xref: /linux/security/selinux/ss/services.c (revision 2c1ed907520c50326b8f604907a8478b27881a2e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Implementation of the security services.
4  *
5  * Authors : Stephen Smalley, <stephen.smalley.work@gmail.com>
6  *	     James Morris <jmorris@redhat.com>
7  *
8  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9  *
10  *	Support for enhanced MLS infrastructure.
11  *	Support for context based audit filters.
12  *
13  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14  *
15  *	Added conditional policy language extensions
16  *
17  * Updated: Hewlett-Packard <paul@paul-moore.com>
18  *
19  *      Added support for NetLabel
20  *      Added support for the policy capability bitmap
21  *
22  * Updated: Chad Sellers <csellers@tresys.com>
23  *
24  *  Added validation of kernel classes and permissions
25  *
26  * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27  *
28  *  Added support for bounds domain and audit messaged on masked permissions
29  *
30  * Updated: Guido Trentalancia <guido@trentalancia.com>
31  *
32  *  Added support for runtime switching of the policy type
33  *
34  * Copyright (C) 2008, 2009 NEC Corporation
35  * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
36  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
37  * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
38  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
39  */
40 #include <linux/kernel.h>
41 #include <linux/slab.h>
42 #include <linux/string.h>
43 #include <linux/spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/errno.h>
46 #include <linux/in.h>
47 #include <linux/sched.h>
48 #include <linux/audit.h>
49 #include <linux/vmalloc.h>
50 #include <linux/lsm_hooks.h>
51 #include <net/netlabel.h>
52 
53 #include "flask.h"
54 #include "avc.h"
55 #include "avc_ss.h"
56 #include "security.h"
57 #include "context.h"
58 #include "policydb.h"
59 #include "sidtab.h"
60 #include "services.h"
61 #include "conditional.h"
62 #include "mls.h"
63 #include "objsec.h"
64 #include "netlabel.h"
65 #include "xfrm.h"
66 #include "ebitmap.h"
67 #include "audit.h"
68 #include "policycap_names.h"
69 #include "ima.h"
70 
71 struct selinux_policy_convert_data {
72 	struct convert_context_args args;
73 	struct sidtab_convert_params sidtab_params;
74 };
75 
76 /* Forward declaration. */
77 static int context_struct_to_string(struct policydb *policydb,
78 				    struct context *context,
79 				    char **scontext,
80 				    u32 *scontext_len);
81 
82 static int sidtab_entry_to_string(struct policydb *policydb,
83 				  struct sidtab *sidtab,
84 				  struct sidtab_entry *entry,
85 				  char **scontext,
86 				  u32 *scontext_len);
87 
88 static void context_struct_compute_av(struct policydb *policydb,
89 				      struct context *scontext,
90 				      struct context *tcontext,
91 				      u16 tclass,
92 				      struct av_decision *avd,
93 				      struct extended_perms *xperms);
94 
selinux_set_mapping(struct policydb * pol,const struct security_class_mapping * map,struct selinux_map * out_map)95 static int selinux_set_mapping(struct policydb *pol,
96 			       const struct security_class_mapping *map,
97 			       struct selinux_map *out_map)
98 {
99 	u16 i, j;
100 	bool print_unknown_handle = false;
101 
102 	/* Find number of classes in the input mapping */
103 	if (!map)
104 		return -EINVAL;
105 	i = 0;
106 	while (map[i].name)
107 		i++;
108 
109 	/* Allocate space for the class records, plus one for class zero */
110 	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
111 	if (!out_map->mapping)
112 		return -ENOMEM;
113 
114 	/* Store the raw class and permission values */
115 	j = 0;
116 	while (map[j].name) {
117 		const struct security_class_mapping *p_in = map + (j++);
118 		struct selinux_mapping *p_out = out_map->mapping + j;
119 		u16 k;
120 
121 		/* An empty class string skips ahead */
122 		if (!strcmp(p_in->name, "")) {
123 			p_out->num_perms = 0;
124 			continue;
125 		}
126 
127 		p_out->value = string_to_security_class(pol, p_in->name);
128 		if (!p_out->value) {
129 			pr_info("SELinux:  Class %s not defined in policy.\n",
130 			       p_in->name);
131 			if (pol->reject_unknown)
132 				goto err;
133 			p_out->num_perms = 0;
134 			print_unknown_handle = true;
135 			continue;
136 		}
137 
138 		k = 0;
139 		while (p_in->perms[k]) {
140 			/* An empty permission string skips ahead */
141 			if (!*p_in->perms[k]) {
142 				k++;
143 				continue;
144 			}
145 			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
146 							    p_in->perms[k]);
147 			if (!p_out->perms[k]) {
148 				pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
149 				       p_in->perms[k], p_in->name);
150 				if (pol->reject_unknown)
151 					goto err;
152 				print_unknown_handle = true;
153 			}
154 
155 			k++;
156 		}
157 		p_out->num_perms = k;
158 	}
159 
160 	if (print_unknown_handle)
161 		pr_info("SELinux: the above unknown classes and permissions will be %s\n",
162 		       pol->allow_unknown ? "allowed" : "denied");
163 
164 	out_map->size = i;
165 	return 0;
166 err:
167 	kfree(out_map->mapping);
168 	out_map->mapping = NULL;
169 	return -EINVAL;
170 }
171 
172 /*
173  * Get real, policy values from mapped values
174  */
175 
unmap_class(struct selinux_map * map,u16 tclass)176 static u16 unmap_class(struct selinux_map *map, u16 tclass)
177 {
178 	if (tclass < map->size)
179 		return map->mapping[tclass].value;
180 
181 	return tclass;
182 }
183 
184 /*
185  * Get kernel value for class from its policy value
186  */
map_class(struct selinux_map * map,u16 pol_value)187 static u16 map_class(struct selinux_map *map, u16 pol_value)
188 {
189 	u16 i;
190 
191 	for (i = 1; i < map->size; i++) {
192 		if (map->mapping[i].value == pol_value)
193 			return i;
194 	}
195 
196 	return SECCLASS_NULL;
197 }
198 
map_decision(struct selinux_map * map,u16 tclass,struct av_decision * avd,int allow_unknown)199 static void map_decision(struct selinux_map *map,
200 			 u16 tclass, struct av_decision *avd,
201 			 int allow_unknown)
202 {
203 	if (tclass < map->size) {
204 		struct selinux_mapping *mapping = &map->mapping[tclass];
205 		unsigned int i, n = mapping->num_perms;
206 		u32 result;
207 
208 		for (i = 0, result = 0; i < n; i++) {
209 			if (avd->allowed & mapping->perms[i])
210 				result |= (u32)1<<i;
211 			if (allow_unknown && !mapping->perms[i])
212 				result |= (u32)1<<i;
213 		}
214 		avd->allowed = result;
215 
216 		for (i = 0, result = 0; i < n; i++)
217 			if (avd->auditallow & mapping->perms[i])
218 				result |= (u32)1<<i;
219 		avd->auditallow = result;
220 
221 		for (i = 0, result = 0; i < n; i++) {
222 			if (avd->auditdeny & mapping->perms[i])
223 				result |= (u32)1<<i;
224 			if (!allow_unknown && !mapping->perms[i])
225 				result |= (u32)1<<i;
226 		}
227 		/*
228 		 * In case the kernel has a bug and requests a permission
229 		 * between num_perms and the maximum permission number, we
230 		 * should audit that denial
231 		 */
232 		for (; i < (sizeof(u32)*8); i++)
233 			result |= (u32)1<<i;
234 		avd->auditdeny = result;
235 	}
236 }
237 
security_mls_enabled(void)238 int security_mls_enabled(void)
239 {
240 	int mls_enabled;
241 	struct selinux_policy *policy;
242 
243 	if (!selinux_initialized())
244 		return 0;
245 
246 	rcu_read_lock();
247 	policy = rcu_dereference(selinux_state.policy);
248 	mls_enabled = policy->policydb.mls_enabled;
249 	rcu_read_unlock();
250 	return mls_enabled;
251 }
252 
253 /*
254  * Return the boolean value of a constraint expression
255  * when it is applied to the specified source and target
256  * security contexts.
257  *
258  * xcontext is a special beast...  It is used by the validatetrans rules
259  * only.  For these rules, scontext is the context before the transition,
260  * tcontext is the context after the transition, and xcontext is the context
261  * of the process performing the transition.  All other callers of
262  * constraint_expr_eval should pass in NULL for xcontext.
263  */
constraint_expr_eval(struct policydb * policydb,struct context * scontext,struct context * tcontext,struct context * xcontext,struct constraint_expr * cexpr)264 static int constraint_expr_eval(struct policydb *policydb,
265 				struct context *scontext,
266 				struct context *tcontext,
267 				struct context *xcontext,
268 				struct constraint_expr *cexpr)
269 {
270 	u32 val1, val2;
271 	struct context *c;
272 	struct role_datum *r1, *r2;
273 	struct mls_level *l1, *l2;
274 	struct constraint_expr *e;
275 	int s[CEXPR_MAXDEPTH];
276 	int sp = -1;
277 
278 	for (e = cexpr; e; e = e->next) {
279 		switch (e->expr_type) {
280 		case CEXPR_NOT:
281 			BUG_ON(sp < 0);
282 			s[sp] = !s[sp];
283 			break;
284 		case CEXPR_AND:
285 			BUG_ON(sp < 1);
286 			sp--;
287 			s[sp] &= s[sp + 1];
288 			break;
289 		case CEXPR_OR:
290 			BUG_ON(sp < 1);
291 			sp--;
292 			s[sp] |= s[sp + 1];
293 			break;
294 		case CEXPR_ATTR:
295 			if (sp == (CEXPR_MAXDEPTH - 1))
296 				return 0;
297 			switch (e->attr) {
298 			case CEXPR_USER:
299 				val1 = scontext->user;
300 				val2 = tcontext->user;
301 				break;
302 			case CEXPR_TYPE:
303 				val1 = scontext->type;
304 				val2 = tcontext->type;
305 				break;
306 			case CEXPR_ROLE:
307 				val1 = scontext->role;
308 				val2 = tcontext->role;
309 				r1 = policydb->role_val_to_struct[val1 - 1];
310 				r2 = policydb->role_val_to_struct[val2 - 1];
311 				switch (e->op) {
312 				case CEXPR_DOM:
313 					s[++sp] = ebitmap_get_bit(&r1->dominates,
314 								  val2 - 1);
315 					continue;
316 				case CEXPR_DOMBY:
317 					s[++sp] = ebitmap_get_bit(&r2->dominates,
318 								  val1 - 1);
319 					continue;
320 				case CEXPR_INCOMP:
321 					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
322 								    val2 - 1) &&
323 						   !ebitmap_get_bit(&r2->dominates,
324 								    val1 - 1));
325 					continue;
326 				default:
327 					break;
328 				}
329 				break;
330 			case CEXPR_L1L2:
331 				l1 = &(scontext->range.level[0]);
332 				l2 = &(tcontext->range.level[0]);
333 				goto mls_ops;
334 			case CEXPR_L1H2:
335 				l1 = &(scontext->range.level[0]);
336 				l2 = &(tcontext->range.level[1]);
337 				goto mls_ops;
338 			case CEXPR_H1L2:
339 				l1 = &(scontext->range.level[1]);
340 				l2 = &(tcontext->range.level[0]);
341 				goto mls_ops;
342 			case CEXPR_H1H2:
343 				l1 = &(scontext->range.level[1]);
344 				l2 = &(tcontext->range.level[1]);
345 				goto mls_ops;
346 			case CEXPR_L1H1:
347 				l1 = &(scontext->range.level[0]);
348 				l2 = &(scontext->range.level[1]);
349 				goto mls_ops;
350 			case CEXPR_L2H2:
351 				l1 = &(tcontext->range.level[0]);
352 				l2 = &(tcontext->range.level[1]);
353 				goto mls_ops;
354 mls_ops:
355 				switch (e->op) {
356 				case CEXPR_EQ:
357 					s[++sp] = mls_level_eq(l1, l2);
358 					continue;
359 				case CEXPR_NEQ:
360 					s[++sp] = !mls_level_eq(l1, l2);
361 					continue;
362 				case CEXPR_DOM:
363 					s[++sp] = mls_level_dom(l1, l2);
364 					continue;
365 				case CEXPR_DOMBY:
366 					s[++sp] = mls_level_dom(l2, l1);
367 					continue;
368 				case CEXPR_INCOMP:
369 					s[++sp] = mls_level_incomp(l2, l1);
370 					continue;
371 				default:
372 					BUG();
373 					return 0;
374 				}
375 				break;
376 			default:
377 				BUG();
378 				return 0;
379 			}
380 
381 			switch (e->op) {
382 			case CEXPR_EQ:
383 				s[++sp] = (val1 == val2);
384 				break;
385 			case CEXPR_NEQ:
386 				s[++sp] = (val1 != val2);
387 				break;
388 			default:
389 				BUG();
390 				return 0;
391 			}
392 			break;
393 		case CEXPR_NAMES:
394 			if (sp == (CEXPR_MAXDEPTH-1))
395 				return 0;
396 			c = scontext;
397 			if (e->attr & CEXPR_TARGET)
398 				c = tcontext;
399 			else if (e->attr & CEXPR_XTARGET) {
400 				c = xcontext;
401 				if (!c) {
402 					BUG();
403 					return 0;
404 				}
405 			}
406 			if (e->attr & CEXPR_USER)
407 				val1 = c->user;
408 			else if (e->attr & CEXPR_ROLE)
409 				val1 = c->role;
410 			else if (e->attr & CEXPR_TYPE)
411 				val1 = c->type;
412 			else {
413 				BUG();
414 				return 0;
415 			}
416 
417 			switch (e->op) {
418 			case CEXPR_EQ:
419 				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
420 				break;
421 			case CEXPR_NEQ:
422 				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
423 				break;
424 			default:
425 				BUG();
426 				return 0;
427 			}
428 			break;
429 		default:
430 			BUG();
431 			return 0;
432 		}
433 	}
434 
435 	BUG_ON(sp != 0);
436 	return s[0];
437 }
438 
439 /*
440  * security_dump_masked_av - dumps masked permissions during
441  * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
442  */
dump_masked_av_helper(void * k,void * d,void * args)443 static int dump_masked_av_helper(void *k, void *d, void *args)
444 {
445 	struct perm_datum *pdatum = d;
446 	char **permission_names = args;
447 
448 	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
449 
450 	permission_names[pdatum->value - 1] = (char *)k;
451 
452 	return 0;
453 }
454 
security_dump_masked_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,u32 permissions,const char * reason)455 static void security_dump_masked_av(struct policydb *policydb,
456 				    struct context *scontext,
457 				    struct context *tcontext,
458 				    u16 tclass,
459 				    u32 permissions,
460 				    const char *reason)
461 {
462 	struct common_datum *common_dat;
463 	struct class_datum *tclass_dat;
464 	struct audit_buffer *ab;
465 	char *tclass_name;
466 	char *scontext_name = NULL;
467 	char *tcontext_name = NULL;
468 	char *permission_names[32];
469 	int index;
470 	u32 length;
471 	bool need_comma = false;
472 
473 	if (!permissions)
474 		return;
475 
476 	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
477 	tclass_dat = policydb->class_val_to_struct[tclass - 1];
478 	common_dat = tclass_dat->comdatum;
479 
480 	/* init permission_names */
481 	if (common_dat &&
482 	    hashtab_map(&common_dat->permissions.table,
483 			dump_masked_av_helper, permission_names) < 0)
484 		goto out;
485 
486 	if (hashtab_map(&tclass_dat->permissions.table,
487 			dump_masked_av_helper, permission_names) < 0)
488 		goto out;
489 
490 	/* get scontext/tcontext in text form */
491 	if (context_struct_to_string(policydb, scontext,
492 				     &scontext_name, &length) < 0)
493 		goto out;
494 
495 	if (context_struct_to_string(policydb, tcontext,
496 				     &tcontext_name, &length) < 0)
497 		goto out;
498 
499 	/* audit a message */
500 	ab = audit_log_start(audit_context(),
501 			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
502 	if (!ab)
503 		goto out;
504 
505 	audit_log_format(ab, "op=security_compute_av reason=%s "
506 			 "scontext=%s tcontext=%s tclass=%s perms=",
507 			 reason, scontext_name, tcontext_name, tclass_name);
508 
509 	for (index = 0; index < 32; index++) {
510 		u32 mask = (1 << index);
511 
512 		if ((mask & permissions) == 0)
513 			continue;
514 
515 		audit_log_format(ab, "%s%s",
516 				 need_comma ? "," : "",
517 				 permission_names[index]
518 				 ? permission_names[index] : "????");
519 		need_comma = true;
520 	}
521 	audit_log_end(ab);
522 out:
523 	/* release scontext/tcontext */
524 	kfree(tcontext_name);
525 	kfree(scontext_name);
526 }
527 
528 /*
529  * security_boundary_permission - drops violated permissions
530  * on boundary constraint.
531  */
type_attribute_bounds_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd)532 static void type_attribute_bounds_av(struct policydb *policydb,
533 				     struct context *scontext,
534 				     struct context *tcontext,
535 				     u16 tclass,
536 				     struct av_decision *avd)
537 {
538 	struct context lo_scontext;
539 	struct context lo_tcontext, *tcontextp = tcontext;
540 	struct av_decision lo_avd;
541 	struct type_datum *source;
542 	struct type_datum *target;
543 	u32 masked = 0;
544 
545 	source = policydb->type_val_to_struct[scontext->type - 1];
546 	BUG_ON(!source);
547 
548 	if (!source->bounds)
549 		return;
550 
551 	target = policydb->type_val_to_struct[tcontext->type - 1];
552 	BUG_ON(!target);
553 
554 	memset(&lo_avd, 0, sizeof(lo_avd));
555 
556 	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
557 	lo_scontext.type = source->bounds;
558 
559 	if (target->bounds) {
560 		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
561 		lo_tcontext.type = target->bounds;
562 		tcontextp = &lo_tcontext;
563 	}
564 
565 	context_struct_compute_av(policydb, &lo_scontext,
566 				  tcontextp,
567 				  tclass,
568 				  &lo_avd,
569 				  NULL);
570 
571 	masked = ~lo_avd.allowed & avd->allowed;
572 
573 	if (likely(!masked))
574 		return;		/* no masked permission */
575 
576 	/* mask violated permissions */
577 	avd->allowed &= ~masked;
578 
579 	/* audit masked permissions */
580 	security_dump_masked_av(policydb, scontext, tcontext,
581 				tclass, masked, "bounds");
582 }
583 
584 /*
585  * Flag which drivers have permissions and which base permissions are covered.
586  */
services_compute_xperms_drivers(struct extended_perms * xperms,struct avtab_node * node)587 void services_compute_xperms_drivers(
588 		struct extended_perms *xperms,
589 		struct avtab_node *node)
590 {
591 	unsigned int i;
592 
593 	switch (node->datum.u.xperms->specified) {
594 	case AVTAB_XPERMS_IOCTLDRIVER:
595 		xperms->base_perms |= AVC_EXT_IOCTL;
596 		/* if one or more driver has all permissions allowed */
597 		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
598 			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
599 		break;
600 	case AVTAB_XPERMS_IOCTLFUNCTION:
601 		xperms->base_perms |= AVC_EXT_IOCTL;
602 		/* if allowing permissions within a driver */
603 		security_xperm_set(xperms->drivers.p,
604 					node->datum.u.xperms->driver);
605 		break;
606 	case AVTAB_XPERMS_NLMSG:
607 		xperms->base_perms |= AVC_EXT_NLMSG;
608 		/* if allowing permissions within a driver */
609 		security_xperm_set(xperms->drivers.p,
610 					node->datum.u.xperms->driver);
611 		break;
612 	}
613 
614 	xperms->len = 1;
615 }
616 
617 /*
618  * Compute access vectors and extended permissions based on a context
619  * structure pair for the permissions in a particular class.
620  */
context_struct_compute_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd,struct extended_perms * xperms)621 static void context_struct_compute_av(struct policydb *policydb,
622 				      struct context *scontext,
623 				      struct context *tcontext,
624 				      u16 tclass,
625 				      struct av_decision *avd,
626 				      struct extended_perms *xperms)
627 {
628 	struct constraint_node *constraint;
629 	struct role_allow *ra;
630 	struct avtab_key avkey;
631 	struct avtab_node *node;
632 	struct class_datum *tclass_datum;
633 	struct ebitmap *sattr, *tattr;
634 	struct ebitmap_node *snode, *tnode;
635 	unsigned int i, j;
636 
637 	avd->allowed = 0;
638 	avd->auditallow = 0;
639 	avd->auditdeny = 0xffffffff;
640 	if (xperms) {
641 		memset(xperms, 0, sizeof(*xperms));
642 	}
643 
644 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
645 		pr_warn_ratelimited("SELinux:  Invalid class %u\n", tclass);
646 		return;
647 	}
648 
649 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
650 
651 	/*
652 	 * If a specific type enforcement rule was defined for
653 	 * this permission check, then use it.
654 	 */
655 	avkey.target_class = tclass;
656 	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
657 	sattr = &policydb->type_attr_map_array[scontext->type - 1];
658 	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
659 	ebitmap_for_each_positive_bit(sattr, snode, i) {
660 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
661 			avkey.source_type = i + 1;
662 			avkey.target_type = j + 1;
663 			for (node = avtab_search_node(&policydb->te_avtab,
664 						      &avkey);
665 			     node;
666 			     node = avtab_search_node_next(node, avkey.specified)) {
667 				if (node->key.specified == AVTAB_ALLOWED)
668 					avd->allowed |= node->datum.u.data;
669 				else if (node->key.specified == AVTAB_AUDITALLOW)
670 					avd->auditallow |= node->datum.u.data;
671 				else if (node->key.specified == AVTAB_AUDITDENY)
672 					avd->auditdeny &= node->datum.u.data;
673 				else if (xperms && (node->key.specified & AVTAB_XPERMS))
674 					services_compute_xperms_drivers(xperms, node);
675 			}
676 
677 			/* Check conditional av table for additional permissions */
678 			cond_compute_av(&policydb->te_cond_avtab, &avkey,
679 					avd, xperms);
680 
681 		}
682 	}
683 
684 	/*
685 	 * Remove any permissions prohibited by a constraint (this includes
686 	 * the MLS policy).
687 	 */
688 	constraint = tclass_datum->constraints;
689 	while (constraint) {
690 		if ((constraint->permissions & (avd->allowed)) &&
691 		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
692 					  constraint->expr)) {
693 			avd->allowed &= ~(constraint->permissions);
694 		}
695 		constraint = constraint->next;
696 	}
697 
698 	/*
699 	 * If checking process transition permission and the
700 	 * role is changing, then check the (current_role, new_role)
701 	 * pair.
702 	 */
703 	if (tclass == policydb->process_class &&
704 	    (avd->allowed & policydb->process_trans_perms) &&
705 	    scontext->role != tcontext->role) {
706 		for (ra = policydb->role_allow; ra; ra = ra->next) {
707 			if (scontext->role == ra->role &&
708 			    tcontext->role == ra->new_role)
709 				break;
710 		}
711 		if (!ra)
712 			avd->allowed &= ~policydb->process_trans_perms;
713 	}
714 
715 	/*
716 	 * If the given source and target types have boundary
717 	 * constraint, lazy checks have to mask any violated
718 	 * permission and notice it to userspace via audit.
719 	 */
720 	type_attribute_bounds_av(policydb, scontext, tcontext,
721 				 tclass, avd);
722 }
723 
security_validtrans_handle_fail(struct selinux_policy * policy,struct sidtab_entry * oentry,struct sidtab_entry * nentry,struct sidtab_entry * tentry,u16 tclass)724 static int security_validtrans_handle_fail(struct selinux_policy *policy,
725 					struct sidtab_entry *oentry,
726 					struct sidtab_entry *nentry,
727 					struct sidtab_entry *tentry,
728 					u16 tclass)
729 {
730 	struct policydb *p = &policy->policydb;
731 	struct sidtab *sidtab = policy->sidtab;
732 	char *o = NULL, *n = NULL, *t = NULL;
733 	u32 olen, nlen, tlen;
734 
735 	if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
736 		goto out;
737 	if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
738 		goto out;
739 	if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
740 		goto out;
741 	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
742 		  "op=security_validate_transition seresult=denied"
743 		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
744 		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
745 out:
746 	kfree(o);
747 	kfree(n);
748 	kfree(t);
749 
750 	if (!enforcing_enabled())
751 		return 0;
752 	return -EPERM;
753 }
754 
security_compute_validatetrans(u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass,bool user)755 static int security_compute_validatetrans(u32 oldsid, u32 newsid, u32 tasksid,
756 					  u16 orig_tclass, bool user)
757 {
758 	struct selinux_policy *policy;
759 	struct policydb *policydb;
760 	struct sidtab *sidtab;
761 	struct sidtab_entry *oentry;
762 	struct sidtab_entry *nentry;
763 	struct sidtab_entry *tentry;
764 	struct class_datum *tclass_datum;
765 	struct constraint_node *constraint;
766 	u16 tclass;
767 	int rc = 0;
768 
769 
770 	if (!selinux_initialized())
771 		return 0;
772 
773 	rcu_read_lock();
774 
775 	policy = rcu_dereference(selinux_state.policy);
776 	policydb = &policy->policydb;
777 	sidtab = policy->sidtab;
778 
779 	if (!user)
780 		tclass = unmap_class(&policy->map, orig_tclass);
781 	else
782 		tclass = orig_tclass;
783 
784 	if (!tclass || tclass > policydb->p_classes.nprim) {
785 		rc = -EINVAL;
786 		goto out;
787 	}
788 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
789 
790 	oentry = sidtab_search_entry(sidtab, oldsid);
791 	if (!oentry) {
792 		pr_err("SELinux: %s:  unrecognized SID %d\n",
793 			__func__, oldsid);
794 		rc = -EINVAL;
795 		goto out;
796 	}
797 
798 	nentry = sidtab_search_entry(sidtab, newsid);
799 	if (!nentry) {
800 		pr_err("SELinux: %s:  unrecognized SID %d\n",
801 			__func__, newsid);
802 		rc = -EINVAL;
803 		goto out;
804 	}
805 
806 	tentry = sidtab_search_entry(sidtab, tasksid);
807 	if (!tentry) {
808 		pr_err("SELinux: %s:  unrecognized SID %d\n",
809 			__func__, tasksid);
810 		rc = -EINVAL;
811 		goto out;
812 	}
813 
814 	constraint = tclass_datum->validatetrans;
815 	while (constraint) {
816 		if (!constraint_expr_eval(policydb, &oentry->context,
817 					  &nentry->context, &tentry->context,
818 					  constraint->expr)) {
819 			if (user)
820 				rc = -EPERM;
821 			else
822 				rc = security_validtrans_handle_fail(policy,
823 								oentry,
824 								nentry,
825 								tentry,
826 								tclass);
827 			goto out;
828 		}
829 		constraint = constraint->next;
830 	}
831 
832 out:
833 	rcu_read_unlock();
834 	return rc;
835 }
836 
security_validate_transition_user(u32 oldsid,u32 newsid,u32 tasksid,u16 tclass)837 int security_validate_transition_user(u32 oldsid, u32 newsid, u32 tasksid,
838 				      u16 tclass)
839 {
840 	return security_compute_validatetrans(oldsid, newsid, tasksid,
841 					      tclass, true);
842 }
843 
security_validate_transition(u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass)844 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
845 				 u16 orig_tclass)
846 {
847 	return security_compute_validatetrans(oldsid, newsid, tasksid,
848 					      orig_tclass, false);
849 }
850 
851 /*
852  * security_bounded_transition - check whether the given
853  * transition is directed to bounded, or not.
854  * It returns 0, if @newsid is bounded by @oldsid.
855  * Otherwise, it returns error code.
856  *
857  * @oldsid : current security identifier
858  * @newsid : destinated security identifier
859  */
security_bounded_transition(u32 old_sid,u32 new_sid)860 int security_bounded_transition(u32 old_sid, u32 new_sid)
861 {
862 	struct selinux_policy *policy;
863 	struct policydb *policydb;
864 	struct sidtab *sidtab;
865 	struct sidtab_entry *old_entry, *new_entry;
866 	struct type_datum *type;
867 	u32 index;
868 	int rc;
869 
870 	if (!selinux_initialized())
871 		return 0;
872 
873 	rcu_read_lock();
874 	policy = rcu_dereference(selinux_state.policy);
875 	policydb = &policy->policydb;
876 	sidtab = policy->sidtab;
877 
878 	rc = -EINVAL;
879 	old_entry = sidtab_search_entry(sidtab, old_sid);
880 	if (!old_entry) {
881 		pr_err("SELinux: %s: unrecognized SID %u\n",
882 		       __func__, old_sid);
883 		goto out;
884 	}
885 
886 	rc = -EINVAL;
887 	new_entry = sidtab_search_entry(sidtab, new_sid);
888 	if (!new_entry) {
889 		pr_err("SELinux: %s: unrecognized SID %u\n",
890 		       __func__, new_sid);
891 		goto out;
892 	}
893 
894 	rc = 0;
895 	/* type/domain unchanged */
896 	if (old_entry->context.type == new_entry->context.type)
897 		goto out;
898 
899 	index = new_entry->context.type;
900 	while (true) {
901 		type = policydb->type_val_to_struct[index - 1];
902 		BUG_ON(!type);
903 
904 		/* not bounded anymore */
905 		rc = -EPERM;
906 		if (!type->bounds)
907 			break;
908 
909 		/* @newsid is bounded by @oldsid */
910 		rc = 0;
911 		if (type->bounds == old_entry->context.type)
912 			break;
913 
914 		index = type->bounds;
915 	}
916 
917 	if (rc) {
918 		char *old_name = NULL;
919 		char *new_name = NULL;
920 		u32 length;
921 
922 		if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
923 					    &old_name, &length) &&
924 		    !sidtab_entry_to_string(policydb, sidtab, new_entry,
925 					    &new_name, &length)) {
926 			audit_log(audit_context(),
927 				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
928 				  "op=security_bounded_transition "
929 				  "seresult=denied "
930 				  "oldcontext=%s newcontext=%s",
931 				  old_name, new_name);
932 		}
933 		kfree(new_name);
934 		kfree(old_name);
935 	}
936 out:
937 	rcu_read_unlock();
938 
939 	return rc;
940 }
941 
avd_init(struct selinux_policy * policy,struct av_decision * avd)942 static void avd_init(struct selinux_policy *policy, struct av_decision *avd)
943 {
944 	avd->allowed = 0;
945 	avd->auditallow = 0;
946 	avd->auditdeny = 0xffffffff;
947 	if (policy)
948 		avd->seqno = policy->latest_granting;
949 	else
950 		avd->seqno = 0;
951 	avd->flags = 0;
952 }
953 
update_xperms_extended_data(u8 specified,const struct extended_perms_data * from,struct extended_perms_data * xp_data)954 static void update_xperms_extended_data(u8 specified,
955 					const struct extended_perms_data *from,
956 					struct extended_perms_data *xp_data)
957 {
958 	unsigned int i;
959 
960 	switch (specified) {
961 	case AVTAB_XPERMS_IOCTLDRIVER:
962 		memset(xp_data->p, 0xff, sizeof(xp_data->p));
963 		break;
964 	case AVTAB_XPERMS_IOCTLFUNCTION:
965 	case AVTAB_XPERMS_NLMSG:
966 		for (i = 0; i < ARRAY_SIZE(xp_data->p); i++)
967 			xp_data->p[i] |= from->p[i];
968 		break;
969 	}
970 
971 }
972 
services_compute_xperms_decision(struct extended_perms_decision * xpermd,struct avtab_node * node)973 void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
974 					struct avtab_node *node)
975 {
976 	u16 specified;
977 
978 	switch (node->datum.u.xperms->specified) {
979 	case AVTAB_XPERMS_IOCTLFUNCTION:
980 		if (xpermd->base_perm != AVC_EXT_IOCTL ||
981 		    xpermd->driver != node->datum.u.xperms->driver)
982 			return;
983 		break;
984 	case AVTAB_XPERMS_IOCTLDRIVER:
985 		if (xpermd->base_perm != AVC_EXT_IOCTL ||
986 		    !security_xperm_test(node->datum.u.xperms->perms.p,
987 					 xpermd->driver))
988 			return;
989 		break;
990 	case AVTAB_XPERMS_NLMSG:
991 		if (xpermd->base_perm != AVC_EXT_NLMSG ||
992 		    xpermd->driver != node->datum.u.xperms->driver)
993 			return;
994 		break;
995 	default:
996 		pr_warn_once(
997 			"SELinux: unknown extended permission (%u) will be ignored\n",
998 			node->datum.u.xperms->specified);
999 		return;
1000 	}
1001 
1002 	specified = node->key.specified & ~(AVTAB_ENABLED | AVTAB_ENABLED_OLD);
1003 
1004 	if (specified == AVTAB_XPERMS_ALLOWED) {
1005 		xpermd->used |= XPERMS_ALLOWED;
1006 		update_xperms_extended_data(node->datum.u.xperms->specified,
1007 					    &node->datum.u.xperms->perms,
1008 					    xpermd->allowed);
1009 	} else if (specified == AVTAB_XPERMS_AUDITALLOW) {
1010 		xpermd->used |= XPERMS_AUDITALLOW;
1011 		update_xperms_extended_data(node->datum.u.xperms->specified,
1012 					    &node->datum.u.xperms->perms,
1013 					    xpermd->auditallow);
1014 	} else if (specified == AVTAB_XPERMS_DONTAUDIT) {
1015 		xpermd->used |= XPERMS_DONTAUDIT;
1016 		update_xperms_extended_data(node->datum.u.xperms->specified,
1017 					    &node->datum.u.xperms->perms,
1018 					    xpermd->dontaudit);
1019 	} else {
1020 		pr_warn_once("SELinux: unknown specified key (%u)\n",
1021 			     node->key.specified);
1022 	}
1023 }
1024 
security_compute_xperms_decision(u32 ssid,u32 tsid,u16 orig_tclass,u8 driver,u8 base_perm,struct extended_perms_decision * xpermd)1025 void security_compute_xperms_decision(u32 ssid,
1026 				      u32 tsid,
1027 				      u16 orig_tclass,
1028 				      u8 driver,
1029 				      u8 base_perm,
1030 				      struct extended_perms_decision *xpermd)
1031 {
1032 	struct selinux_policy *policy;
1033 	struct policydb *policydb;
1034 	struct sidtab *sidtab;
1035 	u16 tclass;
1036 	struct context *scontext, *tcontext;
1037 	struct avtab_key avkey;
1038 	struct avtab_node *node;
1039 	struct ebitmap *sattr, *tattr;
1040 	struct ebitmap_node *snode, *tnode;
1041 	unsigned int i, j;
1042 
1043 	xpermd->base_perm = base_perm;
1044 	xpermd->driver = driver;
1045 	xpermd->used = 0;
1046 	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1047 	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1048 	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1049 
1050 	rcu_read_lock();
1051 	if (!selinux_initialized())
1052 		goto allow;
1053 
1054 	policy = rcu_dereference(selinux_state.policy);
1055 	policydb = &policy->policydb;
1056 	sidtab = policy->sidtab;
1057 
1058 	scontext = sidtab_search(sidtab, ssid);
1059 	if (!scontext) {
1060 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1061 		       __func__, ssid);
1062 		goto out;
1063 	}
1064 
1065 	tcontext = sidtab_search(sidtab, tsid);
1066 	if (!tcontext) {
1067 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1068 		       __func__, tsid);
1069 		goto out;
1070 	}
1071 
1072 	tclass = unmap_class(&policy->map, orig_tclass);
1073 	if (unlikely(orig_tclass && !tclass)) {
1074 		if (policydb->allow_unknown)
1075 			goto allow;
1076 		goto out;
1077 	}
1078 
1079 
1080 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1081 		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1082 		goto out;
1083 	}
1084 
1085 	avkey.target_class = tclass;
1086 	avkey.specified = AVTAB_XPERMS;
1087 	sattr = &policydb->type_attr_map_array[scontext->type - 1];
1088 	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1089 	ebitmap_for_each_positive_bit(sattr, snode, i) {
1090 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1091 			avkey.source_type = i + 1;
1092 			avkey.target_type = j + 1;
1093 			for (node = avtab_search_node(&policydb->te_avtab,
1094 						      &avkey);
1095 			     node;
1096 			     node = avtab_search_node_next(node, avkey.specified))
1097 				services_compute_xperms_decision(xpermd, node);
1098 
1099 			cond_compute_xperms(&policydb->te_cond_avtab,
1100 						&avkey, xpermd);
1101 		}
1102 	}
1103 out:
1104 	rcu_read_unlock();
1105 	return;
1106 allow:
1107 	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1108 	goto out;
1109 }
1110 
1111 /**
1112  * security_compute_av - Compute access vector decisions.
1113  * @ssid: source security identifier
1114  * @tsid: target security identifier
1115  * @orig_tclass: target security class
1116  * @avd: access vector decisions
1117  * @xperms: extended permissions
1118  *
1119  * Compute a set of access vector decisions based on the
1120  * SID pair (@ssid, @tsid) for the permissions in @tclass.
1121  */
security_compute_av(u32 ssid,u32 tsid,u16 orig_tclass,struct av_decision * avd,struct extended_perms * xperms)1122 void security_compute_av(u32 ssid,
1123 			 u32 tsid,
1124 			 u16 orig_tclass,
1125 			 struct av_decision *avd,
1126 			 struct extended_perms *xperms)
1127 {
1128 	struct selinux_policy *policy;
1129 	struct policydb *policydb;
1130 	struct sidtab *sidtab;
1131 	u16 tclass;
1132 	struct context *scontext = NULL, *tcontext = NULL;
1133 
1134 	rcu_read_lock();
1135 	policy = rcu_dereference(selinux_state.policy);
1136 	avd_init(policy, avd);
1137 	xperms->len = 0;
1138 	if (!selinux_initialized())
1139 		goto allow;
1140 
1141 	policydb = &policy->policydb;
1142 	sidtab = policy->sidtab;
1143 
1144 	scontext = sidtab_search(sidtab, ssid);
1145 	if (!scontext) {
1146 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1147 		       __func__, ssid);
1148 		goto out;
1149 	}
1150 
1151 	/* permissive domain? */
1152 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1153 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1154 
1155 	tcontext = sidtab_search(sidtab, tsid);
1156 	if (!tcontext) {
1157 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1158 		       __func__, tsid);
1159 		goto out;
1160 	}
1161 
1162 	tclass = unmap_class(&policy->map, orig_tclass);
1163 	if (unlikely(orig_tclass && !tclass)) {
1164 		if (policydb->allow_unknown)
1165 			goto allow;
1166 		goto out;
1167 	}
1168 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1169 				  xperms);
1170 	map_decision(&policy->map, orig_tclass, avd,
1171 		     policydb->allow_unknown);
1172 out:
1173 	rcu_read_unlock();
1174 	return;
1175 allow:
1176 	avd->allowed = 0xffffffff;
1177 	goto out;
1178 }
1179 
security_compute_av_user(u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd)1180 void security_compute_av_user(u32 ssid,
1181 			      u32 tsid,
1182 			      u16 tclass,
1183 			      struct av_decision *avd)
1184 {
1185 	struct selinux_policy *policy;
1186 	struct policydb *policydb;
1187 	struct sidtab *sidtab;
1188 	struct context *scontext = NULL, *tcontext = NULL;
1189 
1190 	rcu_read_lock();
1191 	policy = rcu_dereference(selinux_state.policy);
1192 	avd_init(policy, avd);
1193 	if (!selinux_initialized())
1194 		goto allow;
1195 
1196 	policydb = &policy->policydb;
1197 	sidtab = policy->sidtab;
1198 
1199 	scontext = sidtab_search(sidtab, ssid);
1200 	if (!scontext) {
1201 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1202 		       __func__, ssid);
1203 		goto out;
1204 	}
1205 
1206 	/* permissive domain? */
1207 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1208 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1209 
1210 	tcontext = sidtab_search(sidtab, tsid);
1211 	if (!tcontext) {
1212 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1213 		       __func__, tsid);
1214 		goto out;
1215 	}
1216 
1217 	if (unlikely(!tclass)) {
1218 		if (policydb->allow_unknown)
1219 			goto allow;
1220 		goto out;
1221 	}
1222 
1223 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1224 				  NULL);
1225  out:
1226 	rcu_read_unlock();
1227 	return;
1228 allow:
1229 	avd->allowed = 0xffffffff;
1230 	goto out;
1231 }
1232 
1233 /*
1234  * Write the security context string representation of
1235  * the context structure `context' into a dynamically
1236  * allocated string of the correct size.  Set `*scontext'
1237  * to point to this string and set `*scontext_len' to
1238  * the length of the string.
1239  */
context_struct_to_string(struct policydb * p,struct context * context,char ** scontext,u32 * scontext_len)1240 static int context_struct_to_string(struct policydb *p,
1241 				    struct context *context,
1242 				    char **scontext, u32 *scontext_len)
1243 {
1244 	char *scontextp;
1245 
1246 	if (scontext)
1247 		*scontext = NULL;
1248 	*scontext_len = 0;
1249 
1250 	if (context->len) {
1251 		*scontext_len = context->len;
1252 		if (scontext) {
1253 			*scontext = kstrdup(context->str, GFP_ATOMIC);
1254 			if (!(*scontext))
1255 				return -ENOMEM;
1256 		}
1257 		return 0;
1258 	}
1259 
1260 	/* Compute the size of the context. */
1261 	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1262 	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1263 	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1264 	*scontext_len += mls_compute_context_len(p, context);
1265 
1266 	if (!scontext)
1267 		return 0;
1268 
1269 	/* Allocate space for the context; caller must free this space. */
1270 	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1271 	if (!scontextp)
1272 		return -ENOMEM;
1273 	*scontext = scontextp;
1274 
1275 	/*
1276 	 * Copy the user name, role name and type name into the context.
1277 	 */
1278 	scontextp += sprintf(scontextp, "%s:%s:%s",
1279 		sym_name(p, SYM_USERS, context->user - 1),
1280 		sym_name(p, SYM_ROLES, context->role - 1),
1281 		sym_name(p, SYM_TYPES, context->type - 1));
1282 
1283 	mls_sid_to_context(p, context, &scontextp);
1284 
1285 	*scontextp = 0;
1286 
1287 	return 0;
1288 }
1289 
sidtab_entry_to_string(struct policydb * p,struct sidtab * sidtab,struct sidtab_entry * entry,char ** scontext,u32 * scontext_len)1290 static int sidtab_entry_to_string(struct policydb *p,
1291 				  struct sidtab *sidtab,
1292 				  struct sidtab_entry *entry,
1293 				  char **scontext, u32 *scontext_len)
1294 {
1295 	int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1296 
1297 	if (rc != -ENOENT)
1298 		return rc;
1299 
1300 	rc = context_struct_to_string(p, &entry->context, scontext,
1301 				      scontext_len);
1302 	if (!rc && scontext)
1303 		sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1304 	return rc;
1305 }
1306 
1307 #include "initial_sid_to_string.h"
1308 
security_sidtab_hash_stats(char * page)1309 int security_sidtab_hash_stats(char *page)
1310 {
1311 	struct selinux_policy *policy;
1312 	int rc;
1313 
1314 	if (!selinux_initialized()) {
1315 		pr_err("SELinux: %s:  called before initial load_policy\n",
1316 		       __func__);
1317 		return -EINVAL;
1318 	}
1319 
1320 	rcu_read_lock();
1321 	policy = rcu_dereference(selinux_state.policy);
1322 	rc = sidtab_hash_stats(policy->sidtab, page);
1323 	rcu_read_unlock();
1324 
1325 	return rc;
1326 }
1327 
security_get_initial_sid_context(u32 sid)1328 const char *security_get_initial_sid_context(u32 sid)
1329 {
1330 	if (unlikely(sid > SECINITSID_NUM))
1331 		return NULL;
1332 	return initial_sid_to_string[sid];
1333 }
1334 
security_sid_to_context_core(u32 sid,char ** scontext,u32 * scontext_len,int force,int only_invalid)1335 static int security_sid_to_context_core(u32 sid, char **scontext,
1336 					u32 *scontext_len, int force,
1337 					int only_invalid)
1338 {
1339 	struct selinux_policy *policy;
1340 	struct policydb *policydb;
1341 	struct sidtab *sidtab;
1342 	struct sidtab_entry *entry;
1343 	int rc = 0;
1344 
1345 	if (scontext)
1346 		*scontext = NULL;
1347 	*scontext_len  = 0;
1348 
1349 	if (!selinux_initialized()) {
1350 		if (sid <= SECINITSID_NUM) {
1351 			char *scontextp;
1352 			const char *s;
1353 
1354 			/*
1355 			 * Before the policy is loaded, translate
1356 			 * SECINITSID_INIT to "kernel", because systemd and
1357 			 * libselinux < 2.6 take a getcon_raw() result that is
1358 			 * both non-null and not "kernel" to mean that a policy
1359 			 * is already loaded.
1360 			 */
1361 			if (sid == SECINITSID_INIT)
1362 				sid = SECINITSID_KERNEL;
1363 
1364 			s = initial_sid_to_string[sid];
1365 			if (!s)
1366 				return -EINVAL;
1367 			*scontext_len = strlen(s) + 1;
1368 			if (!scontext)
1369 				return 0;
1370 			scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1371 			if (!scontextp)
1372 				return -ENOMEM;
1373 			*scontext = scontextp;
1374 			return 0;
1375 		}
1376 		pr_err("SELinux: %s:  called before initial "
1377 		       "load_policy on unknown SID %d\n", __func__, sid);
1378 		return -EINVAL;
1379 	}
1380 	rcu_read_lock();
1381 	policy = rcu_dereference(selinux_state.policy);
1382 	policydb = &policy->policydb;
1383 	sidtab = policy->sidtab;
1384 
1385 	if (force)
1386 		entry = sidtab_search_entry_force(sidtab, sid);
1387 	else
1388 		entry = sidtab_search_entry(sidtab, sid);
1389 	if (!entry) {
1390 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1391 			__func__, sid);
1392 		rc = -EINVAL;
1393 		goto out_unlock;
1394 	}
1395 	if (only_invalid && !entry->context.len)
1396 		goto out_unlock;
1397 
1398 	rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1399 				    scontext_len);
1400 
1401 out_unlock:
1402 	rcu_read_unlock();
1403 	return rc;
1404 
1405 }
1406 
1407 /**
1408  * security_sid_to_context - Obtain a context for a given SID.
1409  * @sid: security identifier, SID
1410  * @scontext: security context
1411  * @scontext_len: length in bytes
1412  *
1413  * Write the string representation of the context associated with @sid
1414  * into a dynamically allocated string of the correct size.  Set @scontext
1415  * to point to this string and set @scontext_len to the length of the string.
1416  */
security_sid_to_context(u32 sid,char ** scontext,u32 * scontext_len)1417 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1418 {
1419 	return security_sid_to_context_core(sid, scontext,
1420 					    scontext_len, 0, 0);
1421 }
1422 
security_sid_to_context_force(u32 sid,char ** scontext,u32 * scontext_len)1423 int security_sid_to_context_force(u32 sid,
1424 				  char **scontext, u32 *scontext_len)
1425 {
1426 	return security_sid_to_context_core(sid, scontext,
1427 					    scontext_len, 1, 0);
1428 }
1429 
1430 /**
1431  * security_sid_to_context_inval - Obtain a context for a given SID if it
1432  *                                 is invalid.
1433  * @sid: security identifier, SID
1434  * @scontext: security context
1435  * @scontext_len: length in bytes
1436  *
1437  * Write the string representation of the context associated with @sid
1438  * into a dynamically allocated string of the correct size, but only if the
1439  * context is invalid in the current policy.  Set @scontext to point to
1440  * this string (or NULL if the context is valid) and set @scontext_len to
1441  * the length of the string (or 0 if the context is valid).
1442  */
security_sid_to_context_inval(u32 sid,char ** scontext,u32 * scontext_len)1443 int security_sid_to_context_inval(u32 sid,
1444 				  char **scontext, u32 *scontext_len)
1445 {
1446 	return security_sid_to_context_core(sid, scontext,
1447 					    scontext_len, 1, 1);
1448 }
1449 
1450 /*
1451  * Caveat:  Mutates scontext.
1452  */
string_to_context_struct(struct policydb * pol,struct sidtab * sidtabp,char * scontext,struct context * ctx,u32 def_sid)1453 static int string_to_context_struct(struct policydb *pol,
1454 				    struct sidtab *sidtabp,
1455 				    char *scontext,
1456 				    struct context *ctx,
1457 				    u32 def_sid)
1458 {
1459 	struct role_datum *role;
1460 	struct type_datum *typdatum;
1461 	struct user_datum *usrdatum;
1462 	char *scontextp, *p, oldc;
1463 	int rc = 0;
1464 
1465 	context_init(ctx);
1466 
1467 	/* Parse the security context. */
1468 
1469 	rc = -EINVAL;
1470 	scontextp = scontext;
1471 
1472 	/* Extract the user. */
1473 	p = scontextp;
1474 	while (*p && *p != ':')
1475 		p++;
1476 
1477 	if (*p == 0)
1478 		goto out;
1479 
1480 	*p++ = 0;
1481 
1482 	usrdatum = symtab_search(&pol->p_users, scontextp);
1483 	if (!usrdatum)
1484 		goto out;
1485 
1486 	ctx->user = usrdatum->value;
1487 
1488 	/* Extract role. */
1489 	scontextp = p;
1490 	while (*p && *p != ':')
1491 		p++;
1492 
1493 	if (*p == 0)
1494 		goto out;
1495 
1496 	*p++ = 0;
1497 
1498 	role = symtab_search(&pol->p_roles, scontextp);
1499 	if (!role)
1500 		goto out;
1501 	ctx->role = role->value;
1502 
1503 	/* Extract type. */
1504 	scontextp = p;
1505 	while (*p && *p != ':')
1506 		p++;
1507 	oldc = *p;
1508 	*p++ = 0;
1509 
1510 	typdatum = symtab_search(&pol->p_types, scontextp);
1511 	if (!typdatum || typdatum->attribute)
1512 		goto out;
1513 
1514 	ctx->type = typdatum->value;
1515 
1516 	rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1517 	if (rc)
1518 		goto out;
1519 
1520 	/* Check the validity of the new context. */
1521 	rc = -EINVAL;
1522 	if (!policydb_context_isvalid(pol, ctx))
1523 		goto out;
1524 	rc = 0;
1525 out:
1526 	if (rc)
1527 		context_destroy(ctx);
1528 	return rc;
1529 }
1530 
security_context_to_sid_core(const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags,int force)1531 static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1532 					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1533 					int force)
1534 {
1535 	struct selinux_policy *policy;
1536 	struct policydb *policydb;
1537 	struct sidtab *sidtab;
1538 	char *scontext2, *str = NULL;
1539 	struct context context;
1540 	int rc = 0;
1541 
1542 	/* An empty security context is never valid. */
1543 	if (!scontext_len)
1544 		return -EINVAL;
1545 
1546 	/* Copy the string to allow changes and ensure a NUL terminator */
1547 	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1548 	if (!scontext2)
1549 		return -ENOMEM;
1550 
1551 	if (!selinux_initialized()) {
1552 		u32 i;
1553 
1554 		for (i = 1; i < SECINITSID_NUM; i++) {
1555 			const char *s = initial_sid_to_string[i];
1556 
1557 			if (s && !strcmp(s, scontext2)) {
1558 				*sid = i;
1559 				goto out;
1560 			}
1561 		}
1562 		*sid = SECINITSID_KERNEL;
1563 		goto out;
1564 	}
1565 	*sid = SECSID_NULL;
1566 
1567 	if (force) {
1568 		/* Save another copy for storing in uninterpreted form */
1569 		rc = -ENOMEM;
1570 		str = kstrdup(scontext2, gfp_flags);
1571 		if (!str)
1572 			goto out;
1573 	}
1574 retry:
1575 	rcu_read_lock();
1576 	policy = rcu_dereference(selinux_state.policy);
1577 	policydb = &policy->policydb;
1578 	sidtab = policy->sidtab;
1579 	rc = string_to_context_struct(policydb, sidtab, scontext2,
1580 				      &context, def_sid);
1581 	if (rc == -EINVAL && force) {
1582 		context.str = str;
1583 		context.len = strlen(str) + 1;
1584 		str = NULL;
1585 	} else if (rc)
1586 		goto out_unlock;
1587 	rc = sidtab_context_to_sid(sidtab, &context, sid);
1588 	if (rc == -ESTALE) {
1589 		rcu_read_unlock();
1590 		if (context.str) {
1591 			str = context.str;
1592 			context.str = NULL;
1593 		}
1594 		context_destroy(&context);
1595 		goto retry;
1596 	}
1597 	context_destroy(&context);
1598 out_unlock:
1599 	rcu_read_unlock();
1600 out:
1601 	kfree(scontext2);
1602 	kfree(str);
1603 	return rc;
1604 }
1605 
1606 /**
1607  * security_context_to_sid - Obtain a SID for a given security context.
1608  * @scontext: security context
1609  * @scontext_len: length in bytes
1610  * @sid: security identifier, SID
1611  * @gfp: context for the allocation
1612  *
1613  * Obtains a SID associated with the security context that
1614  * has the string representation specified by @scontext.
1615  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1616  * memory is available, or 0 on success.
1617  */
security_context_to_sid(const char * scontext,u32 scontext_len,u32 * sid,gfp_t gfp)1618 int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid,
1619 			    gfp_t gfp)
1620 {
1621 	return security_context_to_sid_core(scontext, scontext_len,
1622 					    sid, SECSID_NULL, gfp, 0);
1623 }
1624 
security_context_str_to_sid(const char * scontext,u32 * sid,gfp_t gfp)1625 int security_context_str_to_sid(const char *scontext, u32 *sid, gfp_t gfp)
1626 {
1627 	return security_context_to_sid(scontext, strlen(scontext),
1628 				       sid, gfp);
1629 }
1630 
1631 /**
1632  * security_context_to_sid_default - Obtain a SID for a given security context,
1633  * falling back to specified default if needed.
1634  *
1635  * @scontext: security context
1636  * @scontext_len: length in bytes
1637  * @sid: security identifier, SID
1638  * @def_sid: default SID to assign on error
1639  * @gfp_flags: the allocator get-free-page (GFP) flags
1640  *
1641  * Obtains a SID associated with the security context that
1642  * has the string representation specified by @scontext.
1643  * The default SID is passed to the MLS layer to be used to allow
1644  * kernel labeling of the MLS field if the MLS field is not present
1645  * (for upgrading to MLS without full relabel).
1646  * Implicitly forces adding of the context even if it cannot be mapped yet.
1647  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1648  * memory is available, or 0 on success.
1649  */
security_context_to_sid_default(const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags)1650 int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1651 				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1652 {
1653 	return security_context_to_sid_core(scontext, scontext_len,
1654 					    sid, def_sid, gfp_flags, 1);
1655 }
1656 
security_context_to_sid_force(const char * scontext,u32 scontext_len,u32 * sid)1657 int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1658 				  u32 *sid)
1659 {
1660 	return security_context_to_sid_core(scontext, scontext_len,
1661 					    sid, SECSID_NULL, GFP_KERNEL, 1);
1662 }
1663 
compute_sid_handle_invalid_context(struct selinux_policy * policy,struct sidtab_entry * sentry,struct sidtab_entry * tentry,u16 tclass,struct context * newcontext)1664 static int compute_sid_handle_invalid_context(
1665 	struct selinux_policy *policy,
1666 	struct sidtab_entry *sentry,
1667 	struct sidtab_entry *tentry,
1668 	u16 tclass,
1669 	struct context *newcontext)
1670 {
1671 	struct policydb *policydb = &policy->policydb;
1672 	struct sidtab *sidtab = policy->sidtab;
1673 	char *s = NULL, *t = NULL, *n = NULL;
1674 	u32 slen, tlen, nlen;
1675 	struct audit_buffer *ab;
1676 
1677 	if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1678 		goto out;
1679 	if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1680 		goto out;
1681 	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1682 		goto out;
1683 	ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1684 	if (!ab)
1685 		goto out;
1686 	audit_log_format(ab,
1687 			 "op=security_compute_sid invalid_context=");
1688 	/* no need to record the NUL with untrusted strings */
1689 	audit_log_n_untrustedstring(ab, n, nlen - 1);
1690 	audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1691 			 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1692 	audit_log_end(ab);
1693 out:
1694 	kfree(s);
1695 	kfree(t);
1696 	kfree(n);
1697 	if (!enforcing_enabled())
1698 		return 0;
1699 	return -EACCES;
1700 }
1701 
filename_compute_type(struct policydb * policydb,struct context * newcontext,u32 stype,u32 ttype,u16 tclass,const char * objname)1702 static void filename_compute_type(struct policydb *policydb,
1703 				  struct context *newcontext,
1704 				  u32 stype, u32 ttype, u16 tclass,
1705 				  const char *objname)
1706 {
1707 	struct filename_trans_key ft;
1708 	struct filename_trans_datum *datum;
1709 
1710 	/*
1711 	 * Most filename trans rules are going to live in specific directories
1712 	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1713 	 * if the ttype does not contain any rules.
1714 	 */
1715 	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1716 		return;
1717 
1718 	ft.ttype = ttype;
1719 	ft.tclass = tclass;
1720 	ft.name = objname;
1721 
1722 	datum = policydb_filenametr_search(policydb, &ft);
1723 	while (datum) {
1724 		if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1725 			newcontext->type = datum->otype;
1726 			return;
1727 		}
1728 		datum = datum->next;
1729 	}
1730 }
1731 
security_compute_sid(u32 ssid,u32 tsid,u16 orig_tclass,u16 specified,const char * objname,u32 * out_sid,bool kern)1732 static int security_compute_sid(u32 ssid,
1733 				u32 tsid,
1734 				u16 orig_tclass,
1735 				u16 specified,
1736 				const char *objname,
1737 				u32 *out_sid,
1738 				bool kern)
1739 {
1740 	struct selinux_policy *policy;
1741 	struct policydb *policydb;
1742 	struct sidtab *sidtab;
1743 	struct class_datum *cladatum;
1744 	struct context *scontext, *tcontext, newcontext;
1745 	struct sidtab_entry *sentry, *tentry;
1746 	struct avtab_key avkey;
1747 	struct avtab_node *avnode, *node;
1748 	u16 tclass;
1749 	int rc = 0;
1750 	bool sock;
1751 
1752 	if (!selinux_initialized()) {
1753 		switch (orig_tclass) {
1754 		case SECCLASS_PROCESS: /* kernel value */
1755 			*out_sid = ssid;
1756 			break;
1757 		default:
1758 			*out_sid = tsid;
1759 			break;
1760 		}
1761 		goto out;
1762 	}
1763 
1764 retry:
1765 	cladatum = NULL;
1766 	context_init(&newcontext);
1767 
1768 	rcu_read_lock();
1769 
1770 	policy = rcu_dereference(selinux_state.policy);
1771 
1772 	if (kern) {
1773 		tclass = unmap_class(&policy->map, orig_tclass);
1774 		sock = security_is_socket_class(orig_tclass);
1775 	} else {
1776 		tclass = orig_tclass;
1777 		sock = security_is_socket_class(map_class(&policy->map,
1778 							  tclass));
1779 	}
1780 
1781 	policydb = &policy->policydb;
1782 	sidtab = policy->sidtab;
1783 
1784 	sentry = sidtab_search_entry(sidtab, ssid);
1785 	if (!sentry) {
1786 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1787 		       __func__, ssid);
1788 		rc = -EINVAL;
1789 		goto out_unlock;
1790 	}
1791 	tentry = sidtab_search_entry(sidtab, tsid);
1792 	if (!tentry) {
1793 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1794 		       __func__, tsid);
1795 		rc = -EINVAL;
1796 		goto out_unlock;
1797 	}
1798 
1799 	scontext = &sentry->context;
1800 	tcontext = &tentry->context;
1801 
1802 	if (tclass && tclass <= policydb->p_classes.nprim)
1803 		cladatum = policydb->class_val_to_struct[tclass - 1];
1804 
1805 	/* Set the user identity. */
1806 	switch (specified) {
1807 	case AVTAB_TRANSITION:
1808 	case AVTAB_CHANGE:
1809 		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1810 			newcontext.user = tcontext->user;
1811 		} else {
1812 			/* notice this gets both DEFAULT_SOURCE and unset */
1813 			/* Use the process user identity. */
1814 			newcontext.user = scontext->user;
1815 		}
1816 		break;
1817 	case AVTAB_MEMBER:
1818 		/* Use the related object owner. */
1819 		newcontext.user = tcontext->user;
1820 		break;
1821 	}
1822 
1823 	/* Set the role to default values. */
1824 	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1825 		newcontext.role = scontext->role;
1826 	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1827 		newcontext.role = tcontext->role;
1828 	} else {
1829 		if ((tclass == policydb->process_class) || sock)
1830 			newcontext.role = scontext->role;
1831 		else
1832 			newcontext.role = OBJECT_R_VAL;
1833 	}
1834 
1835 	/* Set the type.
1836 	 * Look for a type transition/member/change rule.
1837 	 */
1838 	avkey.source_type = scontext->type;
1839 	avkey.target_type = tcontext->type;
1840 	avkey.target_class = tclass;
1841 	avkey.specified = specified;
1842 	avnode = avtab_search_node(&policydb->te_avtab, &avkey);
1843 
1844 	/* If no permanent rule, also check for enabled conditional rules */
1845 	if (!avnode) {
1846 		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1847 		for (; node; node = avtab_search_node_next(node, specified)) {
1848 			if (node->key.specified & AVTAB_ENABLED) {
1849 				avnode = node;
1850 				break;
1851 			}
1852 		}
1853 	}
1854 
1855 	/* If a permanent rule is found, use the type from
1856 	 * the type transition/member/change rule. Otherwise,
1857 	 * set the type to its default values.
1858 	 */
1859 	if (avnode) {
1860 		newcontext.type = avnode->datum.u.data;
1861 	} else if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1862 		newcontext.type = scontext->type;
1863 	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1864 		newcontext.type = tcontext->type;
1865 	} else {
1866 		if ((tclass == policydb->process_class) || sock) {
1867 			/* Use the type of process. */
1868 			newcontext.type = scontext->type;
1869 		} else {
1870 			/* Use the type of the related object. */
1871 			newcontext.type = tcontext->type;
1872 		}
1873 	}
1874 
1875 	/* if we have a objname this is a file trans check so check those rules */
1876 	if (objname)
1877 		filename_compute_type(policydb, &newcontext, scontext->type,
1878 				      tcontext->type, tclass, objname);
1879 
1880 	/* Check for class-specific changes. */
1881 	if (specified & AVTAB_TRANSITION) {
1882 		/* Look for a role transition rule. */
1883 		struct role_trans_datum *rtd;
1884 		struct role_trans_key rtk = {
1885 			.role = scontext->role,
1886 			.type = tcontext->type,
1887 			.tclass = tclass,
1888 		};
1889 
1890 		rtd = policydb_roletr_search(policydb, &rtk);
1891 		if (rtd)
1892 			newcontext.role = rtd->new_role;
1893 	}
1894 
1895 	/* Set the MLS attributes.
1896 	   This is done last because it may allocate memory. */
1897 	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1898 			     &newcontext, sock);
1899 	if (rc)
1900 		goto out_unlock;
1901 
1902 	/* Check the validity of the context. */
1903 	if (!policydb_context_isvalid(policydb, &newcontext)) {
1904 		rc = compute_sid_handle_invalid_context(policy, sentry,
1905 							tentry, tclass,
1906 							&newcontext);
1907 		if (rc)
1908 			goto out_unlock;
1909 	}
1910 	/* Obtain the sid for the context. */
1911 	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1912 	if (rc == -ESTALE) {
1913 		rcu_read_unlock();
1914 		context_destroy(&newcontext);
1915 		goto retry;
1916 	}
1917 out_unlock:
1918 	rcu_read_unlock();
1919 	context_destroy(&newcontext);
1920 out:
1921 	return rc;
1922 }
1923 
1924 /**
1925  * security_transition_sid - Compute the SID for a new subject/object.
1926  * @ssid: source security identifier
1927  * @tsid: target security identifier
1928  * @tclass: target security class
1929  * @qstr: object name
1930  * @out_sid: security identifier for new subject/object
1931  *
1932  * Compute a SID to use for labeling a new subject or object in the
1933  * class @tclass based on a SID pair (@ssid, @tsid).
1934  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1935  * if insufficient memory is available, or %0 if the new SID was
1936  * computed successfully.
1937  */
security_transition_sid(u32 ssid,u32 tsid,u16 tclass,const struct qstr * qstr,u32 * out_sid)1938 int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1939 			    const struct qstr *qstr, u32 *out_sid)
1940 {
1941 	return security_compute_sid(ssid, tsid, tclass,
1942 				    AVTAB_TRANSITION,
1943 				    qstr ? qstr->name : NULL, out_sid, true);
1944 }
1945 
security_transition_sid_user(u32 ssid,u32 tsid,u16 tclass,const char * objname,u32 * out_sid)1946 int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
1947 				 const char *objname, u32 *out_sid)
1948 {
1949 	return security_compute_sid(ssid, tsid, tclass,
1950 				    AVTAB_TRANSITION,
1951 				    objname, out_sid, false);
1952 }
1953 
1954 /**
1955  * security_member_sid - Compute the SID for member selection.
1956  * @ssid: source security identifier
1957  * @tsid: target security identifier
1958  * @tclass: target security class
1959  * @out_sid: security identifier for selected member
1960  *
1961  * Compute a SID to use when selecting a member of a polyinstantiated
1962  * object of class @tclass based on a SID pair (@ssid, @tsid).
1963  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1964  * if insufficient memory is available, or %0 if the SID was
1965  * computed successfully.
1966  */
security_member_sid(u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1967 int security_member_sid(u32 ssid,
1968 			u32 tsid,
1969 			u16 tclass,
1970 			u32 *out_sid)
1971 {
1972 	return security_compute_sid(ssid, tsid, tclass,
1973 				    AVTAB_MEMBER, NULL,
1974 				    out_sid, false);
1975 }
1976 
1977 /**
1978  * security_change_sid - Compute the SID for object relabeling.
1979  * @ssid: source security identifier
1980  * @tsid: target security identifier
1981  * @tclass: target security class
1982  * @out_sid: security identifier for selected member
1983  *
1984  * Compute a SID to use for relabeling an object of class @tclass
1985  * based on a SID pair (@ssid, @tsid).
1986  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1987  * if insufficient memory is available, or %0 if the SID was
1988  * computed successfully.
1989  */
security_change_sid(u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1990 int security_change_sid(u32 ssid,
1991 			u32 tsid,
1992 			u16 tclass,
1993 			u32 *out_sid)
1994 {
1995 	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1996 				    out_sid, false);
1997 }
1998 
convert_context_handle_invalid_context(struct policydb * policydb,struct context * context)1999 static inline int convert_context_handle_invalid_context(
2000 	struct policydb *policydb,
2001 	struct context *context)
2002 {
2003 	char *s;
2004 	u32 len;
2005 
2006 	if (enforcing_enabled())
2007 		return -EINVAL;
2008 
2009 	if (!context_struct_to_string(policydb, context, &s, &len)) {
2010 		pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
2011 			s);
2012 		kfree(s);
2013 	}
2014 	return 0;
2015 }
2016 
2017 /**
2018  * services_convert_context - Convert a security context across policies.
2019  * @args: populated convert_context_args struct
2020  * @oldc: original context
2021  * @newc: converted context
2022  * @gfp_flags: allocation flags
2023  *
2024  * Convert the values in the security context structure @oldc from the values
2025  * specified in the policy @args->oldp to the values specified in the policy
2026  * @args->newp, storing the new context in @newc, and verifying that the
2027  * context is valid under the new policy.
2028  */
services_convert_context(struct convert_context_args * args,struct context * oldc,struct context * newc,gfp_t gfp_flags)2029 int services_convert_context(struct convert_context_args *args,
2030 			     struct context *oldc, struct context *newc,
2031 			     gfp_t gfp_flags)
2032 {
2033 	struct ocontext *oc;
2034 	struct role_datum *role;
2035 	struct type_datum *typdatum;
2036 	struct user_datum *usrdatum;
2037 	char *s;
2038 	u32 len;
2039 	int rc;
2040 
2041 	if (oldc->str) {
2042 		s = kstrdup(oldc->str, gfp_flags);
2043 		if (!s)
2044 			return -ENOMEM;
2045 
2046 		rc = string_to_context_struct(args->newp, NULL, s, newc, SECSID_NULL);
2047 		if (rc == -EINVAL) {
2048 			/*
2049 			 * Retain string representation for later mapping.
2050 			 *
2051 			 * IMPORTANT: We need to copy the contents of oldc->str
2052 			 * back into s again because string_to_context_struct()
2053 			 * may have garbled it.
2054 			 */
2055 			memcpy(s, oldc->str, oldc->len);
2056 			context_init(newc);
2057 			newc->str = s;
2058 			newc->len = oldc->len;
2059 			return 0;
2060 		}
2061 		kfree(s);
2062 		if (rc) {
2063 			/* Other error condition, e.g. ENOMEM. */
2064 			pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
2065 			       oldc->str, -rc);
2066 			return rc;
2067 		}
2068 		pr_info("SELinux:  Context %s became valid (mapped).\n",
2069 			oldc->str);
2070 		return 0;
2071 	}
2072 
2073 	context_init(newc);
2074 
2075 	/* Convert the user. */
2076 	usrdatum = symtab_search(&args->newp->p_users,
2077 				 sym_name(args->oldp, SYM_USERS, oldc->user - 1));
2078 	if (!usrdatum)
2079 		goto bad;
2080 	newc->user = usrdatum->value;
2081 
2082 	/* Convert the role. */
2083 	role = symtab_search(&args->newp->p_roles,
2084 			     sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
2085 	if (!role)
2086 		goto bad;
2087 	newc->role = role->value;
2088 
2089 	/* Convert the type. */
2090 	typdatum = symtab_search(&args->newp->p_types,
2091 				 sym_name(args->oldp, SYM_TYPES, oldc->type - 1));
2092 	if (!typdatum)
2093 		goto bad;
2094 	newc->type = typdatum->value;
2095 
2096 	/* Convert the MLS fields if dealing with MLS policies */
2097 	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2098 		rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2099 		if (rc)
2100 			goto bad;
2101 	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2102 		/*
2103 		 * Switching between non-MLS and MLS policy:
2104 		 * ensure that the MLS fields of the context for all
2105 		 * existing entries in the sidtab are filled in with a
2106 		 * suitable default value, likely taken from one of the
2107 		 * initial SIDs.
2108 		 */
2109 		oc = args->newp->ocontexts[OCON_ISID];
2110 		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2111 			oc = oc->next;
2112 		if (!oc) {
2113 			pr_err("SELinux:  unable to look up"
2114 				" the initial SIDs list\n");
2115 			goto bad;
2116 		}
2117 		rc = mls_range_set(newc, &oc->context[0].range);
2118 		if (rc)
2119 			goto bad;
2120 	}
2121 
2122 	/* Check the validity of the new context. */
2123 	if (!policydb_context_isvalid(args->newp, newc)) {
2124 		rc = convert_context_handle_invalid_context(args->oldp, oldc);
2125 		if (rc)
2126 			goto bad;
2127 	}
2128 
2129 	return 0;
2130 bad:
2131 	/* Map old representation to string and save it. */
2132 	rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2133 	if (rc)
2134 		return rc;
2135 	context_destroy(newc);
2136 	newc->str = s;
2137 	newc->len = len;
2138 	pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2139 		newc->str);
2140 	return 0;
2141 }
2142 
security_load_policycaps(struct selinux_policy * policy)2143 static void security_load_policycaps(struct selinux_policy *policy)
2144 {
2145 	struct policydb *p;
2146 	unsigned int i;
2147 	struct ebitmap_node *node;
2148 
2149 	p = &policy->policydb;
2150 
2151 	for (i = 0; i < ARRAY_SIZE(selinux_state.policycap); i++)
2152 		WRITE_ONCE(selinux_state.policycap[i],
2153 			ebitmap_get_bit(&p->policycaps, i));
2154 
2155 	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2156 		pr_info("SELinux:  policy capability %s=%d\n",
2157 			selinux_policycap_names[i],
2158 			ebitmap_get_bit(&p->policycaps, i));
2159 
2160 	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2161 		if (i >= ARRAY_SIZE(selinux_policycap_names))
2162 			pr_info("SELinux:  unknown policy capability %u\n",
2163 				i);
2164 	}
2165 }
2166 
2167 static int security_preserve_bools(struct selinux_policy *oldpolicy,
2168 				struct selinux_policy *newpolicy);
2169 
selinux_policy_free(struct selinux_policy * policy)2170 static void selinux_policy_free(struct selinux_policy *policy)
2171 {
2172 	if (!policy)
2173 		return;
2174 
2175 	sidtab_destroy(policy->sidtab);
2176 	kfree(policy->map.mapping);
2177 	policydb_destroy(&policy->policydb);
2178 	kfree(policy->sidtab);
2179 	kfree(policy);
2180 }
2181 
selinux_policy_cond_free(struct selinux_policy * policy)2182 static void selinux_policy_cond_free(struct selinux_policy *policy)
2183 {
2184 	cond_policydb_destroy_dup(&policy->policydb);
2185 	kfree(policy);
2186 }
2187 
selinux_policy_cancel(struct selinux_load_state * load_state)2188 void selinux_policy_cancel(struct selinux_load_state *load_state)
2189 {
2190 	struct selinux_state *state = &selinux_state;
2191 	struct selinux_policy *oldpolicy;
2192 
2193 	oldpolicy = rcu_dereference_protected(state->policy,
2194 					lockdep_is_held(&state->policy_mutex));
2195 
2196 	sidtab_cancel_convert(oldpolicy->sidtab);
2197 	selinux_policy_free(load_state->policy);
2198 	kfree(load_state->convert_data);
2199 }
2200 
selinux_notify_policy_change(u32 seqno)2201 static void selinux_notify_policy_change(u32 seqno)
2202 {
2203 	/* Flush external caches and notify userspace of policy load */
2204 	avc_ss_reset(seqno);
2205 	selnl_notify_policyload(seqno);
2206 	selinux_status_update_policyload(seqno);
2207 	selinux_netlbl_cache_invalidate();
2208 	selinux_xfrm_notify_policyload();
2209 	selinux_ima_measure_state_locked();
2210 }
2211 
selinux_policy_commit(struct selinux_load_state * load_state)2212 void selinux_policy_commit(struct selinux_load_state *load_state)
2213 {
2214 	struct selinux_state *state = &selinux_state;
2215 	struct selinux_policy *oldpolicy, *newpolicy = load_state->policy;
2216 	unsigned long flags;
2217 	u32 seqno;
2218 
2219 	oldpolicy = rcu_dereference_protected(state->policy,
2220 					lockdep_is_held(&state->policy_mutex));
2221 
2222 	/* If switching between different policy types, log MLS status */
2223 	if (oldpolicy) {
2224 		if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled)
2225 			pr_info("SELinux: Disabling MLS support...\n");
2226 		else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled)
2227 			pr_info("SELinux: Enabling MLS support...\n");
2228 	}
2229 
2230 	/* Set latest granting seqno for new policy. */
2231 	if (oldpolicy)
2232 		newpolicy->latest_granting = oldpolicy->latest_granting + 1;
2233 	else
2234 		newpolicy->latest_granting = 1;
2235 	seqno = newpolicy->latest_granting;
2236 
2237 	/* Install the new policy. */
2238 	if (oldpolicy) {
2239 		sidtab_freeze_begin(oldpolicy->sidtab, &flags);
2240 		rcu_assign_pointer(state->policy, newpolicy);
2241 		sidtab_freeze_end(oldpolicy->sidtab, &flags);
2242 	} else {
2243 		rcu_assign_pointer(state->policy, newpolicy);
2244 	}
2245 
2246 	/* Load the policycaps from the new policy */
2247 	security_load_policycaps(newpolicy);
2248 
2249 	if (!selinux_initialized()) {
2250 		/*
2251 		 * After first policy load, the security server is
2252 		 * marked as initialized and ready to handle requests and
2253 		 * any objects created prior to policy load are then labeled.
2254 		 */
2255 		selinux_mark_initialized();
2256 		selinux_complete_init();
2257 	}
2258 
2259 	/* Free the old policy */
2260 	synchronize_rcu();
2261 	selinux_policy_free(oldpolicy);
2262 	kfree(load_state->convert_data);
2263 
2264 	/* Notify others of the policy change */
2265 	selinux_notify_policy_change(seqno);
2266 }
2267 
2268 /**
2269  * security_load_policy - Load a security policy configuration.
2270  * @data: binary policy data
2271  * @len: length of data in bytes
2272  * @load_state: policy load state
2273  *
2274  * Load a new set of security policy configuration data,
2275  * validate it and convert the SID table as necessary.
2276  * This function will flush the access vector cache after
2277  * loading the new policy.
2278  */
security_load_policy(void * data,size_t len,struct selinux_load_state * load_state)2279 int security_load_policy(void *data, size_t len,
2280 			 struct selinux_load_state *load_state)
2281 {
2282 	struct selinux_state *state = &selinux_state;
2283 	struct selinux_policy *newpolicy, *oldpolicy;
2284 	struct selinux_policy_convert_data *convert_data;
2285 	int rc = 0;
2286 	struct policy_file file = { data, len }, *fp = &file;
2287 
2288 	newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL);
2289 	if (!newpolicy)
2290 		return -ENOMEM;
2291 
2292 	newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL);
2293 	if (!newpolicy->sidtab) {
2294 		rc = -ENOMEM;
2295 		goto err_policy;
2296 	}
2297 
2298 	rc = policydb_read(&newpolicy->policydb, fp);
2299 	if (rc)
2300 		goto err_sidtab;
2301 
2302 	newpolicy->policydb.len = len;
2303 	rc = selinux_set_mapping(&newpolicy->policydb, secclass_map,
2304 				&newpolicy->map);
2305 	if (rc)
2306 		goto err_policydb;
2307 
2308 	rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab);
2309 	if (rc) {
2310 		pr_err("SELinux:  unable to load the initial SIDs\n");
2311 		goto err_mapping;
2312 	}
2313 
2314 	if (!selinux_initialized()) {
2315 		/* First policy load, so no need to preserve state from old policy */
2316 		load_state->policy = newpolicy;
2317 		load_state->convert_data = NULL;
2318 		return 0;
2319 	}
2320 
2321 	oldpolicy = rcu_dereference_protected(state->policy,
2322 					lockdep_is_held(&state->policy_mutex));
2323 
2324 	/* Preserve active boolean values from the old policy */
2325 	rc = security_preserve_bools(oldpolicy, newpolicy);
2326 	if (rc) {
2327 		pr_err("SELinux:  unable to preserve booleans\n");
2328 		goto err_free_isids;
2329 	}
2330 
2331 	/*
2332 	 * Convert the internal representations of contexts
2333 	 * in the new SID table.
2334 	 */
2335 
2336 	convert_data = kmalloc(sizeof(*convert_data), GFP_KERNEL);
2337 	if (!convert_data) {
2338 		rc = -ENOMEM;
2339 		goto err_free_isids;
2340 	}
2341 
2342 	convert_data->args.oldp = &oldpolicy->policydb;
2343 	convert_data->args.newp = &newpolicy->policydb;
2344 
2345 	convert_data->sidtab_params.args = &convert_data->args;
2346 	convert_data->sidtab_params.target = newpolicy->sidtab;
2347 
2348 	rc = sidtab_convert(oldpolicy->sidtab, &convert_data->sidtab_params);
2349 	if (rc) {
2350 		pr_err("SELinux:  unable to convert the internal"
2351 			" representation of contexts in the new SID"
2352 			" table\n");
2353 		goto err_free_convert_data;
2354 	}
2355 
2356 	load_state->policy = newpolicy;
2357 	load_state->convert_data = convert_data;
2358 	return 0;
2359 
2360 err_free_convert_data:
2361 	kfree(convert_data);
2362 err_free_isids:
2363 	sidtab_destroy(newpolicy->sidtab);
2364 err_mapping:
2365 	kfree(newpolicy->map.mapping);
2366 err_policydb:
2367 	policydb_destroy(&newpolicy->policydb);
2368 err_sidtab:
2369 	kfree(newpolicy->sidtab);
2370 err_policy:
2371 	kfree(newpolicy);
2372 
2373 	return rc;
2374 }
2375 
2376 /**
2377  * ocontext_to_sid - Helper to safely get sid for an ocontext
2378  * @sidtab: SID table
2379  * @c: ocontext structure
2380  * @index: index of the context entry (0 or 1)
2381  * @out_sid: pointer to the resulting SID value
2382  *
2383  * For all ocontexts except OCON_ISID the SID fields are populated
2384  * on-demand when needed. Since updating the SID value is an SMP-sensitive
2385  * operation, this helper must be used to do that safely.
2386  *
2387  * WARNING: This function may return -ESTALE, indicating that the caller
2388  * must retry the operation after re-acquiring the policy pointer!
2389  */
ocontext_to_sid(struct sidtab * sidtab,struct ocontext * c,size_t index,u32 * out_sid)2390 static int ocontext_to_sid(struct sidtab *sidtab, struct ocontext *c,
2391 			   size_t index, u32 *out_sid)
2392 {
2393 	int rc;
2394 	u32 sid;
2395 
2396 	/* Ensure the associated sidtab entry is visible to this thread. */
2397 	sid = smp_load_acquire(&c->sid[index]);
2398 	if (!sid) {
2399 		rc = sidtab_context_to_sid(sidtab, &c->context[index], &sid);
2400 		if (rc)
2401 			return rc;
2402 
2403 		/*
2404 		 * Ensure the new sidtab entry is visible to other threads
2405 		 * when they see the SID.
2406 		 */
2407 		smp_store_release(&c->sid[index], sid);
2408 	}
2409 	*out_sid = sid;
2410 	return 0;
2411 }
2412 
2413 /**
2414  * security_port_sid - Obtain the SID for a port.
2415  * @protocol: protocol number
2416  * @port: port number
2417  * @out_sid: security identifier
2418  */
security_port_sid(u8 protocol,u16 port,u32 * out_sid)2419 int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
2420 {
2421 	struct selinux_policy *policy;
2422 	struct policydb *policydb;
2423 	struct sidtab *sidtab;
2424 	struct ocontext *c;
2425 	int rc;
2426 
2427 	if (!selinux_initialized()) {
2428 		*out_sid = SECINITSID_PORT;
2429 		return 0;
2430 	}
2431 
2432 retry:
2433 	rc = 0;
2434 	rcu_read_lock();
2435 	policy = rcu_dereference(selinux_state.policy);
2436 	policydb = &policy->policydb;
2437 	sidtab = policy->sidtab;
2438 
2439 	c = policydb->ocontexts[OCON_PORT];
2440 	while (c) {
2441 		if (c->u.port.protocol == protocol &&
2442 		    c->u.port.low_port <= port &&
2443 		    c->u.port.high_port >= port)
2444 			break;
2445 		c = c->next;
2446 	}
2447 
2448 	if (c) {
2449 		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2450 		if (rc == -ESTALE) {
2451 			rcu_read_unlock();
2452 			goto retry;
2453 		}
2454 		if (rc)
2455 			goto out;
2456 	} else {
2457 		*out_sid = SECINITSID_PORT;
2458 	}
2459 
2460 out:
2461 	rcu_read_unlock();
2462 	return rc;
2463 }
2464 
2465 /**
2466  * security_ib_pkey_sid - Obtain the SID for a pkey.
2467  * @subnet_prefix: Subnet Prefix
2468  * @pkey_num: pkey number
2469  * @out_sid: security identifier
2470  */
security_ib_pkey_sid(u64 subnet_prefix,u16 pkey_num,u32 * out_sid)2471 int security_ib_pkey_sid(u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2472 {
2473 	struct selinux_policy *policy;
2474 	struct policydb *policydb;
2475 	struct sidtab *sidtab;
2476 	struct ocontext *c;
2477 	int rc;
2478 
2479 	if (!selinux_initialized()) {
2480 		*out_sid = SECINITSID_UNLABELED;
2481 		return 0;
2482 	}
2483 
2484 retry:
2485 	rc = 0;
2486 	rcu_read_lock();
2487 	policy = rcu_dereference(selinux_state.policy);
2488 	policydb = &policy->policydb;
2489 	sidtab = policy->sidtab;
2490 
2491 	c = policydb->ocontexts[OCON_IBPKEY];
2492 	while (c) {
2493 		if (c->u.ibpkey.low_pkey <= pkey_num &&
2494 		    c->u.ibpkey.high_pkey >= pkey_num &&
2495 		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2496 			break;
2497 
2498 		c = c->next;
2499 	}
2500 
2501 	if (c) {
2502 		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2503 		if (rc == -ESTALE) {
2504 			rcu_read_unlock();
2505 			goto retry;
2506 		}
2507 		if (rc)
2508 			goto out;
2509 	} else
2510 		*out_sid = SECINITSID_UNLABELED;
2511 
2512 out:
2513 	rcu_read_unlock();
2514 	return rc;
2515 }
2516 
2517 /**
2518  * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2519  * @dev_name: device name
2520  * @port_num: port number
2521  * @out_sid: security identifier
2522  */
security_ib_endport_sid(const char * dev_name,u8 port_num,u32 * out_sid)2523 int security_ib_endport_sid(const char *dev_name, u8 port_num, u32 *out_sid)
2524 {
2525 	struct selinux_policy *policy;
2526 	struct policydb *policydb;
2527 	struct sidtab *sidtab;
2528 	struct ocontext *c;
2529 	int rc;
2530 
2531 	if (!selinux_initialized()) {
2532 		*out_sid = SECINITSID_UNLABELED;
2533 		return 0;
2534 	}
2535 
2536 retry:
2537 	rc = 0;
2538 	rcu_read_lock();
2539 	policy = rcu_dereference(selinux_state.policy);
2540 	policydb = &policy->policydb;
2541 	sidtab = policy->sidtab;
2542 
2543 	c = policydb->ocontexts[OCON_IBENDPORT];
2544 	while (c) {
2545 		if (c->u.ibendport.port == port_num &&
2546 		    !strncmp(c->u.ibendport.dev_name,
2547 			     dev_name,
2548 			     IB_DEVICE_NAME_MAX))
2549 			break;
2550 
2551 		c = c->next;
2552 	}
2553 
2554 	if (c) {
2555 		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2556 		if (rc == -ESTALE) {
2557 			rcu_read_unlock();
2558 			goto retry;
2559 		}
2560 		if (rc)
2561 			goto out;
2562 	} else
2563 		*out_sid = SECINITSID_UNLABELED;
2564 
2565 out:
2566 	rcu_read_unlock();
2567 	return rc;
2568 }
2569 
2570 /**
2571  * security_netif_sid - Obtain the SID for a network interface.
2572  * @name: interface name
2573  * @if_sid: interface SID
2574  */
security_netif_sid(char * name,u32 * if_sid)2575 int security_netif_sid(char *name, u32 *if_sid)
2576 {
2577 	struct selinux_policy *policy;
2578 	struct policydb *policydb;
2579 	struct sidtab *sidtab;
2580 	int rc;
2581 	struct ocontext *c;
2582 
2583 	if (!selinux_initialized()) {
2584 		*if_sid = SECINITSID_NETIF;
2585 		return 0;
2586 	}
2587 
2588 retry:
2589 	rc = 0;
2590 	rcu_read_lock();
2591 	policy = rcu_dereference(selinux_state.policy);
2592 	policydb = &policy->policydb;
2593 	sidtab = policy->sidtab;
2594 
2595 	c = policydb->ocontexts[OCON_NETIF];
2596 	while (c) {
2597 		if (strcmp(name, c->u.name) == 0)
2598 			break;
2599 		c = c->next;
2600 	}
2601 
2602 	if (c) {
2603 		rc = ocontext_to_sid(sidtab, c, 0, if_sid);
2604 		if (rc == -ESTALE) {
2605 			rcu_read_unlock();
2606 			goto retry;
2607 		}
2608 		if (rc)
2609 			goto out;
2610 	} else
2611 		*if_sid = SECINITSID_NETIF;
2612 
2613 out:
2614 	rcu_read_unlock();
2615 	return rc;
2616 }
2617 
match_ipv6_addrmask(const u32 input[4],const u32 addr[4],const u32 mask[4])2618 static bool match_ipv6_addrmask(const u32 input[4], const u32 addr[4], const u32 mask[4])
2619 {
2620 	int i;
2621 
2622 	for (i = 0; i < 4; i++)
2623 		if (addr[i] != (input[i] & mask[i]))
2624 			return false;
2625 
2626 	return true;
2627 }
2628 
2629 /**
2630  * security_node_sid - Obtain the SID for a node (host).
2631  * @domain: communication domain aka address family
2632  * @addrp: address
2633  * @addrlen: address length in bytes
2634  * @out_sid: security identifier
2635  */
security_node_sid(u16 domain,void * addrp,u32 addrlen,u32 * out_sid)2636 int security_node_sid(u16 domain,
2637 		      void *addrp,
2638 		      u32 addrlen,
2639 		      u32 *out_sid)
2640 {
2641 	struct selinux_policy *policy;
2642 	struct policydb *policydb;
2643 	struct sidtab *sidtab;
2644 	int rc;
2645 	struct ocontext *c;
2646 
2647 	if (!selinux_initialized()) {
2648 		*out_sid = SECINITSID_NODE;
2649 		return 0;
2650 	}
2651 
2652 retry:
2653 	rcu_read_lock();
2654 	policy = rcu_dereference(selinux_state.policy);
2655 	policydb = &policy->policydb;
2656 	sidtab = policy->sidtab;
2657 
2658 	switch (domain) {
2659 	case AF_INET: {
2660 		u32 addr;
2661 
2662 		rc = -EINVAL;
2663 		if (addrlen != sizeof(u32))
2664 			goto out;
2665 
2666 		addr = *((u32 *)addrp);
2667 
2668 		c = policydb->ocontexts[OCON_NODE];
2669 		while (c) {
2670 			if (c->u.node.addr == (addr & c->u.node.mask))
2671 				break;
2672 			c = c->next;
2673 		}
2674 		break;
2675 	}
2676 
2677 	case AF_INET6:
2678 		rc = -EINVAL;
2679 		if (addrlen != sizeof(u64) * 2)
2680 			goto out;
2681 		c = policydb->ocontexts[OCON_NODE6];
2682 		while (c) {
2683 			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2684 						c->u.node6.mask))
2685 				break;
2686 			c = c->next;
2687 		}
2688 		break;
2689 
2690 	default:
2691 		rc = 0;
2692 		*out_sid = SECINITSID_NODE;
2693 		goto out;
2694 	}
2695 
2696 	if (c) {
2697 		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2698 		if (rc == -ESTALE) {
2699 			rcu_read_unlock();
2700 			goto retry;
2701 		}
2702 		if (rc)
2703 			goto out;
2704 	} else {
2705 		*out_sid = SECINITSID_NODE;
2706 	}
2707 
2708 	rc = 0;
2709 out:
2710 	rcu_read_unlock();
2711 	return rc;
2712 }
2713 
2714 #define SIDS_NEL 25
2715 
2716 /**
2717  * security_get_user_sids - Obtain reachable SIDs for a user.
2718  * @fromsid: starting SID
2719  * @username: username
2720  * @sids: array of reachable SIDs for user
2721  * @nel: number of elements in @sids
2722  *
2723  * Generate the set of SIDs for legal security contexts
2724  * for a given user that can be reached by @fromsid.
2725  * Set *@sids to point to a dynamically allocated
2726  * array containing the set of SIDs.  Set *@nel to the
2727  * number of elements in the array.
2728  */
2729 
security_get_user_sids(u32 fromsid,const char * username,u32 ** sids,u32 * nel)2730 int security_get_user_sids(u32 fromsid,
2731 			   const char *username,
2732 			   u32 **sids,
2733 			   u32 *nel)
2734 {
2735 	struct selinux_policy *policy;
2736 	struct policydb *policydb;
2737 	struct sidtab *sidtab;
2738 	struct context *fromcon, usercon;
2739 	u32 *mysids = NULL, *mysids2, sid;
2740 	u32 i, j, mynel, maxnel = SIDS_NEL;
2741 	struct user_datum *user;
2742 	struct role_datum *role;
2743 	struct ebitmap_node *rnode, *tnode;
2744 	int rc;
2745 
2746 	*sids = NULL;
2747 	*nel = 0;
2748 
2749 	if (!selinux_initialized())
2750 		return 0;
2751 
2752 	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_KERNEL);
2753 	if (!mysids)
2754 		return -ENOMEM;
2755 
2756 retry:
2757 	mynel = 0;
2758 	rcu_read_lock();
2759 	policy = rcu_dereference(selinux_state.policy);
2760 	policydb = &policy->policydb;
2761 	sidtab = policy->sidtab;
2762 
2763 	context_init(&usercon);
2764 
2765 	rc = -EINVAL;
2766 	fromcon = sidtab_search(sidtab, fromsid);
2767 	if (!fromcon)
2768 		goto out_unlock;
2769 
2770 	rc = -EINVAL;
2771 	user = symtab_search(&policydb->p_users, username);
2772 	if (!user)
2773 		goto out_unlock;
2774 
2775 	usercon.user = user->value;
2776 
2777 	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2778 		role = policydb->role_val_to_struct[i];
2779 		usercon.role = i + 1;
2780 		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2781 			usercon.type = j + 1;
2782 
2783 			if (mls_setup_user_range(policydb, fromcon, user,
2784 						 &usercon))
2785 				continue;
2786 
2787 			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2788 			if (rc == -ESTALE) {
2789 				rcu_read_unlock();
2790 				goto retry;
2791 			}
2792 			if (rc)
2793 				goto out_unlock;
2794 			if (mynel < maxnel) {
2795 				mysids[mynel++] = sid;
2796 			} else {
2797 				rc = -ENOMEM;
2798 				maxnel += SIDS_NEL;
2799 				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2800 				if (!mysids2)
2801 					goto out_unlock;
2802 				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2803 				kfree(mysids);
2804 				mysids = mysids2;
2805 				mysids[mynel++] = sid;
2806 			}
2807 		}
2808 	}
2809 	rc = 0;
2810 out_unlock:
2811 	rcu_read_unlock();
2812 	if (rc || !mynel) {
2813 		kfree(mysids);
2814 		return rc;
2815 	}
2816 
2817 	rc = -ENOMEM;
2818 	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2819 	if (!mysids2) {
2820 		kfree(mysids);
2821 		return rc;
2822 	}
2823 	for (i = 0, j = 0; i < mynel; i++) {
2824 		struct av_decision dummy_avd;
2825 		rc = avc_has_perm_noaudit(fromsid, mysids[i],
2826 					  SECCLASS_PROCESS, /* kernel value */
2827 					  PROCESS__TRANSITION, AVC_STRICT,
2828 					  &dummy_avd);
2829 		if (!rc)
2830 			mysids2[j++] = mysids[i];
2831 		cond_resched();
2832 	}
2833 	kfree(mysids);
2834 	*sids = mysids2;
2835 	*nel = j;
2836 	return 0;
2837 }
2838 
2839 /**
2840  * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2841  * @policy: policy
2842  * @fstype: filesystem type
2843  * @path: path from root of mount
2844  * @orig_sclass: file security class
2845  * @sid: SID for path
2846  *
2847  * Obtain a SID to use for a file in a filesystem that
2848  * cannot support xattr or use a fixed labeling behavior like
2849  * transition SIDs or task SIDs.
2850  *
2851  * WARNING: This function may return -ESTALE, indicating that the caller
2852  * must retry the operation after re-acquiring the policy pointer!
2853  */
__security_genfs_sid(struct selinux_policy * policy,const char * fstype,const char * path,u16 orig_sclass,u32 * sid)2854 static inline int __security_genfs_sid(struct selinux_policy *policy,
2855 				       const char *fstype,
2856 				       const char *path,
2857 				       u16 orig_sclass,
2858 				       u32 *sid)
2859 {
2860 	struct policydb *policydb = &policy->policydb;
2861 	struct sidtab *sidtab = policy->sidtab;
2862 	u16 sclass;
2863 	struct genfs *genfs;
2864 	struct ocontext *c;
2865 	int cmp = 0;
2866 
2867 	while (path[0] == '/' && path[1] == '/')
2868 		path++;
2869 
2870 	sclass = unmap_class(&policy->map, orig_sclass);
2871 	*sid = SECINITSID_UNLABELED;
2872 
2873 	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2874 		cmp = strcmp(fstype, genfs->fstype);
2875 		if (cmp <= 0)
2876 			break;
2877 	}
2878 
2879 	if (!genfs || cmp)
2880 		return -ENOENT;
2881 
2882 	for (c = genfs->head; c; c = c->next) {
2883 		size_t len = strlen(c->u.name);
2884 		if ((!c->v.sclass || sclass == c->v.sclass) &&
2885 		    (strncmp(c->u.name, path, len) == 0))
2886 			break;
2887 	}
2888 
2889 	if (!c)
2890 		return -ENOENT;
2891 
2892 	return ocontext_to_sid(sidtab, c, 0, sid);
2893 }
2894 
2895 /**
2896  * security_genfs_sid - Obtain a SID for a file in a filesystem
2897  * @fstype: filesystem type
2898  * @path: path from root of mount
2899  * @orig_sclass: file security class
2900  * @sid: SID for path
2901  *
2902  * Acquire policy_rwlock before calling __security_genfs_sid() and release
2903  * it afterward.
2904  */
security_genfs_sid(const char * fstype,const char * path,u16 orig_sclass,u32 * sid)2905 int security_genfs_sid(const char *fstype,
2906 		       const char *path,
2907 		       u16 orig_sclass,
2908 		       u32 *sid)
2909 {
2910 	struct selinux_policy *policy;
2911 	int retval;
2912 
2913 	if (!selinux_initialized()) {
2914 		*sid = SECINITSID_UNLABELED;
2915 		return 0;
2916 	}
2917 
2918 	do {
2919 		rcu_read_lock();
2920 		policy = rcu_dereference(selinux_state.policy);
2921 		retval = __security_genfs_sid(policy, fstype, path,
2922 					      orig_sclass, sid);
2923 		rcu_read_unlock();
2924 	} while (retval == -ESTALE);
2925 	return retval;
2926 }
2927 
selinux_policy_genfs_sid(struct selinux_policy * policy,const char * fstype,const char * path,u16 orig_sclass,u32 * sid)2928 int selinux_policy_genfs_sid(struct selinux_policy *policy,
2929 			const char *fstype,
2930 			const char *path,
2931 			u16 orig_sclass,
2932 			u32 *sid)
2933 {
2934 	/* no lock required, policy is not yet accessible by other threads */
2935 	return __security_genfs_sid(policy, fstype, path, orig_sclass, sid);
2936 }
2937 
2938 /**
2939  * security_fs_use - Determine how to handle labeling for a filesystem.
2940  * @sb: superblock in question
2941  */
security_fs_use(struct super_block * sb)2942 int security_fs_use(struct super_block *sb)
2943 {
2944 	struct selinux_policy *policy;
2945 	struct policydb *policydb;
2946 	struct sidtab *sidtab;
2947 	int rc;
2948 	struct ocontext *c;
2949 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2950 	const char *fstype = sb->s_type->name;
2951 
2952 	if (!selinux_initialized()) {
2953 		sbsec->behavior = SECURITY_FS_USE_NONE;
2954 		sbsec->sid = SECINITSID_UNLABELED;
2955 		return 0;
2956 	}
2957 
2958 retry:
2959 	rcu_read_lock();
2960 	policy = rcu_dereference(selinux_state.policy);
2961 	policydb = &policy->policydb;
2962 	sidtab = policy->sidtab;
2963 
2964 	c = policydb->ocontexts[OCON_FSUSE];
2965 	while (c) {
2966 		if (strcmp(fstype, c->u.name) == 0)
2967 			break;
2968 		c = c->next;
2969 	}
2970 
2971 	if (c) {
2972 		sbsec->behavior = c->v.behavior;
2973 		rc = ocontext_to_sid(sidtab, c, 0, &sbsec->sid);
2974 		if (rc == -ESTALE) {
2975 			rcu_read_unlock();
2976 			goto retry;
2977 		}
2978 		if (rc)
2979 			goto out;
2980 	} else {
2981 		rc = __security_genfs_sid(policy, fstype, "/",
2982 					SECCLASS_DIR, &sbsec->sid);
2983 		if (rc == -ESTALE) {
2984 			rcu_read_unlock();
2985 			goto retry;
2986 		}
2987 		if (rc) {
2988 			sbsec->behavior = SECURITY_FS_USE_NONE;
2989 			rc = 0;
2990 		} else {
2991 			sbsec->behavior = SECURITY_FS_USE_GENFS;
2992 		}
2993 	}
2994 
2995 out:
2996 	rcu_read_unlock();
2997 	return rc;
2998 }
2999 
security_get_bools(struct selinux_policy * policy,u32 * len,char *** names,int ** values)3000 int security_get_bools(struct selinux_policy *policy,
3001 		       u32 *len, char ***names, int **values)
3002 {
3003 	struct policydb *policydb;
3004 	u32 i;
3005 	int rc;
3006 
3007 	policydb = &policy->policydb;
3008 
3009 	*names = NULL;
3010 	*values = NULL;
3011 
3012 	rc = 0;
3013 	*len = policydb->p_bools.nprim;
3014 	if (!*len)
3015 		goto out;
3016 
3017 	rc = -ENOMEM;
3018 	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
3019 	if (!*names)
3020 		goto err;
3021 
3022 	rc = -ENOMEM;
3023 	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
3024 	if (!*values)
3025 		goto err;
3026 
3027 	for (i = 0; i < *len; i++) {
3028 		(*values)[i] = policydb->bool_val_to_struct[i]->state;
3029 
3030 		rc = -ENOMEM;
3031 		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
3032 				      GFP_ATOMIC);
3033 		if (!(*names)[i])
3034 			goto err;
3035 	}
3036 	rc = 0;
3037 out:
3038 	return rc;
3039 err:
3040 	if (*names) {
3041 		for (i = 0; i < *len; i++)
3042 			kfree((*names)[i]);
3043 		kfree(*names);
3044 	}
3045 	kfree(*values);
3046 	*len = 0;
3047 	*names = NULL;
3048 	*values = NULL;
3049 	goto out;
3050 }
3051 
3052 
security_set_bools(u32 len,const int * values)3053 int security_set_bools(u32 len, const int *values)
3054 {
3055 	struct selinux_state *state = &selinux_state;
3056 	struct selinux_policy *newpolicy, *oldpolicy;
3057 	int rc;
3058 	u32 i, seqno = 0;
3059 
3060 	if (!selinux_initialized())
3061 		return -EINVAL;
3062 
3063 	oldpolicy = rcu_dereference_protected(state->policy,
3064 					lockdep_is_held(&state->policy_mutex));
3065 
3066 	/* Consistency check on number of booleans, should never fail */
3067 	if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim))
3068 		return -EINVAL;
3069 
3070 	newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL);
3071 	if (!newpolicy)
3072 		return -ENOMEM;
3073 
3074 	/*
3075 	 * Deep copy only the parts of the policydb that might be
3076 	 * modified as a result of changing booleans.
3077 	 */
3078 	rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb);
3079 	if (rc) {
3080 		kfree(newpolicy);
3081 		return -ENOMEM;
3082 	}
3083 
3084 	/* Update the boolean states in the copy */
3085 	for (i = 0; i < len; i++) {
3086 		int new_state = !!values[i];
3087 		int old_state = newpolicy->policydb.bool_val_to_struct[i]->state;
3088 
3089 		if (new_state != old_state) {
3090 			audit_log(audit_context(), GFP_ATOMIC,
3091 				AUDIT_MAC_CONFIG_CHANGE,
3092 				"bool=%s val=%d old_val=%d auid=%u ses=%u",
3093 				sym_name(&newpolicy->policydb, SYM_BOOLS, i),
3094 				new_state,
3095 				old_state,
3096 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
3097 				audit_get_sessionid(current));
3098 			newpolicy->policydb.bool_val_to_struct[i]->state = new_state;
3099 		}
3100 	}
3101 
3102 	/* Re-evaluate the conditional rules in the copy */
3103 	evaluate_cond_nodes(&newpolicy->policydb);
3104 
3105 	/* Set latest granting seqno for new policy */
3106 	newpolicy->latest_granting = oldpolicy->latest_granting + 1;
3107 	seqno = newpolicy->latest_granting;
3108 
3109 	/* Install the new policy */
3110 	rcu_assign_pointer(state->policy, newpolicy);
3111 
3112 	/*
3113 	 * Free the conditional portions of the old policydb
3114 	 * that were copied for the new policy, and the oldpolicy
3115 	 * structure itself but not what it references.
3116 	 */
3117 	synchronize_rcu();
3118 	selinux_policy_cond_free(oldpolicy);
3119 
3120 	/* Notify others of the policy change */
3121 	selinux_notify_policy_change(seqno);
3122 	return 0;
3123 }
3124 
security_get_bool_value(u32 index)3125 int security_get_bool_value(u32 index)
3126 {
3127 	struct selinux_policy *policy;
3128 	struct policydb *policydb;
3129 	int rc;
3130 	u32 len;
3131 
3132 	if (!selinux_initialized())
3133 		return 0;
3134 
3135 	rcu_read_lock();
3136 	policy = rcu_dereference(selinux_state.policy);
3137 	policydb = &policy->policydb;
3138 
3139 	rc = -EFAULT;
3140 	len = policydb->p_bools.nprim;
3141 	if (index >= len)
3142 		goto out;
3143 
3144 	rc = policydb->bool_val_to_struct[index]->state;
3145 out:
3146 	rcu_read_unlock();
3147 	return rc;
3148 }
3149 
security_preserve_bools(struct selinux_policy * oldpolicy,struct selinux_policy * newpolicy)3150 static int security_preserve_bools(struct selinux_policy *oldpolicy,
3151 				struct selinux_policy *newpolicy)
3152 {
3153 	int rc, *bvalues = NULL;
3154 	char **bnames = NULL;
3155 	struct cond_bool_datum *booldatum;
3156 	u32 i, nbools = 0;
3157 
3158 	rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues);
3159 	if (rc)
3160 		goto out;
3161 	for (i = 0; i < nbools; i++) {
3162 		booldatum = symtab_search(&newpolicy->policydb.p_bools,
3163 					bnames[i]);
3164 		if (booldatum)
3165 			booldatum->state = bvalues[i];
3166 	}
3167 	evaluate_cond_nodes(&newpolicy->policydb);
3168 
3169 out:
3170 	if (bnames) {
3171 		for (i = 0; i < nbools; i++)
3172 			kfree(bnames[i]);
3173 	}
3174 	kfree(bnames);
3175 	kfree(bvalues);
3176 	return rc;
3177 }
3178 
3179 /*
3180  * security_sid_mls_copy() - computes a new sid based on the given
3181  * sid and the mls portion of mls_sid.
3182  */
security_sid_mls_copy(u32 sid,u32 mls_sid,u32 * new_sid)3183 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
3184 {
3185 	struct selinux_policy *policy;
3186 	struct policydb *policydb;
3187 	struct sidtab *sidtab;
3188 	struct context *context1;
3189 	struct context *context2;
3190 	struct context newcon;
3191 	char *s;
3192 	u32 len;
3193 	int rc;
3194 
3195 	if (!selinux_initialized()) {
3196 		*new_sid = sid;
3197 		return 0;
3198 	}
3199 
3200 retry:
3201 	rc = 0;
3202 	context_init(&newcon);
3203 
3204 	rcu_read_lock();
3205 	policy = rcu_dereference(selinux_state.policy);
3206 	policydb = &policy->policydb;
3207 	sidtab = policy->sidtab;
3208 
3209 	if (!policydb->mls_enabled) {
3210 		*new_sid = sid;
3211 		goto out_unlock;
3212 	}
3213 
3214 	rc = -EINVAL;
3215 	context1 = sidtab_search(sidtab, sid);
3216 	if (!context1) {
3217 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3218 			__func__, sid);
3219 		goto out_unlock;
3220 	}
3221 
3222 	rc = -EINVAL;
3223 	context2 = sidtab_search(sidtab, mls_sid);
3224 	if (!context2) {
3225 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3226 			__func__, mls_sid);
3227 		goto out_unlock;
3228 	}
3229 
3230 	newcon.user = context1->user;
3231 	newcon.role = context1->role;
3232 	newcon.type = context1->type;
3233 	rc = mls_context_cpy(&newcon, context2);
3234 	if (rc)
3235 		goto out_unlock;
3236 
3237 	/* Check the validity of the new context. */
3238 	if (!policydb_context_isvalid(policydb, &newcon)) {
3239 		rc = convert_context_handle_invalid_context(policydb,
3240 							&newcon);
3241 		if (rc) {
3242 			if (!context_struct_to_string(policydb, &newcon, &s,
3243 						      &len)) {
3244 				struct audit_buffer *ab;
3245 
3246 				ab = audit_log_start(audit_context(),
3247 						     GFP_ATOMIC,
3248 						     AUDIT_SELINUX_ERR);
3249 				audit_log_format(ab,
3250 						 "op=security_sid_mls_copy invalid_context=");
3251 				/* don't record NUL with untrusted strings */
3252 				audit_log_n_untrustedstring(ab, s, len - 1);
3253 				audit_log_end(ab);
3254 				kfree(s);
3255 			}
3256 			goto out_unlock;
3257 		}
3258 	}
3259 	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3260 	if (rc == -ESTALE) {
3261 		rcu_read_unlock();
3262 		context_destroy(&newcon);
3263 		goto retry;
3264 	}
3265 out_unlock:
3266 	rcu_read_unlock();
3267 	context_destroy(&newcon);
3268 	return rc;
3269 }
3270 
3271 /**
3272  * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3273  * @nlbl_sid: NetLabel SID
3274  * @nlbl_type: NetLabel labeling protocol type
3275  * @xfrm_sid: XFRM SID
3276  * @peer_sid: network peer sid
3277  *
3278  * Description:
3279  * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3280  * resolved into a single SID it is returned via @peer_sid and the function
3281  * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3282  * returns a negative value.  A table summarizing the behavior is below:
3283  *
3284  *                                 | function return |      @sid
3285  *   ------------------------------+-----------------+-----------------
3286  *   no peer labels                |        0        |    SECSID_NULL
3287  *   single peer label             |        0        |    <peer_label>
3288  *   multiple, consistent labels   |        0        |    <peer_label>
3289  *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3290  *
3291  */
security_net_peersid_resolve(u32 nlbl_sid,u32 nlbl_type,u32 xfrm_sid,u32 * peer_sid)3292 int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
3293 				 u32 xfrm_sid,
3294 				 u32 *peer_sid)
3295 {
3296 	struct selinux_policy *policy;
3297 	struct policydb *policydb;
3298 	struct sidtab *sidtab;
3299 	int rc;
3300 	struct context *nlbl_ctx;
3301 	struct context *xfrm_ctx;
3302 
3303 	*peer_sid = SECSID_NULL;
3304 
3305 	/* handle the common (which also happens to be the set of easy) cases
3306 	 * right away, these two if statements catch everything involving a
3307 	 * single or absent peer SID/label */
3308 	if (xfrm_sid == SECSID_NULL) {
3309 		*peer_sid = nlbl_sid;
3310 		return 0;
3311 	}
3312 	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3313 	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3314 	 * is present */
3315 	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3316 		*peer_sid = xfrm_sid;
3317 		return 0;
3318 	}
3319 
3320 	if (!selinux_initialized())
3321 		return 0;
3322 
3323 	rcu_read_lock();
3324 	policy = rcu_dereference(selinux_state.policy);
3325 	policydb = &policy->policydb;
3326 	sidtab = policy->sidtab;
3327 
3328 	/*
3329 	 * We don't need to check initialized here since the only way both
3330 	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3331 	 * security server was initialized and state->initialized was true.
3332 	 */
3333 	if (!policydb->mls_enabled) {
3334 		rc = 0;
3335 		goto out;
3336 	}
3337 
3338 	rc = -EINVAL;
3339 	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3340 	if (!nlbl_ctx) {
3341 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3342 		       __func__, nlbl_sid);
3343 		goto out;
3344 	}
3345 	rc = -EINVAL;
3346 	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3347 	if (!xfrm_ctx) {
3348 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3349 		       __func__, xfrm_sid);
3350 		goto out;
3351 	}
3352 	rc = (mls_context_equal(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3353 	if (rc)
3354 		goto out;
3355 
3356 	/* at present NetLabel SIDs/labels really only carry MLS
3357 	 * information so if the MLS portion of the NetLabel SID
3358 	 * matches the MLS portion of the labeled XFRM SID/label
3359 	 * then pass along the XFRM SID as it is the most
3360 	 * expressive */
3361 	*peer_sid = xfrm_sid;
3362 out:
3363 	rcu_read_unlock();
3364 	return rc;
3365 }
3366 
get_classes_callback(void * k,void * d,void * args)3367 static int get_classes_callback(void *k, void *d, void *args)
3368 {
3369 	struct class_datum *datum = d;
3370 	char *name = k, **classes = args;
3371 	u32 value = datum->value - 1;
3372 
3373 	classes[value] = kstrdup(name, GFP_ATOMIC);
3374 	if (!classes[value])
3375 		return -ENOMEM;
3376 
3377 	return 0;
3378 }
3379 
security_get_classes(struct selinux_policy * policy,char *** classes,u32 * nclasses)3380 int security_get_classes(struct selinux_policy *policy,
3381 			 char ***classes, u32 *nclasses)
3382 {
3383 	struct policydb *policydb;
3384 	int rc;
3385 
3386 	policydb = &policy->policydb;
3387 
3388 	rc = -ENOMEM;
3389 	*nclasses = policydb->p_classes.nprim;
3390 	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3391 	if (!*classes)
3392 		goto out;
3393 
3394 	rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3395 			 *classes);
3396 	if (rc) {
3397 		u32 i;
3398 
3399 		for (i = 0; i < *nclasses; i++)
3400 			kfree((*classes)[i]);
3401 		kfree(*classes);
3402 	}
3403 
3404 out:
3405 	return rc;
3406 }
3407 
get_permissions_callback(void * k,void * d,void * args)3408 static int get_permissions_callback(void *k, void *d, void *args)
3409 {
3410 	struct perm_datum *datum = d;
3411 	char *name = k, **perms = args;
3412 	u32 value = datum->value - 1;
3413 
3414 	perms[value] = kstrdup(name, GFP_ATOMIC);
3415 	if (!perms[value])
3416 		return -ENOMEM;
3417 
3418 	return 0;
3419 }
3420 
security_get_permissions(struct selinux_policy * policy,const char * class,char *** perms,u32 * nperms)3421 int security_get_permissions(struct selinux_policy *policy,
3422 			     const char *class, char ***perms, u32 *nperms)
3423 {
3424 	struct policydb *policydb;
3425 	u32 i;
3426 	int rc;
3427 	struct class_datum *match;
3428 
3429 	policydb = &policy->policydb;
3430 
3431 	rc = -EINVAL;
3432 	match = symtab_search(&policydb->p_classes, class);
3433 	if (!match) {
3434 		pr_err("SELinux: %s:  unrecognized class %s\n",
3435 			__func__, class);
3436 		goto out;
3437 	}
3438 
3439 	rc = -ENOMEM;
3440 	*nperms = match->permissions.nprim;
3441 	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3442 	if (!*perms)
3443 		goto out;
3444 
3445 	if (match->comdatum) {
3446 		rc = hashtab_map(&match->comdatum->permissions.table,
3447 				 get_permissions_callback, *perms);
3448 		if (rc)
3449 			goto err;
3450 	}
3451 
3452 	rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3453 			 *perms);
3454 	if (rc)
3455 		goto err;
3456 
3457 out:
3458 	return rc;
3459 
3460 err:
3461 	for (i = 0; i < *nperms; i++)
3462 		kfree((*perms)[i]);
3463 	kfree(*perms);
3464 	return rc;
3465 }
3466 
security_get_reject_unknown(void)3467 int security_get_reject_unknown(void)
3468 {
3469 	struct selinux_policy *policy;
3470 	int value;
3471 
3472 	if (!selinux_initialized())
3473 		return 0;
3474 
3475 	rcu_read_lock();
3476 	policy = rcu_dereference(selinux_state.policy);
3477 	value = policy->policydb.reject_unknown;
3478 	rcu_read_unlock();
3479 	return value;
3480 }
3481 
security_get_allow_unknown(void)3482 int security_get_allow_unknown(void)
3483 {
3484 	struct selinux_policy *policy;
3485 	int value;
3486 
3487 	if (!selinux_initialized())
3488 		return 0;
3489 
3490 	rcu_read_lock();
3491 	policy = rcu_dereference(selinux_state.policy);
3492 	value = policy->policydb.allow_unknown;
3493 	rcu_read_unlock();
3494 	return value;
3495 }
3496 
3497 /**
3498  * security_policycap_supported - Check for a specific policy capability
3499  * @req_cap: capability
3500  *
3501  * Description:
3502  * This function queries the currently loaded policy to see if it supports the
3503  * capability specified by @req_cap.  Returns true (1) if the capability is
3504  * supported, false (0) if it isn't supported.
3505  *
3506  */
security_policycap_supported(unsigned int req_cap)3507 int security_policycap_supported(unsigned int req_cap)
3508 {
3509 	struct selinux_policy *policy;
3510 	int rc;
3511 
3512 	if (!selinux_initialized())
3513 		return 0;
3514 
3515 	rcu_read_lock();
3516 	policy = rcu_dereference(selinux_state.policy);
3517 	rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap);
3518 	rcu_read_unlock();
3519 
3520 	return rc;
3521 }
3522 
3523 struct selinux_audit_rule {
3524 	u32 au_seqno;
3525 	struct context au_ctxt;
3526 };
3527 
selinux_audit_rule_free(void * vrule)3528 void selinux_audit_rule_free(void *vrule)
3529 {
3530 	struct selinux_audit_rule *rule = vrule;
3531 
3532 	if (rule) {
3533 		context_destroy(&rule->au_ctxt);
3534 		kfree(rule);
3535 	}
3536 }
3537 
selinux_audit_rule_init(u32 field,u32 op,char * rulestr,void ** vrule,gfp_t gfp)3538 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule,
3539 			    gfp_t gfp)
3540 {
3541 	struct selinux_state *state = &selinux_state;
3542 	struct selinux_policy *policy;
3543 	struct policydb *policydb;
3544 	struct selinux_audit_rule *tmprule;
3545 	struct role_datum *roledatum;
3546 	struct type_datum *typedatum;
3547 	struct user_datum *userdatum;
3548 	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3549 	int rc = 0;
3550 
3551 	*rule = NULL;
3552 
3553 	if (!selinux_initialized())
3554 		return -EOPNOTSUPP;
3555 
3556 	switch (field) {
3557 	case AUDIT_SUBJ_USER:
3558 	case AUDIT_SUBJ_ROLE:
3559 	case AUDIT_SUBJ_TYPE:
3560 	case AUDIT_OBJ_USER:
3561 	case AUDIT_OBJ_ROLE:
3562 	case AUDIT_OBJ_TYPE:
3563 		/* only 'equals' and 'not equals' fit user, role, and type */
3564 		if (op != Audit_equal && op != Audit_not_equal)
3565 			return -EINVAL;
3566 		break;
3567 	case AUDIT_SUBJ_SEN:
3568 	case AUDIT_SUBJ_CLR:
3569 	case AUDIT_OBJ_LEV_LOW:
3570 	case AUDIT_OBJ_LEV_HIGH:
3571 		/* we do not allow a range, indicated by the presence of '-' */
3572 		if (strchr(rulestr, '-'))
3573 			return -EINVAL;
3574 		break;
3575 	default:
3576 		/* only the above fields are valid */
3577 		return -EINVAL;
3578 	}
3579 
3580 	tmprule = kzalloc(sizeof(struct selinux_audit_rule), gfp);
3581 	if (!tmprule)
3582 		return -ENOMEM;
3583 	context_init(&tmprule->au_ctxt);
3584 
3585 	rcu_read_lock();
3586 	policy = rcu_dereference(state->policy);
3587 	policydb = &policy->policydb;
3588 	tmprule->au_seqno = policy->latest_granting;
3589 	switch (field) {
3590 	case AUDIT_SUBJ_USER:
3591 	case AUDIT_OBJ_USER:
3592 		userdatum = symtab_search(&policydb->p_users, rulestr);
3593 		if (!userdatum) {
3594 			rc = -EINVAL;
3595 			goto err;
3596 		}
3597 		tmprule->au_ctxt.user = userdatum->value;
3598 		break;
3599 	case AUDIT_SUBJ_ROLE:
3600 	case AUDIT_OBJ_ROLE:
3601 		roledatum = symtab_search(&policydb->p_roles, rulestr);
3602 		if (!roledatum) {
3603 			rc = -EINVAL;
3604 			goto err;
3605 		}
3606 		tmprule->au_ctxt.role = roledatum->value;
3607 		break;
3608 	case AUDIT_SUBJ_TYPE:
3609 	case AUDIT_OBJ_TYPE:
3610 		typedatum = symtab_search(&policydb->p_types, rulestr);
3611 		if (!typedatum) {
3612 			rc = -EINVAL;
3613 			goto err;
3614 		}
3615 		tmprule->au_ctxt.type = typedatum->value;
3616 		break;
3617 	case AUDIT_SUBJ_SEN:
3618 	case AUDIT_SUBJ_CLR:
3619 	case AUDIT_OBJ_LEV_LOW:
3620 	case AUDIT_OBJ_LEV_HIGH:
3621 		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3622 				     GFP_ATOMIC);
3623 		if (rc)
3624 			goto err;
3625 		break;
3626 	}
3627 	rcu_read_unlock();
3628 
3629 	*rule = tmprule;
3630 	return 0;
3631 
3632 err:
3633 	rcu_read_unlock();
3634 	selinux_audit_rule_free(tmprule);
3635 	*rule = NULL;
3636 	return rc;
3637 }
3638 
3639 /* Check to see if the rule contains any selinux fields */
selinux_audit_rule_known(struct audit_krule * rule)3640 int selinux_audit_rule_known(struct audit_krule *rule)
3641 {
3642 	u32 i;
3643 
3644 	for (i = 0; i < rule->field_count; i++) {
3645 		struct audit_field *f = &rule->fields[i];
3646 		switch (f->type) {
3647 		case AUDIT_SUBJ_USER:
3648 		case AUDIT_SUBJ_ROLE:
3649 		case AUDIT_SUBJ_TYPE:
3650 		case AUDIT_SUBJ_SEN:
3651 		case AUDIT_SUBJ_CLR:
3652 		case AUDIT_OBJ_USER:
3653 		case AUDIT_OBJ_ROLE:
3654 		case AUDIT_OBJ_TYPE:
3655 		case AUDIT_OBJ_LEV_LOW:
3656 		case AUDIT_OBJ_LEV_HIGH:
3657 			return 1;
3658 		}
3659 	}
3660 
3661 	return 0;
3662 }
3663 
selinux_audit_rule_match(struct lsm_prop * prop,u32 field,u32 op,void * vrule)3664 int selinux_audit_rule_match(struct lsm_prop *prop, u32 field, u32 op, void *vrule)
3665 {
3666 	struct selinux_state *state = &selinux_state;
3667 	struct selinux_policy *policy;
3668 	struct context *ctxt;
3669 	struct mls_level *level;
3670 	struct selinux_audit_rule *rule = vrule;
3671 	int match = 0;
3672 
3673 	if (unlikely(!rule)) {
3674 		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3675 		return -ENOENT;
3676 	}
3677 
3678 	if (!selinux_initialized())
3679 		return 0;
3680 
3681 	rcu_read_lock();
3682 
3683 	policy = rcu_dereference(state->policy);
3684 
3685 	if (rule->au_seqno < policy->latest_granting) {
3686 		match = -ESTALE;
3687 		goto out;
3688 	}
3689 
3690 	ctxt = sidtab_search(policy->sidtab, prop->selinux.secid);
3691 	if (unlikely(!ctxt)) {
3692 		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3693 			  prop->selinux.secid);
3694 		match = -ENOENT;
3695 		goto out;
3696 	}
3697 
3698 	/* a field/op pair that is not caught here will simply fall through
3699 	   without a match */
3700 	switch (field) {
3701 	case AUDIT_SUBJ_USER:
3702 	case AUDIT_OBJ_USER:
3703 		switch (op) {
3704 		case Audit_equal:
3705 			match = (ctxt->user == rule->au_ctxt.user);
3706 			break;
3707 		case Audit_not_equal:
3708 			match = (ctxt->user != rule->au_ctxt.user);
3709 			break;
3710 		}
3711 		break;
3712 	case AUDIT_SUBJ_ROLE:
3713 	case AUDIT_OBJ_ROLE:
3714 		switch (op) {
3715 		case Audit_equal:
3716 			match = (ctxt->role == rule->au_ctxt.role);
3717 			break;
3718 		case Audit_not_equal:
3719 			match = (ctxt->role != rule->au_ctxt.role);
3720 			break;
3721 		}
3722 		break;
3723 	case AUDIT_SUBJ_TYPE:
3724 	case AUDIT_OBJ_TYPE:
3725 		switch (op) {
3726 		case Audit_equal:
3727 			match = (ctxt->type == rule->au_ctxt.type);
3728 			break;
3729 		case Audit_not_equal:
3730 			match = (ctxt->type != rule->au_ctxt.type);
3731 			break;
3732 		}
3733 		break;
3734 	case AUDIT_SUBJ_SEN:
3735 	case AUDIT_SUBJ_CLR:
3736 	case AUDIT_OBJ_LEV_LOW:
3737 	case AUDIT_OBJ_LEV_HIGH:
3738 		level = ((field == AUDIT_SUBJ_SEN ||
3739 			  field == AUDIT_OBJ_LEV_LOW) ?
3740 			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3741 		switch (op) {
3742 		case Audit_equal:
3743 			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3744 					     level);
3745 			break;
3746 		case Audit_not_equal:
3747 			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3748 					      level);
3749 			break;
3750 		case Audit_lt:
3751 			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3752 					       level) &&
3753 				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3754 					       level));
3755 			break;
3756 		case Audit_le:
3757 			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3758 					      level);
3759 			break;
3760 		case Audit_gt:
3761 			match = (mls_level_dom(level,
3762 					      &rule->au_ctxt.range.level[0]) &&
3763 				 !mls_level_eq(level,
3764 					       &rule->au_ctxt.range.level[0]));
3765 			break;
3766 		case Audit_ge:
3767 			match = mls_level_dom(level,
3768 					      &rule->au_ctxt.range.level[0]);
3769 			break;
3770 		}
3771 	}
3772 
3773 out:
3774 	rcu_read_unlock();
3775 	return match;
3776 }
3777 
aurule_avc_callback(u32 event)3778 static int aurule_avc_callback(u32 event)
3779 {
3780 	if (event == AVC_CALLBACK_RESET)
3781 		return audit_update_lsm_rules();
3782 	return 0;
3783 }
3784 
aurule_init(void)3785 static int __init aurule_init(void)
3786 {
3787 	int err;
3788 
3789 	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3790 	if (err)
3791 		panic("avc_add_callback() failed, error %d\n", err);
3792 
3793 	return err;
3794 }
3795 __initcall(aurule_init);
3796 
3797 #ifdef CONFIG_NETLABEL
3798 /**
3799  * security_netlbl_cache_add - Add an entry to the NetLabel cache
3800  * @secattr: the NetLabel packet security attributes
3801  * @sid: the SELinux SID
3802  *
3803  * Description:
3804  * Attempt to cache the context in @ctx, which was derived from the packet in
3805  * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3806  * already been initialized.
3807  *
3808  */
security_netlbl_cache_add(struct netlbl_lsm_secattr * secattr,u32 sid)3809 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3810 				      u32 sid)
3811 {
3812 	u32 *sid_cache;
3813 
3814 	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3815 	if (sid_cache == NULL)
3816 		return;
3817 	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3818 	if (secattr->cache == NULL) {
3819 		kfree(sid_cache);
3820 		return;
3821 	}
3822 
3823 	*sid_cache = sid;
3824 	secattr->cache->free = kfree;
3825 	secattr->cache->data = sid_cache;
3826 	secattr->flags |= NETLBL_SECATTR_CACHE;
3827 }
3828 
3829 /**
3830  * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3831  * @secattr: the NetLabel packet security attributes
3832  * @sid: the SELinux SID
3833  *
3834  * Description:
3835  * Convert the given NetLabel security attributes in @secattr into a
3836  * SELinux SID.  If the @secattr field does not contain a full SELinux
3837  * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3838  * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3839  * allow the @secattr to be used by NetLabel to cache the secattr to SID
3840  * conversion for future lookups.  Returns zero on success, negative values on
3841  * failure.
3842  *
3843  */
security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr * secattr,u32 * sid)3844 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3845 				   u32 *sid)
3846 {
3847 	struct selinux_policy *policy;
3848 	struct policydb *policydb;
3849 	struct sidtab *sidtab;
3850 	int rc;
3851 	struct context *ctx;
3852 	struct context ctx_new;
3853 
3854 	if (!selinux_initialized()) {
3855 		*sid = SECSID_NULL;
3856 		return 0;
3857 	}
3858 
3859 retry:
3860 	rc = 0;
3861 	rcu_read_lock();
3862 	policy = rcu_dereference(selinux_state.policy);
3863 	policydb = &policy->policydb;
3864 	sidtab = policy->sidtab;
3865 
3866 	if (secattr->flags & NETLBL_SECATTR_CACHE)
3867 		*sid = *(u32 *)secattr->cache->data;
3868 	else if (secattr->flags & NETLBL_SECATTR_SECID)
3869 		*sid = secattr->attr.secid;
3870 	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3871 		rc = -EIDRM;
3872 		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3873 		if (ctx == NULL)
3874 			goto out;
3875 
3876 		context_init(&ctx_new);
3877 		ctx_new.user = ctx->user;
3878 		ctx_new.role = ctx->role;
3879 		ctx_new.type = ctx->type;
3880 		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3881 		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3882 			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3883 			if (rc)
3884 				goto out;
3885 		}
3886 		rc = -EIDRM;
3887 		if (!mls_context_isvalid(policydb, &ctx_new)) {
3888 			ebitmap_destroy(&ctx_new.range.level[0].cat);
3889 			goto out;
3890 		}
3891 
3892 		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3893 		ebitmap_destroy(&ctx_new.range.level[0].cat);
3894 		if (rc == -ESTALE) {
3895 			rcu_read_unlock();
3896 			goto retry;
3897 		}
3898 		if (rc)
3899 			goto out;
3900 
3901 		security_netlbl_cache_add(secattr, *sid);
3902 	} else
3903 		*sid = SECSID_NULL;
3904 
3905 out:
3906 	rcu_read_unlock();
3907 	return rc;
3908 }
3909 
3910 /**
3911  * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3912  * @sid: the SELinux SID
3913  * @secattr: the NetLabel packet security attributes
3914  *
3915  * Description:
3916  * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3917  * Returns zero on success, negative values on failure.
3918  *
3919  */
security_netlbl_sid_to_secattr(u32 sid,struct netlbl_lsm_secattr * secattr)3920 int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3921 {
3922 	struct selinux_policy *policy;
3923 	struct policydb *policydb;
3924 	int rc;
3925 	struct context *ctx;
3926 
3927 	if (!selinux_initialized())
3928 		return 0;
3929 
3930 	rcu_read_lock();
3931 	policy = rcu_dereference(selinux_state.policy);
3932 	policydb = &policy->policydb;
3933 
3934 	rc = -ENOENT;
3935 	ctx = sidtab_search(policy->sidtab, sid);
3936 	if (ctx == NULL)
3937 		goto out;
3938 
3939 	rc = -ENOMEM;
3940 	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3941 				  GFP_ATOMIC);
3942 	if (secattr->domain == NULL)
3943 		goto out;
3944 
3945 	secattr->attr.secid = sid;
3946 	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3947 	mls_export_netlbl_lvl(policydb, ctx, secattr);
3948 	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3949 out:
3950 	rcu_read_unlock();
3951 	return rc;
3952 }
3953 #endif /* CONFIG_NETLABEL */
3954 
3955 /**
3956  * __security_read_policy - read the policy.
3957  * @policy: SELinux policy
3958  * @data: binary policy data
3959  * @len: length of data in bytes
3960  *
3961  */
__security_read_policy(struct selinux_policy * policy,void * data,size_t * len)3962 static int __security_read_policy(struct selinux_policy *policy,
3963 				  void *data, size_t *len)
3964 {
3965 	int rc;
3966 	struct policy_file fp;
3967 
3968 	fp.data = data;
3969 	fp.len = *len;
3970 
3971 	rc = policydb_write(&policy->policydb, &fp);
3972 	if (rc)
3973 		return rc;
3974 
3975 	*len = (unsigned long)fp.data - (unsigned long)data;
3976 	return 0;
3977 }
3978 
3979 /**
3980  * security_read_policy - read the policy.
3981  * @data: binary policy data
3982  * @len: length of data in bytes
3983  *
3984  */
security_read_policy(void ** data,size_t * len)3985 int security_read_policy(void **data, size_t *len)
3986 {
3987 	struct selinux_state *state = &selinux_state;
3988 	struct selinux_policy *policy;
3989 
3990 	policy = rcu_dereference_protected(
3991 			state->policy, lockdep_is_held(&state->policy_mutex));
3992 	if (!policy)
3993 		return -EINVAL;
3994 
3995 	*len = policy->policydb.len;
3996 	*data = vmalloc_user(*len);
3997 	if (!*data)
3998 		return -ENOMEM;
3999 
4000 	return __security_read_policy(policy, *data, len);
4001 }
4002 
4003 /**
4004  * security_read_state_kernel - read the policy.
4005  * @data: binary policy data
4006  * @len: length of data in bytes
4007  *
4008  * Allocates kernel memory for reading SELinux policy.
4009  * This function is for internal use only and should not
4010  * be used for returning data to user space.
4011  *
4012  * This function must be called with policy_mutex held.
4013  */
security_read_state_kernel(void ** data,size_t * len)4014 int security_read_state_kernel(void **data, size_t *len)
4015 {
4016 	int err;
4017 	struct selinux_state *state = &selinux_state;
4018 	struct selinux_policy *policy;
4019 
4020 	policy = rcu_dereference_protected(
4021 			state->policy, lockdep_is_held(&state->policy_mutex));
4022 	if (!policy)
4023 		return -EINVAL;
4024 
4025 	*len = policy->policydb.len;
4026 	*data = vmalloc(*len);
4027 	if (!*data)
4028 		return -ENOMEM;
4029 
4030 	err = __security_read_policy(policy, *data, len);
4031 	if (err) {
4032 		vfree(*data);
4033 		*data = NULL;
4034 		*len = 0;
4035 	}
4036 	return err;
4037 }
4038