSigned(Type * Ty,int64_t V)127 static Constant *getSigned(Type *Ty, int64_t V) { 128 return get(Ty, V, true); 129 } 130 131 /// Return a ConstantInt with the specified value and an implied Type. The 132 /// type is the integer type that corresponds to the bit width of the value. 133 static ConstantInt *get(LLVMContext &Context, const APInt &V); 134 135 /// Return a ConstantInt constructed from the string strStart with the given 136 /// radix. 137 static ConstantInt *get(IntegerType *Ty, StringRef Str, uint8_t Radix); 138 139 /// If Ty is a vector type, return a Constant with a splat of the given 140 /// value. Otherwise return a ConstantInt for the given value. 141 static Constant *get(Type *Ty, const APInt &V); 142 143 /// Return the constant as an APInt value reference. This allows clients to 144 /// obtain a full-precision copy of the value. 145 /// Return the constant's value. getValue()146 inline const APInt &getValue() const { return Val; } 147 148 /// getBitWidth - Return the scalar bitwidth of this constant. getBitWidth()149 unsigned getBitWidth() const { return Val.getBitWidth(); } 150 151 /// Return the constant as a 64-bit unsigned integer value after it 152 /// has been zero extended as appropriate for the type of this constant. Note 153 /// that this method can assert if the value does not fit in 64 bits. 154 /// Return the zero extended value. getZExtValue()155 inline uint64_t getZExtValue() const { return Val.getZExtValue(); } 156 157 /// Return the constant as a 64-bit integer value after it has been sign 158 /// extended as appropriate for the type of this constant. Note that 159 /// this method can assert if the value does not fit in 64 bits. 160 /// Return the sign extended value. getSExtValue()161 inline int64_t getSExtValue() const { return Val.getSExtValue(); } 162 163 /// Return the constant as an llvm::MaybeAlign. 164 /// Note that this method can assert if the value does not fit in 64 bits or 165 /// is not a power of two. getMaybeAlignValue()166 inline MaybeAlign getMaybeAlignValue() const { 167 return MaybeAlign(getZExtValue()); 168 } 169 170 /// Return the constant as an llvm::Align, interpreting `0` as `Align(1)`. 171 /// Note that this method can assert if the value does not fit in 64 bits or 172 /// is not a power of two. getAlignValue()173 inline Align getAlignValue() const { 174 return getMaybeAlignValue().valueOrOne(); 175 } 176 177 /// A helper method that can be used to determine if the constant contained 178 /// within is equal to a constant. This only works for very small values, 179 /// because this is all that can be represented with all types. 180 /// Determine if this constant's value is same as an unsigned char. equalsInt(uint64_t V)181 bool equalsInt(uint64_t V) const { return Val == V; } 182 183 /// Variant of the getType() method to always return an IntegerType, which 184 /// reduces the amount of casting needed in parts of the compiler. getIntegerType()185 inline IntegerType *getIntegerType() const { 186 return cast<IntegerType>(Value::getType()); 187 } 188 189 /// This static method returns true if the type Ty is big enough to 190 /// represent the value V. This can be used to avoid having the get method 191 /// assert when V is larger than Ty can represent. Note that there are two 192 /// versions of this method, one for unsigned and one for signed integers. 193 /// Although ConstantInt canonicalizes everything to an unsigned integer, 194 /// the signed version avoids callers having to convert a signed quantity 195 /// to the appropriate unsigned type before calling the method. 196 /// @returns true if V is a valid value for type Ty 197 /// Determine if the value is in range for the given type. 198 static bool isValueValidForType(Type *Ty, uint64_t V); 199 static bool isValueValidForType(Type *Ty, int64_t V); 200 isNegative()201 bool isNegative() const { return Val.isNegative(); } 202 203 /// This is just a convenience method to make client code smaller for a 204 /// common code. It also correctly performs the comparison without the 205 /// potential for an assertion from getZExtValue(). isZero()206 bool isZero() const { return Val.isZero(); } 207 208 /// This is just a convenience method to make client code smaller for a 209 /// common case. It also correctly performs the comparison without the 210 /// potential for an assertion from getZExtValue(). 211 /// Determine if the value is one. isOne()212 bool isOne() const { return Val.isOne(); } 213 214 /// This function will return true iff every bit in this constant is set 215 /// to true. 216 /// @returns true iff this constant's bits are all set to true. 217 /// Determine if the value is all ones. isMinusOne()218 bool isMinusOne() const { return Val.isAllOnes(); } 219 220 /// This function will return true iff this constant represents the largest 221 /// value that may be represented by the constant's type. 222 /// @returns true iff this is the largest value that may be represented 223 /// by this type. 224 /// Determine if the value is maximal. isMaxValue(bool IsSigned)225 bool isMaxValue(bool IsSigned) const { 226 if (IsSigned) 227 return Val.isMaxSignedValue(); 228 else 229 return Val.isMaxValue(); 230 } 231 232 /// This function will return true iff this constant represents the smallest 233 /// value that may be represented by this constant's type. 234 /// @returns true if this is the smallest value that may be represented by 235 /// this type. 236 /// Determine if the value is minimal. isMinValue(bool IsSigned)237 bool isMinValue(bool IsSigned) const { 238 if (IsSigned) 239 return Val.isMinSignedValue(); 240 else 241 return Val.isMinValue(); 242 } 243 244 /// This function will return true iff this constant represents a value with 245 /// active bits bigger than 64 bits or a value greater than the given uint64_t 246 /// value. 247 /// @returns true iff this constant is greater or equal to the given number. 248 /// Determine if the value is greater or equal to the given number. uge(uint64_t Num)249 bool uge(uint64_t Num) const { return Val.uge(Num); } 250 251 /// getLimitedValue - If the value is smaller than the specified limit, 252 /// return it, otherwise return the limit value. This causes the value 253 /// to saturate to the limit. 254 /// @returns the min of the value of the constant and the specified value 255 /// Get the constant's value with a saturation limit 256 uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const { 257 return Val.getLimitedValue(Limit); 258 } 259 260 /// Methods to support type inquiry through isa, cast, and dyn_cast. classof(const Value * V)261 static bool classof(const Value *V) { 262 return V->getValueID() == ConstantIntVal; 263 } 264 }; 265 266 //===----------------------------------------------------------------------===// 267 /// ConstantFP - Floating Point Values [float, double] 268 /// 269 class ConstantFP final : public ConstantData { 270 friend class Constant; 271 friend class ConstantVector; 272 273 APFloat Val; 274 275 ConstantFP(Type *Ty, const APFloat &V); 276 277 void destroyConstantImpl(); 278 279 /// Return a ConstantFP with the specified value and an implied Type. The 280 /// type is the vector type whose element type has the same floating point 281 /// semantics as the value. 282 static ConstantFP *get(LLVMContext &Context, ElementCount EC, 283 const APFloat &V); 284 285 public: 286 ConstantFP(const ConstantFP &) = delete; 287 288 /// This returns a ConstantFP, or a vector containing a splat of a ConstantFP, 289 /// for the specified value in the specified type. This should only be used 290 /// for simple constant values like 2.0/1.0 etc, that are known-valid both as 291 /// host double and as the target format. 292 static Constant *get(Type *Ty, double V); 293 294 /// If Ty is a vector type, return a Constant with a splat of the given 295 /// value. Otherwise return a ConstantFP for the given value. 296 static Constant *get(Type *Ty, const APFloat &V); 297 298 static Constant *get(Type *Ty, StringRef Str); 299 static ConstantFP *get(LLVMContext &Context, const APFloat &V); 300 static Constant *getNaN(Type *Ty, bool Negative = false, 301 uint64_t Payload = 0); 302 static Constant *getQNaN(Type *Ty, bool Negative = false, 303 APInt *Payload = nullptr); 304 static Constant *getSNaN(Type *Ty, bool Negative = false, 305 APInt *Payload = nullptr); 306 static Constant *getZero(Type *Ty, bool Negative = false); getNegativeZero(Type * Ty)307 static Constant *getNegativeZero(Type *Ty) { return getZero(Ty, true); } 308 static Constant *getInfinity(Type *Ty, bool Negative = false); 309 310 /// Return true if Ty is big enough to represent V. 311 static bool isValueValidForType(Type *Ty, const APFloat &V); getValueAPF()312 inline const APFloat &getValueAPF() const { return Val; } getValue()313 inline const APFloat &getValue() const { return Val; } 314 315 /// Return true if the value is positive or negative zero. isZero()316 bool isZero() const { return Val.isZero(); } 317 318 /// Return true if the sign bit is set. isNegative()319 bool isNegative() const { return Val.isNegative(); } 320 321 /// Return true if the value is infinity isInfinity()322 bool isInfinity() const { return Val.isInfinity(); } 323 324 /// Return true if the value is a NaN. isNaN()325 bool isNaN() const { return Val.isNaN(); } 326 327 /// We don't rely on operator== working on double values, as it returns true 328 /// for things that are clearly not equal, like -0.0 and 0.0. 329 /// As such, this method can be used to do an exact bit-for-bit comparison of 330 /// two floating point values. The version with a double operand is retained 331 /// because it's so convenient to write isExactlyValue(2.0), but please use 332 /// it only for simple constants. 333 bool isExactlyValue(const APFloat &V) const; 334 isExactlyValue(double V)335 bool isExactlyValue(double V) const { 336 bool ignored; 337 APFloat FV(V); 338 FV.convert(Val.getSemantics(), APFloat::rmNearestTiesToEven, &ignored); 339 return isExactlyValue(FV); 340 } 341 342 /// Methods for support type inquiry through isa, cast, and dyn_cast: classof(const Value * V)343 static bool classof(const Value *V) { 344 return V->getValueID() == ConstantFPVal; 345 } 346 }; 347 348 //===----------------------------------------------------------------------===// 349 /// All zero aggregate value 350 /// 351 class ConstantAggregateZero final : public ConstantData { 352 friend class Constant; 353 ConstantAggregateZero(Type * Ty)354 explicit ConstantAggregateZero(Type *Ty) 355 : ConstantData(Ty, ConstantAggregateZeroVal) {} 356 357 void destroyConstantImpl(); 358 359 public: 360 ConstantAggregateZero(const ConstantAggregateZero &) = delete; 361 362 static ConstantAggregateZero *get(Type *Ty); 363 364 /// If this CAZ has array or vector type, return a zero with the right element 365 /// type. 366 Constant *getSequentialElement() const; 367 368 /// If this CAZ has struct type, return a zero with the right element type for 369 /// the specified element. 370 Constant *getStructElement(unsigned Elt) const; 371 372 /// Return a zero of the right value for the specified GEP index if we can, 373 /// otherwise return null (e.g. if C is a ConstantExpr). 374 Constant *getElementValue(Constant *C) const; 375 376 /// Return a zero of the right value for the specified GEP index. 377 Constant *getElementValue(unsigned Idx) const; 378 379 /// Return the number of elements in the array, vector, or struct. 380 ElementCount getElementCount() const; 381 382 /// Methods for support type inquiry through isa, cast, and dyn_cast: 383 /// classof(const Value * V)384 static bool classof(const Value *V) { 385 return V->getValueID() == ConstantAggregateZeroVal; 386 } 387 }; 388 389 /// Base class for aggregate constants (with operands). 390 /// 391 /// These constants are aggregates of other constants, which are stored as 392 /// operands. 393 /// 394 /// Subclasses are \a ConstantStruct, \a ConstantArray, and \a 395 /// ConstantVector. 396 /// 397 /// \note Some subclasses of \a ConstantData are semantically aggregates -- 398 /// such as \a ConstantDataArray -- but are not subclasses of this because they 399 /// use operands. 400 class ConstantAggregate : public Constant { 401 protected: 402 ConstantAggregate(Type *T, ValueTy VT, ArrayRef<Constant *> V); 403 404 public: 405 /// Transparently provide more efficient getOperand methods. 406 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant); 407 408 /// Methods for support type inquiry through isa, cast, and dyn_cast: classof(const Value * V)409 static bool classof(const Value *V) { 410 return V->getValueID() >= ConstantAggregateFirstVal && 411 V->getValueID() <= ConstantAggregateLastVal; 412 } 413 }; 414 415 template <> 416 struct OperandTraits<ConstantAggregate> 417 : public VariadicOperandTraits<ConstantAggregate> {}; 418 419 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantAggregate, Constant) 420 421 //===----------------------------------------------------------------------===// 422 /// ConstantArray - Constant Array Declarations 423 /// 424 class ConstantArray final : public ConstantAggregate { 425 friend struct ConstantAggrKeyType<ConstantArray>; 426 friend class Constant; 427 428 ConstantArray(ArrayType *T, ArrayRef<Constant *> Val); 429 430 void destroyConstantImpl(); 431 Value *handleOperandChangeImpl(Value *From, Value *To); 432 433 public: 434 // ConstantArray accessors 435 static Constant *get(ArrayType *T, ArrayRef<Constant *> V); 436 437 private: 438 static Constant *getImpl(ArrayType *T, ArrayRef<Constant *> V); 439 440 public: 441 /// Specialize the getType() method to always return an ArrayType, 442 /// which reduces the amount of casting needed in parts of the compiler. 443 inline ArrayType *getType() const { 444 return cast<ArrayType>(Value::getType()); 445 } 446 447 /// Methods for support type inquiry through isa, cast, and dyn_cast: 448 static bool classof(const Value *V) { 449 return V->getValueID() == ConstantArrayVal; 450 } 451 }; 452 453 //===----------------------------------------------------------------------===// 454 // Constant Struct Declarations 455 // 456 class ConstantStruct final : public ConstantAggregate { 457 friend struct ConstantAggrKeyType<ConstantStruct>; 458 friend class Constant; 459 460 ConstantStruct(StructType *T, ArrayRef<Constant *> Val); 461 462 void destroyConstantImpl(); 463 Value *handleOperandChangeImpl(Value *From, Value *To); 464 465 public: 466 // ConstantStruct accessors 467 static Constant *get(StructType *T, ArrayRef<Constant *> V); 468 469 template <typename... Csts> 470 static std::enable_if_t<are_base_of<Constant, Csts...>::value, Constant *> 471 get(StructType *T, Csts *...Vs) { 472 return get(T, ArrayRef<Constant *>({Vs...})); 473 } 474 475 /// Return an anonymous struct that has the specified elements. 476 /// If the struct is possibly empty, then you must specify a context. 477 static Constant *getAnon(ArrayRef<Constant *> V, bool Packed = false) { 478 return get(getTypeForElements(V, Packed), V); 479 } 480 static Constant *getAnon(LLVMContext &Ctx, ArrayRef<Constant *> V, 481 bool Packed = false) { 482 return get(getTypeForElements(Ctx, V, Packed), V); 483 } 484 485 /// Return an anonymous struct type to use for a constant with the specified 486 /// set of elements. The list must not be empty. 487 static StructType *getTypeForElements(ArrayRef<Constant *> V, 488 bool Packed = false); 489 /// This version of the method allows an empty list. 490 static StructType *getTypeForElements(LLVMContext &Ctx, 491 ArrayRef<Constant *> V, 492 bool Packed = false); 493 494 /// Specialization - reduce amount of casting. 495 inline StructType *getType() const { 496 return cast<StructType>(Value::getType()); 497 } 498 499 /// Methods for support type inquiry through isa, cast, and dyn_cast: 500 static bool classof(const Value *V) { 501 return V->getValueID() == ConstantStructVal; 502 } 503 }; 504 505 //===----------------------------------------------------------------------===// 506 /// Constant Vector Declarations 507 /// 508 class ConstantVector final : public ConstantAggregate { 509 friend struct ConstantAggrKeyType<ConstantVector>; 510 friend class Constant; 511 512 ConstantVector(VectorType *T, ArrayRef<Constant *> Val); 513 514 void destroyConstantImpl(); 515 Value *handleOperandChangeImpl(Value *From, Value *To); 516 517 public: 518 // ConstantVector accessors 519 static Constant *get(ArrayRef<Constant *> V); 520 521 private: 522 static Constant *getImpl(ArrayRef<Constant *> V); 523 524 public: 525 /// Return a ConstantVector with the specified constant in each element. 526 /// Note that this might not return an instance of ConstantVector 527 static Constant *getSplat(ElementCount EC, Constant *Elt); 528 529 /// Specialize the getType() method to always return a FixedVectorType, 530 /// which reduces the amount of casting needed in parts of the compiler. 531 inline FixedVectorType *getType() const { 532 return cast<FixedVectorType>(Value::getType()); 533 } 534 535 /// If all elements of the vector constant have the same value, return that 536 /// value. Otherwise, return nullptr. Ignore poison elements by setting 537 /// AllowPoison to true. 538 Constant *getSplatValue(bool AllowPoison = false) const; 539 540 /// Methods for support type inquiry through isa, cast, and dyn_cast: 541 static bool classof(const Value *V) { 542 return V->getValueID() == ConstantVectorVal; 543 } 544 }; 545 546 //===----------------------------------------------------------------------===// 547 /// A constant pointer value that points to null 548 /// 549 class ConstantPointerNull final : public ConstantData { 550 friend class Constant; 551 552 explicit ConstantPointerNull(PointerType *T) 553 : ConstantData(T, Value::ConstantPointerNullVal) {} 554 555 void destroyConstantImpl(); 556 557 public: 558 ConstantPointerNull(const ConstantPointerNull &) = delete; 559 560 /// Static factory methods - Return objects of the specified value 561 static ConstantPointerNull *get(PointerType *T); 562 563 /// Specialize the getType() method to always return an PointerType, 564 /// which reduces the amount of casting needed in parts of the compiler. 565 inline PointerType *getType() const { 566 return cast<PointerType>(Value::getType()); 567 } 568 569 /// Methods for support type inquiry through isa, cast, and dyn_cast: 570 static bool classof(const Value *V) { 571 return V->getValueID() == ConstantPointerNullVal; 572 } 573 }; 574 575 //===----------------------------------------------------------------------===// 576 /// ConstantDataSequential - A vector or array constant whose element type is a 577 /// simple 1/2/4/8-byte integer or half/bfloat/float/double, and whose elements 578 /// are just simple data values (i.e. ConstantInt/ConstantFP). This Constant 579 /// node has no operands because it stores all of the elements of the constant 580 /// as densely packed data, instead of as Value*'s. 581 /// 582 /// This is the common base class of ConstantDataArray and ConstantDataVector. 583 /// 584 class ConstantDataSequential : public ConstantData { 585 friend class LLVMContextImpl; 586 friend class Constant; 587 588 /// A pointer to the bytes underlying this constant (which is owned by the 589 /// uniquing StringMap). 590 const char *DataElements; 591 592 /// This forms a link list of ConstantDataSequential nodes that have 593 /// the same value but different type. For example, 0,0,0,1 could be a 4 594 /// element array of i8, or a 1-element array of i32. They'll both end up in 595 /// the same StringMap bucket, linked up. 596 std::unique_ptr<ConstantDataSequential> Next; 597 598 void destroyConstantImpl(); 599 600 protected: 601 explicit ConstantDataSequential(Type *ty, ValueTy VT, const char *Data) 602 : ConstantData(ty, VT), DataElements(Data) {} 603 604 static Constant *getImpl(StringRef Bytes, Type *Ty); 605 606 public: 607 ConstantDataSequential(const ConstantDataSequential &) = delete; 608 609 /// Return true if a ConstantDataSequential can be formed with a vector or 610 /// array of the specified element type. 611 /// ConstantDataArray only works with normal float and int types that are 612 /// stored densely in memory, not with things like i42 or x86_f80. 613 static bool isElementTypeCompatible(Type *Ty); 614 615 /// If this is a sequential container of integers (of any size), return the 616 /// specified element in the low bits of a uint64_t. 617 uint64_t getElementAsInteger(unsigned i) const; 618 619 /// If this is a sequential container of integers (of any size), return the 620 /// specified element as an APInt. 621 APInt getElementAsAPInt(unsigned i) const; 622 623 /// If this is a sequential container of floating point type, return the 624 /// specified element as an APFloat. 625 APFloat getElementAsAPFloat(unsigned i) const; 626 627 /// If this is an sequential container of floats, return the specified element 628 /// as a float. 629 float getElementAsFloat(unsigned i) const; 630 631 /// If this is an sequential container of doubles, return the specified 632 /// element as a double. 633 double getElementAsDouble(unsigned i) const; 634 635 /// Return a Constant for a specified index's element. 636 /// Note that this has to compute a new constant to return, so it isn't as 637 /// efficient as getElementAsInteger/Float/Double. 638 Constant *getElementAsConstant(unsigned i) const; 639 640 /// Return the element type of the array/vector. 641 Type *getElementType() const; 642 643 /// Return the number of elements in the array or vector. 644 unsigned getNumElements() const; 645 646 /// Return the size (in bytes) of each element in the array/vector. 647 /// The size of the elements is known to be a multiple of one byte. 648 uint64_t getElementByteSize() const; 649 650 /// This method returns true if this is an array of \p CharSize integers. 651 bool isString(unsigned CharSize = 8) const; 652 653 /// This method returns true if the array "isString", ends with a null byte, 654 /// and does not contains any other null bytes. 655 bool isCString() const; 656 657 /// If this array is isString(), then this method returns the array as a 658 /// StringRef. Otherwise, it asserts out. 659 StringRef getAsString() const { 660 assert(isString() && "Not a string"); 661 return getRawDataValues(); 662 } 663 664 /// If this array is isCString(), then this method returns the array (without 665 /// the trailing null byte) as a StringRef. Otherwise, it asserts out. 666 StringRef getAsCString() const { 667 assert(isCString() && "Isn't a C string"); 668 StringRef Str = getAsString(); 669 return Str.substr(0, Str.size() - 1); 670 } 671 672 /// Return the raw, underlying, bytes of this data. Note that this is an 673 /// extremely tricky thing to work with, as it exposes the host endianness of 674 /// the data elements. 675 StringRef getRawDataValues() const; 676 677 /// Methods for support type inquiry through isa, cast, and dyn_cast: 678 static bool classof(const Value *V) { 679 return V->getValueID() == ConstantDataArrayVal || 680 V->getValueID() == ConstantDataVectorVal; 681 } 682 683 private: 684 const char *getElementPointer(unsigned Elt) const; 685 }; 686 687 //===----------------------------------------------------------------------===// 688 /// An array constant whose element type is a simple 1/2/4/8-byte integer or 689 /// float/double, and whose elements are just simple data values 690 /// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it 691 /// stores all of the elements of the constant as densely packed data, instead 692 /// of as Value*'s. 693 class ConstantDataArray final : public ConstantDataSequential { 694 friend class ConstantDataSequential; 695 696 explicit ConstantDataArray(Type *ty, const char *Data) 697 : ConstantDataSequential(ty, ConstantDataArrayVal, Data) {} 698 699 public: 700 ConstantDataArray(const ConstantDataArray &) = delete; 701 702 /// get() constructor - Return a constant with array type with an element 703 /// count and element type matching the ArrayRef passed in. Note that this 704 /// can return a ConstantAggregateZero object. 705 template <typename ElementTy> 706 static Constant *get(LLVMContext &Context, ArrayRef<ElementTy> Elts) { 707 const char *Data = reinterpret_cast<const char *>(Elts.data()); 708 return getRaw(StringRef(Data, Elts.size() * sizeof(ElementTy)), Elts.size(), 709 Type::getScalarTy<ElementTy>(Context)); 710 } 711 712 /// get() constructor - ArrayTy needs to be compatible with 713 /// ArrayRef<ElementTy>. Calls get(LLVMContext, ArrayRef<ElementTy>). 714 template <typename ArrayTy> 715 static Constant *get(LLVMContext &Context, ArrayTy &Elts) { 716 return ConstantDataArray::get(Context, ArrayRef(Elts)); 717 } 718 719 /// getRaw() constructor - Return a constant with array type with an element 720 /// count and element type matching the NumElements and ElementTy parameters 721 /// passed in. Note that this can return a ConstantAggregateZero object. 722 /// ElementTy must be one of i8/i16/i32/i64/half/bfloat/float/double. Data is 723 /// the buffer containing the elements. Be careful to make sure Data uses the 724 /// right endianness, the buffer will be used as-is. 725 static Constant *getRaw(StringRef Data, uint64_t NumElements, 726 Type *ElementTy) { 727 Type *Ty = ArrayType::get(ElementTy, NumElements); 728 return getImpl(Data, Ty); 729 } 730 731 /// getFP() constructors - Return a constant of array type with a float 732 /// element type taken from argument `ElementType', and count taken from 733 /// argument `Elts'. The amount of bits of the contained type must match the 734 /// number of bits of the type contained in the passed in ArrayRef. 735 /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note 736 /// that this can return a ConstantAggregateZero object. 737 static Constant *getFP(Type *ElementType, ArrayRef<uint16_t> Elts); 738 static Constant *getFP(Type *ElementType, ArrayRef<uint32_t> Elts); 739 static Constant *getFP(Type *ElementType, ArrayRef<uint64_t> Elts); 740 741 /// This method constructs a CDS and initializes it with a text string. 742 /// The default behavior (AddNull==true) causes a null terminator to 743 /// be placed at the end of the array (increasing the length of the string by 744 /// one more than the StringRef would normally indicate. Pass AddNull=false 745 /// to disable this behavior. 746 static Constant *getString(LLVMContext &Context, StringRef Initializer, 747 bool AddNull = true); 748 749 /// Specialize the getType() method to always return an ArrayType, 750 /// which reduces the amount of casting needed in parts of the compiler. 751 inline ArrayType *getType() const { 752 return cast<ArrayType>(Value::getType()); 753 } 754 755 /// Methods for support type inquiry through isa, cast, and dyn_cast: 756 static bool classof(const Value *V) { 757 return V->getValueID() == ConstantDataArrayVal; 758 } 759 }; 760 761 //===----------------------------------------------------------------------===// 762 /// A vector constant whose element type is a simple 1/2/4/8-byte integer or 763 /// float/double, and whose elements are just simple data values 764 /// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it 765 /// stores all of the elements of the constant as densely packed data, instead 766 /// of as Value*'s. 767 class ConstantDataVector final : public ConstantDataSequential { 768 friend class ConstantDataSequential; 769 770 explicit ConstantDataVector(Type *ty, const char *Data) 771 : ConstantDataSequential(ty, ConstantDataVectorVal, Data), 772 IsSplatSet(false) {} 773 // Cache whether or not the constant is a splat. 774 mutable bool IsSplatSet : 1; 775 mutable bool IsSplat : 1; 776 bool isSplatData() const; 777 778 public: 779 ConstantDataVector(const ConstantDataVector &) = delete; 780 781 /// get() constructors - Return a constant with vector type with an element 782 /// count and element type matching the ArrayRef passed in. Note that this 783 /// can return a ConstantAggregateZero object. 784 static Constant *get(LLVMContext &Context, ArrayRef<uint8_t> Elts); 785 static Constant *get(LLVMContext &Context, ArrayRef<uint16_t> Elts); 786 static Constant *get(LLVMContext &Context, ArrayRef<uint32_t> Elts); 787 static Constant *get(LLVMContext &Context, ArrayRef<uint64_t> Elts); 788 static Constant *get(LLVMContext &Context, ArrayRef<float> Elts); 789 static Constant *get(LLVMContext &Context, ArrayRef<double> Elts); 790 791 /// getRaw() constructor - Return a constant with vector type with an element 792 /// count and element type matching the NumElements and ElementTy parameters 793 /// passed in. Note that this can return a ConstantAggregateZero object. 794 /// ElementTy must be one of i8/i16/i32/i64/half/bfloat/float/double. Data is 795 /// the buffer containing the elements. Be careful to make sure Data uses the 796 /// right endianness, the buffer will be used as-is. 797 static Constant *getRaw(StringRef Data, uint64_t NumElements, 798 Type *ElementTy) { 799 Type *Ty = VectorType::get(ElementTy, ElementCount::getFixed(NumElements)); 800 return getImpl(Data, Ty); 801 } 802 803 /// getFP() constructors - Return a constant of vector type with a float 804 /// element type taken from argument `ElementType', and count taken from 805 /// argument `Elts'. The amount of bits of the contained type must match the 806 /// number of bits of the type contained in the passed in ArrayRef. 807 /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note 808 /// that this can return a ConstantAggregateZero object. 809 static Constant *getFP(Type *ElementType, ArrayRef<uint16_t> Elts); 810 static Constant *getFP(Type *ElementType, ArrayRef<uint32_t> Elts); 811 static Constant *getFP(Type *ElementType, ArrayRef<uint64_t> Elts); 812 813 /// Return a ConstantVector with the specified constant in each element. 814 /// The specified constant has to be a of a compatible type (i8/i16/ 815 /// i32/i64/half/bfloat/float/double) and must be a ConstantFP or ConstantInt. 816 static Constant *getSplat(unsigned NumElts, Constant *Elt); 817 818 /// Returns true if this is a splat constant, meaning that all elements have 819 /// the same value. 820 bool isSplat() const; 821 822 /// If this is a splat constant, meaning that all of the elements have the 823 /// same value, return that value. Otherwise return NULL. 824 Constant *getSplatValue() const; 825 826 /// Specialize the getType() method to always return a FixedVectorType, 827 /// which reduces the amount of casting needed in parts of the compiler. 828 inline FixedVectorType *getType() const { 829 return cast<FixedVectorType>(Value::getType()); 830 } 831 832 /// Methods for support type inquiry through isa, cast, and dyn_cast: 833 static bool classof(const Value *V) { 834 return V->getValueID() == ConstantDataVectorVal; 835 } 836 }; 837 838 //===----------------------------------------------------------------------===// 839 /// A constant token which is empty 840 /// 841 class ConstantTokenNone final : public ConstantData { 842 friend class Constant; 843 844 explicit ConstantTokenNone(LLVMContext &Context) 845 : ConstantData(Type::getTokenTy(Context), ConstantTokenNoneVal) {} 846 847 void destroyConstantImpl(); 848 849 public: 850 ConstantTokenNone(const ConstantTokenNone &) = delete; 851 852 /// Return the ConstantTokenNone. 853 static ConstantTokenNone *get(LLVMContext &Context); 854 855 /// Methods to support type inquiry through isa, cast, and dyn_cast. 856 static bool classof(const Value *V) { 857 return V->getValueID() == ConstantTokenNoneVal; 858 } 859 }; 860 861 /// A constant target extension type default initializer 862 class ConstantTargetNone final : public ConstantData { 863 friend class Constant; 864 865 explicit ConstantTargetNone(TargetExtType *T) 866 : ConstantData(T, Value::ConstantTargetNoneVal) {} 867 868 void destroyConstantImpl(); 869 870 public: 871 ConstantTargetNone(const ConstantTargetNone &) = delete; 872 873 /// Static factory methods - Return objects of the specified value. 874 static ConstantTargetNone *get(TargetExtType *T); 875 876 /// Specialize the getType() method to always return an TargetExtType, 877 /// which reduces the amount of casting needed in parts of the compiler. 878 inline TargetExtType *getType() const { 879 return cast<TargetExtType>(Value::getType()); 880 } 881 882 /// Methods for support type inquiry through isa, cast, and dyn_cast. 883 static bool classof(const Value *V) { 884 return V->getValueID() == ConstantTargetNoneVal; 885 } 886 }; 887 888 /// The address of a basic block. 889 /// 890 class BlockAddress final : public Constant { 891 friend class Constant; 892 893 BlockAddress(Function *F, BasicBlock *BB); 894 895 void *operator new(size_t S) { return User::operator new(S, 2); } 896 897 void destroyConstantImpl(); 898 Value *handleOperandChangeImpl(Value *From, Value *To); 899 900 public: 901 void operator delete(void *Ptr) { User::operator delete(Ptr); } 902 903 /// Return a BlockAddress for the specified function and basic block. 904 static BlockAddress *get(Function *F, BasicBlock *BB); 905 906 /// Return a BlockAddress for the specified basic block. The basic 907 /// block must be embedded into a function. 908 static BlockAddress *get(BasicBlock *BB); 909 910 /// Lookup an existing \c BlockAddress constant for the given BasicBlock. 911 /// 912 /// \returns 0 if \c !BB->hasAddressTaken(), otherwise the \c BlockAddress. 913 static BlockAddress *lookup(const BasicBlock *BB); 914 915 /// Transparently provide more efficient getOperand methods. 916 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 917 918 Function *getFunction() const { return (Function *)Op<0>().get(); } 919 BasicBlock *getBasicBlock() const { return (BasicBlock *)Op<1>().get(); } 920 921 /// Methods for support type inquiry through isa, cast, and dyn_cast: 922 static bool classof(const Value *V) { 923 return V->getValueID() == BlockAddressVal; 924 } 925 }; 926 927 template <> 928 struct OperandTraits<BlockAddress> 929 : public FixedNumOperandTraits<BlockAddress, 2> {}; 930 931 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BlockAddress, Value) 932 933 /// Wrapper for a function that represents a value that 934 /// functionally represents the original function. This can be a function, 935 /// global alias to a function, or an ifunc. 936 class DSOLocalEquivalent final : public Constant { 937 friend class Constant; 938 939 DSOLocalEquivalent(GlobalValue *GV); 940 941 void *operator new(size_t S) { return User::operator new(S, 1); } 942 943 void destroyConstantImpl(); 944 Value *handleOperandChangeImpl(Value *From, Value *To); 945 946 public: 947 void operator delete(void *Ptr) { User::operator delete(Ptr); } 948 949 /// Return a DSOLocalEquivalent for the specified global value. 950 static DSOLocalEquivalent *get(GlobalValue *GV); 951 952 /// Transparently provide more efficient getOperand methods. 953 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 954 955 GlobalValue *getGlobalValue() const { 956 return cast<GlobalValue>(Op<0>().get()); 957 } 958 959 /// Methods for support type inquiry through isa, cast, and dyn_cast: 960 static bool classof(const Value *V) { 961 return V->getValueID() == DSOLocalEquivalentVal; 962 } 963 }; 964 965 template <> 966 struct OperandTraits<DSOLocalEquivalent> 967 : public FixedNumOperandTraits<DSOLocalEquivalent, 1> {}; 968 969 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(DSOLocalEquivalent, Value) 970 971 /// Wrapper for a value that won't be replaced with a CFI jump table 972 /// pointer in LowerTypeTestsModule. 973 class NoCFIValue final : public Constant { 974 friend class Constant; 975 976 NoCFIValue(GlobalValue *GV); 977 978 void *operator new(size_t S) { return User::operator new(S, 1); } 979 980 void destroyConstantImpl(); 981 Value *handleOperandChangeImpl(Value *From, Value *To); 982 983 public: 984 /// Return a NoCFIValue for the specified function. 985 static NoCFIValue *get(GlobalValue *GV); 986 987 /// Transparently provide more efficient getOperand methods. 988 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 989 990 GlobalValue *getGlobalValue() const { 991 return cast<GlobalValue>(Op<0>().get()); 992 } 993 994 /// NoCFIValue is always a pointer. 995 PointerType *getType() const { 996 return cast<PointerType>(Value::getType()); 997 } 998 999 /// Methods for support type inquiry through isa, cast, and dyn_cast: 1000 static bool classof(const Value *V) { 1001 return V->getValueID() == NoCFIValueVal; 1002 } 1003 }; 1004 1005 template <> 1006 struct OperandTraits<NoCFIValue> : public FixedNumOperandTraits<NoCFIValue, 1> { 1007 }; 1008 1009 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(NoCFIValue, Value) 1010 1011 /// A signed pointer, in the ptrauth sense. 1012 class ConstantPtrAuth final : public Constant { 1013 friend struct ConstantPtrAuthKeyType; 1014 friend class Constant; 1015 1016 ConstantPtrAuth(Constant *Ptr, ConstantInt *Key, ConstantInt *Disc, 1017 Constant *AddrDisc); 1018 1019 void *operator new(size_t s) { return User::operator new(s, 4); } 1020 1021 void destroyConstantImpl(); 1022 Value *handleOperandChangeImpl(Value *From, Value *To); 1023 1024 public: 1025 /// Return a pointer signed with the specified parameters. 1026 static ConstantPtrAuth *get(Constant *Ptr, ConstantInt *Key, 1027 ConstantInt *Disc, Constant *AddrDisc); 1028 1029 /// Produce a new ptrauth expression signing the given value using 1030 /// the same schema as is stored in one. 1031 ConstantPtrAuth *getWithSameSchema(Constant *Pointer) const; 1032 1033 /// Transparently provide more efficient getOperand methods. 1034 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant); 1035 1036 /// The pointer that is signed in this ptrauth signed pointer. 1037 Constant *getPointer() const { return cast<Constant>(Op<0>().get()); } 1038 1039 /// The Key ID, an i32 constant. 1040 ConstantInt *getKey() const { return cast<ConstantInt>(Op<1>().get()); } 1041 1042 /// The integer discriminator, an i64 constant, or 0. 1043 ConstantInt *getDiscriminator() const { 1044 return cast<ConstantInt>(Op<2>().get()); 1045 } 1046 1047 /// The address discriminator if any, or the null constant. 1048 /// If present, this must be a value equivalent to the storage location of 1049 /// the only global-initializer user of the ptrauth signed pointer. 1050 Constant *getAddrDiscriminator() const { 1051 return cast<Constant>(Op<3>().get()); 1052 } 1053 1054 /// Whether there is any non-null address discriminator. 1055 bool hasAddressDiscriminator() const { 1056 return !getAddrDiscriminator()->isNullValue(); 1057 } 1058 1059 /// Check whether an authentication operation with key \p Key and (possibly 1060 /// blended) discriminator \p Discriminator is known to be compatible with 1061 /// this ptrauth signed pointer. 1062 bool isKnownCompatibleWith(const Value *Key, const Value *Discriminator, 1063 const DataLayout &DL) const; 1064 1065 /// Methods for support type inquiry through isa, cast, and dyn_cast: 1066 static bool classof(const Value *V) { 1067 return V->getValueID() == ConstantPtrAuthVal; 1068 } 1069 }; 1070 1071 template <> 1072 struct OperandTraits<ConstantPtrAuth> 1073 : public FixedNumOperandTraits<ConstantPtrAuth, 4> {}; 1074 1075 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPtrAuth, Constant) 1076 1077 //===----------------------------------------------------------------------===// 1078 /// A constant value that is initialized with an expression using 1079 /// other constant values. 1080 /// 1081 /// This class uses the standard Instruction opcodes to define the various 1082 /// constant expressions. The Opcode field for the ConstantExpr class is 1083 /// maintained in the Value::SubclassData field. 1084 class ConstantExpr : public Constant { 1085 friend struct ConstantExprKeyType; 1086 friend class Constant; 1087 1088 void destroyConstantImpl(); 1089 Value *handleOperandChangeImpl(Value *From, Value *To); 1090 1091 protected: 1092 ConstantExpr(Type *ty, unsigned Opcode, Use *Ops, unsigned NumOps) 1093 : Constant(ty, ConstantExprVal, Ops, NumOps) { 1094 // Operation type (an Instruction opcode) is stored as the SubclassData. 1095 setValueSubclassData(Opcode); 1096 } 1097 1098 ~ConstantExpr() = default; 1099 1100 public: 1101 // Static methods to construct a ConstantExpr of different kinds. Note that 1102 // these methods may return a object that is not an instance of the 1103 // ConstantExpr class, because they will attempt to fold the constant 1104 // expression into something simpler if possible. 1105 1106 /// getAlignOf constant expr - computes the alignment of a type in a target 1107 /// independent way (Note: the return type is an i64). 1108 static Constant *getAlignOf(Type *Ty); 1109 1110 /// getSizeOf constant expr - computes the (alloc) size of a type (in 1111 /// address-units, not bits) in a target independent way (Note: the return 1112 /// type is an i64). 1113 /// 1114 static Constant *getSizeOf(Type *Ty); 1115 1116 static Constant *getNeg(Constant *C, bool HasNSW = false); 1117 static Constant *getNot(Constant *C); 1118 static Constant *getAdd(Constant *C1, Constant *C2, bool HasNUW = false, 1119 bool HasNSW = false); 1120 static Constant *getSub(Constant *C1, Constant *C2, bool HasNUW = false, 1121 bool HasNSW = false); 1122 static Constant *getMul(Constant *C1, Constant *C2, bool HasNUW = false, 1123 bool HasNSW = false); 1124 static Constant *getXor(Constant *C1, Constant *C2); 1125 static Constant *getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced = false); 1126 static Constant *getPtrToInt(Constant *C, Type *Ty, 1127 bool OnlyIfReduced = false); 1128 static Constant *getIntToPtr(Constant *C, Type *Ty, 1129 bool OnlyIfReduced = false); 1130 static Constant *getBitCast(Constant *C, Type *Ty, 1131 bool OnlyIfReduced = false); 1132 static Constant *getAddrSpaceCast(Constant *C, Type *Ty, 1133 bool OnlyIfReduced = false); 1134 1135 static Constant *getNSWNeg(Constant *C) { return getNeg(C, /*HasNSW=*/true); } 1136 1137 static Constant *getNSWAdd(Constant *C1, Constant *C2) { 1138 return getAdd(C1, C2, false, true); 1139 } 1140 1141 static Constant *getNUWAdd(Constant *C1, Constant *C2) { 1142 return getAdd(C1, C2, true, false); 1143 } 1144 1145 static Constant *getNSWSub(Constant *C1, Constant *C2) { 1146 return getSub(C1, C2, false, true); 1147 } 1148 1149 static Constant *getNUWSub(Constant *C1, Constant *C2) { 1150 return getSub(C1, C2, true, false); 1151 } 1152 1153 static Constant *getNSWMul(Constant *C1, Constant *C2) { 1154 return getMul(C1, C2, false, true); 1155 } 1156 1157 static Constant *getNUWMul(Constant *C1, Constant *C2) { 1158 return getMul(C1, C2, true, false); 1159 } 1160 1161 /// If C is a scalar/fixed width vector of known powers of 2, then this 1162 /// function returns a new scalar/fixed width vector obtained from logBase2 1163 /// of C. Undef vector elements are set to zero. 1164 /// Return a null pointer otherwise. 1165 static Constant *getExactLogBase2(Constant *C); 1166 1167 /// Return the identity constant for a binary opcode. 1168 /// If the binop is not commutative, callers can acquire the operand 1 1169 /// identity constant by setting AllowRHSConstant to true. For example, any 1170 /// shift has a zero identity constant for operand 1: X shift 0 = X. If this 1171 /// is a fadd/fsub operation and we don't care about signed zeros, then 1172 /// setting NSZ to true returns the identity +0.0 instead of -0.0. Return 1173 /// nullptr if the operator does not have an identity constant. 1174 static Constant *getBinOpIdentity(unsigned Opcode, Type *Ty, 1175 bool AllowRHSConstant = false, 1176 bool NSZ = false); 1177 1178 static Constant *getIntrinsicIdentity(Intrinsic::ID, Type *Ty); 1179 1180 /// Return the identity constant for a binary or intrinsic Instruction. 1181 /// The identity constant C is defined as X op C = X and C op X = X where C 1182 /// and X are the first two operands, and the operation is commutative. 1183 static Constant *getIdentity(Instruction *I, Type *Ty, 1184 bool AllowRHSConstant = false, bool NSZ = false); 1185 1186 /// Return the absorbing element for the given binary 1187 /// operation, i.e. a constant C such that X op C = C and C op X = C for 1188 /// every X. For example, this returns zero for integer multiplication. 1189 /// It returns null if the operator doesn't have an absorbing element. 1190 static Constant *getBinOpAbsorber(unsigned Opcode, Type *Ty); 1191 1192 /// Transparently provide more efficient getOperand methods. 1193 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant); 1194 1195 /// Convenience function for getting a Cast operation. 1196 /// 1197 /// \param ops The opcode for the conversion 1198 /// \param C The constant to be converted 1199 /// \param Ty The type to which the constant is converted 1200 /// \param OnlyIfReduced see \a getWithOperands() docs. 1201 static Constant *getCast(unsigned ops, Constant *C, Type *Ty, 1202 bool OnlyIfReduced = false); 1203 1204 // Create a Trunc or BitCast cast constant expression 1205 static Constant * 1206 getTruncOrBitCast(Constant *C, ///< The constant to trunc or bitcast 1207 Type *Ty ///< The type to trunc or bitcast C to 1208 ); 1209 1210 /// Create a BitCast, AddrSpaceCast, or a PtrToInt cast constant 1211 /// expression. 1212 static Constant * 1213 getPointerCast(Constant *C, ///< The pointer value to be casted (operand 0) 1214 Type *Ty ///< The type to which cast should be made 1215 ); 1216 1217 /// Create a BitCast or AddrSpaceCast for a pointer type depending on 1218 /// the address space. 1219 static Constant *getPointerBitCastOrAddrSpaceCast( 1220 Constant *C, ///< The constant to addrspacecast or bitcast 1221 Type *Ty ///< The type to bitcast or addrspacecast C to 1222 ); 1223 1224 /// Return true if this is a convert constant expression 1225 bool isCast() const; 1226 1227 /// get - Return a binary or shift operator constant expression, 1228 /// folding if possible. 1229 /// 1230 /// \param OnlyIfReducedTy see \a getWithOperands() docs. 1231 static Constant *get(unsigned Opcode, Constant *C1, Constant *C2, 1232 unsigned Flags = 0, Type *OnlyIfReducedTy = nullptr); 1233 1234 /// Getelementptr form. Value* is only accepted for convenience; 1235 /// all elements must be Constants. 1236 /// 1237 /// \param InRange the inrange range if present or std::nullopt. 1238 /// \param OnlyIfReducedTy see \a getWithOperands() docs. 1239 static Constant * 1240 getGetElementPtr(Type *Ty, Constant *C, ArrayRef<Constant *> IdxList, 1241 GEPNoWrapFlags NW = GEPNoWrapFlags::none(), 1242 std::optional<ConstantRange> InRange = std::nullopt, 1243 Type *OnlyIfReducedTy = nullptr) { 1244 return getGetElementPtr( 1245 Ty, C, ArrayRef((Value *const *)IdxList.data(), IdxList.size()), NW, 1246 InRange, OnlyIfReducedTy); 1247 } 1248 static Constant * 1249 getGetElementPtr(Type *Ty, Constant *C, Constant *Idx, 1250 GEPNoWrapFlags NW = GEPNoWrapFlags::none(), 1251 std::optional<ConstantRange> InRange = std::nullopt, 1252 Type *OnlyIfReducedTy = nullptr) { 1253 // This form of the function only exists to avoid ambiguous overload 1254 // warnings about whether to convert Idx to ArrayRef<Constant *> or 1255 // ArrayRef<Value *>. 1256 return getGetElementPtr(Ty, C, cast<Value>(Idx), NW, InRange, 1257 OnlyIfReducedTy); 1258 } 1259 static Constant * 1260 getGetElementPtr(Type *Ty, Constant *C, ArrayRef<Value *> IdxList, 1261 GEPNoWrapFlags NW = GEPNoWrapFlags::none(), 1262 std::optional<ConstantRange> InRange = std::nullopt, 1263 Type *OnlyIfReducedTy = nullptr); 1264 1265 /// Create an "inbounds" getelementptr. See the documentation for the 1266 /// "inbounds" flag in LangRef.html for details. 1267 static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C, 1268 ArrayRef<Constant *> IdxList) { 1269 return getGetElementPtr(Ty, C, IdxList, GEPNoWrapFlags::inBounds()); 1270 } 1271 static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C, 1272 Constant *Idx) { 1273 // This form of the function only exists to avoid ambiguous overload 1274 // warnings about whether to convert Idx to ArrayRef<Constant *> or 1275 // ArrayRef<Value *>. 1276 return getGetElementPtr(Ty, C, Idx, GEPNoWrapFlags::inBounds()); 1277 } 1278 static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C, 1279 ArrayRef<Value *> IdxList) { 1280 return getGetElementPtr(Ty, C, IdxList, GEPNoWrapFlags::inBounds()); 1281 } 1282 1283 static Constant *getExtractElement(Constant *Vec, Constant *Idx, 1284 Type *OnlyIfReducedTy = nullptr); 1285 static Constant *getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx, 1286 Type *OnlyIfReducedTy = nullptr); 1287 static Constant *getShuffleVector(Constant *V1, Constant *V2, 1288 ArrayRef<int> Mask, 1289 Type *OnlyIfReducedTy = nullptr); 1290 1291 /// Return the opcode at the root of this constant expression 1292 unsigned getOpcode() const { return getSubclassDataFromValue(); } 1293 1294 /// Assert that this is a shufflevector and return the mask. See class 1295 /// ShuffleVectorInst for a description of the mask representation. 1296 ArrayRef<int> getShuffleMask() const; 1297 1298 /// Assert that this is a shufflevector and return the mask. 1299 /// 1300 /// TODO: This is a temporary hack until we update the bitcode format for 1301 /// shufflevector. 1302 Constant *getShuffleMaskForBitcode() const; 1303 1304 /// Return a string representation for an opcode. 1305 const char *getOpcodeName() const; 1306 1307 /// This returns the current constant expression with the operands replaced 1308 /// with the specified values. The specified array must have the same number 1309 /// of operands as our current one. 1310 Constant *getWithOperands(ArrayRef<Constant *> Ops) const { 1311 return getWithOperands(Ops, getType()); 1312 } 1313 1314 /// Get the current expression with the operands replaced. 1315 /// 1316 /// Return the current constant expression with the operands replaced with \c 1317 /// Ops and the type with \c Ty. The new operands must have the same number 1318 /// as the current ones. 1319 /// 1320 /// If \c OnlyIfReduced is \c true, nullptr will be returned unless something 1321 /// gets constant-folded, the type changes, or the expression is otherwise 1322 /// canonicalized. This parameter should almost always be \c false. 1323 Constant *getWithOperands(ArrayRef<Constant *> Ops, Type *Ty, 1324 bool OnlyIfReduced = false, 1325 Type *SrcTy = nullptr) const; 1326 1327 /// Returns an Instruction which implements the same operation as this 1328 /// ConstantExpr. It is not inserted into any basic block. 1329 /// 1330 /// A better approach to this could be to have a constructor for Instruction 1331 /// which would take a ConstantExpr parameter, but that would have spread 1332 /// implementation details of ConstantExpr outside of Constants.cpp, which 1333 /// would make it harder to remove ConstantExprs altogether. 1334 Instruction *getAsInstruction() const; 1335 1336 /// Whether creating a constant expression for this binary operator is 1337 /// desirable. 1338 static bool isDesirableBinOp(unsigned Opcode); 1339 1340 /// Whether creating a constant expression for this binary operator is 1341 /// supported. 1342 static bool isSupportedBinOp(unsigned Opcode); 1343 1344 /// Whether creating a constant expression for this cast is desirable. 1345 static bool isDesirableCastOp(unsigned Opcode); 1346 1347 /// Whether creating a constant expression for this cast is supported. 1348 static bool isSupportedCastOp(unsigned Opcode); 1349 1350 /// Whether creating a constant expression for this getelementptr type is 1351 /// supported. 1352 static bool isSupportedGetElementPtr(const Type *SrcElemTy) { 1353 return !SrcElemTy->isScalableTy(); 1354 } 1355 1356 /// Methods for support type inquiry through isa, cast, and dyn_cast: 1357 static bool classof(const Value *V) { 1358 return V->getValueID() == ConstantExprVal; 1359 } 1360 1361 private: 1362 // Shadow Value::setValueSubclassData with a private forwarding method so that 1363 // subclasses cannot accidentally use it. 1364 void setValueSubclassData(unsigned short D) { 1365 Value::setValueSubclassData(D); 1366 } 1367 }; 1368 1369 template <> 1370 struct OperandTraits<ConstantExpr> 1371 : public VariadicOperandTraits<ConstantExpr, 1> {}; 1372 1373 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantExpr, Constant) 1374 1375 //===----------------------------------------------------------------------===// 1376 /// 'undef' values are things that do not have specified contents. 1377 /// These are used for a variety of purposes, including global variable 1378 /// initializers and operands to instructions. 'undef' values can occur with 1379 /// any first-class type. 1380 /// 1381 /// Undef values aren't exactly constants; if they have multiple uses, they 1382 /// can appear to have different bit patterns at each use. See 1383 /// LangRef.html#undefvalues for details. 1384 /// 1385 class UndefValue : public ConstantData { 1386 friend class Constant; 1387 1388 explicit UndefValue(Type *T) : ConstantData(T, UndefValueVal) {} 1389 1390 void destroyConstantImpl(); 1391 1392 protected: 1393 explicit UndefValue(Type *T, ValueTy vty) : ConstantData(T, vty) {} 1394 1395 public: 1396 UndefValue(const UndefValue &) = delete; 1397 1398 /// Static factory methods - Return an 'undef' object of the specified type. 1399 static UndefValue *get(Type *T); 1400 1401 /// If this Undef has array or vector type, return a undef with the right 1402 /// element type. 1403 UndefValue *getSequentialElement() const; 1404 1405 /// If this undef has struct type, return a undef with the right element type 1406 /// for the specified element. 1407 UndefValue *getStructElement(unsigned Elt) const; 1408 1409 /// Return an undef of the right value for the specified GEP index if we can, 1410 /// otherwise return null (e.g. if C is a ConstantExpr). 1411 UndefValue *getElementValue(Constant *C) const; 1412 1413 /// Return an undef of the right value for the specified GEP index. 1414 UndefValue *getElementValue(unsigned Idx) const; 1415 1416 /// Return the number of elements in the array, vector, or struct. 1417 unsigned getNumElements() const; 1418 1419 /// Methods for support type inquiry through isa, cast, and dyn_cast: 1420 static bool classof(const Value *V) { 1421 return V->getValueID() == UndefValueVal || 1422 V->getValueID() == PoisonValueVal; 1423 } 1424 }; 1425 1426 //===----------------------------------------------------------------------===// 1427 /// In order to facilitate speculative execution, many instructions do not 1428 /// invoke immediate undefined behavior when provided with illegal operands, 1429 /// and return a poison value instead. 1430 /// 1431 /// see LangRef.html#poisonvalues for details. 1432 /// 1433 class PoisonValue final : public UndefValue { 1434 friend class Constant; 1435 1436 explicit PoisonValue(Type *T) : UndefValue(T, PoisonValueVal) {} 1437 1438 void destroyConstantImpl(); 1439 1440 public: 1441 PoisonValue(const PoisonValue &) = delete; 1442 1443 /// Static factory methods - Return an 'poison' object of the specified type. 1444 static PoisonValue *get(Type *T); 1445 1446 /// If this poison has array or vector type, return a poison with the right 1447 /// element type. 1448 PoisonValue *getSequentialElement() const; 1449 1450 /// If this poison has struct type, return a poison with the right element 1451 /// type for the specified element. 1452 PoisonValue *getStructElement(unsigned Elt) const; 1453 1454 /// Return an poison of the right value for the specified GEP index if we can, 1455 /// otherwise return null (e.g. if C is a ConstantExpr). 1456 PoisonValue *getElementValue(Constant *C) const; 1457 1458 /// Return an poison of the right value for the specified GEP index. 1459 PoisonValue *getElementValue(unsigned Idx) const; 1460 1461 /// Methods for support type inquiry through isa, cast, and dyn_cast: 1462 static bool classof(const Value *V) { 1463 return V->getValueID() == PoisonValueVal; 1464 } 1465 }; 1466 1467 } // end namespace llvm 1468 1469 #endif // LLVM_IR_CONSTANTS_H 1470